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1. Introduction 

A number of studies have been made to evaluate the current limited 
by space charge effect on the longitudinal motion in proton linacs 1 , 2 , 3 , 4 , 5. 
Most of them assumed a stationary distribution of space charge so that 
dynamical effects caused by acceleration were neglected. Consequently it 
has been stated that the space-charge-limited current would be determined 
at the low energy or injection end of the accelerator. Using an ellipsoidal 
bunch model, however, Gluckstern pointed out that the space charge effect 
may become important rather at higher energies as the beam is accelerated 
and damped longitudinally5. In addition, even if we neglect the dynamical 
effects, there are different conclusions on the space charge limit depending 
upon methods and assumptions used. For example, Kapchinsky and Kronrod2 

calculated the self-consistent stable phase limits using an integral equation 
for the potential kernel with the assumption of uniform-phase-space charge 
distribution. They proved that the space charge effect on the stable phase 
limits is considerably weaker than the result given by a uniformly charged 
ellipsoidal model1, leading to the maximum current of the order of one 
hundred milliampares at the space charge parameter µ being one. A similar 
analysis has been given by Morton including corrections due to the image 
charges and the adjacent bunches3. At the last Conference, however, 
Bondarev and Vlasov4, commented these analyses that irrespective of the 
assumption of the charge distributions, the maximum current with space 
charge effect would be given at a region of µ = 0.3~ 0.4 and would 
consequently be lower than that obtained by Kapchinsky and Kronrod. We 
shall re-examine these space charge problems including some further effects 
diearded in the previous papers. Details of our analytic method has been 
given in an unpublished report6. 

2. Space-charge-limited Current by Simple Ellipsoidal Bunch Model 

Hamiltonian for the phase oscillations under a potential function 
V(X) is written as 

H 
m0C2 ω 

= 1 2
s
3βs2 

( - s ) 2 + ( λk1 2π )
2
s
3βs4v(X) 

and if we neglect shift of the phase stable point due to the space charge 
field, then the equation of motion is given, in a good approximation, by 

(sβs)-3 d dz (s3βs3 dX 
dz ) + k1

2 [ (1 -µ) X - X 2 
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where 

X = φ - φs ( φ s : synchronous phase angle), 

µ=1-( 2πe E0T |sinφ s| 
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µ=1 - ( δ
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For a beam bunch of a uniformly charged ellipsoid, Lapostolle calculates 
the space charge field7 and Gluckstern gives the formula5, 

µ = 9 0 I s
3 β s λ 2 f 

2πaa'b E0T |sinφ s| 
(3) 

where b, a, and a' are the semi-longitudinal and transverse axes of the 
ellipsoid, I the beam current averaged over the bunches, and f (√aa' / b ) 
the function depending on the beam shape. f is approximated by 

f ≈ 
1 
3 

√aa' 
b = 

2π√aa' 
3β s Xbλ (4) 

in the region of √aa'/b from 0.2 to 1.2, and almost all cases actually 
considered will satisfy this condition for √aa'/b. Hence, equ. (3) 
written in terms of the total phase spread of 2Xb becomes 

µ = ζ 1 
βsXb2 

(5) 

ζ = π 3 180 I η 
E0T |sinφ s|√aa' (5') 

Xb = 2πb 
βsλ 

, (5") 

where η is a function of b/√aa' and s, which has approximately a cons
tant value of one . 

Now the space-charge-limited current previously given 1 , 4 , 5 by the 
ellipsoidal bunch model is derived in our terms as follows: 
Space charge effect is given by the simple replacements in the equation 
without space charge, 

k1 → k1√1-µ 

|φs| → |φs| (1 -µ). 

Correspondingly, the stability limits would become 

X1 = 2 |φs| (1 - µ) 

(6) 
X2 = - |φs| (1 - µ ) . 

X1 would correspond to the potential maximum where the restorting 
force becomes zero, and X2 the limit at the other side where the potential 
energy is equal to that of at X1. It is noted here that equ. (1) and (6) 
are applicable only when the beam bunch is spread over the region from 
X 2 to X1 having the center at X = 0. For the present, however, we shall 
assume the self-consistent value of the beam spread as 

2Xb = X1 - X2 = 3|φs| (1 - µ ) (7) 

Inserting equ. (7) into (5), we get a relation 

µ(1 - µ)2 = 4ζ 
9βs|φs| 

(8) 

Neglecting effect of acceleration, we get the maximum value of the left 
hand side at φ = ⅓. From equ. (5'), the maximum current being able 
to be trapped into the stable orbits is 

