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ABSTRACT 

The convergence of sum rules relating the matrix elements of local, oper- 

ators to integrals over deep-inelastic structure functions is studied critically. 

It is found that the matrix elements may always be written as the q2 -- 03 limit 

of finite expressions, regardless of the (Regge) asymptotic behavior of the 

structure functions or the possible occurrence of J=O fixed singularities. The 

correct form of the sum rule for the operator Schwinger term is taken as a 

paradigm case. It is derived from the Bjorken-Johnson-Low theorem and agrees 

with the results of parton model and light-cone analyses. It readily encompases 

the results of second order +3 theory (where the Schwinger term diverges 

logarithmically) and second order vector gluon theory (where it vanishes). 

Sufficient conditions for the finiteness of the operator Schwinger term are the 

scaling of the longitudinal structure function and the absence of J=O fixed singu- 

larities with nonpolynomial residues. The treatment is readily applicable to 

other scaling and fixed q2 sum rules needing regulation. A compendium of 

these is given. 
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I. INTRODUCTION 

The study of the deep-inelastic limit of lepton-nucleon scattering has 

produced a profusion of sum rules similar to those of old-fashioned equal-time 

current algebra. These sum rules generally relate integrals over deep-inelastic 

structure functions to the single-nucleon matrix elements of local operators. 

Some, like the Bjorken [l] limit of the Adler sum rule [2] for neutrino scattering, 

relate convergent integrals over the data (assuming the Pomeranchuk theorem 

to apply to highly virtual processes) to known static properties of the nucleon. 

Others however, such as the sum rule of Jackiw, van Royen and West [3] 

for the operator Schwinger term, appear to diverge if the structure functions 

possess the Regge behavior expected of them, It is very important to under- 

stand whether such divergences are actual, indicating for example that the 

operator Schwinger term is truly infinite in the presence of Regge behavior, - 

or artifactual, indicating a breakdown in the method of derivation - since it is 

not known a priori whether or not objects such as the operator Schwinger - 

term are finite. 

Our object is to present a straightforward and systematic analysis of these 

apparent divergences employing several of the techniques for writing finite 

sum rules which have been developed over the past few years [4,5,6], and using 

the Schwinger term sum rule as an example [7]. These techniques and our 

conclusions are quite general and apply to a wide class of sum rules, some of 

which we shall enumerate. While many of the considerations in this paper 

already appear in the literature, we feel that the consistency, generality and 

utility of these techniques are not widely recognized [8] and warrant a unified 

presentation. 
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For the case of the Schwinger term, we find that if the sum rule of 

Ref. [3] is divergent due to asymptotic Regge behavior, the derivation is 

invalid [9] . Even if Regge asymptotics are such that the integral converges, 

the sum rule of Ref. 131 obtains only if o=O fixed singularities in the real part 

of the virtual Compton amplitudes have residues which are polynomials in q2 

(the square of the photon’s mass). If they do not, the sum rule of Ref. [3] 

may be modified by an additive, unknown constant. In the presence of leading 

Regge behavior further modifications occur: We obtain a sum rule which is 

a generalization of that proposed originally in Ref. [4J . It represents an 

analytic continuation in the Regge intercept a, of the sum rule derived if all 

trajectories have Q<O, to values of (I in the range 0 <(Y < 1. (A term with CY=O - 

in the imaginary part is an exception. The sum rule remains well defined but 

is not the analytic continuation of the result for cr#O . ) The modified version 
\ 

of the sum rule leads us to conclude that the existence of the Bjorken limit of 

the longitudinal structure function and the absence of a certain class of non- 

polynomial fixed singularities are sufficient to guarantee the finiteness of the 

Schwinger term. 

The paper is organized as follows. 

In Section II we give a straightforward derivation of the sum rule of 

Ref. [3] based on the Bjorken-Johnson-Low (BJL) theorem [lo, 111. In the 

presence of Regge trajectories with intercepts 010, or of cr=O fixed singularities, 

the derivation is invalid, and the Schwinger term is related to a subtraction 

constant rather than an integral over a structure function. 

In Section III we parameterize the expected Regge asymptotic behavior 

and use dispersion relations to relate the subtraction constant to a finite 

integral over the structure function (with its leading Regge behavior subtracted 
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off) and the residue of a possible a=0 fixed singularity. The versions of the 

sum rule found in the literature may be obtained from this general result with 

appropriate additional assumptions. 

In Section IV we argue that this general result is not an artifact of our 

particular derivation (via the BJL theorem) but may equally well be obtained 

from light-cone analyses or in the parton model. The possible cr=O fixed 

singularity which entered the BJL derivation is found to correspond, in the 

light cone analysis, to a &function of the structure function in the Bjorken 

limit and to be absent in the parton model. 

In Section V we study second order perturbation theory in @3 theory and 

the vector gluon model and obtain results which exemplify the conclusion of 

Sections III and IV. In particular the rather subtle workings of the sum rule 

in the vector gluon model, pointed out by Corrigan and by Zee [7], fit simply 

into our scheme. 

Section VI contains a summary of our conclusions and an enumeration of 

other sum rules to which they apply. We tabulate the sum rules as they occur 

in the literature and indicate the modifications discovered by our analysis. 

