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Abstract. The Intel Xeon Phi architecture from Intel Corporation features par-
allelism at the level of many x86-based cores, multiple threads per core, and vec-
tor processing units. Lattice Quantum Chromodynamics (LQCD) is currently the
only known model independent, non perturbative computational method for cal-
culations in theory of the strong interactions, and is of importance in studies of
nuclear and high energy physics. In this contribution, we describe our experiences
with optimizing a key LQCD kernel for the Xeon Phi architecture. On a single
node, our Dslash kernel sustains a performance of around 280 GFLOPS, while
our full solver sustains around 215 GFLOPS. Furthermore we demonstrate a fully
’native’ multi-node LQCD implementation running entirely on KNC nodes with
minimum involvement of the host CPU. Our multi-node implementation of the
solver has been strong scaled to 3.6 TFLOPS on 64 KNCs.

1 Introduction

Lattice Quantum Chromo-dynamics (QCD) is a computationally challenging problem
that solves the discretized Dirac equation in the presence of an SU(3) gauge field. Its
key operation is the multiplication of a matrix vector, known as the Dslash operator,
with a vector.

The current trend in high performance computing is to couple commodity proces-
sors with various types of computational accelerators, which offers dramatic increases
in both compute density, memory bandwidth and energy efficiency.

In this paper we describe implementations and tuning of LQCD for Intel’s recently
released Intel R© Xeon Phi

TM
coprocessor, codenamed Knights Corner (KNC). Our im-

plementation exploits the salient architectural features of KNC, such as large caches,
inter-core communication as well as hardware support for irregular memory accesses.
By using KNC-friendly lattice layout together with a blocking algorithm, our imple-
mentation of Dslash kernel on KNC sustains 280 GFLOPS on a single node which
corresponds to nearly 80% of achievable performance. Furthermore, we demonstrate
fully ’native’ multi-node LQCD implementation running entirely on KNC nodes, with
minimum involvement of CPU host. Our multi-node implementation of Dslash and full
solver have been strong scaled to 4.5 TFLOPS and 3.6 TFLOPS, respectively, on 64
KNCs
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2 Background

2.1 Lattice QCD

In this section we provide relevant details of LQCD for our work. For further details,
please refer to many excellent references e.g [1]. LQCD operates on an Nd = 4 di-
mensional space time lattice, with V = LxLyLzLt sites, where Lx, Ly, Lz and Lt are
the dimensions of the lattice in X,Y,Z and T respectively. Quark fields are ascribed to
the sites of the lattice while gluon fields are ascribed to the links between sites. The
interaction of quarks and glouns is given by the Fermion matrix M . In the Wilson [2]
formulation of quarks M is given by:

M = (Nd+m)−1
2
D,with D =

4∑
µ=1

(
(1−γµ)⊗Uµ

x δx+µ̂,x′ +(1+γµ)⊗Uµ†
x−µ̂ δx−µ̂,x′

)
(1)

where D is the Wilson-Dslash operator (WD). In Eq. 1 the sum is over directions µ,
m is a quark mass parameter, Uµ

x is the gauge link matrix connecting sites x with its
neighbor in the µ direction, and γµ are elements of a Dirac spin-algebra. The propa-
gation of quarks in a gluon field is given by the Dirac equation: Mψ = χ where ψ
and χ are spinors, which at each site x are complex matrices carrying a spin index
α ∈ [0, 1, 2, 3] and color index a ∈ [0, 1, 2]. Applying D to a spinor can be viewed
as a nearest neighbour stencil operation. To facilitate the solution of M typically an
even-odd preconditioning is used, wherein a lattice is divided (typically in the x di-
rection) into even and odd sub-lattices and one solves the Schur complement system
M̃ooψ̃o = χ̃o only on one checkeboard (in this case ’odd’). Here M̃oo is the Schur
complement of M after checkerboarding given by:

M̃oo = (Nd +m)Ioo −
1

4(Nd +m)
DoeDeo (2)

where subscripts oe, eo indicate that the operator maps odd sites to even, even to odd
respectively. The system is large and sparse and is typically solved by an interative
solver such as Conjguate Gradients (CG) [3] or BiCGStab [4].

