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We report on a study of exclusive semileptonic b — u decays in 9.7 million BB
events accumulated with the CLEO detector produced in the Cornell Electron
Storage Ring (CESR). We reconstruct candidates in the exclusive decay modes
B — [7%,7° p%, p° w,n]lv, where the charged lepton is an electron or a muon.
We use the hermeticity of the CLEO detector to infer the neutrino four momen-
tum. The ISGW2 theoretical calculation of the B — X, form factors is used to
determine total branching fractions, the partial widths as a function of the mo-
mentum transfer ¢?, and an estimate of the CKM matrix element |V,;|. We find a
value for the B — 7% /v branching fraction of (1.470 £ 0.179751%) x 10~* and a
value of (1.657 £0.22870:721) x 10~* for the B — p*¢v branching fraction. We also
report a value of (0.837 & 0.30610955) x 10™* for the B — nfv branching fraction.

Finally, we find a value of |V,;| of (2.913 £ 0.12815:353) x 1073,
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CHAPTER 1

INTRODUCTION

1.1  Overview

At about the 15 billion-year mark in the great race of Nature, one interesting
milestone was achieved: the human being. Even more astonishing than all of the
technological, social, political and cultural achievements of this amazing species is
their desire to understand the world around themselves which led them to study
what is now known as physics, chemistry and biology. It’s to answer this intrinsic
need of human nature that [ decided to become a physicist. Physicists push back
the limit of our knowledge of Nature, but their work is only meaningful if they can
transmit that knowledge to the rest of the human community. This is not only
true for physicists: any scholar of any field has the responsibility to share his or
her discoveries. The Philosophia Doctoris thesis used to serve as the traditional
method of propagating such information. In modern times, scientific research is so
complex that Ph.D theses fail to render to the general public, or to fellow university
scholars, even the gist of the study at hand. It is important to me to somewhat
restore this tradition. In this first section I take the reader on a journey of particle

physics. I first set the stage for what modern particle physics is about, then I



introduce the main actors relevant to my research, finally, I describe what my
research tries to accomplish. In the second part of this chapter, I accompany the

readers familiar with the field through a grand tour of the Standard Model.

1.1.1 The Stage

In the expression “particle physics” resides the word particle. The classic image
that comes to mind is that of a billiard ball, of a specific mass, and other char-
acteristics. It can hit other balls, and if we use conservation laws like those of
momentum (the product of mass and velocity) and energy, we can predict exactly
the trajectory of such a ball. This was also the picture that early physicists had
of elementary particles. The atom was thought of in terms of a nucleus of protons
and neutrons, with one or more electrons orbiting around it. This classical picture
quickly fell apart when confronted with experiments. When we enter a regime
where systems are very small, we need to use quantum mechanics as opposed to
the classical mechanics of billiard balls. Elementary particles certainly fall into the
small system category. The revolutionary idea behind quantum mechanics is the
realization that the natural world is described by means of observation and mea-
surements, and such actions by definition perturb the system under study. This
leads to the introduction of probabilities, since until we observe particular char-
acteristics of a system, the system contains all the different possibilities within it.
If any observation impacts the system under study, can we think of the smallest
perturbation possible? This corresponds to one quantum of action, which is the

product of the amount of energy involved in the perturbation by the amount of



time the perturbation took. The numerical value of this quantum of action is about
1 x 1073* Joules second.

Elementary particles are not only small, they usually move very fast, so fast as
to approach the speed limit: the speed of light in vacuum. Again classical physics
at low speed is not adequate for systems at high speed. We need the theory of
special relativity. For the case of elementary particles we need to put those two
extremes together, quantum mechanics with special relativity, to give us quantum
field theory. One consequence of picturing particles in this context is that when we
probe particles at high energies we see that they are in fact surrounded by a cloud
of virtual particles. They are virtual because they violate conservation of energy,
but since they exist for a very short time, the quantum of action is not violated.
An experimental consequence of the presence of such particles is to partially screen
the charge of the particle they are surrounding. Hence intrinsic characteristics like
the charge of a particle is actually dependent on the scale of the experimental
problem.

We have just seen that the concept of “what is a particle” is greatly modified
as we go into the realm of elementary particles that are small and go fast. What
about the concept of force? We can think of a force as the source of why oppositely
charged particles attract each other while particles of the same charge repel each
other; this is the electric force. An apple falling from a tree involves the gravita-
tional force. The classic representation of such forces is that of an action taking
place across some distance. This gets modified in the quantum field context: the

force is carried by a messenger, a virtual particle that carries the force back and



forth between the particles feeling the force. The carriers are different depending
on which force is at play.

We are now ready to look in detail at what are the elementary particles and
basic forces according to the model that has successfully succeeded under numerous
experimental tests, the so-called Standard Model. We start out with the atom,
since most people are familiar with it: some number of electrons surround a nucleus
made up of protons and neutrons. It was found experimentally that the electrons
are elementary particles, while the protons and neutrons are composite particles:
they are made out of quarks. To give an idea of the relative size involved in an
atom, the Particle Data Group (PDG) has a good analogy: if the protons and
neutrons were 10cm across, then the quarks and electrons would be less than
0.lmm in size and the entire atom would be about 10km across! The electrons
and quarks are two branches of the same family called fermions; so called because
these particles have an intrinsic angular momentum (we call it spin) in units of a
half-fraction of the unit of action seen previously. Although the word spin evokes
the classic image of an object rotating, spin is a purely quantum quantity and does
not mean that the electrons or quarks are rotating. But the spin has influence on
experimental characteristics: for example, it determines the behavior of the particle
in a magnetic field. Another consequence of having half-integer of spin is that the
fermions obey Fermi statistics, which lead to the Pauli exclusion principle: no two
fermions can be in the same quantum state. One consequence of this principle is

the structure of the periodic table of elements.



We now introduce some more fermions. In many particle reactions involving
the electron, there is an elusive partner that accompanies it: the neutrino. It is
elusive because it does not carry any electric charge, and it is believed to have very
tiny mass. Neutrinos are nonetheless crucial since they are produced copiously; for
example, our Sun produces millions of those neutrinos all the time, and they reach
the Earth and go through our bodies without us noticing. The exact value of their
mass is the subject of ongoing research, since their mass combined with the fact
that there are so many of them could have drastic consequences on the structure
of the Universe. The electron and neutrino have two sisters each: the muon and
its partner the muon neutrino, and the tau, and its partner the tau neutrino. The
muons and taus are heavier “copies” of the electrons. The electron, muon, tau and
their associated neutrinos are referred to as the leptons. Aside from producing
them in particle accelerators, we find muons and taus only in cosmic showers
coming from space and reaching our atmosphere. Another type of particle that is
also produced in particle accelerators and not commonly found around us is the
anti-particle. The anti-electron has the same mass and spin as the electron, except
it has opposite charge, hence it was called the positron. When a particle encounters
its anti-particle partner they annihilate, releasing their combined energy.

We continue our tour of the atom: the proton is made out of two up (u) quarks
and one down (d) quark, while the neutron is made out of two down quarks and
one up quark. Everything in our everyday life is made out of those two kind of
quarks, but just like the electron, the u and d quarks have siblings: the charm

(¢) and strange (s) quarks for the second generation, and the top (¢) and bottom



(b) quarks for the third generation. The quarks are also fermions, so they carry
half-integer units of spin. Particles that are made out of quarks are called hadrons,
and they come in two classes: those that have three quarks (baryons), and those
that contain a quark and an anti-quark (mesons). An example of a meson is
the pion (7), which contains an up quark and an anti-down quark when it has
positive charge. Since quarks carry half-integer spin, then the baryons also carry
half-integer spins, while the mesons carry integer spin. Instead of being fermions,
the mesons obey Bose-Einstein statistics, and so are referred to as bosons. One
consequence of bosonic statistics is that the Pauli exclusion principle does not
apply for these particles, hence we can have peculiar states of matter where all the
bosons particles are in the same state.

Mesons are composite particles, but there are also elementary particles that
have integer units of spin: the force carriers. The force carrier of the electromag-
netic interaction (electricity and magnetism) is the photon, the bosons associated
with the weak force are the two charged W’s and the neutral Z, and the boson
associated with the strong force is called the gluon. The strong interaction is re-
sponsible for keeping quarks together inside hadrons. For example, inside a proton
the three quarks keep exchanging gluons back and forth. Just as the electromag-
netic interaction acts on the electric charge of the particles feeling the force, the
strong interaction acts on a charge that we call “color”. Hence quarks not only
carry electric charge, they also carry color charge. There are two possible states
for the electric charge (4 or -) but there are three possible states for the color

charge (red, blue, green, or any other combination of names that refer to three



colors). Unlike the electric charge, hadrons cannot have a net color charge asso-
ciated with themselves, the colors associated with the quarks must add up once
inside the hadrons, so that the hadron is colorless (or “white”). Also unlike the
electromagnetic interaction, the force carriers of the strong interaction, the gluons,
carry color charge themselves (remember, the photon is electrically neutral). If the
protons and neutrons are colorless, then what binds the nucleus together? There
is a residual strong force coming from the colored quarks and gluons inside the
protons and neutrons; this is analogous to the residual electrical interaction inside
a molecule which binds together various neutral atoms.

Another fundamental interaction is the weak interaction. It is the only known
interaction that applies to neutrinos. For example, the weak interaction is respon-
sible for the decay of the neutron (see figure 1.1). One of the down quarks inside
the neutron turns into an up quark by emitting a virtual W~ boson, which then
decays into an electron and an anti-electron neutrino. The up quark combines
with the two spectator quarks that were inside the neutrons, to form a proton.
This interaction is called weak because if we were to compare the strength of that
interaction with that of the strong force for two up quarks at some distance, the
strength of the weak interaction relative to the electromagnetic interaction would
be down by a factor of 10, while the strength of the strong interaction relative
to the electromagnetic one would be 60. The charge associated with the weak in-
teraction is called “flavor”. Leptons and quarks both carry flavors, but the flavor
is different for an electron than a neutrino and different for an up quark than a

down quark. Another fundamental interaction, and we are reminded everyday of



its presence, is the gravitational interaction. It is not described by the Standard
Model, because it has little influence on elementary particles since its strength is
proportional to mass. Gravity is the main actor involved in the global structure of
galaxies and the creation of stars. The common belief among physicists is that at
some point early in the creation of the Universe, all interactions were unified into
one single interaction. As the Universe cooled down, that interaction broke down
into four separate interactions. So far physicists have managed to unify the weak
interaction with the electromagnetic one. The daunting challenge facing theorists
nowadays is to combine the quantum field theory relevant to the Standard Model
with the General Relativity involved in describing the gravitational interaction, a
unification of the infinitely small with the infinitely big. Table 1.1 summarizes the

various elementary particles and interactions.

1.1.2 The Synopsis

Now that we have set the stage of modern particle physics, it is useful to peek at
the script of my analysis to help put things in perspective, in view of the next few
sections. I intend to make clear how I go about to use the CLEO detector to detect
a B meson that decayed into a hadron that contains an up quark (pion, rho, omega
or eta), a charged lepton (electron or muon) and a neutrino. The goal of looking
at this particular decay is two fold. First, this reaction involves a transition from a
b quark to a u quark and the rate of this reaction is proportional to a fundamental
parameter of the Standard Model, V,;, for which I get a measurement. Second,

the rate distribution as a function of kinematic variables sheds light on the inner



Figure 1.1: A neutron decays into a proton using the weak interaction.



Table 1.1: Elementary particles and interactions

Interactions: Electromagnetic Strong Weak Gravitational
Acts on: electric charge color flavor mass-energy
particles electrically charged | quarks, gluons | quarks | leptons all

experiencing: uct euT

dsb | vev, vy
carriers: photon gluons w+,w-, 2° graviton
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working of the hadronic part of this decay. At present, very little experimental
information is available about this particular transition, getting a measurement of

this distribution will help the community understand better this murky area of

QCD physics.

1.1.3 The Actors

With the synopsis of the analysis in mind we now consider the various actors
involved in my research. Taking another look at the neutron decay, we see that the
weak interaction is at play in the decay of the down quark. The strong interaction
is also involved since there are spectator quarks that somehow go from being part
of a neutron to being part of a proton. Gluons are being exchanged throughout this
process, and specifically how many of them and of what energy has consequences
on the final products of this reaction. Looking now at one of the reactions that
is the subject of this thesis, we see a similar picture (see Figure 1.2): there is an
anti-B meson composed of a b quark and a anti-d quark, the b quark decays into a
u quark, via the emission of a virtual W~ weak boson. The W~ boson then decays
into an electron and an anti-electron neutrino. The anti-d quark then makes a pion
with the u quark.

We have just determined that in order to perform my analysis | need B mesons,
and I also need to be able to tell if the B meson decayed to a lepton (electron
or muon), a neutrino, and a pion, for example. The first order of things is to
be able to produce B mesons. To do so, the accelerator collides electron and

positron against each other. The energy of this collision is just right so that there
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Figure 1.2: A B meson decays into a hadron containing an up quark, a

lepton and a neutrino.
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is enough to produce the heavy b quarks, which hadronize into a pair of B and
anti-B mesons, but not too much energy, so that the B mesons are almost at rest.
This makes the reconstruction of the event easier. For example, no other particles
are created along with the B meson pair. In order to get the colliding electrons
we heat up a metal filament. Electrons in the atoms get enough energy so that
they can escape the atom. This happens in the Linear Accelerator (Linac), which
accelerates the electrons to 150 million electron volts (your TV tube accelerates
electrons to 20,000 electron volts). To get the positrons, there is a metal plate
in the middle of the Linac. It gets bombarded by electrons and X-rays as well
as electrons and positrons come out of the interactions. The positrons are then
selected using the fact that they have charge opposite to the electrons. After the
Linac, the electrons and the positrons get transfered into the synchrotron, which
further accelerates the particles. First it’s the positron turn, and when they have
reached 5 billion electron volts, they get transfered into the Storage Ring (CESR).
It takes the particles about 2000 revolutions around the synchrotron for them to
reach the required energy, this takes place in about one hundredth of a second.
Once the electrons have been transfered to CESR as well, collisions can happen.
More information on the accelerator can be found in section 3.1.

Once the collision happens at the center of CLEO, the equivalent of 10 billion
electron volts of energy is released in new particles that go flying away. That
amount of energy is equivalent to the amount of energy produced by a 100 W
light-bulb turned on for only 16 picoseconds! This is not very impressive, why are

we not producing new particles by just turning lights on? The key feature is the
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density of energy: the energy produced by the synchrotron is given to each colliding
electron, while the light-bulb is sharing its energy among billions of particles.

For our case of interest, the energy generated go into producing a pair of B
mesons. In order to tell if a B meson decayed into a lepton, a neutrino, and a pion,
detectors are needed that register exactly what happened: how many particles
were created, where they went, what they were, how much energy they carried.
Different types of detectors answer the different questions. For example, at a radius
of about 8cm from the interaction point, there is a one meter radius cylinder filled
with gas. In the cylinder are about 40,000 wires strung along the cylinder axis.
The wires are held at a certain voltage. When a charged particle comes into this
cylinder it ionizes the gas atoms, separating the electrons from the atom. The
newly released electrons drift toward the sense wires and collect there, sending
an electrical impulse along the wire. The cylinder is bathed in a magnetic field,
which bends the trajectory of the charged particle. Just how much the trajectory is
bent depends on the value of the magnetic field and on the momentum (remember,
product of mass and velocity) of the charged particle. By aligning all the wires that
reported a signal, we can reconstruct the curved trajectory of the charged particle,
giving us two pieces of information: where it went and how fast it was going. We
have another detector that gives us the velocity of the particle. It is called the time
of flight detector since it tells us how long the particles took to go a fixed distance
from the interaction point, where there is a plastic scintillator which registers the
passage of the particle. Putting the momentum and velocity information together

we can get the mass of the particle, and so its identity. Overall, the CLEO detector
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is a multipurpose detector that gives excellent charge and neutral particle detection
and measurement. It is 6m on a side and consists of about 900,000KG of iron. It
has about 50 000 individual detector elements. The CLEO collaboration consists
of about 150 physicists from about 25 institutions in the US and Canada. More

information on the CLEO detector can be found in section 3.2.

1.1.4 The Play

We now turn our attention toward the fundamental interactions involved in my
decay of interest. The strong interaction is involved in making the final bound state
of quarks, the pion. We can examine two extreme kinematic cases (see Figure 1.3).
In one case, most of the initial energy is used up to create the virtual W boson,
so that not much energy is left for the final pion. In that case, the electron and
neutrino go flying back to back (situation b) in figure). From the quark’s point
of view, not much disturbance happens for the spectator anti-d quark, and so
presumably not many gluons have to be exchanged to make the final pion. This is
in contrast to the opposite case where most of the initial energy goes into the final
pion, so that now the electron and neutrino are going in one direction, while the
pion is going in the opposite direction (situation c¢) in figure). From the quark’s
perspective a lot happens to the anti-d quark since it goes from being part of a
relatively slow B meson to a fast 7. A lot of gluons have to be exchanged in this
case. We can see that from the strong interaction’s point of view, the first case is
more favored than the second case. Concretely this means that the probability for a

particular interaction to follow the first case is higher than the probability to follow
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the second case. A way to see experimentally if this is true is to count how many
reactions occurred each way. Of course, there are all the cases in between those two
extremes. By labeling the events according to, say, how much energy was given to
the lepton-neutrino pair (called ¢?), we get an experimental distribution that has
a direct connection to the strong interaction. We call this distribution, the form
factor relevant to the reaction. This is one of the main goals of my research: to
get the form factors as a function of ¢ and to compare the distributions of various
theories, each of which use different calculations. Seeing which calculations are
favored by the experimental results will give some understanding of how the strong
interaction behave in this specific circumstance, and hopefully, future calculations
for a myriad of other processes will be able to make use of the new information.

Can we gain new information from the weak part of the reaction? The b quark
decays into a u quark: this is a jump from the third to the first generation, and
is not very likely. Exactly how likely is represented by a number called V,;,. Each
kinematically possible quark transition is quantitavely labeled by how probable it
is. Figure 1.4 shows the various quark transitions allowed and the thickness of the
arrows is correlated with how likely each transition is. The Standard Model does
not predict what the numerical value is for V,,, we have to measure it. Whether
the value that I measure is in agreement with other quark transition probabilities
sheds light on the validity of the Standard Model.

In a given parameterization of the different quark transition probabilities, the
size of the value of V,; is also related to a phenomenon called C'P violation. C'P

violation is related to the notion that physical reactions must obey some gen-
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Figure 1.3: Different kinematic limits of a heavy to heavy quark transition.
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Figure 1.4: Quark and lepton transitions.
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eral symmetry principles. For example, we would expect that a physical reaction
involving particles would have the same probability of happening as the same
reaction involving the corresponding anti-particles. Changing particles for their
anti-particles is applying the charge conjugation (C') operator. We would also
expect that the mirror image of a reaction would have the same probability of
happening as the original reaction. Flipping the space coordinates and the spin
projection of the particles is applying the parity (P) operator. Finally, we would
expect that there is no preferred time direction to a reaction. Flipping the space
coordinates while conserving the same spin projection to a reaction is applying
the time (7") operator. It turns out that the weak interaction does not conserve
charge conjugation and does not conserve parity either. We also have evidence that
even the product of both C' and P operators is not conserved in weak interactions,
although the amount by which it is violated is small. Besides having some philo-
sophical implications, like the fact that the Universe seems to distinguish between
“right” and “left”, C'P violation also has some connection as to why we exist at
all. At the beginning of the Universe, particles and anti-particles kept annihilating
each other. The fact that our current Universe is made out of particles means that
the particles won out against anti-particles at some point. The weak interaction
and its C'P violation could be one mechanism for this to happen. It is impor-
tant to note that the amount of C'P violation that the Standard Model predicts,
and which seems to be confirmed by experimental measurements, including my

Ve measurement, is not enough to satisty the amount of C'P violation needed by
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models of the early Universe. This is one of the signs that the Standard Model is

not the end of the story.

1.1.5 Structure of this thesis

The rest of this chapter reviews more in detail the foundations of the Standard
Model and how it connects to B — X, fv. Chapter 2 reviews what we know
theoretically about the B — X, /v decays. Chapter 3 goes into more details on
the experimental apparatus. Chapter 4, 5 and 6 go over the different steps of
measuring the branching fractions, while chapter 7 describes the V,;, measurement

and interprets the results in light of the theoretical models.

1.2 The Standard Model

In order to put the measurements described in this research into context, I take
a tour of the Standard Model and beyond. I have chosen a particular lens for
this tour: I want to describe how symmetries lead to the structure of the different
interactions. Gauge symmetries are the central themes around which revolve the
next sections. None of the following work is new or original to me; [ summarize

references [1] to [11].

1.2.1 Symmetries and conservation laws

Emma Noether’s theorem is very powerful for it relates mathematically, in the La-

grangian formulation, the connection between non-observable absolute quantities
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(symmetries) and the corresponding conservation law. We can classify symme-
tries in four categories: space-time symmetries, symmetries of identical particles,
discrete symmetries, and internal symmetries. Table 1.2 [1] lists the various sym-
metries and their corresponding conservation laws.

The first seven symmetries are global symmetries since they involve transfor-
mations that have the same value at each space-time coordinate. The Standard
Model is obtained by requiring the last three symmetries to be local symmetries,
or local gauge invariances. This means that the corresponding Lagrangian remains
invariant under a transformation which has different values at each space-time coor-
dinate. This more restrictive requirement has the drastic consequence of requiring
the existence of forces: force carriers must be emitted to satisfy these constraints.
For example, the torque from the gauge invariance of the fields’s phase creates the
photon, the torque on the color field creates the gluons, the torque on the weak
isospin doublets creates the vector boson, and the torque on space-time creates the

gravitons. We now examine how this happens for each symmetry.

1.2.2 Quantum Electrodynamics (QED)

In this section we see how a local gauge invariance gives rise to QED. The simplest
local gauge invariance that one could think of is a simple phase transformation of

the fields . We first take the Lagrangian of a free fermion:

Tt is interesting to note, as described in [2], that the expression gauge invariance
comes from Weyl, who wanted to make interactions invariant under a space-time
dependent change of scale. His geometric idea did not work, but we kept the word
scale, or gauge.
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Table 1.2: Noether’s theorem in relativistic quantum theory [1]

Absolute quantity

Symmetry

Counservation law

abs. spatial position
abs. time
abs. spatial direction

abs. velocity

space translation
time translation
rotation

Lorentz transf.

momentum
energy
angular momentum

gen. of Lorentz group

distinguishing identi-

cal particles

permutation of identi-

cal particles

Fermi Dirac or Bose

Einstein statistic

absolute right or left

absolute sign of charge

change ¥ — —7
change particles to

their anti-particles

Parity

Charge conjugation

Absolute phase of a
charged field

absolute difference be-
tween mix of colored
quarks

absolute difference be-
tween mix of leptons

or neutrinos

change of phase

change of color

change lepton into its

neutrino

electric charge

color generators

weak isospin genera-

tors
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£ = (i3, — m)o, (L.1)

where the v* are the Dirac matrices. We can impose a phase transformation to

the field 1" = '@, then we get:

L =iy 0, — m)p — vy (0,a) (1.2)
We see that we have an extra term in £ compared to £. The extra term can
be taken care of if we introduce a vector potential, A,, transforming the derivative

into a covariant derivative, D, = 9, + iqA,, where ¢ is the charge. Then the

Lagrangian is

L =1(iy"0, — m)v — gy, A, (1.3)

Applying the phase transformation to the fermion field, we now get

L' = P(iy"0, — m)yp — py*(0c)th — qy" Ay (1.4)
and we see that to get £ = L, the vector potential must change by a gradient,
A;L =A, - éaﬂa. At this point, we could identify the vector potential with the

electromagnetic potential. This redefinition of the potential will not change the

electromagnetic strength defined as

Fo, = 0,A, — 0,4, (1.5)

Now the electromagnetic Lagrangian looks like
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L =p(iy" 9 — m)yp — J'A,, (1.6)
where we can identify J* = gqyy*¢) with the electromagnetic current. Indeed we
get conservation of charge, d,J* = 0, when we use the Dirac equations for the
fermion fields.

To reproduce the complete Lagrangian of electrodynamics we need a kinetic
term associated with the vector potential, representing the propagation of free
photons,

. 1 4
Lopp = (0" 0y —m)y — JHA, = T F Ep. (1.7)

This Lagrangian is still invariant under the local phase transformation, al-

though if we were to add a mass term for the photon,

1
L, = 5m%alﬂA“, (1.8)

then we would not get invariance. The transformation involved with A;L generates
new terms that can not be canceled. From this local gauge invariance nicely
emerges all of electrodynamics.

As mentioned in [3] a phase transformation can be generalized to a 1 X 1 unitary
matrix, and the group of all such matrices is called U(1). So the symmetry shown
here is a U(1) gauge invariance. We will now see that the other interactions in the
Standard Model also have a similar form of gauge invariance. However in those

cases the groups that will be connected to the symmetry are represented by non-
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Abelian matrices (matrices that do not commute), which will make the description

more complex but richer.

1.2.3 Quantum Chromodynamics (QCD)

Continuing our tour of the Standard Model through the lens of symmetries, we
can extend the idea of a U(1) symmetry to the SU(3) group, which is relevant to
the case of QCD, describing a quark of some flavor that comes into three colors.

If we write the Lagrangian for a particular flavor we get

L= q;(i7" 0y — m)g;, (1.9)
where 7 = 1,2, 3 for the three colors. The idea is to make the Lagrangian invariant
under a local phase transformation of the quark fields, like ¢(z) — Ugq(z). The
matrix U is a 3 x 3 unitary matrix which can be written as U = e, where
H is a Hermitian 3 x 3 matrix. It can be decomposed into 9 real numbers as
H = 0(z)1 + a,(x)T,, where the T, are the Gell-Mann matrices and there is a sum
over a = 1...8. We now have U = /(@) ¢ia(@)Ta

In the development of QED we already experimented with a phase transfor-
mation like #(x), so we can concentrate on the «,(z) part. It turns out that the
matrix ¢ (@7 has determinant 1, so it belongs to the SU(3) group, (the S is
for special) and we see here that U(3) = U(1) x SU(3). As previously stated,
the idea is to see that by making the Lagrangian invariant under SU(3), the phe-

nomenological features of QCD nicely emerge. We are here in the presence of a

non-Abelian group: the Gell-Mann matrices do not commute, but they obey the
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following commutation relation,
[Taa Tb] - ifabcTc; (110)

where the f,;,. are real constants.
The trick that we learned from QED is to replace the derivative by a covariant

derivative and introduce new gauge fields

D, = 0, +1ig1.G),. (1.11)
The eight new gauge fields, G, are the gluons, they are the bosons carrying the

force of QCD. The Lagrangian now reads

L= q(i"0, —m)q — g(q7V"1uq) Gy, (1.12)

We want £ to remain invariant under the U(3) transformation

¢ = Ugq=[1+ia,(r)Te]q(x)

¢ = [1—ia,(2)T,]q(x).
The transformed Lagrangian reads,
L= (1 —i0gT3)q(iv" 0, —m)(1 +icaTa)g
+g((1 = iooTy) gy Tu(1 + iy Ty)q) G
= gy, — m)q + 149, — m)aia,T,) — (10, T) 4179, — m)q
~Tuqy"0cq + (77" Tuq — icwToqy" Tuq + 4y TuicwThg

!

+iow@y" (T Ty — Ty T.)q) G

= (i7" 0y — m)q — T,q7"00aq — 90" TuqG ! + g fabeon7" Teq G-



27

Looking at that last equality, we see that to have £ = L we must require the
transformation law,

Go=qo— %aaa e (1.13)

2 2

We can now also add the kinetic term for the gluon fields,

_Lge g, (1.14)

£ =q("9, —m)qg — 9(@V"Tug) Gy, — 7 Gl

To preserve invariance of the new kinetic term G, must be defined as,

G, = 9,G% — 0,G% — gfunGLGE, (1.15)

The same argument that required the photon to be massless in QED applies
here, hence the gluons must also be massless. The extra term in equation 1.15 is
different than in QED and has the profound consequence of adding self-interaction
of the gluons to the Lagrangian, reflecting the fact that gluons carry colors. It is
interesting to realize that this comes about because the U(3) group is non-Abelian
while the U(1) group is an Abelian group.

