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Abstract

Weintroduce an 1€ prescription for the Sachdev—Ye—Kitaev model both at finite and at zero
temperature. This prescription regularizes all the naive ultraviolet divergences of the model. As
expected the prescription breaks the conformal invariance, but the latter is restored in the ¢ — 0 limit.
We prove rigorously that the Schwinger Dyson equation of the resummed two point function at large
Nand low momentum is recovered in this limit. Based on this 1€ prescription we introduce an
effective field theory Lagrangian for the infrared SYK model.

1. Introduction and discussion

The Sachdev-Ye—Kitaev (SYK) model [ 1-7] has been extensively studied recently in the context of the AdS/CFT
duality. In its most common form, the SYK model is the one-dimensional field theory for a vector Majorana
fermion y, with N components with action:
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This model has alarge Nlimit dominated by melonic graphs [3, 4, 8]. The melonic large N limit is universal
in random tensors [9], and the quenching can be eliminated if one considers a tensor version of the SYK model
[10-15] (see also [16] for a detailed discussion of the leading and next to leading orders in 1/N in various
models).

Leaving aside the details of the model, the melonic large N limit leads to an ‘almost conformal’ one
dimensional filed theory. This theory (the CFT side of the AdS/CFT) has been studied [3, 4, 17] with various
degrees of rigor.

This paper aims to give a rigorous meaning to some of the results obtained so far in this research program.

The trouble with the two point function. Let us briefly review some standard results on the SYK model. Having
aq fermion interaction and a free propagator:

C(r, ) = %sgn(T — 1),

with antiperiodic boundary conditions at finite temperature, the model defined by equation (1) is power
counting super renormalizable: there are no ultraviolet (UV) divergences, and infrared (IR) divergences might
exist only at zero temperature. One can then resum the two point function at leading order in N. This resummed
two point function, Gs(7, 7’), is recovered from the Schwinger Dyson equation (SDE):

1= gﬁC71 — GsXs,
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taking into account that in the melonic large N limit the self energy factors in terms of two point functions
Ss(r, ) = JHGs(r, T

B/

2
8n =) = 0Gs(n —7) = J* [ du Golm — G — m)l,

where we used the fact that Gg is antisymmetric and translation invariant.

While the SDE can not be solved analytically at arbitrary momentum (except for the degenerate g = 2 case
[3]), a solution can be found in the conformal (low momentum, infrared) limit. Indeed, in this limit the first
term (free term) can be neglected and the SDE becomes:

B/2
6@ =1 [ du Gyt DGy, @

where G denotes the infrared two point function. Let us, for now, consider the zero temperature case, 3 — oo
(we will reinstate the finite temperature later on). In order to solve for the infrared resummed two point function
one proposes the ansatz:

sgn(T)

Goo(T) = bW,

with A > 0. Substituting this in equation (2) one gets [3, 4, 12] the equation:

o, 00 sgn(u — 7) sgn(u) 1
sm =] bqim du lu — 72 |upba-b J quTlm’i*1

X [B(Q —2A,2Aq — 1) + B(1 — 2A(qg — 1), 2Aq — 1) — B(1 — 2A, 1 — 2A(q — )],
with 3(a, b) the Euler beta function. This equation is formally solved by A = éandbrespecting:
cos =
1= 1

1 >
~ sin—
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however it is quite obvious that:

+ theleft-hand side of the equation, #, isnota é (7) function, even for A = L

[ q

+ theintegral does not converge absolutely in the 1 ~ 0 region for A = é,as 20— 1) =2 — 5 > 1. This

translates on the right-hand side in the fact that the Euler beta functions are evaluated at negative arguments.
While, of course, the beta function can be defined by analytic continuation at negative arguments, its naive
integral representation diverges for such values.

The situation only gets worse when one tries to compute the leading order four point function, the spectrum
of the four point kernel (which generates the ladder diagrams) [3, 4] or the leading order six point functions [17]:
all the integrals one encounters exhibit UV divergences. This should come as no surprise: in the conformal limit
the theory is power counting marginal (as one would expect from a conformal field theory).

