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Abstract

In this paper, we formulate a “Grassmann extension” scheme for constructing noncommutative (Grass-
mann) extensions of Yang-Baxter maps together with their associated systems of P�Es, based on the ideas 
presented in [15]. Using this scheme, we first construct a Grassmann extension of a Yang-Baxter map which 
constitutes a lift of a lattice Boussinesq system. The Grassmann-extended Yang-Baxter map can be squeezed 
down to a novel, integrable, Grassmann lattice Boussinesq system, and we derive its 3D-consistent limit. 
We show that some systems retain their 3D-consistency property in their Grassmann extension.
© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Over the past few decades, there has been an increasing interest in the study of noncommuta-
tive extensions of integrable equations or systems of equations (indicatively we refer to [7,8,11,
12,18,24]), due to their numerous applications in Physics. Famous examples include noncom-
mutative analogues of the KdV, the NLS, the sine-Gordon and other well-celebrated equations 
of Mathematical Physics. Therefore, it is quite important to develop methods for solving such – 
noncommutative – systems.

On the other hand, in the commutative case, plenty of methods have been discovered for solv-
ing discrete integrable systems (see [13] and the references therein). One of the most well-studied 
and important class of such systems are the so-called “quad-graph systems”, namely systems of 

E-mail addresses: skonstantin84@gmail.com, s.konstantinu.rizos@uniyar.ac.ru.
https://doi.org/10.1016/j.nuclphysb.2019.114878
0550-3213/© 2019 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://www.sciencedirect.com
https://doi.org/10.1016/j.nuclphysb.2019.114878
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/4.0/
mailto:skonstantin84@gmail.com
mailto:s.konstantinu.rizos@uniyar.ac.ru
https://doi.org/10.1016/j.nuclphysb.2019.114878
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2019.114878&domain=pdf


2 S. Konstantinou-Rizos / Nuclear Physics B 951 (2020) 114878
difference equations defined on an elementary quadrilateral of the two-dimensional lattice. For 
those quad-graph systems which possess the “3D consistency” property, Bäcklund transforma-
tions can be derived automatically, and therefore interesting solutions can be constructed starting 
from trivial ones. Due to the useful properties of 3D consistent quad-graph systems and the avail-
ability of simple algebraic schemes for constructing solutions to them, they can be used as good 
models for studying their continuous analogues, i.e. systems of nonlinear PDEs, via continuum 
limits. At the same time, 3D consistent quad-graph systems are strongly related to Yang-Baxter 
maps, namely solutions to the set-theoretical Yang-Baxter equation, one of the most fundamental 
equation of Mathematical Physics. This is a quite important connection, and a lot of work has 
been done in this direction (indicatively we refer to [1,6,14,26,27]).

The importance of noncommutative extensions of integrable systems from a Physics perspec-
tive, and the innovating results that have already been obtained in the continuously developing 
field of Discrete Integrable Systems, motivates us to extend to the noncommutative case the al-
ready existing methods for constructing solutions to integrable systems in the commutative case. 
Towards this direction, a few steps have been made over the past few years. In particular, in 
the recent work of Grahovksi and Mikhailov [10], integrable discretisations were found for a 
class of NLS equations on Grassmann algebras. This motivated the construction of Grassmann 
extended systems of differential-difference and difference-difference equations [31–33], as well 
as the consideration of continuum limits of Grassmann extended difference equations (see, for 
instance, [19,20]). Furthermore, the latter results and the aforementioned strict relation between 
quad-graph systems and Yang-Baxter maps motivated the beginning of the extension of the the-
ory of Yang-Baxter maps on Grassmann algebras [9,16]. In addition, a Grassmann extension 
of the discrete potential KdV equation together with its associate Yang-Baxter map were con-
structed in [15].

In this paper, motivated by the above-mentioned developments and the results obtained in 
[15], we formulate a scheme for constructing noncommutative (Grassmann) extensions of quad-
graph systems together with their associated Grassmann extended Yang-Baxter maps. Moreover, 
we answer the main question which arose in [15] on whether the noncommutativity “kills” the 
3D consistency property for all quad-graph systems. In particular, the Grassmann extended dis-
crete potential KdV system which was constructed in [15] does not have the 3D consistency 
property. However, this is not the case for all the Grassmann extended integrable systems; in 
fact, in this paper, we construct a Grassmann extension of a Boussinesq system which retains the 
3D consistency of its original, commutative version.

As an illustrative example for the description of our scheme, we consider a discrete Boussi-
nesq system. The Boussinesq equation, in both its continuous and its discrete (lattice Boussinesq) 
version, has been studied extensively over the past few decades, earning its place on the list of 
fundamental equations of Mathematical Physics. It owes its popularity to its quite interesting 
and, also, simple form, with a number of applications in Fluid Dynamics and in the theory of 
Integrable Systems.

1.1. Main results

This paper is concerned with the formulation of a scheme for constructing Grassmann ex-
tensions of quad-graph systems and their associated Yang-Baxter maps. The methods in this 
scheme are demonstrated via the following Boussinesq system of difference equations for 
pn,m = p(n, m), qn,m = q(n, m), n, m ∈ N:
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(pn,m+1 − pn+1,m)(pn,m + qn,mqn+1,m+1 − rn+1,m+1) = (a − b)qn,m,

(qn,m+1 − qn+1,m)(pn,m + qn,mqn+1,m+1 − rn+1,m+1) = b − a, (1)

(rn,m+1 − rn+1,m)(pn,m + qn,mqn+1,m+1 − rn+1,m+1) = (b − a)qn+1,m+1,

where a, b ∈ C (see various forms of this system [5,21,29]). In fact, we construct and study the 
integrability of its noncommutative extension not only in terms of possessing a Lax represen-
tation, but also as a 3D consistent system [4,22]. We also derive the associated Yang-Baxter 
map.

To conclude, we state what is new in this paper:

1. The formulation of the ideas presented in [15] into a Grassmann extension scheme;
2. The derivation of a new Boussinesq-type Yang-Baxter map together with its Grassmann 

extension;
3. The construction of an integrable, noncommutative (Grassmann) extension of a discrete 

Boussinesq system and its 3D-consistent limit. The latter gives rise to the following im-
portant point;

4. We show that, for some systems, the 3D-consistency property does not break in their non-
commutative extension.

1.2. Organisation of the paper

The paper is organised as follows: The next section provides with preliminary knowledge, es-
sential for the text to be self-contained. In particular, we fix the notation that we use throughout 
the text, and we give the basic definitions of quad-graph systems and Yang-Baxter maps. Further-
more, we demonstrate the relation between the former and the latter, and the relation between 
the 3D consistency property and the Yang-Baxter equation. We also explain what a Lax repre-
sentation is for both quad-graph equations and Yang-Baxter maps. Finally, we provide the basic 
properties of Grassmann algebras, which are essential for this text, and present the basic steps of 
a simple scheme for constructing Grassmann extensions of discrete integrable systems together 
with their associated Yang-Baxter maps; the related ideas were discussed in [15]. In section 3, we 
apply the aforementioned scheme to system (1). Specifically, we consider the associated Yang-
Baxter lift of (1), for which we construct a Grassmann extension. Then, we show that the latter 
can be squeezed down to a novel integrable system of lattice equations which can be considered 
as the Grassmann extension of system (1). Finally, in section 4, we present a Boussinesq-type 
system associated via a conservation law of the one obtained in section 3, and we prove the 
integrability–in the sense of 3D-consistency–for a limit of this system. Finally, the last section 
deals with some concluding remarks and thoughts for future work.