Imax = 
E0Tβs |φs|3√aa' 

180π 
(9) 

where we let sin |φs|≈|φs| and η= 1. The space-charge-limited current 
thus evaluated is about 30mA for the typical parameters of the present 
Brookhaven AGS Linac and yields too small values for almost all cases of 
existing linacs. 
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This analysis, however, has some problems because we have used only 
the interior potential of the ellipsoid with the center at the synchronous 
phase angle. Thus we shall re-examine the self-consistent stable phase 
limits including the exterior potential and the shift of center of the 
ellipsoid from the synchronous angle. Also, we shall give brief discussions 
on effects of the charge distribution and the acceleration. 

3. Effect of Bunch Center and Shift of Synchronous Phase Angle 

As pointed out by Kapchinsky and Kronrod, the space charge, in general, 
displaces the synchronous phase angle. This is explained in terms of the 
uniformly charged ellipsoid as the effect due to the shift of the bunch 
center from the synchronous angle. Consider the center being at φ0 and 
define the parameter 

The equation of motion becomes 

s
-3 βs-3 d 

dz (s3βs3 
dX 
dz ) +

 k 1 2 [(1 - µ)X -
X2 

2|φs| 
+ µδ] = 0 (10) 

For the fullbucket case, we may assume that the center of the bunch is 
at the midpoint of the stable region, or 

δ = 
X1 + X2 

2 
(11) 

The solution which would correspond to the maximum of the potential is 
now given by 

X1 = (1 - 3 
2 µ + √1- 3 

4 µ
2) |φs| (12) 

The other limit of the phase stable region, which satisfies the condition 
V(X2) = V(X 1), is 

X2 = (1 - 2 √1 - 3 
4 µ

2) |φs| (12') 

Thus the total spread of the phase stable region will be 

X1 - X2 = 3|φs| [√1 - 3 
4 µ2- µ 2 ]≈ 3|φs| (1 -µ) (1 + µ 2 . 

Letting (X1 - X2) = 2Xb, we can rewrite equ. (8) thus 

µ(1 - µ ) 2 (1 + µ 2 )2 = 4ζ 
9βs|φs|2 

(13) 

The maximum value of the left-hand side of equ. (13) occurs at µ= 0.4, 
and the limiting current so evaluated increases 55 percent, including 
the 20 percent increase in the phase stable region. 

The shift of the synchronous phase angle is given by 

Xs = (1 -µ 2 - √1 - 3 
4 µ

2) φs . (14) 

X1, X 2 and X s are shown in Fig. 1 as function of µ. The straight-lines 
in this figure give the limits determined by the simple equ. (6). The 
calculated shift of the synchronous phase angle is the order of -0.1 rad. 
at most and agrees well with the result obtained by Kapchinsky and Kronrod, 
They assumed a uniform charge density in phase space resulting a wider 
stable region. 

4. Exterior Potential of Beam Bunch and Self-consistent Limiting Current 
without Acceleration 

As noted earlier, equ. (1) is only applicable to the interior of 
the bunch and the phase stable limits given by equs. (6) or (12) are 
valid when the beam spreads over the region between X 1 and X2. If we 
assume the beam spread as 2Xb = X1 - X2, then it becomes questionable 

whether the limit given by X1 in (6) or (12) does really correspond to 
the potential maximum or not. 

For simplicity, first we shall consider a uniformly charged spherical 
bunch having its center at the synchronous angle. Then the interior potenial 
function which results in the equation of motion (1) is 

vint = 
1 
2 ( ( 1 - µ) X2 -

X3 

3|φs| 
+ const.) (15) 

where µ is given by (3) letting a = a' = b or f = 1/3. On the other 
hand, the exterior potential of a spherical bunch becomes 

Vext 
1 
2 (X

2-
X3 

3|φs| 
+ 2 µ Xb

3 

|X| 
) (15') 

From the continuity condition at |X| = Xb, the potential constant in equ. (15) 
is 3 µ Xb2. 

Consider the region of X>0, and if we assume that Xb1 = X1 = 2|φs| (1 - µ), 
then the first derivative at X1 is certainly zero both for the interior 
and the exterior potentials. The second derivative at this point is negative 
for the interior potential so far as µ ≤ 1, but for the exterior potential 

( 
δ2Vext 

δ X2 
)X=X1 = -1 + 4µ < 0, if µ < 0.25, 

> 0, if µ > 0.25. 