In the Appendix we demonstrate how to deal with an cz=O term in the 

imaginary part and with Regge cuts. 
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II. DERIVATION OF THE SCHWINGER TERM SUM RULE 

FROM THE BJL THEOREM 

The proton matrix element of the equal-time commutator of the electro- 

magnetic charge and current densities defines the Schwinger term [12] : 

<PI J,(zO), Ji(0) 
II 1 lP> = iai 63(y) S . (1) 

The BJL theorem [ 10,111 relates S to a limit of the forward Compton 

amplitude 

T,&P,q) = i 
s 

d4y eiqsy 0(y,) <PI J,Or), 
[ 

J,(O) 1 IP> 

+ (polynomials in q and P) (2) 

whose absorptive part 
i 
W 

IJV 
=-&ImT pV) describes inelastic electroproduction. 

To isolate the Schwinger term consider Toi and take the limit q. - iw with 

P and q fixed (limB JL). Then 

lim Toi = - 1 4 
90 

dye 
BJL 

iq’ y 6 (yo) < P I [Jo(y), Ji(0)] I P> + 0 

2Z - 5 S + 0 $ + polynomial 
90 i ) 90 

(3) 

where the right hand side has been obtained by partial integration of Eq. (2). 

To study Toi we write the covariant decomposition 

Tpv P, 4) = ( q,& - q2g pv 1 tLk12, v) 

+$ ( 
v Pp, +pvq/J - q2p p - v2gpv P v 1 

t2tq2Jd (4) 

where v = Pa q and tL and t2 are free of kinematic singularities and related to 

the conventional amplitudes [ 131 by 

tL=-j(--&T2+Tl) , t2=-$T2 . 
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For convenience we choose the coordinate system in which P’- 0 so that 

Eq. (3) becomes: 

gi ALL qOqi(tL(q2, ‘) + t2(q2, ‘))= -- ’ + O ~ + qip(S2, ‘) 
90 \ 1 40 

(5) 

where P(q2, v ) is some polynomial in q2 and v , which is to be identified with 

terms on the right-hand side which do not vanish as q. - im. Identifying the 

coefficient of l/qo, we obtain 

s = - ;yL q2 (~Le42,v) + f2(q2,v)) , (6) 

where EL and f2 are defined to have all those terms subtracted off which in the 

limit vanish like l/v or more slowly. 

Fixed q2 dispersion relations may now be used to relate the Schwinger term 

to electroproduction data. Here the question of Regge-asymptotic behavior 

becomes crucial. We consider two cases. 

Case I. Both tL and t2 obey unsubtracted dispersion relations in v for - - 

for fixed, spacelike q2. Let wi = -$ Im ti then 

t+q2, v) = 4 
co 

s 

v’dv’ wi(q2, v’) 

vt2-v2 ’ 
i=L,2 . 

-s2/2 

A Regge analysis indicates that the integral over wL does not converge, 

lim wL(q2, v) - vo , 
v-03 

o!<l , - 

while the w2 integral is convergent, 

lim w2(q2, v ) - v a-2 , cV<l . - 
v-w 

(7) 

(84 

@b) 
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Of course it is not certain that Regge considerations apply in the limit q2--ca 

where we shall study Eq. (7). In this spirit we assume for the moment that 

both dispersion integrals of Eq. (7) are convergent. 

The relation between wL and w2 and the conventional structure functions is 

-q2 wL(q2, v) = ; F2(q2,w) - F,(q2,w) = FL(q2, w) 

(9) 

2 
F2(q , w) = M2 vw (q2,v) 2 

F1(q2,4 = Wl(s2, v) . 

The Bjorken limit (lim .) is v , -q2+ 
BJ 

CO, w fixed and finite and by scaling we 

mean that the functions FI, 2 ‘(a) = limBj FI ,(q2, w) exist. 
, 

In terms of FL and F2, Eqs. (7) read: 

tL(q2,v) = - 4 co 
q s w’dw’ 

1 2 w’ -w 
2 FL(q2,J) 9 

t2(q2,v) =$r dw’ 2 F2(q2,w’) . 
q 1 wt2-w 

(loa) 

(lob) 

In the BJL limit q2+ --oo and a2 -L 4M2/q2 . Combining Eqs. (6) and (10) 

and assuming scaling we obtain the sum rule of Jackiw, van Royen and West [3] 

s=4 s * do 

1 w FL(w) - (11) 
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Case II. The dispersion relation for tL requires one subtraction as dictated 

by Regge theory. 

Then Eq. (lOa) must be replaced by 

tL(q2,V) = tL(q2,0) -$ 
03 

S dw’ FL@‘, w’) 
4 1 d(wf2 - w2) 

and Eqs. (6) and (12) yield 

S = - lim q2 CL(q2,0) . 
9% --co 

(12) 

(13) 

That is, the Schwinger term is given by the subtraction constant. It is already 

apparent that any divergence of S must arise from the q 2 -+ - 00 limit. 

Even if the dispersion relation for tL does not need a subtraction one 

cannot rule out the possibility of an additive constant (one more generally a 

polynomial in v 2, with arbitrary q2 dependence. The effect of such a constant 

is to reduce Case I to Case II. (We exclude higher order terms in v 2bY 

requiring the full amplitude to behave as v O1 with CL!5 1.) 

