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Abstract 

 

A relatively simple, detailed microscopic calculation of IBM parameters 

based on the generalized quasi-spin formalism is proposed, by including in the 

theory of the double tensor, acting in the spaces, both angular moments and 

generalized quasispins. The method is applied to the study of the structure of the 

collective state of even isotopes Xe130118 . The spectrum and probabilities of 

electromagnetic transitions of nuclei are calculated and they are compared with the 

available experimental data. 

 

I. Introduction 
 

In the presented work, we propose a fermionic-microscopic calculation of 

model of interacting bosons [IBM] [1, 2]. IBM parameters based on the generalized 

quasi-spin formalism (GQF), in which the model SD-pair shell space is described 

by the quantum number of the generalized senoriti and with given inter-nucleon 

forces [3-5]. 

The proposed method the shortcomings of the generalized quasi-spin 

formalism are eliminated by the introduction of new generalized quasi-spin 

interaction operators that more adequately describe the real properties of existing 

nuclei. These operators include values that reflect the uneven distribution of 

nucleons in different no degenerate j  shells. 
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The use of the method of generalized quasispin formalism (GQF), gave the 

opportunity to more accurately resolve the many-particle problem for fermionic 

systems with a certain number of particles and with the specified nucleon forces. 

The introduction of the concept of generalized quasispin allows us to distinguish in 

the full fermionic space SD-pair collective and quasi-its areas. This, in turn, 

facilitates the calculation of matrix elements of the interaction operators through 

the nucleon pair forces. 

 

II. Generalized quasispin method 
 

It is known that the particle birth operator


jma  is a spherical tensor operator 

of half-integer rank j in the angular momentum space. Then tensor products of 

these operators are defined as:
 

);( 21 JMjjA );(
~

21 JMjjA
 

),;( 21 JMjjU
 

where,       J

Mmjmjjj aajMjjA  
221121

21

21 1;  ,    (2.1) 

These operators record all kinds of two-part interactions: 

       0

043214321

~
12

4321

JjjAJjjAjjjjGJV jjjjj

  ,   (2.2) 

where,      JjjVJjjjjjjG jjjjJ 43214321 4/11
4321

    (2.3) 

On the other hand, the three tensor operators form a generalized quasispin group: 

2
;

1
; 0

0


 





 
N

SSS
a

SSaS jjj
j

jj j ,    (2.4) 

      SSSSSS ,,2, 00 ,     (2.5) 

where, ja some constant values that determine the amplitudes of the probabilities 

of orbiting 21,,   jaNN jj jj j . These three generalized quasispin 

operators SS ,0  also have the switching properties of ordinary quasispin operators 

and are generators of the Lie algebra. As can be seen from (2.5), the generalized 

quasispin operators consist of ordinary quasispin operators 
0, jj SS 
. 

 00;21 jjAS j

  ;    jj

jj NSjjAS 

2

1
,00;

~ 0

21   (2.6) 

Where   jmjm

mj

jmm jm

j aaaaN    . 

Then in quasispecular introduced generalized formalism it is also possible 

to introduce a complete generalized statement of quasispin S : 

0

2

0

2 SSSSS        (2.7) 

Such generalized operators satisfy similar commutation relations as the angular 

momentum operators obey. The state vectors are now characterized by new 

quantum numbers s  and ssss ,...1,,0   and which determine the eigenvalues of 

the full quasispin operators s  and its projections 0s . These numbers form a  
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generalized quasispin space whose wave functions are denoted by qss ,, 0 . Using 

the switching rules (2.5), we obtain: 

qssconstqssSqssconstqssS ,1,,1,,,,1,,1,, 0000     (2.8) 

The values of the quantum numbers 𝑠0 and 𝑠  are also determined by the alternative 

numbers of the generalized senerity v and the total number of nucleons N using the 

relations: 

    Nsvs
2

1
,

2

1
0      (2.9) 

The interaction pairing Hamiltonian  

 SGSNHs       (2.10) 

also diagonal in the representation of the generalized quasispin as in the usual 

quasispin space.  

Wave functions of excited states with JM : 

  JMJJJSKJMss
n

vn ,,, '

0,0  


,   (2.11) 

where  vNn 
2

1
 number of paired particles and 

vnK ,  normalization constants. 

