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Abstract. Subject of this talk is an overview of results on self-gravitating non-
abelian magnetic monopoles. The coupling to the gravitational field leads to new
features absent in flat space: gravitating monopoles have unstable “radial excitati-
ons” and they exist only up to a maximal mass (related to a kind of “gravitational
confinement” at the Planck scale). In addition to the globally regular monopoles
there are “coloured” black holes, i.e., magnetically charged black holes carrying a
non-trivial YM field outside their event horizon. The latter give rise to a violation
of the “No Hair” Conjecture.

1 Introduction

This talk is an overview of results on self-gravitating magnetic monopoles. It
is mainly based on analytical and numerical results obtained in collaboration
with P. Breitenlohner and P. Forgács (Breitenlohner et al. 1992, 1995). Many
other people, who have contributed in establishing our present understanding
of this subject will be mentioned in due course.

As a genuine non-linear structure magnetic monopoles play an important
role in the non-perturbative aspects of the Yang-Mills-Higgs (YMH) theory.
Originally they were found as solutions of the YMH field equations in flat
space, but in a very interesting early paper van Niewenhuizen et.al. (van
Nieuwenhuizen et al. 1976) considered also the gravitational self-interaction
of monopoles. However these authors made no attempt to actually construct
solutions with analytical or numerical methods. Only twenty years later, trig-
gered by the discovery of globally regular solutions of the Einstein-Yang-Mills
theory by Bartnik and McKinnon (Bartnik and McKinnon 1988) new interest
in the subject arose.

A systematic numerical study of the effects of gravity on magnetic mono-
poles (Ortiz 1992, Lee et al. 1992, Breitenlohner et al. 1992, 1995) revealed
a number of interesting phenomena. In contrast to monopoles in flat space
gravitating monopoles allow for “radial excitations”, which have some close
connection with the solutions discovered by Bartnik and McKinnon. As to
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be expected gravitating monopoles develop a gravitational instability for suf-
ficiently strong gravitational self-force, manifesting itself in some kind of a
“Gravitational Confinement”. Systematically increasing the strength of the
gravitational self-coupling (resp. letting the monopole mass approach the
Planck scale) one reaches a limiting solution, which in its exterior part has
the geometry of an extremal black hole.

Obviously one may question the physical relevance of monopoles with a
mass close to the Planck mass, since on the one hand even in GUTs the
monopole mass would be considerably lower and on the other hand at the
Planck scale one would expect quantum gravity effects to come into play.

In addition to the regular monopoles there are also black hole solutions
carrying a non-trivial exterior YM field (“Coloured Black Holes”). Taking
into account their radial excitations, one finds a rich spectrum of such static
black hole solutions. This is to be contrasted with Einstein’s theory in vacuum
resp. with the Einstein-Maxwell theory, where according to a theorem of Israel
(Israel 1967 1968) the Schwarzschild resp. Reissner-Nordstrøm solution are
the only static black holes. The co-existence of all these black hole solutions
with the same magnetic charge gives rise to an interesting violation of the
“No-Hair” Conjecture (Chruściel 1994; Bizon 1993).

2 Magnetic Monopoles and Sphalerons in Flat Space

Let me start with a short reminder on the static, spherically symmetric so-
lutions of the YMH system in flat space. For simplicity I restrict myself to
the gauge group SU(2) from now on.

The so-called ’t Hooft-ansatz for the static, spherically symmetric YM
field in polar coordinates reads

W a
0 = 0 W a

i = εiak
xk

r2 (W (r) − 1) . (1)

Inserting it into the standard YM action

SY M = − 1
4π

∫
d4 x

[ 1
4g2 TrF 2

]
(2)

yields the reduced action

SY M,red = −
∫

dr
[ 1
g2 (W ′2 +

(1 − W 2)2

2r2 )
]

. (3)

A rescaling of the radial coordinate r → r/λ leads to a rescaling of the action
SY M,red → λSY M,red. This property (related to the scale invariance of the 4-
dimensional theory) prevents the existence of any non-trivial stationary point
of SY M,red with finite non-zero action (energy), manifestating the general
statement, that the flat YM theory has no solitons (Coleman 1975; Deser
1976).
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The situation changes with the inclusion of the Higgs field. Through its
“vacuum expectation value” v two scales are introduced, the mass MW = gv
of the YM field and the Higgs mass MH =