2. Preliminaries

2.1. Notation

Here, we explain the notation we shall be using throughout the text.

2.1.1. Functions of discrete variables and shifts
Let f be a function of two discrete variables n and m, i.e. f = f (n, m). Let also S and T

be the shift operators in the n and m direction of a two-dimensional lattice, respectively. We 



4 S. Konstantinou-Rizos / Nuclear Physics B 951 (2020) 114878
Fig. 1. (a) Elementary square of the 2D lattice and (b) elementary cube of the 3D lattice.

adopt the notation: f00 ≡ f , fij = SiT jf ; for example, f10 = f (n + 1, m), f01 = f (n, m + 1)

and f11 = w(n + 1, m + 1) as represented in Fig. 1. Furthermore, if our field f lives on the 
three-dimensional lattice, namely f = f (n, m, k), and Z is the shift operator in the k-direction, 
then we shall be using three indices to determine the position of f on the lattice. That is, fijl =
S iT jZkf (n, m, k). For instance, f101 = w(n + 1, m, k + 1) as in Fig. 1.

2.1.2. Commutative and anticommutative variables
We shall be using Latin letters for all commuting variables, whereas all the anticommutative 

variables will be denoted by Greek letters. For instance, pq = qp, whereas τθ = −θτ . As an 
exception, the spectral parameter, λ ∈C, is a commuting variable.

2.2. 3D consistency VS the Yang-Baxter equation

“Quad-graph” equations (or systems) and “Yang-Baxter maps” constitute the two sides of the 
same coin. In this section, we explain the relation between the 3D consistency property and the 
Yang-Baxter equation.

2.2.1. Quad-graph equations and parametric Yang-Baxter maps
Using the notation introduced in section 2.1.1, let the fields (f , f10, f01, f11) lie on the 

vertices of the square in Fig. 1. Let us also consider the following equation

Q(f,f10, f01, f11;a, b) = 0, (2)

where the parameters a, b ∈C and Q is a linear function in every field fij . Equation (2) is called 
equation on quad-graph and can be interpreted as in Fig. 1-(a). That is, knowing any 3 of the 
fields fij on the vertices, one can uniquely identify the fourth, using (2).

Now, by the term “parametric Yang-Baxter map” we understand set-theoretical solutions of 
the parametric Yang-Baxter equation, namely maps Ya,b ∈ End(V × V ), where V is algebraic 
variety, i.e.

(x, y)
Ya,b�→ (u(x, y;a, b), v(x, y;a, b)) , (3)

satisfying the parametric Yang-Baxter equation

Y 23
b,c ◦ Y 13

a,c ◦ Y 12
a,b = Y 12

a,b ◦ Y 13
a,c ◦ Y 23

b,c. (4)

The Y ij ∈ End(V × V × V ) are defined as: Y 12
a,b = Ya,b × id , Y 23

b,c = id × Ya,b and Y 13
a,c =

π12Y 23 π12, where π12 is the involution defined by π12((x; a), (y; b), (z; c)) = ((y; b), (x; a),
b,c
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Fig. 2. Initial values on the (a) vertices, (b) edges.

(z; c)). The geometric interpretation of these maps, can be understood in a similar way as for 
quad-graph equations, but with the values being considered on the edges of the quad, as in 
Fig. 1-(b).

Similarly to quad-graph systems, we can also interpret Yang-Baxter maps on the square, but 
considering the values on the edges instead of the vertices (see Fig. 2-(b)).

2.2.2. Lax representations & integrability
Equation (2) admits quad-Lax representation, if there is a (Lax) matrix La = La(f, f10; λ) ≡

La(f, f10),1 λ ∈ C, such that

La (T f,T f10)Lb (f,f01) = Lb (Sf,Sf01)La (f,f10) ,

where S and T are shift operators, as defined in section 2.1.1.
Similarly, for Yang-Baxter maps, Lax matrix is a matrix L = L(x, a; λ) ≡ La(x) that satisfies 

the following matrix refactorisation problem [28]

La(u)Lb(v) = Lb(y)La(x). (5)

If equation (5) defines a map (3), then it is called Lax representation of the map. An alternative 
way to verify that a map satisfies the Yang-Baxter equation is to consider the following matrix 
trifactorisation problem

La(u)Lb(v)Lc(w) = La(x)Lb(y)Lc(z),

where La(x) is the same matrix satisfying (5). In particular, if the above trifactorisation prob-
lem implies that u = x, v = y and w = z, then map (3) defined by (5) satisfies the parametric 
Yang-Baxter equation (4) [17,30].

In the case of quad-graph equations or systems as (2), the possession of Lax representation is 
usually used as working definition of integrability. However, a stronger integrability criterion 
is that of 3D-consistency [4,22] which implies integrability in the sense of Lax representa-
tion.

From the analysis-point-of-view, 3D-consistency is the property of equation (2) to be consis-
tently generalisable in three dimensions, by “adding” a third discrete variable k in the field f , 
namely considering f = f (n, m, k). Geometrically, it means that a quad-graph system–as inter-
preted in Fig. 1-(a)–can be generalised and “written” in a consistent way on the faces of the cube 
of Fig. 1-(b). That is, we first rewrite our system (2) on the bottom, front and left side of the cube, 
respectively, as follows:

1 We usually skip writing explicitly the dependence on the spectral parameter λ.
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Fig. 3. Yang-Baxter equation. Geometric interpretation.

Q(f,f100, f010, f110;a, b) = 0, Q(f,f100, f001, f101;a, c) = 0,

Q(f,f001, f010, f011; c, b) = 0.
(6)

Then, considering f , f100, f010 and f001 as initial values on the cube in Fig. 1-(b), there are three 
ways to calculate f111: 1) Using the first equation of (6), determine f110; 2) Using the second 
equation, determine f101; 3) With use of the last equation of (2), determine f011. Consequently, 
having f110, f101 and f011 at our disposal, we can determine f111, using any of the top, back or 
right side of the cube. 3D-consistency means that, independently of which of the former sides 
we use, we obtain exactly the same value f111.

The strict relation between the 3D-consistency property and the Yang-Baxter equation can be 
demonstrated in Fig. 3. In fact, one can consider three initial values x, y and z taken on the sides 
of the cube as in Fig. 3. Now, acting on (x, y, z) with the left part of the Yang-Baxter equation, 
that is, using the bottom, back and left side of the cube, we obtain new values ( ˆ̂x, ˆ̂y, ̂̂z). On the 
other hand, acting on (x, y, z) with the right part of the Yang-Baxter equation, namely via the 
left, front and top side of the cube, we obtain the values ( ˜̃x, ˜̃y, ̃̃z). The Yang-Baxter equation is 
satisfied when the “hats” coincide with the “tildes” and vice versa.