To summarize we have found that if 

a) the structure functions F L 
9 
,(s2, W) scale in the Bjorken limit, 

and b) Im tL(q2, v) is bounded by p(q2)va!, 0~~0, as v --rm, so that an 

unsubtracted dispersion relation is permitted, 

and c) no additive constant enters this fixed q2 dispersion relation, 

then the sum rule of Jackiw, van Royen and West, Eq. (ll), may be obtained. 

If a) holds and b) fails or if a) and b) hold and c) fails, then Eq. (13) must 

be used instead. 
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III. A FINITE SCHWINGER TERM SUM RULE 

As shown in the last section, in a wide class of circumstances the attempt 

to derive a Schwinger term sum rule results merely in identifying S with the 

q2 - --M limit of a subtraction constant. Here we show how to relate the sub- 

traction constant to finite, regulated integrals over the structure function FL(q2,w). 

Suppose tL(q2, v ) obeys the subtracted dispersion relation, Eq. (12)) 

allowing for Regge asymptotics. Let F:(q2, W) represent the leading (a! > 0) 

Regge behavior of FL(q2, w) ; for example: 

F;(q2,w) = c ‘Y(%q2) lwl”l E(W) * 
COO 

(14) 

Other possible parameterizations are discussed below. The leading Regge 

behavior of tL(q2, V) may be constructed uniquely from Ft(q2, W) by means of 

a subtracted dispersion relation 
\ 

2 
t$q2,v) = - f+ 

J 

00 dw’ +q2, w’) 

cl 0 w’(w’ 
2 2 

-w ) 

2n =- (da + (-do1 

q2 
c 

y(ol q2) , 
[ sin 7ro1 1 . cl>0 (15) 

We have defined tz(q2, V) with no subtraction constant since it parameterizes 

those terms which grow as v - co. 

Subtracting Eq. (15) from Eq. (12) and letting v - 03 we obtain 

1i.m 
C 
tL(q2, V) - t$12, v) 

v-03 1 = t,&12, 0) + $ 
*dw - s w FL&l29 w) (16) 

q 0 

where 

pL(q2, w) = FLh2, w) - F$s2, o) 
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and the integral converges provided there is no a=0 piece in FL(q2, w). We 

consider later the interesting question of such asymptotically constant parts in 

the imaginary part. Here we merely note that they are not allowed in a simple 

Regge pole picture, because of the signature factor which is real at o!=O. 

Equation (16) defines the residue of an ol=O singularity in the real part of 

t;(s2,v). There is good reason to believe that such singularities are 

fixed[5,14,15,16](i. e., they occur at J=a!(t) where o(t)=0 for all t) and have 

residues which are polynomial in q2 for amplitudes free of kinematic 

singularities [5,15]. We shall refer to such singularities as fixed poles (although 

Kronecker delta [I63 is perhaps more correct for tL). Defining the residue 

F.P. 2 
tL (q ) = lim 

v-a 
(17) 

we conclude from Eqs. (16) and (17) that 

lim 

q2 

q2 fL(q2, 0) = - 4 lim 
--Co q2- --co 

if t;-p- (q2) is a polynomial. 

More generally 

S = - lim q2fL(q2,0) = lim 

q2 
2 --CO q ---co 

(18) 

where 

C(q2) = q2CE. p. (92) 

and tFSP’(q2) * L is the nonpolynomial fixed pole residue. The polynomial part 

(together with any term in FL(q2, U) which grows like a power of q2 as q2 --L-W) 

does not contribute to t(q2, 0) and is identified with the polynomial occurring 

in the BJL limit, Eq. (5). It is tempting to take the q2 - --oo limit under the 
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integral in Eq. (18) and replace FL(q2, W) by B,(O), assuming scaling. However 

in Section V we find that the order of limit and integral is essential in reconciling 

the results of Corrigan and Zee [7]. Finally we perform the integration .from 

a=0 to w=l 2 -R 2 , W) = -F L(q , to obtain our Schwinger term sum 

rule 

s= lim 
2 

-q2fL(q2, 0) = lim 
2 [ 

4 J O” dw FL(&q2) - 4 c =f=$ - C(q2) . 
q --co 1 

; 
q --t-co a>0 1 

We now consider the analyticity of the Schwinger term sum rule in ac. 

Assume scaling and take FL(w) to be the sum of an asymptotically vanishing 

piece f(w) and a single trajectory contributing y(cr)oly. Equation (19) gives 

s=4 
P 1 

% f(w) - 4 y - c 

for a>0 and for Q<O, indicating that it is the analytic continuation of 
b 

s=4 * dw 
s 1 

w FL(U) - c 

to a>0 (provided of course y(o) is analytic in a). 