The key operation is the sparse matrix vector multiplication Dψ. The naive arith-
metic intensity of the Dslash operator is 1320 flops / 1440 bytes = 0.92 flops/byte in
single precision, however, due to nearest neighbor nature of the Dslash operator, there
is substantial reuse amongst spinors. Properly exploiting this reuse with caches, can al-
most double the arithmetic intensity [5]. In some cases one can perform 2-row gauge
field compression, thus trading flops for bandwidth by making use of the SU(3) nature
of the links and storing only two rows of the matrix and reconstucting the third row on
the fly [6].

2.2 Intel R© Xeon Phi
TM

coprocessor architecture

The recently released Intel R© Xeon Phi
TM

coprocessor architecture features many in-
order cores on a single die. Each core has 4-way hyper-threading support to help hide
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memory and multi-cycle instruction latency. In addition, each core has 32 vector regis-
ters, 512 bits wide, and its vector unit executes 16-wide (8-wide) single (double) pre-
cision SIMD instructions in a single clock, which can be paired with scalar instruc-
tions and data prefetches. KNC has two levels of cache: single-cycle 32 KB first level
data cache (L1) and larger globally coherent second level cache (L2) that is partitioned
among the cores. Each core has a private 512 KB partition. KNC also has hardware
support for iregular data accesses and features several flavors of prefetch instructions
for each level of the memory hierarchy.

KNC is physically mounted on a PCIe slot and has dedicated GDDR memory. Com-
munication between the host CPU and KNC is therefore done explicitly through mes-
sage passing. However, unlike many other coprocessors, it runs a complete Linux-based
operating system, with full paging and virtual memory support, and features a shared
memory model across all threads and hardware cache coherence. Thus, in addition to
common programming models for coprocessors, such as OpenCL, KNC supports more
traditional multiprocessor programming models such as pthreads and OpenMP.

3 QCD Implementation on KNC

Our library is written in C++ and threading is carried out using OpenMP threads. The
library implements the Wilson Dslash and the even-odd preconditioned Wilson opera-
tors and a Conjugate Gradients solver. We consider the code in two parts: a high level
part which is concerned with parallelizing over threads, and performs the loop structure
for our cache blocking strategy, and a ’back end’ part, which takes care of working on
a vector of lattice sites.

To achieve high performance on KNC, one must take full advantage of its vector
capabilities. A SIMD friendly, partial structure of arrays (SOA) layout such as de-
scribed in [5] can run with high vector efficiency, however it requires that a scanline
(line of sites in X) be a multiple of the vector unit length (vec). This can then restrict
the application of the code to problems where Lxh = Lx/2 the X-width of a checker-
board is a multiple of vec. The larger vec is, the more restrictive this becomes. Our
first KNC implementation was written this way. However, we have developed a more
general approach, described below, to address this limitation. Specifically, we allow the
inner array length soa of the SOA (or SOA length) to be a factor of vec. This has the ad-
vantage of allowing more general problem sizes, but since it mixes X and Y dimensions
it can complicate communications in those directions. Our code is templated on floating
point type, vector length vec and SOA length soa. The back end codes are generated
using a code generator which we will describe below, and are hooked into the main
library using template specialization. We focused specifically on the cases of vec = 16
(vec = 8), soa = 4, 8, 16 (soa = 4, 8) for Xeon Phi (Xeon E5-AVX).

Our primary data structures are SU(3) gauge fields, 4-spinors as discussed earlier.
Each of these fields is associated with a lattice site. In the case of the gauge fields we
associate with a site the 8 links emenating from it (forward and backwards in each of
4 directions). We then split the lattice into blocks of sites. In the case of spinors we
have VB = LxhLyLzLt/soa such blocks per checkerboard. We require that soa divide
Lxh exactly, and that vec divide LyLxh exactly. In this way our back end kernels can
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process soa × ngy spinor blocks where ngy = vec/soa. A single processing step can
thus process a full vec sites worth of data, made up of spinors of length soa from ngy
different y coordinates. The situation is illustrated in Fig. 2 on the right panel. The gauge
fields could be packed similarly, however since they are typically used in several dslash
applications, it is worth repacking the ngy blocks of length soa into a single block of
length vec up-front, allowing them to be read as a single vector. Hence the gauge field
has VBG = LxhLyLzLt/vec blocks. We show the types of the block data in figure 1. To

typedef float SU3MatrixBlock[8][3][3][2][vec];
typedef float FourSpinorBlock[3][4][2][soa];