2.3. Grassmann algebra

A Grassmann algebra is a Z2-graded algebra over C (or any field of characteristic zero), 
namely, it can be written as a direct sum G = G0 ⊕G1 (mod 2), such that GiGj ⊆ Gi+j . All the 
elements x, y ∈ G0 commute with each other (i.e. xy = yx), whereas all the elements χ, ψ ∈ G1
anticommute (i.e. χψ = −ψχ ). The latter implies that the elements of G1 are nilpotent; that is 
χn = 0, n ≥ 2. The elements of G0 are called bosonic or even, while the elements of G1 are 
called fermionic or odd.

The notions of the determinant and the trace of a matrix in G are defined for square matrices, 
M , of the following block-form

M =
(

P 	


 L

)
. (7)

The blocks P and L are matrices with even entries, while 	 and 
 possess only odd entries (note 
that the block matrices are not necessarily square matrices). In particular, the superdeterminant
of M , which is usually denoted by sdet(M), is defined to be the following quantity

sdet(M) = det(P − 	L−1
)det(L−1) = det(P −1)det(L − 
P −1	),

where det(·) is the usual determinant of a matrix.
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Fig. 4. Grassmann extension scheme.

In this section, we gave all the definitions related to Grassmann algebras that are essential for 
this paper. However, for more information on Grassmann analysis one can consult [3].

2.4. Grassmann extension scheme

Here, we demonstrate a scheme for constructing Grassmann extensions of discrete integrable 
systems together with their associated Grassmann extended Yang-Baxter maps. We formulate 
the ideas presented in [15] which constitute a combination of the methods introduced in [25] and 
[9].

The scheme consists of three steps:

I. Starting from an integrable quad-graph equation, Qa,b(f, f10, f01, f11) = 0, derive a Yang-
Baxter map using the symmetries of the equation in order to transfer from a one-field equation 

(with field f ) to a two-field map (with fields u and v) [25], namely a map (x, y) 
Ya,b�→ (u, v). Note 

that this method is reversible, when applied to equations of certain form.

II. The method was introduced in [9,10]. Starting from map Ya,b obtained in Step I, construct its 

noncommutative–Grassmann–extension, namely map ((x, χ), (y, ψ)) 
Sa,b�→ ((u, ξ), (v, η)). This 

extension is applicable to Yang-Baxter maps which admit Lax matrix, and it is based on the 
consideration of a more general Lax matrix which includes anticommutative variables. That is, 
we consider an augmented Lax matrix, La = La(x, χ), which contains the old (bosonic) “x” 
and the new (fermionic) “χ” variables. Our demand is that this matrix satisfies two conditions: 
1. Its bosonic limit is equal to the original Lax matrix (with only bosonic elements); that is, 
limχ→0 La(x, χ) = La(x). 2. Its superdeterminant is equal to the determinant of the original 
Lax matrix, i.e. sdetLa = detLa . Note that the augmented matrix La must be in the block-form 
(7) in order to be able to define its determinant. This method will be demonstrated in the next 
section for our map.

III. Since Step I is reversible, we can apply the reverse idea to the map Sa,b obtained in Step II in 
order to “squeeze it down” to a lattice equation Qa,b(f, f10, f01, f11, φ, φ10, φ01, φ11) = 0, such 
that lim(φ,φ10,φ01,φ11)→0 Qa,b = Qa,b . To do so, we use some symmetries of map Sa,b. The de-
rived Grassmann extended quad-graph system, Qa,b = 0, is by definition integrable, since it has 
a Lax representation. Its Lax representation can be derived from the matrix refactorisation prob-
lem associated with the Grassmann extended Yang-Baxter map Sa,b, by relabeling the variables 
(matrix entries).
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3. Boussinesq system and a lift to a Boussinesq type Yang-Baxter map

In this section, starting from a Boussinesq lattice system, we construct its associated Yang-
Baxter lift.

3.1. Boussinesq lattice equation

The lattice Boussinesq system (1), in the notation introduced in section 2.1.1, reads

(p01 − p10)(p − r11 + qq11) = (a − b)q,

(q01 − q10)(p − r11 + qq11) = b − a, (8)

(r01 − r10)(p − r11 + qq11) = (b − a)q11,

where a, b ∈ C, and it possesses the following strong Lax representation

La(p01, q01, q11, r11)Lb(p, q, q01, r01) = Lb(p10, q10, q11, r11)La(p, q, q10, r10), (9)

where La is given by the following 3 × 3 matrix [29]

La(p,q, q10, r10) :=
⎛
⎝ −q10 1 0

−r10 0 1
a − pq10 − qr10 − λ p q

⎞
⎠ . (10)

3.2. Step I: lift to a Yang-Baxter map

Our aim is to derive a Yang-Baxter map starting from (8). The idea is to move from the fields 
(p, q, r) (functions of two discrete variables n, m ∈ N) to elements of an algebraic variety V . 
The right change of variables is indicated by the Lax representation (10) itself.

In particular, comparing (9) to the following matrix refactorisation problem

La(u1, u2, u3, u4)Lb(v1, v2, v3, v4) = Lb(y1, y2, y3, y4)La(x1, x2, x3, x4), (11)

we set x1 = p, x2 = q , x3 = Sq and x4 = Sr , namely we consider the following 3 × 3 matrix

La(xxx) :=
⎛
⎝ −x3 1 0

−x4 0 1
a − x1x3 − x2x4 − λ x1 x2

⎞
⎠ , xxx := (x1, x2, x3, x4). (12)

Here, we understand xi , i = 1, . . . , 4, as elements of an algebraic variety V , and we substitute 
(12) to (11). Then, (11) implies a correspondence given by

u1 = y1 + a − b

x1 − y4 + x2y3
x2,

u2 = y2 + b − a

x1 − y4 + x2y3
,

u3 = y3,

u4 = y4 + v1 − x1,

v2 = x2,

v3 = x3 + b − a

x1 − y4 + x2y3
, (13)

v4 = x4 + b − a

x1 − y4 + x2y3
y3.

This correspondence is a solution of (11) for any v1. For a particular value of v1, the above 
correspondence defines the following eight-dimensional map; in fact, we have the following.
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Proposition 3.2.1. The map

(x, y)
Ya,b→ (u, v), (14)

given by

x1 �→ u1 = y1 + a − b

x1 − y4 + x2y3
x2,

x2 �→ u2 = y2 + b − a

x1 − y4 + x2y3
,

x3 �→ u3 = y3,

x4 �→ u4 = y4,

y1 �→ v1 = x1,

y2 �→ v2 = x2,

y3 �→ v3 = x3 + b − a

x1 − y4 + x2y3
, (15)

y4 �→ v4 = x4 + b − a

x1 − y4 + x2y3
y3,

is an eight-dimensional parametric Yang-Baxter map with invariants

I1 = x2 + y2 − x3 − y3, (16a)

I2 = x1 + y1 + x2y2, (16b)

I3 = x4 + y4 − x3y3, (16c)

I4 = b(x2 − x3) − a(y3 − y2) + (x4 − x3y2 − y1)(x1 + x2y3 − y4). (16d)

Proof. For the particular choice v1 = x1, the correspondence (13) implies the eight-dimensional 
map (14)-(15). The Yang-Baxter property of the latter can be shown by straightforward substitu-
tion of (15) into the Yang-Baxter equation.