We look at some more differences between QED and QCD. In quantum field
theory, an elementary particle is not thought of as a point particle, but more
like a point particle surrounded by a cloud of virtual particles. For example, an
electron is surrounded by virtual positron-electron pairs. Hence, there is a vacuum
polarization: the positrons tend to align themselves with the central electron, and
the measured electric charge is dependent on the distance of the test charge, or

said differently, the charge of the electron increases as we get closer to it. We say
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that the coupling constant runs. The relationship between the running coupling
constant and the electric charge is given by a(Q?) = €?(Q?)/4w, where Q? = —¢*
is the momentum transfer characteristic to the reaction at hand. In QED the

expression for the running coupling constant is ([4])

2
a(Q*) = o) 5 (1.16)
1— 2o
3 2

at large Q*, where ju is the scale characteristic of the renormalization scheme
chosen; a different p leads to a different expansion of the amplitude. The physical
observable is the amplitude squared,|M|?, and should not depend on p. This is
ensured by using the renormalization group equation,

dM 0 de 0

=T = (p— — WM = 1.1
Ndu (H8M|6+M8H86)M 07 ( 7)

where e is the coupling constant. We see from equation 1.16 that as Q* increases,
the running coupling constant increases as well. It is useful to rewrite the coefficient

of the log as

a(p?®) 4
y (—g) (1.18)
The analogous term in the running coupling constant of QCD, a, is
as(pu?) 2
5416 1.19
(- 2ny =5 +16), (1.19)

where n is the number of flavors. The first term is the simple gluon loop going

into a quark anti-quark pair, and we find an equivalent term in QED when the
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photon annihilates into a pair of an electron and a positron. In QED, the number
of “flavors” is one, and there is a factor of two in the definition of o compared to
as. The other two terms in the QCD expression result from gluon self-interactions.
The consequence is that these contributions have an anti-screening effect: a red
gluon attracts other red gluons around it instead of anti-red gluons. If we enter
the “cloud of red gluons” we therefore see less and less “redness”. Mathematically,
since the coefficient is positive in the denominator, as ()? increases, o, decreases.
This is referred to as asymptotic freedom. It is interesting to note that at a distance
of one fermi, the coupling constant is about one, so that perturbation theory is
not possible as a tool to compute QCD reactions. At a momentum transfer of
about Q* = (30GeV)?, then o, ~ 0.1, which is more amenable to perturbative
calculations.

A final difference between QED and QCD is the fact that although particles
can carry charge, they can not carry color. This feature of QCD is related to
the fact that quarks are confined into hadrons. Quark confinement makes QCD
processes rather complicated since we never deal with individual quarks. This will

be crucial for our decay of interest.

1.2.4 Electroweak Interaction

In the previous section, we saw how the fact that quarks come in three colors led
to a gauge theory involving the SU(3) symmetry. It would be tempting to apply
the same trick to quarks and leptons since they come in weak doublets containing

two members. Maybe we could get a gauge theory of weak interactions involving
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the SU(2) symmetry. Yang and Mills developed the mechanism of such a gauge
theory, but they were unsuccessful in their attempt to apply such a symmetry
to the proton-neutron isospin doublet. One problem associated with making the
weak interaction an SU(2) gauge theory is the fact that the bosons carrying the
interaction are heavy, and so the range of the force is short (hence the name
“weak”). We will now see how an elegant mechanism such as the Higgs mechanism
provides the essential tool to cure this problem. First, we will review the effective

phenomenology of the weak interactions.

Weak Interaction

Since we are interested in an effective theory we first review all of the experimental
evidences that lead to the “guess” for the form of the weak Lagrangian.

As shown in table 1.2 it seems natural to think that all physical processes have
to obey some general symmetries: for example the mirror image of any reaction
should also happen (Parity, (ps,py,P.) = (—Pz» —Py, —P2)), or there should not
be any difference between a reaction involving particles, from a reaction involving
their associated anti-particles (Charge Conjugation).

In 1956, Lee and Yang made a survey of all the weak interaction data. They
were particularly puzzled about the decay of a kaon, since this particle seemed to
be decaying sometimes to two pions, sometimes to three. This was a concern since
these two final states have opposite Parity. For Parity to be a good symmetry, a
state of a definite Parity can not change to a state of opposite Parity. Therefore,

Parity appeared to be violated by the weak interaction.
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To settle the issue of Parity violation Lee and Yang proposed an experiment
that was carried out by C.S. Wu. She aligned nuclei of Cobalt 60 so that they would
all have a particular direction of nuclear spin. Then she recorded the direction of
the electrons emitted when the nucleus underwent ( decay. Her results showed
that most of the electrons were emitted in the direction of the nuclear spin. For
Parity to be conserved in this reaction, the electrons should have been emitted
equally in both directions.

Other experimental evidence suggested that Parity was maximally violated in
weak decays. To understand this, we need to introduce the definition of helicity,
which is the dot product of the spin with the direction of the momentum of the
particle. For example, for a particle of spin 1/2, the helicity (\) can be right
handed (when the spin points in the direction of the momentum) or left handed
(opposite). Now, let’s suppose there is an observer going at a velocity greater than
the velocity of the particle, then the direction of the momentum appears to be
reversed, so the helicity changes sign (or handedness).

For a massless particle, the situation is special. A massless particle moves at
the speed of light and, therefore all observers agree on its velocity. As a result its
helicity is fixed. For the case of the photon, this translates into the fact that there
is no longitudinal polarization.

The helicity of the neutrino has been determined experimentally. Observations
of the 77 — p*v, decay, revealed that the anti-muons emitted were always left

handed. It was then inferred that the neutrinos had to be left handed also (the
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anti-neutrinos are then right handed). This observation would imply that the
neutrinos are massless 2.
Depending on how an object reacts to the Parity operator we get the following

naming scheme:

P(s) = s
P(pseudos) = —pseudo s
Pv) = —wv

P(pseudov) = w

where s is a scalar and v is a vector. From Quantum Field Theory, we can determine
that the parity of a fermion is opposite to the parity of an anti-fermion, while the
parity of a boson is the same as the parity of an anti-boson. We have assigned the
quark to have an intrinsic parity of +1, so the parity of an anti-quark is -1. For
a composite system, the parity is the product of the intrinsic parities. In general
for a meson, the parity is given by P = (—1)"*!, where [ is the orbital angular
momentum between the two quarks in the meson.

Continuing our review of experimental evidences that will lead to an effective

Lagrangian, we now turn to the Charge Conjugation symmetry. It is interesting

2Recent results from neutrino physics involving measurements of solar neutrino
oscillations and atmospheric oscillations strongly suggest that neutrinos have mass,
although probably so tiny that such an effect would have gone undetected in the
7wt decay experiment. Another possibility is that the mass term is carried by a
“sterile” neutrino, which would not have interacted in such an experiment.
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to note that only particles that are their own anti-particles are eigenstates of the
Charge Conjugation operator (C). Just as for Parity, Charge Conjugation is a
multiplicative number. For a meson, the Charge Conjugation number is given by
C = (—1)"*, where s is the spin of the meson.

Let’s reconsider the 7% — p'vy, reaction. If we apply Parity then we get
the reaction 7™ — ptvg, which does not exist, so weak decays violate parity, as
mentioned earlier. If we apply C then we get the reaction 7= — p~ vy, which does
not exist either, so weak decays violate Charge Conjugation as well. Now if we
take the product of C and P (CP) we get the reaction 7~ — p~vg, which does
exist, so CP is conserved in this reaction. We will return later to the phenomenon
of CP violation.

The above discussion points us at a possible expression for the weak current.
For example, if we have a lepton neutrino interaction, involving the exchange of a
W~ the current is given by

1
7" 5 (1= 77, (1.20)

where w is the spinor associated with the incoming particle, while « is the adjoint
spinor associated with the outgoing particle. The spinor u satisfies the Dirac

equation (in momentum space),

(V*p — m)u =0,

while the adjoint is given by @ = uf7°. The v* are the Dirac matrices
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o= (8, Ba)

7= iy

where the matrices o’s, and 3 are given by

0

-1

and where the o' are the three usual Pauli matrices. For anti-particles we have a

spinor denoted by v and which satisfy the other Dirac equation,

(Y +m)v = 0.

The complete wave function solution is ¢ = u(p)e ?* and solves the funda-

mental Dirac equation, involving the hamiltonian H of the interaction in question,

H = (o P+ B, (1.21)

The current of equation 1.20 is sometimes referred to as the V-A current, which

comes from the different combinations of the wave function with the gamma ma-

trices:

Uy = scalar

Yy = wector(V)
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Yy yfp = axialvector(pseudovector)(A)

vy’ = pseudoscalar

The next step toward writing an amplitude of a reaction is to find how the the
mediating particle interacts with the external particles, this is the propagator. For

massive, spin 1 particles, the propagator can be written as,

—i(g" — "¢’ /M?)
q2 _ M2

: (1.22)

where ¢ is the momentum of the boson, of mass M, mediating the interaction. In
our decays of interest we have ¢ < M? since the mass of the W boson is around
80 GeV. We can then approximate the propagator as being ig"” /M?, where g"* is
associated with the weak coupling g,,.

Weak interactions allow for different generations of quarks to interact. If we
look at the case of three quarks, u,d, and s, the two possible vertices are: a vertex
involving a W going into a u and d quark with strength cosfl. and a vertex
involving a W going into a u and s quark with strength sinf.. In 1963 Cabibbo
introduced the angle 6., which was measured to be small as expected (13.1°), so
that transitions across generations were less likely than within the same generation.

This angle allowed several decay rates to be computed successfully. There
was a puzzle though with the case of the decay K? — ptp~. The amplitude
for this decay was predicted to be proportional to sinf.cosf.; but the measured

branching fraction is far less than this value. In 1970, Glashow, Iliopoulos and
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Maiani proposed to introduce a fourth quark, ¢, and this was before the J/¢ (a
ceresonance) was even discovered!. This quark is involved in the loop of the K7}
diagram and cancels almost exactly the contribution given by the diagram with a
u quark in the loop. This is called the GIM mechanism.

The bigger picture of these sinf. and cosf. factors can be interpreted, by con-
vention, as the fact that the weak bosons couple to the rotated states of the lower
member of the quark doublets (we could have chosen to rotate the upper member

of the doublets),

where the weak eigenstates are related to the mass eigenstates by,
d cosf, sind, d
s —sinf,. cosb, s

Kobayashi and Maskawa generalized the Cabibbo matrix to include the 37¢
generation of quark. To get the right strength of a particular amplitude one needs

to take the corresponding element of the CKM matrix:

d, Vuqus Vub d
s | = VeaVesVe S
v ViaVesVip b

We will discuss the CKM matrix in detail in the next section.
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Electroweak Unification

The reader will notice that in the expression for the Yukawa coupling we have used
a different notation for the spinor as compared to equation 1.20. The connection

between those two is the projection operator

1
ur = 5(1 — V) U, (1.23)

which projects out the left handed helicity component. This operator finds its
usefulness in the process of unifying the weak interaction with the electromag-
netic one. At first it seems like those two interactions share more differences than
common features. Their relative strength is very different, which comes from the
photon being massless and the weak interaction mediators being massive. Finally,
the structures of their current also differ: the electromagnetic current is purely
vector-like while the weak current contains a vector-like part and an axial vector-
like part. Nonetheless, the photon must be involved in the weak interaction, since
the W bosons are themselves charged. If the electromagnetic current is to be
conserved, there must be a yW W™ coupling term somewhere ([6]).

We hinted that the solution for making the structure of the weak current look

more vector-like was to use the projection operator,

. —_u, 1 e —V, e
Ju =@y (L=7")ut = apytug. (1.24)
The uy, spinors are known as chiral spinors. The electromagnetic current can

also be written in terms of those chiral spinors:
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g = —ugytug — ugpy ug. (1.25)

The weak current can be viewed as involving a left-handed doublet,

1/8
XL = )
e
L
so that the charged weak currents become
Ju = XLWuT XL, (1.26)

where the 7 matrices are related to the first two Pauli matrices,
+_ Loy
T = 5(7’ +i77). (1.27)

This structure is similar to the isospin structure used to describe the proton and
neutron as two states of the nucleon, which implies that the current just defined is
invariant under the SU(2) symmetry. To complete the SU(2) structure we need a

third invariant weak current,

, 1
Ju = XNpTXL

1
. T Ve ) Ve T e [l €
- 2 uLerY uLe 2 uL’Y U’L'

It would be tempting to associate this current with the weak neutral current,
but the Z boson also couples to right-handed spinors. We can push the analogy

with the isospin system and make use of the hypercharge,
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Y =2(Q - I), (1.28)

where @) is the electric charge and I3 is the third component of isospin. The
from for Y inspires a definition for a weak hypercharge current that involves both

right-handed and left-handed spinors:

Y em -3
]ﬂ - 2.]# 2.]#
= —2upyup —upytug — up oyt

This current is invariant under the combined symmetry SU(2)y x U(1)y. In sum-
mary, we have combined QED and the weak interaction, so that the electroweak

currents are given by,

> I_
Ju = SXLVTXL (1.29)
i = 29" =24 (1.30)

The unification is not perfect since we still have two groups each with an indepen-
dent coupling, so the idea is to relate those two couplings.

The last piece missing in this electroweak theory is the identification of a
propagator of the interaction, responsible for the currents. The structure of the

SU(2), x U(1)y symmetry leads to a basic electroweak interaction of the form,

!
—@hwﬂ+%ﬁﬂﬂ (1.31)
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which involves a massless triplet of vector bosons W, and a massless singlet boson
B,,. The question is then how to relate those vector bosons to the physical states
that are the massless photon and the massive W* and Z°? The answer is that the
symmetry is broken via the Higgs mechanism. The next sections describes how

this process results in the physical massive bosons.

The Higgs Mechanism

The thread we have been following so far has been how symmetries of Nature shape
the various fundamental interactions. From a field theory point of view, there are

two conditions that determine whether we have an exact symmetry ([2]):

e The Lagrangian is invariant under the symmetry (we have seen several ex-

amples of this in previous sections)

e The unique physical vacuum is also invariant under the symmetry

There are two types of situations that can spoil the exact symmetry case. First,
if we do not have an exact symmetry, but the symmetry breaking effect is small,

then all is not lost and we can write the Lagrangian as:

L= £symm + €£symm.break. (132)

A good example of this situation is

L = Lyrong + Linr. (1.33)
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The strong interaction is invariant under the isospin symmetry, and the effect of
isospin violation is due to the eletromagnetic interaction. The second situation
arises when we do have an exact symmetry of the Lagrangian but the dynamics
are such that the vacuum states are not invariant under the symmetry. In this
case, we talk about spontaneous symmetry breaking.

For a very illustrative example of this last case, we look at a continuous sym-
metry breaking ([3]). We take the following Lagrangian, dependent on two real

fields ¢; and ¢s:
1 1 Loy 2 Lo o 212
L= 5(8u¢1)(8“¢1) + 5(8;1@52)(8“@52) + e (67 + ¢3) — Z)\ (P71 +¢3)°.  (1.34)

This Lagrangian is invariant under rotation in ¢,¢9 space (SO(2)). We can write

the potential of this Lagrangian as,
Loy o 2y, Ly2g 0 2)2
V= _EHJ (91 + b3) + Z)‘ (91 + ¢3)%, (1.35)

so that we can see that the minimum of this potential is a circle of radius g/ (this
is the wine bottle potential) given by,
2
$ilo + @50 = % (1.36)
In this interesting situation, the vacuum state does not lie at the zero of the po-
tential, as is usual. We pick an arbitrary vacuum state around which the Feynman

rules can be used,

G1lo = %; ¢2lo = 0. (1.37)
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A judicious change of basis allow the new fields to have their ground state lying

on the 0 of the potential,
n= ¢ —g,ﬁzd)z- (1.38)

The Lagrangian in terms of the new fields now reads,

£ = [50um)(0"n) — i) + 50, @) + .. (1.39)

The Lagrangian in the new basis has lost its SO(2) symmetry (it’s hidden), but
now the spectrum of particles is apparent. The mass term of the 7 field can be read
off as ~ \/22)/1” the £ field is massless, and the other terms are interaction terms
between the fields. According to the Goldstone theorem, for every continuous
symmetry breaking there is the appearance of a massless scalar field, called a
Goldstone boson. At this point it is not clear how this mechanism can help the
interaction fields acquire mass, since it introduces even more massless particles.
We will see that there is a delightful interplay between our good friend the local

gauge invariance and the Higgs mechanism that does all the magic.

The Higgs mechanism in the Abelian case

In order to see how the magic happens in a simple case, we look at the case where
the local gauge symmetry is Abelian. Taking our last example of the two real

fields, we combine them into one complex field, ¢ = ¢1 + i¢q,

L= L(0,0)" (040) + L12(6'0) — TN(5°0)" (1.40)
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The SO(2) is replaced with the now familiar U(1) symmetry,

D

0, +igqA,

F 0,A, —0,A,

o—¢ = r@e(x)

Ay — A, = Ay —0dua(x).
The invariant Lagrangian is then,

1 1 1 1
L= §Du¢*Du¢ + §u2(¢*¢) — ZA2(<;s*¢)2 — EFWFW. (1.41)

We make the same change of basis around the same particular ground state

that we chose in the previous example, so that the Lagrangian in the new basis

looks like,

£ o= [0m)@) — i)+ [5(2,6) (@6)

1 1, Y
L pop St oPMy2aan it e o
=1 P ™+ 5(03) A g5 0] +

As before, the n field has acquired mass, and we have a massless ¢ field, but now
the field A, has also acquired some mass! Unfortunately there is also a suspicious
looking term that involves the A, and the ¢ fields. This is where the beauty
of having an invariant Lagrangian comes into play, since we only have to use a
judicious choice of gauge and we can still use the form of equation 1.41. To make

more apparent the choice of gauge, we can rewrite the offending terms as followed,
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L, p, 1 1
—(g=)* (A, + —0,8) (A" 0"€). 1.42
St DA+ 5 0) (142
We choose the following gauge,
, 1
AU — A;U‘ — AIJ + 2—E8u€, (143)
iq5
which corresponds to a particular phase of the field,
b= ¢ = e, (1.44)

This gauge forces the imaginary part of ¢ to 0. This particular gauge, which
involves having only physical states in the Lagrangian, is called the unitary gauge

(U-gauge). We can use the same equation 1.41 in the new gauge,

Lgty2a, am, (1.45)

L= [%(aw)(a“n) — p*n’] = 3 A

B A
167 * +

We see explicitly that the n field still has mass, this is the Higgs boson, the
vector field has acquired mass, and we do not have any ¢ field anymore. It is
interesting to note that before the symmetry breaking happened, we had four
particle degrees of freedom: two scalar fields and two polarizations of the massless
gauge vector A,. After the symmetry breaking we are left with one scalar field
and three polarizations of the massive vector fields, so still four particle degrees
of freedom. This is where the expression “the vector boson (the A,) eats the

Goldstone boson (the &) to acquire mass” comes from.
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The Higgs mechanism applied to SU(2), x U(1)y

Following (2], we start by just looking at the leptonic part of applying the Higgs
mechanism to SU(2), x U(1)y. The SU(2), symmetry has three massless gauge
bosons associated with it b, 02,7, while the U(1)y has only one, A,. The La-
grangian has a part associated with the gauge fields and a part associated with the
leptons. The gauge part has a kinetic term written in terms of the field-strength
tensors, which we’ve defined in previous sections for both the non-Abelian case
of SU(2) and the Abelian case of U(1). We can write the lepton part of the

Lagrangian as,

iq iq g
Licptons = Wi (0 + - AuY Yur + 007" O + 5 ApY + Srbyur,  (1.46)

where ¢ and % are the couplings for SU(2), and U(1)y respectively. We now use
the Higgs mechanism to render mass to the gauge bosons. We introduce a doublet

of complex scalar fields,

ot Or + 1o
¢° ¢3 + 14

<
Il
I

The new part of the Lagrangian corresponding to this doublet of fields is

Escalar - (D“qﬁ)T(Duqﬁ) - V(¢T¢) (147)

The covariant derivative is defined as usual involving the gauge bosons. We take the

potential to be the same as we’ve used in the previous section for the continuous
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symmetry. This is a Standard Model assumption: until we discover the precise
mechanism of symmetry breaking of the electroweak system, we will not know

what the potential is,

V(¢'¢) = u*(¢'¢) + [\(#79)*. (1.48)

We can also add to the Lagrangian an interaction term that involves the scalar
doublet and the leptons. The simplest coupling symmetric under SU(2), x U(1)y

is given by

EYukawa - _Ge(aR¢TuL + ﬂL¢uR)' (149)

We can now apply the spontaneous symmetry breaking process by noting that the

minimum of the potential is given by,

2

B = -1 (1.50)

Thus we can choose the following ground states,

2
b1 =y =y =0, ¢35 = Y v?, (1.51)

which can be rewriten as:

0
< ¢ >o=

v

V2
We have said in the previous section that the Goldstone theorem states that for

every symmetry breaking there will be the creation of a Goldstone boson (which

is going to be massless and be eaten up to give mass to the gauge boson). In a
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more mathematical sense this is equivalent to saying that there will be a Goldstone
boson created if a particular generator of the symmetry group does not leave the
vacuum invariant, that is, if G < ¢ >¢# 0. The generators of SU(2) are the 7
matrices and applying each of them to < ¢ >( does not give 0. The generator
of U(1)y is a number Y, so applying it to < ¢ >y does not give 0 either. It is
interesting to note that if we apply the electric charge as the generator, which is a

mix of 73 and Y according to the Gell-Mann-Nishijima relation, then we get,

1 1 0 1 0
Q<¢>0:§(73+Y)<¢>0=§ —|—§ =0.
i 7

Hence the charge operator leaves the vacuum invariant. As a result, the photon
will remain massless while the three other gauge bosons will eat up their respective
Goldstone bosons and acquire mass.

The next step would be to rewrite the Lagrangian with the new fields defined
around the minimum of the potential. We know that by choosing the U-gauge we

ensure that the physical spectrum of particles is apparent:

0
60— ¢ =
v+n
V2
The Yukawa term now reads
@ _ Gen _

Ly ukawa = — au au. 1.52

The first term can be interpreted as the mass of the leptons, while the second
term is an interaction term between the leptons and the 7 field. The scalar term

becomes
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(0"n) (Dun) — 1°n’?

02
8

1
Escalar - 5
+

201 212 312
[9°]D,, — bz |* + (¢ A)p — go) + ...
We can read off the mass of the 7 field to be M? = —2pu%. The 7 field is the Higgs

boson of the Standard Model.

The charged gauge fields can be defined as

. V2

With this definition the mass term of the charged gauge bosons become manifest,

(1.53)

since now we have

927}2 +12 —2
LW+ W, ), (1.54)
and hence Mz = 22 We can also write down the part of the Lagrangian de-
w V2

scribing the interactions between the vector bosons and the leptons and make a

comparison with the phenomenological Lagrangian found in previous sections for

the Electroweak interaction. The connection between the two gives the relationship

between g and the coupling found experimentally,
g’ M,

L @G
8 2

This gives us a value for v, the vacuum expectation value of the Higgs field,

(1.55)

v=(GpV2)7V? =174 GeV. (1.56)
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We can also define the neutral boson fields as

g YAl (1.57)
A+ g'b;
A, 92 9% (1.58)

The masses of the Z° particle, M2 = /g% + ¢ 5 and the photon, m, = 0, become
apparent. We see that the neutral bosons are mixed. It is useful to introduce a

weak mixing angle such that ¢’ = g tan 6y so that now we have

Z, = —Aﬂsinﬁw—l—bicosﬂw (1.59)

A, = Aﬂcosﬁw—i-bismﬂw (1.60)

The unification of the weak and electromagnetic interactions is now complete
since we can relate each coupling constant to each other, with a relationship that
is found by making the connection between the Lagrangian of the neutral bosons

and their phenomenological counter part:

g= = (1.61)

1.2.5 The CKM matrix

We come back to the CKM matrix introduced in section 1.2.4. The Standard
Model does not predict the values of the CKM elements; we need to measure

them. The matrix is unitary by construction. This constraint along with the
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fact that phase differences are unphysical leave four independent real parameters,
for three generations of quarks. These correspond to three angles and one phase
factor, so the CKM matrix contains complex elements. The PDG uses the set of
angles 5, 013, 023 and the phase factor d;3.

Although the Standard Model does not predict the individual elements, some
information can be extracted from the CKM matrix when written in a useful
form. To do this we can use the approximation that cosf;s is very close to unity
(Vap = sinfize~" is very small). Also, we can expand all the cos and sin terms.
Wolfenstein chose the expansion parameter to be A = sinfc ~ 0.22. The CKM

matrix can be written, using the four independent parameters, A, A, p and 7 as

1—1/2)? A AN (p — i)
V= Y 1-1/2)2 AN +O(M).
AN (1 —p—in) —AN? 1

If we examine the magnitudes of the different elements we notice that the bigger
the step in generation, the weaker the element: V4, Vs, Vi are of order 1, while
the elements involving the 1 and 2"¢ generation, Vi, Vg, are of order ), the
elements involving the 2"¢ and 3"¢ generation, Vi, Vi, are of order A? and finally
the last level (and the hardest to measure) involves the elements from the 1% and
3r? generation, V, Vig, which are of order A3. Table 1.3 summarizes the latest
results and signatures for each element: ([7],[8],[9]).

Using the unitarity constraint (VV = 1) we can write down six equations

relating the different CKM elements. The most interesting one involves combina-
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Table 1.3: Measuring the CKM elements

CKM Experimental Signature Measurement

|Via| nuclear beta decays 0.973540.0008
neutron decays

|Ves| | K — mev, with D — Kev, decays 1.04£0.16

Charmed-tagged W decays

Vil t — bly decays it = 0.99 £ 0.29

| Vs | K — mev, decays 0.219640.0023
hyperon decays

| Vel v,d — pe decays 0.22440.016

|Vep| B — D*(v decays CLEO: 0.046240.0032
Inclusive b — clv

Vo] b — sy decays Wetul — 0.95(1+0.01 p)

Vil By, B mixing V5 Via|=0.008340.0016

| Vs | B — 7, p, (v decays this thesis

Inclusive b — wlv

CLEO: 0.00408 £ 0.00063
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tions of similar order and is the product of the 3™ row of V' and the 1** column

of V:

VasVua + Vi Vea + VigVia = 0. (1.62)

If we set the different elements which are of order unity to one, and if we divide
each members by V; V., then we get the triangle of base length one, shown in figure
1.5.

From the previous discussion about the experimental signatures of the different
elements, it is clear that only the processes b — wlv, b — clv and B° — B
mixing are necessary to completely determine the unitary triangle. The problem
is that those reactions involve large hadronic contributions which results in large
uncertainties on the different elements.

The hope is that the angles «, 3, and ~ can be extracted with reduced hadronic
uncertainties. The angle # has been determined experimentally by the new B
factories, BaBar and BELLE. They essentially looked at the process B — J/¢ K,
which is very clean both theoretically and experimentally. The current average
value is sin24 = 0.77£0.08 [5]. To determine the angle « the B factories will have
to perform what is called an isospin analysis. Finally, the angle v is even harder to
measure experimentally. There are various methods proposed to measure this angle
([9]). One of these method is to build triangles relating various decay amplitudes
to each other.

The point of measuring all the various pieces of the unitary triangle indepen-

dently is of course to see if the triangle closes, and see if there is some new physics



23

(0,0 (0,1)

Figure 1.5: Unitarity triangle built from the CKM matrix.
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beyond the Standard Model that shows up in one of those measurements. Since
this type of new physics hunt is indirect (we are not looking for bumps indicating
new particles), there is usually no single clean measurement that can clearly show
the new effect. Different processes that would be controlled by the same combi-
nations of CKM elements can have different non-Standard Model contributions.
Extracting CKM quantities assuming the Standard Model would then result in

inconsistent parameters.

1.2.6 CP violation

We have seen in section 1.2.4 that the V-A structure of the weak interaction pro-
duces Parity violation and Charge Conjugation violation, but leaves CP invariant.
Here we study how CP might be violated.

If we look at the the following quark scattering process: ab — cd, then the

amplitude is proportional to,
M x chavd*;)(dcryp‘(l - 75)11'0,)(@(17”(1 - 75)ub)-

If we apply the CP operator on the reaction we get the process ab — @d, for

which the amplitude can be written as,

M o Vi Vi (i y™ (1 = 7°)ue) (@7 (1 — 7°)uq). (1.63)

Since an Hamiltonian is always hermitian we have M’ = M. For CP invari-
ance to hold, application of the operator CP on the M amplitude must result in

M.
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We need to apply the operator CP to the different currents. The end result is

that we find the amplitude to be ([4])

CPM o VoV (¥ (1 = 77 )ue) (apy* (1 = 7°)ug).

This amplitude is the same as the one in equation 1.63, except for the position
of the “*” on the different CKM elements. If the CKM matrix were real, then
we would have CP invariance. Because there is a complex number in the CKM
matrix, the SM predicts some CP violation.

The unitarity triangle shown in figure is related to CP violation through the
fact that its area J (for Jarlskog), quantifies the amount of CP violation because
it is proportional to the imaginary part of the CKM matrix: J ~ A®A?n. The
other two triangles that we could have chosen also have their area equal to J. One
triangle involves K decays, the other By decays. We mostly hear about the B,
triangle because it has all sides of roughly the same size, which makes it easier
experimentally to measure all the sides and angles.

The study of CP violation is a very hot subject of research within HEP these
days. The reasons for this are that it’s the least tested aspect of the Standard
Model. Also most New Physics models predict additional sources of CP violation.
Finally, our own existence implies that there was some amount of CP violation
shortly after the Big Bang, but baryogenesis requires a larger level of CP violation
than is predicted by the Standard Model.