It remains to consider the possibility of an asymptotically constant (cr=O) 

piece in FL(q2, w), which would correspond to Re tL(q2, 0) growing like log v 

as v--m, q2 fixed. Such a term must be subtracted in defining the fixed pole 

residue through Eq. (17). Unfortunately the standard Regge parameterization, 

Eq. (14), is not suitable since Eq. (15) makes no sense for o!=O. This is an 

artifact of the location of the Regge threshold at w=O. To avoid this complication 

we choose 

F;(q2,0) = y(0,q2) 6(--w-l) 1 w-9 
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corresponding to 

t$q2, v) = % rto, q2) 1% Ww2) ’ 
q 

(21) 

Proceeding as before we obtain 

S= lim 
i 
4 

r c ? FLh2, cd) - W,q2) 
I 1 

- w12) (22) 
2 1 q --L-co 

which is finite (unless the q2 --L --co limit diverges). Clearly Eq. (22) is not the 

analytic continuation of Eq. (19) to a=0 ; indeed the latter appears to be singular 

as a--+ 0. This is because the v -f 03 limit which defines the fixed pole is not 

uniform in a!. The combination 
[ 
tt(q2, v ) - - 4 W,q2) , 

cl2 cl! 1 where t:(q2,v) is 

the general Regge form of Eq. (15), agrees with the special Regge form of 

Eq. (21), in the limit a! -+ 0 followed by v +co . It is this that ensures the 

absence of a counter term at a=0 in Eq. (19). 

The nonanalyticity in a! is not an artifact of choosing a Regge form for CD 0, 

Eq. (15)) which cannot be continued to cr=O. In the Appendix we use the param- 

eterization 

t;(q2,w, a) = % Y@G12) ( 
[ 

l+w)a! -I- (l-(.&2 

q 
sin 7ro 1 

which is analytic in a! and derive both Eq. (19) for a>0 and Eq. (22) for CY=O. 

In the Appendix we also give a regularization scheme for Regge cuts with 

cuc>O. These present no problems in principle in obtaining a finite Schwinger 

term, given scaling. 

In its final form (Regge poles only) the sum rule is 

S = lim 4 
q2- --co r 1 

% FL(q2,m) - 4 C 
a>0 

I?!c2$. - qq2) 1 (23) 
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where 

FLtq2, w) = FLts2, w) - @To -ita, s2) wa! 
- 

C(q2) = q2 f;=(q2) . 

Clearly S is finite if FL(q2, U) scales and C = lim C(q2) exists. 
q2, -co 

Moreover, if for example 

lim FL(s2, W) = 2 (q2)i F:(U) 
Bj i=O 

then the Schwinger term is given by F:(W) and the higher order terms are 

identified with polynomials in the BJL limit. If on the other hand FL(q2, W) 

grows logarithmically with q2 (or with a fractional power of q2) in the Bjorken 

limit we conclude that S is actually infinite. 

The sum rule of Ref. 14; (see Eq. (5.14) therein) may be obtained from 

. our general result by further assuming that 

4 any cr=O fixed pole in Re tL(q2, v ) has a residue which is polynomial 

in q2 (so that C=O), 

b) there is no a=0 term in FL(w), 

c) there is no operator Schwinger term. 

On the other hand the result of Ref. [3], Eq. (ll), assumes that both 

real and imaginary parts of tL(q2, v) have 01~0 (vanishing asymptotically). 

Attempts to calculate the Schwinger term from the sum rule will depend 

heavily upon assumptions beyond the existence of the Bjorken limit. However 

the existence of the Bjorken limit and the absence of nonpolynomial fixed poles 

are sufficient to guarantee the finiteness of S. If FL(w) = 0 (implying that the 

ratio of longitudinal to transverse photoabsorption cross sections vanishes in 
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the Bjorken limit) and there are no nonpolynomial fixed poles then S=O. This 

is the case in parton models with spin l/2 charged constituents. However 

light cone analyses of the quark-vector gluon model only give FL(w) = 0 and 

make no commitment on fixed poles. It is interesting that a fixed pole in p 

electroproduction could give 

$3. tq2) = c 
q2-m9 

being a nonpolynomial fixed pole in Compton scattering. 

. ’ 
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IV. OTHER METHODS OF REGULATING SUM RULES 

The regulation prescription developed from the BJL expansion and dis- 

persion relations may also be obtained from light-cone analyses or the parton 

model. Here we present brief descriptions of the origin of the regulating 

terms from these starting points. Analogous prescriptions can presumably be 

developed in other popular theories of inelastic processes. 

A. Light Cone 

A coordinate space derivation [16] of the Schwinger term sum rule begins 

with the decomposition: 

<PI [ 
J&Y,, J,(O) 1 lP> =(gpv o - d,$ vLly2, y.~) 

+ 
[ 
PclPv 0 + gpv (P. d)2 - (Pclav + Pv dp’ P* 8 1 V2(y2, y-P) . 

(24) 

For simplicity we assume Bjorken scaling for F2 L (q2, W) - the more general , 

treatment is more complex but no more enlightening - which requires the 

following singularity in VL(y2, y. P) [ 31 : 

VJp 
2 

>Y.P) = 2d -L- EtY*W[6tY2) fLtY’P)+ etY21 fL(Y2, Y-P;] (25) 

where cL(y2, y. P) does not contribute to FL(w). V2 does not enter the sum 

rule and we ignore it henceforth. After Fourier transformation we find 

A- M dJi e-ih’w FLtw) = 4nw -oo s fL(h) ’ 

Inversion of Eq. (26) is delicate. If lim FL(w) = 0 we obtain 
w-@J 

fL(h) = 4 2 cos X/w FL(w) 

(26) 

(27) 
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I 

and from Eqs. (I), (24) and (25) 

s = f,(O) 

so that Eq. (27) at h=O gives the naive sum rule of Ref. [3], Eq. (11). However 

in the presence of leading Regge behavior 

FL(w) = FL(w) + c Y(o) iw 1 O1 E((Y) 
cY>o 

we obtain 

(28) 

fL(h)=4 ; 
s 

m 
0 

dbJ cos h/w FL(W) + 2 aFo YW Jrn dx e-ihx ’ ; f+l 
-co 

where the second integral has been interpreted as a distribution. 

