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ABSTRACT

Title of the thesis “Investigations Beyond the Standard Model: Neutrino

Oscillation, Left-Right Symmetry, and Grand Unification”.

SUSY GUTS provide an attractive framework for representing particles and forces

of nature as they solve the gauge hierarchy problem. They unify three forces of

nature, and also explain the tiny neutrino masses through seesaw paradigm. The

R-parity preserving SUSY models like SO(10) also provide stability to possible cold

dark matter candidates of the universe. An evidence of SUSY at the LHC would

be a land-mark discovery which would certainly change the future course of physics.

But, in the absence of any evidence of SUSY so far, it is worthwhile to explore new

physics prospects of non-SUSY GUTs.

In the context of a new non-SUSY SO(10) framework in the 1st publication of this

thesis, we explored the complete dominance of type-II seesaw mechanism. The non-

SUSY SO(10) breaks to left-right symmetry SU(2)L⊗SU(2)R⊗U(1)B−L⊗SU(3)C

or (G2213D) at intermediate scale. Then this breaks into SU(2)L⊗U(1)R⊗U(1)B−L⊗

SU(3)C (G2113) at TeV scale. The parity restoration scale is very high ( 108 GeV).

In this model the Z ′ boson is present at low energy scale. So it can be verified exper-

imentally. This model shows the precious gauge coupling unification at 1015.56 GeV

and predicts proton lifetime close to the experimental bound. The basic feature of

this model is that the type-I seesaw term is automatically cancelled out due to the

addition of extra fermion singlets. The model predicts non-unitarity effect and lep-

ton flavor violating decays accessible to ongoing experimental searches for τ → eγ,

τ → µγ, µ → eγ. The corresponding branching ratios are only few order smaller

than the current experimental limits. This model can be verified experimentally

vii



through its predictions on observable non-unitarity effects and additional contribu-

tions to lepton flavor violations. In this case although the mass of the WR boson is

at high scale, the addition of one extra fermion singlet per generation gives a new

contribution to neutrinoless double beta decay in the WL −WL channel due to the

exchange of first generation sterile neutrino. Resonant leptogenesis leads to baryon

asymmetry of the universe which is achieved by the quasi degeneracy of second and

third generation sterile neutrinos.

In the 2nd publication of this thesis, we have shown different types of seesaw

mechanisms in the same breaking chains mentioned above. The basic feature of this

work is that due to the addition of extra fermion singlets, the type-I seesaw term

is automatically cancelled out. Under different conditions, alternate types of seesaw

mechanisms are shown to be dominant. New contributions to neutrinoless double

beta decay in the WL −WL channel are discussed. Leptogenesis leading to baryon

asymmetry of the universe is discussed through resonant leptogenesis both in quasi-

degenerate (QD) case as well as in normal hierarchical (NH) case.

In the 3rd paper of this thesis, we have discussed the collider phenomenon of

type-II seesaw dominance model. The symmetry breaking model is same as that of

the 1st paper. Since in this model the RH neutrinos are present at TeV scale, their

signatures can be verified experimentally at LHC. The heavy RH neutrinos can be

detected at LHC and other high energy experiments in the channel pp → l±l±X

where l = e, µ. We have also discussed the DLSD events mediated by lightest sterile

neutrino. Similarly since in our model, the Z ′ boson is present at TeV scale, its

experimental signature can be verified in different collider experiments such as LHC

and ILC by dilepton production due to the mediation of Z ′ boson .

Even though the grand unification SO(10) models we studied are non-SUSY, their

LFV branching ratio predictions are of same order as of SUSY SO(10) model with
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or without TeV scale LR symmetry. Almost all of these models predict LFV, LNV,

proton life time which have a proper match with the current experimental data.
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Chapter 1
Introduction

In the last hundred years of scientific development, our understanding about the be-

havior of nature has evolved from classical to a very neat and clear quantum picture.

In the course of this evolution, starting from the discovery of electron, the funda-

mental constituents of matter (fermions) and the messengers (gauge bosons) of their

interaction have been discovered. Like the unification of electricity and magnetism in

to electromagnetic theory, the construction of a single mathematical form to explain

various distinct phenomena is one of the virtuous paths has been followed by theo-

retical scientists. It is found that every action of nature can be explained in terms

of four fundamental interactions namely gravitational, electromagnetic, weak and

strong. The last three of these are nicely expressed in the mathematical formulation

of quantum field theory (QFT) under the Poincare symmetry. The gravitational

interaction is much weaker compared to other interactions at any reachable energy

scale. Therefore, in all micro-scale studies the gravitational interaction is usually

ignored. Also, a successful QFT of gravitation is not yet well established. On the

other hand, an elegant cocktail of abelian and non-abelian local gauge symmetries

(Weyl [1], Yang-Mills [2]) is found to explain nature at fundamental scales. A sin-

gle, coherent theoretical framework which could explain all physical aspects of the

universe, known till date, is yet to incarnate.

The attempts to cure the high energy behavior of Fermi theory of beta decay laid

the foundation of today’s theory of fundamental interactions. Glashow [3] added a

U(1) piece to Schwinger’s [4] SU(2) local gauge theory of weak and electromagnetic

interaction. This addition was necessary to explain the experimental data for non-

leptonic decay modes of strange particles, which indicated the existence of neutral,

weakly interacting current. In summary, a theory with massive vector bosons is

required to explain the short ranged weak interaction. With the implementation of
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Higgs mechanism [5,6] in the SU(2)L⊗U(1)Y structure, Salam [7] and Weinberg [8]

could successfully explain electro-weak behavior of the fundamental particles. This

mathematical construct was further extended by Gross, Wilczek [9] and Politzer [10]

to incorporate the explanation of interaction holding the quarks together, called

strong interaction. This completes our cocktail of gauge structure of internal sym-

metries based upon SU(2)L⊗U(1)Y ⊗SU(3)C , known as the Standard Model (SM).

A delightful description of ‘The Rise of the Standard Model’ [11] by its pioneers is a

science history worth reading. The anomalies generated, due to charge quantization

through U(1) symmetry by quarks fortunately cancel with anomalies generated by

leptons. Hence, though accidentally, it is an anomaly free theory. The renormaliz-

ability of the SM was shown by G. ’tHooft [12–15].

The SM is a remarkably successful theory of interactions of fundamental parti-

cles in low energy regime and near electroweak scale. The recent discovery of Higgs

boson by A Toroidal LHC Apparatus (ATLAS) [16] and Compact Muon Solenoid

(CMS) [17] detectors at Large Hadron Collider (LHC) completes the search of basic

ingredients of SM. Despite the fact that the SM has unraveled the gauge origin of

fundamental forces and the structure of universe while successfully confronting nu-

merous experimental tests, it has various limitations. In the next chapter we will

discuss about its success and failures in more detail. Reliable extensions of the SM

to a simple groups are considered through differet models for Grand Unification.

The aims of Grand Unified Theories (GUTs) include: (i) unification of SM gauge

couplings g1Y , g2L, & g3C at some high enough energy, (ii) quarks and leptons are

treated under same Lie structure, i.e., the theory must also ensure the coalescence

of quarks and leptons in one or at most two irreducible representations of the unify-

ing group. This unification of quarks and leptons would explain the electric charge

quantization. The energy scale of gauge coupling unification should be consistent

with the current bounds on proton decay lifetime. In addition to the above re-

quirements, the structure should also be anomaly free and should able to explain

quark, charged lepton, and neutrino masses. The beyond standard model (BSM)

predictions such as large flavor violation, baryonic asymmetry of universe, Dirac or

Majorana nature of neutrinos, dark matter etc. are the premier goals of GUTs. If

possible, they should also explain long standing problems like fine-tuning problem,

Dirac monopoles, which have disappointed us till date. Models based on SU(5) and

SO(10) gauge groups with their minimal and extended structures in supersymmet-

ric (SUSY) as well as non-SUSY framework have been the most popular, and have

partially accomplished the goal.
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SUSY GUTs provide an attractive framework for representing particles and forces

of nature as they solve the gauge hierarchy problem. They unify three forces of

nature, and also explain the tiny neutrino masses through seesaw paradigm [18–27].

The R-parity preserving SUSY models like SO(10) also provide stability to possible

cold dark matter candidates of the universe. An evidence of SUSY at the LHC

would be a land-mark discovery, which would certainly change the future course of

physics. But, in the absence of any evidence of SUSY so far, it is worthwhile to

explore new physics prospects of non-SUSY GUTs [28–35]. GUTs based on SO(10)

gauge group have particularly grown in popularity compared to SU(5). This is

because SO(10) is the smallest, anomaly free group which unifies all fermions of

one generation, including the right-handed (RH) neutrino, into a single spinorial

representation. It provides spontaneous origins of P (= Parity) and CP (C= Charge

conjugation) violations [30, 31, 36–38] Most interestingly, it predicts the right order

of tiny neutrino masses through the canonical (≡ type-I) [39–43] and type-II [44–50]

seesaw mechanism. In addition, it has high potentiality to explain all the fermion

masses [51–54] including large neutrino mixings [55] with type-II seesaw dominance

[44–50]. In fact, neither seesaw mechanism nor grand unification require SUSY

per se. The gauge couplings g1Y , g2L, & g3C automatically unify in the Minimal

Supersymmetric Standard Model (MSSM) [56–58]. But, they fail to unify through

the minimal particle content of the SM. Therefore, in one-step breaking of non-SUSY

SU(5) or SO(10) gauge coupling can not predict the right Weinberg angle. However,

once intermediate symmetries are included to populate the grand desert in case of

non-SUSY SO(10) [38, 59–61], gauge couplings may unify. The intermediate gauge

symmetries may also occur near accelerator reachable energies.

Experimental evidences on tiny neutrino masses and their large mixings have

attracted considerable attention as physics beyond the standard model (SM) lead-

ing to different mechanisms for neutrino mass generation. Most of these models are

based upon the underlying assumption that neutrinos are Majorana fermions that

may manifest in the detection of events in neutrino-less double beta (0νββ) decay

experiments on which a number of investigations are in progress [62–75]. Theories of

neutrino masses and mixings are placed on a much stronger footing if they originate

from left-right symmetric (LRS) [28–31] grand unified theories such as SO(10) where,

besides grand unification of three forces of nature, P (=Parity) and CP-viloations

have spontaneous-breaking origins, the fermion masses of all the three generations

are adequately fitted [51], all the 15 fermions plus the right-handed neutrino (N)

are unified into a single spinorial representation 16 and the canonical (≡ type-I
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) seesaw formula for neutrino masses is predicted by the theory. Although type-I

seesaw formula was also proposed by using extensions of the SM [39–42, 76, 77], it

is well known that this was advanced even much before the atmospheric neutrino

oscillation data [78] and it is interesting to note that Gell-Mann, Ramond and Slan-

sky had used the left-right symmetric SO(10) theory and its Higgs representations

10H , 126H to derive it. A special feature of left-right (LR) gauge theories and SO(10)

grand unification is that the canonical seesaw formula for neutrino masses is always

accompanied by type-II seesaw formula [79–82] for Majorana neutrino mass matrix

Mν = mII
ν +mI

ν , (1.1)

mI
ν = −MD

1

MN

MT
D, (1.2)

mII
ν = fvL (1.3)

where MD(MN) is Dirac (RH-Majorana) neutrino mass, vL is the induced vacuum

expectation value (VEV) of the left-handed (LH) triplet ∆L, and f is the Yukawa

coupling of the triplet. Normally, because of the underlying quark-lepton symmetry

in SO(10), MD is of the same order as Mu, the up-quark mass matrix that drives the

seesaw scale to be large, MN ≥ 1011 GeV. Similarly the type-II seesaw scale is also

large. With such high seesaw scales, these two mechanisms in SO(10) can not be

directly verified at low energies or by the Large Hadron Collider (LHC) except for

the indirect signature through the light active neutrino mediated 0νββ decay and

possible leptogenesis.

It is well known that the theoretical predictions of branching ratios for LFV decays

such as µ→ eγ, τ → µγ, and τ → eγ and µ→ eēe closer to their experimental limits

are generic features of SUSY GUTs even with high seesaw scales but, in non-SUSY

models with such seesaw scales, they are far below the experimental limits. Recently

they have been also predicted to be experimentally accessible along with low-mass

WR, ZR bosons through TeV scale gauged inverse seesaw mechanism [83–85] in SUSY

SO(10). In the absence of any evidence of supersymmetry so far, alternative non-

SUSY SO(10) models have been found with predictions of substantial LFV decays

and TeV scale Z ′ bosons with inverse seesaw dominance [86] or with the predic-

tions of low-mass WR, ZR bosons, LFV decays, observable neutron oscillatios, and

dominant LNV decay in the WL−WL channel via extended seesaw mechanism [87].
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Another feature of non-SUSY SO(10) is rare kaon decay and neutron-antineutron

oscillation which is discussed in a recent work [88] with inverse seesaw mechanism

of light neutrino masses. The viability of the model of ref. [83–85] depends on dis-

covery of TeV scale SUSY, TeV scale WR, ZR bosons, and TeV scale pseudo-Dirac

neutrinos which are almost degenerate in masses. The viability of the non-SUSY

model of ref. [86] depends on the discovery of TeV scale low-mass ZR boson and par-

tially degenerate pseudo Dirac neutrinos in the range 100 − 1200 GeV. Both types

of model predict proton lifetime within the Super-K search limit. The falsifiability

of the non-SUSY model of ref. [88] depends upon any one of the following predicted

observables: TeV scale ZR boson, dominant neutrino-less double beta decay, heavy

Majorana type sterile and righ-handed neutrinos, neutron oscillation, and rare kaon

decays. Whereas the neutrino mass generation mechanism in all these models is

through gauged inverse seesaw mechanism, our main thrust in the present work is

type-II seesaw. A key ansatz to resolve the issue of large mixing in the neutrino sec-

tor and small mixing in the quark sector has been suggested to be through type-II

seesaw dominance [89–91] via renormalisation group evolution of quasi-degenerate

neutrino masses that holds in supersymmetric quark-lepton unified theories [28, 29]

or SO(10) and for large values of tan β which represents the ratio of vacuum expec-

tation values (VEVs) of up-type and down type doublets. In an interesting approach

to understand neutrino mixing in SUSY theories, it has been shown [55] that the

maximality of atmospheric neutrino mixing is an automatic cosnsequence of type-II

seesaw dominance and b−τ unification that does not require quasi-degeneracy of the

associated neutrino masses. A number of consequences of this approach have been

explored to explain all the fermion masses and mixings including type-II seesaw, or

a combination of both type-I and type-II seesaw [49, 92–99] through SUSY SO(10).