Regarding the invariants, the trace of the monodromy matrix tr(Lb(y)La(x)) = 1 + I2 − I3, 
where La is given in (12). Thus, I2 and I3 are invariants. The rest, I1 and I4, are found from the 
characteristic equation det(Lb(y)La(x) − k · I3), where I3 is the 3 × 3 identity matrix. �
Remark 3.2.2. The above procedure is reversible. That is, starting from map (14)-(15), we can 
retrieve the Boussinesq lattice system (14)-(15). This follows from the observation that x3 = y2, 
in (15), implies u2 = v3, in combination with a certain change of variables.

3.3. Step II: Grassmann extended Yang-Baxter map of Boussinesq type

In this section, we construct a Grassmann extension of Boussinesq type Yang-Baxter map 
(14)-(15). In order to do that, we consider the Lax matrix (10) augmented with two additional 
fermionic fields χ1, χ2, such that the conditions described in step II of the scheme are satisfied.

In particular, we consider following 4 × 4 matrix

La(xxx,χχχ) :=

⎛
⎜⎜⎝

−x3 1 0 0
−x4 0 1 0

a − x1x3 − x2x4 − χ1χ2 − λ x1 x2 χ1
−χ2 0 0 1

⎞
⎟⎟⎠ ,

(xxx,χχχ) := (x1, x2, x3, x4, χ1, χ2),

(17)

which is matrix La in (12) augmented with two additional fields χi ∈ G1, i = 1, 2. The above 
generalisation respects the following conditions
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1. Bosonic limit

lim
χχχ→0

La(xxx,χχχ) = La(xxx); (18)

2. Determinant2

sdet(La) = det(La) = a − λ. (19)

Proposition 3.3.1. The matrix refactorisation problem

La(uuu,ξξξ)Lb(vvv,ηηη) = Lb(yyy,ψψψ)La(xxx,χχχ), (20)

where La = La(x, χχχ) is given by (17), is equivalent to the following correspondence:

u1 = y1 + a − b

x1 − y4 + x2y3 + χ1ψ2
x2,

(21a)

u2 = y2 + b − a

x1 − y4 + x2y3 + χ1ψ2
,

(21b)

u3 = y3, (21c)

ξ1 = ψ1 + a − b

x1 − y4 + x2y3
χ1, (21d)

ξ2 = ψ2, (21e)

v2 = x2, (22a)

v3 = x3 + b − a

x1 − y4 + x2y3 + χ1ψ2
,

(22b)

v4 = x4 + b − a

x1 − y4 + x2y3 + χ1ψ2
y3,

(22c)

η1 = χ1, (22d)

η2 = χ2 + a − b

x1 − y4 + x2y3
ψ2, (22e)

and

u4 = y4 + v1 − x1. (23)

Proof. Equation (20) implies

u3 = y3, v2 = x2, ξ2 = ψ2, χ1 = χ1,

equation (23) for u4 and v1, as well as the following system of equations

v3 − u2 = x3 − y2, (24a)

v3y3 − v4 = y2x3 − x4, (24b)

u1 + u2x2 = y1 + y2x2, (24c)

ξ1 + u2η1 = y2χ1 + ψ1, (24d)

η2 − ψ2v3 = χ2 − ψ2x3, (24e)

v3(u4 − v1) + b − x2v4 − η1η2 = x3(y4 − x1) + a − x2x4 − χ1χ2, (24f)

u2(v1 − u4) + a − u1y3 − ξ1ψ2 = y2(x1 − y4) + b − y1y3 − ψ1ψ2, (24g)

2 By sdet(.) we denote the “superdeterminant” in the Grassmann case [3]. The superdeterminant is defined on matrices 

of the block form M =
(

P 	


 L

)
, where P and L are square matrices of even entries, whereas 	 and 
 are matrices 

with odd entries, not necessarily square.
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u2(b − v1v3 − x2v4 − η1η2) − v3(a − u1y3 − u2u4 − ξ1ψ2) − u1v4 − ξ1η2 = (24h)

y2(a − x1x3 − x2x4 − χ1χ2) − x3(b − y1y3 − y2y4 − ψ1ψ2) − y1x4 − ψ1χ2,

for the rest of the variables u1, u2, u4, ξ1, v3 and ξ1.
From (24d) we obtain ξ1ψ2 = ψ1ψ2 +(y2 −u2)χ1ψ2. Substituting the latter to (24g) and using 

(23), we obtain u2 as given in (21b). With use of u2, (24a) and (24c) imply v3 and u1 as given in 
(22b) and (21a), respectively. Subsequently, with use of (22b), from equation (24b) follows that 
v4 is given by (22c), whereas equations (24d) and (24b) imply the following expressions

ξ1 = ψ1 + a − b

x1 − y4 + x2y3 + χ1ψ2
χ1, η2 = χ2 + a − b

x1 − y4 + x2y3 + χ1ψ2
ψ2

for ξ1 and η2. Multiplying both the numerator and the denominator of the fractions in the above 
equations by the conjugate expression of the denominator, it follows that ξ1 and η2 are given by 
(21d) and (22e), respectively. �
Theorem 3.3.2. Map

Sa,b : ((x,χχχ), (y,ψψψ)) → ((u,ξξξ), (v,ηηη)), (25)

given by

x1 �→ u1 = y1 + a − b

x1 − y4 + x2y3 + χ1ψ2
x2, (26a)

x2 �→ u2 = y2 + b − a

x1 − y4 + x2y3 + χ1ψ2
, (26b)

x3 �→ u3 = y3, (26c)

x4 �→ u4 = y4, (26d)

χ1 �→ ξ1 = ψ1 + a − b

x1 − y4 + x2y3
χ1, (26e)

χ2 �→ ξ2 = ψ2, (26f)

y1 �→ v1 = x1, (26g)

y2 �→ v2 = x2, (26h)

y3 �→ v3 = x3 + b − a

x1 − y4 + x2y3 + χ1ψ2
, (26i)

y4 �→ v4 = x4 + b − a

x1 − y4 + x2y3 + χ1ψ2
y3, (26j)

ψ1 �→ η1 = χ1, (26k)

ψ2 �→ η2 = χ2 + a − b

x1 − y4 + x2y3
ψ2, (26l)

is a twelve-dimensional parametric Yang-Baxter map, and possesses the following invariants

I1 = x2 + y2 − x3 − y3, (27a)

I2 = x1 + y1 + x2y2, (27b)

I3 = x4 + y4 − x3y3, (27c)

I4 = b(x2 − x3) − a(y3 − y2) + (x4 − x3y2 − y1)(x1 + x2y3 − y4), (27d)
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as well as the following anti-invariants

I5 = χ1ψ1, and I6 = χ2ψ2. (27e)

Moreover, the bosonic limit of (25)-(26) is map (14)-(15).

