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Abstract 
 
The change in beam energy spread due to transmission through a long, planar undulator 
is calculated. This change is shown to be gaussian as expected from the central limit 
theorem and large number of photons emitted per electron. These results are compared 
with Saldin et al. [2] expressions. Numerical results for the case of the TESLA beam and 
for an NLC beam are given. 
 
 
Question: What is the change in energy spread due to a planar undulator?  
 
For an energy loss δ , the electron beam energy E is given as 
 
 0E E δ= −  (1) 
 
wherein 0E  is the initial beam energy.  The average beam energy is simply 
 
 0 0E E Eδ δ= − = −  (2) 
 
where δ< >  is the mean radiated energy.  The rms energy spread Eσ is  
 

 ( )2 22
0 0E E Eσ δ δ= − − −   

 

 ( ) ( ) ( )2 22 2
0 0 0 02E E E Eδ δ δ δ= − + − − − . (3) 

 
For small initial energy spread in 0E , the last term in the rhs of (3) can be set to zero (see 
Appendix A).  Thus the energy spread can be written as 
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 ( ) ( ) 0

2 22 2 2 2 2
0 0E EE E δσ δ δ σ σ≅ − + − = +  (4) 

 
where 

0Eσ is the initial rms energy spread of the incident beam and δσ is the additional 
energy spread due to the undulator. 
 

Now figure out ( )22 2
δσ δ δ= − .  The photon number spectrum ( )n ω is shown in 

figure 1 for  a 1K =  undulator in the case of a large number of undulator periods, 1γ ? , 

and small initial emittances ( ' '

1
,x yσ σ

γ
=  and 0

0

1E

E

σ
= ). With proper normalization 

Figure 1: The universal photon number spectrum, 10 10 10( / ) ( / )./( / )n hsumω ω ω ω ω ω=  
 
 

0

( ) 1d nω ω
∞ 

= 
 
∫  ( )n ω is the probability that an emitted photon has a frequency in the 

interval dω ω ω→ + .  The mean energy of the emitted photons is given as 
 

 
0

( )d nω ωω ω
∞

= ∫h h  (5) 
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and the mean square energy is 
 

 2 2 2 2

0

( )d nω ωω ω
∞

= ∫h h  (6) 

 
For an undulator of length uL , the average number of emitted photons per electron from 
[1] is phN , 
 
 ph e h uN Y Lυ= . (7) 
 
Expressions (5), (6), and (7) are combined to yield [3] 
 
 phNδ ω= h , (8a) 
 

 ( ) ( )2 22 2 2
phNδ δ ω ω− = −h , (8b) 

 
 2 2 2

phNδ ω′ = h . (8c) 
 
So what are the values (reference Z:positorns/polarized positrons/tesla150_250wrkspc.m 
Matlab workspace). 
 
For 1K = , the photon energy spectrum ( 10)hsum ww  is shown in figure 2 (note: this is 
what is calculated using Matlab file Z:/positrons/polarized positrons/tesla150_250wrkspc 
and ./1149df.m). 
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Figure 2: The universal undulator energy spectrum, 10( / )hsum ω ω . 
 
Note that 
 

 
10

10ww
ω

ω
=  (9) 

 
where 10 10 /cEω = h , the cutoff frequency (rad/s) if the first harmonic. 
 
Using ( 10),hsum ww  the integrals (5) and (6) are replaced with sums: 
 

 10 10
0

( ) 0.791
. / 10c c

hsum
d n E E

hsum ww
ωω ω

∞

= × = ×∑∫ ∑
h  (10a) 

 
and 
 

 2 2 2 2
10 10

0

.* 10
( ) 1.075

. / 10c c

hsum ww
d n E E

hsum ww
ωω ω

∞

= × = ×∑∫ ∑
h  (10b) 
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Finally, 
 
 100.791 ph cN Eδ = , (11a) 
 
 

 ( ) ( )22 2 2 2 2
10 101.075 0.791 0.45ph c ph cN E N Eδσ δ δ= − = − = . (11b) 

 
Also note, 
 
 2 2

101.075 ph cN Eδ ′ = . (11c) 
 
From reference [1], 10 28cE MeV=  (see equation (7) ref. [1]), and 135phN =  (see 
equation (12) ref. [1]).  The values are: 
 
 2.99GeVδ = , (12a) 
 
 2 4 24.8 10 MeVδσ = × . (12b) 
 
 2 5 21.1 10 MeVδ ′ = × . (12c) 
 

For 0 250E GeV= , 0/ 1.2%Eδ = , 0/ 0.09%Eδσ = , and 
1/22

0/ 0.13%Eδ ′ = . 
 
How does this compare to Saldin [2]? For an undulator of length uL , equation (7) of ref. 
[2] becomes 
 

 ( )2 4 3 27
( )

15 c e w ur K F K Lδγ γ κ= D  (13) 

 
with 13/ 3.86 10c mc m−= = ×D h , 152.818 10er m−= × , 2 /w wκ π λ= , K = the undulator 
parameter (equation (3) ref. [1]), and ( )F K  is give is [2] as 
 

 2

1
( ) 1.20

1 1.33 0.40
F K K

K K
= +

+ +
. (14) 

 
For our case recall 0 250E GeV= , 1.42w cmλ = , 1K = , and 135uL m= , equation (14) 
gives 
 

 
( )

1/22

2
0

0.15%
( / )oE m c

δγ
= . (15) 
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This result is curiously similar to (12c) (the ratio of (15)/(12c)=1.106).  As well is should 
since we are both starting from the same point.  The details of the undulator spectrum are 
buried in Saldin's F(K). I haven't decided whether or not it is worthwhile trying to root 
out the discrepancy.  The TRC references Saldin and claims that the energy spread of the 
electron beam increases from 0.05% to 0.15% due to the undulator.  It would appear that 
the TESLA TDR [4] takes expression (13) rather than calculating the rms.  This seems to 
be an oversight. 
 