As a further interesting property of type-II seesaw dominance, it has been recently

shown [47–50] without using any flavor symmetry that the well known tri-bimaximal

mixing pattern for neutrino mixings is simply a consequence of rotation in the flavor

space. Different SUSY SO(10) models requiring type-II seesaw or an admixure of

type-I and type-II for fitting fermion masses is given in ref. [55] and a brief review of

distortion occuring to precision gauge coupling unification is given in ref. [45]. All the

charged fermion mass fittings in the conventional one-step breaking of SUSY GUTs

including fits to the neutrino oscillation data require the left-handed triplet to be

lighter than the type-I seesaw scale. The gauge coupling evolutions being sensitive

to the quantum numbers of the LH triplet ∆L(3,−2, 1) under SM gauge group, tend

to misalign the precision unification in the minimal scenario achieved without the
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triplet being lighter.

Two kinds of SO(10) models have been suggested for ensuring precision gauge cou-

pling unification in the presence of type-II seesaw dominance. In the first type of

SUSY model [44], SO(10) breaks at a very high scale MU ≥ 1017 GeV to SUSY

SU(5) which further breaks to MSSM at the usual SUSY GUT scale MU ∼ 2× 1016

GeV. Type-II seesaw dominance is achieved by fine tuning the mass of the full

SU(5) multiplet 15H containing the ∆L(3,−2, 1) to remain at the desired type-II

scale M∆L
= 1011 − 1013 GeV. Since the full multiplet 15H is at the intermediate

scale, although the paths of the three gauge couplings of the MSSM gauge group

deflect from their original paths for µ > M∆L
, they converge exactly at the same

scale MU as the MSSM unification scale but with a slightly larger value of the GUT

coupling leading to a marginal reduction of proton-lifetime prediction compared to

SUSY SU(5). In the second class of models applicable to a non-SUSY or split-SUSY

case [45], the grand unificatication group SO(10) breaks directly to the SM gauge

symmetry at the GUT-scale MU ∼ 2× 1016 GeV and by tuning the full SU(5) scalar

multiplet 15H to have degenerate masses at M∆L
= 1011 − 1013 GeV, type-II see-

saw dominance is achieved. The question of precision unification is answered in this

model by pulling out all the super-partner scalar components of the MSSM but by

keeping all the fermionic superpartners and the two Higgs doublets near the TeV

scale. In the non-SUSY case the TeV scale fermions can be equivalently replaced by

complex scalars carrying the same quantum numbers. The proton lifetime prediction

is around τP (p→ e+π0) ' 1035 Yrs. in this model.

In the context of LR gauge theory, type-II seesaw mechanism was originally pro-

posed with manifest left right symmetric gauge group SU(2)L×SU(2)R×U(1)B−L×
SU(3)C×D (g2L = g2R) (≡ G2213D) where both the left- and the right-handed triplets

are allowed to have the same mass scale as the LR symmetry breaking (or the Parity

breaking ) scale [43]. With the emergence of D-Parity and its breaking leading to

decoupling of Parity and SU(2)R breakings [36, 37], a new class of asymmetric LR

gauge group emerged: SU(2)L×SU(2)R×U(1)B−L×SU(3)C (g2L 6= g2R) (≡ G2213)

where the left-handed triplet acquired larger mass than the RH triplet leading to

the type-I seesaw dominance and suppression of type-II seesaw in SO(10) [100]. It

is possible to accommodate both types of intermediate symmetries in non-SUSY

SO(10) but these models make negligible predictions for branching ratios of charged

LFV processes and they leave no other experimental signatures to be verifiable at

low or LHC energies.

As a new development along this line we have suggested a new class of SO(10) models
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where type-II seesaw accounts for neutrino masses, but additional fermion singlets

mediate LFV and LNV processes.

Compared to earlier existing SO(10) based type-II seesaw dominant [44,45] mod-

els whose RH neutrino masses are in the experimentally inaccessible range and new

gauge bosons are in the mass range 1015 − 1017 GeV, the present model predictions

on LHC scale Z ′, light and heavy Majorana type sterile neutrinos, RH Majorana

neutrino masses in the range 1000 GeV accessible to LHC in the WL−WL channel

through dilepton production, the LFV branching ratios closer to experimental limits.

The model also predicts dominant 0νββ decay amplitudes in the WL −WL channel

caused by sterile neutrino exchanges providing a rich testing ground for new physics

signatures.

The proton lifetime in this model for p → e+π0 is accessible to ongoing exper-

iments [101–104]. We have also discussed related collider phenomenology in this

dissertation. We have discussed the collider signature of RH neutrino through the

production of dileptons in the WL−WL channel. We have also discussed the collider

signature of Z ′ boson [85, 105–120] at LHC and ILC. In addition we have also pre-

dicted the production of dilepton events through displaced vertex due to the sterile

neutrino exchange. We have also discussed a special mechaism for the automatic

cancellation canonical seesaw and dominance of other seesaw mechanisms without

finetuning by the suitable choice of appropriate parameters by adding extra singlet

fermions.

In chapter 2, we have discussed the SM and some of its consequences. We have

discussed the extension of SM to grand unified theories like SU(5) and SO(10)

in chapter 3. The general mechanism for the cancellation of cannonical seesaw

and dominance of other seesaw is discussed in chapter 4. Two step breaking of

SO(10) GUT to SM is presented in chapter 5 along with the cardinal points of

this study namely (i)matching the neutrino oscillation data by type-II seesaw and

determination of MNi , (i=1,2,3) (ii) LHC reachable Z ′ boson, (iii) proton lifetime

prediction, (iv) LFV and CP asymmetry. In chapter 6, we discuss the neutrinoless

double beta decay predictions in the WL −WL channel due to exchange of a singlet

fermion predicted by the model. We then discuss resonant leptogenesis by two quasi-

degenerate sterile neutrinos in chapter 6. Sterile neutrino assisted dilepton events

with displaced vertices and its collider phenomenology are discussed in chapter 7. In

chapter 8, we draw our conclusion. We have also discussed the relevat supplementary

material in the appendix.
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Chapter 2
Standard Model and Beyond

2.1 Standard Model of particle physics

The Standard Model of particle physics is a theory of electromagnetic, weak and

strong interactions, which governs the dynamics of basic building blocks of universe.

These building blocks do not possess any sub-structure, therefore are called elemen-

tary or fundamental particles. These elementary particles can be categorized into

spin-0 scalar (Higgs) bosons, spin-1/2 fermions and spin-1 gauge bosons under the

Lorentz symmetry of space-time. The fermions constitute the matter of universe

while gauge bosons form force-carriers. Passings the tests of hundreds of scattering

experiments in various channels, carried out over a dozen of collider experiments the

SM has earned the distinction to the extreme accuracy. The SM has not failed a

single test even at very high precision scale.

The SM is a paradigm of quantum field theory (QFT) constructed on SU(2)L ⊗
U(1)Y ⊗SU(3)C group structure of local gauge symmetries, which exposes the under-

lying action of nature. Quantum field theory is the application of quantum mechanics

to the dynamical system of fields physically operating on the continuous symmetry

of space-time, namely, the Lorentz symmetry SO(1, 3). For the sake of complete-

ness, the Lorentz symmetry is briefly recapitulated in Appendix A.3. The exotic

extensions of SM incorporate additional particles, extra dimensions, elaborated in-

ternal and flavor symmetries to explain neutrino oscillations, dark matter, baryon

asymmetry of the universe (BAU) etc.

The particle content of the SM is inscribed in Tab. 2.1. The Greek indices on

the gauge boson depict their vectorial nature under Lorentz symmetry, while roman

indices a and i represent their number which is same as dimension of adjoint repre-

sentation (rep.) of the associated internal symmetry. The matter field is constituted

by the fermions belonging to spinorial rep of Lorentz symmetry while Higgs boson is
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Spin=1

Hyperon Bµ (1,0,1) U(1)Y g′

Weak Bosons W i
µ, i = 1, 2, 3 (3,0,1) SU(2)L g

Gluons Ga
µ, a = 1, 2 . . . 8 (1,0,8) SU(3)C gS

Spin=1/2

Quarks
(2, 1/6, 3)

(
u
d

)α
L

(
c
s

)α
L

(
t
b

)α
L

(1, 2/3, 3) uαR cαR tαR

(1,−1/3, 3) dαR sαR bαR

Leptons
(2,−1/2, 1)

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

(1,−1, 1) eR µR τR

Spin=0

Higgs (2, 1/2, 1)

(
H+

H0

)

Table 2.1: The Standard Model particles.

the scalar of the symmetry. The alliance of particles under the internal symmetries

can be summarized by the set (r2, Y, r3), where r2 and r3 are the dimensions of reps

of non-abelian internal symmetries SU(2)L and SU(3)C , and Y is the hypercharge

quantum number of the abelian symmetry U(1)Y . All the left handed fermions and

the Higgs boson stay in the fundamental rep of SU(2)L, while the right handed

fermions are its singlets. Quarks stay in fundamental rep of SU(3)C , while leptons

and Higgs stay unexposed to this symmetry. All the flavor generations of fermions

under SU(2)L w symmetry are explicitly scripted. The index α on quark sector runs

over three colors in the fundamental rep. Coulomb charges of all the particles can

be estimated using Gellmann-Nishijima formula

Q = T3 + Y (2.1)

where T3 is the diagonal generators of SU(2) symmetry. The kinetic part of La-
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grangian of Gauge (LGK) and Matter (LMK) fields can be written as

LGK = −1

4
BµνB

µν − 1

4
W i
µνW

µν i − 1

4
Ga
µνG

µν a (2.2)

LMK = i

3∑
i=1

(
L†Liσ

µDµLLi + e†Riσ
µDµeRi +Q†Liσ

µDµQLi

+ u†Riσ
µDµuRi + d†Riσ

µDµdRi
)

(2.3)

where the corresponding field strengths can be expressed as

Bµν = ∂µBν − ∂νBµ , (2.4)

W i
µν = ∂µW

i
ν − ∂νW i

µ − g εijkW j
µW

k
ν , (2.5)

Ga
µν = ∂µG

a
ν − ∂νGa

µ − gS fabcGb
µG

c
ν . (2.6)

Here εijk and fabc are structure functions of SU(2)L and SU(3)C groups and i, j, k =

1, 2, 3; a, b, c = 1, 2, . . . 8., and gS and g are SU(3)C and SU(2)L gauge field cou-

pling strengths. Though non-abelian gauge field do, abelian gauge fields do not

self-interact which is clear from eq. (2.4)-eq. (2.6). Abelian field strength appear

only in fermion-gauge-fermion and scalar-gauge-scalar interactions, through covari-

ant derivatives present in the fermion kinetic terms and scalar kinetic term, to be

introduced later. Covariant derivative operator in general can be expressed as

Dµ = ∂µ1 + i
∑
p

gp

n2
p−1∑
lp

Alpµ T
lp
∏

δ6p. (2.7)

where p is index of internal symmetries present in a theory, lp are indices over adjoint

representation of internal symmetry p, and δ 6p are the Kronecker delta for the internal

symmetries other than p. For U(1)Y symmetry, lY = 1 and T lY = Y . The explicit

structure of covariant derivatives acting on fermion and Higgs fields are presented in

Tab. 2.2.

The collider experiments have tested and confirmed the SU(2)L ⊗ U(1)Y gauge

structure of the theory in the fermion weak boson and triple gauge boson interaction

channels. If the gauge symmetry SU(2)L⊗U(1)Y remains unbroken neither the gauge

bosons nor the fermions acquire masses. The bare mass terms for fermions and gauge

bosons, mf ψ̄fψf andM2
AAµA

µ, are not SU(2)L⊗U(1)Y invariant hence are forbidden.

But, the weak gauge bosons are required to be massive to explain short range weak

interaction while quarks and leptons have to be massive to explain the micro structure
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Field Multiplet Covariant derivatives

QL (2,1/6,3) DµQL = [(∂µ1 + igW i
µ
σi

2
+ ig

′

6
Bµ1)δαβ + igSG

a
µ

λaαβ
2

1]QLβ

LL (2,−1/2, 1) DµLL = (∂µ1 + igW i
µ
σi

2
− ig′

2
Bµ1)LL

uR (1, 2/3,3) DµuR = [(∂µ + i2g′

3
Bµ)δαβ + igSG

a
µ

λaαβ
2

]uRβ

dR (1,−1/3, 3) DµdR = [(∂µ − ig
′

3
Bµ)δαβ + igSG

a
µ

λaαβ
2

]dRβ

eR (1,−1, 1) DµeR = (∂µ − ig′Bµ)eR

H (2, 1/2, 1) DµH = (∂µ1 + igW i
µ
σi

2
+ ig

′

2
Bµ1)H

Table 2.2: Covariant derivatives of fermionic and Higgs fields under SU(2)L⊗U(1)Y⊗
SU(3)C gauge structure. 1 is 2× 2 identity matrix and α, β run over the three color
indices. The index over quarks have been suppressed in the left-hand side.

of atoms. In fact! all the particles observed till date, except photons, are massive.