Therefore, for a smaller µ (< 0.25), X1 corresponds to the potential 
maximum, however for a larger µ (µ > 0.25) this becomes an inflection 
point and the maximum moves outside the bunch (Fig. 2 ( a ) ) . 

For µ > 0.25, therefore, we shall consider a beam which has a wider 
spread, X 1 > X 1 . In Fig. 2 (b), shapes of the potential are sketched for 
such cases. If the beam is slightly wider than that is given by equ. (7), 
then there exist three points where the first derivative of the potential 
becomes zero; one is the maximum at X1 = 2|φs|(1 - µ ) being inside 
the bunch, the second is the minimum just outside the bunch, and the last 
is the maximum near X = 2 |φs| except the case of lower µ (≤ 0.5). As 
the beam spread increases, the minimum approaches to the maximum outside 
the bunch, and they are reduced to an inflection point at 

Xb1 m a x 
3 
2 |φs| (4µ)

-⅓ (16) 

The slef-consistent beam spread for µ>0.25 will be approximated by 
this value of X b l. This corresponds to the case of an unstable bunch, 
however, if the bunch.becomes only a little narrower, then the maximum 
and minimum are readily separated giving a stable bunch. Including the 
bunch center effect discussed above, we get the other limit from the 
relation V(X b 2) = V(X b l). 

So far we have assumed a spherical bunch, however it is not difficult 
to generalize our method to an ellipsoidal bunch5. Using Lapostolle's 
formula for the exterior potential of a uniformly charged ellipsoid7, 
we obtain the phase stable limits by numerical calculations as shown in 
Fig. 3. In this figure, effect of the shape of the ellipsoid is shown 
by the parameter f ; it is obvious that the prolate ellipsoid (f<⅓) gives 
a wider stable region than the case of the spherical bunch (f = ⅓), 

Now the current associated with the self-consistent beam spread can 
be determined as follows: 
1) Assuming a and b (or X b ) , we can immediately determine f. 

2) We get corresponding µ values from Fig. 3 using the relation between 
µ, Xb, and f. 

3) Using the assumed values for E0, T, φs and βs we get the current 
I from equs. (5) and (5'). 
By these means, it turns out that the space-charge-limited current 

has a maximum at µ = 1. Here, the potential becomes almost flat over the 
beam spread so that the area of the phase stable region disminishes as ∆ 
~ 0. This corresponds to the nearly stationary charge distribution 
since the forces acting on the particles become very small. The maximum 
accelerating current thus calculated is about 65mA for the AGS Linac, 
which is more than 2 times as large as the value given by equ. (9). 
Thus, the analysis based on the ellipsoidal model agrees with the results 
obtained by Kapchinsky and Kronrod and also by Morton using the integral 
equation with the uniform-phase-space charge distribution. Using Morton's 



16k 
computational program, Benton and Chasman obtained the limiting current 
of about 85mA for the above case8. 

5. Effect of Charge Distribution 

Since the charge distribution in the ellipsoidal model is more con
centrated into the inner part of the bunch than in the case of uniform-phase-space 
distribution, lower limiting current may result from the dense 
charge distribution. Therefore, we shall consider the another extreme 
of the charge distribution given by the uniformly charged cylindrical 
bunch. We again neglect the shift of the center from the synchronous 
angle. Then, for the oscillations with smaller amplitudes the space charge 
parameter µ is approximately 

µ= 90γs
3βsλ2I 

3πa2 b E 0 T sin |φs| 
[1 -

b 

√a2 + b2 
]. (17) 

Comparing this to equ. (3) for the ellipsoidal bunch, we see that the 
function f is now replaced by 

f' = 2 3 [-b 

√a2 + b2 
]. (17') 

Thus the cylindrical bunch having the same µ and the same a ( = a') and 
b as the corresponding ellipsoidal ones results in 70 percent larger current. 
Bondarev and Vlasov have also pointed out a similar relation between the 
uniform-phase-space distribution and uniform ellipsoidal distribution4 . 
It should be nted, however, that, since the charges spread out much more 
than the ellipsoidal bunch, the self-consistent beam spread for the cyl
indrical bunch can not be given by the simple replacement of f in Fig. 3. 
For a higher µ the cylindrical bunch will give a narrower stable region 
than the corresponding ellipsoidal bunch. Therefore, the limiting current 
would not increase by as much as 70 percent. 