Of course these divergences have already been noted and discussed in the literature [3, 4]. Physically, they are
regulated by the fact that at large momentum one can not use the conformal ansatz Gg and one must go back to
the full two point function Gs. Using the full two point function regulates all the divergences of the model: after
all, we already know that the model is UV finite. However, as the SDE can not be solved analytically at arbitrary
momentum, one does not have an explicit formula for Gs. In the absence of such a formula, the procedure
applied so far [3, 4] consists in the following:

In most cases. In most cases one can try to make sense of these integrals by analytic continuation. One can hope
that, due to the antisymmetry of the two point function, all the UV divergences are regulated if one defines
the integrals by, for instance, a Cauchy principal value. In practice one computes the integrals for values of
the parameters (like for instance A) for which they converge and then substitutes the relevant values (like
A= i) only at the end. Typically this leads to some Euler I'(a) functions evaluated at arguments a with
negative real part which are well defined by analytic continuation. However this approach has several
drawbacks:

+ sometimes one needs to formally evaluate integrals which are divergent for any values of the parameters
[4], therefore not even the starting point of the analytic continuation is well defined.

« the classical integral representation for the I'(a) function at R(a) < 0 requires[18, 19] counterterm
subtractions:
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Itis not clear where the counterterms might come from.

« the fact that the two point function is antisymmetric does not eliminate the UV divergences. Indeed, if
two vertices of a graph are connected by and even number of edges larger or equal to q/2, the
corresponding integral is divergent and symmetric hence the graph is UV divergent'.

+ finally, and most importantly, in the absence of an explicit regularization procedure, there is a priori no
reason to consider the Cauchy principal value in the first place. In fact it turns out that the 7€
regularization we introduce in this paper justifies the use of the Cauchy principal value in some of the
cases encountered in [3, 4].

In some cases. In some cases the above procedure fails. This is notably the case (using the notation of [3]) of the
h = 2 mode of the four point kernel which leads to a breaking of conformal invariance in the resummed
leading order four point function. In this case the UV divergences are crucial and one needs to deal with
them carefully. The procedure applied so far [3] (also discussed to a lesser extent in [4]) is to account for the
effect of the free term in the SDE using first order perturbation theory in quantum mechanics. This has
several drawbacks:

+ while first order perturbation theory in quantum mechanics eliminates the divergence, it is difficult to
see in what sense such a regularization can be rendered rigorous (the perturbation theory in quantum
mechanics usually diverges).

+ itisnota priori obvious that this procedure will regulate all the divergences.

+ perturbation theory in quantum mechanics is model dependent. In order to study the departure from
conformality in the SYK model in a systematic manner, a more appropriate starting point would be a
universal regularization procedure.

In this paper we propose an ¢ prescription for the SYK model which regulates all the UV divergences. The
limit ¢ — 0 can be taken rigorously. Our prescription is a particular kind of cutoff in the frequency space and
comes to replacing the low momentum resummed two point function Gg by a regulated version Gj. Like the full
two point function Gg of the SYK model, the regulated two point function Gg breaks the conformal invariance.
Contrary to Gg however, G§ does this in an universal manner.

The interpretation of this prescription is best understood if one takes a quantum field theoretical point of
view on the SYK model. The momentum scale at which one feels the breaking of conformal invariance due to the
first term of the SDE, where one should start using G; instead of Gg, plays the role of an ultimate ‘physical cutoff
scale’. In the case of quantum electrodynamics (QED) for instance this should be taken as the scale at which
quantum chromodynamics (QCD) effects come into play; for the standard model as a whole this could be a
grand unification scale, or the Plank scale. Its precise value, and the precise way in which it alters the UV behavior
of the model should play no role in understanding the departure from conformality in the SYK model (to pursue
our comparison, understanding that QED flows to the Gaussian fixed point in the infrared and computing the 3
function close to the Gaussian fixed point does not depend on the number of quark generations). In order to
understand the infrared behavior of the model one needs to introduce a new scale (call it the ‘mathematical
cutoff scale’) and a regularization procedure (for instance a multiplicative momentum cutoff or a Schwinger
parametric cutoff). This is an arbitrary UV scale, which can be considered lower that the physical cutoff scale (in
QED this would be a cutoff scale in the neighborhood of the Gaussian fixed point). Introducing this new scale
and aregularization procedure at this scale allows one to ignore the true UV completion of the theory (in QED,
once one introduces a UV cutoff scale, one ignores the rest of the standard model), and study its infrared
behavior in a self contained manner.