Proof. See Appendix A. �
Corollary 3.3.3. Map (25)-(26) satisfies the following matrix refactorisation problem:

La(u1, u2, y3, y4, ξ1,ψ2)Lb(x1, x2, v3, v4, χ1, η2)

= Lb(y1, y2, y3, y4,ψ1,ψ2)La(x1, x2, x3, x4, χ1, χ2), (28)

where La(x1, x2, x3, x4, χ1, χ2) is given by (17).

3.4. Step III: squeeze down to Grassmann extension of the Boussinesq lattice equation

Here, we shall construct our Grassmann extended system of lattice equations using the sym-
metries of the Yang-Baxter map which was constructed in the previous section. That said, using 
the observation that, in (26), y2 = x3 implies u2 = v3, we shall construct a Grassmann extension 
of the Boussinesq lattice equation (8). In particular, we have the following.

Theorem 3.4.1. (Grassmann extension of the Boussinesq lattice system) Map (25)-(26) can be 
squeezed down to the following system

(p01 − p10)(p + qq11 − r11 + τθ11) = (a − b)q,

(q01 − q10)(p + qq11 − r11 + τθ11) = b − a,

(r01 − r10)(p + qq11 − r11 + τθ11) = (b − a)q11, (29)

(τ01 − τ10)(p + qq11 − r11 + τθ11) = (a − b)τ,

(θ01 − θ10)(p + qq11 − r11 + τθ11) = (a − b)θ11.

System (29) is integrable with Lax representation

La(p01, q01, q11, r11, τ01, θ11)Lb(p, q, q01, r01, τ, θ01)

= Lb(p10, q10, q11, r11, τ10, θ11)La(p, q, q10, r10, τ, θ10), (30)

where

La(p, q, q10, r10, τ, θ10) :=

⎛
⎜⎜⎝

−q10 1 0 0
−r10 0 1 0

a − pq10 − qr10 − τθ10 − λ p q τ

−θ10 0 0 1

⎞
⎟⎟⎠ , (31)

where p, q, r ∈ G0 and τ, θ ∈ G1. Furthermore, system (29) possesses the following conserva-
tion law

(T − 1)(p10 + qq10 − r) = (S − 1)(p01 + qq01 − r), (32)

and satisfies the following

(T + 1)(τθ10) = (S + 1)(τθ01). (33)

Finally, the bosonic limit of (29) is the Boussinesq lattice equation (8).
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Proof. For map (25)-(26), y2 = x3 implies u2 = v3. Now, relabeling y2 = x3 = q10, u2 = v3 =
q01, x1 = v1 = p, x2 = v2 = q , x4 = r10, y3 = u3 = q11, y4 = u4 = r11, χ1 = η1 = τ , χ2 = θ10, 
ψ1 = τ10, ψ2 = ξ2 = θ11, equations (26a), (26b), (26i), (26e) and (26l) imply

p01 = p10 + a − b

p − r11 + qq11 + τθ11
q, (34a)

q01 = q10 + b − a

p − r11 + qq11 + τθ11
, (34b)

r01 = r10 + b − a

p − r11 + qq11 + τθ11
q11, (34c)

θ01 = θ10 + a − b

p − r11 + qq11
θ11, (34d)

τ01 = τ10 + a − b

p − r11 + qq11
τ, (34e)

which can be rewritten in the form of system (29). Its Lax representation follows from corollary 
(3.3.3) after the above relabeling.

From equations (34a) and (34c) follows that

p01 − p10 + q(q01 − q10) = r01 − r10 − q11(q01 − q10) = 0.

The latter equations imply

p01 − p10 + q(q01 − q10) = r01 − r10 + q11(q10 − q01),

which is equivalent to (32).
Moreover, by straightforward calculation one can verify that (33), namely equation

(τ01 − τ10)θ11 = −τ(θ01 − θ10),

is identically satisfied in view of equations (34d) and (34e).
Finally, setting all the odd variables and their shifts equal to zero, namely τ = τ10 = τ01 =

θ = θ11 = 0, system (29) implies the Boussinesq lattice equation (8). �
Remark 3.4.2. Equation (33) can be written in the form of conservation law under the change of 
variables τ → (−1)nτ and θ → (−1)m−1θ , i.e. θ01 → (−1)mθ01.

For system (34) we can set the initial value problem on the staircase, as in Fig. 5.

4. 3D consistency of a Grassmann extended Boussinesq-type system

Now, conservation law (32) indicates to seek a function f = f (n, m) such that

p10 + qq10 − r = (S − 1)f, (35a)

p01 + qq01 − r = (T − 1)f, (35b)

namely, seek f = f (n, m) satisfying the following system difference equations

f10 − f = p10 + qq10 − r, (36)

f01 − f = p01 + qq01 − r. (37)
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Fig. 5. Initial value problem on the vertices of the staircase and direction of evolution.

The above imply that

f01 − f10 = p01 − p10 + q(q01 − q10) = 0. (38)

The above equation implies f = C(n + m). We restrict ourselves to the case where C(n + m) =
const. = 0, and from system (35) follows that

p10 + qq10 − r = 0, (39a)

p01 + qq01 − r = 0, (39b)

which are equivalent to (34a) and (34c).
With the use of (39), we prove the following.

Proposition 4.0.1. System (34) can be written in the form of the following Grassmann extended 
Boussinesq-type system

p11 = r10q01 − r01q10

q01 − q10
, (40a)

q11 = r01 − r10

q01 − q10
, (40b)

r11 = b − a + q(r01 − r10) + τ(θ01 − θ10) + p(q01 − q10)

q01 − q10
, (40c)

θ11 = θ01 − θ10

q01 − q10
, (40d)

τ = τ01 − τ10

q01 − q10
(40e)

where p, q, r ∈ G0 and τ, θ ∈ G1.

Proof. Shifting equations (39a) and (39b) in the m and n direction, respectively, we obtain

p11 + q01q11 − r01 = 0, (41a)

p11 + q10q11 − r10 = 0. (41b)

Subtraction of the above and solving for q11 implies (40b). Now, using the latter, we obtain p11
given by (40a). Finally, with the use of (40b), equation (34e) can be rewritten in the form (40e), 
and using this expression for θ11, (40a) implies (40c). �
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Remark 4.0.2. The bosonic limit of system (40) is the Boussinesq lattice system as it appears in 
[5].

Although system (40) is integrable in the sense that it possesses Lax representation, we cannot 
claim integrability in the sense of 3D-consistency, since the term “τ11” is missing. Since one of 
the main purposes of this paper is to prove that the 3D-consistency is preserved in the Grassmann 
extension of some systems, we shall prove this property for the bosonic limit of system (40), as 
τ → 0. In particular, we have the following.

Theorem 4.0.3. The system

p11 = r10q01 − r01q10

q01 − q10
, (42a)

q11 = r01 − r10

q01 − q10
, (42b)

r11 = b − a + q(r01 − r10) + p(q01 − q10)

q01 − q10
, (42c)

θ11 = θ01 − θ10

q01 − q10
, (42d)

where p, q, r ∈ G0 and θ ∈ G1, has the 3D-consistency property.