There are three types of CP violation in meson decays: CP violation in the

mixing of the neutral mesons, CP violation in the decay of either the neutral or
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charged mesons and finally, CP violation in the interference of decays of the neutral
mesons with and without mixing.
One way to measure CP violation in mixing is to look at semileptonic asym-
metries of the neutral B meson,
D(B°(t) — X(*Tv) = T(B(t) — X{v)

L= T (1) = X0w) 1 T(BY) = X0-0)° (1.64)

CLEO has a measurement of such an asymmetry, and the world average value
is ([5]) asr, = (0.2+1.4) x 1072, Unfortunately, the theoretical predictions for this
quantity involve large QCD effects, but we do know that the asymmetry can not

be larger than O( ﬁ{g ), where AI'p is the difference in width between the two

neutral B mesons, while AMpg is their mass difference. The current precision of
the measurements is still not high enough to either validate or refute the Standard
Model. This type of CP violation is sometimes also referred to as indirect CP
violation.

To measure CP violation in decay, one can look at the asymmetry involving

charged final states,

(BT = f")-IB —=[)
(Bt — ft)+ (B~ — f~)

ap: = (1.65)

If we choose two amplitudes such that A; << A; then the theoretical expression

for the asymmetry can be written as

apr = —2(As/A1)sin(0y — 01)sin(ds — ¢1), (1.66)
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where 95,0, are strong phases, and ¢, ¢; are weak phases. Unfortunately, this
asymmetry also suffers from large theoretical uncertainties since it involves the
strong phases, which usually depend on QCD effects that are hard to calculate, like
final states interactions and hadronization. This type of CP violation is sometimes
referred to as direct CP violation.

There is hope, though, concerning the third type of CP violation. For this kind,
one can measure the time dependence of the asymmetry involving CP eigenstate

final modes,

w ['(B°(t) = fop) = T(B°(t) = fop)
Jer = T(BO(t) = fep) + D(BY(t) — fop)

(1.67)

Since this measurement requires the time dependence of the B decay, one gains
much leverage by building an asymmetric machine, leading to a displaced vertex
of one B relative to the other. As we have mentioned in the previous section,
the B factories have measured the CP eigenstate 1)K ¢ decay mode, for which the

asymmetry can be written as

afop = sin(20)sin(Ampt). (1.68)

The magnitude of the asymmetry is given by sin(23) and it is significantly different
than zero. This is the first direct observation of CP violation in the B system. It
is also the first precision test of the Standard Model concerning CP violation, and

we’re happy to report that it passed.
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1.3 Beyond the Standard Model

We have just gone through a quick overview of how the Standard Model is a
possible ground on which to grow fundamental laws governing elementary particles
and how they interact. Although we know that it can’t be the end of the story.
For example, as mentioned before, our own existence implies that there is more
CP violation than what the Standard Model predicts. We now briefly discuss the
main reasons why the Standard Model is unsatisfactory and also look into possible
extensions.

Modern neutrino physics has already provided experimental hints that the
massless neutrinos predicted by the Standard Model need to be remodeled. We
now review how the massless neutrino is predicted by the Standard Model. Com-
ing back to the lepton current of equation 1.20, the leptons have a Yukawa-type

coupling with the Higgs field,

Ly ukawa = YU, (1.69)
where the 7,7 refer to the flavors. This coupling eventually leads to a mass term
for the charged lepton and predicts that neutrinos are massless. The simplest way
([5]) to account for some neutrino mass is to add a dimension-five term that makes
the neutrino mass explicit,

. Y;”. i
Egi’?z}c_a?ua = MJULUJI,¢¢J (170)
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where the parameter M is a mass. This term is nonrenormalizable and implies
that this extended version of the lepton sector of the Standard Model is valid only
until the scale M. Because of the structure of this new dimension-five term, the

couplings Y" are symmetric. The mass terms for the leptons are now given by

([5),

v e U2 v

In complete analogy with the quark sector, we can always find unitary matrices

M, =

V.1V, such that

Ve MMV, = diag(m?, m?, m?)

V,,M,,MVTVJ = diag(m%,m%,mg).

In the mass basis, the interaction between the W= and the lepton is given by

g _
,Cf/yi - EUEL’YM(%LVJ)UVLWEZ- (172)

The unitary 3 x 3 matrix Viyns = Vo, V)| (the Maki-Nakagawa-Sakata matrix)
is the mixing matrix for the leptons just like the CKM matrix is the mixing matrix
for the quarks. Because of the Majorana nature of the neutrinos in equation 1.70,
we are not free to make a phase transformation to the neutrino fields, in contrast
to the situation with the charged leptons and the quarks. As a result, the MNS

matrix has three CP violating phases, as opposed to the single one in the CKM
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matrix. Because of this new MNS matrix, we now have flavor changing interaction
in the lepton sector, making it similar to the quark sector.

None of the Yukawa couplings are predicted by the SM; we have to measure all
the masses of the fundamental particles. This touches on another shortcoming of
the SM: the fact that there is such a difference in scale between the lightest and
heaviest fundamental particle. Just among the quarks we go from ~ 0.004 GeV for
the up quark to ~170 GeV for the top quark. Actually, the top quark is the only
one that has the right mass scale: we have seen that the Higgs mechanism provides
the mass of the quarks, leptons and gauge bosons of the Electroweak interactions
via its vacuum expectation value (vev). This value is about 100 GeV, so we would
expect all the masses to be around that value, which is only the case for the top
quark and the W and Z bosons. Another issue connected with this is the mass of
the Higgs particle itself: since it’s a scalar field we would expect that it acquires
mass through all of its quantum effects. This means that its mass should be around
10'¢ GeV, clearly not the 100 GeV that seems to emerge from all the Electroweak
precision data. This is known as the Hierarchy Problem.

Another unnatural feature of the SM is related to what is called the strong
CP problem. In the SM Lagrangian, there are nonperturbative QCD terms that
violate CP and induce an electric dipole to the neutron. We expect a relationship

like ([5]):

dy =5 x 107%0gcp e em (1.73)
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The experimental bound on dy is less than 6.3 x 10 ?°e cm, so §gcp should be
less than 1071%. The theoretical prediction for this quantity is that it should be of
order one, so the small measured value seems to indicate possible new physics.

The main issue with the Standard Model seems to be the hierarchy problem.
Fundamentally, there are two ways to solve this problem: 1) there can be some
careful fine tuning and cancelations that take place to prevent the quantum cor-
rections that drive up the Higgs mass, or 2) the Planck scale is the same as the
Electroweak scale.

If you were to take a poll among theorists about their favorite contender for
possible physics beyond the Electroweak scale, the vast majority would answer Su-
persymmetry (SUSY). This is particularly interesting in view of the fact that aside
from the lack of any experimental observation of SUSY parameters, there needs
to be several versions of SUSY that fix this or that theoretical shortcoming. Also
there is a multiplication of unpredicted parameters that one has to measure with
SUSY models, even though we already feel uncomfortable with the 18 parameters
from the SM. Nevertheless, SUSY elegantly solves the fine tuning of the SM and it
looks like it’s a necessary part of any Grand Unified Theory, where the electroweak
and strong interactions come together.

In 1882 Darbaux factored second order differential operators into the product
of two first order operators. This is the most basic implementation of the idea
of supersymmetry ([6]). The same idea was used in Dirac’s formulation of the
harmonic oscillator writing it as H = hw(a™a = £). Since the Hamiltonian is the

generator of time translations, we can say that we’ve decomposed time translations
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into more fundamental operations. In SUSY, we have both spatial and time trans-
lations embodied in a super algebra. For example, under the group SU(2) x SU(2),
operators transform under (1/2,1/2). To apply the super algebra is to use more
fundamental objects which transform under (1/2,0) and (0,1/2). Physically speak-
ing this translates into postulating that there are fermion and boson multiplets:
for every fermion there is a bosonic partner (sleptons, squarks) and for every boson
there is a fermionic partner (photinos, gluinos). The fine tuning of the hierarchy
problem happens because for each offensive fermionic loop in the quantum correc-
tions of the Higgs field, there is an equal and opposite bosonic loop that cancels it
([11]).

It is interesting to note that the spectrum of sparticles is decoupled from the
particle spectrum, so that the physics at the EW scale is consistent with the SM
predictions (and hence with observations). Even the supersymmetry Higgs sector
can be accommodated with a SM-like Higgs around 100 GeV.

Another possible solution to the hierarchy problem is to postulate the existence
of extra spatial dimensions. Those extra dimensions would be compactified so that
there would be no direct evidence of them in our everyday world. The relation
between how the size of these extra dimensions influences the constants at the

Planck scale is given by ([11])

M= (M =52 g (1.74)

where R"™ is the volume of the compactified n-dimensional space. This line of

thought is an appealing candidate for developing quantum gravity, since in this
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model only the graviton would be able to radiate into the “bulk” (the extra dimen-
sional volume), making its strength as feeble as we experience it. It’s interesting to
see that such a model has exotic experimental predictions for the next generation
of colliders such as the production of black holes.

Finally, a less popular view is to consider the Higgs particle as a composite
particle, so that it would be protected from quantum corrections. Technicolor
models have problems in that their predictions have difficulties standing up to the
EW precision measurements.

In summary, we have seen that the CKM matrix is a cornerstone in the com-
plete understanding of fundamental particles and their interactions. Furthermore,
precise kinematic observations of decays such as the transition of a b quark to a
u quark semileptonically can be used as a probe of the QCD physics involved,
leading to much improved tools to help interpret more accurately a whole range of
crucial measurements. In the next chapter, we look more in detail at the dynamic
of such a decay and the different tools that are used in the strong interaction part

of the decay.



CHAPTER 2

WHAT WE KNOW ABOUT THE B — Xy/lv

DECAYS

2.1 Dynamics of the decays

Now that we have layed out the backgroud picture for the weak interations and
specially the role of the CKM matrix, we can turn to looking more specifically
to the exclusive decays B — mpwnlv. We will first look at their amplitudes and
decay rates and then we will look at what sort of information we can gain from

analyzing their Dalitz plot.

2.1.1 Amplitudes and decay rates

We are interested in deriving an expression for the differential decay rate and the
width of the exclusive decays involved in the transition b — ufv. These expressions
lead to the determination of V;, once we have the experimental results. We show
the complete derivation for the case of B — wflr. It follows very closely the
formalism used in [18]. Figure 1.2 shows the decay in the rest frame of the B

meson. We choose the 2z axis in the direction of the W. The angle 6, is the angle

64
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between the lepton momentum, in the W rest frame, and the direction of the W,
in the B rest frame.

The four-momenta of the B meson and of the pion are as followed, in the B
rest frame: p* = (Mp,0,0,0), k" = (E;,0,0,—p,). The W meson is a spin one

particle and we can write down it’s helicity polarization vectors as,

= %(0,4,—@',0)
- %(0,1,—@0)

Wy = \/—lq—Q(PmO;O,CIO),
551@ = L((10,0,0,—%)

B

where ¢ = (p + k)?, and so, in the rest frame of the B, ¢p = Mp — E,. We can

also write these polarization vectors in the W rest frame,

1 .
6LI/LV+ = ﬁ(oa _17 -1, 0)
1
eleV_ = E(OJIJ _iJO)J
GLI/LVO = (0,0,0,—-1)

ew, = (1,0,0,0)

The differential decay rate is given by,

(2m)"

dl' = ——
2Mp

| M*d®, (2.1)
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where M is the decay amplitude and d® is the differential amount of phase space.
The amplitude is given by,

M = —i%VubL“Hﬂ. (2.2)

We see the expressions for the leptonic current and the hadronic matrix element,

LF = apy™(1 — v5)v,
H" = (7]|¢d¥"(1 —v)Q|M)

= feld)p+ )"+ (@) — k)",

where f,, f_ are form factors. The term proportional to f_ vanishes when con-
tracted to the lepton current, in the limit of massless leptons. With the above
expressions we can find the helicity amplitude of the W. Since both the pion and

the B meson are spinless, the only helicity available for the W is zero,

_
Hy = eyH,

*0 *3
2

= WPWMBﬁ(qQ)-

In the differential decay rate we need the magnitude squared of the amplitude,

G%?|Vub|2

2 _
M = 2

L' H,,. (2.3)

We start with the leptonic current,
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LM = LML = (wy"(1 = 5)vn) (05 (1 4 75)7" ) (2.4)
= STr e (=) (1= )]

= 8[pkpl+pipl — (e 1) g™ + i€ puapus) -

We can rewrite equation 2.3 in the following way,

G%|Vub|2

2 _
M2 = ZE

L“’V’qﬂ/ﬂq,/,,HW, (25)

this form allows us to insert the completeness relation of the W polarization vec-

tors,

2 |‘/vub|2 w'v' em *170 wm! ! v
|M| - Z Z L €€y Gmm/ G’ €, €y H (26)

mm! mm/

F|Vub| ZZL;LV Z},eli?tnmnme*m mH

We can now evaluate the amplitude piece by piece starting with the lepton sector,

Lmﬁz — Lu’l/ m *mnmnma (27)

We work in the W rest frame in which we can write the four-momenta of the lepton

and the neutrino as,

P = (pe, pesinby, 0, —pecosty)

ph = (pe, —pesinby, 0, pecosty).
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Because we are in the W rest frame, we have p, = v/¢?/2 and (p; - p,) = ¢*/2.
We could now evaluate all the different possible helicity combinations (+,-,0,t) for
m and m using equation 2.7. Looking ahead, evaluation of the hadronic piece of
equation 2.5 tells us that only the helicity zero is possible, as we mentioned before,

so m and m’ are zero and we only need to evaluate L

L = L33€%/V06?/I?}0
= L3
= 8[2(—]9%008204) + 2p§)]

L = 16p;sin’0,.

We can write down the hadronic part as,

.t w

Hpm = ewmewmHuw
. * v *

Hy = eyoHuenH,
= Hj.

We can now write down the amplitude as,

G%|Vub|2

2 _
M= 2

16p7sin®0,H; . (2.8)

The three body decay phase space is given by,

1 pr

d® =
16(2m)7 M

dcosf,dq?, (2.9)
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where 6, is the angle between the direction of the lepton in the W rest frame and

the dirextion of the W in the B rest frame. The differential decay rate is then

oV GVl sy d oy a1
il = 16 0,22 0 o g
2MB 2 pESZn £q2p7r B|f+(q )| 16(2 )7 MB costyaq
dr’ G%‘|Vub|2 . 9 3 2\ 12
ddeost, — (ampa S Owsl SO
Integrating over the angle we get,
dl |Vub|
d—q2_ 2473 Pl ()P (2.10)

One important feature of this last expression is the momentum dependence:
there is a power of three for the pion decay and we would find a power of one for

2L+1 where L is the lowest

the vector case. In general the dependence goes like p
allowed orbital angular momentum. The power of the momentum influences the
shape of the lepton spectrum. The other important feature is that we need to
know the dependence of the form factor as a function of ¢?. This dependence is
the subject of much theoretical activity, as we shall see in the following sections.
For the case of the p and w, the fact that these particles have one unit of
spin, allows all possible polarization of the W. The complete expression for the

differential decay rate can be found in many places, in [19] for example. We now

turn toward the dynamics of the decays.
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2.1.2 The Dalitz plot

A Dalitz plot is essentially a map of the probability of the different decay config-
urations. We show the Dalitz plot for the B — nfv and B — plv decays using
the ISGW2 model in fig 2.1 and fig 2.2 respectively. The y axis of the Dalitz plots
is ¢?, which is the momentum transfer to the virtual W boson. The x axis is the
energy of the lepton.

We can derive several expressions for ¢?:

¢ = (pe+p)
¢ = (ps—ps)%

q2 = Mé + Mg — 2MBE7T7

where the different p’s are four momenta. The last equation has been obtained
using the 2"¢ expression, assuming the B is at rest.

To analyze the Dalitz plot we can look at the various regions of ¢%. First
let us look at the region around the maximum ¢ (also called zero recoil region).
This situation happens when the daughter pion receives no momentum and then
¢* = (Mp — m,)? In this situation the mass of the W is taking most of the
available energy, and so it is produced nearly at rest. This has the consequence of
producing the lepton and the neutrino nearly back to back.

At parton level, the u quark does not get much momentum from the transfer

so if the v quark mass was close to the b quark mass nothing much would have
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Figure 2.1: Dalitz plot for B — 7lv using ISGW2.
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changed in the reaction. This is roughly the underlying idea of the Heavy Quark
Symmetry (HQS). The form factors of the hadronic part of the decay favor this
situation. In this region of ¢? the relativistic corrections that depend on the mass
of the heavy quark is negligible. For the case of b — w this last remark is not as
valid as for the case of b — c. Still, the form factors favors this situation. It is for
this reason that the density of points is greater in the top of both Dalitz plots.

The other extreme situation is for ¢ minimum. In that case, the value of ¢* is
the mass of the lepton squared, so essentially zero. At ¢? minimum the lepton and
the neutrino go flying parallel to each other and opposite to the daughter hadron.
In this situation the hadron gets the largest recoil momentum. At the quark level,
the v quark got momentum in the reaction so it is moving quickly with respect to
the spectator quark. Many gluons must be exchanged between the two quarks to
form a bound state. This situation is clearly messier than the previous situation,
so the form factors do not favor it. This the reason why the density of points
in that region for the Dalitz plot is not as high. It is interesting to note that
the theoretical calculations are much harder at lower ¢ because of all the gluons
dynamic and the relativistic nature of the particles involved.

There is another factor that influences the ¢? distribution, and hence the Dalitz
plot: the spin of the daughter meson. If we take the example of the pion being
the daughter meson: we’ve seen in the previous section that the decay rate is
proportional to p2 so this suppresses the rate at high ¢?. If we compare with the

case of the p being the daughter meson, then in this case the decay rate was found
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to be proportional to the first power in momentum; so this does not suppress the
rate as much at high ¢?.

We can look at it in a different way: at ¢®> max the lepton and the neutrino
are nearly back to back, which implies that the third component of spin for the
lepton-neutrino system is +1 or -1 but not 0. The B meson has total spin of 0.
In the case of the pion, which has also spin 0, there is nothing available to cancel
the +1 or -1, so the orbital angular momentum is of value 1. This is referred to
as a P wave decay. On the other hand, the p has spin 1, so the orbital angular
momentum can take any value from 0 to 2. The decay can be an S, P or D wave.
This also has the consequence of not suppressing the rate of the p at high ¢*.

The different situations of ¢? are summarized in figure 1.3 and we show the
respective ¢? distribution in figures 2.3 and 2.4.

We now turn our attention to the lepton energy distribution. The important
factors for this distribution are the V-A structure of the weak current, and the
spin of the daughter meson. The u quark has mostly an helicity of -1/2, while the
lepton has almost purely an helicity of -1/2. In the case of the p meson, since its
spin is 1, then the spectator quark can have either helicity +1/2 or -1/2. This
leads to a helicity of the p to be either 0 or -1. This in turns leads to the helicity
of the W to be either 0 or -1. This has consequences on the energy of the lepton.
When the W has helicity -1, then the helicity of the lepton is mostly -1/2 and
so because of that the lepton is likely to be emitted in the W direction. Because
leptons that go in the direction of the W are given higher energy (in the B rest

frame) because of the boost, we get what is known as the lepton forward-backward
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asymmetry. The way to see it in the Dalitz plot is that there is a higher density
of points at higher lepton energy for a constant ¢?. Another way of seeing it is
that the distribution of the rho is roughly proportional to (1+ cosf;)? (6, has been
defined in the previous section) as shown in figure 2.5.

If we look at the case of the pion, the d quark has no choice but to have
helicity +1/2, so the helicity of the W is 0 and we lose the helicity information.The
distribution associated with the pion is proportional to sin?f, as shown in figure
2.6. The absence of lepton forward-backward asymmetry also leads to a softer
lepton spectrum for the pion mode compared to the rho mode. The lepton energy
spectra are shown in fig 2.7 and 2.8 for pion and rho respectively. Table 2.1

summarizes what we have learned about the Dalitz plot.

2.2  The Form Factors

The theoretical challenge in weak semileptonic decays is to describe the form factors
present in the hadronic matrix elements. Those form factors are important in
order to predict the rate of the different decays. The prediction can then be used
experimentally to obtain a value for the different CKM elements. A powerful
handle used to determine experimentally the behavior of the form factor is the ¢?
distribution of the decay.

We have seen in section 1.2.3 the basic ideas behind QCD. Trying to describe the
form factor behavior’s in terms of QCD is very attractive. Unfortunately, for the

present we need to build models to fill the gaps where QCD is non-perturbative and
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Table 2.1: Summary of the information for the Dalitz plot

Dalitz region | ¢? Comment
Top maximum the momentum of the daughter mesons
is small
(O recoil) the lepton and neutrino are back to
back
the form factors favor this region
the density of points is high
particles are unpolarized
distribution of cos is uniform
Middle middle the W helicity of -1 starts dominating
over +1 (case of p)
excess of points at high lepton energy
Bottom minimum maximum recoil for the 7 and p

(max recoil)

relativistic situation

the 7, p and W have helicity of 0

no asymmetry in the distribution of
cosl,

depletion of points at low and high lep-

ton energy
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numerical solutions are not quite there yet to take over. We review the fundamental
ideas between some QCD-based tools, and some models used in particular for the

b — ulv case.

2.2.1 Heavy Quark Symmetry and HQET

Historically, one of the problem physicists had with the Quark Model was the fact
that it was not possible to “see” directly the individual quarks. The explanation
for this, which comes naturally from the field theory of QCD, is the asymptotic
freedom of quarks: the strong coupling constant, g, becomes weaker and weaker
in processes involving large momentum transfer. Large momentum transfer can
probe short distance reactions. On the other hand, for large distance processes, as,
is strong, and the system is usually non-perturbative; we cannot make expansions
in order a;. Another consequence is the confinement of quarks and gluons inside
hadrons. We can actually use the size of the hadron to get an estimate of the

energy scale that distinguishes the weak and strong regime of «,

Rhad =~ ]-/AQCD =~ lfm

We find Agep, the energy scale below which a non-perturbative approach is nec-
essary, to be about 0.2GeV. Is is then natural to classify quarks based on that
energy scale: heavy quarks have mg > Agcp, they are the ¢, b and ¢ quarks. The
other three quarks are considered light quarks in this particular limit.

For heavy quarks, the coupling constant is small, and QCD behaves very much

like QED, for which the electromagnetic coupling constant is also small. Actually
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the hydrogen atom formalism offers a very nice treatment of quarkonium states
made of heavy quarks.

The particular system of interest to us involves the B meson, which is made out
of one heavy quark, but also one light quark. The heavy quark is then surrounded
by a complicated system composed of interacting light quark pairs and gluons; a
system sometimes referred to as the “brown muck”. The interesting observation
is that in order to have information about the heavy quark’s quantum numbers,
information about small distance scales is required. The soft gluons, part of the
brown muck, can only resolve larger distance scales, so the light degrees of freedom
of the heavy quark meson are blind to the mass and spin of the heavy quark, they
only feel its color field. This leads to the important conclusion that in the infinite
quark-mass limit, if the only things different are the mass and the spin of the heavy
quark, the configuration of the light degrees of freedom is the same.

[sgur and Wise were the first to see the implication of this principle: if a heavy
quark of velocity v and spin s is replaced by a different heavy quark with different
spin, then, as long as the velocities are the same, the light degrees of freedom do
not change. This can be directly applied to some semileptonic decays involving
transition between heavy quarks, like b — ¢ for example. This flavor symmetry has
an interesting analogy: different isotopes have about the same chemistry, since the
electron clouds do not care about the mass of the nucleus. Of course in real life,
quark masses are not infinite, and so there will be corrections of order Agcep/mg.

Since it is possible to factor out the dependence of the mass of the heavy

quark, the hadronic matrix element can be written in terms of a function, &(v-v'),
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involving the four-velocity of the initial heavy quark (v) and the four-velocity of
the final quark (v"). If we now use the heavy quark symmetry, we can change one
of the heavy meson into a different heavy meson, and the matrix element is still
a function of the same function £. This function is called the Isgur-Wise function
and it is a universal form factor, valid for any heavy to heavy meson decay. A

L w is also

common variable used for the dot product of the two velocities is w
the boost between the frame of the initial meson and the final meson.

The variable w can also be related with ¢? in the following way,

:m%+m2Q/_q2

w
2QOQ'

where mg and my, are the masses of the initial and final mesons respectively. We
see that in the particular case of maximum ¢?, which corresponds to the final meson
being at rest in the rest frame of the initial meson, then the two four-velocities
are the same and we have (v -v') = 1. This is sometimes referred to as the zero
recoil configuration. We also explained in the previous section how this particular
configuration is favorable from the form factor point of view. This also means that

the Isgur-Wise form factor is maximum and in fact it determines its normalization,

£(1) = 1.

Based on these fundamental principles, it is possible to write an effective theory
that deals especially well with systems for which the heavy quark symmetry applies

[20]. It is an effective theory because in a sense we do not need all the high energy

Tt comes from the French pronunciation: double-v
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details of the full theory if we are working in a domain of low energies. The
prescription to build such an effective theory goes as follows: first, we integrate
out all the heavy fields since they do not matter in the low energy regime. This
leads to a non local theory since in the full theory the heavy fields had an influence
over a short distance, Ax ~ 1/M. The next step is to rewrite the action as an
infinite series of local terms. This series takes care of reproducing the long distance
physics of the full theory but not the short distance one. The short distance physics
is present because of the hard gluons inside the meson. To take this into account,
we need to add up the small distance effects by using perturbative method, this is
sometimes referred to as matching.

In the particular case of building a Heavy Quark effective theory (HQET), the
mass of the heavy quark is the high energy scale and Agep is the low energy
scale at which we are working. Obviously it is not possible to completely remove
the heavy quark, but it is possible to integrate out some negligible terms in the
full heavy quark spinor. Finally, to write the effective theory it is useful to make
use of Luke’s theorem, which states that in the limit of zero recoil, there are no
corrections of order 1/m¢ in the hadronic matrix elements.

HQET has been proven to be very useful for decays involving heavy quarks
like, for example, semileptonic decays B — D) ¢y. In these cases HQS provides a
normalization for the form factors at zero recoil, and one can extrapolate over the
kinematical range of ¢2. For the case of a B meson going into a meson containing

a light v quark, the situation is rather different, and HQET can not be applied.
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There is no normalization possible in that case, and the principles of HQS can only
be applied in the region of ¢* max.
HQS, predicts scaling relations, in the case of zero recoil, for the nfv form

factors,

Filtm) + f-(tn) = my, 72

f-l—(tm) - f—(tm) ~ m;-1/27

where, m; is the b quark mass. We have mentioned before how in the heavy
quark limit, the b quarks in the B and B* mesons act as a static color source and
the spin decouples. Hence, in the HQ limit the B and B* are degenerate. Since
the mass difference between the B and B* is less than the pion mass, we can then
expect a contribution to the form factors, from the B* for the B — wlv decay. We

expect a scaling relation of the type,
. 3/2
fi = mb/ :

We can then conclude that this contribution dominates the rate in the region near
q2,.2> but it is not expected to dominate the entire range of ¢

In order to perform comparisons with experiments, we need more than useful
relations that hold around symmetry limits. Since any hadronic decay is truly
described by non-perturbative physics, only non-perturbative methods will lead to

accurate predictions. One such method is lattice QCD.
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2.2.2 Form factors on the lattice

Using lattice QCD is in a sense comforting, since in this case we do not have to
worry about the justification of the physical approximations: there are none. Also
there are some number of methods available to estimate the errors associated with
lattice QCD predictions, which is also very useful when the experimentalists are

trying to extract the theoretical dependence of their results.

Brief introduction to lattice QCD

Given a particular physics problem, field theorists usually solve it by evaluating
the corresponding vacuum expectation value. This expression can be evaluated
from the path integral of an action, S[®],

| DPe PIG[D]

(0|G[2]]0) = (IOn (2.11)

As the name invokes, the idea behind lattice QCD is to replace the continuum
of space and time by a grid of points. The spacing between each site is a and the
total length of the grid is L. Field values are evaluated at each site, but gauge
fields are evaluated at each link in between the sites. This discretization turn
path integrals into normal integrals, functionals into functions and derivatives into
differences. Putting the continuum into a grid is a reasonable approximation when

the following condition is met:

“Based on [21] and [22]
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a < length scale of particular problem < L.

Unfortunately, even though equation 2.11 has been reduced to a more “com-
putable” form, it is not enough: there are too many integration variables in the
system and also usually e 5%l is sharply peaked. The solution is to generate N
random field configurations and arrange them so that they are distributed accord-
ing to the probability distribution P[®] ~ ¢ 5I®]. Then the vacuum expectation
value is given by the average over all the configurations,

- 1 X
(0|G[?]|0) =~ G = NZG
i=1

The question is how good this expression is for a finite N. If N is sufficiently
large, the distribution approaches a Gaussian distribution, and G is the mean of
that distribution. In that case we also know how to get the width of the distribu-

tion,

. % S GQ[CI)i] — G2
~ N .