√
λv. There are two different cases

Fig. 1. a) PS-monopole, b) DHN-sphaleron, both for vanishing (solid) and infinite
(dashed) Higgs mass

to be considered, leading to rather different types of solutions. The Higgs field
can be either in a triplet or in a doublet representation. In either case the
action is

SH =
1
4π

∫
d4 x

[1
2
|Dφ|2 − λ

8
(|φ|2 − v2)

]
. (4)

The finite energy solutions in the case of a Higgs triplet are the ’t Hooft-
Polyakov magnetic monopoles (’t Hooft 1974; Polyakov 1974). They are ob-
tained with the ansatz

φa =
xa

r
H(r) . (5)

Inserting this ansatz in the action (4) one gets

SH,red = −
∫

dr
[r2

2
H ′2 +

λr2

8
(H2 − v2)2 + W 2H2

]
. (6)

In order to obtain finite total energy the Higgs field has to tend to its vacuum
value v for r → ∞, forcing in turn W → 0. Outside a “core” of size 1/MW the
solution is essentially equal to the embedded abelian Dirac monopole W ≡ 0
avoiding the singular center at r = 0 of the latter (compare Fig. 1a).

For large values of MH and hence of β the function H(r) rises quickly to
its asymptotic value v. In the limit β → ∞ the Higgs field may be replaced
by v for all r > 0 and its only role is to give a mass to the YM field. The
total energy of the solution stays finite in this limit. In fact, it only varies
by a factor ≈ 1.8 as β varies from 0 to ∞. Of particular interest is the exact
BPS monopole solution for β = 0 with the simple exact form (using h = rH
for convenience)
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W (r) =
vr

sinh(vr)
h(r) = vrcoth(vr) − 1 , (7)

satisfying a system of first order equations (Bogomolny equations)

rW ′ = Wh , (8a)
rh′ = h + 1 − W 2 (8b)

implying the second order field equations. Considered as a solution of a sui-
table supersymmetric extension (N=2 SUSY-YM theory) it has the special
property of being “half supersymmetric”, i.e., it is annihilated by one half of
the infinitesimal supersymmetry generators. This implies the relation E = vP
between the energy of the solution and its magnetic charge P (equalling the
central charge of the N = 2 SUSY algebra). If “quantizing” the solution does
not destroy supersymmetry, i.e., the above relation is preserved, any quantum
corrections to its mass have to vanish (Witten and Olive 1978).

Due to the topological character of the magnetic charge, related to the
asymptotic vacuum structure of configurations with finite energy, the mono-
pole is a stable solution.

The second possibility is a Higgs field in the doublet representation. The
relevant ansatz of the Higgs field is Φα = H(r)ξα with some constant spinor ξ.
Although this ansatz is not itself spherically symmetric it leads to a consistent
reduction. The corresponding reduced action is

SH,red = −
∫

dr
[r2

2
H ′2 +

λr2

8
(H2 − v2)2 +

1
4
(W + 1)2H2

]
. (9)

The only essential difference of this action to the one for the triplet is the
form of the mass term. It destroys the symmetry W → −W and enforces W
to turn to W = −1 for r → ∞ in order to have finite total energy (compare
Fig. 1b). This asymptotic behaviour implies that the solution has no magnetic
charge in contrast to the previous case with W → 0.

Unlike the stable monopole the sphaleron, i.e., the solution minimizing
the energy E = −S, is unstable. In order to understand this instability it is
important to consider the most general spherically symmetric ansatz for the
YM field.