Fig. 1: The structures of the fields used for a single block of computation.

reduce the effects of associativity conflict misses, we pad our array, by adding Padxy

blocks onto the end of every X-Y plane and Padxyz blocks onto the end of everyXY Z
time-slice. Hence a spinor site with coordinates (x, y, z, t) is indexed as follows: We
locate the X-Y plane for the z and t indices using the formula xyBase = t Pxyz +
z Pxy with Pxy = (LxhLy) +Padxy , and Pxyz = LzPxy+Padxyz . Within the X-
Y plane, we first split the x coordinate into an x-block index; xb = x/soa and an index
within the block: xi = x mod soa. The offset to the block is now xb+ nsoa ∗ y with
nsoa = Lxh/soa. Given an array spinor of objects of type FourSpinorBlock as
defined in Fig. 1, with VB array elements, the site would be indexed as spinor[ xb
+ nvecs*y + xyBase ][c][s][r][xi] where c, s and r are indices for the
color, spin and complex component respectively. In our code, we compute xyBase and
then separate offsets in terms of floating point numbers to be used by gathering loads.
Indexing gauge fields is slightly different, since ngy lines of y are packed together. In
this case the block offset would be computed as xb+ (nvec ∗ y + xyBase)/ngy.

We wrote a simple code generator to overcome two programming challenges: hav-
ing a portable abstraction for producing intrinsics to generate code for both Xeon Phi,
and AVX. The second challenge was to intermingle software prefetch instructions with
the main computation. The generation of L1 prefetch instructions is part of the code
generating routines. The L2 prefetches are generated in a separate pass and the two in-
struction streams are intermixed. The current version of the generator supports single
precision vector instructions for Xeon Phi and AVX. It is straightforward to extend the
generator to support double precision and other vector architectures. Gathering (scat-
tering) spinors from (to) their soa × ngy XY blocks is supported both via the gather
intrinsics on Xeon Phi, or via a sequence of masked load-unpack, or pack-store in-
structions. To take advantage of streaming stores we use in-register shuffles to pack full
cache lines, which are then streamed to memory using nontemporal store instructions.

Our code implements a variant of the usual 3.5D blocking [7], however, we have a
sufficiently large number of cores, that we cannot divide the Y-Z planes amongst them,
without local Y-Z blocks becoming too small and leading to excessive redundant mem-
ory traffic. Instead, we consider our cores as making up a 3-dimensional grid of cores
with dimensions (Cy, Cz, Ct). The T-dimension is effectively blocked with a block size
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Bt = Lt/Ct, (with some cleanup work if Ct does not divide Lt exactly). To block in
the YZ plane, we introduce blocking factors By and Bz and require that ByCy divide
Ly exactly and similarly that BzCz divide Lz exactly. Each core then works on an in-
teger number of blocks of size By ×Bz sites in the YZ plane, and we can tune By and
Bz to maximize cache reuse. We show semantically the blocking in Fig. 2. As a result,
cores working on the same block of T constructively reuse spinor data across adjacent
YZ planes. Moreover, cores working on adjacent By x Bz sites will share boundary
data via inter-core communication, without going back to memory. However, in order
to ensure constructive sharing, it is important to maintain some degree of synchroniza-
tion between these cores, which is achieved via infrequent inter-core barriers amongst
groups of Cy × Cz cores.

Within each core we treat the available SIMT threads as a grid of threads with
dimensions Sy × Sz . Our lattice traversal looping strategy for any given thread is as
follows: First, the core and SIMT coordinates (cy, cz, ct) and (sy, sz) of the thread are
computed, and then one identifies the origin of the first YZ tile which that thread will
process. The thread then loops over the Y and Z blocks, leaping over those done by
the other cores. In each block, the threads stream through the local T portion. The local
Y and Z plane of the block is split between the SIMT threads on the core. Since each
SIMT thread processes a soa×ngy block looping over x and y is done in units of blocks
of length soa in X, and in increments of nyg ∗Sy in Y respectively. The innermost loop
can then use the information from the loop indices and the origins computed at the
outset to index the neighbour blocks to be read, the output block to be written, and the
neighbours of the successive block for L2 cache prefetching.