For a particular problem that we can solve analytically, we can compute,

2~ (01G7[2]|0) — (0]G7[®]]0)?
N ,

and with this prescription we have a way of estimating the errors of the simulation.
How do we generate such configurations in practice? Basically, the configura-
tions are sets of random numbers, which are drawn from a particular distribution.

One type of method used relies on the generalized Langevin equation,
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mi = — p — Bx +n(t),

which describes the motion of a particle of mass m under the influence of a ran-
domly acting force from the potential V(x) and the influence of a dissipative force
characterized by 3. The vector 7 is a random vector from an arbitrary distribu-
tion. From this second order differential equation it is possible to write a 1¢ order
equation for x and the momentum. It is then possible to write by how much z and
the momentum change over one time step.

In order to apply this formalism to lattice field theory, we make the following

association:

x(n) — @"(x)
p(n) — II"(z)fake field
Viz) — S[9]

B 1

m — M.

The starting point is to choose completely arbitrary values for each fields ® and

II. To build the next iteration we can use

AtIl(x)

Ad(z) = v
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All(z) = —At (H]S”) + gig) + V2At(z).

This has the end result of distributing all the ®" according to e °!?!, as desired.
Note that if the interval At between each updating step is small, then two neigh-
bouring configurations do not look much different; they are strongly correlated. We
then need to throw away most of the configurations generated and keep only those
that are separated by enough updating steps, An. It turns out that the size of An
necessary to have a reasonable distribution, is proportional to L. When we want
to approach the continuum limit, we increase L, which has terrible consequences
in terms of how many configurations one must generate. This is the phenomenon
called “critical slowing down”.

We mentioned above that the gauge fields are specified on links joining sites
instead of on each site, which we would naively expect for a field. The gauge fields
are specified by the line integral, over a link, of the exponential of the gauge field.
The reason we have to do this is to preserve gauge invariance, which is the only
symmetry we really care about. The reason is: because we are dealing with quan-
tum theories, the fields have structure at all scales, which is what leads to quantum
fluctuations. The fact that we need to discretize the theory when we project it
onto the lattice has the effect of an ultra-violet cutoff. We have the right behav-
ior at low energy scale, but the high energy effects are not correctly reproduced.
The way out of this situation is to renormalize all the running constants found on
the lattice so that they give the same physics as the continuum physics. If one

wants to reduce the disretization errors, we can add local terms to the original
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Lagrangian. These new terms also have running constants associated with them,
that much be renormalized. This renormalization is accomplished by relating the
new running constants with the ones that were in the original Lagrangian. If the
spacing of the lattice is small enough, then asymptotic freedom acts in our favor
and perturbation theory can be used to compute all the renormalization factors.
What about gauge invariance? If it is not preserved then renormalization theory
cannot be used to relate all the constants, and each constant we would need to be
tuned separately. That would be extremely time consuming.

The choice of the expansion parameter is important. Since the lattice operators
involve an exponential, it is possible to expand it in powers to evaluate it. The
terms in the expansion are proportional to the lattice spacing so it is reasonable to
think that the terms get smaller and smaller with increasing power of the lattice
spacing, but there is a factor a in front of the expansion. This factor has the
consequence that the different terms in the expansion are not negligible. An im-
provement was found that involved rescaling all the fields by a common factor, so
that the expansion would go always decreasing in size. This is called the “tadpole
improvement”. The name comes from the fact that the higher order terms in fields

in the expansion involve high-energy loop diagrams, called tadpole diagrams.

Lattice calculations for B — 7, plv

We have mentioned before that in our decay of interest the available recoil is large
because the final mesons are so light . Large momentum means being able to probe

short distances, hence we need smaller spacings when we want to simulate particles
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with higher momenta. Nowadays, the available range of lattice calculations for the
m and p modes is a momentum from 0 to about 1GeV. This region corresponds
to being very near ¢> max. Extrapolation over the whole range is problematic
and introduces model dependency for which the uncertainties are uncontrolled
theoretically. For the case of B — w/lv, this means that only 20% of the total
decay rate is available. There are currently two main approaches to deal with
the heavy b quark: one can perform the calculation at the charm mass and then
use HQET to do the appropriate extrapolation. This approach is taken by the
UKQCD group, for example. The other approach is to use a relativistic action
to perform the calculations, but interpret the results in a non-relativistic fashion,
allowing one to stay at the b quark mass. This approach is taken by the Fermilab
group.

Another characteristic of lattice calculations is that the mass of the u and d
quark are too small to be directly simulated on the lattice. Usually calculations
are done at roughly the strange quark mass and the results are extrapolated to the
physical values. This is called the chiral extrapolation.

Recently the Fermilab lattice group ([23])has worked on lattice calculations in
a specific region of ¢2, that could lead to a robust value of V,, since no model
dependence would be introduced by extrapolating to lower ¢? values. They have
also studied the effect of lattice spacing and found only a mild dependence, though
their systematic uncertainty receives a contribution from this effect. The expression

that they propose is:
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1273 1 10 dlp mp
V2] = = T / dp Bt
GFMB TB(047 ].0) 0.4 dp

, (2.12)
where T contains the calculations of the form factors and they find: T5(0.4,1.0) =
0.55F0-1540.0940.09 1 0.06 £ 0.09GeV* 4+ 10 — 20%. The first error is the statistical
error, the second is the effect of the chiral extrapolation, the third is the effect of
the lattice spacing, the fourth is the effect of matching the discrete calculations
to the continuum, the fifth is an error coming from linking the lattice units to
the physical units, and parts of it reflects the quenched approximation effect. The
last 10-20% is the estimate of what the quenched approximation effect could be 2.
The effect of this approximation varies from situation to situation. For example,
for the case of the p mode this can have a big effect, since there must be a quark
pair created from the vacuum. On the other hand, systems like the T systems
are well approximated because the valence quarks are really the most important
players. Recently there have been unquenched calculations performed to determine
the decay constants of the B and D mesons: those results drive the uncertainty
estimate shown here.

The UKQCD lattice group ([24], [25]) uses a different procedure for the chiral
extrapolation. They also report form factors over the whole range of ¢ and for
both the m and p modes. For their 7 mode extrapolation over the whole range
of ¢* they choose the parameterization developed by Becirevic and Kaidalov (BK)
([26]), which proposes to write the form factor to depend explicitly on the B* pole,

and the other higher states can be written relative to the first pole,

3The quenched approximation means that quark polarization loops are ignored.
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N cp(l — )
r = e 219

where cg, o are parameters related to the influence of the B* pole and other higher
states and can be fit for using lattice results. It is important to note that the
FNAL lattice results can also be extrapolated over the whole ¢ range using this
parameterization. There are other possible parameterizations for extrapolating at
lower ¢? that make use of dispersion relations ([27],[28]). The concept of dispersive
bounds is introduced in the next section, where we review the other QCD tool for

getting the form factors: the QCD Sum Rules.

2.2.3 QCD Sum Rules

QCD Sum Rules were developed more than 20 years ago by Shifman, Vainshtein
and Zacharov (SVZ). They are powerful tools used in hadron phenomenology. The
idea is to consider a hadron in terms of interpolating quark currents taken at large
virtualities ([29]). The fact that the quarks are highly virtual means that we are
interested in a short distance process for which pertubation theory can be used.

We can write such an amplitude as a correlation function of quark currents,

1L, (q) = (4.9 — ¢ 9) (), (2.14)

where ¢ is the four momentum transfer of the reaction and has ¢ < 0. Our
reactions of interest involve both short-distance and long-distance regimes. The

long-distance part can be thought of as a sum over all possible hadron states and
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their polarizations. For ¢ > 0 we can make use of the unitarity relation and insert

of complete set of intermediate states,

2Imll,, (q) = > < 0ljuln >< nl5,|0 > dr,,(27) 6 (¢ — pa), (2.15)

where dr,, is the phase space volume of all the states, p, is the four momentum of
a state n. We need to be able to relate the I1(¢?) of equation 2.14 to its imaginary
part involved in the sum over hadronic states. A dispersion relation can do just
that. We can represent all the hadronic states as lying on the real axis of a complex
plane and take a complex integral on a contour in that plane. The Cauchy formula

gives us,

M(g?) = ~ /q:o gs 1) (2.16)

T s —q? — i€
The sum rule equates this last expression to a sum of local operators. Some
of the local operators represent the short-distance physics and can be computed
perturbatively, others represent the long-distance physics and can be calculated in
the quark-hadron duality approximation. This approximation can be viewed as

saying that

ImII(s) — ImITP" ()]s 100 (2.17)

We can then see that the limitations of the QCD sum rules are the use of
the quark-hadron duality approximation and also the fact that the sum of local

operators is truncated.
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Nowadays, semileptonic phenomenology makes use of Light-Cone Sum Rules
(LCSR). This variation of the SVZ sum rules uses an expansion of the quark
currents near the light-cone, which means that the quarks are traveling near the

2 — T

light-cone 22 ~ 0, where 2% is the space-time interval z? = 22 Typically we

have this condition as ¢?> — —oo0, since
9 1

This corresponds to highly virtual quarks. Using the LCSR approach avoids the
irregularities of the truncated sum of local operators. Another difference of the
LCSR calculations is that the sum is performed on nonlocal operators, classified
according to their twist instead of their dimension ([30]). The twist of an operator
is the difference between its dimension and its spin. The lowest twist possible
is two since an operator without any derivative in it has dimension three and the
Lorentz spin one. Since sum rules in general involve quarks at high virtualities, the
LCSR calculations are most adequate in the region of high recoil of the daughter
meson, that is at low values of ¢?>. Hence, LOSR calculations are complementary
to those obtained with the lattice simulations. Calculations for B — pfr mode
get form factors to an accuracy of 15%. These calculations take into account
radiative corrections and higher twists calculations, and the authors believe that
they cannot be improved. Added to this error is the irreducible error of the quark
hadron duality approximation mentioned before. This additional uncertainty is

guessed to be around 10%.
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The authors in [31] perform LCSR calculations for the B — m¢v mode. They
take into account the B* pole influence referred to previously. They find about an
18% uncertainty on the form factor at ¢ = 0. They think that the accuracy of the
form factor can be reduced if higher twist calculations are performed for this mode.
The authors do not refer explicitly to the quark hadron duality approximation
used, but presumably an additional 10% uncertainty must also be considered in

this mode.

2.2.4 Quark models

It is clear that the most desirable way to get a precise calculation of the dynamics
of heavy quark decay is to go with non-perturbative QCD. However such results
are hard to obtain and sometimes, useful approximations and analogies can be
made which helps getting theoretical predictions that can be compared to the

experimental results. We can then learn whether the approximations were justified.

ISGW2

One of the most popular phenomenological models on the market nowadays is a
model developed in the eighties by Isgur, Scora, Grinstein and Wise (ISGW). At
that time much emphasis was put on inclusive semileptonic measurements. The
hope was to measure the CKM matrix elements V., and V,; from the inclusive
lepton spectra. Then, the theoretical model was ACCMM, a “QCD corrected

parton model”. Unfortunately, the ratio of the mentioned CKM elements extracted



99

with that model turned out to be much smaller than anyone imagined. The ISGW
model was introduced to offer an alternative to this situation.

In the ISGW notation, the letter ¢ is used for ¢ and t,, represents the ¢?
max situation, or zero recoil. The ISGW model is a non-relativistic estimate of
the intercept f;(0) and of the charge radii (eq 2.19) of the Lorentz invariant form

factors fi(t,, —t).

ri = l@’%] 1 /2 (2.19)

The term charge radius will be clearer later. The expressions found, rely on the
observation that for every form factor there is an associated partial wave amplitude.
For example, in the case of the transition of a pseudoscalar to a pseudoscalar, the

expansion can be written as,

(P'(p")|V*(0)|P(p)) = fe(p+ D) + f-(p—1)",

where p and p’ relates to the initial and final pseudoscalars respectively. In this
case, there are two partial wave amplitudes.

The description of the ISGW model as being non-relativistic applies more than
just to the assumption that the external momenta of the initial and final mesons
are themselves non-relativistic. It also applies to the internal motion of the light
degrees of freedom of the meson. In the second version of the model (ISGW2,
which is what is now commonly used), the parameters like the intercepts and the
charge radii, involved in the form factors parameterization, includes some relativis-

tic corrections.
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Actually, ISGW makes the assumption that the form factors found in the ap-
proximation that the light quarks m,, mg, ms > Agcp can be extrapolated into
the domain of the physical quark values.

Also, the model has been designed for matrix elements involving resonances
only; it does not include non resonant decays. The contribution of the latter was
believed to be “small”.

The fundamental idea behind the ISGW model is to treat the heavy-light
mesons like quarkonia, a bound state of two heavy quarks. This means that all the
extra quark pairs and gluons are ignored. We have previously mentioned that the
quarkonium system is relatively easy to treat, and is in analogy with the hydrogen
atom. In the ISGW model they make the supplementary simplification of using the
harmonic oscillator wave function instead of the full quarkonium wave function.

Having described the various approximations used by this model, we now show
the parameterization of the various form factors,

P10 = 1500 14 ghertn =]

where r, as mentioned above, is the charge radius, as in the expression,

1 2
FF@) = Ff(tm) {1— 5 (tm =) +}

and where N = 2+ n 4+ n'. The n and n' are the oscillator quantum numbers of
the initial and final wave functions. For example, if the decay involves an .S wave
amplitude to an S wave amplitude then n = n’ = 0, N = 2, if the decay involves

a transition between an S wave and a P wave then we have n = 0,n' =1, N = 3.
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As N — oo, the form factors acquire the Gaussian formalism associated with the
harmonic oscillator.

As mentioned before, large hadronic recoils are possible in b — ufv decays. This
means that there is a large contribution from the 1P and 25 states in the inclusive
lepton spectrum. Since ISGW only takes into account the lowest resonances, this
model can only be used in the very end of the inclusive lepton spectrum.

Going from the ISGW to the ISGW2 model, the exclusive spectra show a harder
end point. Actually, there was a change of a factor of five between the two versions,
for the pion decay rate.

In summary, ISGW is adequate for the great majority of semileptonic decays,
and predict a small model dependence. This is not the case for decays of the type
b — ulv. The reasons being that, the final mesons have a large available recoil,
and they have a rather relativistic nature. Also, these decays are far from any
symmetry limit. ISGW2 gives a factor of two of uncertainty in the B — nfv, and
a factor of about 50% uncertainty for B — p(w)flv.

I[SGW2 also predict that much improvements can be made if one makes full
use of the analogous D semileptonic decays, since HQS symmetry predicts nice
parallels between those two types of decays. CLEO has started working on a
D — mlv analysis using the data collected with the new particle identification

detector.
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Relativistic spectral representations

The authors in [34] perform a fully relativistic treatment for their quark model.
They get parameterizations of the form factors for both the B — nflv and B — plv
over the full range of ¢ values. In their model, “the transition form factors are
given by relativistic double spectral representations through the wave functions of
the initial and final mesons both in the scattering and the decay regions”. In order
to obtain those spectral representations they write down the amplitude in terms of
vector, axial-vector and tensor currents. Then they go to the region of space-like
values (¢> < 0) and choose a proper integral in the complex plane. The form factors
in the physical ¢? region are obtained by analytical continuation. The obtained
spectral functions are ensured to obey QCD constraints in the heavy quark limit.
One disadvantage of this approach is that the model depends on parameters like
the effective constituent quark masses. In order to reduce this dependence, the
authors used lattice results at high values of ¢? as experimental inputs to their
model.

They compare the value of their form factors with lattice results at high ¢? and
with LCSR results at low ¢2. The agreement is good in general. There is one form
factors in the B — plv case for which their value is slightly greater than the LCSR

value by more than the 15% error quoted by the LCSR. group.

Skewed parton distributions

Another quark model used for the B — 7fr mode is to model the B — 7 transition

with skewed parton distributions ([35]). Those distributions are non-forward ma-
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trix elements of non-local currents. The fact that they are skewed means that there
is a change of variable performed and a new variable, the skewedness parameter,
is introduced. Performing the integral of the parton distributions over different
domains of skewedness, allows one to clearly separate the various dynamical con-
ditions of the reaction. At ¢? ~ 0, large recoil, there is the overlap region, while at
q2,,, the annihilation and the resonance contributions dominate. The term overlap
means that for this region of ¢> we have an overlap of the B meson wave function
with the m meson wave functions. Annihilation means that the B meson emits the
b u quark pair and the final pion is made out of the remaining partons. Finally, the
resonance contribution is the effect of the nearby B* pole that must be considered
when close to ¢2,,.. The authors assure that the skewedness method ensures that
no double counting is possible over the different regions.

They find that their total uncertainty for the form factors is about 20-25%.
They compare their distribution of form factors with other theoretical determina-
tions and find good agreement. In particular, they find good agreement with the
LCSR approach of [31], which is very close to their approach, since it makes use

of a light-cone wave function.

2.2.5 Summary

This chapter presented the relevant theoretical ideas and motivations for an exper-
imental analysis of the charmless semileptonic exclusive decays: B — m, p,wnlv.
We have learned that since these decays involve a heavy to light quark transi-

tion, useful symmetries like Heavy Quark Symmetry are not directly applicable.
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Nowadays there are several theoretical ways to approach how to calculate the non
perturbative hadronic element present in these decays. Some of the methods in-
volve brute force calculations of QCD; some of the methods make phenomenological
assumptions. One thing is clear, some experimental direction coming from a ¢?
distribution measurement for these decays will greatly help the theory community.

We now look at the apparatus that enables us to make such measurements.



CHAPTER 3

OBSERVING THE B — Xyfv DECAYS

To be able to probe every corner of the Standard Model and its possible extensions
we need to go back in time, get ever closer to the creation time of the Universe. As
we go back in time, the Universe was hotter and particles of very high mass were
created. To be able to study those particles we need a high density of energy. We
now turn to the machine that provides enough energy to create a pair of B mesons.

We also look into the various detectors necessary to make our measurement.

3.1 CESR

Particle accelerators for high-energy physics are big machines that are hard to
build and operate and cost a lot of money. There are less than ten such machines
around the world. Some of them accelerate electrons and positrons, some collide
protons with anti-protons, or even with other protons, others collide electrons and
protons. The technical issues and the physics are quite different for the different
machines. The Cornell Electron positron Storage Ring does not operate at the

highest energy now possible for an accelerator. Instead its center of mass energy is
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10.58GeV, enough to create a BB meson pair. Before we go in the details of how
the pair is created, we briefly review the different parts of CESR.

The first stage of the accelerator complex, as shown in figure 3.1, is the linear
accelerator (linac). A cathode filament is heated and electrons are boiled off. They
get accelerated down a 30m beam pipe through the action of eight accelerating
cavities. Those cavities generate an electric field from a radio wave, and the electric
field increases the energy of the electrons. The electrons reach 300MeV at the end
of the linac. To create positrons, a tungsten plate is put about half-way down the
linac. When the electrons hit the plate, out of the interactions come a spray of
electrons, positrons and X-rays. The positrons get selected and accelerated down
the linac to about 140MeV.

The next step is the accelerating part. The synchrotron accelerates either
electrons or positrons with four radio frequency cavities. There are 192 bending
magnets that give a circular orbit to the particle. The radius of curvature of the

particles is given by,

=5 (3.1)

where p is the momentum of the particle, ¢ its charge and B the magnetic field
strength. We see that as the particles gain energy and momentum, to keep a
constant radius, a varying magnetic field is needed. The name synchrotron comes
from this particular synchronization. It takes about 4000 revolutions around the
synchrotron for the particles to reach 5.29GeV. This takes place in about one

hundredth of a second.
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Figure 3.1: Diagram of the various pieces of the accelerator complex.
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The final step is to inject first the positrons, then the electrons into the storage
ring. Although the storage ring does not provide any acceleration to the particles,
its technical requirements are formidable due to the long period of time that the
particles stay in it. To allow the particles to stay in the storage ring for about
an hour, we need a very good vacuum, of the order of 1078 torr, which is several
billions times less dense than normal atmosphere. To reach such a vacuum, the
metal of the beam pipe can be heated up to 150 C, so that any trapped gas can
be driven out with vacuum pumps. Those pumps use a discharge to ionize the
air molecules, which then get collected on electrodes. We now look at the various
elements around CESR.

Around CESR there are 86 dipole magnets which bend the trajectory of the

particles according to

F = g7 x B, (3.2)

where F'is the inward force, ¢ is the charge of the particle while v is its velocity, and
B is the magnetic field provided by the dipole. Those dipole magnets are electro-
magnets, and there are two types of iron used, one for the soft bend magnets and
one for the hard bend magnets. There are 98 quadrupoles around CESR, providing

focusing either in the horizontal plane or in the vertical one, by the use of:

F = —kx, (3.3)
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where x is the distance from the center of the axis. Finally, there are 84 sextupoles
which correct for the chromatic effect of the quadrupoles, that is they make the
momentum distribution of the particles more uniform.

Due to the centripetal acceleration felt by the particles, they radiate off some
energy, at the rate of about 1.2MeV per revolution. Those X-rays are a problem
for the particle physicists, but they are useful tools for other scientists: the X-ray
beams produced by synchrotron radiation are many thousand times brighter and
more collimated than the X-rays produced at conventional X-ray laboratories. The
Cornell High-Energy Synchrotron Source provides experimental stations to users
that wish to make use of these X-rays. As for the particle physicists, they have to
restore the lost energy. Radio-Frequency cavities are used around the ring. In the
last few years, CESR has replaced its copper cavities for super-conducting ones,
providing a better performance efficiency of the cavities. The CESR RF frequency
is 500 MHz.

The effect of the linac RF frequency is to group particles together, instead of
having a continuous stream of particles. The configuration is to have trains of cars
of particles, electrons in one direction and positrons in the other direction, in the
same beam pipe. We are currently running in a 9x5 configuration, which means
that there are nine trains each separated by 284ns and each train contains five
cars, separated by 42ns each. The current record (as of 2002) for the amount of
current per beam is 365mA, which corresponds to 2.3 x 10*® particles per car. The
trains do not go in a circle, they follow a pretzel-like orbit and collide at a slight

horizontal crossing angle of about 2mrad. To prevent collisions to happen in other
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places than at the center of the detector, there are electrostatic separators around
CESR as well. At the interaction point, the cars are about 2cm long, 0.3mm wide
and 8um high. At the position of the collision there is a luminous region, the beam
spot, which is smaller than the size of each car: about 13mm long, 300um wide,
and 6um high. Getting the beam size to be as small as possible is a criteria for a
successful accelerator.

The main criteria for a competitive accelerator is defined with its luminosity

([13]),

NeiN,_

L=fn 1

(3.4)

where f is the frequency of revolution of the particles, n is the number of cars per
beam, N, N, are the number of particles per beam and A is the cross-section of
the beam. The record luminosity for CESR at this point is 1.25 x1033cm 2571,
The reason that the luminosity is important is that when integrated over time and
multiplied with the cross-section of a particular reaction, it gives the number of
events produced. As we probe rarer reactions, we need more integrated luminosity
to get a statistically meaningful sample. Integrated luminosity has units of inverse
area, a useful unit is the barn, equaled to 1072m?2. A record day for CESR is to
collect 73 pb~! (April 2001), this is to be compared to a typical day of about 15
pb~! back around 1996. For information about how the energy of the beams is

determined, see [12].
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BB production

We have just seen that at the interaction point we get a collision of an electron and
a positron. Sometimes the electron and positron scatter off each other; Bhabha
scattering is the most prevalent reaction happening at CESR. We keep some frac-
tion of these events for calibration of the detectors. Another common process is
to get a pair of muons. The cross-section for this reaction is 0.775nb at the CESR
energy. The muon pairs have a 1 + cos?6 distribution, where 6 is the polar angle.

Another possibility is that out of the energy of this collision, a bound state of
a b and an anti-b quark is produced. This is the T resonance, first discovered at
FNAL in 1977. There can be different resonances of this bound-state based on
the amount of energy available. The next figure 3.2 shows the rate of production
of particles vs energy. For the first three resonances, there is annihilation of the
b and anti-b quark, while for the fourth resonance, we have enough energy that a
pair of light quarks is produced, making up a pair of BB mesons (discovered with
CLEO in 1983). The fact that the T(4S5) resonance is very broad is an indication
that there are several new decay channels at that energy. The initial state, made
out of an electron positron pair, enforces the virtual photon that gives rise to the b
quark pair to have a third component of spin to be +1. The B mesons are spinless
so they have a sin?6 distribution, where 6 is the polar angle.

Finally, there is another reaction that can happen from the initial electron
positron pair: they do not interact and, in place, the photons that radiate from
the beam particles interact, while the electrons and positrons go down the beam

pipe. This is referred to as two photon physics. Because of the difference in initial
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states, the quantum numbers possible in those reactions are different than the ones
in conventional B meson decays, allowing for a very different kind of physics to be

performed.

3.2 CLEO

We have just seen how we get a B meson pair at the interaction point. The B
meson has a short lifetime (1.6ps) and it decays into various stable and unstable
particles. The particle physicists can be compared to a detective: a crime was
committed (some initial decay involving the B meson), and we are only left with
clues (detection information from the final particles); our job is to use all the
evidences to reconstruct what happened. We will first review what happens when
particles go through matter, and then we will briefly look into how each subdetector

of CLEO makes use of those principles.

3.2.1 Interaction of particles with matter

Most interactions that happen between some incident particle and some material
is electromagnetic in nature, hence we can distinguish cases that involve charged
particles and cases that involve neutral particles. As for the charged particles,
we also have to distinguish between the particular situation of the electrons and
positrons compare to the other heavier charged particles. In general, we can say
that there are two main things that can happen to a charged particle as it goes

through matter ([14]): 1) it loses energy 2) it is deflected from its original direction.
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We can identify two main reasons for this: 1) inelastic collision with the atomic
electrons of the material, 2) elastic scattering from the nuclei. There can also be
other less frequent processes like emission of Cherenkov radiation, nuclear reactions
and bremsstrahlung radiation.

The energy loss of a particle is mainly due to the inelastic collisions with the
atomic electrons, there is little energy loss from the nuclei interaction since the
mass of the nucleus is typically much larger than the mass of the incident particle.
Although the energy transfered from the incident particle to the atomic electrons
is small, there are so many such collisions, that the energy loss is significant even
after short distances in a given material. There can be either soft collisions, where
only excitations happen, or hard collisions, for which ionization of the atom hap-
pen. Sometimes the ionization electrons have enough energy to produce secondary
ionization, we call these primary electrons d-rays. The energy loss due to ioniza-
tion is given by the Bethe-Bloch equation (see [14] for example), which relates the
energy loss for a given distance, dF/dx, to an expression which does not depend on
the mass of the incident particle, but does depend on its velocity, and is somewhat
independent of the material. The Bethe-Bloch expression gives the average energy
loss, but there are many fluctuations. Those are dominated by the close primary
interactions, so that we actually get a Landau distribution of energy loss as a
function of distance, which has a long tail. If we look at the energy dependence
of the Bethe-Bloch expression, we first see that it is dominated by its dependence

on velocity: 1/42%, then at about a velocity of 0.96¢, there is a minimum, and we
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call the particles at this point minimum ionizing. This point is the same for all
particles of the same charge. Finally, past this point, there is a relativistic rise.

We mentioned that the case of electrons and positrons is special, and that is
due to the small mass of these particles. There are two ways an electron or positron
can lose its energy: by ionization and by bremsstrahlung. For the ionization part,
the Bethe-Bloch expression is modified in two ways: 1) since the mass is small, the
electron or positron gets deflected from the collision with the atomic electrons 2)
since the incident particle and the target particle are identical particles, there are
some corrections to be applied.

Bremmstrahlung is the german word for “braking radiation”, in fact it repre-
sents the emission of electromagnetic radiation from the scattering of the electron
or positron with the electric field of the nucleus. At energies below the hundred of
GeV, electrons and positrons are the only particles for which radiation loss is sig-
nificant. Radiation loss by muons is 40000 times smaller than for electrons. Since
the energy loss from ionization is roughly constant for electrons and positrons and
the energy loss from radiation is a function of the particle’s energy, for high-energy
electrons, radiation loss is the dominant process of energy loss for those particles.

The amount of energy loss in that case is given by ([13]),

dE E

(%)md = _YO; (35)

where X is the radiation length of the material, and we can see that it corresponds

to that thickness of material that reduces the mean energy of a beam of electrons
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by a factor e. The energy at which the energy loss from collision is the same as
the energy loss from radiation is called the critical energy.

The second electromagnetic process that we referred to earlier is elastic collision
with the nucleus. Those are Coulomb scatterings, and as far as most detectors are
concerned, there are many such scatterings, which we name, multiple scatterings.
The incident particle zigzag across the detector and the net effect is a deflection
from its initial position and momentum, which limits the precision of the detect-
ing elements. The cross section for such a process is given by the Rutherford
expression.