W a
t = (0, 0, A0) , W a

θ = (W1, W2, 0) , (10a)
W a

r = (0, 0, A1) , W a
ϕ = (−W2 sin θ, W1 sin θ, cos θ) . (10b)

The ansatz used above for the monopole and the sphaleron corresponds to
a consistent truncation, putting A0 = A1 = W2 = 0 and W1 = W . The
sphaleron turns out to be stable under variations staying within the minimal
ansatz, but not if δW2 6= 0 and δA1 6= 0. As was discussed by Manton (Man-
ton 1983) this instability may be attributed to the non-trivial topology of the
configuration space of the spherically symmetric YM potential, again related
to the asymptotic vacuum structure of configurations with finite energy.
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Fig. 2. Conformal diagram for the Schwarzschild solution

3 The Spherically Symmetric Gravitational Field

Spherically symmetric space-times M4 have the structure of an orthogonal
product M4 = M2 × S2 of a 2-dimensional space M2 with a 2-sphere with a
corresponding decomposition of the metric ds2

4 = ds2
2 + r2dΩ2, where dΩ2 is

the invariant metric on S2 and its inverse curvature r is a function on M2. A
convenient parametrization of ds2

2 is

ds2
2 = A2Bdt2 − dR2

B
, (11)

with arbitrary time resp. radial coordinates t and R. The standard choice
for the latter is the “Schwarzschild” coordinate R ≡ r, which is possible as
long as dr/dR 6= 0. We are only interested in static solutions, with A and B
independent of the canonical time coordinate (“Killing-time”) t. Insertion of
the ansatz into the standard Einstein action then yields

SG,red =
1

2
√

G

∫
dr

[
A(B + rB′ − 1)

]
. (12)

The dimensionality of G introduces a mass scale MPl = 1/
√

G, the Planck
mass. Variation with respect to A and B yields (with suitable boundary
condition at infinity) the Schwarzschild solution A = 1, B = 1 − 2M/r. 1

1 Although SG,red is also just rescaled under a scaling r → λr similar to SY M,red,
there is now a non-trivial stationary point with vanishing action, because SG,red

is indefinite.
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As is well known it describes a static black hole of total mass M and event
horizon located at the Schwarzschild radius rS = 2M . The fact that its
total mass is finite, although the solution has a real singularity at the origin,
illustrates a general difference to flat space, where the finiteness of the total
energy of a field configuration in general implies some regularity properties.
This remark is not made without hindsight, as it explains the unsuitability
of the energy (mass) functional for existence proofs of solutions once the
gravitational self-interaction is included.

Fig. 3. a) Schwarzschild b.h., t = 0 hyperplane for r > 2M (each circle is actually
a 2-sphere), b) same for r < 2M

The geometry of black hole space-times is best illustrated with their con-
formal diagram Fig. 2 (Hawking and Ellis 1973). Since we are considering the
solutions for fixed t, the hyper-surfaces t = const. are of particular interest.
They meet the horizon at the so-called “bifurcation surface” of the horizon.
In order to study their geometry it is useful to switch to another radial coor-
dial coordinate, avoiding the apparent singularity of the metric at r = 2M .
A convenient choice is

ρ =

r∫

2M

dr′
√

B
. (13)

Due to the square-root ρ is a double-valued function of r, the continuation
through the branch point at r = 2M leading to another copy of the original
surface and thus giving the surfaces t = const. their famous “wormhole”
structure (Fig. 3). A similar construction for the corresponding (time-like)
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Fig. 4. a) Extremal Reissner-Nordstrøm b.h., part of the t=0 hyperplane for r > M ,
b) same for r < M

surfaces inside the horizon (replacing B by −B in (13)) leads to a compact
surface with a second singular center (r = 0).

Next we consider the static black holes of the Einstein-Maxwell theory,
described by the Reissner-Nordstrøm (RN) solution. There are two possibi-
lities for a static, spherically symmetric Maxwell field, the electric monopole
with the potential A0 = q/r or a magnetic monopole with Aϕ = qcosθ with
the Dirac string singularity, leading to the same metric given by A = 1,
B = 1 − 2M/r + q2/r2. For M > |q| the function B has two zeros, leading to
an outer and an inner horizon. Outside the outer horizon the structure of the
t = const. surfaces is as before. However, as |q| tends to M the worm-hole
develops a long “throat” with r ≈ M . The limiting case M = |q| represents
the “extremal” RN black hole, whose horizon is degenerate, due to the double
zero of B at r = M . There is no more wormhole, but an infinitely long throat.
Also the t = const. (space-like!) surfaces inside the horizon show this infinite
throat as r → M (Fig. 4).