The 1€ prescription we present here yields the ‘mathematical cutoff’ of the SYK model. It allows one to study
the departures from conformality without needing to resort to the precise UV completion G of the model. The €
scale is a mathematical artifact which identifies the overall power counting of an effect, but there is no meaning
attached to the specific value of .

An upshot of our 1€ prescription is that we are able, at finite (3, to write down an explicit effective field theory
Lagrangian whose large N resummed two point function is Gj. The similarity between the Lagrangian we

! One cansstill attempt to deal with this by resuming families of graphs. This is a formal manipulation, as each individual graph in the family
is divergent. Moreover, except is very simple cases, one can not identify appropriate families of graphs to (formally) cancel all the
divergences.
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propose here and the ‘conformal SYK’ Lagrangian recently discussed in [20] is only superficial: the two models
differ drastically in the infrared. To be precise, in the conformal SYK model of [20], Gj is the bare covariance
while in our case it is the effective two point function. Ergo the infrared behavior of our effective Lagrangian
reproduces (a cutoffed version of) the infrared of the genuine SYK model, while the infrared behavior of the
conformal SYK model of [20] does not.

A feature of the effective Lagrangian we introduce in this paper is that it requires the presence of the regulator
e:in thelimit € — 0 the bare covariance diverges’. The effective field theory fails in this limit. Below we prove
that the effective Lagrangian we propose leads to a sensible theory for e large enough. We conjecture that this is in
factthe case forany € > 0.

2. The 1€ regularization

We consider g, the number of fermions, to be even and g > 4 and we denote A = 1/g. We posit the 1¢
regularization of the two point function in the SYK model:

b 1 1
G5(1) = -
3 2t sin(mwA) (g sinh 7= )ZA (ﬁ sinh T+ zr))ZA
™ 5] ™ g
. A tan ";
b 3 N sin| 2A arctan o
T A (_) 2 2 2 27A”
sin(mA) A m [(sinh L;) (cos %) + (cosh L:) (sin %) ]
Observe that G5(7) = —G§(—7), G5(7) = 0for 0 < 7 < (/2 and thatin the ¢ — 0 limit one recovers
pointwise the conformal two point function at finite temperature [3]:
e sgn(7)
lim G5(r) = Gs(r) = b —2__,
e—0 . T
‘ ; Sin 7

The zero temperature version is obtained by taking 8 — oo:

. b 11
GoolT) = 21sin(wA) [(E — ) (e+ 1) ]

One can easily write down the momentum space representation at zero temperature:

b o0
Ge — dw wZAfl e~ W(eWT _ e—wwT ,
=) = AT CA) fo ( )

while the momentum space representation at finite temperature requires a bit more effort (see appendix A):

g8
Gy(1) = = : (Zl)zA et ) e et — enT]
“ 21sin(mA)T'(2A) 250 F(%Wn L1 - A)

g

2
where w, = %

(n + %) denotes the fermionic Matsubara frequencies. In particular Gj is a positive operator (as

it is diagonal in momentum space and its eigenvalues are positive). Observing that the Matsubara frequencies
vary in increments of %ﬂ, one recovers directly the momentum space representation at zero temperature in the

8 — oo limit.

As mentioned in the introduction, it is clear that this 7¢ prescription is an e =1l frequency cutoff. The
Feynman graphs of the effective theory (each such graph represents the resummation of graphs of the bare
model with arbitrary melonic insertions on the edges) have q valent vertices and effective propagators G . As
| sinh(e £ 17)| > sinh(e), at finite temperature the amplitude of a graph with E edges and Vinternal vertices is
bounded up to constants by:

v 1 .
sinh(¢e)f

Of course this bound can be significantly improved (in particular the marginal power counting of any graph can
be recovered easily). At zero temperature the amplitudes are UV finite, but one might encounter IR divergences.

This is again in contrast with the conformal SYK model of [20] whose bare version does not require a regulator e.

4
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The right-hand side of the SDE equation (2) becomes with our regularization:
B/2
A5 =1 [ du Gy — DG, 3)
—3/2 '
Our first results is presented in the following theorem:

Theorem 1. A§(7) is a well defined distribution for any € and:
lim A5(1) = 6(7), (4)
e—0

in the sense of distributions.

Proof. See section 3 O

Observe that A§ can also be viewed as a linear operator on the Hilbert space L*[(—=5/2, B3/2)

B/2
asHe = [ drase - f @),

which commutes with the inverse covariance (Gj )yl

(G A5 (1, 1) = —TP[Gs(n — W' = (A5(GH D (7, 7).