We now turn our attention to neutral particles. Of main concern to CLEO
is the detection of photons. Since they have no electric charge there cannot be
any inelastic collisions with the atomic electrons. Instead there are three main
processes involving the photon and the material: 1) photoelectric effect 2) Coulomb
scattering 3) pair production.

The photoelectric effect is the absorption of the photon by the atomic electron,
which gets ejected from the atom. To have conservation of momentum we need the
presence of the nucleus. Coulomb scattering refers to the scattering of an incident
photon on a free electron. In a material, the atomic electrons are not free, but
since the energy of the incident photon is much higher than the binding energy of
the electron, then Coulomb scattering can still apply. Since the cross section of
the photoelectric effect goes like 1/E3, the one for Coulomb scattering goes like
1/E and the one for pair production is constant with energy, any photon of more

than about 10MeV loses energy primarily due to the pair production process.
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Pair production is the creation of an electron positron pair from the energy
of the initial photon. To have conservation of momentum, the nuclei are used
for the recoil momentum. In theory, the pair production is very similar to the
bremsstrahlung process, so that the conversion length is connected to the ra-
diation length, Apur ~ %Xo. This relationship between pair production and
bremsstrahlung leads to electron-photon showers: an incident photon in a ma-
terial loses energy through pair production, then the electron and positron emit
photons through bremsstrahlung, and so on, until the electrons and positrons reach
the critical energy, at which point they lose their energy through collisions. We
would get the same pattern if the initial particle was an electron or a positron.
The maximum depth of the cascade is a function of the radiation length and the
critical energy and is an important factor in choices of detector material. The
transverse dimension of the shower is given by the Moliere radius and is also dif-
ferent depending on the type of material.

Finally, neutral hadrons, like neutrons or K, are going to mostly interact via
nuclear interactions. Since the rate of this process is much less than the rate
of electromagnetic interactions, much more material is needed to contain those

showers. We now look at the specific case of CLEO.

3.2.2 The CLEO subdetectors

During tours to visitors I like to say that High Energy physics is the intersection of
two types of physics: the very precise type, we are dealing after all with resolution

of the order of the micron sometimes, but also with the very bulky type, a drift
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chamber that contains thousands of wires and is about 2m long is not an easy piece
of equipment to manipulate. The huge size of high energy physics collaboration is a
reflection of this fact: we need a lot of people to take care of the multiple challenges
and details of each square inch of instrumented area. We now take a tour of the
various kinds of detectors present in CLEO. There is no exhaustive description
of the construction aspects, which can be found in [15], we rather concentrate on
the physics processes going on and their associated challenges. Summary tables of
the relevant parameters of each detector can be found at the end of this section.

Figure 3.3 shows a view of the overall CLEO detector.

Drift Chambers

We saw in the previous section, how ionization is a big part of the interaction
between incoming particles and detector material. To detect the trajectory of the
incoming charged particle, drift chambers rely on the charged particle to ionize
the gas, so that released electrons drift toward a wire held at some voltage. The
CLEO 1II detector contains three subdetectors that make use of this detection
process: the precision tracker (PT), the vertex detector (VD), and the main drift
chamber (DR). We show the layout of those drift chambers in figures 3.4 and 3.5.
Typically, a sense wire is held at a high voltage and is surrounded by some field
wires held at ground. This configuration creates a field cell around the sense wire.
As the ionized electron gets closer to the sense wire, it reaches a high field region
that creates an avalanche of ions, the charge of which is collected. Although we

know which wire collected the charge, we do not know where on the wire the charge
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was collected. To get some z position information, three methods are used: 1) the
vertex detector is read out at both ends, so that based on the charge difference
some estimate of the z position can be inferred, 2) the main drift chamber has
some of its layers not perfectly aligned in z, they have a slight stereo angle, which
allow for some z information, 3) finally, there are four cathode planes segmented
along z at the inner and outer edges of the VD and DR. The cathodes rely on the
image charge produced by the avalanche near the sense wire to induce an equal
charge on the corresponding cathode pad.
The drift chambers are in a 1.5T magnetic field, provided by the super-conducting

magnet. We can see from the following expression that we can get the momentum

of the particle, if we know the radius of the trajectory’s curvature,

pc = Bep, (3.6)

where p is the radius of curvature. We also realize that since the drift chamber has
a radius of about 1 meter, particles with a momentum less than about 225 MeV/c
cannot exit the chambers. They spiral inside the chamber and leave tracks that
we call curlers.

The presence of curlers in the drift chamber raises the issue of track finding
and fitting. Tracks are essentially built by putting together track segments in
superlayers, which are groups of layers, and then seeing if those segments can be
combined to make a track. The goal of track fitting is to get as accurately as
possible the position and momentum of the particle at the place of its creation,

along with the right error matrices of these quantities. In the era that we refer to
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pre-compress, a simple chi square fit was applied on the string of hits found with
pattern recognition, to make a helix trajectory. In the re-compress era, we started
using what is called the kalman filter, which in our case is only applied for track
fitting. It takes into account energy loss and multiple scattering, so that each hit is
taken into account independently in the track fit. Using this method we accurately
get a track fit for each particle hypothesis: electron, muon, pion, kaon and proton.

In the previous section we described how the specific ionization of a particle
is a function of its velocity. The drift chamber also provides a measurement of
dE /dz, which combined with the momentum information determines the mass of
the particle, and is used for particle identification. In figure 3.6 we show the various
bands as a function of momentum, for the different particle species.

For the CLEO IL.V version of the detector, the Argon Ethane gas of the drift
chamber was replaced with a mixture of Helium and Propane. The new gases
reduced the multiple scattering effect, improving the charge collection efficiency.
Improved tracking and dF/dx performance resulted from this change.

Finally, aside from the drift chambers, the muon chambers also rely on ion-
ization for charged particle detection. Muons are penetrating particles and they
are the only particles remaining after the iron of the magnet flux return. Three
superlayers of three layers each are inserted at an absorption length of 3, 5 and 7.

A cross section of a superlayer is shown in figure 3.7.



124

15

=
o
\

dE/dx (KeV/cm)

0.0 0.5 1.0 1.k
Momentum (GeV/c)

Figure 3.6: The dE/dx bands vs momentum for the main drift chamber.



125

Copper Cathode Strip\

Foam Separator

N\

L J
_— I I

AnodeWire'\\

PC Sl

Gephite Cathode'\

L _ll=+|

Copper Ground

Figure 3.7: A superlayer of the muon detector.



126

Semiconductor Detectors

Semiconductor detectors have been in use in nuclear physics for a long time, but
is is relatively recently that its general use has propagated to high energy physics
experiments ([14]). Similarly to the ionization happening in the gas of drift cham-
bers, an incoming charged particle creates electron-hole pairs which are collected
by an applied electric field. A big difference with gas ionization is that the mini-
mum energy required to produce such a pair is much less than the energy necessary
to ionize a gas. A disadvantage of these detectors is the amount of material they
put in the path of the particles and their susceptibility to radiation damage.

For CLEO IL.V the semiconductor detector is a three layer double-sided silicon
microstrip detector (SVX). Both r¢ and rz information is read out. It replaced
the PT of CLEO II and improved the impact parameter in r¢ by a factor of two
while the 7z resolution improved by an order of magnitude ([16]). Figure 3.8 shows

the various layers of the SVX detector.

Scintillators and Calorimeter detectors

Other detectors that make use of crystals’s conducting properties are scintillators.
In those detectors, some material is doped, so that when charged particles liberate
electrons and holes, they get captured by the doping element. This activation
center gets excited and decays with some light emission. This light is then captured
by photodiodes.

The CLEO time of flight (TOF) detector makes use of this process by recording

the time it took for a particle to go from the interaction point to the time of flight



127

2.0 cm Radius
Beryllium
Beampipe

Supports
|

/;\\ Fiber Composite
N

2.35cm Radius 4.81 cm Radius

Double Sided Silicon Detector DSSD
(DSSD)
3.25 cm Radius 4.69 cm Radius
DSSD DSSD
\
1L 7.
\
\ Z
= 2 =
Beryllium .7 Beryllium Oxide
Beampipe Fiber Composite Beryllium Oxide Supports
T 7 SsupportsT | Hybrids
20cm -

Figure 3.8: The three layers of the Silicon VerteX detector.



128

crystals. This gives information on the velocity of the particle and can be used to
get the identity of the particle when combined with its momentum measurement.
Figure 3.9 shows the different bands of 1/4 as a function of momentum, for the
different species.

If one puts a dense enough crystal in the path of the particles, this becomes an
absorption detector. The CLEO electromagnetic calorimeter (CC) is made of the
inorganic crystal Cesium lodide and it is doped with Thallium atoms. We have seen
in the previous section how an electromagnetic shower is created from the incoming
photon, electron or positron. The various electrons and positrons produced in the
shower ionize electrons and holes in the crystal, which then activate the Thallium

atoms.

Trigger and DAQ

If CLEO were to record data for every CESR bunch crossing, the rate would be of
the order of 3.6MHz. Fortunately, the amount of interesting events is only about
a few Hz. CLEO has a three hardware level trigger system before a software filter
is applied to make a final decision about which events are written to a permanent
storage device. The first trigger level, L0, tries to determine if there were any
charged particles or neutral particles in the events, it takes information from the
TOF, the VD and the CC. It reduces the rate to about 10kHz. The next trigger
level, L1, makes use of the TOF, VD, DR and the CC and combined with L0 takes
a few microseconds to process. After L1, the rate is down to about 50Hz. The

next trigger level, L2, takes more detailed tracking information and reduces the
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readout by a factor of two. The software trigger L3, gives an additional 30,40%
reduction. The trigger efficiency for BB events is 99.8% and 100% for B — X, (v
events.

The read out of the information is done differently for the different detectors.
For example, for the drift chambers, the trigger sends a stop signal, which then
makes the drift chamber read out send its timing information contained in its buffer
from before the stop. This takes about 2 us. On top of digitizing the information
from the electronics, some sparsification is also necessary to reduce the event size:
for example, only channels that recorded a non zero value are kept. In CLEO
II the digitization and sparsification take about 13.5 us. A typical event size for

CLEO II is 8 kbytes. For CLEO II.V, it is much higher because of the SVX.

Summary of the CLEO detector

We summarize the geometrical aspects as well as the resolutions of each detector
in tables 3.1 through 3.4. Ar is for Argone, CyHg is ethane, He is helium, C3Hg is

propane, and DME is dimethyl ether.

3.3 Monte-Carlo simulation

This analysis depends crucially on Monte-Carlo events: as we will see in the next
chapters, there are background events mixed in with our signal events. In order
to extract the fraction of events representative of our signal modes, we need some

Monte-Carlo simulation to represent both the signal events and the background
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Table 3.1: Information about the central subdetectors

Detector Name Radius Comments
beam pipe 3.5 cm II: beryllium, silver coating
2.0cm I1.V: 2 concentric cylinders, water in 0.5mm gap

10pm gold coating

PT 4.7-7.2cm | 6 layers of aluminized mylar tubes
384 gold plated tungsten wires
gas: < 1992: 50:50 Ar-CyHg

> 1992: DME

Non existent in I1.V (>1995)

SVX 2.35-4.81cm | 3 double-sided layers of Silicon strips

96 wafers, 300um thick

pitch of r¢ side: 28 pum, rz:100 pm
resolution for tracks perpendicular to beam:

r¢:~ 20 pm, rz:~ 27 pm

Non existent in II (<1995)
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Table 3.2: Information about the VD and DR subdetectors

Detector Name

Radius

Comments

VD

7.5-16cm

70 cm long, 10 layers

800 nickel-chromium sense wires
2272 aluminium field wires
Inner and outer cathode planes
gas: 50:50 Ar-CyHg

read out at both ends

DR

17.5-95cm

2m long, 51 layers, 92% coverage

40 axial, 11 stereo (up to 6°)

12240 gold plated tungsten sense wires
36240 gold plated (Al/copper beryllium)
field wires

gas: 1I: 50:50 Ar-CyHg

I1.V: 60-40 He-C3 Hg

resolution: %+ = (0.0015p.)? + (0.0050)?

o¢p = 1lmrad, 06 = 4mrad
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Table 3.3: Information about the TOF and CC subdetectors

Detector Name Radius Comments

TOF 0.95-1.02cm | ~ 5cm thick Bicron BC-408 plastic scintillators
Barrel: 64 tubes, long UV transp.

lucite light guides

phototubes outside magnet, 86% coverage
resolution: ~ 150ps

Endcap: 28 tubes, phototubes on scintillators
inside magnet, extend coverage to 96%

resolution: ~ 300ps

CcC 1.02-1.44 c¢m | 7800 Thallium doped Cesium lodide crystals
~ Hem X ~ dem x ~ 30 cm

4 photodiodes on each crystal, inside magnet
Barrel: 6144 crystals,

48 z rows x 128 azimuthal

near vertex pointing geometry

E resolution for 1GeV photon: ~2.2%
Endcap: 828x2, E resolution for

1GeV photon:~ 2.8%
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Table 3.4: Information about the outer subdetecors

Detector Name | Radius | Comments
Coil ~ 1.5m | superconducting, axial 1.5T, uniform to 0.2%
cooled by liquid helium
over 95% of tracking volume
MU > 1.74m | plastic streamer counters

Barrel: embedded in iron flux return

8 octants, 3superlayers at 36,72,108cm (3,5,7 Xj)
Endcap: forward and backward region

each superlayer: 3 staggered layers

each layer: 8 rectangular plastic tubes

anode wire in center of rectangle

1 side of rectangle: perpendicular copper strips
gas: 50:50 Ar-CyHg

resolution: 2.4cm, z: 2.8-5.5cm
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events. Fortunately, CLEO has a lot of experience in generating simulated events,
and also, systematic uncertainties take into account possible mismodeling of the
simulated events.

There are three main stages to generating simulated events: the physics of the
generated events, the simulation of the detector and the processing of the simulated
detector responses. For the first step, we rely as much as possible on published
measurements, a lot of them from CLEO, of B decays, or of continuum events!.
For the remaining decays, theoretical predictions or educated guesses are used for
the different branching fractions. It it interesting to note that only about 50%
of the branching fractions of the B meson have been measured. In the special
case of our analysis, the B decays that most influence the results come from the
b — clv and b — ulv reactions. CLEO has a long experience in measuring charmed
semileptonic decays. The decays B — Dlv, B — D*lv, B — Dlv, B — Djlv,
and even non-resonant decays like B — Dmlv have all been studied at CLEO.
Furthermore, in some cases, the form factors were measured and since Heavy Quark
Symmetry holds relatively well for the charm system, this information can be
used for other charmed modes. Nonetheless, part of the systematic uncertainties
come from varying wildly the relative rate of these decays. Also treated in the
systematic uncertainties is the influence of various theoretical assumptions about

how to generate b — ulv events.

!Continuum events are made of jets of light quarks: u,d,c,s, as well as 7 pairs,
and two photon interactions
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The next step is to simulate the detector response to the passage of the gener-
ated particles. It is crucial that a thorough description of each piece of material
be included in the GEANT based simulation. As we have seen earlier, the amount
of material a particle encounter, whether it is instrumented or not, has crucial
consequences on its energy loss or direction. Some of the detectors are simulated
according to a first principle approach: for the drift chambers, ions are generated
according to a Poisson distribution; while other detectors simulate some macro-
scopic features: electromagnetic showers are not created by simulating the various
chain reactions and atom excitations but rather by producing a signal of a certain
intensity based on data studies. In both cases, there are “knobs” (called con-
stants!) associated with key parameters. Those knobs are turned to reproduce the
data and also take into account the aging of the various detectors. The end result
is a very good agreement of low level features between the MC and the data. For
example, in simulating the drift chambers, we get 1% agreement between data and
Monte-Carlo for the tracking efficiency, and we get up to 5% agreement between
data and Monte-Carlo for the resolution ([17]).

Finally, the same PASS2 program used to take all the raw detector signals and
turn them into reconstructed information is used to treat the Monte-Carlo. This

ensures that no bias is introduced between the data and the Monte-Carlo.



CHAPTER 4

MEASURING THE BRANCHING FRACTIONS

4.1 Current status of the measurements

In 1996 CLEO reported on the exclusive branching ratios of B — nfv and B —
plv; the decay B — wlv was also studied [36] [37] [38]. To get to those measure-
ments isospin relations were used and also the fact that the quark model predicts

similar decay rates for Bt — wl*v and BT — p%l*v.

(B — 7 (ty) = 2I(BY — 7%*v)
D(B° — ptty) = 2I(BT — p*v)

~ 2[(BY — wltv)

In 1998 CLEO released an updated measurement of the B — plv branching
ratio and |V,| [39]. That analysis also looked at the ¢? distribution of the decay
and extracted the form factor slope. The method used then was slightly different
than the one used in the first measurement. Also, because of the very strong lepton
momentum cut used, the ¢? distribution could not discriminate very much between

different theoretical models.

137
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Another approach to extract |V, is to look at inclusive measurements B —
X, lv, where the X, are all the possible final states. Unfortunately, because of the
very large backgrounds, one has to put a very strong cut on the lepton momentum,
which induces much model dependence uncertainty on the measurement. There
are interesting ideas about using other kinematic variables like ¢? and the mass of
the recoiling hadronic system, which could reduce the model dependence ([40]).

Our analysis updates the original B — , p, wlr analysis with the addition
of B — nlv decay. We get a precise value for |Vy|. We also extract the ¢?
distribution for the various decays. The method uses the neutrino reconstruction
technique, that was used in the previous exclusive b — ufv analyses as well as in
a measurement of the branching fraction of B — D/{v [41].

The following section describes the event selection cuts required for our partic-
ular analysis. The following two chapters will describe the fitting technique and
the results, as well as the systematic uncertainties, pertaining to the branching
ratio measurements. Appendix A details the various tools needed to perform a

neutrino reconstruction analysis.

4.2 Selecting B — X, fv events

4.2.1 Overview of the analysis

Before going into the details of how to select events representing B — X, /v candi-
dates, we lay down the road map of the analysis. As mentioned earlier, we assign

a neutrino 4-momentum based on the missing energy and momentum of the entire
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event. The track fitting of Trackman approved tracks provides the best represen-
tation of the energy and momentum for the charged particles, while the Splitoff
approved showers from the calorimeter provide the best representation for the en-
ergy and momentum of the neutral particles. We define “good” tracks, from which
we compute the missing momentum, to be Trackman-approved, and also have a to-
tal momentum less than 5.0GeV /c. Similarly, “good” clusters are Splitoff-approved
clusters. For vertices, like Ky — 777~ or A — pm— or photon conversions, the
vertex information from the kinematic fit provides the best representation of the
momentum and energy for those particles since the track parameters assume the
particle came from the beam point.

We combine the approved tracks and showers with the beam information to

obtain the neutrino 4-momentum as follows,

tracks clusters vertices
Emiss = 2Ebeam — Psum (4)
Pmiss — Pcl0SSING — Psum
Pmiss (4) - Emiss

Py = (|ﬁmiss | ) ﬁmiss) .

where pcrogsing accounts for the small crossing angle. We assign the neutrino
energy to be the magnitude of the missing momentum, because the missing mo-
mentum resolution is significantly better than the missing energy resolution. This

comes from the fact that any mistakes can only be additive in the scalar energy
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case, while they can potentially cancel out in the vector momentum case. We show
in figure 4.1 the resolution for the neutrino momentum and energy. We show both
the cases where there are no extra particles in the event, from which we extract the
intrinsic resolution (FWHM/2.36), and the case where such particles are present.
Extra particles refer to K, neutrons, and extra neutrinos. For K; and neutrons,
those particles sometimes interact partially in the calorimeter, which then reduce
the error in the missing energy and momentum. The intrinsic resolution is sim-
ilar for the different hadronic signal modes, and also similar between CLEO II
and II.V. The missing momentum resolution is significantly better than for non

kalman-fitted data.

op,... ~ 250MeV

O Bmiss ~ 8bMeV

Now that we have a neutrino 4-momentum, we can combine it with an identified
lepton, and a reconstructed hadron to make a B candidate. We consider the beam

constrained mass (refered to as Mp), and the energy difference AE defined as,

AE = (E,/ + EE + Ehad) - Ebeam

MB = \/(EbZeam - |aﬁll +ﬁl +ﬁhad|2)
AFE
E,’

a = 1
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Figure 4.1: Neutrino resolution for signal 7 MC. Top left is E,;ss — F,,
Top right is |pmiss| — |Py |, bottom left is [ppmiss — pr| and bottom right is the
angle between the reconstructed and generated neutrino. The solid curve
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events that had at least one extra particle. The normalization is absolute.
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Table 4.1: GSR and SR boundaries

GSR | 5.175 < Mp <5.3025 | —0.75 < AE <0.25

SR 5.265 < Mp < 5.2875 | —0.15 < AE <0.25

For perfect energy and momentum conservation we would have AE = 0 and the
beam constrained mass equal the B hadron mass. The factor a enforces energy
conservation (AE = 0), by scaling the neutrino momentum to close the vector
sum made by the lepton, the hadron and the B momentum magnitude (that we
get from the beam constraint).

To extract the different branching fraction of the various hadron modes, we fit
the AE vs My distribution over a so called Grand Signal Region (GSR), while
extracting the yields in the Signal Region (SR), defined in table 4.1. Figure 4.2
shows the Grand Signal Region and the delimited Signal Region for the 7 MC.

The AE window is asymmetric because the signal tends to be asymmetric and
the b — clv (referred from now on as btoc) background tends to reconstruct at
negative AF values, as we can see in figures 4.3 and 4.4. The signal is asymmetric
because hadronic splitoffs tend to increase the energy associated with hadrons,
and missing particles tend to increase the reconstructed neutrino energy. The
btoc background piles up at negative AFE values because the lepton momentum is
typically softer for btoc events. When we have extra particles they increase the
neutrino momentum, which increases AFE which in turn can smear a btoc event into

the signal region.The p cross-feed into 7 piles up at negative AE values because
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the signal 7 is likely to be one of the m coming from the real p, and so the event is
missing the other 7 energy to get AE = 0. Conversely, in the p reconstruction case,
the 7 cross-feed reconstructs at positive AFE values because the true 7, neutrino
and lepton energy already add up to Ejpeam, 50 adding in a random 7 to build a p
makes AF > (0. Also, the 7 momentum is in general harder than the p one, as can
be seen in figure 4.5

Aside from measuring the various branching fraction of the different signal
modes, we also measure the ¢? distribution, which will allow discrimination among
various theoretical form factors models and so reduce the model dependence un-
certainty on |V,,|. Having the neutrino momentum helps the resolution of ¢

particularly if we scale the neutrino momentum by the factor «a defined earlier,

¢* = (ape +po)°. (4.1)

For 7 signal MC we get a ¢* resolution of about 310 MeV? when we use the
factor o, 540 MeV? otherwise. Given the statistics for the different modes, we
choose to fit in three ¢? bins. The width of each ¢? bin is the same for all modes,
8 MeV?2. The plots shown in figures 4.6 and 4.7 show that the area in each ¢?
bin according to ISGW2 is given in table 4.2. The w and the n modes are not
statistically significant enough to be fitted in three ¢? bins, so for those modes, the

entire ¢* region is fitted.
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Figure 4.3: AE in the Mp signal region for 7. Solid is 7 signal MC, short
dashed is p cross-feed and long dashed is btoc MC. The vertical lines repre-
sent the various bins as described in the next section. The normalizations

are arbitrary.
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Table 4.2: Fraction of events in each ¢? bin according to ISGW2

mode | ¢2(0 — 8GeV?) | ¢3(8 — 16GeV?) | ¢3(16 — ¢2,,,GeV'?)

i 49% 36 % 15 %

p 26% 54% 20 %

4.2.2 Cuts and backgrounds

We now describe the cuts that eliminate the various backgrounds and select our
signal events. The cuts, summarized at the end of the section, were optimized
using signal MC for all the signal modes, as well as some generic BB MC (not
containing any b — ulv events), some continuum MC, and some b — ufv inclusive
MC (not containing our signal events), all independent from the fitting samples.
We looked at the figure of merit for the charged 7 and the charged p modes. The

figure of merit (fom), defined as

52
S + Bxfeed + 1-2Bbt0c + 3Bc0nt + Bbtou ’

(4.2)

fom =

is the ratio of the amount of signal events (S) over the total statistical uncertainty.
B feeq refers to the amount of the other signal modes that are feeding through
the particular signal mode that we are studying, By, refers to the generic BB
background, B, refers to the continuum background, and By, refers to the other
b — ulv modes that are feeding down into the signal mode. The factors of 1.2 and

3 accounts for the statistics of those samples used to model those backgrounds,
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since we have five times the data sample for the generic BB MC, and half the data

sample for off resonance running.

Global Event cuts

In order to require hadronic events, we ask for Klas = 10 events. The Klas
code determines what kind of physics the event contains based on information like
the number of tracks and their momenta, other possibilies are beam gas events,
radiative bhabhas, etc.

We have already mentioned that the criteria for selecting good tracks is that
they be Trackman-approved. In the case that a track is Trackman-approved but
had a bad z-fit, the event is poorly reconstructed and the neutrino momentum is
probably not reliable so we get rid of the event.

In a perfect event, Trackman selects all the good tracks representing the par-
ticles and we should get a net charge (AQ) of the event equal to zero. There is
some justification for accepting events that have AQ = —Qp, a net charge of
the opposite polarity of the signal lepton in the event. The reason for this is that
the tracking efficiency falls off for soft pions. If the other B in the event decayed
into a D* meson, which decayed into a D meson, the accompanying pion is soft
and this signal event might very well have net charge different than zero. Those
events represent 20% of all the mistakes that happen in the events for which net
charge is +1, or -1. We looked a the fom for the cases of AQ = 0, =Qiep, +Quep
and |AQ| = 1, and it turns out that accepting |[AQ| = 1 in addition to AQ =0

gives the best figure of merit.
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Once we have constructed a neutrino 4-momentum, as described above, we
require the polar angle of the momentum vector to satisfy |cosf,| < 0.96. If
particles excaped down the beam pipe, their momenta would be included in the

missing momentum.

Charged lepton requirements

A powerful part of selecting the exclusive signal events is the choice of the signal
charged lepton. Since the u quark is lighter than the ¢ quark, the hadrons in a b —
u transition are lighter than the hadrons produced in a b — ¢ transition, which in
turn, produces leptons of higher momentum. In fact, the first evidence for the b —
u transition was achieved by looking at the end-point of the lepton spectrum ([45]).
This means that a hard lepton cut eliminates much of the btoc background, which is
one of the most important backgrounds of the analysis. This cut comes with a price:
in addition to having a reduced signal efficiency, we must rely on models to correct
for our acceptance over only a limited lepton momentum spectrum. The shape
predicted by the different form factor models affect the branching fractions and the
dl'/dq? distribution, although the associated uncertainty is small in comparison to
the other uncertainties on those measurements. The dominant uncertainty on |V,|
comes from the normalization of the form factor shape. On the other hand, getting
a precise dI'/dq* distribution will help determine the various QCD calculations
which will in turn put more constraints on the possible normalizations. Since it is
one of the goals of this analysis to discriminate among models, it is worth trying

to keep the lepton cut as low as possible.
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For muons, we have different selection criteria depending on whether the muon
is the only lepton in the event or not. At first, we call a muon any track that

satisfies the following criteria:

mudepth(track) > 5
p] > 1.2
lcosf| < 0.85

mod(mugquality(track), 10000) = 0

or

3 < mudepth(track) < 5
10< |5l < L7
lcosf| < 0.71

mugquality(track) = 0

where mudepth refers to the number of interactions lenghts of material before the
muons would range out. Muquality refers to whether there were missing hits within
a subregion of the muon detector. After we have made sure that only one lepton
is in the event, we ask if the muon satisfies the first set of requirements, these are

the signal muons.
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In this analysis we use a package ! which makes an overall likelihood based on
the ratio of energy of the shower over the momentum of the track, the amount of
separation between the track and the shower and the dE/dz information from the
track. The efficiencies were determined using embedded radiative bhabha events
and 2 photon events. It was found that the radiative bhabha sample suffered from
some background contamination, but requiring the tracks to have 40% of possible
hits improved the purity of the sample. We make that requirement both in the
data and in the MC. The loss of efficiency from the embedding goes from 6% at
low momentum to 3% for high momentum tracks, in the good barrel portion of
the calorimeter. The fake rates from hadrons were determined using a Kg data
skim for pions and a D* data skim for kaons. One has to take into account both
the efficiency and the fake rate for each momentum bin in order to decide on the
adequate electron identification cut. The efficiency of identifying an electron as a
function of momentum is shown in figure 4.8. The fake rates are discussed in the
next section.