Therefore the symmetry is broken badly. Thus, under SU(2)L⊗U(1)Y the current is

conserved but particle states are not symmetric. This we call spontaneous breaking

of symmetry. The novel mechanism to generate the masses for weak gauge bosons

and charged fermions won the 2013 noble prize to Prof. Peter Higgs [6] and Prof.

Francois Englert [5], and is called ‘Higgs mechanism’. Earlie the predictions of SM

ad their experimental tests won nobel prizes.

The masses of the gauge bosons and fermions are generated by the Higgs mecha-

nism via spontaneous symmetry breaking (SSB). To preserve the Lorentz symmetry,

the symmetry is spontaneously broken by scalar fields only. A SU(2)L doublet scalar

field with non-zero U(1)Y charge is required to generate the invariant Yukawa term

of fermions and scalar interaction. Hypercharge of left handed (LH) particles indoc-

trinates another symmetry through Y = (B − L)/2, while right handed (RH) ones

seem arbitrary. With the introduction of a Higgs doublet we may write the Yukawa

part of the SM Lagrangian as

LY uk = −
3∑

f1,f2=1

[
Y l
f1f2

LLf1
HeRf2

+ Y d
f1f2

QLf1
HdRf2

+ Y u
f1f2

QLf1
H̃uRf2

]
+h.c. (2.8)

where

H̃ ≡ iσ2H
†∗ =

(
H0†

−H−

)
,∗ (2.9)

and Y l,d,u are arbitrary 3 × 3 matrices, eventually determining the fermion masses

and flavor mixings. Sum over color and isospin indices have been ignored and f1, f2
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run over the number of flavor generations.

2.2 SSB and Higgs mechanism

A vacuum state may or may not be invariant under the symmetry present in the La-

grangian. These modes of symmetry realization are called Wigner-Weyl or Nambu-

Goldstone modes respectively. The symmetry realized in nature also depends on the

properties of the vacuum state. Wigner-Weyl realization causes all the particles in

a single multiplet to have degenerate masses while in Nambu-Goldstone realization

the multiplet contains zero-mass particles, known as Nambu-Goldstone boson, equal

to the number of broken generators. When the local gauge symmetries are broken

spontaneously, the Nambu-Goldstone bosons disappear providing longitudinal modes

to gauge fields making them massive.

The SU(2)L complex Higgs scalar doublet with SM quantum numbers (2,1/2,1)

is denoted as,

H =

(
H+

H0

)
≡ 1√

2

(
H1 + iH2

H3 + iH4

)
. (2.10)

The scalar part of SM Lagrangian is augmented as

LH = (DµH)†DµH − [µ2H†H + λ(H†H)2]. (2.11)

Where the scalar potential is V (H) = µ2H†H + λ(H†H)2 acquires above structure

due to SU(2)L ⊗ U(1)Y invariance and renormalizability condition. For µ2 < 0

electroweak symmetry breaks spontaneously, and λ > 0 is required to keep vac-

uum stable. Kinetic part of the Lagrangian gives the three and four point inter-

actions between Higgs and gauge bosons, and the λ term describes quartic scalar

self-interaction. Re-writing the scalar potential in real basis we get

V (H) =
1

2
µ

(
4∑
i

H2
i

)
+

1

4
λ

(
4∑
i

H2
i

)2

. (2.12)

Without loss of generality we can choose the coordinates in this four dimensional

space such that 〈0|Hi|0〉 = 0 for i = 1, 2, 4 and 〈0|H3|0〉 ≥ 0. Electromagnetic charge

neutral component of the scalar field acquires vacuum expectation value (VEV),

12



preserving U(1)Q symmetry of vacuum. Minimization of potential part yields

〈
H†H

〉
0

= −µ
2

2λ
≡ v2

EW

2
→ 〈0|H|0〉 =

1√
2

(
0

vEW

)
, (2.13)

called the Higgs field acquiring VEV. The complete transformation of Higgs field is

H → e
i
2

(αiσi+iβ)H =
1√
2

(
0

vEW + h

)
. (2.14)

Then gauge transformation with, say, α1,2 = 0 and α3 = β will be a symmetry of

vacuum. Thus, the generators σ1,2 and 1
2
σ3 − Y 1 are spontaneously broken since

they give non-zero charge to vacuum. But, vacuum carries no quantum number for

Q = 1
2
σ3 + Y 1 thus U(1)Q symmetry stays unbroken. The scalar kinetic term with

H = H ′ + 〈H〉 gives the relevant mass term

(Dµ 〈H〉)†(Dµ 〈H〉) →
1

2
(0, vEW )

∣∣∣∣gW i
µ

σi

2
+
g′

2
Bµ1

∣∣∣∣2( 0
vEW

)
=

1

2

v2
EW

4

[
g2W+

µ W
µ− + (−gW 3

µ + g′Bµ)2
]

(2.15)

where

W±
µ =

1√
2

(W 1
µ ∓ iW 2

µ) with mass mW = g
vEW

2
(2.16)

Zµ =
1√

g2 + g′2
(gW 3

µ − g′Bµ) with mass mZ =
√
g2 + g′2

vEW
2

(2.17)

Thus, the field orthogonal to Zµ is electro-magnetic (EM) field Aµ = 1√
g2+g′2

(g′W 3
µ +

gBµ), which remains massless. The EM and neutral weak boson fields are related as(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
(2.18)

where θW = cos−1

(
g√

g2+g′2

)
is called Weinberg angle. The relationM2

W = M2
Z cos2 θW

confirms the weak doublet nature of the Higgs particle. Fermionic mass terms are

acquired trivially as

Mψ =
1√
2
Y ψvEW , (2.19)

where ψ = l, d, u. The Yukawa couplings (Y ψ) are not any special matrices hence

can be diagonalized only using bi-unitarity transformation.
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This mechanism introduced the natures complexity through 28 fundamental pa-

rameters namely 12 masses, 6 angles and 2 Dirac phases in quark and lepton sectors,

and 2 Majorana phases in the neutrino sector. The parameters in the Bosonic sector

are α,mZ , vEW ,mH , αS and θQCD where αs = e2/4π is electromagneic fine structure

constant and θQCD is CP violating parameter for strong interaction. The allowed

parameter space for Higgs mass was constrained to very limited region of parameter

space, around 100 GeV, with the help of radiative corrections to gauge bosons due

to presence of Higgs in the loop. This was further constrained by LEP, Tevatron

direct search experiments and unitarity constraint on WW -scattering. The Higgs

has been eventually discovered at LHC.

The spontaneous symmetry breaking and Higgs mechanism also help in making

of a renormalizable theory with massive vector bosons. Breaking of gauge invariance

explicitly by adding mass terms for gauge bosons results in a non-renormalizable

theory.

2.3 Excellencies of the Standard Model

Gauge and fermionic kinetic terms together with Yukawa and Higgs Lagrangian

complete the Lagrangian for SM, except the fact that while quantizing SM we need

to add gauge fixing and Faddeev-Popov ghost terms. Since its origin the SM has

been beautifully confirmed by all the experiments. It has a very simple structure

and different forces of nature appear in same fashion, i.e., local gauge theories. The

58 objects (45 fermion fields, 12 gauge boson fields and 1 scalar boson field), 118

degrees of freedom (1 for Higgs, 2 for photons, 8 × 2 for gluons, 3 × 3 for massive

electroweak gauge bosons, 3×4 for charged leptons, 3×2 for neutrinos, 6×3×4 for

quarks) and 28 free parameters (12 for fermion masses, 3 angles and 1 CP phase of

Cabibbo-Kobayashi-Maskawa (CKM) matrix, 3 angles and 3 phases in Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix, four in electroweak sector of bosons namely

α,MZ , vEW and MH and 2 in strong sector namely αS and strong CP phase ΘQCD)

constitute the complete model. All these parameters have been experimentally mea-

sured except ΘQCD, three phases of PMNS matrix, and absolute neutrino mass scale.

For a nice summary of SM and beyond see [121].

Few of the world’s major collider experiments are LEP (e+e−), SLC (e+e−),

Tevatron (pp̄), HERA (e−p), PEP-II (e+e−), KEKB (e+e−) and the latest LHC (pp).

These experiments have explored the energy scale from 10 GeV to 8 TeV. Leptonic

collider experiments give clean signals at fixed energy suitable for detailed study.
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Hadronic collider experiment signals are messy with unknown/variable energy but

are suitable for discovery purposes due to high energy, involved nature and capability

of producing large amount of signal. With the above structure, SM fits precisely

the experimental findings of above experiments. To test a property of the theory

we measure the associated parameter in various ways, compare the predicted and

measured quantities. Once confirmed, fit the full parameter space of the model is

fitted and checked for consistency. All the particles predicted by the SM since its

origin, namely τ (1975), ντ (2000), c (1974), b (1977), t (1995), gluons (1979), W ,

Z (1983) and Higgs (2012) scalar, have not only been confirmed but also fit perfectly

in the model framework.

2.4 Deficiencies of the Standard Model

With the recent discovery of Higgs particle in CMS [17] and ATLAS [16] detectors

at LHC our quest for the SM parameters completes. Even ignoring the fact that

it does not incorporate gravitational interaction, there are enough reasons for not

believing it as a complete story. Few of the most crucial reasons behind the need of

BSM physics are listed as follows

• Neutrino Masses: The most important and widely discussed experimental

evidence of beyond standard model (BSM) physics is the observed neutrino

masses and their peculiar mixings in innumerable oscillation experiments. So-

lar neutrino experiments (Homestake, Kamiokande, GALLEX/GNO, SAGE,

Super-Kamiokande, SNO, BOREXINO) and reactor experiment KamLAND

estimated ∆m2
sol ' 7.5×10−5 eV2 and angle sin2 θsol ' 0.3. Atmospheric exper-

iments (Kamiokande, IMB, Super-Kamiokande, MACRO, Soudan-2, MINOS)

and long baseline experiments (K2K, MINOS and T2K) measured ∆m2
atm '

2.4 × 10−3 eV2 and a mixing angle sin2 θatm ' 0.5. The reactor experiments

Daya Bay, RENO and Double Chooz recently confirmed non-zero reactor angle

sin2 θrct ' 0.02. In the standard three generation framework ∆m2
sol = ∆m2

21,

∆m2
atm = |∆m2

31| ' |∆m2
32| and θsol = θ12, θatm = θ23, θrct = θ13 are chosen for

convenience. The latest global fit for these parameters is listed Tab. 2.3 [122].

From a totally different scenario the cosmological bounds coming from WMAP

constrain the sum of light neutrino masses to
∑
mi < 0.19 − 1.19 eV where

Planck15 data [] gives
∑
mi < eV at 2σ level [123]. Uncertainties in mass hier-

archy and CP -phases are expected to be fixed in near future. From SM point

of view neutrino masses must vanish if no right handed neutrinos existed, hence
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Parameter Case Best fit 1σ range 2σ range 3σ range
δm2

10−5 eV2 NH/IH 7.54 7.32 – 7.80 7.15 – 8.00 6.99 – 8.18

sin2 θ12

0.1
NH/IH 3.08 2.91 – 3.25 2.75 – 3.42 2.59 – 3.59

∆m2

10−3 eV2

NH 2.43 2.37 – 2.49 2.30 – 2.55 2.23 – 2.61
IH 2.38 2.32 – 2.44 2.25 – 2.50 2.19 – 2.56

sin2 θ13

0.01

NH 2.34 2.15 – 2.54 1.95 – 2.74 1.76 – 2.95
IH 2.40 2.18 – 2.59 1.98 – 2.79 1.78 – 2.98

sin2 θ23

0.1

NH 4.37 4.14 – 4.70 3.93 – 5.52 3.74 – 6.26
IH 4.55 4.24 – 5.94 4.00 – 6.20 3.80 – 6.41

δ/π

NH 1.39 1.12 – 1.77 0.00 – 0.16 —
⊕ 0.86 – 2.00

IH 1.31 0.98 – 1.60 0.00 – 0.02 —
⊕ 0.70 – 2.00

Table 2.3: Latest global best-fit and allowed 1, 2 and 3σ range analysis of 3ν mass-
mixing parameters. The ∆m2 = m2

3−(m2
1 +m2

2)/2 for NH and = −m2
3+(m2

1 +m2
2)/2

for IH. The χ2 for NH and IH are not very different (∆χ2
I−N = −0.3) [122].

no Dirac mass term for neutrinos exist and lepton number is conserved. An-

other method to understand mν is to add a left-haded scalar triplet δL3,−1, 1

and assi it a tiny VEV which will be discussed in chapter 5. Charge neutralness

of neutrinos leave other doubts like whether neutrinos are Dirac or Majorana

type. If they are Dirac kind, Yukawa couplings will have to be ∼ 10−12, and

there will not be any prediction for neutrinoless double beta decay. If they

are Majorana type their masses might come through seesaw mechanism quite

naturally.

• Dark Matter: There are cosmological and astrophysical evidences that most

of the matter in the universe is not SM like, as it does not emit electromagnetic

radiation and hence is dark. Neutrinos would also not emit electromagnetic

radiation but relic density abundance of neutrinos disfavors its possibility of

being cold Dark Matter. Implication for particle physics are such that there

must exist cold dark matter which in non-baryonic. Till date the existence of

cold Dark Matter, which is likely to have particle physics origin, is elevated

only because of its gravitational interaction. See review by Drees and Gerbier

in [124].

• Baryon Asymmetry of Universe: The imbalance in baryonic and anti-

baryonic matter in the observable universe is known as baryon asymmetry

problem. A system outside the thermal equilibrium is required to violate C,
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CP and B-number, to generate such asymmetry [125]. These conditions are

necessary, for theories in which B = 0 during the Big Bang, but not sufficient.