6. Effect of Acceleration 

As pointed out by Gluckstern, if the phase stable limits are given 
by equ. (6), then the beam spread may cross over these limits at an 
intermediate energy, since the space charge parameter µ increases and 
approaches one during the acceleration. By taking the exterior potential 
and the shift of the bunch center, however, we showed that the phase 
stability expands into a wider region, especially when µ becomes large. 
Hence, it will be assured that if the particles are trapped once into the 
stable region at low energy, then they will not be lost thereafter. 

It is not easy to evaluated the space-charge-limited current including 
these dynamic effects due to acceleration. For example, if we inject 
more particles than the numbers corresponding to the limiting current 
at injection (µ0 = 1), then the motions in the initial stage will be 
chaotic. Even for the case of µ0>1, there remains a phase stable region 
due to the infinitely high potential wall in the negative X side. Thus 
at least the particles injected into such a region will be accepted into 
stable orbits. During the acceleration, unstable particles will be lost 
completely from the stable region and the remaining ones will tend to a 
stationary distribution. Hence, the space-charge-limited current will 
be determined from the self-consistent stable beam spread at a higher 
energy where the stationary distribution is nearly established. 

A computational study has been made dividing a cylindrical beam 
bunch into thin discs, which move back and forth depending on the poten
tial with space charge effect.* Neglecting effect of transverse motions, 
we assume that the beam radius is constant over the accelerator length 
(0.5 or 0.3cm). The phase spread of bunches at the injection is also 
fixed to be a constant from -79° to 31°. The values of other parameters 
are taken from the tentative choises for the injector of a 40 GeV PS project 
in Japan. 

After being injected into the linac, the number of particles in a 
bunch will decrease on account of phase motion. This is shown by cutting 
off the particles outside the region of injection phase spread. The result 
is shown in Fig. 4 where the beam current along the accelerator length 
are plotted for several values of the injection current. It should be 
noted that the nearly stationary distribution is achieved at a position 
of βs = 0.07 ~ 0.08 for the range of currents considered here. This is 
because the phase stable region decreases for higher currents while the 
velocity of phase motions slows down due to space charge effect. 

If we assume a stationary distribution, it is easy to show from the 
analytic method that the space-charge-limited current, I m a x, will be in 
proportion to βs2 . Thus effect of acceleration will be considered in the 
first order as the change of βs from the value at the injection to a higher 
one where the stationary distribution is nearly established. Taking the 
latter as βs = O.07 ~ 0.08, we get an estimate of the space-charge-limited 
current three or four times as large as the value evaluated at the injection 
( β s 0 = 0.04).** 

* Similar computational study is also given by Benton and Chasman8. 

** Gluckstern investigates similar effect of acceleration for the case 
without space charge; the paper will be submitted at the conference 
(private communication). 

Fig. 5 shows the computational results of the ourput current after 
accelerations taking the injection current as the abscissa. Almost the 
same curve can be reproduced by the analytic method described above, and 
we can assure a limiting current of more than 100mA from the longitudinal 
phase motion in proton linacs. For a more complete analysis, it will be 
necessary to include transverse space charge effect which couples to the 
longitudinal motion. 
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L.C. Teng (NAL): In the usual longitudinal space charge 
calculations for circular machines, the bunch is usually 
quite long compared to the transverse dimension of the 
chamber, so the vacuum chamber shielding is very import
ant on the field. Admittedly in this case the bunch is 
much shorter and the bores large compared to the bunch, 
but I wonder whether the shielding effect of the drift 
tube bore is important. 

Gluckstern: It can be important. The expressions that 

Lapostolle uses in the computations do include these image 
effects due to the bore, including the region between 
drift tubes assuming that the bunch is between two par
allel planes. I believe they are part of the Brookhaven 
but not of the Los Alamos computation. If the size of the 
beam gets to be 80% or 90% of the bore radius, these image 
effects can be seen, but for beam sizes of the order of 
half of the bore radius these are unobservable and lost in 
the noise of the calculation. 

Fig. 1. Effect of Bunch Center and Shift of Synchronous Phase Angle Fig. 2. Schematic Diagram of Longitudinal Potential with Space Charge 
due to Uniformly-charged Spherical Bunch 



166 

Fig. 3. Self-consistent Phase Stable Limits for Ellipsoidal Bunches 
(For Spherical Bunch, f = 1/3) 

Fig. 4. Variation of Beam Currents during Acceleration with Space 
Charge (Beam Radius : 0.5 cm, Injection Phase Spread : - 7 9 ° ~ 31°). 

Fig. 5. Computational Relations between Output Current and Injection 
Current. 