Now that we have identified leptons, we can count them. We require that
there is only one lepton in the event. If there was an additional lepton, there
would likely be an additional neutrino, and that extra particle momentum would
distort the signal neutrino momentum. We also require that the lepton track be
a “good” track, as defined previously. The kinematics of the decay require the
lepton momentum to be lower than 2.84 GeV/c. As for the lower limit, it will be

a mode dependent value since the lepton momentum spectrum depends strongly

!The Rochester Electron ID package (REID)
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Table 4.3: Lepton momentum requirements

Modes | Lepton cut

m,m0n | 1.0GeV/c

p,p°w | 1.5 GeV/c

Table 4.4: v and 1(2S5) mass windows

mode | ¢ (m=3.09688) | ©(25) (m=3.686)

ee 3.02-3.13 3.675-3.705

i 3.06-3.13 3.675-3.705

in the hadron spin. The lepton momentum cuts for the various modes are shown
next in table 4.3.

Figure 4.9 shows the lepton momentum distribution for 7 signal MC, p signal
MC and btoc MC.

A potential background for B — wfv comes from B — c¢cK;, in which the c¢
meson decays to a pair of lepton and one of the lepton is misidentifies. The K,
plays the role of the neutrino. To eliminate such events, we combine the signal
lepton with every other track of opposite charge in the event and see if it falls
within the following mass windows for the ¢ and (25):

Finally, we consider cos0.,, where 0;, is the angle between the lepton in the W

rest frame and the direction of the W in the B rest frame. This angle is strongly
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correlated to the dynamics of the decay. Background is expected to be roughly flat,
while signal will have a distinctive shape that depends on the meson spin. In the
pseudoscalar modes, the amplitude consists only of a longitudinal piece, the angle
in this case follows a sin?fj,, distribution. In this case the signal and background
distribution are not clearly separated. The situation is better in the vector modes
since then the amplitude is dominated by the transverse polarization and the V-A
structure of the weak current, and the resulting distribution is forward peaked.(see
section 2.1.2 for a more detailed description of the dynamics of the decays and a
prediction of the cosf,,, distributions). We apply a cosb)., > 0 in the vector modes,
based on the figure of merit. We verified with various models that such a cut would
not significantly bias the ¢? distribution. Figure 4.10 shows the cosf;, distribution

for signal MC and btoc MC.

Fakes

Particle identification is not perfect and misidentification can lead to two possi-
bilities: leptons can get identified as hadrons and hadrons can get identified as
leptons. The first case comes from the inefficiency of the lepton cuts. It can only
remove events from the signal region. The second case comes from the fact that
a pion, kaon or proton can mimic a lepton response in the detectors. For exam-
ple, hadrons interact in the calorimeter, and the resulting showers occasionally
look like an electromagnetic shower. Another phenomenon is the fact that around
900MeV /¢ of momentum kaons stop in the calorimeter, leaving a cluster of energy

that results in E/p ~ 1. This combined with the fact that kaons have an ioniza-
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tion de/dx band (see previous chapter) that merges with the electron band at near
that momentum results in a significant probability for kaons to fake electrons. A
veto based on time of flight, which discriminates well between kaons and electrons
around 1.0GeV/c, significantly suppresses this fake rates. For that reason, we
require some time of flight information in addition to the likelihood requirement
for the data. Finally, anti-protons annihilate in the calorimeter, increasing their
probability to fake electrons. Consequently we only use the anti-proton fake prob-
ability 2. The fake probability for pions, kaons and protons are shown in figures
4.11 and 4.12, as a function of momentum for the electron case. Figures 4.13 and
4.14 show the case of the muon, both for the conditions of faking a muon that we
use for signal, and for faking a muon used in the multiple lepton veto. We distin-
guish between two regions of the calorimeter: the Good Barrel and the Non-Good
Barrel. The former corresponds to the region of the calorimeter with |cosf| < 0.7
while the latter corresponds to |cosfl| > 0.7.

Having the possibility of a hadron faking a lepton might make a nonleptonic
data event fall into our signal region. We determine the backgroundfrom hadrons
faking the signal lepton by using data, not MC. For that reason, we run on non-
leptonic data and treat successively each track as the signal lepton track and give
this combination a weight equal to the fake rate probability of this track. Since in
data we do not know for sure if the hadron was a pion, kaon or proton, we look

in MC what is the relative population of each species as a function of momentum.

*We use the results from the Minnesota study ([46]) to estimate our fake prob-
ability.
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Combining this information with the fake rate probability in momentum bin we
get an average fake probability as a function of momentum.

A hadron can also fake a secondary lepton in semileptonic decay and result in
the loss of events. To account for this in the semileptonic MC events containing an
identified lepton, we compute the total fake probability of all the hadronic tracks in
the event and compare this to a random number. If the random number is greater
than the total fake probability, we reject the event. In MC we know with certainty
the identity of the hadrons, so we do not need the average fake probability that

we used in the nonleptonic data.

Hadron candidates requirements

At this point in the analysis, we have a signal neutrino and a signal lepton. We
need a signal hadron in order to reconstruct the B meson. To identify hadrons, we
use the combination of the de/dx information and the time of flight information,
when they are available . We reweight the probability of being a particular hadron
based on the relative population of the hadrons as seen in the semileptonic BB

MC. If the identification failed, the default identity of the track is a pion.

+ +

We reconstruct six B — X, v modes: 7+, 7 pt — 7l p° — 7wt

w — 77~ and 1. For the n mode we look at two decay channels: n — 77770
and n — . Table 4.5 shows the multiplicty of tracks required for the different

modes. These allow for some separation with the btoc background. 7, and 7,

refer to the 1 decaying into three pions and two photons respectively. When the

3We use the Rochester’s list of bad time of flight runs ([47]).
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Table 4.5: Track multiplicity for each signal mode

Mode | Min. tracks | Max. tracks
mE 4 10
0 4 8
pt 4 10
o° 6 10
w 4 10
p 4 10
Ny 4 8

hadronic decay mode involves charged pion tracks, those tracks should be good
tracks, and of opposite charge to the lepton in the case of the 7% and p* mode, or
of opposite charge to each other in the p°, w and 7, modes. The signal neutral pion
mode requires that the signal 7° momentum be smaller than 5 GeV/c. The w mode
has the additional requirement of a Dalitz plot cut of 0.4 on the amplitude squared
relative to the maximum amplitude of the plot. The neutral pions requirements
for the different modes are summarized in table 4.6

Each mode, except the charged pion mode, is labeled according to its mass.
Table 4.7 summarizes the different mass windows for the different signal modes.

Figures 4.15 and 4.16 show the p and w mass distribution respectively.
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Table 4.6: Neutral pions requirements.

7¥ requirements 7 and 7, modes | p* mode | w and 7, modes
Minimum 7° Energy 0 325 MeV 225 MeV
Max. mass dev. (o) 6 1.8 2

Max. x? 7 8 7
Splitof approved showers: yes yes yes
Minimum shower Energy 30 MeV 30 MeV 30 MeV

Table 4.7: Mass information for the various signal modes.

requirements 7 and 7, pE andp? w and 7,

mass of hadron (MeV): | 134.976, 547.45 |  769.9 | 781.94, 547.45

resolution (MeV): 8, 13 8.5, 4 8.5, 6
natural width (MeV): n/a 151 8.4, n/a
number of mass bands: 5 9 9,5
mass width: 20 190 MeV 20 MeV

central bands in fit: 1 3 3,1
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For the II.V sample, there is an additional requirement for each track entering
the hadron candidate selection: if the track has no r-phi hits or no r-z hits, the
track is rejected.

Once the hadron candidate is built, we evaluate if this combination passes
the continuum suppression cut (describe in the next section). If it does then we
compute the beam constrained mass using the signal lepton and neutrino. If the
beam constrained mass is greater than 5.175 GeV, the candidate hadron is kept.
We typically get more than one candidate per event for any given hadron mode,

even in signal MC. We choose one signal candidate (per mode) based on |AE|.

Continuum suppression

A signigicant background comes from the continuum (ete~ — ¢¢) under the Y(45)
resonance. One example of how continuum events might mimic signal events is for
one of the quark to hadronize into a charmed meson and for this charmed meson
to decay semileptonically. That lepton-neutrino pair can then combine with a
random pion in the event. We have two ways of dealing with this background: we
use a continuum suppression cut to reject as many of those events as possible. For
the remaining events, we make use of the off-resonance data, assuming that the
continuum at a lower energy than the Y (4S) looks the same as the continuum under
the resonance after accounting for the beam energy difference. The continuum
suppression cut is designed to discriminate between the jetty topology of continuum
events versus the uniform topology of B events. In general, one has to be careful

since some cuts introduce a bias as a function of ¢, while others do not. In this
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analysis, we only have to worry about the ¢? dependence within one of our ¢?
bin. We optimized a geometrical cut which is a function of R2 and cosfp,ys:. R2
is the second moment of the Fox-Wolfram ratio and approaches one as an event
approaches a perfectly uniform distribution of partiles in 47. cos€y,,4s: i the angle
between the thrust of the signal, the lepton and hadron candidates, and the thrust
of the rest of the event. The cut is separately optimized for every ¢? bin, since the
low region of ¢* contains the most continuum background (the high recoil dynamic
produces jetty events). It is also optimized independently for every mode, and for
AQ =0 and |[AQ =1|.

We show the cosfyys in figure 4.17. The maximum lepton cut of 2.84 Gev/c
previously referred to also rejects continuum events containing leptons with mo-

menta greater than the b — ulv endpoint.

The “V” cut

The most important background, after continuum suppression, comes from the
b — clv transition. Normally those events should not fall into the signal region:
the charmed mesons are heavier than the charmless mesons, so their leptons are
softer, but more importantly, the various hadrons present in those events should not
make an acceptable beam constrained mass. It’s only in events for which something
wrong happened that such an event fall into our signal region. Unfortunately
this happens rather often. For example, 90% of btoc events in the signal region
have extra particles in them, half are K; and the other half are neutrinos from

b — ¢ — slv transition. When there is an extra particle it increases the magnitude



172

1600 — —

1400 —

1200 —

1000 —

800 |~ —

600 — —

400 = [ ) -

200 -

0 ol b e e b b b e b b e by By
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

co$ rhrustn
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of the neutrino momentum; it is then easier to find a random soft track or set of
tracks which, combined with the rather soft lepton, makes an acceptable beam
constrained mass.

As mentioned previously the possible missed particles can be K, neutrons and
neutrinos. K and neutrons can leave part of their energy in the calorimeter, if
they do, that fraction of energy is taken into account and the mismeasurement is
reduced, unless those showers are labeled as splitoffs. It is for the case that they
do not interact at all that their entire energy is included in the neutrino energy
and momentum *.

All is not lost though, there are observables that can distinguish reasonably well
if an extra particles was present. If we only had neutrinos as undetected particles,
then, since their mass is essentially zero, the missing mass squared of the event
should also be close to zero. If the missing mass squared is far away from zero there
is a chance that there was an extra particle. Also, the missing energy of the event
shows a different distribution for events with and without extra particles. Other
observables, somewhat related to the previous ones, are the missing momentum of

the event and the total energy of all good tracks in the event®.

4The most recent B — 7v analysis [48] made use of the fact that the number
of kaons in an event is related with the probability of having a K in the event or
not. For the present analysis, the figure of merit of such a cut indicated that it
was not a useful cut to make.

®One thing that was tried was to build a Fisher discriminant using those vari-
ables, to distinguish between events with extra particles and events without. We
can not train the Fisher by saying that signal is signal MC and background is btoc
MC since then the Fisher will use its most powerful separating feature: the lep-
ton momentum, so the resulting Fisher cut would be biased in ¢?. Unfortunately,
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We use a geometrical cut in the 2D plane of some combination of MM?2,, E,;ss

ev)

and pp,iss- There are two observations that one can deduct from

2 — 2 — 2
MMeU = Emiss - |pmiss| )

2 ~
CMM? ~ 2F 50 Episs.

The first one is that any geometrical contour in two variables has an equivalent
contour for the other combination of two variables, the second observation is that
the resolution in M M? is proportional to the true E,,;s, the true neutrino energy,
so actually p,.iss 1S a better representation of that quantity. Indeed we see a clearer
V' shape when the y axis iS pss, than when it is E,,;;ss. Ultimately, we looked at
what the figure of merit had to say on the various shapes and variables: a slightly
asymmetric V' cut on E,;s vs MM?2 for AQ = 0 gave the best result. For the
|AQ| = 1 events, the nominal, tighter symmetric cut was kept. Table 4.8 gives
the values used for the cut. Figure 4.18 and 4.19 show the V cut for 7 signal MC
events and btoc MC events respectively, in the 7 signal region for A¢Q) = 0 and

AQ=1.

Summary of all cuts and backgrounds

The following table summarizes the cuts, and to which background they are des-
tined.

Tables 4.9 and 4.10 list the Signal Regions efficiencies for the different modes.

the Fisher trained on events with extra particles or without did not give enough
separation between signal MC and btoc MC.
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Table 4.8: Summary of all cuts

Cuts

type of background

Veut: AQ = 0: -600MeV-1GeV

|AQ| = 1: -600MeV-600MeV

K? and extra neutrinos

b— c(u)lv

AQ =0+]AQ| =1

good v reconstruction

7 > 1.0GeV, 1.5GeV

b— clv

Nlep=1

good v reconstruction

extra neutrinos

050, > 0 (vector modes)

b — clv

kined,tng

good v reconstruction

Ntracks: mode dep.

b — clv

R2 vs |Cthrust| (per mOdea q27AQ)

tng(lep)

continuum suppression

good v reconstruction

|cosb,| < 0.96

good v reconstruction

hadronic event class

continuum suppression

psicut

B = yKp




Table 4.9: SR efficiencies , separately for AQ = 0 and |AQ = 1| and
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separately for CLEO II and II.V, in percent

mode signal | btoc btou fakes cont

pip dq0 II 3.16 | 0.00045 | 0.010 | 0.000066 | 0.000080
dql II 0.80 | 0.00030 | 0.0063 | 0.000045 | 0.000020
dqO II.V | 2.41 | 0.00032 | 0.010 | 0.00023 | 0.000022
dql IV 1 0.94 | 0.00021 | 0.0044 | 0.00021 | 0.000033

pi0 dq0 II 2.07 ] 0.00013 | 0.0053 | 0.000028 | O
dql II 0.49 | 0.000076 | 0.0021 | 0.000013 | O
dqO II.V | 1.77 | 0.00012 | 0.0031 | 0.00013 | 0.000011
dql IL.V | 0.56 | 0.000064 | 0.0045 | 0.000078 | 0.000011

rhp dq0 II 1.17 | 0.00025 | 0.023 | 0.000063 | 0.000060
dql II 0.27 ] 0.00018 | 0.013 | 0.000017 | O
dq0 II.V | 0.88 | 0.00024 | 0.019 | 0.00017 | 0.000022
dql II.V | 0.35 | 0.00018 | 0.012 | 0.000083 | O

rho0 | dq0 II 1.99 | 0.00058 | 0.045 | 0.000095 | 0.000040
dql II 0.45 | 0.00021 | 0.014 | 0.000036 | 0.000020
dqO II.V | 1.40 | 0.00035 | 0.039 | 0.00029 | 0.000022
dql IL.V | 0.42 | 0.00022 | 0.014 | 0.00011 | O
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Table 4.10: SR efficiencies , separately for AQ = 0 and |AQ = 1| and

separately for CLEO II and IL.V, in percent

mode signal | btoc btou fakes cont

ome | dq0 II 0.52 | 0.000046 | 0.010 0.0000071 | O
dql II 0.096 | 0.000027 | 0.0027 | 0.0000036 | O
dqO0 II.V | 0.40 | 0.000024 | 0.0081 | 0.000027 | O

dql II.V | 0.11 | 0.000037 | 0.0027 | 0.000015 | O

etp dq0 II 1.08 | 0.000034 | 0.0031 | 0.0000020 | O
dql II 0.20 | 0.000047 | 0.0015 | 0.0000023 | O
dqO0 IL.V | 0.76 | 0.000029 | 0.0026 | 0.0000079 | O

dql II.V | 0.20 | 0.000015 | 0.00044 | 0 0

etg dq0 II 1.44 | 0.000045 | 0.00076 | 0.000011 | O
dql II 0.25 | 0.000010 | 0.0014 | 0.000002 |0

dqO II.V | 1.19 | 0.000014 | 0.00083 | 0.000040 | O

dql II.V | 0.27 | 0.000014 | 0.0017 | 0.0000083 | O
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Tables 4.11, 4.12 and 4.13 list the SR efficiency for each mode and each ¢?
bin. They show both the cross feed among modes but also among ¢ bins. Those

numbers are for both AQ =0 and |AQ| = 1, and both CLEO II and II.V mixed.
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Table 4.11: Efficiencies in ¢? bins for reconstructing 7%, in percent

True Mode q q2 q§ Sum

mt Sum | 1.226 | 1.669 | 0.664 | 3.559

¢? | 2.421 | 0.054 | 0.001
q? 10.082 | 4.513 | 0.056

q? 10.000 | 0.129 | 4.400

70 Sum | 0.000 | 0.002 | 0.045 | 0.046
¢? | 0.000 | 0.000 | 0.000
¢? | 0.000 | 0.004 | 0.009

q? 10.000 | 0.003 | 0.283

pE Sum | 0.007 | 0.021 | 0.023 | 0.051
¢? 10.011 | 0.000 | 0.000
¢2 10.004 | 0.033 | 0.011

¢? 1 0.000 | 0.060 | 0.133

P° Sum | 0.041 | 0.075 | 0.054 | 0.169
¢ | 0.067 | 0.001 | 0.000
@ |0.020|0.137 | 0.013

g3 | 0.000 | 0.170 | 0.335

w sum 0.005

Tlp sum 0.001

Ty sum 0.003
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Table 4.12: Efficiencies in ¢? bins for reconstructing p°, in percent

True Mode q q2 q§ Sum

mt sum | 0.013 | 0.083 | 0.185 | 0.281
¢? |0.051|0.031 | 0.003
g2 | 0.000 | 0.138 | 0.107

¢ | 0.000 | 0.000 | 0.626

0 sum | 0.000 | 0.006 | 0.035 | 0.041
q? | 0.000 | 0.000 | 0.000
g3 | 0.000 | 0.006 | 0.008

g2 | 0.000 | 0.012 | 0.154

pE sum | 0.013 | 0.154 | 0.162 | 0.329
¢? | 0.033 | 0.014 | 0.004
q2 | 0.008 | 0.244 | 0.064

g3 |0.001 | 0.093 | 0.627

Pk sum | 0.553 | 1.934 | 0.837 | 3.324
¢? |2.029 | 0.182 | 0.006
q2 | 0.049 | 3.418 | 0.171

g3 |0.000 | 0.228 | 3.678

w sum 0.040

Tlp sum 0.002

Tg sum 0.007
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Table 4.13: Efficiencies for the remaining modes, summed over ¢2, in percent

Rec. Mode | ¢? q ¢ | Sum

w0 0.886 | 1.115 | 0.405 | 2.406
Pt 0.350 | 1.344 | 0.583 | 2.276
w 0.927
Tlp 1.071

o 1.539




CHAPTER 5

FITTING PROCEDURE AND RESULTS

In the previous chapter, we described the selection of candidate events. In this
chapter we describe how, from the selected events in data, we can extract the
subset of which are most likely to be signal events and not background events. To
do this we use a Maximum Likelihood fit that takes the MC distributions for the

backgrounds and the signal and adjusts them to fit the data distributions.

5.1 Fitting procedure

A binned maximum log Likelihood fit

In order to compute the 7 and p branching fractions, we need to extract the yield
of each mode in the data. As mentioned in the previous chapter, we fit over the
AFE — Mp region called the Grand Signal Region, more precisely, we subdivide this
plane into 11 subregions, as shown in figure 5.1 and described in table 5.1.

We let the fit determine the relative proportion of each source to obtain the best
representation of the data distributed over those subregions. One could minimize
a chi-square built from the comparison of the data and the sum of all the sources

in each bin. In our case, since we are dividing up our data into ¢? bins, as well

184
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Figure 5.1: Grand Signal region with fit bins for reconstructed p mode.
Top left is p signal MC, top right is 7 signal MC, bottom left is btoc MC,

bottom right is btou MC
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Table 5.1: Subregions of the GSR fit plane

Subregion AFE Mg Subregion AFE Mg
1 -0.15-0.25 | 5.265-5.2875 7 -0.45- -0.15 | 5.1075-5.175
2 -0.15-0.25 | 5.2425-5.265 8 -0.75- -0.45 | 5.2425-5.2875
3 -0.15-0.25 | 5.175-5.2425 9 -0.75- -0.45 | 5.175-2.2425
4 -0.15-0.25 | 5.1075-5.175 10 -0.75- -0.45 | 5.1075-5.175
5 -0.45- -0.15 | 5.2425-5.2875 11 0.25-0.75 | 5.1075-5.2875
6 -0.45- -0.15 | 5.175-5.2425

as in AQ = 0 or AQ = 1, we do not have enough data in certain bins to ensure
that a Gaussian approximation of the data is adequate. We have to use a Poisson
distribution for the data. We can still find the right proportion of each source by
maximizing the likelihood. We are then performing a binned maximum likelihood
fit. Another complication arises from the fact that we have to take into account
the statistical nature of the different sources. We only have five times the amount
of data for our generic btoc MC, and the off resonance data is clearly statistically
limited. The prescription for a chi-square fit would be to add the errors coming
from the sources, along with the data errors. In the likelihood approach, we realize
that the events coming from the sources and that are being used in the fit, actu-
ally come from some unknown expected number of events that are also Poisson

distributed, so we can take all this into account in the likelihood. This straight
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forward prescription is described in detail in [49], we describe here our particular
situation.

The different sources that represent the data are the off resonance data repre-
senting the continuum background, the fake lepton data (on and off resonance),
the btoc background MC, the btou other background MC, and the signal MC. The
data yield used in the likelihood expression is not continuum and fake background
subtracted. Those backgrounds, determined with data, are considered sources in
the fit. The different bins that we need to consider in the fits are: 7 AE — Mp
bins (Subregions 1, 2, 3, 5, 6, 8, 9), 7 modes, 2 AQ, 3 mass bands in the vector
modes and 3 ¢? bins.

We eliminated the high AE region from our fit to reduce potential biasing of
the B — 7¢ nu branching fraction. This mode feeds into the high AFE region of
the p mode (see figure 4.4) and we found the B — p¢ nu branching fraction to be
sensitive to mismodeling of the btoc background in this region.

We also decided that the three lowest Mp regions were constraining the btoc
background too much given the high level of combinatorics in those regions, and
so we do not include those regions in the fit either.

The btoc background is allowed to float independently according to the mode,
the AQ and the reconstructed ¢ bin. The off resonance and the fakes are nor-
malized based on luminosity (corrected for energy dependence and cross section).
The btou other is represented by only one scale factor.

We now describe the formulation of the likelihood fit. The Poisson distribution

is the limit of the binomial distribution but with a probability of success (p) which
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tends toward zero and a number of trials (V) which tends toward infinity, so that

the mean p = Np is still finite. The probability of observing r events is given by

o
Piry="2°""

(5.1)

r!

This probability distribution is not symmetric, so that the peak of the distribution
does not correspond to the mean. If the mean is greater than about 20, then we
recover the Gaussian distribution, for which the peak is the mean. If we have
n independent observations w1, xs,. .. x,, from a theoretical distribution, f(z,#),
where # is the parameter to be estimated, then the probability of observing the

sequence of values is given by the Likelihood Function

L(z,0) = f(x1,0)f(x9,0) ... f(x,,0). (5.2)

This probability is maximum for observed values, so to find 8, we take the derivative
of £ with respect to # and set it to 0. For the case that the function f is the Poisson

distribution, we get

n Ty
Ll ) = T[ e, (5.3)
i—1 s
where p is the mean (which we are trying to estimate). Here we can interpret p as

the estimated number of events in the i** bin. n is the total number of bins and

x; is the number of data events in the i"* bin. We get,



pi = NDZT;
J

where Np is the total number of data events, j refers to a source, NN; is the total
number of events from that source, aj; is the observed number of events from
source j in bin ¢. P; is the normalization of the source j and is what we are trying
to determine from the fit. It is simpler to evaluate the natural logarithm of the

expression

InL =Y wilnp; — > i — > In(z;!). (5.4)
i=1 i=1

=1

So far we have not taken into account the effect of the MC statistics. As we alluded
previously, we recognize that the aj; events come from some true A;;. Those events
are also Poisson distributed since we have A;; < N;. The Log Likelihood can now

be written as

InL = inlnm — pi — In(z;!) + Z Z ajilnAj; — Aj — In(aj!). (5.5)

=1 i=1j=1

We can also rewrite,

Hi = Z PiAji
7j=1

NpP;
N;

p; =
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We use MINUIT to minimize —2(nL by variation of the different p; for the
different sources.

It would be a CPU intensive effort to let the fit find the various A;;. Fortunately
we can express the various A;;’s in terms of the a;; at the cost of having to solve

some polynomial equations, which we obtain by differentiating with respect to the

p;’s and to the A;;’s. We find

_ W
piti +1

Jt

where the t’s satisfy

x; = piag

1—ti:j§pjzil’ (5.7)

and are polynomials of up to order 27. We use Newton’s method to solve for the

t’s. The procedure of the fit is then to solve for each ¢;, using the above equations,

and use those in the appropriate equations for the A’s, so that the log likelihood
expression can be computed for each individual bin.

There is a special case when one of the sources has zero observed events. We
have to be able to allow the dominant source to fluctuate to a non-zero value.
Dominant here means that not only does this source contribute somewhat signif-
icantly to that bin, but also, that source is definitely statistically limited. This is
sometimes the case for the btoc background and for the off resonance. We must
be careful about the off resonance of the fakes sample since in that case its con-

tribution is negative to the total yield for that bin. Hence it is never picked to be

fluctuated up.
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Normalization conditions

There are nice normalization conditions that come out of the previous formalism.

For example, we get

i i
What this normalization condition means is that the predicted amount of the

source should sum up to the observed amount, only the distribution among the

different bins differs. We get another similar condition

Np = Z ijaji. (5.9)
i
Since Np represents the total number of data events, we see that it is built from
the total number of events from the different sources, scaled by their right amount,
once we have summed over all bins and sources.
Those normalization conditions should hold perfectly at the minimum of the

fit and we verify that they do in our nominal fit.

Continuum Smoothing

Before describing the nominal fit and the results, there is an additional feature in
performing our maximum likelihood fit. For the case of the off resonance data, the
statistics is so sparse that the Poisson distribution can not be expected to fluctuate
up to give a proper representation of this background over all the individual bins.

To address this feature we perform a continuum smoothing procedure. We take
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the AE — Mp distributions with and without the continuum suppression cut and
look in MC for a possible shape change as a result of this cut. The MC is a
cocktail of ¢¢ MC, 7 pairs and data containing fakes, all properly normalized to
the data luminosity. In the fit we use the off-resonance data distributions with
no continuum suppression cuts as our observed number of off resonance events
for each individual bins. We then scale this amount to represent the effect of the
continuum suppression cut. Finally,we renormalize the scaled yields so that the
sum over the whole AE — Mg plane adds up to the off resonance yield with the cut
applied. So, in short, we are not creating new off resonance events, we are merely
redistributing them in a more uniform way over the AE — Mp plane. Figure 5.2
shows the continuum smoothed Mpg distribution on top of the distribution which

does not have any continuum smoothing applied.

5.2 The Results

Nominal Fit

As mentioned above, the btoc background is fitted separately for each mode and
independently for the two A() conditions. It is possible to also fit the btoc back-
ground separately for each ¢? bin. We expect the statistical error to go up, as the
fit is given more freedom, but we are in fact trading some amount of systematic
error for this increase of statistical error. We did verify that the errors were consis-

tent when we fit with this particular situation. We also see the fitted scale factors
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Figure 5.2: First ¢ bin of 7*. Solid is off resonance data, dashed is contin-

uum smoothed off resonance data.
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to be consistent across the three ¢* bins, hence the nominal fit only allows for one
scale factor for all three ¢? bins.

There is a similar situation regarding the btou other background. This back-
ground is fitted using only one total scale factor. We could however let it float
and let the fit decide on the best scale factor, but we do not since it is likely to be
affected too much by btoc mismodeling. We currently have two different modeling
of the btou other background: the first is the ISGW2 model (described in section
2.2.4), which only has resonant modes. The second model, used in the nominal fit,
is a mix of ISGW2 for the resonant modes and of an inclusive HQET calculation of
dl'/dg*dM#%dE, [50]. The appropriate amount of resonant vs non-resonant modes
is made by assigning the difference between the total resonant exclusive rate and
the total inclusive rate to be due to the non-resonant pieces.

Our dataset consists of the entire samples of CLEO II (3.14 fb~!) and IL.V (6.03
fb=1). The off resonance data sample has 1.61 fb~! and 2.94 fb~! of luminosity,
respectively. We get the branching fraction from the efficiency corrected yield, N,

using

B N
ANpp foo’

where the factor of four accounts for the fact that we have two B’s per event and

B (5.10)

we use both electrons and muons as the charged lepton and fyy is the fraction
of neutral B’s vs charged B’s, so around two. Tables 5.2, 5.3, 5.4, 5.5 and 5.6
summarize the results of the nominal fit.