At h=O we obtain 

s = fL(0) = 4 
s 

ca dw - 
y FL(w) = 4 * 

3 
(29) 

0 

which is the scaling version of the general result of Eq. (23)) except for the 

lierm c = hi” 
C(q2) and the possibility of an a=0 term in FL(w). Both these 

q --L-al 
considerations are included in a light-cone B JL treatment presented below. 

Regarding C note that a term in FL(q2, W) with the singular behavior 

lim w FL(q2, W) = - : 6 s 
W 0 

(30) 

cannot be ruled out a priori. Such a term will not be encountered in the integral - 

of Eq. (23) but contributes to Eq. (29). This is the formal expression of a non- 

polynomial fixed pole in this coordinate space derivation. 

We now give the light-cone BJL derivation which, correctly treated, relates 

the Schwinger term to a subtraction constant. We take the limit q - 00 
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t 
q, = 1 (qo+q3) 

4-2 i 
with the remaining components of q and P fixed (limLC) so 

that w = l/x = - P+/q+ . This limit isolates light-cone commutators [17], and 

in particular [lS] : 

lim T*(P) q) = polynomial 
LC 

‘?tq+ -- 
q- S 4 iqmy 

dye qy+) VLtY2, Y-P) + 0 4 
c 1 

* 
q- 

Equivalently 

lim ’ 2- ( -q tL(q2, v) = 
a3 

Bj ) ss, dhe -i* E(h) fL(h) . (31) 

The left-hand side of Eq. (31) is given by a once subtracted dispersion 

relation and the right-hand side may be so written using the representation Ccl s dhe -ihx E(h) fL(h) = $ 
--oo 

s,O $$s”, a ewi*’ fLtN 

and subtracting at x= cc). Thus we obtain 

-q2 FL(q2, 0) + 2 s 1 
lim 

dx’ FL($) 
q2- -co -1 x-x’ 

= fL(0) + & lI% JI dA esihx’ fL(h) . (32) 

Equating subtraction constants we obtain 

S = -1im q2 tL(q2, 0) 
2 q -W--cc, 

(33) 

which was obtained before from the BJL limit, so that the sum rule follows 

from the analysis of Section III. Equating absorptive parts we obtain Eq. (26). 
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A term with a=0 in FL(w) may now be accommodated by proceeding from 

Eq. (33) as in SectionIIIand we see that the constant C of Eq. (30) must be the 

light-cone expression of a nonpolynomial fixed pole (if any). 

Finally we remark on the difficulty of inverting Eq. (26) when FL(w) 

contains an a=0 piece. If we proceed as in Eq. (20) and write 

FL(w) = F,(w) + y(o) [e(d) - et-w-l)] 

then 

fL(h) = 4iW% cos h/w FL(W) -t f$) 

where 

$(A) = 4s1 $ cos Ax 
0 

and for consistency with the momentum space calculation of Section III we must 

require c(O) = 0. This is assumed but not explained in Ref. [16]. 

In conclusion the coordinate space derivation gives the regulated sum rule 

of Eq. (29). The light cone BJL limit gives the same result as the q. -im BJL 

limit, Eq. (33), indicating that there is no problem with an ol=O piece in FL(w) 

and that a nonpolynomial fixed pole corresponds to the behavior of Eq. (30). 

B. Parton Model 

The parton model supposes the nucleon to behave in current scattering 

processes as though composed of pointlike particles. An operator Schwinger 

term arises, by gauge invariance, from the local “seagull” coupling to spin- 

zero partons. The seagull operator is -2g ,,:@*(y) A2 q(y): where A is the 

parton’s charge and $(y) its field and the Schwinger term is given by 

s = 2 <P I q*(o) A2 q)(O) IP> 
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where the matrix element simply counts spin-zero charged partons. The 

correspondence with the previous section can be seen by calculating fL(y. P) 

from Eqs. (24) and (25) using 

and using the leading light-cone singularity of the free field theory propagator 

to obtain (for y2=O) 

fLtY+) = <PI@“(y) A2 #(o)lP>+ (y---y) . 

As is well known the charged-squared-weighted probability function for 

spin-zero partons carrying a fraction x= l/w of the longitudinal momentum in 

the infinite momentum frame is % FL (i) (note that FL=0 for spin-half partons) 

which implies 

s= 2 <PI+*(o) A2 $(O)IP> 

1 
= 2 

s 
dxEFL(;j =I&,=+ FL(w) . (34) 

0 

This is of course the sum rule of Jackiw, van Royen and West, Eq. (ll), and 

is correct in the absence of leading Regge behavior and nonpolynomial fixed pole 

residues. 