4 Gravitating Monopoles – BPS-Type Solutions

As already mentioned the flat BPS monopole plays a very special role in
connection with supersymmetry. Amazingly it is possible to embed the flat
solution into certain supergravity theories, satisfying the coupled field equa-
tions. The first such embedding is due to Gauntlett et.al. (Gauntlett et al.
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1993). The relevant SUGRA theory is the N = 4 extended SUGRA coup-
led to N = 4 SUSY-YM, derived from the corresponding N = 1 theory in
ten dimensions, which itself is a field theory limit of heterotic string theory.
Besides the gravitational field the theory contains a dilaton ϕ and an axion
Hλµν . For the solution considered, the members of the SUGRA multiplet can
be expressed through the YM potential W and the Higgs field h of the flat
BPS solution as

e2ϕ = 2
r2 (1 − W 2 + 2h) gµν = e2ϕηµν (14a)

Hij4 = 2εijk
xk

r4 h(1 − W 2) Hijk = 0 . (14b)

As in flat space the solution solves first order Bogomolny equations and pre-
serves one half of the supersymmetries.

Another embedding discovered more recently by Chamseddine and
Volkov (Chamseddine and Volkov 1977) is even more surprising, since the
model contains no Higgs field. The corresponding SUGRA is the N = 4 gau-
ged supergravity (Friedman and Schwarz 1978), which may be obtained as a
non-trivial Kaluza-Klein reduction from the N = 1 SUGRA in ten dimensions
(related to type II strings). The YM field results from the non-trivial structure
of the internal space S3 × S3, on which the compactification is performed.
The non-vanishing curvature of the internal space leads to a cosmological
constant in four dimensions. After a suitable truncation the 4-dimensional
(bosonic) action considered in (Chamseddine and Volkov 1977) is

S = −
∫

d4x
√−g

[R

2
− 1

2
(∂ϕ)2 +

1
4g2 e2ϕTrF 2 − 1

4
e−2ϕ

]
. (15)

The gravitational the gravitational field and the dilaton can be expressed
through the flat BPS solution

R2 = 2h − W 2 + 1 with R =
r√
2
e−ϕ (16a)

B = 1 +
(R2 + W 2 − 1)2

4R2 (16b)

A =
r

ρ
(16c)

2e2ϕ = A2B , (16d)

where the coordinate ρ is chosen such that ds2
2 = A2B(dt2 − dρ2). Again the

solution satisfies a first order system of Bogomolny equations

ρ
d

dρ
W = − W

2
√

B
(R2 + W 2 − 1) , (17a)

ρ
d

dρ
ϕ =

1
4
√

B

(
R2 − (W 2 − 1)2

R2

)
. (17b)

The solution is not asymptotically flat due to the cosmological term in the
action (not even asymptotically anti-deSitter) and it preserves 1/4 of the
supersymmetries.
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5 Gravitating Monopoles without SUSY

Let us now proceed to the case of self-gravitating magnetic monopoles with-
out SUSY. Through gravity another mass scale MPl has entered and we can
form two dimensionless ratios α =

√
Gv = MW /gMPl and β = MW /MH .

As long as MW << MPl, i.e., α << 1 the influence of gravity is small and
we expect to find a weakly self-gravitating version of the flat monopole (van
Nieuwenhuizen et al. 1976). However, for values α ≈ 1 the situation changes.
The size of the monopole is determined by Rm = 1/MW =

√
G/gα, whe-

reas its Schwarzschild radius is given by 2GMmon ≈ GMW /g2 = α
√

G/g.
For α → 1 both radii approach each other and we expect the monopole to
become gravitationally unstable, i.e., we expect regular monopoles to exist
only up to some maximal value of α of order one. Since no exact solutions are
known (besides the ones involving a dilaton discussed in the previous section)
, we have to take recourse to numerical methods for their study.

Combining the flat space ansatz for the YM resp. Higgs field with the
one for the static, spherically symmetric gravitational field (11) the reduced
Einstein-YM-Higgs (EYMH) action can be expressed as (using Schwarzschild
coordinates for simplicity)

S =
∫

drA
[1
2
(rB′ + B − 1) − r2BV1 − V2

]
, (18)

with

V1 =
(W ′)2

r2 +
1
2
(H ′)2 , (19)

and

V2 =
(1 − W 2)2

2r2 + W 2H2 +
β2r2

8
(H2 − α2)2 . (20)

Through a suitable rescaling we have achieved that the action depends only
on the dimensionless parameters α and β.