On Xeon Phi, the optimal block size was (By, Bz) = (4, 4) which gave the best
tradeoff between cache efficiency and redundant memory traffic on the edges of the
blocks. We note also that for computing Dslash, we always used all the available SIMT
threads on a core, and threads were indexed in a SIMT major order, ie: thread ID tid is
defined as tid = sy + Sy ∗ (sz + Sz ∗ (cy + Cy ∗ (cz ∗ Cz ∗ ct))).

In order to implement a Conjugate Gradients solver, one needs several Level-1
BLAS like streaming linear algebra operations. These operations require few floating
point operations and are heavily bound by memory bandwidth. If there is a chance to
increase reuse between them it is worth fusing several successive kernels, for exam-
ple in a situation where one can compute a residual vector, and compute its norm at
the same time. We coded these operations in vector intrinsics with explicit software
prefetching. We found we can achieve different levels of throughput depending on how
many threads are per core. We show in table 1 the various kernels used along with the
(possibly fused) operatins they perform, and as an illustration, the memory bandwidths
achieved by the kernels from a particular timing measurement. We see that in most
kernels one or two threads per core performed optimally. In our timing runs we have
auto-tuned the number of threads in our BLAS kernels for efficiency.

3.1 Multi-Node considerations

It is typical to parallelize LQCD problems onto multiple nodes to increase performance.
Further, memory limitations can also force the calculation onto multiple nodes. Conse-
quently we paralellized our code onto multiple Xeon Phis (and also SNB-EPs). The
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Fig. 2: Blocking the lattice. Left: YZT view showing By , Bz and Bt, and core coordinates for
the top block. The boundary layer of the YZ plane for one of the blocks is shown in orange,
although (for the last T-slice) typically it would wrap around. Right: XY-view, showing blocks of
length soa in X, and ngy lines in Y. In this instance ngy = 2 and vec = 2soa

B/W B/W B/W B/W
Routine Name operation 1 thread 2 threads 3 threads 4 threads

(GB/s) ( GB/s) (GB/s) (GB/s)
aypx2 y → αy + x 172 164 152 148

xmyNorm2 r → x− y 150 145 135 128
ρ → ||r||2

norm2 ρ → ||r||2 154 157 154 156
r → r − αq

rmammpNorm2rxpap ρ → ||r||2 165 141 124 115
x → x + αp

copy x → y 155 155 149 149

Table 1: BLAS Like Kernels and the operations they perform. Here x, y, r, p, q are lattice spinors,
α and ρ are scalars, and in a Conjugate Gradients solver we have that q = M†Mp. We also quote
memory bandwidths observed in these kernels as a function of threads per core from a single
timing measurement on a Xeon Phi 7110P device in a node of the Endeavor cluster, rounded to
the nearest GB/sec.



Lattice QCD on Intel Xeon Phi 7

multi-node implementation overlaps computation of the body with the communication
of faces. Faces are projected to two spinors to reduce data to be communicated. Once
the body computation and communications are complete, the faces are multiplied ap-
propriately with gauge links, and their contribution to Dslash is accumulated as is usual
in QCD implementations (e.g. [8, 9]). Our face processing routines were also written
with the code generator, but are not yet optimized to the same extent as the body com-
putation.

A novel feature of the Xeon Phi architecture and software ecosystem, is that native
implementations can make direct MPI [10] message passing calls, freeing up the user
from orchestrating data transfers between host and the co-processor as would be needed
in an offload model. This allows the programmer to treat a cluster of KNCs as a regular
cluster of homogenous MPI nodes and thus improves the ease of programming. Our
code initially used the QMP message passing layer over MPI [11].

On the other hand, although communication across the KNCs using MPI directly
is optimized for latency, the achievable peak bandwidth is quite low due to hardware
issues unrelated to Xeon Phi. As we scale LQCD in a cluster, the boundaries that are
exchanged with the neighbors vary between 256KB and several MBs for large problems
such as one would schedule on a Xeon Phi and for these message sizes the bottleneck
is typically the communication bandwidth.