My conclusion is that the foregoing is the proper way to figure out the energy spread due 
to a long undulator.  Equating the result of equation (7) in the Saldin reference [2] to the 
rms energy spread overestimates the effect by ignoring the mean. 
 
Radiated Energy Spectrum 
 
The total radiated energy per electron is due to the sum of the energies of the individual 
photons.  On average there are /ph radN E ω= h  which equals 135 in this exercise.  The 

distribution, ( )eN E  of the total radiated energies for an ensemble of electrons is expected 
to be gaussian  
 

 ( )
( )2

2

1
( ) exp

22
ph

e
phph

E N
N E

NN ωω

ω

σσ π

 − − =
 
 

h
 (16) 

 
where 
 

 22 2 2 2
ωσ ω ω= −h h  (17) 

 
Figure 3 is an overlay of equation (16) and a simulation in which energies of phN  
photons randomly drawn from the undulator photon number distribution (see figure 1) are 
summed for 1000 cases (see Z:/positrons/polarized positrons/photonspec.m Matlab file). 
The summations are shown as a staircase plot.  In figure 3,  
 
 2 2

100.45 cEωσ = ×  (18) 
 
(compare with equation (11b)), 10 28cE MeV=  and 135phN = . phN ωh  has been set 
equal to the mean of the staircase distribution.  There is a discrepancy of about 2% in the 
means.  This is due to how the binning is done.  Also the amplitude of the gaussian has 
been normalized to give the proper total number of electrons when integrated.  The 
agreement of simulation with the expected gaussian looks quite good, as expected. 
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Figure 3: The distribution of total radiated energy from individual electrons. 
 
 
 
Concluding Comments 
 
A few words on scaling.  For a given undulator, the mean radiated energy varies as 2

uLγ  

and the width of the distribution varies as 2 1/2
uLγ . As expected, the distribution is 

gaussian.  As seen in the Saldin formulation, the mean and variance also depend on the 
undulator period, wλ and the undulator parameter K .  The approach outlined here is in 
complete agreement with the Saldin paper.  It is a straightforward exercise to rewrite the 
expressions in terms of ,, ,w uK Lγ κ  to get the same proportionality as [2]. 
 
For the NLC, the growth in energy spread is small in comparison to the expected 

0.5%Eσ ≈  at the 150 GeV point.  For TESLA, the energy spread due to the undulator 
will increase by a factor of 2, not the factor of 3 stated in the TDR.  The next task is to 
figure out the emittance growth induced by the dispersion in the undulator. 
 
 Appendix A 
 
 How Large is ( )0 02 E Eδ δ− − ? 
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Starting with the first term, recall that phNδ ω= h  and 2

0Eω ∝  so that the first term can 
be written as 
 
 

 
3
0

0 2

0

E
E

E

δ
δ

′
=  (A1) 

 

where 2 2
0 0/E Eδ δ′ = . Since the 0E  dependence in δ  has been removed in δ ′ , A1 can 

be rewritten as 
 
 

 
3 3
0 0

0 2 2

0 0

E E
E

E E

δ
δ δ

′
= ≡ . (A2) 

 

0E  has a normal distribution, ( )
0Ep E , 

 

 ( ) ( )
0

00

2

01
exp

22E
EE

E E
p E

σσ π

 − − =
 
 

. (A3) 

 
3
0E  is evaluated as follows, 

 

 ( )
0

3 3
0 EE dEE p E

+∞

−∞

= ∫  (A4a) 

 

 ( ) ( )
0

3

0 0EdE E E p E E
+∞

−∞

= + +∫  (A4b) 

 ( ) ( )
0

2 33 2
0 0 0 03 3 EdE E E E E E E p E E

+∞

−∞

= + + + +∫ . (A4c) 

 
A4c is evaluated by inspection noting that the first and third terms are odd and therefore 
integrate to zero.  Thus 
 

 
0

33 2
0 0 03 EE E E σ= + . (A4d) 

 
A2 becomes 
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 0 0

3 2 2
0 0

0 02 2
0 0

3
1 3E EE E

E E
E E

σ σ
δ δ δ

 +
 = = + 
 

. (A5) 

 
The dropped term in equation (3) is then 
 

 ( ) 0

2

0 0 02
0

2 6 EE E E
E

σ
δ δ δ− − = − . (A6) 

 
This term needs to be evaluated in the context of the full beam energy spread as given by 
equation (3).  The numbers for the NLC are 0 250E GeV= , 3GeVδ = , 

0 0/ 0.5%E Eσ ; , and from above 0/ 0.09%Eδσ = . Equation (3) gives 
 

 
0

0.49%E

E
σ

=  

 
while equation (4) gives 

 
0

0.51%E

E
σ

= . 

 
For the TESLA case, 0 250E GeV= , 3GeVδ = , 

0 0/ 0.05%E Eσ ; , and from above 

0/ 0.09%Eδσ = . Equation (3) gives 
 

 
0

0.10%E

E
σ

=  

 
while equation (4) gives 

 
0

0.10%E

E
σ

= . 

Note that the dropped term does not change the answers by much.  It seems a little 
curious that the dropped term decreases the overall energy spread in the NLC case.  This 
could be straightforward radiation damping in that the higher energy electrons radiate 
away more than the lower energy electrons.  Or maybe there is something to be 
considered in the energy dependence of δ  which has been ignored but may compensate.  
In any event, the effect is small and will be ignored for the time being.  It gets picked 
naturally when the effect of the initial beam energy spread 

0 0/E Eσ  is included in the 
undulator spectrum. 
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