We see that the 1 signal is only about 2.70 significant.
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Table 5.2: Yields for q%

AQO T s P P
Signal 17.6 6.4 3.8 3.2
xfeed 1.1 0.4 0.6 0.6
cont. 4.0 1.7 1.2 3.9
btoc scale | 1.01 £0.03 | 0.86 +0.05 | 0.91 £0.02 | 0.90 +0.01
btoc 4.9 0.5 5.8 10.3
btou 0.2 0.3 1.8 2.9
data 20.0 12.0 16.0 20.0
AQ1

Signal 5.5 1.8 1.3 0.7
xfeed 0.5 0.1 0.2 0.2
cont. 2.0 0.7 1.3 0.4
btoc scale | 1.01 4+ 0.04 | 1.09£0.07 | 0.90 & 0.02 | 0.90 £ 0.02
btoc 3.0 0.0 2.9 3.5
btou 0.1 0.1 1.1 0.6
data 8.0 7.0 5.0 10.0
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Table 5.3: Yields for q%

AQO T s P P
Signal 48.6 16.8 18.1 15.3
xfeed 3.8 1.9 3.1 5.1
cont. 4.9 2.1 5.4 2.7
btoc scale | 1.01 £0.03 | 0.86 +0.05 | 0.91 £0.02 | 0.90 +0.01
btoc 174 6.0 11.0 23.2
btou 1.7 0.6 4.9 10.8
data 70 31 50 70
AQ1

Signal 16.0 4.7 5.9 3.8
xfeed 1.9 0.6 14 1.5
cont. 2.5 1.1 0.4 3.0
btoc scale | 1.01 4+ 0.04 | 1.09£0.07 | 0.90 & 0.02 | 0.90 £ 0.02
btoc 11.9 2.7 9.2 12.1
btou 0.7 0.4 2.8 3.7
data 28 15 17 20
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Table 5.4: Yields for q§

AQO T s P P
Signal 17.5 5.6 10.1 8.0
xfeed 10.7 4.3 4.1 6.5
cont. 4.7 0.9 3.1 2.4
btoc scale | 1.01 £0.03 | 0.86 +0.05 | 0.91 £0.02 | 0.90 +0.01
btoc 13.1 4.1 5.4 6.3
btou 2.3 0.9 2.2 4.6
data 40 16 15 30
AQ1

Signal 6.9 1.8 3.4 2.7
xfeed 6.6 3.3 1.6 3.8
cont. 3.5 0.5 0.2 1.8
btoc scale | 1.01 4+ 0.04 | 1.09£0.07 | 0.90 & 0.02 | 0.90 £ 0.02
btoc 9.2 4.8 3.1 3.2
btou 1.5 1.0 14 1.6
data 31 10 10 11
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Table 5.5: Yields for all ¢?

AQO w Mp Mg
Signal 4.8 3.3 8.1
xfeed 0.5 0.3 0.8
cont. 2.2 0.7 1.3
btoc scale | 0.73 £0.03 | 0.85 £0.09 | 0.98 £0.12
btoc 2.3 2.4 2.7
btou 2.2 0.0 0.6
data 16 8 20
AQ1

Signal 1.1 0.8 1.6
xfeed 0.1 0.3 0.3
cont. 1.1 0.8 0.2
btoc scale | 0.73 £ 0.05 | 1.33+0.18 | 1.13 £ 0.19
btoc 2.3 2.9 1.4
btou 1.2 0.4 0.7
data 8 1 7
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Table 5.6: Efficiency corrected yields and branching fractions.

N+ 907 £ 213 1407 £+ 210 537 £ 176

N+ 576 £ 240 1680 £+ 336 959 + 161

Ny, 630 = 230

Branching Fractions (x10~%)
g g g3 total

T 0.468 £ 0.110 0.725 £ 0.108 0.277 £ 0.091 | 1.470 £+ 0.179
p 0.297 + 0.124 0.866 £ 0.173 0.494 £ 0.083 | 1.657 + 0.228
i 0.837 + 0.306

2In L

394 for 406-21 d.o.f
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The following figures show some AFE and Mpg plots resulting from the fits. We
can see that the w mode plots in 5.12 show very little signal.

It is also interesting to look at how the fit agrees in the other regions of the
AE — Mp plane. We show the m mode in subregion 2 (figures 5.14,5.15,5.16)
which is just below the Signal Region in Mpg. In those figures the Mp plot is for
—0.15 < |AE| < 0.25, while the AFE plots is for 5.2425 < Mg < 5.265. We also
show the p mode in subregion 6 (figures 5.17,5.18,5.19), for which the My plot is
for —0.45 < |AE| < —0.15, while the AFE plots is for 5.175 < Mp < 5.2425.

Finally, we examine how the data yield is well represented in terms of the
various sources, for each bin in the fit. In figure 5.20 we show a plot where the x
axis is the bin number and the y axis is the different yields. We show these yields
for two different A — EMp regions: the Signal Region and subregion number 5.
Also on that figure, we show a plot where the x axis are those same individual bins
while the y axis is the log likelihood value. We see the correspondance between a
small value of log likelihood (the fit tries to maximize the log likelihood) and a bin
where the different sources do not match the data yield. In general, the agreement

is good.
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CHAPTER 6

SYSTEMATIC UNCERTAINTIES AND

CHECKS

We have just seen in the previous two chapters how we select our events of interest,
and how we fit them to get the different branching fractions. The final errors on
the branching fractions or V,; include a statistical part, a systematic part and a
model dependence part. We now turn to determining the systematic uncertainties
associated with the branching fractions. First, we look at some basic checks of the

analysis.

6.1 Checks of the analysis

Kinematic Distributions

Several checks are performed to test the stability of the analysis. First we show
some lepton momentum plots (figures 6.1 through 6.6), we see how the signal tend
to populate the end point of the lepton spectrum, while the btoc background is at
lower momentum values. It is interesting to note the correlation between a par-

ticular ¢ bin and the domain of lepton momentum values for the 7 and p modes.
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Figures 6.7 through 6.12 show the hadronic mass distribution. The last bin of the
plots contains the plot overflows. Figures 6.13, 6.14 and 6.15 show the cosf, dis-
tribution, we see how the signal tend to populate the forward part of the spectrum.
It is also interesting to note how the various backgrounds populate differently the
various ¢* bins when projecting on the cosf), axis. All the normalizations are
taken from the fit results. In general we see good agreement between the data and

MC, even though those variables were not part of the fit.

Stability of the fit

We can also test the stability of the fit by relaxing some of the cuts used in the
analysis and comparing those fits with the nominal fit. We varied the lepton
momentum cut, the “V” cut, and the cost., cut. We also performed the fit by
using only the electrons and only the muons as the signal lepton candidate. We
show in table 6.1 by how many sigmas the branching fractions differ . We see no
significant bias.

Also, we have run the fit on the CLEO II only part of the data set, using the
same cuts as the previous analysis ([36]) and with the ¢® bins summed, so that
we can compare our result with the previous analysis ones. For both analyses,
the signal and the btou other models are ISGW2. The differences between the

analyses are that the 1995 analysis used about 2/3 of the CLEO II data and used

!The sigma being defined as the difference of the central values over the quadra-
ture sum of the uncertainties.
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Figure 6.1: 7 mode lepton momentum for ¢? and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.2: 7 mode lepton momentum for ¢2 and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.3: 7 mode lepton momentum for ¢2 and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.4: p mode lepton momentum for ¢7 and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.5: p mode lepton momentum for ¢ and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.



226

rho+— + rhoO

-

0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

lep p nocrho+—

Figure 6.6: p mode lepton momentum for ¢ and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.7: m.,, for the 7° mode for ¢} and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.9: m.,, for the 7° mode for ¢ and AQ = 0. Open histogram
is signal, black is cross-fees, light grey is btou, dark grey is fakes, dotted

histogram is continuum, hatch histogram is btoc.
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Figure 6.10: Combined m,+0 and mt7~ for the p* and p° mode for ¢? and
AQ = 0. Open histogram is signal, black is cross-fees, light grey is btou,

dark grey is fakes, dotted histogram is continuum, hatch histogram is btoc.



231

rho+— + rhoO
‘ T T T ‘ T T T ‘ F

80

60

40

20

.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

(@)

©
o

had mrho+—

Figure 6.11: Combined m,+0 and mt7~ for the p* and p° mode for ¢Z and
AQ = 0. Open histogram is signal, black is cross-fees, light grey is btou,

dark grey is fakes, dotted histogram is continuum, hatch histogram is btoc.
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Figure 6.12: Combined m,+0 and mt7~ for the p* and p° mode for ¢Z and
AQ = 0. Open histogram is signal, black is cross-fees, light grey is btou,

dark grey is fakes, dotted histogram is continuum, hatch histogram is btoc.
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Figure 6.13: p mode cosfy,, for ¢¢ and AQ = 0. Open histogram is signal,
black is cross-fees, light grey is btou, dark grey is fakes, dotted histogram

is continuum, hatch histogram is btoc.
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Figure 6.14: p mode cosfy,, for g5 and AQ = 0. Open histogram is signal,
black is cross-fees, light grey is btou, dark grey is fakes, dotted histogram

is continuum, hatch histogram is btoc.
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Figure 6.15: p mode cosfy,, for ¢ and AQ = 0. Open histogram is signal,
black is cross-fees, light grey is btou, dark grey is fakes, dotted histogram

is continuum, hatch histogram is btoc.
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Table 6.1: Testing the stability of the fit

Cut new value mode | ¢? q q: | total

“V” cut AQO: —-1.2-0.8 T 0.29 0.46 -0.06| 0.25
AQ1:—-0.8—-0.8 P -0.37 -0.62 -2.22 | -0.75

n 0.22

lep mom | pr, > 1.5GeV/c T [-3.72 135 -1.341-1.22

p, > 2.0GeV /¢ P 1.36 -3.43 5.35 | -0.84
i 0.66
coste, cut | No cut s 0.00 0.58 -0.59 | 0.06

P -0.70  0.30 6.80 | 0.89

Ui 0.37

electrons muouns difference: T 0.53 -0.94 1.17 | 0.42
P 0.32 -2.73 1.02 | -1.51

n 0.85
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Table 6.2: Comparisons with previous analysis

Analysis B(m x 107*) | B(p x 107)

current 1.77 £ 0.39 | 2.55 £+ 0.33

1995 (ISGW2) | 2.04 + 0.47 | 2.24 £+ 0.37

the pre-compress version of the tracking software. The comparisons are shown in

table 6.2 and we conclude that the two analyses give the same results.

Testing the fitter

Finally, we have done some tests using the MC to see if the fitter is performing
adequately. There are several things to test: given some known branching fraction
of the MC, does the fitter return the right value, and is the treatment of the Poisson
statistics adequate given the amount of luminosity of the data. To address the first
point, we build some mock data by summing all of the sources in the amount that
the fit is expecting. We fit this mock data with the same MC that was used in the
mock data and we do reproduce the branching fraction used in the MC.

To address the second issue, we randomly select a number of events out of
our MC sample that is representative of the data luminosity. For example, if
we generated ten times more signal MC than the data luminosity, we need to
randomly select one tenth of the MC sample. With those events, we build a mock
data distribution and we fit it with the remainder of the MC for each source. If

we repeat this procedure several times (N), we can make a distribution of the N
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branching fractions obtained, and their errors. We should expect that the mean of
the branching fraction distribution be close to the branching fraction that was put
in the MC. We also expect that the width of the branching fraction distribution
should be close to the mean of the error distribution.

To perform this test we build the mock data to contain signal MC, btoc MC
and btou other MC. Ideally, we would include ¢q¢ MC to represent the continuum
background. The problem is that based on the available amount of ¢q¢ MC gener-
ated by the CLEO MC farms, we need to take 60% of the sample in each N try.
This means that all the tries are highly correlated to each other and correlated to
the parent sample. The statistical fluctuations present in the parent distribution
get reproduced in each try, ending up into a coherent sum of these statistical fluc-
tuations, hence the branching fractions are biased due to these fluctuations. In
figures 6.16 and 6.17 we show a Gaussian fit to the 100 tries of the = branching
fraction and of the error on that branching fraction reported by the fit, where
the mock data and the fit contain btoc, btou other and signal MC. Figures 6.18
and 6.19 show the same thing for the p mode. In figure 6.20 we show the —2in.
quantity reported for each fit.

In table 6.3 we summarize the results from using btoc btou other and signal MC
in the mock data. The description of each column is as followed: mode, expected
branching fraction, mean of branching fraction distribution, width of branching
fraction distribution, mean of the error distribution of the branching fractions,
sigma associated with how the mean and the expected branching fraction agree,

error on error is the percentage difference between the width and the mean of the
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MINUIT x%? Fit to Plots

1 axis
File: */daf9/vb20/pilnu/fits/plots/subsample_btocnewincl.dat 16-MAR-2002 16:21
Plot Area Total/Fit 99.000 / 99.000 Fit Status O
Func Area Total/Fit 87.639 /87.639 E.D.M. 1.00
x?= 11.3for 12- 3d.o.f, C.L.=256%
Errors Parabolic Minos
Function 1: Gaussian (sigma)
= AREA += 9.585 - 0.0000E+00 + 0.0000E+00
= MEAN 1.7859 + 2.4807E-02 - 0.0000E+00 + 0.0000E+00
= SIGMA 0.21800 + 2.1467E-02 - 0.0000E+00 + 0.0000E+00
30 ‘ T T T T T T T ‘ T T T T ‘ T T T T ‘
20 — | —
||

1.30 1.55 1.80 2.05 2.30
JT BF

Figure 6.16: B — mlv branching fractions for 100 mock data fits.
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MINUIT %2 Fit to Plots

2 axis
File: */daf9/vb20/pilnu/fits/plots/subsample_btocnewincl.dat 16-MAR-2002 16:24
Plot Area Total/Fit 99.000 / 99.000 Fit Status O
Func Area Total/Fit 92.535 / 92.535 E.D.M. 1.00
x?= 6.4for 12- 3d.o.f, C.L.=70.4%
Errors Parabolic Minos
Function 1: Gaussian (sigma)
= AREA 103.66 = 13.17 - 0.0000E+00 + 0.0000E+00
= MEAN 0.18310 += 1.0798E-03 - 0.0000E+00 + 0.0000E+00
= SIGMA 7.73848E-03 + 1.4211E-03 - 0.0000E+00 + 0.0000E+00
24 T T T T T T T T T T T T T T T T T T
\ \ \ \
20 [— —
L - |
16 — —
12 — L] —
L — |
8 | — |
4 i T T —
O | | ‘ | | ‘ | | ‘ | | ‘ | |

0.170 0.175 0.180 0.185 0.190 0.195
7t BF uncertainty

Figure 6.17: B — 7mlv branching fraction errors for 100 mock data fits.
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MINUIT %2 Fit to Plots

3 axis
File: */daf9/vb20/pilnu/fits/plots/subsample_btocnewincl.dat 16-MAR-2002 16:25
Plot Area Total/Fit 98.000 / 98.000 Fit Status O
Func Area Total/Fit 90.012/90.012 E.D.M. 1.00
2
X = 7.9 for 15 - 3 d.o.f., C.L.=79.0%
Errors Parabolic Minos
Function 1: Gaussian (sigma)
#* AREA 91.832 = 9777 - 0.0000E+00 + 0.0000E+00
= MEAN 2.5343 + 3.1376E-02 - 0.0000E+00 + 0.0000E+00
= SIGMA 0.25347 + 2.8702E-02 - 0.0000E+00 + 0.0000E+00
20 T ‘ ‘ T ‘ T ‘ T ‘ T ‘
15 — —
— - —
L - —

2.0 2.2 2.4 2.6 2.8 3.0 3.2
p BF

Figure 6.18: B — plv branching fractions for 100 mock data fits.
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MINUIT %? Fit to Plots

4 axis
File: */daf9/vb20/pilnu/fits/plots/subsample_btocnewincl.dat 16-MAR-2002 16:27
Plot Area Total/Fit 96.000 / 96.000 Fit Status O
Func Area Total/Fit 86.785 / 86.785 E.D.M. 1.00
x?’= 9.2for 15- 3d.o.f., C.L.=68.8%
Errors Parabolic Minos
Function 1: Gaussian (sigma)
= AREA + 9.635 - 0.0000E+00 + 0.0000E+00
= MEAN 0.24092 += 6.6153E-04 - 0.0000E+00 + 0.0000E+00
* SIGMA 5.52839E-03 + 6.2292E-04 - 0.0000E+00 + 0.0000E+00
20 T T T ‘ T T T ‘ T T T ‘ T T T T ‘ T T T T ‘
15 — —
— - —
L — -
10 — —
5  E— —
0 | | ‘ | | ‘ | | ‘ |
0.227 0.232 0.237 0.242

p BF uncertainty

Figure 6.19: B — plv branching fraction errors for 100 mock data fits.
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MINUIT %2 Fit to Plots

19 axis
File: */daf9/vb20/pilnu/fits/plots/subsample_btocnewincl.dat 16-MAR-2002 16:29
Plot Area Total/Fit 100.00 7/ 100.00 Fit Status O
Func Area Total/Fit 93.125/93.125 E.D.M. 1.00
x?= 6.9 for 16 - 3 d.o.f., C.L.=91.0%
Errors Parabolic Minos
Function 1: Gaussian (sigma)
= AREA = 9.729 - 0.0000E+00 + 0.0000E+00
= MEAN 385.79 = 3.257 - 0.0000E+00 + 0.0000E+00
= SIGMA 30.447 + 2752 - 0.0000E+00 + 0.0000E+00
20 T T T T T T T T ‘ T T T ‘
15 — -
L - —
L - —
/_‘\
9/ - 2

380 420 460
-2LNL

Figure 6.20: —2InL for 100 mock data fits.
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Table 6.3: Summary of mock data fitter test

mode | exp BF | mean | width | error mean | sigma | error on error || data error
g 09 | 0.88 |0132| 0129 | 1.52 2.3% 23.5%
s 0.65 0.63 | 0.107 0.101 1.87 5.6% 14.9%
s 0.26 0.26 | 0.072 0.083 0.00 -15.3% 32.9%
s 1.8 1.784 | 0.216 0.183 0.74 15.3% 12.2%
pq? 0.64 | 0.646 | 0.125 0.132 -0.48 -5.6% 41.8%
pq% 1.33 1.386 | 0.213 0.183 -2.63 14.1% 20.0%
pgs 0.5 0.52 | 0.095 0.082 -2.11 13.7% 16.8%
p 2.5 2.032 | 0.255 0.242 -1.25 5.1% 13.8%
n 0.9 0.908 | 0.384 0.327 -0.21 14.8% 36.6%
mean of —2(nL —2(nL from data fit o
386 394 0.3

error distribution, data error comes from the data fit and so is not related to the

mock data tries.

We see that the fitter does not introduce a bias on the branching fractions. We

also see that it does a pretty good job at estimating the error. We know the 12%

statistical uncertainty for the 7 mode to 15% of itself and the same with the 7

mode. As for the p, we know its 14% statistical uncertainty to 5% of itself.
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6.2 The systematic uncertainties

This analysis depends heavily on MC. since we use such distributions in the fit. Our
systematic uncertainties essentially come from imperfections of the MC simulation.
The main ingredient affected by this is the neutrino reconstruction. We also study
how a different composition of exclusive modes in the btoc background affects
the analysis. We do a similar exercise with regard to the btou other background.
Part of the btou other background is the non-resonant contribution (B — 7mlv)
which, understandably, mainly affects the p mode. We study this uncertainty in
detail. Finally, we discuss the remaining uncertainties related with the fake lepton
sample, the continuum smoothing procedure, etc. A summary of all the systematic

uncertainties is shown at the end of this section.

Detector simulation

How well the MC simulates the response of the detector is crucial in our analysis
since the neutrino reconstruction depends on every track and shower in the de-
tector. To quantify the possible effects on the results from discrepancies between
the data and the MC, we vary knobs related to detector simulation and tabulate
how much each knob affects the signal efficiencies, the yields and the branching
fractions. The final uncertainty is a combination of the effect on those three quan-
tities. We expect that the change in the branching fraction from the change in
efficiency and the change in yield to cancel to some extent because if signal got out

of the signal region and background got in, the efficiency will be lower in about
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the same way that the yield will be lower. However, we choose not to only take
the change in branching fraction as the total uncertainty, since our simulation of
the cancelation for a given knob can be disturbed by other effects. We choose to
take the following combination,

1

Oknob = Apr @ g(Ayiezd ® A,). (6.1)

The choice of 1/3 is somewhat arbitrary but seems to be of the correct order.We
describe each knob in turn, and summarize their effect at the end. Note that each

knob is applied on the MC events only.

e Photon-finding efficiency: (PHOTON) we throw away 3% of clusters
from photons. The effect of this knob is to lower the efficiency as well as the
yield. Some amount of signal left the signal region, while some background
went in. This is an example of a cancelation between the change in efficiency
and the change in yield, so that the change in branching fraction is small.
The standard for CLEO analyses is to take a loss of 2% in efficiency, so our

uncertainty is: o = 20pyoron-

e Track-finding efficiency: (TRFND) we throw away 0.75% (2.6%) of tracks
with momentum greater (less) than 0.25 GeV/c. Those numbers come from
the embedding study done for the B — D*{v analysis ([51]). We take the

full amount of this uncertainty, so 0 = drrrnD.
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e Fiducial cuts: (FIDU) we apply cuts of |cosf| < 0.93 for tracks and |cosf| <
0.91 for photons, since around the beam line is a hard region to simulate.

Those are extreme cuts, we decide to take as the uncertainty: o = %5FIDU-

e Splitoff simulation: (SPLSIMU) we randomly increase the number of
hadronic splitoffs by a mean of 0.029 splitoffs per hadron. The energy of
the added shower is taken randomly from the MC splitoff energy spectrum.
To study the effect of the splitoff package we have compared a sample of
vy — KgKg in data and MC, since those events only contain hadronic
showers, so a lot of possible splitoff showers and no photon showers. We
compared the multiplicities of splitoff showers in data and MC to obtain the
value of the knob, see figure 6.21 for an example. We take the full amount

of this uncertainty, so o = dsprs1mu-

e Splitoff Neural Net: (SPLNN) We smear the value of the neural net output
variable of the splitoff package, we make real photons look more like splitoffs
and real splitoffs look more like photons. We obtained the value of the
smearing by comparing the neural net output variable in data and MC for
different energy bins, for the sample described in the previous knob. Figure
6.22 shows an example of such a comparison. We take the full amount of

this uncertainty, so 0 = dspryn-.

e Shower Energy resolution: (SHWRES) we degrade the shower energy

resolution by 10%; 50 Eshower — Etrue+ l-l(Eshower _Etrue)- This is PrOb&bly
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Figure 6.21: Number of showers in vy — KgKg event. Dashed histogram

is MC, points are data.
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Figure 6.22: Neural Net output variable, -1 is photon like and +1 is splitoff
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ing.
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a conservative estimate of the resolution, but we still take the full amount of

this uncertainty, so 0 = dsyw rEes-

Track Momentum resolution: (TRKRES) we degrade the track momen-
tum resolution by 10%, s0 Pirack — Piue + 1.1(Pirack — Pirue). This is also
probably a conservative estimate of the resolution, but we still take the full

amount of this uncertainty, so 0 = 07 gk rEs.

Charged Particle ID: (PID) we shift the sigmas of de/dx by 0.25 and of
time of flight by 0.5, away from the true value. We take the full amount of

this uncertainty, so 0 = dprp.

K Energy deposition: (KLEDEP) we increase the amount of energy
the K leave in the calorimeter by 20%. We take the full amount of this

uncertainty, so 0 = 0k Eprp.

K, Yield: (KLYLD) for this knob we compared the yield of Kg in data
and MC, since Kg’s are produced at the same rate as K;’s. A discrepancy
indicates a problem with the physics model, not a detector effect. We found
that there were more K in data than in MC, as shown in figure 6.23. We
apply a correction to our MC samples, where events containing a K are
reweighted by 1.072" where N is the number of K, in the event. We made
sure that the momentum dependence of the yield was comparable between
data and MC. There is an uncertainty on the reweight number and that is
the source of the uncertainty for this knob. The uncertainty is, and we take

the full amount of this uncertainty, so ¢ = dxry1p.
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Figure 6.23: Kg momentum distribution. Solid histogram is data, dashed

histogram is MC.
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e Secondary Lepton spectrum: (SECLEP) Secondary leptons come from
the process b — ¢ — sfr, and have a soft momentum. The rate of this
process affects our cut on the number of leptons in the event, for example.
Because of the soft momentum, we often cannot identify those leptons as
leptons, resulting in accepted events with a poorly-reconstructed neutrino.
We find that the MC contains a branching fraction of 10.41% for this process,
while the world average branching fraction is 8.3 + 0.4% (PDG). So we have
an excess of 20% in the MC for this process. We apply a correction to
the MC samples by correcting the shape of the generated secondary lepton
spectrum to match the measured one. The measured spectrum is taken as a
convolution of the latest CLEO D meson momentum spectrum ([52]) with the
semileptonic D meson momentum spectrum from the DELCO collaboration
([53]). We show the comparison of the two spectra in figure 6.24. We vary
the reweighting procedure by +10 to get an uncertainty associated with this

knob. We take the full amount of this uncertainty, so 0 = dsgcrLEep-

Table 6.4 shows the effective uncertainty coming from each knob.

btoc modeling

In order to get a systematic uncertainty related with the btoc background mod-
eling, we vary the relative branching fractions of B — D/D*/D**/D(nr)lv pro-
cesses while keeping the total semileptonic rate constant. We vary each branching
fraction by about 30% of its measured value. It might be argued that this is a

somewhat extreme amount of vary the measured branching fraction, but this is to
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Figure 6.24: Secondary lepton momentum. Solid is MC, dashed is

CLEO+DELCO data. The normalization is absolute.



Table 6.4: Knob turning systematic uncertainties, in percent

Knob | scale | = | ngi | ng5 | mg3 | p | pai | ps5 | paz | n
smear track params. | 1.00 | 1.12 | 0.83 | 1.85 | 8.12 | 1.20 | 7.75 | 4.67 | 1.79 | 0.90
reduce photon-finding eff. | 0.67 | 2.68 | 3.95 | 3.91 | 7.03 | 3.99 | 3.83 | 6.19 | 4.21 | 9.47
reduce track-finding eff. | 1.00 | 2.90 | 4.65 | 4.80 | 8.97 | 2.88 | 12.13 | 5.72 | 5.44 | 3.68
smear photon shwr E’s | 1.00 | 2.33 | 1.64 | 4.79 | 2.15 | 7.25 | 544 | 15.34 | 0.90 | 2.96
Incr. KOL shower E’s | 1.00 | 1.32 | 1.03 | 1.70 | 243 | 1.32 | 0.42 | 1.33 | 2.14 | 3.88
incr. n of splitoff clusters/hadron | 1.00 | 3.25 | 3.84 | 4.48 | 0.85 | 3.37 | 9.70 | 6.90 | 3.96 | 0.80
shift dE/dx and TOF sigmas high | 1.00 | 2.18 | 3.08 | 3.25 | 8.55 | 1.10 | 20.52 | 2.41 | 6.67 | 1.55
fiduc. polar-angle cuts to MC trks shwrs | 0.17 | 1.93 | 2.30 | 2.83 | 3.58 | 2.42 | 2.85 | 1.87 | 3.76 | 1.74
smear SPLITEF NN output variable | 1.00 | 1.67 | 0.98 | 2.27 | 4.45 | 2,19 | 1.91 | 4.31 | 1.25 | 3.38
secondary-lepton-spectrum correction | 1.00 | 0.90 | 3.78 | 2.89 | 2.88 | 2.40 | 38.01 | 6.86 | 0.62 | 3.64
K, yield correction | 1.00 | 0.15 | 0.23 | 0.14 | 0.40 | 0.98 | 0.39 | 1.28 | 0.79 | 0.39
TOTAL 6.83 | 9.30 | 10.95 | 17.92 | 10.49 | 47.15 | 21.31 | 11.52 | 12.60

vac
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compensate for not varying the form factors of the various btoc transitions. It is
important to note that the other B in signal MC as well as in the btou other MC,
also has this variation applied to it, in addition to both B mesons in the btoc MC.
Table 6.5 lists the effect of each variation.

Putting the B — D/lv and B — D*{v branching fractions to zero is an extreme
change since they dominate the b — ¢ rate, so we only include the variations high
and low in the systematic uncertainty. We see that even such extreme variations

result in a relatively small effect.

btou modeling

We already mentioned that for the btou other we have two models: one using
ISGW2 to generate the B — X, /v modes that are not our signal modes, and one
that makes use of HQET and contains some prescription for non-resonant decays.
Our nominal fit uses the second model (InclGen), and has the normalization fixed.
The normalization was determined using the latest measurement of the b — ufv
inclusive end point analysis ([54]), and also using the measured branching fractions
for the signal modes from this analysis, in an iterative process. The uncertainty on
the normalization comes mainly from the uncertainties on the current branching
fractions. For a systematic uncertainty associated with the btou modeling, we vary
the normalization factor by +1o and also take into account the difference with
using the ISGW2 model for the btou other background. Table 6.6 summarizes the

systematic uncertainty coming from the btou other modeling.