The proof of this theorem is presented in Appendix B. It is worth mentioning that, since the 
“111” values depend on the initial p and q (see Appendix B), the system (4.0.3) does not have 
the “tetrahedron property”.3 For the proof the following Lemma is needed.

Lemma 4.0.4. The following function

A(a100,a010,a001,b100,b010,b001)

= (a001 − a010)(b001 − b100) − (a001 − a100)(b001 − b010), (43)

where a and b can be either odd or even variables, is invariant under simultaneous cyclic per-
mutations of (a100, a010, a001) and (b100, b010, b001).

Proof. It is

A(a100,a010,a001,b100,b010,b001)

= b100(a010 − a001) + b010(a001 − a100) + b001(a100 − a010).

It can be verified by straightforward calculation that

A(a100,a010,a001,b100,b010,b001) =A(a001,a100,a010,b001,b100,b010)

=A(a010,a001,a100,b010,b001,b100). �
3 The name of the property is due to the fact that the values ‘100’, ‘010’, ‘001’ and ‘111’ form a tetrahedron (see 

Fig. 1).
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The Lax representation of system (4.0.3) is given by (30)-(31) for τ → 0, namely by

La(p01, q01, q11, r11, θ11)Lb(p, q, q01, r01, θ01)

= Lb(p10, q10, q11, r11, θ11)La(p, q, q10, r10, θ10), (44)

where

La(p, q, q10, r10, τ, θ10) :=

⎛
⎜⎜⎝

−q10 1 0 0
−r10 0 1 0

a − pq10 − qr10 − τθ10 − λ p q 0
−θ10 0 0 1

⎞
⎟⎟⎠ . (45)

5. Concluding remarks

In this paper, on one hand, we construct some novel, integrable, noncommutative (Grassmann) 
Boussinesq type systems, namely systems (29) and (40), together with a 3D-consistent limit 
(40), namely system (42). Moreover, we derive a novel Yang-Baxter map (14) together with its 
Grassmann extension (25). On the other hand, this paper answers an important question regarding 
the 3D consistency of systems, when they are extended to the Grassmann case. That is, not all 
systems lose their property to be 3D consistent in their noncommutative extension, which can be 
demonstrated by system (42).

The 3D-consistency property of systems like (42) is a very important, since for systems with 
such property we can:

• algorithmically construct its Lax representation [4,5,13,23];
• obtain a Bäcklund transformation [2,13].

In our case the Lax representation is already known.
Regarding the 3D-consistency of the system (40), we would like to stress out the following. 

The demand that quad-graph equations (2) need to be linear in every variable is because we need 
to be able to solve uniquely for any of the fields f , f10, f01 and f11. This is essential for the 
3D-consistency property. Nevertheless, this is not quite the case for systems with anticommu-
tative variables: In our system, (40), all equations are linear in all variables, which is obvious if 
one rewrites the equations in polynomial form. However, this does not imply unique solvability. 
For instance, equation (40c) cannot be solved for neither τ , nor θ10, nor θ01.

Our results can be extended in several ways. We list a couple of problems for future work.

1. The complete (Liouville) integrability of maps (25)-(26) and (14)-(15) is an open problem. 
We conjecture that there is a suitable Poisson bracket with respect to which the maps’ invari-
ants are in involution.

2. Study the solutions of system (42). In particular, knowing that system (42) has the 
3D-consistency property, we can derive a Bäcklund transformation by setting (p001, q001,

r001, θ001) ≡ (u, v, w, φ), and rewrite (62), (63) as a Bäcklund transformation between 
(p, q, r, θ) and (u, v, w, φ),4 namely:

4 If (p, q, r, θ) satisfy (42), then so do (u, v, w, φ) = (p001, q001, r001, θ001).
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(u10 − r10)v + (w − u10)q10 = 0,

v10(v − q10) + r10 − w = 0,

(w10 − p)(v − q10) − q(w − r10) = c − a,

φ10(v − q10) + θ10 − φ,

and

(u01 − r01)v + (w − u01)q01 = 0,

v01(v − q01) + r01 − w = 0,

(w01 − p)(v − q01) − q(w − r01) = c − a,

φ01(v − q01) + θ01 − φ.

3. Continuum limits. Using the above Bäcklund transformation to derive solutions of system 
(42) and, then, considering the continuum limits of these solutions, we can study the be-
haviour of the solutions of the corresponding Boussinesq-type system of PDEs.
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Appendix A. Proof of Theorem 3.3.2

Throughout this proof we shall be using the following “tilde-hat” notation.

S23
b,c((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = ((xxx,χχχ), (ỹyy,ψ̃ψψ), (z̃zz, ζ̃ζζ ));

S13
a,c ◦ S23

b,c((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = ((x̃xx,χ̃χχ), (ỹyy,ψ̃ψψ), ( ˜̃zzz, ˜̃
ζζζ ));

S12
a,b ◦ S13

a,c ◦ S23
b,c((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = (( ˜̃xxx, ˜̃χχχ), ( ˜̃yyy,

˜̃
ψψψ), ( ˜̃zzz, ˜̃

ζζζ )),

according to right side of the Yang-Baxter equation. Now, according to the right side of the 
Yang-Baxter equation,
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S12
a,b((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = ((x̂xx,χ̂χχ), (ŷyy,ψ̂ψψ), (zzz,ζζζ ));

S13
a,c ◦ S12

a,b((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = (( ˆ̂xxx, ˆ̂χχχ), (ŷyy,ψ̂ψψ), (ẑzz, ζ̂ζζ ));
S23

b,c ◦ S13
a,c ◦ S12

a,b((xxx,χχχ), (yyy,ψψψ), (zzz,ζζζ )) = (( ˆ̂xxx, ˆ̂χχχ), ( ˆ̂yyy,
ˆ̂
ψψψ), ( ˆ̂zzz, ˆ̂

ζζζ )).

Next, we apply the left part of the Yang-Baxter equation to the product

Lc(z1, z2, z3,z4, ζ1, ζ2)Lb(y1, y2, y3, y4,ψ1,ψ2)La(x1, x2, x3, x4, χ1, χ2) =
Lc(z1, z2, z3, z4, ζ1, ζ2)La(x̃1, x̃2, y3, y4, χ̃1,ψ2)Lb(x1, x2, ỹ3, ỹ4, χ1, ψ̃2) =
La( ˜̃x1, ˜̃x2, z3, z4, ˜̃χ1, ζ2)Lc(x̃1, x̃2, z̃3, z̃4, χ̃1, ζ̃2)Lb(x1, x2, ỹ3, ỹ4, χ1, ψ̃2) =
La( ˜̃x1, ˜̃x2, z3, z4, ˜̃χ1, ζ2)Lb(x̃1, x̃2, z̃3, z̃4, χ̃1, ζ̃2)Lc(x1, x2, ˜̃z3, ˜̃z4, χ1,

˜̃
ζ2),

(46)

where we have used (28) consecutively. Furthermore, applying the right part of the Yang-Baxter 
equation to the product on the same product,