In particular, experimentation has shown that only about 1 GB/s bandwidth can be
achieved using MPI directly, and this was insufficient for strong scaling to a large num-
ber of nodes. To overcome this issue, we implemented a reverse proxy that relays the
large message network data to CPUs, which in turn sends the data to the destination
CPU, similar to the design proposed in [12]. We use this proxy to handle the band-
width limited nearest neighbour communications via the Xeon-E5 CPU. We assign a
CPU core to process requests from local KNCs for extracting the data from local KNC
memory to host memory via DMA and send the data to destination CPU. Similarly, at
the destination, the CPU core receives the data and copies the data from host memory
to KNC memory. The whole process is performed in a pipelined manner by splitting
the application data into several small chunks. The chunk sizes for a given applica-
tion message are also chosen dynamically since smaller chunk sizes can amortize the
startup overheads but at the cost of lower bandwidth while larger chunk sizes give good
bandwidth but may expose startup overheads. We use a memory mapped request and
response queue model [13] control message handshake between CPU and Xeon Phi.
We stress that this proxy is very lightweight and does not require much in the way of
CPU resources.

4 Hardware Setup and Experiments

Our numerical experiments consist of two kinds of measurements: the performance of
our Dslash operator and the performance of the Conjugate Gradients solver. We have
also measured performance of both, for comparison, using SNB-EP as well as NVIDIA
Kepler K20m GPUs.

Two different kinds of Xeon Phi systems were used: nodes from the Endeavor Xeon
Phi Cluster operated by Intel and nodes from from the Jefferson Lab (JLab) 12m cluster.
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An Endeavor cluster node is comprised of dual socket Intel Xeon E5-2670 (SNB-EP)
CPUs with 8 cores per socket, and two Xeon Phi co-processors with 61 cores each
running at 1.1 GHz. The Xeon Phi has SKU B1PRQ-7110P (7110P from here on),
using B1 stepping silicon, running Intel MPSS version 2.1.3552-1. The 7110P has 7936
MB of GDDR memory running at 2.75GHz giving a GDDR speed of 5.5GT/s. These
nodes are connected with an FDR Infiniband interconnect. For compilation we used
Intel Composer XE version 13.0.0 and Intel MPI version 4.1.0.027. Nodes of the JLab
12m cluster contain dual socket Xeon E5-2650 CPUs running at 2.0 GHz. They also
contain four Xeon Phi 5110P co-processors (5110P from here on), each of which has
60 cores running at 1.053GHz. The 12m nodes run MPSS version 2.1.4346-16 (Gold)
and are connected by FDR Infiniband, tho we have not run multi-node Xeon Phi tests on
these systems. The node runs CentOS 6.2. In our tests the Xeon Phi nodes were booted
with icache snooping turned off.

Our Kepler K20m measurements were made on a node of the Jefferson Lab 12k
cluster. The base nodes (chassis, motherboard, CPU, fabric) are the same as the 12m
cluster node described previously. We used the gcc-4.4.6 and CUDA Toolkit v5.0 for
compilation, and ran using version 304.54 of the CUDA driver. Our reference mea-
surements used the publicly available QUDA [6] software package for lattice QCD on
GPUs4 in a pure single precision mode. We have also measured the performance using
Kepler K20c and the results were within experimental noise, indentical to the Kepler
K20m results.

We have chosen 5 volumes, on which to run our timing tests. We were driven in
our choice by the spatial sizes of 243, 323, 403 and 483 sites for the first four of these,
aiming to make the temporal direction as large as we could fit on the device, in order to
mimic a capacity mode of operation, where as few nodes as possible are used to perform
a calculation. However due to memory limitations we had to vary the T-extent and in
one case the Z extent. The volumes thus chosen were 243 × 128, 323 × 128, 403 × 96
and 482×24×64 sites respectively. Our fifth volume, of 32×40×24×96 was chosen
to allow maximum performance on 60 cores without having to split the time direction
over the cores. Using 4 × 4 blocks in the Y and Z directions, this volume can ideally
use 60 cores as a plane of 10× 6 cores.