Table 6.5: Btoc modeling systematic uncertainties, in percent.

Knob | scale |« g, | mgy | g3 p pa; P43 a3 0

B — D0y High | 1.00 | 038 | 1.24 | 0.00 | 0.66 | 0.32 6.06 1.12 | 0.99 | 0.00
B—DtvLow | 1.00 | 0.13 | 0.62 | 0.00 | 0.00 | 0.00 9.09 112 | 0.99 | 0.94

B — Dt Zero | 0.00 | [3.18] | [13.04] | [0.21] | [3.29] | [3.53] | [136.36] | [12.36] | [11.88] | [13.21]
B— D'y High| 1.00 | 038 | 1.24 | 021 | 000 | 064 | 1212 | 225 | 1.98 | 2.83
B—D'vLow| 100 | 051 | 1.24 | 021 | 0.66 | 0.96 9.09 225 | 198 | 0.94

B — D*v Zero | 0.00 | [13.72] | [37.27] | [4.43] | [17.76] | [100.32] | [154.55] | [162.92] | [73.27] | [69.81]
B — D™y High | 1.00 | 0.13 | 0.62 | 021 | 0.66 | 0.32 3.03 1.12 | 0.00 | 0.94
B — D"y Low | 1.00 | 0.00 | 0.00 | 021 | 0.66 | 0.64 3.03 112 | 0.99 | 1.89
B— D*lv Zero | 1.00 | 025 | 0.62 | 0.84 | 1.97 | 0.64 9.09 225 | 099 | 3.77
B — Dnrfy High | 1.00 | 0.38 | 0.00 | 042 | 066 | 0.64 0.00 0.56 | 0.99 | 0.00
B — Dnrfv Low | 1.00 | 0.38 | 0.00 | 042 | 0.66 | 0.64 0.00 0.56 | 0.99 | 0.94
B — Dnrly Zero | 1.00 | 1.40 | 0.62 | 1.48 | 1.97 | 0.96 3.03 112 | 1.98 | 0.94
TOTAL 170 | 248 | 1.85 | 322 | 203 | 2143 | 470 | 420 | 550

9¢¢
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Table 6.6: Btou other modeling systematic uncertainty.

mode | % unc. btou modeling
o 0.2
qs 1.1
T 5.6
m 1.5
pq: 30.5
pqs 25.2
pqs 13.5
p 22.7
i 2.8
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We see that for the 7 and 7 mode this systematic uncertainty is well under
control, but it is clearly not the case for the p mode: this is by far the dominant
uncertainty for this mode. For comparison, in the previous analysis, this uncer-
tainty was 7.5%. We have tracked down the different ingredients that increased

the uncertainty :

e Adding the II.V data increased the uncertainty to 10%

e Using the new cuts increased the uncertainty to 15%, which we expect since

the cuts are much looser now

e Using the new way of calculating the scale factor for the btou other increased

the uncertainty to 21%
e Using InclGen as the btou other model increased the uncertainty to 25%

e Not fitting over subregions 4,7,10 and having a higher Mp requirement for

the hadron candidate reduced the uncertainty to 20%

e Finally, iterating over the btou other scale factor and using the new higher

scale factor increased the uncertainty to 22.7%

[t is important to note that when we optimized cuts, we only took into account
the statistical effect and not the systematic one. It is clear that some of cuts should
be tighter in light of this uncertainty. We have increased the lepton momentum cut
to 2.0GeV/c and we would gain only a few percent reduction of the uncertainty.

This is good news, since a higher lepton momentum cut would distort the various
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¢? bins. The other two cuts under consideration are the continuum suppresion and

the “V” cut.

Non-resonant contribution

The dominant systematic error in the previous analysis was the effect of B — 7wnlr
decays on the p branching fraction result. In this analysis, we are using a btou
other MC sample that contains some non-resonant contribution. This means that
the amount of non-resonant decays predicted by this model is taken into account
in the level of btou other. Although this new btou model is based on HQET and on
reasonnable assumptions about how to assign a decay to be exclusive or inclusive,
it is still probably far from perfect, and one has to worry about the mismodeling
of the non-resonant piece affecting the p branching fraction result.

To accomplish this, we generate some B — plv MC where the p decays to two
7%s. That way we select out the portion of the non-resonant that will maximally
affect the analysis. We reconstruct this mode and allow for it as a new source in
the maximum likelihood fitter. The amount that the fitter seems to favor give us
an idea of the mismodeling of that part in the btou other background. Dipion
non-resonant decays are more than just 77, what about 7*7° and 7+7— ?

Since pions are spinless, they are bosons, and so their total wave function should
be symmetric. Combining two pions together can give an isospin sum of 0,1 or 2,
but since the two pions come from the combination of up and down quarks, only
isospin 0 or 1 are allowed. If one looks at the decomposition of the I=1 and [=0

+

pieces in terms of the various 777~ combinations, one finds that the I=1 part is
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antisymmetric and the I=0 is symmetric. This implies that in the I=1 part, there
should be an odd orbital angular momentum between the two pions to make the
wave function completely symmetric (since the spin part of the wave function is
symmetric). Having a dipion pair with I=1 and L=1, is the p particle, given that
the invariant mass of the pair is close to the mass of the p. Writing down the
decomposition of 7%7°, 7t7~ and 7°7° using the Clebsch-Gordan coefficients, we
find a ratio of 2:1:0. In the case of I=0, then we need an even orbital angular
momentum, so it cannot be a p particle. In that case, we find a ratio of 0:2:1
(taking into account the fact that we can also have 77, in addition to 7tz 7).

0

Once we know how much 7% non-resonant the fit is comfortable with, we see

that twice that amount represents the level of #*7~ non-resonant.

Remaining systematic uncertainties

There are some systematic uncertainties left that do not enter in the previous
categories. There is an uncertainty from the fake lepton sample. We run the
analysis on the fake sample and change the fake rates by +10. We assign a 1%
systematic uncertainty for all modes and ¢? bins.

In our procedure for the continuum smoothing in section 5.1, we described how
we fit MC Mp distributions to obtain the shape bias that the continuum suppresion
cut could introduce. To get a systematic uncertainty we generate a random number
between -1 and 1 and use it to scale the uncertainty on the shape parameters. We
repeat this procedure five times with different seeds for the random numbers. Table

6.7 shows the assigned systematic uncertainties.
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Table 6.7: Continuum smoothing systematic uncertainties, in percent

mode | % unc. cont. smooth.
gt 2
qs 0.2
T 2
T 1
pa; 10
rgs 1
pa; 2
p 3
n 2
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In our nominal fit we have assumed the relative production of charged and
neutral B meson to be the same, fT/f% = 1. We vary this fraction by +lo
using the latest measurement from CLEO: f+=/f% = 1.04+0.08 ([55]). This ratio
enters in the denominator of the branching fraction expression, and also determines
the normalization of the neutral modes vs the charged modes, since we are using
the isospin relation. We have also assumed the ratio of B meson lifetimes to be
unity. We vary this fraction by the measured value of 75+ /750 = 1.062 £ 0.029 by
+10. The ratio comes into the normalization of the neutral modes vs the charged
modes. We have also varied the isospin assumption, in the nominal fit we use a
ratio of 2, so we vary this ratio to be 1.43 or 1.7, as suggested by Diaz-Cruz. Table
6.8 summarizes the uncertainties.

Finally, we assign a 2% uncertainty on the lepton identification efficiency, and
also a 2% uncertainty on the number of B mesons. Those translate directly into a

2% uncertainty on the branching fractions.

Summary

Table 6.9 shows a summary of all the systematic uncertainties. Table 6.10 sum-
marizes the final results for the branching fractions.

Notice that the 7 branching fraction has a factor of two better uncertainty than
the previous analysis, with the statistical uncertainty being of the same size as the
systematic uncertainty. The p branching fraction has the same combined statistical

and systematic uncertainty as the previous analysis, but we have the bonus of the
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Table 6.8: Various systematic uncertainties, in percent

mode | fi_/foo | T+/Tpo | isospin

T | 26 0.1 0.0
g2 -2.3 -0.3 0.0
@ | 22 05 | -0.2

s -2.4 -0.2 0.0
pi? | 25 4.2 1.9
pqs -1.0 -1.4 2.7
pi? | -0.1 2.1 2.3

P 0.0 2.1 2.4

n 4.1 14 | -0




Table 6.9: Summary of all systematic uncertainties, in percent
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Systematic | 7 | mqf | mg5 | mqz | p | pai | pgs | pgz | 0
vreconstr. | 7 | 9 | 11 | 18 | 10 | 47 | 21 | 12 | 13
btocmod. | 1.7 | 25 | 1.9 | 3.2 | 2 |214| 47 | 42 | 55
btou other | 1.5 | 0.2 | 1.1 | 5.6 | 22.7 | 30.5 | 25.2 | 13.5 | 2.8
cont.sm.| 1 | 2 |02 2 3 110 1 | 2 2
fakes | 1 | 1 | 1 | 1 1 1|1 ] 1 1
folfol24] 262322 0 | 25| 1 [01] 41
Tee /o | 021 01 | 0305 | 21 | 42 | 14 | 21| 14
isospin| 0 | 0 | 0 [ 02| 24 |19 27]23] 01
lepid| 2 | 2 | 2 | 2 2 2 | 2 | 2 2
luminosity | 2 2 2 2 2 2 2 2 2
Upper Unc. | 8.4 | 10.3 | 11.8 | 19.6 | 25.4 | 61.1 | 33.4 | 19.1 | 15.5
Non Resonant | -5 -5 -5 -5 -14 | -14 | -14 | -14 -5
Lower Unc. | 9.7 | 11.5 | 12.9 | 20.2 | 29.0 | 62.7 | 36.3 | 23.7 | 16.2
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Table 6.10: Branching Fractions

Mode

Branching Fraction (x107*)

Total Unc.

Tqy
g5

Tq3

0.468 +0.11079:948
0.725 +0.108+9:936
0.277 £0.09119:9%4

1.47 +0.17979-123

+0.12 (26%)
+ 0.14 (20%)
+ 0.11(39%)

+ 0.229 (16%)

pq;
pgs

Pq3

0.297 £0.12479-181
0.866 +0.17319:29
0.494 +0.08319:99

1.657 +0.228+0422

+0.22 (75%)
+ 0.36 (41%)
+0.14 (29%)

+ 0.53 (32%)

0.837 +0.30619129

+ 0.34 (40%)
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¢? distribution, which will lead to a lower model dependence uncertainty on |V|.

The n branching fraction is dominated by the statistical uncertainty.



CHAPTER 7

MEASURING V,; AND CONCLUSION

The last three chapters described the branching fraction measurement of the de-
cays B — (m,p,w,n)lv, in three ¢* bins. They are important measurements in
their own right since they are the dominant exclusive modes making up the in-
clusive b — u rate, and may be some information can be extracted from them
related to factorization (by comparing those to the B — 7m branching fraction for
example). The branching fractions are also the necessary ingredients for getting a
|Vip| measurement from exclusive decays. There are two main steps in getting a
|Vip| measurement with complete uncertainties: the first step is to get the statis-
tical and systematic uncertainty, the second step is to get the model dependence
uncertainty. We show here the first step of this process, since we have used a single
model throughout our discussion, [ISGW2. We first describe the fitting procedure,
and then we repeat the final results of this study, along with some concluding

remarks.
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Table 7.1: 7, (in ps x 100) from ISGW?2.

Mode |  ¢? ¢ ¢

T 0.04728 | 0.03441 | 0.01340

P 0.03682 | 0.07638 | 0.02868

7.1 The |Vub| fit

To fit for |V,;| we perform a simple chi-square fit of the six different partial branch-
ing fractions (three for the 7 mode and three for the p mode). The chi-square can
be written as,

=3 [Bj — B, |[By, — Bthk], (7.1)

ik CjkO;j0k

where cj;, are the correlation coefficients from the branching fraction fit, o is the
statistical uncertainty on the measured branching fraction and By, are the theo-

retical branching fractions, given by

Bin = 87V, (7.2)

where 75 is the B lifetime, v, is the integral over the form factors for the particular
¢? bin and for the model in question. Table 7.1 shows the values used for v, (in ps
x 100) coming from ISGW2.

Table 7.2 shows the correlation coefficients for the nominal fit results.
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Table 7.2: Correlation coefficients for the nominal fit.

1 P’ 3 P1 P2 P3

m | 1.0 1 -0.039 | 0.004 | -0.088 | 0.017 | 0.002

I 1.0 |-0.033 | -0.022 | -0.126 | 0.059
3 1.0 | 0.004 | 0.009 |-0.465
o1 1.0 | -0.039 | 0.043
P2 1.0 | -0.342

To get the central value and statistical uncertainty on |V,,|, we use the central
values of the branching fractions and their statistical uncertainties. Figures 7.1
and 7.2 show the result of the nominal |V,| fit for dT'/dg? for the 7 and p mode
respectively, including systematic uncertainties. The fit finds a value of |Vy,| =
(2.913 4 0.128) x 1073, with a x* = 14.1, which corresponds to a probability of
1.5%.

To get the systematic uncertainties, we run the |Vy,| fit using as the branching
fractions the central values coming from the systematic change, as well as the as-
sociated statistical uncertainty. We choose to investigate the dominant branching
fraction systematics: the btou other scale factor, the shower Energy smearing and
the increased number of splitoff showers per hadron. We guesstimate the contribu-
tion from the 77 non-resonant uncertainty based on the effect of this uncertainty
on the previous analysis. Table 7.3 summarizes the systematic uncertainty.

The final result is:
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Figure 7.1: dI'/dq* vs ¢? for m mode. Solid are the measured branching
fractions with statistical uncertainties, dashed are the theoretical branching
fraction (where |V,;| is from fit), dotted are the systematic uncertainties on

the measured branching fractions.
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Figure 7.2: dI'/dq* vs ¢* for p mode. Solid are the measured branching
fractions with statistical uncertainties, dashed are the theoretical branching
fraction (where |V,;| is from fit), dotted are the systematic uncertainties on

the measured branching fractions.
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Table 7.3: Systematic uncertainties on |V

systematic | |Vy| x 1073 | stat. unc. | Prob | x?2 %
Nominal 2.913 0.128 1.48% | 14.1
btou scale+1o 2.752 0.135 0.243% | 18.5
btou scale-1o 3.063 0.123 2.89% | 12.5 | 5.34%
shower E smear 2.924 0.133 | 0.939% | 15.2 | 0.41%
spltf shw/had 2.859 0.130 0.851% | 15.5 | 1.84%
Upper total: 5.7%
7m NR -5%
Lower total: -7.6%
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Current Measurement:|Vy,| = (2.913 & 0.1285:355) x 1073 (7.3)

We compare this result to the average of the previous exclusive CLEO mea-

surements ([39]):

CLEO exclusive 1998:|Vy,| = (3.25 4 0.1470% £+ 0.55) x 10* (7.4)

where the last uncertainty comes from model dependence, and was the dominant
uncertainty. We see that combining statistical and systematic uncertainties the
current measurement is marginally better than the previous measurement (8.7%
vs 9.9%), but we do expect some improvement regarding the model dependence in
the future because of the information provided by the various ¢? bins.

We also compare this result to the latest inclusive CLEO measurement ([54]):

CLEO inclusive 2002:|V,;| = (4.08 £ 0.34 4+ 0.44 £ 0.29) x 10—3 (7.5)

To be competitive with this measurement (15% total uncertainty), the model
dependence for our measurement would have to be equal or better than 12.5%.
We do not think this is a reasonable expectation, since the uncertainty on the
normalization from the models are of the order 15-20%. It is important to note
that the inclusive measurement has an additional unknown systematic uncertainty
coming from the quark hadron duality assumption. If one assumes a 12.5% model

dependence uncertainty, then our measurement is about 20 away from the inclusive
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measurement. If this discrepancy is real, it could indicate that the quark hadron

duality assumption is not as unsignificant as currently assumed.

7.2 Conclusion

We repeat here the main results obtained with this measurement:

Mode | Branching Fraction (x10%) Total Unc.
Tq? 0.468 +£0.11073:948 + 0.12 (26%)
Tq3 0.725 40.10813-9¢ + 0.14 (20%)
Tqs 0.277 40.09173:934 + 0.11(39%)
™ 1.47 £0.179731%3 + 0.229 (16%)
pg? 0.297 +0.12413-181 + 0.22 (75%)
pg3 0.866 +0.17373-2% + 0.36 (41%)
pg? 0.494 +0.08373992 + 0.14 (29%)
p 1.657 +0.228731% + 0.53 (32%)
7 0.837 40.306"5122 + 0.34 (40%)

V| = 2.913 £ 0.128731% (7.6)

As previously stated, to get a |Vy,| measurement close to 15%, we need a model
dependence close to 12.5%, which we think is unlikely with the current status of
QCD calculations. Although both the branching fraction measurements as well

as the V| measurement are consistent with both the previous exclusive analysis
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and the current inclusive analysis, it is interesting to note that the p branching
fraction is about 30% smaller than the previous measurement.

Most of the difference in the p mode arises from the use of a different scale
factor in scaling the btou other background: since the new scale factor is bigger
(by about a factor of two), there is more btou other background and so less plv
signal. We have also seen how the btou other is, by far, the source of the dominant
branching fraction systematic uncertainty for this mode. It is clear that the focus
should now be on this effect. Although the large systematic uncertainty from the
btou other background is not very important as a systematic uncertainty on |Vy],
the decreased branching fraction leads to a smaller central value for |V,,;|. The new
central value is about 10% smaller than the previous exclusive measurement and
about 30% smaller than the current inclusive measurement.

In figure 7.3 we show a CKM fit! to current values that determine the p 7
plane (see chapter 1 for more information on the CKM triangle) ([56]). We see
that the current measurement of |V,;| is only somewhat consistent with the lo
band of sin23. We stress that those are impressionistic arguments and that with
the current size of uncertainties no scientific judgment can be inferred from the
measurements.

What is clear from the previous |V,,;| measurement is that the dominant uncer-

tainty is from the model dependence. The model dependence comes through on a

Walues used in the fit: [V, = 2.91340.444, |V,q|=0.97394 + 0.00089,
|Vs|=0.2200 £0.0025,|V,q|=0.22440.014, |V,5|=40.4D-03 + 1.3D-03 £ 0.9D-03,
Amg= 0.489+ 0.008,Am,= 0.0 + -1.0, |ex|= 2.271D-03+ 0.017D-03, sin 23=0.793
+0.102
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ol

Figure 7.3: CKM triangle from global fit, using current values including
this thesis’s |V,,| value. The small diamond shape is the 1o contour which

is surrounded by the larger 20 contour.
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small level for the branching fraction since the efficiency of reconstructing signal
events is dependent on the model, but mostly it is an important factor for the
|Vip| extraction through the various +,’s that are the integral of the form factors.
In this study, we have only used the ISGW2 model, although we have described
different models and QCD calculations in Chapter 2. We can readily say that the
agreement, between the partial branching fraction measurements and the ISGW?2
model is not stellar, in view of the small probability of chi-square obtained for the

V! fit (1.5%).

In conclusion, we can say that the branching fraction measurements shown in this
study are the necessary tools to get a precise value of |V,;|. Furthermore, they will
shed much needed light on the status of form factor calculations for heavy to light

quark transitions.




APPENDIX A

TOOLS FOR NEUTRINO RECONSTRUCTION

The neutrino reconstruction technique assumes that the missing energy and mo-
mentum (see section 4.2) of an event arises solely from the elusive neutrino in the
signal decay. This technique relies heavily on the hermeticity of the detector. For
CLEO 1I, the coverage is 95% and 98% of 4x for the tracking and calorimetry
volumes respectively. For CLEO II.V, the tracking coverage goes down to 93%,
because of the SVX detector.

To obtain a respectable neutrino 4-momentum resolution, one must have good
tracking performance. This means that for every particle we want one and only
one representation, either a track or a calorimeter shower, and not both. These
requirements are rather different than those for standard exclusive reconstruction
analyses, for which one is interested in the best representation of a particular
particle and does not necessarily care if there is more than one.

In this section we review various tools and studies that were made over the

years to improve the neutrino 4-momentum resolution.
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“Trackman” and “Splitoff”

As just mentioned, the tracking software of the drift chamber is not optimized for
a neutrino reconstruction analysis, for example, it can make two distinct tracks
out of hits coming from a single particle (ghost tracks). When the particle curls
in the drift chamber, each semi-circle is found as a distinct track. In both cases
we are interested in the best representation of the particle, and we want to reject
the spurious tracks. Trackman was designed with that goal in mind. The main
categories of problematic tracks that trackman tries to address are: ghosts, when
a string of hits has more than one track associated with them, curlers, these are
subdivided according to how many semi-circles are found, from two to 4, and finally
decays in flight or scatters. Another criteria used to distinguish among various
curler categories is whether the various tracks have a z component fit. Detailed
documentation can be found in reference [43]. It is important to note that it
was tuned using an earlier version of the tracking software which did not include
KALMAN fitting (see section 3.2) for example. We found that the performance
was not significantly different for the new fitter and for I1.V, although one could
imagine possible improvements from using the SVX detector.

The situation is similar in the case of electromagnetic showers from the calorime-
ter. Charged particles leave both track and shower signals in the detector. We
want to use the more precise track information, so we need to discard the showers
coming from the interaction of charged particles with the calorimeter. Hadrons
can also interact via nuclear interactions with the Cesium lodide crystal calorime-

ter. These can produce energetic particles that travel through the crystals and
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interact, making distant “splitoff” showers nearby. We need to eliminate all the
showers associated with the charged particles, so that ideally only those showers
associated with neutral particles would remain.

Neutral particles are primarily photons, but they can also be neutrons, K,
and neutrinos. The energy left in the calorimeter by neutrons and K, is only a
fraction of the actual energy of the particle, since the calorimeter does not have
enough material for such hadrons to leave all of their energy. From a neutrino
reconstruction analysis point of view the partial energy measurement from the
neutrons and K, is still valuable information. A software package, splitoff, was
written to get rid of charged particles showers and keep neutral particle showers.
It is based on a neural net which is trained to distinguish between splitoffs shower
and photon shower geometries. Details about the splitoff package can be found in

[37].

Good particles

We can evaluate our hermeticity performance through MC studies. To asses how
well we do with tracking performance, we must know what particles we would
ideally want. A utility was created to identify which of the charged particles we
would want to reconstruct for each MC event. We call these good particles. There
are two classes of mistakes: we either miss a particle, or we have an extra track.
The criteria for deciding on the good particles are that they need to be charged,
stable and produced before the calorimeter. Within those criteria there remain

particles that we are not really interested in. For example, the particle could be
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the daughter of a pion, of a muon or of a kaon, that decayed in flight. It could be
a particle that resulted from a nuclear interaction between an initial particle and
a piece of the detector. Finally, it could be an electron from a delta-ray. From a
neutrino reconstruction point of view, the perfect situation for these processes is
to keep the parent track for the missing momentum and energy calculation, but
to keep the daughter track for track shower matching. The worse case scenario
would be to keep both tracks, and then end up with an extra track, or to miss
both particles. An intermediate situation would be to identify either one, so that
at least the missing energy and momentum calculation is not too far off. A test of
whether we have an inclusive list of all the good particles is to sum up the charge

from each good particle and see if it adds up to zero.

Mistakes

Once we have decided on the set of good particles, we can determine for a particular
event, if we indeed found those good particles, and only those. As mentioned
earlier, we can have two classes of mistakes: 1) a missed particle, or 2) an extra
track. Before discussing those two types of mistakes, it is interesting to note that
the total number of mistakes per event for the CLEO II dataset is 1.42 4+ 0.02
compared to 1.83 + 0.04 for the II.V dataset, when trackman is used. Even after
correcting for the acceptance of the detector (Jcosf| < 0.7), and the effect of low
momentum tracks (|p] > 0.25 GeV/c), we find the number of mistakes per event to
be 0.83 £ 0.01 (II) and 1.02 £ 0.02 (IL.V). All the numbers shown in these sections

come from studies that were performed on a sample of signal B® — 7=¢Tv MC.
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We can also consider the net charge, the sum of all approved tracks, of the
reconstructed events. We have found the following general correlations of mistakes
with net charge. When the net charge of the event is the same sign as the signal
lepton, then on average the mistake is a missed particle, (for example the signal
7 going down the beam pipe). When the net charge is the opposite charge of the
signal lepton, then on average the mistake is a missed particle, such as the soft
pion from a D*' from the other B decay. When extra tracks remain, they arise
mainly from electrons from photon conversion, and also from tracks from a nuclear
interaction in the detector.

We compare the types of mistakes between the II and the II.V datasets. We
first notice an increase in the number of mistakes that are extra particles coming
from photon conversions of ~ 35% in II.V; from nuclear interaction the increase
in number of mistakes is ~ 40%. The increase in number of mistakes from missed
soft pions is ~ 25% in the II.V dataset. These are all due to the increased amount

of material, and the reduced tracking coverage of the II.V configuration.

Nuclear Interactions

Extra tracks from the nuclear interactions of particles with the detector material
is a prevalent mistake. We can attempt to improve this situation by implementing
an algorithm that identifies daughters of a nuclear interactions in an event . We

could then do several things: 1) throw out the event on the basis that the missing

Tt is at least easier than to try to recuperate missing soft pions. Information
can be found on a software package designed to do stand-alone tracking in order
to reconstruct low momentum particles in [44]
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momentum is inherently unreliable, 2) flag the daughters as bad tracks that should
not be included in the missing momentum computation 3) and attempt to identify
the incoming track, or even incoming hits, left by the particle that caused the
nuclear interaction.

Several situations might arise when we have a nuclear interaction related with
whether we detect the parent particle, and/or the daughter particles of the nuclear
interaction. Here is the break down of the various possibilities, as seen in signal
MC:

e 17% of the time, we find no tracks for either the parent or the daughters. That

means that we have a missed particle, but we can not do anything about it.

e 61% of the time, we find a track for the parent and none for the daughters, this

is the best situation as far as neutrino reconstruction is concerned.

e 13% of the time, we find one or more daughters and no track for the parent. If we
actually only detected one daughter, it will carry a fraction of the parent particle
momentum, so that the missing momentum might not be too disturbed. But to
be on the safe side, we would want to find that nuclear interaction to possibly fix

up the missing momentum.

e 7% of the time, we find one track for the parent and one or more tracks for the
daughters. In this case, we should discard the daughter tracks.
The cuts that give good results for identifying tracks that come from nuclear

interactions are: (based on a similar study in [42])



284

e choose a track identified as a proton, but nos as an anti-proton. Anti-protons

come primarily from A decays not nuclear interactions.

e the distance of closest approach to the beam should be less than 1 mm
e the number of drift chamber hits should be greater than 10

e the track should be a good track

e try to make a good vertex (using a kinematic fit) with another track (which
fills the same track requirements as for the proton track, except for the particle
identification and the charge conditions). The probability of x? of the vertex should

be greater than 0.1%

e make a global vertex with all the selected partners. The probability of y? of that
vertex should be greater than 0.5% and the vertex should be at least the radius of

the beam pipe.

e if no partner was found for the proton, flag this track as a daughter of a nuclear

interaction
e if the global vertex is not good, drop tracks until a good vertex is found

e if two nuclear interaction vertices contain a common track, take the one with the
best probability.

Those cuts were optimized using Monte-Carlo. To define the efficiency and
purity of the algorithm we used the tool described above, which identifies good
tracks in a reconstructed MC event. Those cuts were also selected after various
attempts were made to raise the efficiency of finding cases of nuclear interactions.

For example, we tried allowing pions as seed tracks. To raise the purity, we tried
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vetoing the track if it was labeled as part of a good vertex. We also tried to
take only vertices that were within a certain range of known material. Finally
we also tried looking at the track’s trackman code to see if that would help the
decision, since Trackman attempts to identify tracks from nuclear interaction, but
its efficiency and purity is very low.

The above cuts identify nuclear interactions with an efficiency of 23.5% and a
purity of 71.2%. We can look at the resulting improvements in the different cases:
when we found both the daughters and the parent tracks, just using trackman gives
a 57% chance of doing the right thing for neutrino reconstruction, while, if we add
the algorithm to the trackman decision, we get a 63% chance. Even though a 6 %
improvement would not seem like much, if it does translate to a 6 % improvement
in neutrino momentum resolution, it would be quite interesting. Probably more
important would be the change in the fraction of events with no mistakes.

One disadvantage of the previous algorithm is that it is actually quite good
at identifying A’s, so that although this would probably be a small effect for this
particular analysis, it could have a big effect for other analyses. The next step
would be to look at the situation of the parent and decide on a global scheme to
utilize this algorithm and study the improvement it made to the analysis. We leave

this task to the next generation of neutrino reconstruction adepts.
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