Although, in General, the 1ja operator 
sH  of non-hermites, but its 

eigenvalues are real, in form formally coincide with the eigenvalues 
sH  in ordinary 

quasispin space. And all physical quantities are determined by means of constants 

ja , describing the probability of distribution of particles in non-degenerate States. 

 

III.  A problem with a complete Hamiltonian in the 

representation of a generalized quasispin 
 

We consider a multiparticle problem in double spaces of a generalized 

quasispin with an arbitrary pair interaction operator. The complete Hamiltonian in 

this case is conveniently split into two parts by isolating the pairing interaction from 

it: ,WHH s  where W the operator expressing the rest of the particle 

interaction but diagonal in the representation of the generalized quasispin s 

    
4321

432143

'

21jjjj
JMjjAJMjjAjjVjjW    (3.1) 

Then the eigenvalue problem of the full Hamiltonian H diagonal in s  

representation is reduced to the solution of the equation 

  qssqsvssnEqssH ,,,2,,, 000  .   (3.2) 

The total energy of the system is also divided into two parts: 

     qvnEvvnNEqvnE s ,,,2,, ' ,    (3.3) 

where sE eigenvalues of the pairing part of the Hamiltonian .sH  

We find the conditions under which the full Hamiltonian H will be 

diagonalized in the representation of the generalized quasispin. It is sufficient for 

the functions (2.11) to be the operator's own functions :W  



274                          K. Baktybayev, A. Dalelkhankyzy, N. Koilyk and M. K. Baktybayev 

 

 

  qssqvnEqssW ,,,,,, 0

'

0 .      (3.4) 

This equation can be reduced to several easily solved, independent of n  equations. 

For this purpose, we use the commutator: 

         
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
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



  4343
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3
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'
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4

2
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JMjjAjjVjjSW J

M
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M

MJJM

js

s
 , (3.5) 

where       ''''

~/12 ''
2

'

mjjmmmjj

J

M aaJMmmjjjjT        (3.6) 

This operator breaks a pair of particles in the state 0S  and transfers them to the 

excited state  JMjjA 21 . In addition, we introduce the operator of the birth of v  

unpaired particles with a total angular momentum J : 

    

j

vJv

j JMjQJMvQ 0,0, , .     (3.7) 

Then the equation (3,4) can be rewritten as: 

        0,,,0, ' JMvQSJvnEJMvQSW
nn 





  .    (3.8) 

This equation takes place only if executed equality: 

         

     JvnJvEJvnE

JMvQSJMvJMvQSW

,,,0,,

,,0,,

'' 





 





      

As a result, the diagonalization conditions of the full Hamiltonian WHH s  in 

s  representation will be reduced to solving a system of equations 

    

      ,0,,0,

2,,,00
2

0

JMvQJvEJMvHQ

SGSSHSEHS








    (3.9) 

         JMvQSJvvGJMvQSH ,,,,, 





   ,     

where,   .20,20  GvNEE s   

The total energy of the system is determined by equality (3.3).Thus, the solution of 

the problem with the full Hamiltonian H  leads to the removal of degeneration of 

states by angular momentum J in multiplets characterized by the quantum number 

of the generalized senority ,v whose positions depend linearly on the number of 

pairs in the system.  

As mentioned, the generalized quasispin method allows expressing 

multiparticle matrix elements through two-particle. To this end, the operators 


jma  

and jma~  and are recorded as components of double spherical and irreducible tensor 

ranks 21  and J  in spaces such as corner points and quasispin [8-10]. 

Then the operators consisting of pieces a  and a  can express the introduced dual 

tensor T . For example, for the case of k even numbers we have 

 

),()().1(

1 jjkqAjjT k

q

 )(
~

)().1(

1 jjkqAjjT k

q 
      

   






 

 0,
2

)().1(

1 kjjkqUjjT k

q  .     (3.10) 
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Any one-particle vector operator  i

k

if  is proportional to a double rank tensor k  

in normal and first rank in quasi-spaces )().1( jjT k
.  

For the vector potential: 

   
 

  ,'',1

0

10

10'' JavjTvaJj
vf

nf
JavjfvaJj nkvn

i

k

i

n     (3.11) 

where           2/,2/0,2/,1,2/,2, 10

'  nvnvnfvvv   

10f the ratio of the Clebsch-Gordan. 