2.1. Effective field theory
One of the most interesting facts about this z¢ regularization is that it allows one to introduce an effective field
theory reproducing the IR behavior of the SYK model at all ordersin 1/N.

Our aim is to write a field theory whose effective resummed leading order two point function is the IR
propagator of the SYK model G§ (i, 75) and whose interaction that of equation (1). If we take the bare
propagator of the effective field theory to be G§ (73, 1), that is if we consider the conformal SYK model of [20]
with momentum cutoff, the effective two poiht function atleading order in 1 /N will be G5 (7, 73) dressed by
melonic radiative corrections. We add to the bare theory a bilocal counterterm: ‘

1 pB/2
[, nn S oAl mx, o),

so as to precisely cancel these radiative corrections at leading order in 1/N and lead to an effective two point
function exactly equal to G§. In order to determine the appropriate counterterm, let us take for the moment
some arbitrary A5 and denote the resummed two point function in the melonic sector with this choice of
counterterm G;;‘;’S. The SDE of this model at leading order in 1/N writes:

1= GayplGiT" + GhopAG — Ghos g By = PlGaosl?,

where Xy 5 is the self energy at melonic order in the model with counterterm. We now require that G5, 3 = Gj
is a solution of this equation which imposes:

A5(m, 7) = PIG5(n, T = —([G517'AR) (11, ™),

hence the effective field theory action we propose is:

st = L[ dndn Y v @G0 - A9 @)
2*5/212;4‘11 3 )T 2) X, (T2 -
5

B6/2
+I Y Tul,,,aqfﬂ/z d7 Y 1 (7) oo X g0 (T),
al,...al -

and the random couplings are of course still quenched and distributed on a Gaussian.
The bare covariance of the effective SYK field theory is:
1

1 - A5

Gj
and is a well defined positive operator for € large enough due to the following result.

Theorem 2. For any finite inverse temperature 3 and for € large enough such that:

1—t3[1 2A +1
1+t N7

tf] < [tan(mA)]1-2,
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the operator Aj is bounded in norm by I

1A5llp = sup [IAGflla < 1,
£ Al <1

where|| - ||, denotes the L? norm on L2[(—3/2, 3/2)].

Proof. See section 3.1 O

The effective field theory will break down at some momentum scale. Indeed, theorem 2 ensures that the
effective theory is well defined only for low enough momentum cutoff ¢ ~!. From theorem 1 we see that the bare
covariance of the model diverges in the ¢ — 0 limit, hence the effective field theory certainly breaks down in the
limit. We conjecture that the effective field theory breaks down only in the ¢ — 0 limit, that is we conjecture that
theorem 2 can be extended to any € > 0.

3.The SDE
In this section we prove theorem 1.
Let us denote:
Se—y = sinh M, C.—;r = cosh M, t._,, = tanh %,
S+ = sinh M, Cetr = cosh M, t..,r = tanh %,

., TE TE e

se =sinh—, ¢, = cosh—, t, = tanh —,
. TT T ixa

S = sIn ?, C; = COS ?, t, = tan ?

We start by rewriting A° (7) as a convergent integral more suitable to discuss the ¢ — 0 limit.

Proposition 1. We have the following integral representation:

€ — 2 L q E 1
Ay(7) = 2m] (21 sin(ﬂA)] (B)P(ZA)

-1 1 1 1 q/ZI(q - 1)
X + + g (=1
{r(z —2A) C3A<q1>[cgfw[tf+ﬂ +t] Mt + t(]] i\

€—1T
8 fgo d)/ (y _ 1)2A(q—1—r)—l(y + 1)2Ar—1 _ (y + 1)2A(q—1—r)—l(y _ 1)2Ar—1
1 22A4-D-1 I'2A(q — 1 — nITQAYT)
1 1 1
X + . ©)
CEZA(ql)I:CzﬁT[tEJrzT + tf)/] ngﬁq— [tE*IT + te}’]]}
Proof. See appendix B. O

From equation (6), one can show that A¢ (7) is a well defined distribution for any ¢ > 0 and that in the sense
of distributions it converges to 6 (7). Indeed, let us consider a term in equation (6). When applied on a test
function f (7) it has the generic form:

B8/2 00
(%) Lﬂ/z de: H; c?Ai"”Lffw[tf:w T cﬁ%[tf_lw + 1yl }fm’ @
where:
Hiy) - 1 (y — 1PA@-1=0=1(y 4 1)2Ar=1 _ (5 4 1)2AG-1-0=1(; 1)2Ar71,
228D~ T[2A(q — 1 — NITQRAr)
is a function such that:

+ H(y)isintegrablein y ~ 1,
« H(y) ~ y*»@ D=3 for y ~ oo hence H (y)is integrable for y ~ oo,
+ H(y) < Ofory € [1, oo].
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We now express cgfﬁ and t,4,; in terms of ;. by the formulae:

2 A
21A — (1 + tf)Ae—ZAln(cfilsftT) — % 1+ ;7'2 eIZzAarctan(tf t,),
Cetuir Ce 1 + tE tT
Setir Se k1.t t, £ it
ledir = = = >
Cetrr € T st 1+ at.t;
and changing variables to v = a:ﬁ’ equation (7) becomes:
00 00 ﬂ
f dyf dv R (v, y) H(y)f(— arctan[(1 + y)t. v]),
1 — 00 ™
2(1 — 1)
Rfﬁ v, y) = .

[1+ 20+ )T 21+ 11+ L+ 921+ )]
x {cos[2A arctan(tﬁ(l + y)]A + tfzvz(l + QA+ ytf))
+ sin[2A arctan(t2(1 4 y)»)]v(1 — t2)}. (8)

Using proposition 2 in the appendix C, and denoting || f ||~ the L norm of f(which is a constant, if fis a test
function), the integral in equation (8) is bounded by:

27K | fle fl dy [H(y)| < K,

for some constant K independent of € (as K, < 3). By the Lebesgue dominated convergence theorem we can
then commute the ¢ — 0 limit and the integral and we have:

.7\ B2 0
llm (5) \/;5/2 dT\/l‘ d)/ H(y) C(zA(lq,l)IiczA 1 —+ 1 :If(T)

e—0 i ltear + tey] C(Z—Azrlfe—17+tsy]

=27f (0) [~ dy H(y),

as im R§ (v, y) = Hivz We therefore obtain:
e—0 /2
lim dr A§(1)f (1)
e—0J—-3/2
b LS| -1 Y2 g —1
=1(0)(2 2 + ( ) —1)
f@@mD) (21 sin(ﬂ'A)) F(ZA){F(Z —2A) ; r =1
00 d}/ (}’ _ 1)2A(q717r)71(y + 1)2Ar71 _ ()/ + I)ZA(qflfr)fl(y _ 1)2Ar71 (9)
X .
fl 228@-1-1 I'[2A(g — 1 — nN]TQAr)

The integrals over y are evaluated in appendix D and we get:

tim [ dr A = f(0)(2n))? b 1
lim J_,,, 47 A5 (@) = FOCTD) 2usin(xA) | T2A)

—1 92! q— 1 1) 1
“N\Tta - ; ( r )(_ ) T[2A(g — 1 — NTQAY)

" ( 1 —2Ar )F(ZA)F[Z —2A —2Ar] (1 —2A(q -1 - r))F(ZA)F(ZAr)
—1+42A I — 2Ar) —142A LQA +2An) ||

Observe that all the terms in the last two lines can be combined in a unique sum over :

q -1 _ _
f(O)(Zw])Z( b ) 1 qz(qu)(_l),(1 ZAr) LQA)

21sin(mA) ) T'Q2A) —1+2A)JTQANTQ2 — 2Ar)°
and using:
q—1 -1
q—1 . (1 — 2Ar) :l (q_l)_r~
;( r )( b TFQANT(Q2 — 2Ar) ﬁ; ; (—1)"sin(2mAr)
_ @

[sin(rA)]97! cos(rA(g — 1)),
2m
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we finally obtain:

872 o cosT
lim dr A5(T)f (1) = f(0) J?b1 —7,
3/2 ! Sin —

e—0 J-g

SN

1
q
which completes the proof of theorem 1.

3.1. The bare covariance
We now prove theorem 2.

Observe that for any function in L*[(— /2, (3/2)], the L> norm is bounded by the L norm
1£1l2 < "] fllso> hence:

1Allop = sup [lA5fll < sup  [IA5fll..