As emphasized by Landshoff, Polkinghorne and Short [19], FL(w) is related 

to the imaginary part of the off-mass-shell, spin-averaged, forward parton-proton 

scattering amplitude A(s, p2), where s = (P+P)~, p2=p2 for proton and parton 

momenta P and p respectively. The leading behavior of Im A(s,p2) as s--, CO 

determines the leading behavior of FL(a) as w b CO. If 

rm A(s ,p2) - p,oL”) sa 
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then 

where [19] 

FL(w) - Y/- 

Ya! = 3 s,” dz zyz dP2P,du2) * -co 
The Schwinger term, S, is given by the diagram of Fig. la, in terms of 

the full amplitude A(s, ~1~). If A(s,p2) satisfies an unsubtracted dispersion 

relation 

A@, p2) = + Srn ds‘ ‘; f;“yp 
2 
) 

-co 

we obtain the result of Eq. (34). If however Im A(s, p2) has leading Regge 

behavior (a!~ 0) or if Eq. (35) is modified by an additive constant the Schwinger 

term sum rule is modified. 

Consider the subtracted dispersion relation 

A(s,/J~) = A(0,p2) + : s 
O” ds’ Im A(s1,p2) 

s’(s’-s) f 
-rxJ 

(36) 

then the subtraction constant A(0,p2) may be thought of as contributing to S via 

the diagram of Fig. lb. Note that only the absorptive part of A(s,p2) contributes 

to FL(w). We may however express S in terms of FL(w) by relating A(0,p2) to 

an integral over [ Im A(s,p2) - Im AR(s,p2) 1 in analogy with the treatment of 

tL(q2, v) in Section III. Since hadronic amplitudes (e. g. , parton-proton 

amplitudes) should not be afflicted by a=0 fixed poles [15] we obtain 

A(0,p2) = .‘, Jrn $ [Im A(sf,p2) - Im AR(sl, p2) 1 --co (37) 

where we have assumed a simple Regge parameterization for Im AR(s,,u2) with 

01> 0. (A term with o=O requires the more careful treatment of Section III. ) 
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Combining Eqs. (36) and (37) we obtain 

A(s,p2) = : j@ dsf lms~$y~ 
2 

1 _ Irn ARts’#2) 
S’ 1 . -ccl 

The Schwinger term is then given by 

s=4 - c Y, cf 
cl!>0 1 

where the two terms of Eq. (39) correspond to the two terms of Eq. (38). 

Evaluating the integral from w=O to 1 we obtain 

[J Y 
s=4 ca +f FL(W) - c 

1 a>0 
-$ 1 

(38) 

(3% 

(40) 

which is the scaling version of Eq. (23)) supposing no cr=O term in FL(w) and 

no o!=O fixed pole. 

The absence of any additional term C in Eq. (40) is a consequence of the 

assumption that the hadronic parton-proton amplitude has no fixed pole at o=O. 

The restriction on ol=O terms in the imaginary part may be relaxed by taking 

a more careful Regge parameterization of A(s ,p2). 
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V. VALIDITY OF THE SCHWINGER TERM SUM RULE 

IN PERTURBATION THEORY 

A. q3 Theory 

A $3 model in second order perturbation theory provides the simplest 

verification of the sum rule. Consider first the box diagrams of Figs. 2a 

and 2b, from which we obtain 

2 
FL(~) = 5 W-1 , w>l (41) 

32n up2 + (w-~)~M~ 

where M and p are the masses of the charged and neutral scalar particles. 

The Schwinger term may be calculated directly from the contact term of 

Fig. 2c which gives 

2 1 
s=g dx 

s 8a2 0 

where x is a Feynman parameter. 

l-x 

xp2+ (~-x)~M~ 
(42) 

Comparing Eqs. (41) and (42) we see that the diagrams of Fig. 2 satisfy 

s=4 
s 

O3 dw 
1 

w FL(w) 

and none of the complexities of Section III occur. 

However it is well known that S is logarithmically divergent to second 

order. The infinity arises from the diagrams of Fig. 3, which do not contribute 

to FL(w). The contact term of Fig. 3c gives a logarithmic divergence 

S = -& log (A2/M2) 
87r CL 

(43) 
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where A is some cutoff. However the sum of the diagrams of Fig. 3 gives a 

finite contribution to tL: 

q2tLtc12,v) =-& [P’og(~j - 21 = wi2) , (44) 

where 

,8 = (l-4M2/q2)1’2 , 

corresponding to a nonpolynomial fixed pole. 

The sum rule of Eq. (23) is then satisfied, in the form 

s=- lim wi2) 
q2 --W-CO 

with matching logarithmic divergences. 

Note that that in parton model terminology the diagrams of Fig. 3 correspond 

to a fixed pole in the hadronic parton-proton amplitude. 

B. Vector Gluon Model 

The vector gluon model is more challenging [20]. 

(Figs. 2a and 2b) give [7] 

2 
FL(q2, w) = + e(u2-1) + 0 

87r w 
(--j log (-q2)j 

and there is no contact term. Moreover Corrigan [21] has shown that 

lim q2tL(q2, v ) = q 22 l S dx x2(1-x) = 

v-m 7r2 0 q2x(l-x) - M2 

The box diagrams 

C(q2) 

(45) 

(46) 

corresponding to a nonpolynomial fixed pole. 
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Combining Eqs. (45) and (46) we see that the sum rule is satisfied, in the 

form 

s= lim 4 
[ s 

O3 dw 7 FLtq2,w) - C(s2) 1 = 0 . (47) 

q2 
1 --CO 

As expected the Schwinger term vanishes. 