In a similar way, two-particle matrix elements can be computed using double 

tensors. Such formulas are written for scalar two-particle pair interaction operators 

in the form: 

     011112 ,1,1'
'   J

jj

J

jjJ J TTGJV ,    (3.12) 

where   2,1,0,22  JjVJjGJ
determine the ranks of tensors in space. 

The operator of the multipole-multipole interaction is often written in 

phenomenological form: 

       


ji ji UUKV 
  12     (3.13) 

in which constK   and 
  
iU  a single spherical tensor. If the number   odd, 

then V  quasienergy a scalar, therefore, it is expressed through  ,0T : 

         
 12

4
12

2

1 0,0,0,02/3






 

 K
N

TTKV     

Then the matrix element of this operator can be easily expressed linearly by the 

quantum number n : 

  JvajVvaJjGvnJvajVvaJj vv

aavv

nn '

0

'
''

2

1









    (3.14) 

In the case of even , the multipole interaction operator contains quasispin scalar 

and tensor parts. The potential of paired nucleon-nucleon interaction is chosen in 

the simplest form: 

      0012 ,2,1 UrrfSUUUV ss    ,    (3.15) 

in which   UUU s ,, the parameters of Wigner, singlet and tensor forces, and 

singlet and tensor design operators;  0,rrf  radial dependence of nuclear forces, 

chosen as Gauss potential, 0U  Coulomb potential. The pair potential of nucleon 

interactions consists of three parts: ,npnnpp VVVV  interactions of nucleons of the 

same name and the neutron-proton part. 

 

IV. Application of the method to study the structure of even 

isotopes of Xe130118   
 

The method will be applied to the even-numbered isotopes Xe130118 . The 

core properties in this area are interpreted by IBM [11]. In our approach, the lower  
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states of nuclei are taken as single-particle energy SnSb 131

50

133

51 , taken from [11,12], 

which are given in Table 1. 

 

Table 1.Single-particle (hole) energies of protons and neutrons in nuclei SnSb 131

50

133

51 ,  

MeV. 

p  02/7 g  96.02/5 d  69.22/3 d  76.22/11 h  99.22/1 s  

n  02/3 d  24.02/11 h  33.02/1 s  66.12/5 d  34.22/7 g  

 

Parameters of pair interactions of nucleons were determined from the description 

of experimental spectra of even isotopes of the nucleus Xe . The depth of the 

proton-proton interaction Vpp should change slowly over the isotopes of the nuclei, 

but will not differ much from each other. In this work, we choose them the same 

for all isotopes and equal to ,26MeVU p 
 .18MeVU p

s  The amplitude of the tensor 

interaction was considered negligible. The selected parameters for nn and np 

interactions are listed in Table-2. 

 

Table 2. The parameters 
nnV  and 

npV  for isotopes Xe (MeV). 

nucleus nU
 n

sU  npU
 np

sU  

Xe118  -24 -18 -32 -20 

Xe120  -22 -16 -30 -18 

Xe122  -21 -13 -27 -15 

Xe124  -18 -12 -23 -13 

Xe126  -17 -13 -22 -12 

 

These values turned out to be close to the values of the corresponding potential 

parameters for heavy nuclei obtained in earlier works [13,14]. They vary with the 

number of neutrons monotonously and slowly. 

 

Next, we consider the properties of wave functions in the spectrum 

calculated by the microscopic method. Unfortunately, there are very few 

experimental data on the absolute values of the reduced probabilities of transitions 

between states. Nevertheless, we made quite a satisfactory comparison of the 

calculated relative values of B (E2) between various transitions with iJJ  their 

experimental values, which are collected in Table 3.  

As can be seen from this table3, the above trends in the contributions of matrix 

elements of pair interaction operators are confirmed here, and the belonging of the 

States of O(6)–symmetry of phenomenological U(6)–group consideration is 

confirmed. This agreement is approved, for transitions within a homogeneous 

bands. For transitions between states of heterogeneous bands, this trend is also 

slightly broken.  
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Table-3. Isotope states Xe . 
Ядра 

J  
Xe118  Xe120  Xe122  Xe124  Xe126  

Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. 