Lc(z1, z2, z3,z4, ζ1, ζ2)Lb(y1, y2, y3, y4,ψ1,ψ2)La(x1, x2, x3, x4, χ1, χ2) =
Lb(ŷ1, ŷ2, z3, z4, ψ̂1, ζ2)Lc(y1, y2, ẑ3, ẑ4,ψ1, ζ̂2)La(x1, x2, x3, x4, χ1, χ2) =
Lb(ŷ1, ŷ2, z3, z4, ψ̂1, ζ2)La(x̂1, x̂2, ẑ3, ẑ4, χ̂1, ζ̂2)Lc(x1, x2, ˆ̂z3, ˆ̂z4, χ1,

ˆ̂
ζ2) =

La( ˆ̂x1, ˆ̂x2, z3, z4, ˆ̂χ1, ζ )Lb(x̂1, x̂2, ẑ3, ẑ4, χ̂1, ζ̂2)Lc(x1, x2, ˆ̂z3, ˆ̂z4, χ1,
ˆ̂
ζ2).

(47)

We need to show that the matrix trifactorisation problem:

La( ˜̃x1, ˜̃x2, z3, z4, ˜̃χ1, ζ2)Lb(x̃1, x̃2, z̃3, z̃4, χ̃1, ζ̃2)Lc(x1, x2, ˜̃z3, ˜̃z4, χ1,
˜̃
ζ2) =

La( ˆ̂x1, ˆ̂x2, z3, z4, ˆ̂χ1, ζ2)Lb(x̂1, x̂2, ẑ3, ẑ4, χ̂1, ζ̂2)Lc(x1, x2, ˆ̂z3, ˆ̂z4, χ1,
ˆ̂
ζ2), (48)

implies

˜̃xi = ˆ̂xi, ˜̃χ1 = ˆ̂x1, x̃i = x̂i , z̃j = ẑj , χ̃1 = χ̂1, ˜̃zj = ˆ̂zj ,
˜̃
ζ2 = ˆ̂

ζ2,

where i = 1, 2 and j = 3, 4.
Indeed, equation (48) yields the following system of equations

v4 − x3v3 = y4 − x3y3, (49a)

w3 − v2 = z3 − y2, (49b)

v3 − u2 = y3 − x2, (49c)

η1 + v2ζ1 = y2ζ1 + ψ1, (49d)

v1 + v2ζ2 = y1 + y2z2, (49e)

η2 − χ2v3 = ψ2 − χ2y3, (49f)

γ2 + χ2(v3w3 − w4) − η2w3 = ζ2 + χ2(y3z3 − z4) − ψ2z3, (49g)

ξ1 + u2(v2ζ1 + η1) + u1ζ1 = x1ζ1 + x2(y2ζ1 + ψ1) + x1ζ1, (49h)

u1(z2 − x3) + u2(v1 − x4 + v2z2) − ξ1χ2 = x1(z2 − x3) + x2(y1 − x4 + y2z2) − χ1χ2,

(49i)
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w3(v4 − z1 − x3v3) + w4(x3 − z2) − ζ1γ2 = z3(y4 − z1 − x3y3) + z4(x3 − z2) − ζ1ζ2,

(49j)

v3(x4 − v1) − v2(v4 − z1) − η1η2 = y3(x4 − y1) − y2(y4 − z1) − ψ1ψ2, (49k)

w4 − u1 − v3w3 + u2w3 − u2v2 = z4 − x1 − y3z3 + x2z3 − x2y2, (49l)

w3 [(v1 −x4)v3 +v2v4 +η1η2 − b]+v2(c− z1w3 − z2w4 − ζ1γ2)+ (x4 −v1)w4 −η1γ2 =
z3 [(y1 − x4)y3 + y2y4 + ψ1ψ2 − b] + y2(c − z1z3 − z2z4 − ζ1ζ2) + (x4 − y1)z4 − ψ1ζ2,

(49m)

u1(z1 −v4)+u2 [b−v1v3 + (z1 −v4)v2 −η1η2] −v3(a −u1x3 −u2x4 − ξ1χ2)− ξ1η2 =
x1(z1 − y4) + x2 [b − y1y3(z1 − y4)y2 − ψ1ψ2] − y3(a − x1x3 − x2x4 − χ1χ2) − χ1ψ2,

(49n)

u1
[
c + (v4 − z1)w3 − ζ1γ2

] + (a − u1x3 − u2x4 − ξ1χ2)(v3w3 − w4) + ξ1(η2w3 − γ2)+
u2

[
w3(v1v3 + v2v4 + η1η2 − b) − v1w4 + v2(c − z1z3 − z2w4 − ζ1γ2) − η1γ2

] =
x1 [c + (y4 − z1)z3 − z2z4 − ζ1ζ2] + (a − x1x3 − x2x4 − χ1χ2)(y3z3 − z4)+
χ1(ψ2z3 − ζ2) + x2 [z3(y1y4 + y2y4 + ψ1ψ2 − b) − y1z4+
y2(c − z1z3 − z2z4 − ζ1ζ2) − ψ1ψ2] . (49o)

Using (49a)-(49f), we express in terms of “u1 − x1”, “u2 − x2” and “v2 − y2” all variables v1, 
v3, v4, w3, η1 and η2, namely

v1 = y1 − (v2 − y2)z2, (50a)

v3 = y3 + u2 − x2, (50b)

v4 = y4 + x3(u2 − x2), (50c)

w3 = z3 + v2 − y2, (50d)

η1 = y1 − (v2 − y2)z2, (50e)

η2 = ψ2 + (u2 − x2)χ2. (50f)

Now, relation (49l), using (50b) and (50d), implies

w4 = z4 + u1 − x1 + y3(v2 − y2) + v2(u2 − x2), (51)

whereas from (49h), with use of (50e), follows that

ξ1 = χ1 + (x1 − u1)ζ1 + (x2 − u2)(ψ1 + y2ζ1). (52)

Moreover, from (49g), in view of (50d) and (49f), we obtain

γ2 = ζ2 + χ2(u1 − x1) + v2(u1 − x2)χ2 + ψ2(v2 − y2), (53)

where we have made use of (51). Additionally, with use of (50a) and (52), equation (49i) implies 
an expression for u1 in terms of “u2 − x2”, namely

u1 = x1 − (u2 − x2)
y1 + y2z2 − x4 + (ψ1 + y2ζ1)χ2

z2 − x3 + ζ1χ2
. (54)

Additionally, with the help of (50a), (50b), (50c), (50e) and (50f), it follows from (49k) that v2
can be expressed as
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v2 = y2 + (u2 − x2)
y1 + y2x3 − x4 + ψ1χ2

z1 + z2y3 − y4 + ζ1ψ2 + (u2 − x2)(z2 − x3 + ζ1χ2)
. (55)

Equation (49n) can be rewritten in the form

a(y3 − v3) + b(u2 − x2) + v3 [u1x3 + u2x4 + ξ1χ2]−
u2 [v1v3 + v2(v4 − z1) + η1η2] − ξ1η2 =
y3(x1x3 + x2x4 + χ1χ2) − x2 [y1y3 + y2(y4 − z1) + ψ1ψ2] + x1(z1 − y4) − χ1ψ2. (56)