Zee [7] takes a superficially different approach. He studies the case of 

zero fermion mass (the attendant infrared problems do not appear in the 

B jorken limit). He uses the DGS representation to calculate FL(qL, U) in the 

Bjorken limit and concludes that 

lim $ FL(q2, $) = 2 [B (1-x2) - ZS(x) 
B j 87r2 1 (49) 

where the &function at x=0 results from a careful consideration of the limiting 

procedure. His version of the Schwinger term sum rule reads 

s 1 
s=2 

-1 
dx 2’“” [: FL(q2, ii]= 0 . 

q ---co 
(49) 

It is important to realize that Eqs. (47) and (49) are completely equivalent. 

In the first case the integral is to be evaluated before letting q2M-m, so that 

any b-function singularity in the Bjorken limit will not be encountered. The 

nonpolynomial fixed pole then cancels the integral. If on the other hand one 

insists on formulating the sum rule as 

s=2 
s 

vx- 
xFL: ( 1 -co 

it is necessary to treat $ FL($) ( an 1 s regulated version) as a distribution d ‘t 

with singularities at x?O which reflect the existence of nonpolynomial fixed poles 

(as indicated in Eq. (30)). We prefer the first approach since it circumvents 

- 26 - 



the delicate manipulations necessary in Zee’s work and permits an interpre- 
n 

tation of the sum rule even when S is divergent (as in second order $’ theory). 

It is perhaps appropriate to note here how the sum rule is expected-to be 

fulfilled in the canonical vector gluon model. Although S and FL(w) both 

vanish according to canonical manipulations it is not obvious that C=O. The 

vanishing of C is ensured by requiring that real and imaginary parts of tL(q2, v) 

scale with the same power of q2 in the Bjorken limit. This additional assump- 

tion is usually incorporated into light-cone analyses [18]. 
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VI. SUMMARY AND COMPENDIUM OF REGULATED SUM RULES 

We have shown that the sum rules of inelastic lepton scattering are finite 

unless the q2 -L --co limit diverges. The generic form of sum rules involving 

amplitudes satisfying once subtracted dispersion relations is illustrated by the 

Schwinger term sum rule 

- C(s2) 
I 

(50) 

where 

8,(q2, w) = FL(q2, w) - c Y (a, q2) wa! cY>o - for 0>0 . 

It should be noted that: 

1) All Regge contributions with effective intercept greater than or equal 

to zero have been removed from F,(q2, w). The integral of Eq. (50) is there- - 

fore always convergent (see comment 4 apropos of Regge cuts). 

2) There is no counter term for an a=0 piece in FL(q2, w). Therefore 

the sum rule need not be analytic in a! at a!=O, though t ,(q2, v ) may be. 

3) C(q2) = q2 cl’ ‘*(q2) where $’ “(q2) is the nonpolynomial residue 

of an a=0 fixed pole (if any). Depending upon the kinematics, other sum rules 

of the form of Eq. (50) may have contributions from polynomial fixed poles. 

4) Regge cuts with branch points ac>O present no fundamental problems - 

regulation schemes similar to Eq. (50) will guarantee convergent integrals. 

(See the appendix for a possible parameterization. ) 

5) This form of the sum rule encompasses the several perturbation 

theory calculations of S which exist in the literature. 
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The procedure we have presented may be applied to sum rules satisfying 

the following criteria [6]: 

1) They must be valid in free field theory - BJL, parton or light-cone 

techniques should not yield results incompatible with free field theory. 

2) In their unregulated form they must not diverge worse than linearly 

in the presence of o!=l (Pomeron) leading Regge behavior - we have only dis- 

cussed subtraction of terms down to a=O, additional subtractions require 

further discussion. 

We have searched the literature for such sum rules and we present here 

a list of those involving the structure functions for inelastic electron scattering 

(including polarized targets) and inelastic neutrino scattering on unpolarized 

targets. We define the amplitudes for forward virtual Compton scattering by 

the decomposition 

Te zz 
PV 

+--$ (Pp --$)(y, -fa,i T;tq2,v) 
+$ EpvcYp qa sp Ae,ts2, v ) 

AE 
+ M4 pvcrP 

qa! (sk’aq -Ppsq) A;(q2,v) , (5 la) 

where s is the polarization vector (s2=-M2, s.P=O). 
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For the weak currents (average over the nucleon spin) we write 

T;;; = - [gGv -F, Tu,.v(q2,v) 

i 
- z Epvap 

vi 2 
Paqp T3’ &l ,v)+ -kq T 

M2 p ’ v, “(q2, v) 4 

-t 1 P&) +pvs,) T5 qq2, v) . 
2M2 

(5 lb) 

The structure functions for inclusive electron scattering are defined by 

wi- 217 -&lT; i=1,2 , 

Gi =z ’ ImAf i=l,2 , 

and for inclusive neutrino scattering by 

$ = -& Im(Tr * TFj i=1,5 . 