All of these conditions are satisfied in the SM. B is violated by instantons when

kT is of the order of the weak scale (but B − L is conserved). CP is violated

by the CKM phase and out of equilibrium conditions could be verified during

the electroweak phase transition. A detailed quantitative analysis [126–129]

shows that baryogenesis is not possible in the SM because there is not enough

CP -violation and the phase transition is not sufficiently strong at first order,

unless mH < 80 GeV. Possibility of this mass had been ruled out by LEP and

LHC experiments. The electroweak Higgs particle has been recently discovered

at LHC and found to have mH ' 126 GeV.

• Flavor problem: Despite the fact that all the SM fermions acquire their

masses through a single spontaneous symmetry breaking mechanism, their

masses exhibit strong hierarchical pattern. The symmetry of SM does not

impose any constraint on the masses or mixings of fermions. Including the

tiny but non-zero masses of neutrino, the ratio of heaviest to lightest fermion

is ∼ 1012. There is no explanation of three generations. Even in theories be-

yond the SM there is no single, justifiable, minimal mechanism to correlate

different Yukawa couplings at electroweak scale.

• Fine tuning: Once the dependency on the cut-off scale is absorbed in the re-

definitions of masses and couplings, SM is a renormalizable theory. Higgs mass

is not protected by any symmetry and receives large radiative correction from

new-physics scale. This requires order by order fine tuning of extreme orders

to make the Higgs mass stable. Best solution out of few is the introduction of

SUSY at TeV scale.

• Gauge symmetry problem: The gauge structure and pattern of represen-

tations once discovered looks simple, but the origin of this structure and three

different gauge couplings of totally different nature remains unexplained. A

satisfactory theory should be able to explain the origin of these gauge symme-

tries and couplings. Evolution of these gauge couplings appear to be converging

to a single origin, this behavior should also have some convincing explanation.

• Charge quantization: Gellmann-Nishijima equation is convincingly acquired

while generation masses for gauge bosons, but it does not answer the question

why all the particles have integer multiple of Qe/3, where Qe is charge of
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electron. More generically, why charges are quantized? From within the SM

we do not get hint for Hypercharge quantum numbers.

• Ultra High energy cosmic rays: The highest energy cosmic rays observed

have macroscopic energies up to several 1011 GeV. They may provide a good

probe to physics and astrophysics at such a large energies, unattainable in

terrestrial lab experiments. The origin of such an energetic cosmic rays is

one of the unresolved problem, searching for an explanation in the variety of

theories from astrophysical acceleration to BSM physics. For a review see [130].

The motive of our study is two folded: (1) To address some of the above mentioned

open problems from grand unification point of view, and (2) to predict some new

BSM physics within the reach of ongoing or future experiments. Unfortunately, all

the precision data, extensive flavor physics programs at K and B factories, and direct

collider searches indicate that there is no new physics at the electroweak scale.

Before we move to next level of our discussion let us have a look at the evolution

of gauge couplings of SM and its minimal SUSY extension.

2.5 Evolution of gauge couplings and unification

The high energy behavior of the three gauge couplings of SM gS, g and g′ point

towards the unification of the electro-weak and strong forces. This is one of the main

motivation behind studying Grand Unification. Aesthetically too, we will prefer all

the forces of nature to unify at certain very high energy. Fig. 2.2 and Fig. 2.3

describes the evolution of gauge couplings of SM and MSSM. The group theoretic

formulations of one and two loop beta functions coefficients for a general G1 × G2

gauge theory are listed in ref. [131,132] for both non-SUSY and SUSY scenarios. The

renormalization group evolution (RGE) of gauge coupling with two loop correction

can be expressed as [131,132]

µ
∂gi
∂µ

= βi ≡
1

16π2
aig

3
i +

1

(16π2)2

∑
j

aijg
3
i g

2
j + Yukawa term (2.20)

where i run over the three symmetries, µ is the energy parameter, and ai (aij) are

one (two) loop beta function coefficients.
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· · ·+ + +

Figure 2.1: One loop correction to gauge boson propagator.

2.5.1 SM gauge coupling running

In the non-SUSY scenario the beta functions coefficients are [132]

ai = −11

3
C2(G1) +

2

3
θT (R1)d(R2) +

1

6
δT (S1)d(S2)

aii = −34

3
[C2(G1)]2 +

[
10

3
C2(G1) + 2C2(R1)

]
θT (R1)d(R2)

+

[
1

3
C2(G1) + 2C2(S1)

]
δT (S1)d(S2)

ai 6=j = 2θC2(R2)d(R2)T (R1) + 2δC2(S2)d(S2)T (S1) (2.21)

where θ = 1 (2) for Weyl (Dirac) fermions and δ = 1 (2) for real (complex) scalar

fields. The fermionic and scalar multiplets transform according to the representations

Ri and Si with respect to the symmetry Gi. For an irreducible representation X we

have

tr(Ma(X)Mb(X)) = T (X)δab,

[Ma(X)Ma(X)]ij = C2(X)δij, (2.22)

where Ma is the matrix representation of the generators of the group. The T (X) and

C2(X) are called Dynkin index invariants and quadratic Casimir invariants, respec-

tively, and are related by C2(X)d(X) = T (X)dG. Here d(X) is the dimension of the

representation X and dG is the number of generators of the group. We have availed a

brief discussion on Quadratic Casimir and Dynkin index invariants in Appendix A.2.

If the theory has product of more than two group d(X2) =
∏

i≥2 d(Xi) is assumed.

C2(G) is the quadratic Casimir for the adjoint representation. For a representation

of abelian symmetry U(1)z we have C2(G) = 0 and C2(X) = T (X) = z2, where z is

the appropriately normalized charge associated to the U(1) symmetry.

We will be frequently estimating these coefficients for various gauge groups under

study, hence we have explicitly elaborated the way to calculate those in the following

example.
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Figure 2.2: Standard Model gauge coupling running.

Example: Assume that we have quark doublet (2, 1/6, 3), which is a Weyl fermion

above electroweak restoration scale hence θ = 1. This example is as general as

required. One loop coefficient corresponding to this representation is

a(2,1/6,3) =
2

3

(
1

2
× 3,

3

5

(
1

6

)2

× 6,
1

2
× 2

)
× ng (2.23)

In the eq. (2.23) the common factor 2/3 is the impression of representation being

fermionic. There are three terms inside the bracket corresponding to three groups.

The first term has a Dynkin index for fundamental of isospin group SU(2)L, i.e.,

T (RSU(2)L) = 1/2 and this isospin fundamental occurs thrice as the dimension of the

rest part of the theory, U(1)Y ⊗ SU(3)C , dR2 = 3. In the second term the factor

3/5 is the renormalization factor in redefining the U(1)Y gauge coupling g′ to the

new gauge couplings g1 as g′Y = g1T1, such that the generator T1 is normalized to

1/2 for a fundamental representation of the unifying group. This condition gives

g′ =
√

3/5 g1. Eventually, the comparison of the RGE of the two gauge couplings

g′ and g1 gives a1 = (3/5)aY . The term (1/6)2 is the Dynkin index (T = Y 2)

for U(1)Y symmetry. This is further multiplied by the dimension (=6) coming from

remaining symmetry SU(2)L⊗SU(3)C . Similarly in the third term we have a SU(3)C

fundamental and the dimension of rest of the theory, SU(3)C ⊗ U(1)Y , dR = 3. At

last ng is the number of flavor generations in the theory for this representation (for

SM ng = 3). Similarly we calculate two loop color-color beta coefficient for the above
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representation, which would be

a3C3C =

[(
10

3
C2(G1) + 2C2(R1)

)
T (R1)d(R2)

]
× ng

=

[(
10

3
× 3× 1

2
× 2

)
+ 2×

(
1

2

)2

× 8

3
× 2

]
× 3, (2.24)

where dR1C2(R1) = T (R1)dG1 have been used in the second term. C2(G) = 3, dG = 8

for SU(3)C and particles are in it’s fundamental representation hence dR1 = 3 and

trivially dR2 = 2. Similar calculations will be required for all other representations

present in the theory over all generation of scalars and fermions.

The non-zero contributions of all particles to the gauge couplings at one loop

level are depicted in the feynman diagrams of Fig. 2.1. We have listed one and two

loop RGE beta coefficient in the first row of the Tab. B.1 in the Sec. A.3.1.

The Fig. 2.2 shows the nature of evolution of gauge couplings assuming the

bare SM throughout the range of energy beyond electroweak scale. We find that

the inverse fine structure constants of SU(2)L and U(1)Y crossing at 1013 GeV and

those of SU(3)c and U(1)Y crossing at 1014.5 GeV. Similarly the inverse fine structure

constants of SU(2)L and SU(3)c are found to meet at 1017 GeV. This generates a

fine triangular region and the SM couplings do not unify at a single unification scale.

2.5.2 MSSM gauge coupling running

The SUSY is a symmetry which transforms boson (fermion) in to fermion (boson)

and, thus, it contains fermi-bose symmetry. In the no-supersymmetric (non-SUSY)

standard model the one-loop radiative correction to the Higgs mass as shown in

Fig.2.4 which gives quadratic divergence for the Higgs mass. this causes the SM

vacuum to be unstable. But when superpartners called Higgsinos are introduced as

in MSSM, there is another one-loop diagram mediated by the Higgsino loop shown

in Fig.2.5. The resultant contribution of Fig.2.4 and Fig.2.5 vanishes and the Higgs

mass has no quadratically divergent contributions. Thus the major motivation of

introducing supersymmetry is to remove the called “gauge hierarchy” problem and

keep the SM vacuum stable. Without SUSY, however, the quadratic divergence is

controlled by finetuning of parameters to energy loop order which is not so natural

as the divergence cancellation in SUSY case. SUSY is required in certain kind of

theories which integrate gravitation with internal symmetries of Standard Model.

Usually, it is introduced at very high energy scales. The emancipation of SM from
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the fine tuning problem require the SUSY scale at TeV.
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Figure 2.3: MSSM gauge coupling running.

SUSY pairs fermions and bosons hence every SM fermion is paired with their,

yet to be discovered, super-partner. Gauge couplings acquire corrections due to

super-partners of SM particles present at TeV scale. The gauge coupling meet at

a point, around 2 × 1016 GeV. Evolution of gauge couplings is shown in Fig. 2.3

and corresponding one and two loop beta coefficients are listed in Tab. 2.4. Meeting

MSSM beta coefficients
bi bij33/5
1
−3

 199/50 27/10 44/5
9/10 35/6 12
11/10 9/2 −26


Table 2.4: One and two loop gauge coupling beta coefficients.

of gauge coupling at a point may be another leading motivation for believing the

existence of SUSY. To keep the gauge couplings unified beyond the meeting point

we need to embed the MSSM in a higher theory like SUSY SU(5) or SUSY SO(10).

The ongoing experiments at LHC have constrained the parameter space of MSSM

[133] to the effect that masses of superpartners of quarks and gluons are bounded

near or above TeV scale. This experimental result at LHC has cast doubts about the

existence of SUSY at electroweak scale as a resolution of gauge hierarchy problem.

Further extensions of a minimal SUSY GUT like SU(5) will be required to explain

neutrino masses.
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Figure 2.4: One loop correction to Higgs mass.

Figure 2.5: Higgsino mediated correction in MSSM.
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Chapter 3
Grand Unified Theory

3.1 Motivations and constraints

The plausible convergence of the gauge couplings of SM, although with marked

deviation as shown in Fig. 2.2, is one of the major aesthetic reason to believe in

grand unification. Other motivations behind studying the grand unification are:

(a) To reduce the number of arbitrary parameters of SM. (b) To address, if not

all, some of the deficiencies of SM in a higher symmetry, possibly present at very

high energy scale. (c) To find other beyond SM signature of which there have been

no experimental evidence, and only bounds are available. The proton decay, LFV,

non-unitarity, rare decays, etc. are just few examples from the list.

The basic mathematical requirement for GUT model construction is a simple Lie

algebra (G) as the gauge group, similar to SM. This simple group should be large

enough to have SM as its subgroup. The total number of commuting generators (≡
rank of the group) in SM is four. Hence, the G must be a rank ≥ 4 group. All the

gauge couplings of theories below GUT symmetry restoration scale become equal to

GUT gauge coupling, αG, and above this scale we have only one gauge coupling αG.

The next requirement is that the reps of GUT model must correctly reproduce the

particle content of the observed fermion spectrum of SM as well as the Higgs boson.

ThusGmust posses complex reps, as well as it (or the combination) must be free from

anomaly in order not to spoil the renormalizability of GUT by an incompatibility

of regularization and gauge invariance. The requirement of complex representation

is based on the fact that embedding the known fermions in real representations

would require mirror fermions, which must be very heavy making all SM fermions

masses close to their scale. The above requirements constrain the possible algebras

to SU(5), SU(6), SO(10) and E6. The smallest possible unification structure with
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rank four is SU(5). The other most popular structure is SO(10) w with rank=5.

While SU(5) enjoys being smallest and most predictive structure which can give

SM after spontaneously breaking the SO(10) is the smallest Lie group for which

all the SM fermions of one generation can be accommodated in a single anomaly

free irreducible representation (16 dimensional spinor), with the natural prediction

of right handed neutrino. Having a larger structure SO(10) offers enormous freedom

in choosing the symmetry breaking pattern.

The model independent achievements of grand unification theories include: (a)

A unique gauge coupling describing nature above the unification scale. (b) Because,

quarks and leptons come together in rep(s) of G, the charge quantization is automat-

ically achieved. (c) For the same reason quark-lepton Yukawa couplings get related

as a consequence of GUT symmetry constraints. (d) The baryon and lepton number

violating super-heavy gauge bosons open the channels for nucleon decay, specifically

proton decay. The resolutions of other problems in SM like (i) Fine tuning problem,

(ii) Dark matter content of the universe, (iii) Baryonic asymmetry of universe, and

(iv) Highly flavored structure of the SM fermions etc. are usually tackled model de-

pendently. In this report we have focused on SO(10) based models at their variant

forms.