5 Single-Node Results

Our single node measurements for Wilson Dslash are shown in figure 3. We show both
the case when gauge fields are compressed and when they are uncompressed. We show
performance for all 4 systems considered. The different colored bars correspond to
different volumes.

We can see that Sandy Bridge system seems not to benefit much from the gauge field
compression. It does, however benefit both Xeon Phi platforms and the NVIDIA k20m
platform as expected. We note that in the V = 32 × 40 × 24 × 96 case, performance
hits 300 GFLOPS on the 7110P, but recall that this is an ’ideal volume’, for this 61 core
device. Indeed we do not see this level of performance for our 60 core part.

4 We used git commit-ID: 541c66ba1a0eca11eb555dc8de6686cd54383c6c, master branch, Feb-
04, 2013, available from https://github.com/lattice/quda
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We point out that a dual socket Xeon E5-2680 (2.6GHz) CPU can sustain perfor-
mances that are approximately half the speed of a the Xeon Phi 5110 – roughly 120
GFLOPS in the case of the Sandy Bridge, vs roughly 250 GFLOPS in the case of the
Xeon Phi 5110 with compression enabled.

The performances seen on the Xeon Phi and the NVIDIA K20m are very close to
each other. In the case Wilson Dslash with compressed gauge fields, the K20m is in the
same ballpark as the XeonPhi 5110P, with some volumes running slightly faster on one,
and some running slightly faster on the other. The 61 core Xeon Phi 7110P appears the
fastest amongst the systems tested, from the point of view of Dslash.
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Fig. 3: Performance of Wilson Dslash for various volumes, for Xeon E5 (Sandy Bridge), XeonPhi
5110P, XeonPhi 7110P and NVIDIA K20m, Vertical axis shows performance in GFLOPS

The performances of the Conjugate Gradients algorithm are shown in figure 4. We
consider the same volumes as for the Dslash. Here we find that for uncompressed gauge
fields the K20m and the Xeon Phi 5110P are nearly identical in terms of speed. How-
ever, when using compressed gauge fields, the K20m performs faster than our Xeon Phi
5110P and rivals the 7110P. Again, we observe roughly a factor of 2 in performance
between the dual socket Sandy Bridge EP system and the Xeon Phi 5110P.

To understand these results let us consider the following: with perfect spinor reuse,
using gauge compression (but not counting the extra flops it incurs) the memory-bound
performance of Wilson-Dslash is 1320

4∗(24∗2+12×8)/Bm
GFLOPS [5], where Bm is the

memory bandwidth in GB/sec. The STREAMS triad bandwidth on KNC is ∼150 GB/s
using four threads, similar to aypx2 in Tab. 1. Hence, the peak achievable Dslash per-
formance is ∼354GFLOPS of which we sustain 280GFLOPS. This is 80% of what is
achievable. The 20% deviation from this idealized model is due to redundant memory
traffic from the block boundaries resulting from blocking the volume in three dimen-
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Fig. 4: Performance of Conjugate Gradient solver for various volumes, for Xeon E5 (Sandy
Bridge), XeonPhi 5110P, XeonPhi 7110P and NVIDIA K20m. Vertical Axis shows performance
in GFLOPS

sions and our inability to use all the cores in cases where grid dimensions are not divisi-
ble by core grid dimensions. This is mildest for the 32×40×24×96 site volume where,
as a result, we achieve 300GFLOPS. On the SNB-EP, memory bandwidth is about half
that of KNC, while on the NVIDIA K20m it is comparable to KNC. Hence the SNB-EP
runs at roughly half the speed of, while the NVIDIA K20m performs similarly to KNC.

6 Multi-Node Results

Our multi-node experiments were carried out on up to 64 nodes of the Endeavor cluster
described in sec. 4. In our tests we used one KNC processor per cluster node.

Figure 5 demonstrates the strong scaling performance of our code on lattices of size
V = 323 × 256 and V = 483 × 256 sites. We note that our V = 323 × 256 scaling
study was carried out with the first version of our code, which required Lxh to be a
multiple of 16 sites but allowed for full 3-dimensional communications patterns, while
our V = 483 × 256 study was carried out with the more general version described in
Sec. 3, which allows for different values of soa, but is restricted at present to at most
2-dimensional communication.