10  0 0 0 0 0 0 0 0 0 0 



12  0.34 0.33 0.32 0.33 0.33 0.34 0.35 0.36 0.39 0.41 



14  0.81 0.79 0.80 0.78 0.83 0.85 0,88 0,89 0.94 0.96 



16  1.40 1.41 1.41 1.42 1.47 1.49 1.55 1.57 1.64 1.67 



18  2.07 2.04 2.10 2.12 2.22 2.24 2.33 2.39 2.44 2.48 



110  2.82 2.86 2.87 2.92 3.04 3.12 3.17 3.24 3.32 3.41 



22  0.93 0.96 0.88 0.94 0.84 0.95 0.85 0.97 0.88 0.94 



24  1.44 1.48 1.40 1.49 1.40 1.51 1.44 1.51 1.49 1.54 



26  2.00 2.12 1.99 2.14 2.06 2.13 2.14 2.21 2.21 2.25 



28  2.63 2.73 2.65 2.83 2.80 2.91 2.91 2.99 -  3.08 

 

These values were close to the values of the corresponding parameters of the 

potential for heavy nuclei obtained in earlier works [13,14]. They change with the 

change in the number of neutrons monotonously and slowly.  

 

Using the obtained wave state functions, the reduced probabilities 2E of 

transitions between the levels, as well as the ratios of probability transitions 

between different States are calculated. 

 

Table 4. Relationships    ''

5 5
/ JJJJ

ii   of transition probabilities in isotopes Xe . 

nucleus  

 

5JJi 
 

Xe118  Xe120  Xe122  Xe124  Xe126  
Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. Exp. Theor. 

12

12

02

22



  25 30 31 35 28 38 22 28 1262

 

49 

12

22

20

20



  - 18 - 21 - 24 - 14 6.14.10 

 

16.2 

12

22

44

24



  4.3 5.6 1.7 2.7 0.5 0.28 0.35 0.48 0.27 0.35 

11

21

23

23



  21 14 30 18 42 21 9.4 16.4 67 31.5 

11

11

45

35



  - 21 1027
 

16 - 17 83 52 25 12.6 

11

11

23

43



  - 17 6,6 11 6.7 8.4 - 12.0 -  18.7 

13

23

42

22



  1.28 3.1 - 5.4 - 7.6 - 9.2 -  11.4 
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The results of the calculations and their experimental values are given in tables 4, 

the transition probabilities are calculated in the approximation, in which the single-

particle radial integrals are replaced by the expression 3  3/ R . 

The tables show a satisfactory agreement between the calculated and experimental 

values of these values. The ratios of transition probabilities within the same bands 

(irast,  and  ) are within the same order, whereas they differ in two orders of 

magnitude between the levels of different bands. These are, for example, relations

,23/43 1111   ,68/68 1212 
1121 45/45  . Such simple calculations, in 

General, well convey a sharp drop  2EB from the nucleus to the nucleus, which is 

a consequence of configuration mixing of wave functions with small components. 

 

Since the experimental data for isotopes Xe128  and Xe130 are very small, the 

data for them is excluded from Table 4. Experimental [15, 16] and theoretical values 

of the energies of states generally agree well with each other. Especially, as you can 

see, it is good for irast band states. But for the  and  bands there are some 

discrepancies. These divergences grow for higher levels. This is explained not only 

by the choice of intensity npnnpp ,, of interactions, but also by taking into account 

only S and D pairs in the calculations. In addition, we completely excluded from 

consideration the contribution of the tensor part of the pair interaction. 

 

 

V. Conclusion 

 

The proposed relatively simple, at the same time detailed microscopic 

calculation of IBM parameters on the basis of generalized quasi-spin formalism, 

which takes into account the model SD  pair shell space. The theory quite 

satisfactorily describes the properties of the lower collective States of the nuclei of 

medium and heavy atomic weights. Parameters simple pair interactions vary from 

one nucleus to another smoothly. At the same time, the operator of the interaction 

between the nucleons of a different nature 
npV  strongly mixes states with different 

quasi-spins that affects the process of collectivisation states especially those with 

large spin. This requires taking into account the contributions of high multipolar 

pairs. 
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