3.2 SU(5)

The grand unification theory based on SU(5) was first proposed by Georgi and

Glashow in 1974 [32]. The SU(5) group has only four generator in Cartan sub-

algebra hence the rank of this group is 4 and the rank of SM is also 4. The adjoint

representation is 52 − 1 = 24 dimensional, hence the number of generators and

therefore number of gauge bosons is also 24. Because an adjoint representation is

a bi-product of fundamental representation and its conjugate representation, 5 ×
5̄ = 1 + 24, hence it is an effectively two rank tensor and can be represented in

5 × 5 matrix form. Only 12 out of 24 gauge bosons belong to SM hence below

SU(5) scale only 12, belonging to SM, gauge bosons remain massless while rest

acquire GUT scale masses. The fundamental representation, 5, of SU(5) can be

decomposed in to SU(2)L and SU(3)C like 5 = (2, 1)1/2 + (1, 3)−1/3, where the

structures within bracket are fundamental representations of the respective groups

and numbers at subscripts are associated hypercharges, such that
∑
Y = 0 [135],

i.e., no hypercharge quantum number in SU(5). Any multiplicative number to the

hypercharges is subject to normalization. The 15 Weyl field of each generation of SM
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Reps Origin Anomaly SM Decomposition
5 Fund. 1 (1,−1/3, 3) + (2, 1/2, 1)
10 (5× 5)a 1 (2, 1/6, 3) + (1,−2/3, 3̄) + (1, 1, 1)
15 (5× 5)s 9 (2, 1/6, 3) + (1,−2/3, 6) + (3, 1, 1)

24 (5× 5)tr=0 0
(1, 0, 8) + (3, 0, 1) + (2,−5/6, 3)
+(2, 5/6, 3̄) + (1, 0, 1)

Table 3.1: Simple representations of SU(5) and their decomposition in Standard
Model.

can not be put in symmetric representation of SU(5) because Adler anomaly is non-

zero for this representation (see Appendix A.1) and this symmetric representation

also contains a color sixtet of SU(3)C but, quarks come in color triplet only. The

Higgs doublet of SM is put in 5 of SU(5) as 5 = (hT , H)T ≡ Φ. This whole multiplet

has to be charge less hence each colored scalar acquires Y = QEM = −1/3. Weyl

field are put in the form

5̄F =

(
dC

ε2L

)
L

, 10F =

(
ε3u

C Q
−QT ε2e

C

)
L

(3.1)

Here Q represents the quark doublet, the superscript C means the charge conjuga-

tion, ε2A = εijAj and ε3A = εijkAk. The ε2 and ε3 are the two and three index

Levi-Civita antisymmetric tensors in SU(2)L and SU(3)C basis, respectively. Ex-

panding the eq. (3.1) we get

ε2e
C =

(
0 eC

−eC 0

)
, ε2L =

(
e

−νe

)
& ε3u

C =

 0 uCb −uCg
−uCb 0 uCr

uCg −uCr 0

 (3.2)

SU(5)���

(
SU(3)

SU(2)

)
, SU(5)���

(
SU(3)C SU(3)C ⊗ SU(2)L

SU(3)C ⊗ SU(2)L SU(2)L

)
(3.3)

The distribution of SU(5) in to SU(3) and SU(2) substructures for one and two in-

dex tensors is symbolically depicted in eq. (3.3), where the U(1)Y quantum numbers

are ignored. From the Tab. 3.1 we see that decomposition of any of the SU(5) repre-

sentation smaller than adjoint (24) do not have SM singlet. Therefore, the smallest

scalar multiplet which can break SU(5) in to SM has to be the adjoint (24H ≡ Σ)

representation. Others will simply break the SM as well, or more critically the color
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symmetry SU(3). A detail analysis of spontaneous symmetry breaking of SU(n)

can be found in [136, 137]. The minimal SU(5) is considered as a prototype GUT

model to depict the strength and limitations of grand unification and is a text book

material today and has been addressed in [138–141] in good detail. Assigning VEV

along the off diagonal fields of adjoint representation will again break both SU(3)C

and SU(2)L. Hence, we have the only choice of assigning VEV, which commutes

with the generators of SU(3) and SU(2), is

〈Σ〉 ∝

(
2× 13 0

0 −3× 12

)
vΣ. (3.4)

Hence leaving the symmetry SU(3)C⊗SU(2)L preserved. Given the correct normal-

ization factor, this VEV mimics exactly the hypercharge quantum numbers, hence

also leaving the U(1)Y symmetry intact.

The most general potential, with additional simplifying Z2 symmetry Σ = −Σ,

which plays the role in the breaking of SU(5) is

V (Σ) = −µ
2

2
TrΣ2 +

λ

4
TrΣ4 +

λ′

4
(TrΣ2)2. (3.5)

where Σ can be also expanded as

Σ =

(
ΣO(1, 0, 8) ΣX(2,−5/6, 3)

ΣX(2, 5/6, 3) ΣT (3, 0, 1)

)
+ ΣS 〈Σ〉 . (3.6)

Putting the VEV 〈Σ〉 in the eq. (3.5) and estimating the mass term, we get scalar

masses

m2
O =

λ

6
v2

Σ, m
2
T =

2λ

3
v2

Σ, m
2
S = 2µ2, mX,X̄ = 0. (3.7)

Therefore, λ > 0 is required to get an stable and viable solution. These twelve

massless scalar bosons ΣX,X are the Goldstone modes of the theory, which must be

swallowed by twelve gauge bosons. The kinetic part of the Higgs under investigation

will contribute to the masses of gauge bosons. The covariant derivative for Σ particles

is

DµΣ = ∂µΣ + ig5[Aµ,Σ] (3.8)

where

Aµ =

(
G(1, 0, 8) (X, Y )(2,−5/6, 3)

(X,Y )(2, 5/6, 3) W (3, 0, 1)

)
µ

+Bµ, (3.9)
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and Aµ =
∑24

a=1 A
a
µT

a is assumed. As per design, 〈Σ〉 commutes with the generators

belonging to SM. Hence, the gluons Gµ, weak bosons Wµ, and Hyper-charge gauge

boson Bµ stay massless at the SU(5) breaking scale. However, the generators asso-

ciated with twelve heavy gauge bosons, (X, Y )µ ≡ (2,−5/6, 3) and their conjugates,

do not commute with the VEV 〈Σ〉 and therefore acquire the GUT scale, O(vΣ),

masses. These gauge bosons are required to be very heavy because they couple

quarks with leptons through fermion−gauge boson−fermion interactions, violating

baryon (B) and lepton (L) numbers (though accidentally preserving B − L) at the

vertices. Therefore they mediate the nucleon decay processes. To satisfy the present

bound on proton decay life time, masses of these gauge bosons must be ≥ 1015.5 GeV.

From Table.(3.1) we see that the fundamentl scalar representation 5H = (1,−1/3, 3)+

(2, 1/2, 1) under the SM gauge group. Clearly it contains the standard Higgs doublet

φ(2, 1/2, 1) = (φ+

φ0). Thus 5H breaks SM → U(1)em × SU(3)c with appropriate VEV.

The possible scalar multiplets which can generate fermion masses can be found

from the decompositions of matter bilinears

5× 5 = 10 + 15, 5× 10 = 5 + 45, 10× 10 = 5 + 45 + 50. (3.10)

Not all the multiplets in the right hand side are allowed because 5F contains only

one chiral component of the matter field hence Dirac mass term are not permitted.

Hence, only 5H , 45H and 50H are the possible candidates for generating masses of

SM fermions. On the other hand 10H and 15H may give Majorana term, helpful

for seesaw mechanism. In the minimal model, with only 5 as the Higgs boson, the

Yukawa Lagrangian is

LY = Y55
i
FC10F ij5

j
H + εijklm10F ijCY1010F kl5Hm. (3.11)

Here we have ignored the generation index over the fermions. With three genera-

tions known in nature the Yukawa matrices Y5,10 are 3× 3 complex matrices. With

〈Φ〉 = (0, 0, 0, 0, vEW )T , we get the masses of fermions. But, 〈Φ〉 preserves the SU(4)

symmetry so down quark and lepton masses are related at GUT scale. Also using

the properties of antisymmetry of Levi-Civita tensor we get

Yd = Y T
e Yu = Y T

u . (3.12)

The above relations do not fit with the experimental findings. For example eq. (3.11)
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predict md = me and ms = mµ out of which the later relation is badly violated.

Although the representation 5H is used to break the SM gauge theory spontanously,

only its standard doublet component takes part in symmetry breaking process. The

color takes part in the symmetry breaking process. The color triplet submultiplet

(1,−1/3, 3̄) which is not needed for SSB acquires mass at the GUT scale by extended

survival hypothesis. Thus the minimal SU(5) predicts the same particle content as

SM below the GUT scale with one loop coefficients aY = 41/10, a2L = −19/6, and

a3c = −7. It fails to unify gauge couplings of SM as shown in fig.(2.2).

The minimal SU(5) is an extremely predictive model with failed promises. Var-

ious extensions of minimal SU(5) model have been popular to explain both experi-

mental as well as philosophical questions. The gauge coupling unification is achieved

in its SUSY extensions [142,143], together with the solution to hierarchy problem and

the possibility of dark matter candidate. But this extension solicits the incorporation

of neutrino mass generating extensions. On the other hand, the adjoint fermionic

extension to the minimal SU(5) model gives few-hundred GeV scale type-I+III see-

saw, called Adjoint SU(5) model [144, 145]. Major problem with such extensions of

SU(5) models is that very often we need to make additional fine tuning to generate

different mass scales for the particle with different SM quantum numbers but sitting

in the same SU(5) multiplet (For example: the triplet color Higgs, hT , can mediate

the proton decay hence has to be very heavy closer to GUT scale). This is either

done by adding extra multiplets [146] in the theory or by introducing higher dimen-

sional operators [144, 145]. The discussion on minimal SU(5) teaches us about the

implementation of some crucial checks on GUT models to confirm its viability.

Any unification model based on SU(5) does not satisfactorily predict the family

structure of fermions. There is no chiral symmetry in SU(5) at any scale. There

is no prediction for RH neutrinos. Also, SU(5) does not explain nature favoring

(V − A) current over (V + A).

3.3 SO(10)

The next, most popular, candidate gauge group for grand unification is SO(10),

first proposed by Fritzsch and Minkowski [35] and Georgi [33]. With one unit larger

rank (=5), the theory is phenomenologically more attractive due to larger degrees

of freedom. All the SM fermions, together with an additional SM singlet, of one

generation are beautifully accommodated in a single 16 dimensional, irreducible,

spinor representation. The additional SM singlet is identified as the right handed
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(RH) neutrino (N). This is where SO(10) fits perfectly, for it unifies matter besides

the interaction. The theory also suggest the LR symmetry of universe prior to any

symmetry breakdown or at intermediate scales, which may give platform to explain

the favor of (V −A) current over (V +A) at low energies. Thus SO(10) can explain

the origin of parity violation as monopoly of weak interaction.

The special orthogonal group SO(10) is a group of 10×10 real orthogonal matri-

ces, O obeying OOT = OTO = 1, with Det(O) = 1. The algebra of SO(N) has been

extensively discussed in text books [138–140]. For the sake of completeness, a small

recapitulation of the properties of special orthogonal groups is given in Appendix A.4.

Since the low energy theory is based on unitary gauge groups, the SO(10) invariants

must be re-casted in to the unitary maximal subgroups. The two maximal subgroups

of SO(10) are SU(5) × U(1) and SU(2)L × SU(2)R × SU(4)C ∼= SO(4) × SO(6).

The decomposition of SO(10) algebra in the basis of SU(5) × U(1) and SU(2)L ×
SU(2)R×SU(4)C have been extensively discussed in [147,148] and [152], respectively.

For the sake of completeness we have listed the table of decompositions of SO(10)

irreducible representations up to 210 in to various subgroups, from [153], in the Ap-

pendix E.1. The decomposition of SO(10) invariants in to Pati-Salam symmetry has

been extensively studied in [153,155].

Forty five dimensional adjoint representation are orthogonal matrices correspond-

ing to second rank antisymmetric tensor. Similarly 54 ⊂ SO(10) in the second rank

symmetric tensor. Because SO(10) is a large symmetry, there can be many subgroups

which are larger than SM and accommodate the structure of SM. The symmetries of

these subgroups may appear at intermediate energy scales, unlike the SU(5) GUT

where we had one and only one way to reach SM. Some popular breaking schemes

of SO(10) to SM are depicted in Fig. 3.1, where

G13 = U(1)Q ⊗ SU(3)C

G5/51 = SU(5)/SU(5)⊗ U(1)X

G213 = SU(2)L ⊗ U(1)Y ⊗ SU(3)C (SM)

G214 = SU(2)L ⊗ U(1)X ⊗ SU(4)C

G224 = SU(2)L ⊗ SU(2)R ⊗ SU(4)C (PS)

G2113 = SU(2)L ⊗ U(1)B−L ⊗ U(1)R ⊗ SU(3)C

G2213 = SU(2)L ⊗ SU(2)R ⊗ U(1)B−L ⊗ SU(3)C (LR)

G2213D = G2213 ⊗D (g2L = g2R), G224D = G224 ⊗D(g2L = g2R), (3.13)
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Figure 3.1: Popular and physically viable breaking chains of SO(10) down to the
SM [33,38,156–159].

and the scalar multiplets sitting near the arrows if given VEV will break the symme-

tries at the tail in to symmetries at the head. The SO(10) origin of these multiplets

can be found from the decomposition tables and are re-listed in Tab. 3.2. The SSB

of SO(10) to G224D can be achieved by D-even PS singlet residing in 54 [38,149,150],

while breaking to G224 is achieved by D-odd PS singlet residing in 210 [36,37]. Also,

the SSB of SO(10)/PS D-even symmetry to G2213D is achieved by D-even LR singlet

residing in 210/(1, 1, 15) [154], while breaking of SO(10) or PS symmetry (D-odd or

even) to G2213 is achieved by D-odd LR singlet residing in 45/(1, 1, 15) [149–151].