Upon variation we obtain the corresponding field equations

(ABW )′ = AW
(W 2 − 1

r2 + H2
)

(21a)

(ABr2H)′ = AH
(β2

2
r2(H2 − α2) + 2W 2

)
(21b)

rB′ = 1 − B − 2(r2BV1 + V2) (21c)
rA′ = 2r2V1A . (21d)

This system of ODE’s has singular points at r = 0,∞ and for B = 0. Gra-
vitating monopoles are globally regular solutions of the this singular system.
Although it is not too difficult to prove local existence of suitable families of
regular solutions the question of global existence is a very difficult problem,
still beyond reach (except in some simple cases, e.g., for β = ∞). Recall that
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Fig. 5. W and H for (β = 0) a) the gravitating monopole solutions for
α = 0.05, αmax = 1.403 and αc = 1.386; b) first radial excitation for
α = 0.01, 0.2, 0.5 and 0.86.

Fig. 6. a) Masses (in units of MW ) of fundamental monopole solutions versus α
(for β = 0); b) Masses (now in units of MPl/g) of fundamental monopole solutions
and first and second radial excitations versus α (for β = 0);

the energy functional has no good functional analytic properties in this case.

Thus our knowledge about the solutions is based to a large extent on nu-
merical computations. There are several methods available for that purpose,
one sided (“Shooting and aiming”) or two sided methods (“matching”) (Brei-
tenlohner et al. 1992, 1995) and for stable solutions also relaxation methods
may be applied.

The numerical analysis (Ortiz 1992, Lee et al. 1992, Breitenlohner et al.
1992, 1995) revealed that there are self-gravitating versions of the flat-space
non-abelian monopoles for values of α ranging from zero up to some maxi-
mal value αmax(β), fully in accordance with our expectations (Fig. 5a). As
α increases the solutions develop a typical limiting behaviour, which may be
characterized as “gravitational confinement” of the monopole. As the func-
tion B develops a double zero at the finite value rl = 1 (measured in units
of 1/MPl), the spatial hyper-surface t = const. develops an infinite throat
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separating an interior region with a smooth origin and non-trivial YM field
from an exterior solution with W ≡ 0, which is nothing but an extremal RN
black hole. Thus there is a “confined” interior essentially non-abelian region
and an outer abelian monopole. All this is much like the t = const. surfaces of
the extremal RN solution, with the only difference, that the interior part of
the throat is in no sense the continuation of the exterior one. In fact the me-
tric function A blows up along the throat coming from the interior, whereas
A ≡ 1 for the RN solution. Hence the interior solution has no extremal ho-
rizon at r = rl, instead it represents a geodesically complete, asymptotically
AdS “cosmological” kind of solution.

Actually, what was just said is only true for not too large values of the
parameter β (roughly β < 10), i.e., for not too large Higgs mass. For larger
values of β it is still true that B(r) develops a double zero at some finite
value rl < 1, thus there is the infinite throat again, but now W (r) does not
tend to zero there and A(r) remains bounded. This means that the limiting
solution, obtained for some maximal value αmax(β), represents an extremal
black hole with “non-abelian hair” (E. Weinberg, private communication).
Due to the large difference between the mass scales for W and H it seems
that this solution can be obtained numerically only with the use of a suitable
relaxation method. Amazingly this extremal black hole is completely regular
inside its horizon with a regular origin. At the horizon W (r) and H(r) are
continuous, but not C∞, due to some power behaviour of the type (r − rh)pi

with some real exponents pi > 1.
The observation, that the onset of a gravitational instability as the para-

meter α becomes too large, manifests itself within the family of static soluti-
ons in the formation of an extremal black hole (as far as the outer part of the
solution is concerned) seems to be rather general. A similar phenomenon was
observed for rigidly rotating dust discs by Neugebauer and Meinel (Meinel
1997). In their case the exterior part of the solution tends to the extremal
Kerr solution, whereas the interior part is again some kind of a “cosmologi-
cal” solution. In contrast to the flat space monopoles gravitating monopoles