Using equations (49i) and (49k), the quantities in square brackets in the left-hand side part of the 
above equation, can be substituted by the following expressions

u1x3 + u2x4 + ξ1χ2 = (u1 − x1)z2 + (u2 − x2)(y1 + y2z2) + x1x3 + x2x4 + χ1χ2, (57a)

v1v3 + v2(v4 − z1) + η1η2 = x4(v3 − y3) + y1y3 + y2y4 − y2z1 + ψ1ψ2, (57b)

where we have used (49e).
After a little manipulation, equation (56), with use of equations (57), can be written as

(u2 − x2) [b − a + y2(y3z2 − y4 + z1 + ζ1ψ2)] + (u1 − x1)(z1 − y4 + y3z2 + ζ1ψ2)+
(u1 − x1)(u2 − x2)(z2 − x3 + ζ1χ2) + (u2 − x2)

2 [y1 − x4 + y2z2 + (ψ1 + y2ζ1)χ2] .
(58a)

But, due to (54), (u1 − x1)(u2 − x2)(z2 − x3 + ζ1χ2) = −(u2 − x2)
2(y1 + y2z2 − x4 +

[ψ1 + y2ζ1)χ2], and with this observation, equation (58) can be factorised as

(u2 −x2)
(b−a)(z2 −x3 + ζ1χ2)− (y1 +y2x3 −x4 +ψ1χ2)(z1 +y3z2 −y4 + ζ1ψ2)

z2 − x3 + ζ1χ2
= 0,

(59)

which implies u2 = x2.
With u2 = x2, we obtain

u1 = x1, v2 = y2, v3 = y3, v4 = y4, and η2 = ψ2,

from (54), (55), (50b), (50c) and (50f), respectively, and using the above, it follows that

v1 = y1, w3 = z3, w4 = z4, ξ1 = χ1, η1 = ψ1 and γ2 = z2,

in view of (50a), (50d), (51), (52), (50e) and (53).
Now, map (25)-(26) shares the same invariants Ii , i = 1, . . . , 4 as (14)-(15), which can be 

verified by straightforward calculation. Moreover,

ξiηi = ψiχi = −χiψi, i = 1,2, (60)

namely the quantities ξiηi , i = 1, 2, constitute anti-invariants of the map.
Finally, the bosonic limit can be calculated by substituting χi → 0, ψi → 0, i = 1, 2, to (26), 

and the result will be map (14)-(15).
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Appendix B. Proof of Theorem 4.0.3

We write system (42) on the bottom face of the cube in Fig. 4, namely

p110 = r100q010 − r010q100

q010 − q100
,

q110 = r010 − r100

q010 − q100
,

r110 = b − a + q(r010 − r100) + p(q010 − q100)

q010 − q100
, (61)

θ110 = θ010 − θ100

q010 − q100
.

Moreover, according to front face of the cube, the system (42) is written as

p101 = r100q001 − r001q100

q001 − q100
,

q101 = r001 − r100

q001 − q100
,

r101 = c − a + q(r001 − r100) + p(q001 − q100)

q001 − q100
, (62)

θ101 = θ001 − θ100

q001 − q100
,

whereas on the left side of the cube is expressed as

p011 = r010q001 − r001q010

q001 − q010
,

q011 = r001 − r010

q001 − q010
,

r011 = c − b + q(r001 − r010) + p(q001 − q010)

q001 − q010
+ p, (63)

θ011 = θ001 − θ010

q001 − q010
.

There are three different ways to obtain the values (p111, q111, r111, θ111): A) Shifting system 
(61) in the k-direction, using (62) and (63) to replace the “101” and “011” values, B) shifting 
system (62) in the m-direction, using (61) and (63) to replace the “110” and “011” values, and 
C) shifting (63) in the n-direction, using (61) and (62) to replace the “110” and “101” values, 
respectively.

A) The final “111” values we obtain are

p111 = pA(r100, r010, r001, q100, q010, q001) −Ba,b,c(r100, r010, r001)

A(r100, r010, r001, q100, q010, q001)
, (64a)

q111 = qA(r100, r010, r001, q100, q010, q001) +Ba,b,c(q100, q010, q001)

A(r100, r010, r001, q100, q010, q001)
, (64b)

r111 = (p100 + qq100)A(r100, r010, r001, q100, q010, q001) + Ca,b,c(q100, q010, q001)

A(r100, r010, r001, q100, q010, q001)
,

(64c)
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θ111 = A(θ100, θ010, θ001, q100, q010, q001)

A(r100, r010, r001, q100, q010, q001)
, (64d)

where

A(x100, x010, x001, q100, q010, q001)

:= (x001 − x010)(q001 − q100) − (x001 − x100)(q001 − q010),

Ba,b,c(x100, x010, x001) := a(x001 − x010) + b(x100 − x001) + c(x010 − x100),

Ca,b,c(x100, x010, x001) := ax100(x001 − x010) + bx010(x100 − x001) + cx001(x010 − x100).

In the derivation of r111 in (64c) we used the relation p001 = p100 + q(q100 − q001), which is 
derived from the system (39) written on the front side of the cube, namely the system

p100 = r − qq100,

p010 = r − qq010.

B) In this case, the final “111” values read

p111 = pA(r001, r100, r010, q001, q100, q010) −Ba,b,c(r100, r010, r001)

A(r001, r100, r010, q001, q100, q010)
, (65a)

q111 = qA(r001, r100, r010, q001, q100, q010) +Ba,b,c(q100, q010, q001)

A(r001, r100, r010, q001, q100, q010)
, (65b)

r111 = (p100 + qq100)A(r001, r100, r010, q001, q100, q010) + Ca,b,c(q100, q010, q001)

A(r001, r100, r010, q001, q100, q010)
,

(65c)

θ111 = A(θ001, θ100, θ010, q001, q100, q010)

A(r001, r100, r010, q001, q100, q010)
, (65d)

where we have used the relation p010 = p100 + q(q100 − q010), derived from the system

p100 = r − qq100,

p010 = r − qq010,

i.e. system (39) expressed on the bottom side of the cube.
C) Finally, the “111” values in this case are given by

p111 = pA(r010, r001, r100, q010, q001, q100) −Ba,b,c(r100, r010, r001)

A(r010, r001, r100, q010, q001, q100)
, (66a)

q111 = qA(r010, r001, r100, q010, q001, q100) +Ba,b,c(q100, q010, q001)

A(r010, r001, r100, q010, q001, q100)
, (66b)

r111 = (p100 + qq100)A(r010, r001, r100, q010, q001, q100) + Ca,b,c(q100, q010, q001)

A(r010, r001, r100, q010, q001, q100)
,

(66c)

θ111 = A(θ010, θ001, q010, θ100, q001, q100)

A(r010, r001, r100, q010, q001, q100)
. (66d)

The values (64), (65) and (66) coincide due to Lemma 4.0.4.
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