£ fl<1 Fillflla<B™172
On the other hand:

i, [P B s /
Wasflby = [~ dn [ ar Zg@f @0 [ ar asehf e+ )

-B/2 —B/2 —B/2

2 Br2 € ’ Br2 €
<[3llflloo(f dr |A3<r>|) =l < [ dr a5l
—B/2 —5/2

therefore, in the notation of section 3, the operator norm of A is bounded by a sum of terms of the form:

L/; b fj,i dv R (v, y) IH(p)],

therefore we obtain abound:

q q—1 o _
||A§||0p<1<f<zw}>2( ’ ] 1 Z(q 1)‘(1 ZAr) r@eA)

2sin(rA) ) T'QA) ;o\ 1 —2A JTQANTQ2 — 2Ar)
1 g — 1) . K
=K, 2mAr) = ———5 |
cos(mA)[2sin(rA)]4! ;( r )sm( A [tan(mwA)]12
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Appendix A. The momentum space representation

At finite temperature we use the Fourier transform conventions:

fw=[ ZZ drev’f(r),  f(7) = %Z e (w),

nez

where w, = %T (n + %) are the fermionic Matsubara frequencies. Our aim in this section is to compute the
Fourier transform:
24
~ b T 2 1 1
Gg (w)y=—|— f dr e™” —
‘ 2isin(rA)\ G -

( _ 2A - 20 )
b/2 (sinh —W(fg IT)) (smh —(E; IT))

where wis one of the fermionic Matsubara frequencies w,.

8
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Wedenote s, = sinh W—;, ¢. = cosh %f, t. = tanh ﬂ—; and change variables to t = tan % to get:

_ 8
b (=) 1f°o dt (1—|—1t)27”<1+t2)A 1 - 1
21sin(rA)\ B —oo 14+ 2\1 — 1t (s, — 1.2 (s, + 1c. )
b EZAl(llrw(k(1+zﬁwl+A R T o)
2isin(wA)\ G —100 = Z);;W+17A S — €z S +cz '
At z ~ oo the integrand behaves like z=2 hence we can turn the contour of integration on z to run around the

positive or negative real axis.
Let us consider w > 0 (the case w < 0issimilar). The first term in equation (10) writes:

b (x) e Gapeis 1 Y
— |2 o :
2esin(mA)\ 3 —100 (1 - Z)%wH*A S — €z
having singularities at z = +£1, t,. We turn the contour to run along the negative real axis. The only factor which
Il .
has a discontinuityis (1 + z)>=*~!+2 and we obtain:

0 20 (
lim dy . 1 (14 y 4 @+ — (1 4y — @)1 +2)
6—0 J -1 1 - y)z‘jrw+1—A Se — €Y
20 g 8
= —foc dx 1 1 (X _ 1)2iw71+A[e(ﬂW*1+A)(”T) _ e(ﬁwfbkA)(fm’)]‘
! (1 4 xpeti=a s + cx

Recalling that %w =n+ 1/2,wehave e!(n=1/248)m _ ot(n=1/24 87 — 25(—1)"*1 cos(Ar) and finally the
first term in equation (10) becomes:

b 2A—1 50 1 1 2A ]
_— T 2(—1)”cos(A7r)f dx - (x — D= 1+4, (11)
21sin(rA)\ B 1 (1 + xyeri=-a\s + cx

Observe that this integral is convergent both for x ~ oo and for x ~ 1. We now consider the second term in

equation (10):
b T ZA_llfzoo e 1+ Z)%w—l+A 1 2A
21 Sln(ﬂ'A) ﬂ —100 (1 _ Z)%w#»lfA s + c.z >

having singularitiesat z = £1, —t.. We close again the contour around the negative real axis to obtain:

lim —00 d 1 (1 +y + 15)%w71+A B (1 +y - 15)%w71+A
50 J ¢, Y (- y)z%w+17A (sc + ¢y + 1.6 (e + ¢y — 1.6
o - Zu—1+A e SVEw—14+A
~ lim dx 13 1 — x4 10) (1= x—10) .
50 Jy (1 + x)et1=8 | (50 — cex + 1c, 8)*A (s, — ¢c.x — 1c,6)*A

The integral splits into an integral over the interval (¢,, 1) and a second integral over the interval (1, co) (as
t, < 1). Takingthelimit 6 — 0 the first integral contributes:

1 p
f dx ;,(1 — x)%“’*lJFA;ZA[e—ZA(m) — e 2ACmy,
fe (1 + x)eti=a (c.x — s.)
while the second one is:
Su—14A (B 5
foo & 13 (x — D=1t [e(ﬁWHA)(zw)eim(m B e(Tﬁw71+A)(7”r)esz(—m)].
1 a1+ x)z"fﬂerlfA (c.x — SE)ZA

Recalling again that w = %(n + 1/2),wehave e!("=1/2=8)7 _ e=1(n=1/2=8)7 — (1)1 co5(rA), hence

finally the second term in equation (10) is:

2A-1 1 ) w—1+A
_L E (—2)sin(27A) dx 13 - x)
2isin(rA)\ B e (1 + x)mtl=8 (cox — 52
2A-1 00 _ z‘%w—l-&A
+ L z 2(—1)”+1cos(7rA)f dx 13 x-D . (12)
2isin(rA)\ G 1 (1 + x)met1=A (cox — s )20
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Adding up equations (11) and (12) the integrals from 1 to o0 cancel and we obtain:

2A-1 1 _ %w—l+A
Gw=—2""[T] (—2sinera) f dx L a-x -
2isin(rA)\ B 1, (1 + )-8 (cx —s.)

which is an absolutely convergent integral. We now change variable to x = tanh(s + %6) and obtain:

G5 (w) = L T ZA71(—2)sin(27rA) e we foo ds efg’“;
T, sin(rA)\ 8 0 [sinh(s)]?2’

and changing again variables to y = e~%, the integral can be explicitly evaluated in terms of an Euler beta
function with positive arguments:

N I(Lw+ A)TQA - 24)
Gi(w) = L(z—”) (—2)sin(27A) (“ ) e v,
‘ 2isin(mrA)\ 5 F(gw +1— A)

Appendix B. Proof of the proposition 1

Substituting Gj in equation (3) we get:

. = b q T 284 5o
A =17 (21 sin(wA)) Jé] »/:;3/2 du

1 1 1 1

(sinh mle—1(u—7)] )ZA (sinh Tle+1(u—7)] )ZA (sinh (€ — 1u) )ZA (sinh (€~ 1u) )ZA
B B B B

J

q—1

Recalling that sinh(z £ 1x) = sinh(z)cos(x) £ 7 cosh(z)sin(x), Aq = 1, changing variableto t = tan L:‘ and
expanding the binomial, A¢ (7) becomes: ‘

5 b QZQ/Z—I(q_l)lr ocd 1 B 1
J (21 Sin(ﬂ-A)) 6 rg() r ( ) jioo ' [S(er' - 1C5+17't]2A [55717— + le,,Tt]ZA

1 1 1 1
X - .
|:(5€ — e t)ZA(qilir) (SF + 1ce t)ZAr (SF — 1 t)ZAr (SF + 1ce t)ZA(qlr):|

Taking into account that:

Se Ce
2
T
cos (?) + 552

one can use (absolutely convergent) Schwinger parametric representations to rewrite A°(7) as:

9{(l‘f:l:n') = > 0, t. >0,

zA—lale(qflfr)flagArq

of__ b qzq/z_l(q_l)rmd ” da dayday —2
I(Zzsin(WA)) (5) 2\, )b fm tfo &N T OAT2A( — 1 — NIT AN

% I: ZIA e Oleprtiat _ 1 e~ Oe—r—iat 1 e*ff((11+(yz)(elt(0fl*(lz) — e*"(n‘l*“l)))
Cetir

20 CGZA(qfl)

€—1T
where the integral over oy, is absent for r = 0. The integral over t can now be computed and we get:

2A_1a12A(q717r)71a§Ar—1

2 b qﬁq/z_l(q_l)fooddd -
& (Zzsin(WA)) (ﬂ] 3 Dfo N T OAT2A( — 1 — MIT AN

1 . 1 1
= etlata)| T sty —Qte_yr — — _
X CZA(qil)e 1 ZLZA e e + ——e ][6(a+oz1 ) — 6(a — a1 + ay)].
€

€+t Ce—ir

10
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Changing variables to oy = aU and o, = aV and integrating over a we get:

) b q E q/21(q _ 1) e 1 00 dUdV UZA(qflfr)fl‘/ZArfl
o (21 sin(A) I} Z r (=1 rea) fo I'2A(q — 1 — n]T'(2Ar)

r=0
1 1 1
R + 55 A+ U-V)—-60—-U+ V),
=D 5+17'[ e+1T + tF(U + V)] Cg—yr[trfn' + tF(U + V)]

where we recall that for r = 0 the integral over V'is absent. Integrating once using the 6 functions we obtain:

on? b (r) 1 —1 1 1 N 1
21 Sin(ﬂ-A) B F(zA) F(Z - ZA) CZA(q b 5+17— [thrIT + tf] f 1T[tf 1T + tf]

q/2—-1 -1 00 V-1 ZA(qflfr)71V2Ar71 _ VZA(qflfr)fl V-1 2Ar—1
+ 3 (q )(—1)’f av Y=V V-
1 1 I'[2A(g — 1 — r)]['2Ar)

1 1 1
+ )
ZA(q l)l 5+u—[ e+1T + tE (2V - 1)] ngéu—[tf—m’ + tf (2V - 1)]]}

and finally, changing variablesto y = 2V — 1 proves proposition 1

Appendix C. Bound on the integral in equation (8)

Proposition 2. Forany y > land A < we have:

1 _ 2
f dv R (v,y) < 27K,, K. = — [1 L A4 ltf].
0 1+t NES

Proof. Let us first find a bound for the integral:

o0 dz
In = _
A '-l:oc (ZZ+ l)lfA

Observe that lima _,oIn = 7 and the integral is convergentfor 0 < A < % The integrand has two cuts, (1, 100)
and (—1, —100). We deform the contour of integration to run around the cut (1, 100) and the integral becomes:

*© (1dp) lim [ef(lfA)ln[l+(1p+5)2] _ ef(lfA)ln[lJr(zpff)z]]

€0
— 2sin[(1 — A)w]f1 = f’;)lfA:p:yfl,z
— sin[(1 — A)W]f dy y 3721 — y) 0= = sin[(1 — A)w]%.
()
Since F(%) JrandT'(x)I'AQ — x) = v ),wehave
J/NES FM < VT
T — A)
asA < - and Tis strictly increasing for positive real arguments.
Now, goingbackto R} (v, y), we use:
cos[2A arctan(£*(1 + y)v)] < 1, sin[2A arctan(£2(1 + y)v)] < 2At2(1 + p)v,
to obtain abound (observe that R3(v, y) > 0):

201 = D1 + v + )+ 1 2) + 28821 + y)v2(1 — 1))
[1+ 21+ )T 210+ 20+ )R L+ v2 (L + )’
<2(1—t§)[ 1+ yt? te(1+y) ]

< + A + Dt,
L4 ye? [ 1+ v20 + y12)? @ )t [1+ 21 + p)2v 2

R(v, y) <

therefore:

o0 2(1 — £2)
[ Ry < E—Lr 1A+ DRI < 27
—o00 1 +ytf

11
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Appendix D. The integrals in equation (9)

Proposition 3. For R(a) > 0, R(b) > 0andR(a + b) < 2,a + b = 1wehave:

* d
Fa b= [ S 1= 070+ 0 = o+ Dy )

( 1-b )F(Z—a—b)F(a)( 1-a )F(Z—a—b)F(b)
li-a-» Q2 — b) l—a—b re—a

Proof. The integral is clearly convergent in 0. At infinity, due to the subtraction, the integrand behaves like
y+0=3 hence the integral converges for R(a + b) < 2. Changing variables to x = %, the integral becomes

N (O NE RO

:fl dx x9P[(1 — x)°~1 — (1 — x)t-1].
0

Observe that the two terms can not be integrated separately, as each integral would diverge in x ~ 0. However,
the difference is convergent in x ~ 0 as the behavior is tamed by the explicit subtraction. We observe that

1
e h:m[xl a=b]/(1 — x) 4 x'-a-b,
hence we get:
F(a, b) :[Lﬂ_b[(l —x) — (1 — x)b]]l + ;fl dx x' 7 Pla(l — )" — b(1 — x)"71]
l—a-b , l—a—"bJo

+ j: dxxlfafb[(l _ x)afl _ (1 _ x)bfl]_

AsR(a + b) < 2theboundary terms cancel and all the integrals are convergent and can be expressed in terms
of Euler I functions. O
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