Fig. 7. W for the first two Bartnik-McKinnon solutions



274 D. Maison

also allow for radial excitations (compare Fig. 5b). As seen from Fig. 6b their
mass stays finite (in units of MPl) as α tends to zero. At this point it is im-
portant to observe, that the limit α → 0 can be achieved in two different
ways:

i) G → 0, MW fixed, in which the gravitational field decouples (flat space);
ii) v = MW /g → 0, G fixed, in which the Higgs field becomes trivial and

can be ignored.

Whereas the fundamental monopole tends to its flat version as α → 0, the
excited ones have no flat limit, instead tend to a class of solutions without
a Higgs field, discovered by Bartnik and McKinnon (Bartnik and McKinnon
1988). There is a countably infinite number of these BM solutions distinguis-
hed by the number of zeros of the YM potential W . Their mass is of the order
of MPl, the only scale of the EYM theory. As r → ∞ the function W (r) tends
to ±1 (compare Fig. 7), thus they carry no magnetic charge. In fact, they may
be understood as some kind of gravitationally bound sphalerons (Volkov and
Gal’tsov 1991; Sudarsky and Wald 1992), in particular as they turn out to be
unstable (Straumann and Zhou 1990; Boschung et al. 1994; Volkov 1995). In
addition to the “topological” instability of the flat YMH sphalerons however
the gravitational BM sphalerons show additional “gravitational” instabilities
within the minimal ansatz (Lavrelashvili and Maison 1995).

Turning back to the radially excited monopoles, it appears quite natu-
ral (at least for small values of α) to consider them as a Planck scale BM
sphaleron sitting inside a 1/MW size monopole. All these radial excitations
disappear at the same value of α =

√
3/2 merging in the by now well-known

manner with the extremal RN black hole.
A few remarks should be made here about the stability properties of the

gravitating monopoles. I shall discuss here only stability against infinitesimal,
spherically symmetric perturbations. In view of the time-independence of
the solutions this amounts to analyzing the spectrum of perturbations with
harmonic time-dependence obeying suitable boundary conditions. Imaginary
frequencies correspond to unstable modes of the solution. As to be expected
the branch of gravitating monopoles connected to the flat space solution is
stable up to αmax. All the excited regular monopoles turn out to be unstable
(Hollmann 1994).

6 Coloured Black Holes

Apart from the solutions with Minkowskian space-time topology there are
non-abelian, “coloured” black holes, parametrized by their radius rh (the
value of r at the event horizon) in addition to α and β (Breitenlohner et
al. 1992, 1995, Lee et al. 1992). For rh << 1/MW these non-abelian black
holes may be interpreted as a tiny Schwarzschild black hole sitting inside a
monopole (Kastor and Traschen 1992). On the other hand, when rh becomes
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Fig. 8. Domains of existence for non-abelian black holes: a) for β = 0, 1, 2, 3, and
4; b) for β = 6 and ∞

bigger than ≈ 1/MW this type of solution disappears and only the abelian
RN black holes exist. For rh → 0 the matter fields tend uniformly to those of
the globally regular solutions, whereas for the metrical functions this limit is
clearly more delicate.

Detailed numerical analysis reveals that non-abelian black holes exist only
in a limited domain of the α-rh-plane, whose shape undergoes some charac-
teristic changes as β varies from 0 to ∞. Fig. 8 shows some of these domains.
Observe that we use αrh instead of rh as the abscissa - equivalent to expres-
sing rh in units of 1/MW - in order to obtain domains remaining bounded
for α → 0.

In the following I shall discuss in some more detail the structure of these
“Phase Diagrams” and the phenomena happening at their boundaries. Let
me start with the case β = 0. It is appropriate to subdivide the relevant
sector α ≥ 0, rh ≥ 0 into the four subregions I-IV (compare Fig. 9).