Rest of the sub-algebras are D-parity broken. The scalar multiplets breaking these

sub-algebras are depicted in Fig. 3.1 and their SO(10) origin can be read from the

Tab. 3.2. Under the assumption of extended survival hypothesis, particles residing

only in these representation acquire the masses of the order of symmetry breaking

scale. For example 54 scalar breaks SO(10) in to G224D at GUT scale and does

not participate in any breaking further hence all the scalars in 54 get the masses
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(1, 1, 15)G224 ⊂ 45, 210

(1, 3, 0, 1)G2213 ⊂ (1, 3, 1)G224 ⊂ 45

(1, 0, 15)G214 ⊂ (1, 3, 15)G224 ⊂ 210

(1, 0, 15)G214 ⊂ (1, 1, 15)G224 ⊂ 210

(1, 3, 0, 1)G2213 ⊂ (1, 3, 15)G224 ⊂ 210

(1, 1,−1, 1)G2113 ⊂ (1, 1, 10)G214 ⊂ (1, 3, 10)G224 ⊂ 126

(1, 1,−1, 1)G2113 ⊂ (1, 3,−1, 1)G2213 ⊂ (1, 3, 10)G224 ⊂ 126

(1, 1/2,−1/2, 1)G2113 ⊂ (1, 1/2, 4)G214 ⊂ (1, 2, 4)G224 ⊂ 16

(1, 1/2,−1/2, 1)G2113 ⊂ (1, 2,−1/2, 1)G2213 ⊂ (1, 2, 4)G224 ⊂ 16

(2, 1,−1, 1)G2113 ⊂ (2, 1, 4)G224 ⊂ 16

Table 3.2: The multiplets participating in SSB by acquiring VEVs in the invariant
direction of the residual symmetry.

of O(MGUT ). Similarly when (1,3,1) of 45 breaks PS symmetry to G214 or (1,3,15)

of 210 breaks PS symmetry to G2113 the scalar particles residing in these multiplets

(1,3,1) and (1,3,15) acquire the masses of PS (whether D-odd or even) breaking

scale.

Once the additional symmetries are included to populate the grand desert, SUSY

is not necessarily required for unification of gauge couplings. In addition, with

intermediate gauge symmetries SO(10) also predicts signals of new physics which

can be probed at low or accelerator energies. The left-right (LR) [30, 31] symmetry

is a finite gauge transformation under charge conjugation. Through Pati-Salam [28]

intermediate symmetry left-right symmetry G224D or through G2213D is realized and

the parity violation at low energy is understood as an artifact of the breaking of the

left-right symmetry.

We note from the Tab. E.1 to Tab. E.7 that all representations except 10 and 120

contain SM singlets, but not all of them break SO(10) →SM in a single step. The

SM singlets of representations 45, 54 and 210 are also singlets of higher symmetry,

so assigning VEV to the scalar fields in these representations will break SO(10) to

the corresponding higher symmetry.

On the other hand in addition to these, if SM singlets of 16 and 126 are assigned

a VEV the symmetry of SO(10) will spontaneously break to SM. If an intermedi-

ate symmetry is at work then sub-multiplets of 16 and 126 under the intermediate

symmetry having SM singlets will do the job. For example In the case of 16H it
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is the mutual component of RH doublet (1, 2,−1, 1)H and in the case of 126H it is

the neutral component of the RH triplet ∆R(1, 3,−2, 1) that acquires VEV to break

G2213 → SM . The gauge coupling unification in non-SUSY SO(10) grand unifica-

tion desperately demands the presence of intermediate symmetries. Hence we require

a combination of the appropriately chosen multiplets to generate the spontaneous

symmetry breaking mechanism under study.

In the SUSY version of SO(10), If R [= (−1)3(B−L)+2S] parity remains an exact

symmetry at all scales the lightest SUSY partner will be stable, which may be an ideal

candidate for the dark matter of the universe. This R-parity is predicted as a gauged

discrete symmetry SUSY SO(10) or SUSY G224D models which maintains stability

of dark matter. This R-parity is predicted as a gauged discrete symmetry SUSY

SO(10) or SUSY G224D models which maintains stability of dark matter. Under R-

parity p→ p and p̃→ p̃, where p stands for particle and p̃ for its super-partner. In

the non-SUSY LR model, Pati-Salam model, or non-SUSY SO(10) model, the matter

parity M = (−1)3(B−L) is obviously equivalent to the R-parity becomes (−1)2S = 1

for the physical Hamiltonians and only scalars with S = 0 are allowed to have non

vanishing VEVs. Under matter parity 16 → −16 and 10 → 10. All other relations

build out of 10, such as 45, 54, 120, 126, 210 etc., are even. Only representations

with spinor content like 16, 144 etc. will be odd under matter parity.

The decomposition of SO(10) spinor multiplet 16F in to SM fermions plus addi-

tional RH neutrino is expressed as

16F = (2,
1

6
, 3) + (2,−1

2
, 1) + (1,−2

3
, 3̄) + (1,

1

3
, 3̄) + (1, 1, 1) + (1, 0, 1)

QL LL uCL dCL eCL νCL . (3.14)

In the SU(5) and PS basis this can be equivalently written as

16F ≡ 5F ⊕ 10F ⊕ 1F ; SU(5)

≡ (2, 1, 4)⊕ (1, 2, 4)F ; PS. (3.15)

Thus all fermions of one generation including RH neutrino (N) occur as left-right

symmetric doublets in G224 or G2213. The interesting features of SO(10) GUTs is

that the Majorana masses are dictated by Yukawa couplings and the SSB pattern

implemented for gauge coupling unification. Since, the SO(10) symmetry does not

distinguish among the components of the decomposition, see eq. (3.15), the Yukawa
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couplings for neutrinos are closely related to charged fermions. The Yukawa La-

grangian which generates masses to the 16F fermions of the model must have scalars

in 10, 120 and 126 representations, in general, because

16⊗ 16 = 10s ⊕ 120as ⊕ 126s . (3.16)

We can see that SM Higgs doublets are also present in these representations which

further break SM in to U(1)Q × SU(3)C and generate fermion masses. A realistic

SO(10) GUT framework allows proper SSB of SO(10) down to SM, and gauge and

Yukawa interactions must be compatible with the current experimental results on

quark and lepton masses and mixings. In (non-)SUSY case, at least (two)three

Higgs representations are required to break SO(10) down to U(1)Q × SU(3)C , the

low energy theory. As noted, the scalar representations which couple to fermionic

bilinears are 10H , 120H and 126H which contain the SM like Higgs doublets. There

can be SU(2)L Higgs doublets coming from the representations which do not directly

couple to fermionic bilinears. Their superposition gives effective SM light Higgs

doublet which can acquire electroweak VEV. A nice and detail description can be

found in [153]. If tree-level Dirac neutrino mass is prevented by imposing some

symmetry, then neutrino can acquire small Dirac masses at the loop level without

extreme fine tuning of couplings.

Advantages of using SO(10) over SU(5) are: a) A single family of fermions

are accommodated in a single 16-dimensional spinorial representation of SO(10),

with a prediction of right-handed neutrino. b) Both left and right handed fermions

reside in a single representation, hence, left-right symmetry can be achieved through

a finite gauge transformation in the form of charge conjugation. Thus the parity

symmetry is a part of continuous gauge symmetry. c) Besides SU(5) × U(1), its

other maximal subgroup is Pati-Salam symmetry, which explains the GUT scale

mass relation ms = mµ/3, up to certain extent. d) The gauge coupling unification

can be achieved through intermediate symmetry even if the SUSY is absent. e) In

the non-SUSY version, matter parity M = (−1)B−L is equivalent to the R-parity

in SUSY SO(10). It is possible to keep R intact if SO(10) symmetry is broken

appropriately by the Higgs representation 126H instead of 16H in SUSY (non-SUSY)

case.
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3.4 Majorana neutrinos and seesaw mechanism

3.4.1 Standard model extensions

Since, the neutrinos are electrically neutral they can be Dirac or Majorana fermions.

If they are complex four component Dirac fields, as charge fermions, then neutri-

nos (ν) and antineutrinos (ν) would have same mass but opposite lepton number

therefore ν-mass Lagrangian would be lepton number conserving. There is no lepton

number preserving symmetry in the SM but there is a global lepton number sym-

metry. Violation of this accidental symmetry will allow the Majorana mass term in

the Lagrangian, and neutrinos would be two component Majorana fields.

Extending the SM with three right handed singlet field νR we write Dirac mass

Lagrangian for neutrino

LD = −νLMDνR + h.c. (3.17)

where MD= Dirac neutrino mass matrix=YνvEW , and vEW is electroweak VEV of

standard Higgs doublet. For neutrinos to be as light as 1 eV, Yν ∼ O(10−12), which

is extremely tiny and leads to fine tuning problem in the theory. However there has

been also a number of interesting investigations suggesting neutrinos to be Dirac

particles On the other hand Majorana mass term can be written as

LM = −1

2
νLM

M
L ν

C
L + h.c. (3.18)

The smallness of ML has also to be explained. With two lepton doublets, we need to

make this term gauge and Lorentz invariant. The most elegant way to explain this is

the seesaw mechanism [161]. From within the SM, Yukawa interactions augmented

by higher dimensional terms are written like dimension-5 Weinberg operator [160]

LY (d = 5) = λij
(lL

T
i iσ2H)C(HT iσ2lLj)

MΛ

(3.19)

where MΛ is the cut-off scale of the theory, λ is couplings strength and i, j are flavour

indices. When H acquires VEV we get

MM
L = λ

v2
EW

MΛ

. (3.20)
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The other non-vanishing contributions, ignoring Lorentz index, can be

(lTLσ2
−→σ lL)(HTσ2

−→σ H) (3.21)

(lTLσ2
−→σ H)(HTσ2

−→σ lL) (3.22)

Closer look at the eq. (3.19), eq. (3.21) and eq. (3.22) suggests that the renormalizable

Yukawa term with extended particle structure can reproduce the dim=5 invariants

if heavy modes are integrated out

(lL
Tσ2H)νR, (lTLσ2

−→σ lL).
−→
∆ , & (lTLσ2

−→σ H).−→ρ , (3.23)

where νR, ∆ and ρ are SM singlet fermion, SU(2)L triplet (3,1,1) scalar and SU(2)L

triplet (3,0,1) fermion, respectively, under SU(2)L×U(1)Y ×SU(3)C . The masses of

these BSM particles are the cut-off scale. Integrating out the heavy modes generates

the non-zero masses for light neutrinos and this mechanism to generate the masses

for neutrinos is known as seesaw mechanism. These three types of generating masses

of neutrinos are called type-I [39,42], type-II [144,145,162] and type-III [43,79,162]

seesaw, respectively.

With a gauge singlet chiral fermion per generation, the renormalizable Yukawa

coupling follows

∆L = YνlLσ2H
∗νR +

MR

2
νTRCνR + h.c. (3.24)

with ν ≡ νL + CνTL and N ≡ νR + CνTR we get the total mass matrix of neutral

Lagrangian

Mν =

(
0 MT

D

MD MR

)
≡ Uν

(
mν 0

0 Mh

)
UT
ν , (3.25)

where Mν , Uν are 6× 6 matrices and rest of the matrices in eq. (3.25) are 3× 3. For

MD << MR we have predominantly Majorana case such that the block diagonalized

matrices are

mν ' −MD
1

MR

MT
D & MN 'MR. (3.26)

This is the canonical or type-I seesaw.

Now, if instead of fermionic singlet we have a scalar triplet, the relevant Yukawa

part of Lagrangian is

∆L = Y ij
∆ l

T
LiCσ2∆LlLj + h.c. (3.27)
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and the associated scalar potential term is

∆V = µ∆H
Tσ2∆∗LH +M2

∆Tr∆†L∆L + .. (3.28)

where µ∆ ∼ O(M∆) and ∆ = −→σ ·
−→
∆. The VEV 〈∆〉 results from cubic scalar part

of the Lagrangian. Neutrinos get the mass

mν = Y∆ 〈∆〉 (3.29)

with 〈∆〉 ' µ∆v
2
EW

M2
∆

. This is known as type-II seesaw mechanism.

Similarly, addition of a triplet fermion gives the Lagrangian

∆L = Yρl
T
LCσ2ρH +Mρ

−→ρ TC−→ρ (3.30)

where ρ = −→σ · −→ρ and the mass Mρ is the scale of new physics. Similar to type-I

seesaw for Mρ >> vEW

mν = −Yρ
1

Mρ

Y T
ρ v

2
EW . (3.31)

This mechanism to generate light neutrino masses is called type-III seesaw. While

in type-II seesaw only one ∆ is enough to get the general neutrino mass matrix,

in type-I (III) seesaw the number of required singlet (triplet) is same as required

number of non-zero light masses, i.e. at least two.

3.4.2 Seesaw mechanisms in GUTs

In the GUT framework, the multiplets giving type-I, type-II and type-III seesaw are

part of suitable representations. For example in SU(5) GUTs the RH neutrino N

needed for type-I seesaw mechanism is SU(5) singlet fermion, the triplet scalar of

SM giving type-II seesaw is a part of the symmetric representation of 15H of SU(5)

of the triplet SM fermion giving type-III seesaw is a part of adjoint representation of

24F of SU(5), as we can see in Tab. 3.1. The SU(5) singlet fermion (N) giving type-

I may be part of some GUT multiplet. In SO(10) we already have the additional

fermion singlet as part of the fermionic family in the spinorial representation 16F . In

E6 GUT it is a fundamental representation 27F . The triplet scalars (vectors) giving

type-II (III) seesaw come from 126H and 45F multiplets of SO(10). The advantage

of SO(10) over SU(5) is that since extra fermion is part of the same multiplet in

the former case as other SM fermions, the neutrino Dirac mass matrix is strongly

correlated with the mass matrices of other fermions.
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Chapter 4
Non-Canonical Seesaw Dominance: General

Framework

4.1 Type-I and Type-II seesaw in LRS and SO(10)

models

The most popular method of neutrino mass [163–168] generation has been through

type-I or canonical seesaw mechanism [39–42] which was also noted to apply in the

simplest extension of the SM through right-handed (RH) neutrinos encompassing

family mixings [76,77]. Most of the problems of the SM have potentially satisfactory

solutions in the minimal left-right symmetric (LRS) [28–31,43] grand unified theory

based on SO(10) [36–38,60,61,169–179].