In Table I we list the scaling behavior predicted by the quark-vector gluon 

model and in Table II give regulated and unregulated forms of the sum rules 

with appropriate references. All these sum rules can be modified by non- 

polynomial fixed poles. The fixed q2 sum rules may be invalid and the scaling 

sum rules may be modifiedbyanadditional constant if there are nonpolynomial 

fixed poles. Note that the scalar densities which occur in Table II for the 

quark-vector gluon model scaling sum rules are 

<P/‘3;(0) m{h+,h \$(O)lP> = 2Mor 

<PI T(O) m A2 G(O) lP> = 2McrQ Q 

(52) 
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where 
1 

A*= zthlh ih2) , 

Trace hf = 2 , 

z/(y) is the quark field and m the quark mass matrix. 

Finally we remark that the most accessible test of the assumption of poly- 

nomial fixed pole residues is the Corrigan-Cornwall-Norton sum rule [ 41 whose 

fate will be determined by accurate data for Ftp(q2, W) for large -q2 and large W. 
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APPENDIX 

Here we discuss the Schwinger term sum rule allowing for an o=O term 

in the imaginary part of tL(q2, v ) . Such a term is somewhat bizarre since 

tL(q2, v) is even in v and a subtle combination between Regge poles is necessary 

to give a finite real part and nonvanishing imaginary part at CX=O: We show that 

even with such a term present the Schwinger term is finite, given scaling. We 

also indicate how to treat Regge cuts. 

We parameterize the Regge terms with o!zO by 

where 

+12,v) = c t$12,w,cu) l>a>O 

with the following properties 

1) tF(q2, W, o) is analytic in 01 for 1x00 -- 

2) t;(q2,0,0!) = 0 for lx>0 -- 

3) t$12, w, 0) = * log (l-w2) 
q 

4) t;ts2, w, 1) = y [w log (2, - log (l-w2)] 

5) F;(s2, w) = &, W,q2) b-d- e (w-1) for 0>0 
-- 

From Eq. (A. 1) and properties 3 and 4 it can be seen that tF(q2, v ) contains 

a constant piece 

as v - 00. 
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Thus the expression for the fixed pole residue now reads 

F.P. 2 
tL (q ) = lim 

C tlts2,v, - t;ts2J4 
v-m 3 

Using property 2 we may write a dispersion relation for tt(q2, v), sub- 

tracting at v =0, and repeat the analysis of Section III to obtain 

i Cm S= lim 4 
2 

s 
1 

2 ~,k12,w) - 4 c (e)- 4r(l,q2) - C(s2)I 
l>a>O q ---co ! 

where 

GL(q2, w) = FLts2, w) - F;tq’, w) . (A* 3) 

We now express Eq. (A. 2) in terms of the more conventional 

FLts2, w) = FLts2 ,w) - l,g,o Y@A2) wa +xm2) 1 - 
where, by property 5, 

%o, s2) = 740, s2) - Y(l, q2) 
and 

q12, w) - FLh2 3 d = ,>T>, ev12) [tw-1)” - w”3 

for ~21. 

Hence 

r [ $f FLLcs2, w) - FL(q2 9 w)l = C Yta9 S2) [+ - sinTTa] 
l>a>O 
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and we recover the familiar result from Eqs. (A. 2) and (A. 4) 

co dw - S 1 
-y-y y12> w) - 4 l>F>o .Yl! - qq2) 

i - 

and the integral is finite even if FL(w, qz) contains an asymptotically constant -- 

piece y(O, q2). 

Regge cuts may be incorporated into our analysis by using the following 

parameterization, corresponding to a branch point oxC > 0 

using Eq. (A. 1). 

Then 

Ftc(q2, w) = 
3 

do y@,q2) (w-1)o e(w-1) for w>O 
0 

with leading Regge behavior w O1’/(log w)~ as w - ~0, where n > 1 and n depends _ 

upon the behavior of y(u,q2) at cx=cxc. Then in analogy with Eq. (A. 2) 

w) + WC, q2) - Cts2) 
i 

where G(cr c, q2) is the term in q 2 Rct’42,w, tL oc) which is asymptotically constant 

as w *co, and is necessarily finite. Moreover G(ac, q2) has a finite limit as -- 

q2 4 -00, given scaling of FL(q2, W) . 

From the analyses we conclude 

1) The sum rule need not be analytic in CY although t,(q2, v ) may be. 

2) S is finite given scaling and the existence of C = lim C(q2). 
2 q --co 
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3) Different Regge parameterizations give the same sum rule for S, 

provided they parameterize the leading (a>O) behavior. - The regulated integrals 

(from w=l to 00 ) may differ, but the difference is reflected in different counter 

terms. 

4) Regge cuts present no problems in principle. 
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TABLE I 

Scaling behavior of structure functions in the 
limit q2 -) 4, x= -q2/2v fixed. (* Indicates 

scaling behavior specific to quark model, 

where FL(x) = 0.) 

Structure Function Scaling Function 

w,ts2, VI FlW 

( 1 --$ w,(s2, v) F2(X) 

F3(x) 

W4(s2, v) 

w5&12J4 

F4W * 

F5 tx) * 

W,(q2, v) - W2(s2, VI FL(x) 

FGW * 

Gl(s2, v) 

G2ts2, v) 

Sl(x) 

s2 w 

where WL(q2, v) = W2(q2, v) - W1(q2, v) 
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FIGURE CAPTIONS 

1. Schwinger term in the parton model. 

2. Second order +’ theory contributions giving finite Schwinger term. 

3. Second order G3 theory contributions giving logarithmically divergent 

Schwinger term. 
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