The strong scaling performance in Fig. 5 indicates that we do scale up to 16 nodes
on the 323 × 256 problem. However, the efficiency drops to 44% on 32 nodes and
25% on 64 nodes demonstrating 3.9 TFLOPS and 4.5 TFLOPS, respectively. This is
due to the local problem decreasing to a sufficiently small size, that the overhead of
copying, communicating and processing the boundaries is exposed. We measured these
overheads for 32 node strong scaling experiment for the V = 323 × 256 workload. We
observed that 50% of the time was spent in computing the internal volume and 25%
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Fig. 5: Strong Scaling multi-node Performance on the Endeavor cluster: (a) Wilson Dslash, (b)
Conjugate Gradients. The vertical axis shows the performance in GFLOPS

of the time was spent in computing the boundaries. Although the communication was
overlapped with computation, 13% of the communication was still exposed since the
body computation finished earlier than the communication. The rest of the overhead
(12%) was due to face projection and boundary copying.

In turn, the Conjugate Gradients algorithm sustained a performance of up to 3.6
TFLOPS for the 323 × 256 lattice. We also see that the CG solver has a roughly 20%
slowdown as compared to the performance of the Wilson Dslash kernel of 4.5 TFLOPS.
This slowdown is due to the additional computation incurred by the linear solver in our
linear algebra operations and the synchronization overheads incurred in global reduc-
tion operations (global sums) performed across the MPI cluster. Although beyond the
scope of this work, we expect we could improve our solver performance using a variant
of pipelined CG [14].

7 Related Work

There are several implementations of LQCD Dslash implementations in the literature,
many of them targeting novel architectures (of the time of their writing) such as GPUs.
Optimizing for the Xeon architecture is described by us in [5], whereas recent efforts
to optimize for BlueGene/Q architecture are presented in [9,15]. GPU implementations
using CUDA are presented in [6,16], while an OpenCL version is in [17,18]. Autotuned
blocking schemes for Wilson Dslash have been investigated on GPUs in [19].

Historically the implementations on various architectures are too numerous to list.
We will content ourselves with mentioning the implementation of [20] on the QCDSP
supercomputer and of [21] on the BlueGene/L, since these contributions both won Gor-
don Bell prizes for cost effective supercomputing in 1998 and 2006.

Code generators for writing efficient assembly code are described in [22] and [23].
Reverse offload style communications are described in [12] for the Road Runner Su-
percomputer, and in [24] for GPU applications.
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8 Conclusion

We have detailed our approach to implementing the Wilson Dslash operator of LQCD,
and have presented performance results for both single and multi-node settings. Our
single node Dslash operator sustains ∼250 GFLOPS and ∼280 GFLOPS on Xeon Phi
5110P and 7110P devices respectively. Our multi-node implementation has been run on
up to 64 Xeon Phi devices and has been strong scaled up to 4.5 TFLOPS for Wilson-
Dslash, and 3.6 TFLOPS for the CG solver on a lattice of 323 × 256 sites.

We compared our single node results with performances from the QUDA library
on NVIDIA K20m GPUs, running purely in single precision to have like for like tests,
and found them to be competitive. We note, however, that QUDA can gain additional
performance on the GPUs by employing 16-bit precision in mixed precision solvers.
We are considering implementing this approach as potential future work.

To achieve these performances required attention to expose parallelism on core,
SIMT thread and vector instruction levels on a single KNC (Xeon) as well as cache-
blocking techniques. To achieve the multi-node performance we used a reverse com-
munication proxy. In order to utilize fully the vector capabilities of the architecture and
to mimimize memory latency through software prefetching, we wrote a simple code-
generator. A notable outcome of our work is an infrastructure which could be retargeted
to other vector formats. In particular, we sustained excellent performance on Xeon E5-
s (≈ 125 GFLOPS single precision in the Dslash) simply by re-targetting the code-
generator to emit AVX intrinsics, and re-tuning our blocking factors. This demonstrates
a performance portability aspect of our infrastructure.

Our future work will include improving our blocking strategy, further optimization
of our code for multiple nodes, implementing other formulations of LQCD, and inves-
tigating the potential of a hybrid code using both the host CPU and the Xeon Phi(s).
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