A special feature of left-right gauge theories [28–31] and SO(10) grand unified

theory (GUT) [36–38, 60, 61, 169, 170, 172] is that the canonical seesaw formula [39–

42,76,77] for Majorana neutrino masses is usually accompanied by the type-II seesaw

formula [43,76,79–82,180]. The parameters entering into this hybrid seesaw formula

have fundamentally appealing interpretations in Pati-Salam model [28,29] or SO(10)

GUT. In eq.(1.2) MD(MN) is Dirac (RH-Majorana) neutrino mass, and in eq.(1.3)

vL ∼ λ
v2
wkVR
M2

∆L

is the induced vacuum expectation value (VEV) of the LH triplet

∆L, VR = SU(2)R × U(1)B−L breaking VEV of the RH triplet ∆R, and f is the

Yukawa coupling of the triplets ⊂ 126H of SO(10). Here λ is the quartic coupling

in the ∆L − ∆R − φ interaction term in the Higgs potential VHiggs = λ∆†L∆Rφ
†φ

+ ... where φ(2, 2, 0, 1) is the Higgs bidoublet ⊂10H of SO(10). The same Yukawa

coupling f also defines the RH neutrino mass MN = fVR. Normally, because of

the underlying quark-lepton symmetry in SO(10) or Pati-Salam model, MD is of the

same order as Mu, the up-quark mass matrix, that drives the canonical seesaw scale
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to be large, MN ∼ 1014 GeV. In the LRS theory based upon SU(2)L × SU(2)R ×
U(1)B−L×SU(3)C(≡ G2213), MD ∼Ml = charged lepton mass matrix. The neutrino

oscillation data then pushes this seesaw scale to MN ∼ 1010 GeV. Similarly the

type-II seesaw scale is also around this mass. With such high seesaw scales in non-

supersymmetric (non-SUSY) SO(10) model or LRS theory, there is no possibility

of direct experimental verification of the seesaw mechanism or the associated WR

boson mass in near future. Likewise, the predicted LFV decay rates are far below

the experimental limits.

The scope and applications of type-I seesaw to TeV scale WR boson models have

been discussed in the recent interesting review [181]. In such models D-Parity is at

first broken at high scale that makes the left-handed triplet much heavier than theWR

mass, but keeps the G2213(g2L 6= g2R) unbroken down to much lower scale [36–38].

This causes the type-II seesaw contribution of the hybrid seesaw formula of eq.

(1.1) to be severely damped out in the LHC scale WR models where type-I seesaw

dominates. But because MN is also at the TeV scale, the predicted type-I seesaw

contribution to light neutrino mass turns out to be 106 − 1011 times larger than

the experimental values unless it is adequately suppressed while maintaining its

dominance over type-II seesaw. Such suppressions have been made possible in two

ways:(i) using fine tuned values of the Dirac neutrino mass matrices MD [181–187]

,(ii) introducing specific textures to the fermion mass matrices MD and/or MN [188–

203].

Even without going beyond the SM paradigm and treating the added RH neu-

trinos in type-I seesaw as gauge singlet fermions at ∼ GeV scale, rich structure of

new physics has been predicted including neutrino masses, dark matter, and baryon

asymmetry of the universe. The fine-tuned value of the associated Dirac neutrino

Yukawa coupling in these models is y ∼ 10−7 [204–206].

There are physical situations where type-II seesaw dominance, rather than type-I

seesaw or inverse seesaw, is desirable [43–45,47–50,55,76,77,79–82,89–92,94,95,180,

207,208,210,211].

In the minimal case, being a mechanism driven by intermediate scale mass of LH

triplet, type-II seesaw may not be directly verifiable; nevertheless it can be clearly

applicable to TeV scale ZR models in non-SUSY SO(10) to account for neutrino

masses [208] provided type-I contribution is adequately suppressed. However, as

in the fine-tuning of Dirac neutrino mass in the type-I seesaw case in LR models,

the induced VEV needed for type-II seesaw can also be fine tuned using more than

one electroweak bi-doublets reducing the triplet mass to lower scales accessible to
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accelerator tests. Looking to the eq.(1.1) and the structure of the induced VEV vL,

the most convenient method of suppressing type-I seesaw with respect to type-II

seesaw is to make the type-I seesaw scale MN = fVR larger and the triplet mass

much smaller, M∆L
<< MN . This requires the SU(2)R×U(1)B−L breaking scale or

MWR
>> M∆L

. SUSY and non-SUSY SO(10) models have been constructed with

this possibility and also in the case of split-SUSY [44, 45] where MWR
' 1017 GeV.

Obviously such models have no relevance in the context of TeV scale WR or ZR

bosons accessible to LHC searches.

Whereas the pristine type-I or type-II seesaw are essentially high scale formulas

inaccessible for direct verification and need fine tuning or textures to bring them

down to the TeV scale, the well known classic inverse seesaw mechanism [212] which

has been also discussed by a number of authors [213–222] is essentially TeV scale

seesaw. It has the high potential to be directly verifiable at accelerator energies and

also by ongoing experiments on charged lepton flavor violations [223–232,232,233].

As discussed above if type-I seesaw is the neutrino mass mechanism at the TeV

scale, it must be appropriately suppressed either by finetuning or by introducing

textures to the relevant mass matrices [181]. On the otherhand if type-II seesaw

dominance in LR models or SO(10) is to account for neutrino masses, WR, ZR bo-

son masses must be at the GUT-Planck scale in the prevailing dominance mecha-

nisms [44,45].

In view of this, it would be quite interesting to explore, especially in the context

of non-supersymmetric SO(10), possible new physics implications when the would

be dominant type-I seesaw cancels out exactly and analytically from the light neu-

trino mass matrix even without needing any fine tuning or fermion mass textures

in MD and/or MN . The complete cancellation of type-I seesaw in the presence of

heavy RH Majorana mass term MNNN was explicitly proved in ref. [234,235] in the

context of SM extension when both Ni and Si are present manifesting in heavy RH

neutrinos and lighter singlet fermions. We call this as gauge singlet fermion assisted

extended seesaw dominance mechanism. Since then the mechanism has been utilised

in explaining baryon asymmetry of the universe via low-scale leptogenesis [234,235],

the phenomenon of dark matter (DM) [236] along with cosmic ray anomalies [237].

More recently this extended seesaw mechanism for neutrino masses in the SM exten-

sion has been exploited to explain the keV singlet fermion DM along with low-scale

leptogenesis [238].

In the context of LR intermediate scales in SUSY SO(10), this mechanism has
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been applied to study coupling unification and leptogenesis [239–241] under grav-

itino constraint. Application to non-SUSY LR theory originating from Pati-Salam

model [242] and non-SUSY SO(10) with TeV scale WR, ZR bosons have been made

[87, 88] with the predictions of a number of experimentally testable physical phe-

nomena by low energy experiments and including the observed dilepton excess at

LHC [243]. In these models the singlet fermion assisted type-I seesaw cancellation

mechanism operates and the extended seesaw (or inverse seesaw) formula dominates.

This article is organised in the following manner. In Sec.4.2, we explain how

the Kang-Kim mechanism [234, 235] operates within the SM paradigm extended by

singlet fermions. In Sec.4.3, we show how a generalised neutral fermion mass matrix

exists in the appropriate extensions of the SM, LR theory, or SO(10). In Sec.4.4, we

show emergence of the other dominant seesaw mechanism including the extended or

inverse seesaw and type-II seesaw and cancellation of type-I seesaw.

4.2 Mechanism of extended seesaw dominance

Using the explicit derivation of Kang and Kim [234], here we discuss how the type-I

contribution completely cancels out paving the way for the dominance of extended

seesaw mechanism. The SM is extended by introducing RH neutrinos Ni(i = 1, 2, 3)

and an additional set of fermion singlets Si(i = 1, 2, 3), one for each generation.

After electroweak symmetry breaking, the Yukawa Lagrangian in the charged lepton

mass basis gives for the neutral fermions

Lmass = (MDνN +
1

2
MNN

TN +MNS + h.c) + µSS
TS (4.1)

where MD = the Dirac neutrino mass matrix = Y < φ >, Y being the Yukawa

matrix. This gives the 9× 9 neutral fermion mass matrix in the (ν,N c, S) basis,

Mν =

 0 MD 0

MT
D MN MT

0 M µS

 . (4.2)

The type-I seesaw cancellation leading to dominance of extended seesaw (or inverse

seesaw) [212] proceeds in two steps: As MN >> M >> MD, µS, it is legitimate

to integrate out the RH Ni fields at first leading to the corresponding effective La-
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grangian

− Leff =

(
MD

1

MN

MT
D

)
αβ

νTα νβ +

(
MD

1

MN

MT

)
αm

(
ναSm + Smνα

)
+

(
M

1

MN

MT

)
mn

STmSn + µSS
TS. (4.3)

Then diagonalisation of the 9 × 9 neutral fermion mass matrix including the result

of Leff gives conventional type-I seesaw term and another of opposite sign leading to

the cancellation.

It must be emphasized that the earlier realizations of the classic inverse seesaw

formula [212] were possible [213–220,222] with vanishing RH Majorana mass MN = 0

in eq.(4.2).

Under the similar condition in which the type-I seesaw cancels out the Majorana

mass mS of the sterile neutrino and its mixing angle θS with light neutrinos are

governed by

mS = µS −M
1

MN

MT ∼ −M 1

MN

MT ,

tan 2θS = 2
MD

M
. (4.4)

As µS is naturally small, it is clear that type-I seesaw now controls the gauge singlet

fermion mass, although it has no role to play in determining the LH neutrino mass.

These results have been shown to emerge [87, 88, 208, 239, 243, 244] from SO(10)

with gauge fermion singlet extensions by following the explicit block diagonalisation

procedure in two steps while safeguarding the hierarchy MN >> M > MD, µS with

the supplementary condition µSMN < M2.

4.3 Generalized neutral fermion mass matrix

A left-right symmetric (LRS) gauge theory G2213D(g2L = g2R) at higher scale (µ =

MP ) is known to lead to TeV scale asymmetric LR gauge theory G2213(g2L 6= g2R) via

D-Parity breaking [36–38]. This symmetry further breaks to the SM gauge symmetry

by the VEV of the RH triplet ∆R(1, 3,−2, 1) leading to massive WR, ZR bosons

and RH neutrinos at the intermediate scale MR. Instead of G2213D(g2L = g2R) it

is possible to start directly from SO(10) which has been discussed at length in a

number of investigations that normally leads to the type-I⊕type-II hybrid seesaw
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formula. In the absence of additional sterile neutrinos, the neutral fermion matrix

is standard 6 × 6 form. Here we discuss how a generalised 9 × 9 neutral fermion

mass matrix that emerges in the presence of additional singlet fermions contains

the rudiments of various seesaw formulas. As noted in Sec. 4.1, the derivation of

the minimal classic inverse seesaw mechanism [212] has been possible in theories

gauge singlet fermion extensions of the SM are available [213–222, 245]. Extensive

applications of this mechanism have been discussed and reported in a number of

recent reviews [168, 247, 248, 250–252]. Exploring possible effects on invisible Higgs

decays [253–255], prediction of observable lepton flavor violation as a hall mark of

the minimal classic inverse seeaw mechanism has attracted considerable attention

earlier and during recent investigations [256–259, 263–265]. The effects of massive

gauge singlet fermions have been found to be consistent with electroweak precision

observables [266,267] Earlier its impact on a class of left-right symmetric models have

been examined [246, 268, 269]. Prospects of lepton flavor violation in the context of

linear seesaw and dynamical left-right symmetric model have been also investigated

earlier [245].

It is well known that 15 fermions of one generation plus a right handed neutrino

form the spinorial representation 16 of SO(10) grand unified theory [169, 170]. In

addition to three generation of fermions 16i(i = 1, 2, 3), we also include one SO(10)-

singlet fermion per generation Si(i = 1, 2, 3). We note that such singlets under the LR

gauge group or the SM can originate from the non-standard fermion representations

in SO(10) such as 45F or 210F .

Under G2213 symmetry the fermion and Higgs representations are,

Fermions

QL =

(
u

d

)
L

(
2, 1, 1/3, 3

)
, QR =

(
u

d

)
R

(
1, 2,−1/3, 3∗

)
,

L =

(
νl

l

)
L

(
2, 1,−1, 1

)
, R =

(
Nl

l

)
R

(
1, 2,−1, 1

)
,

Si =
(

1, 1,−1, 1
)

.