In regions I and II we find coloured black holes. Above the diagonal,
i.e., in regions II and III we have the abelian RN black holes, the extremal
RN black holes sitting on the diagonal. Below the diagonal the RN solution
has a naked singularity and does not represent a black hole. No black holes,
neither abelian nor non-abelian, could be found in region IV. Region I may be
subdivided in region Ia, where only the black hole version of the fundamental
monopole resides and region Ib, where in addition their radial excitations
are found. Thus region Ia contains only one black hole solution 2 for given
values of α and rh, whereas in region Ib countably many solutions exist for
any given α and rh.

In region Ib fundamental and radially excited solutions coexist, whereas
in region II even abelian and non-abelian black holes coexist. This establishes
an obvious violation of the so-called “No-Hair” Conjecture. According to the
latter static black holes of a given mass (or size, i.e., given value of rh) should
be uniquely determined through their “gauge charges” - their magnetic charge
2 This is not strictly true for small values of β, where two solutions exist in a small

interval αc(rh) < α < αmax(rh).
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in the present case. However, all these black holes carry the same magnetic
charge. Although black holes of the same size differ in general in their mass,
degeneracy in mass also occurs. In some cases abelian and non-abelian black
holes are even degenerate in mass and size.

As β increases from 0 to β = 4 the structure of the “Phase Diagram”
remains essentially the same, the right boundary curve moving in to the left.
However, for β > 4 this boundary curve develops a second, concave branch
(compare Fig. 8b) determined by another mechanism – the formation of a
degenerate inner (above P) resp. outer (between P and Q) horizon, leading
to extremal black holes with non-abelian hair.

The boundary curve above the diagonal is essentially characterized by
the bifurcation of the non-abelian with the abelian RN solution. For a given
value of α this happens at some value rc,n(α) depending on the number n of
zeros of W (Fig. 8). Approaching this value from below the value Wh of W
at the horizon tends to zero, thus abelian and non-abelian black holes merge.

Fig. 9. Domains of existence for abelian and non-abelian black holes, β = 0

Finally again a remark concerning the stability of the solutions. Similar
to the situation with regular monopoles the fundamental coloured black hole
solutions are stable, likewise the radially excited ones are unstable. It is,
however, interesting to observe that the abelian RN black hole is unstable
in the framework of the non-abelian theory for α smaller than some value
α(rh) <

√
3/2 (Bizon and Wald 1991; Lee et al. 1992a, Breitenlohner et al.

1992, 1995). In particular, the extremal RN solution is unstable for α ≤ √
3/2

and stable above this value. At the limiting value α =
√

3/2 the extremal
RN solution bifurcates with infinitely many non-abelian solutions and in fact
develops infinitely many unstable modes.
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7 Additional Remarks

The interpretation of the BM sphalerons as gravitationally bound sphalerons
is supported by the fact that similar solutions have been found for a theory
where the gravitational field is replaced by a dilaton, serving the same pur-
pose (Lavrelashvili and Maison 1992, 1993; Bizon 1993; Donets and Galtsov
1993). There is also an investigation of magnetic monopoles coupled to gra-
vity and a dilaton (without SUSY) (Forgacs and Gyürüsi 1996). Gravitating
monopoles resp.sphalerons for higher gauge groups (SU(3) etc. ) were studied
in (Kleihaus et al. 1995, 1998) with similar results.

Furthermore axially symmetric, static generalizations of the BM solutions
were constructed numerically (Kleihaus and Kunz 1997). Similar solutions
generalizing multiply charged axially symmetric flat monopoles are expected
also with gravity. However more interesting is the question, if there are sta-
tionary rotating solutions. It seems that only the neutral BM solutions can
rotate (Volkov and Straumann 1997; Brodbeck et al. 1997), whereas rotating
magnetic monopoles are excluded (even in flat space) (Brodbeck and Heusler
1997; Heusler et al. 1998).
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Breitenlohner, P., Forgács, P., Maison, D. (1992): Nucl. Phys. B383, 357;

Nucl. Phys. B442, (1995) 126
Brodbeck, O., Heusler, M. (1997): gr-qc/9706064;

Heusler, M., Straumann,N. and Volkov, M. (1998): gr-qc/9805061
Chamseddine, A.H., Volkov, M.S. (1997): Phys. Rev. Lett. 79, 3343;

preprint hep-th/9711181
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