Higgs

φ =

(
φ0

1 φ+
2

φ−1 φ0
2

)(
2, 2, 0, 1

)
, ∆L =

(
∆+
L/
√

2 ∆++
L

∆0
L −∆+

L/
√

2

) (
3, 1,−2, 1

)
,
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∆R =

(
∆+
R/
√

2 ∆++
R

∆0
R −∆+

R/
√

2

) (
1, 3,−2, 1

)
,

χL =

(
χ0
L

χ−L

)(
2, 1,−1, 1

)
, χR =

(
χ0
R

χ−R

)(
1, 2,−1, 1

)
,

ηo(1, 1, 0, 1),

where ηo is a D-Parity odd singlet with transformation property ηo → −ηo under

L → R. When this singlet acquires VEV < ηo >∼ MP , D-Parity breaks along

with the underlying left-right discrete symmetry but the asymmetric LR gauge

theory G2213 is left unbroken down to the lower scales. The G2213 gauge the-

ory can further break down to the SM directly by the VEV of RH Higgs triplet

∆R(1, 3,−2, 1) ⊂ 126H ⊂ SO(10) or the RH Higgs doublet χR(1, 2,−1, 1) ⊂ 16H ⊂
SO(10). The D-Parity odd (even) singlets ηo(ηe) were found to occur naturally in

SO(10) GUT theory [36–38]. Designating the quantum numbers of submultiplets

under Pati-Salam symmetry SU(2)L×SU(2)R×SU(4)C (≡ G224), the submultiplet

(1, 1, 1) ⊂ 210H ⊂ SO(10) is ηo where as the submultiplet (1, 1, 1) ⊂ 54H ⊂ SO(10)

is ηe. Likewise the neutral component of the submultiplet (1, 1, 15) ⊂ 45H ⊂ SO(10)

behaves as ηo, but that in (1, 1, 15) ⊂ 210H behaves as ηe. Thus the GUT scale

symmetry breaking SO(10)→ G224D can occur by the VEV of 54H in the direction

< ηe >∼MGUT , but SO(10)→ G224 can occur by the VEV of 210H in the direction

< ηo >∼ MGUT . Likewise SO(10) → G2213D can occur by the VEV of the neutral

component (1, 1, 0, 1)H ⊂ (1, 1, 15)H ⊂ 210H , but SO(10)→ G2213 can occur by the

VEV of the neutral component of (1, 1, 0, 1)H ⊂ (1, 1, 15)H ⊂ 45H . As an example,

one minimal chain with TeV scale LR gauge theory in the context of like-sign dilep-

ton signals observed at LHC is,

SO(10)
(MU=MP )−→ SU(2)L × SU(2)R × U(1)B−L × SU(3)C [G2213]

(MR)−→ SU(2)L × U(1)Y × SU(3)C [SM]
(MZ)−→ SU(3)C × U(1)Q. (4.5)

In this symmetry breaking pattern all LH triplets and doublets are near the GUT

scale, but RH triplets or doublets are near the G2213 breaking intermediate scale MR

which could be ∼ (few − 100) TeV. Out of two minimal models with GUT scale

D-Parity breaking satisfying the desired decoupling criteria MN >> M >> MD, µS

[208, 243], dominance of extended seesaw in the presence of gauge singlet fermions

has been possible in ref. [243] with single G2213 intermediate scale corresponding
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to TeV scale WR, ZR bosons. The extended seesaw dominance in the presence of

fermion singlets in SO(10) have been also realised including additional intermediate

symmetries G2214D and G224 where observable proton decay, TeV scale ZR boson and

RH Majorana neutrinos, observable proton decay, n − n̄ oscillation, and rare kaon

decay have been predicted. Interestingly the masses of WR boson and lepto-quark

gauge bosons of SU(4)C have been predicted at ∼ 100 TeV which could be accessible

to planned LHC at those energies whereWR boson scale∼ (100−1000) TeV matching

with observable n − n̄ oscillation and rare kaon decay has been predicted. But the

heavy RH neutrino and ZR boson mass being near TeV scale have been predicted to

be accessible to LHC and planned accelerators [87,88]. That non-SUSY GUTs with

two-intermediate scales permit a low mass ZR boson was noted much earlier [116].

In eq.(4.5), instead of breaking directly to SM, the G2213 breaking may occur

in two steps G2213 → G2113 → SM where G2113 represents the gauge symmetry

SU(2)L×U(1)R×U(1)B−L×SU(3)C [G2113]. This promises the interesting possibility

of TeV scale ZR boson with the constraint MWR
>> MZR . Thus the model can be

discriminated from the direct LR models if ZR boson is detected at lower mass scales

than the WR-boson. There are currently ongoing accelerator searches for this extra

heavy neutral gauge boson. This has been implemented recently with type-II seesaw

dominance in the presence of added fermion singlets [208]. As we will discuss below

both these types of models predict light neutrinos capable of mediating double beta

decay rates in the WL −WL channel saturating the current experimental limits. In

addition resonant leptogenesis mediated by heavy sterile neutrinos has been realised

in the model of ref. [208].

The G2213 symmetric Yukawa Lagrangian descending from SO(10) symmetry can

be written as

LYuk =
∑
i=1,2

Y `
i ψL ψR Φi + f (ψcR ψR∆R + ψcL ψL∆L) + yχ (ψR S χR + ψL S χL)

+h.c., (4.6)

where Φ1,2 ⊂ 10H1,H2 are two bidoublets, (∆L,∆R) ⊂ 126F and (χL, χR) ⊂ 16H .

Including the induced VEV contribution to ∆L, the Yukawa mass term can be

written as

Lmass = (MDνN +
1

2
MNN

TN +MNS +MLνLS + h.c) +mII
ν ν

Tν + µSS
TS. (4.7)

Here the last term denotes the gauge invariant singlet mass term where naturalness
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criteria demands µS to be a very small parameter. In the (ν, S,NC) basis the gen-

eralised form of the 9 × 9 neutral fermion mass matrix after electroweak symmetry

breaking can be written as

Mν =

m
II
ν ML MD

MT
L µS MT

MT
D M MN

 , (4.8)

where MD = Y 〈Φ〉, MN = fvR, M = yχ〈χ0
R〉,ML = yχ〈χ0

L〉. In this model the

symmetry breaking mechanism and the VEVs are such that MN > M � MD. The

LH triplet scalar mass M∆L
and RH neutrino masses being at the the heaviest mass

scales in the Lagrangian, this triplet scalar field and the RH neutrinos have been at

first integrated out leading to the effective Lagrangian at lower scales [208,234],

− Leff =

(
mII
ν +MD

1

MN

MT
D

)
αβ

νTα νβ +

(
ML +MD

1

MN

MT

)
αm

(
ναSm + Smνα

)
+

(
M

1

MN

MT

)
mn

STmSn + µSS
TS. (4.9)

4.4 Cancellation of Type-I seesaw and dominance

of others

(a) Cancellation of Type-I seesaw

Whereas the heaviest RH neutrino mass matrix MN separates out trivially, the other

two 3× 3 mass matrices Mν , and MS are extracted through various steps of block

diagonalisation. The details of various steps are given in refs. [87, 88,208,209]

Mν = mII
ν +

(
MDM

−1
N MT

D

)
− (MDM

−1
N MT

D) +ML(MTM−1
N M)−1MT

L

−ML(MTM−1
N M)−1(MTM−1

N MT
D)− (MDM

−1
N M)(MTM−1

N M)−1MT
L

+MDM
−1µSMDM

−1T ,

MS = µS −MM−1
N MT + ....,

MN = MN . (4.10)

From the first of the above three equations, it is clear that the type-I seesaw term

cancels out with another of opposite sign resulting from block diagonalisation. Then
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the generalised form of the light neutrino mass matrix turns out to be

Mν = fvL +MLM
−1MN(MT )−1MT

L

−[MLM
−1MT

D +MD(MLM
−1)T ] +

MD

M
µS(

MD

M
)T . (4.11)

In different limiting cases this generalised light neutrino mass matrix reduces to the

corresponding well known neutrino mass formulas.

(b). Linear seesaw and double seesaw

With ML = yχvχL that induces ν − S mixing, the second term in eq.(4.11) is the

double seesaw formula,

M(double)
ν = MLM

−1MN(MT )−1MT
L . (4.12)

The third term in eq.(4.11) represents the linear seesaw formula

M(linear)
ν = −[MLM

−1MT
D +MD(MLM

−1)T ]. (4.13)

Similar formulas have been shown to emerge from single-step breaking of SUSY GUT

models [270–272] which require the presence of three gauge singlet fermions.

Using the D-Parity breaking mechanism of ref. [36, 37], an interesting model of

linear seesaw mechanism in the context of supersymmetric SO(10) with suceessful

gauge coupling unification [274] has been suggested in the presence of three gauge

singlet fermions. A special feature of this linear seesaw, compared to others [270,

270, 272] is that the neutrino mass formula is suppressed by the SUSY GUT scale

but it is decoupled from the low U(1)B−L breaking scale. In addition to prediction

of TeV scale superpartners, the model provides another important testing ground

through manifestation of extra Z ′ boson at LHC or via low-energy neutrino scattering

experiment [273].

(c). Type-II seesaw

When the assigned or induced VEV < χL >= 0, or negligible and µS → 0, type-II

seesaw dominates leading to

mν ' fvL. (4.14)

As noted briefly in Sec.1, in the conventional models [44,45] of type-II seesaw dom-

inance in SO(10), the WR, ZR boson masses have to be at the GUT-Planck scale.

As a phenomenal development, this singlet-fermion assisted type-II seesaw domi-
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nance permits U(1)B−L breaking scale associated with G2213 or G2113 breaking (i,e

the WR, ZR boson masses) accessible to accelerator energies including LHC. At the

same time the heavy N − S mixing mass terms Mi(i = 1, 2, 3) at the TeV scale are

capable of mediating observable LFV decay rates closer to their current experimen-

tal values [223–232, 232, 233]. Consequences of this new Type-II seesaw dominance

with TeV scale ZR boson mass has been investigated in detail [208] in which charged

triplet mediated LFV decay rates are negligible but singlet fermion decay rates are

observable.

(d). Extended seesaw

It is quite clear that the classic inverse seesaw formula [212] for light neutrino mass

emerges when the LH triplet mass is large and the VEV < χL >= 0 which is possible

in a large class of non-SUSY models with left-right, Pati-salam, and SO(10) gauge

groups with D − Parity broken at high scales [36–38]

As noted in Sec.1, the derivation of classic inverse seesaw mechanism [212–222]

has MN = 0 in eq.(4.2). More recent applications in LRS and GUTs have been

discussed with relevant reference to earlier works in [86,191,275–280].

In this section we have discussed that, in spite of the presence of the heavy Majo-

rana mass term of RH neutrino, each of the three seesaw mechanisms : (i) Extended

Seesaw, (ii) Type-II seesaw , (iii) Linear Seesaw or Double seesaw, can dominate as

light neutrino mass ansatz when the respective limiting conditions are satisfied. Also

the seesaw can operate in the presence of TeV scale G2213 or G2113 gauge symmetry

originating from non-SUSY SO(10) [87, 88, 208]. As the TeV scale theory spon-

taneously breaks to low-energy theory U(1)em × SU(3)C through the electroweak

symmetry breaking of the standard model, these seesaw mechanisms are valid in the

SM extensions with suitable Higgs scalars and three generations of Ni and Si. For ex-

ample without taking recourse to LR gauge theory, type-II seesaw can be embedded

into the SM extension by inclusion of LH Higgs triplet ∆L(3,−2, 1) with Y = −2.

The induced VEV can be generated by the trilinear term λMtr.∆
†
Lφ
†φ† [281–283].

The origin of such induced VEV in the direct breaking of SO(10) → SM is well

known.

(e). Hybrid seesaw

In the minimal SO(10), without extra fermion singlets, one example of hybrid seesaw

with type-I⊕type-II is given in eq.(1.1). There are a number of investigations where

this hybrid seesaw has been successful in parametrising small neutrino masses with

large mixing angles along with θ13 ∼ 8o in SUSY SO(10) [47–50, 94, 95] and LR
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models. But the present mechanism of type-I seesaw cancellation suggests a possible

new hybrid seesaw formula as a combination of type-II⊕Linear⊕Extended seesaw as

revealed from eq.(4.11). Neutrino physics phenomenology may yield interesting new

results with this new combination with additional degrees of freedom to deal with

neutrino oscillation data and leptogenesis covering coupling unification in SO(10)

which has a very rich structure for dark matter.

Using the D-Parity breaking mechanism of ref. [36, 37], an interesting model of

linear see saw mechanism in the context of supersymmetric SO(10) with suceessful

gauge coupling unification [274] has been suggested in the presence of three gauge

singlet fermions. A special feature of this linear seesaw, compared to others [270,

270] is that the neutrino mass formula is suppressed by the SUSY GUT scale but

seedecoupled from the low U(1)B−L breaking scale which can be even at ∼ few TeV.

This serves as a testing ground through manifestation of extra Z ′ boson at LHC or

via low-energy neutrino scattering experiments [273]. Being a SUSY model it also

predicts TeV scale superpartners expected to be visible at LHC.

(f). Common mass formula for sterile neutrinos

In spite of different types of seesaw formulas in the corresponding limiting cases the

formula for sterile neutrino mass remains the same as in eq.(4.4) which does not

emerge from the classic inverse seesaw [212–215] approach with MN = 0

We conclude this section by noting that the classic inverse seesaw mechanism

[212–215] was gauged at the TeV scale through its embedding in non-SUSY SO(10)

with the prediction of experimentally accessible Z’ boson, LFV decays, and non-

unitarity effects [86]. The possibility of gauged and extended inverse seesaw mech-

anism with dominant contributions to both lepton flavor and lepton number non-

conservation was at first noted in the context Pati-Salam model in ref. [242] and in

the context of non-SUSY SO(10) in ref. [87,88] with type-I seesaw cancellation. The

generalised form of hybrid seesaw of eq.(4.11) in non-SUSY SO(10) with type-I can-

cellation was realised in ref. [208]. As a special case of this model, the experimentally

verifiable phenomena like extra Z ′ boson, resonant leptogenesis, LFV decays, and

double beta decay rates closer to the current search limits were decoupled from the

intermediate scale type-II seesaw dominated neutrino mass genaration mechanism.

Proton lifetime prediction for p → e + π0 mode also turns out to be within the

accessible range.
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Chapter 5
New Mechanism for Type-II Seesaw Dominance in

SO(10) with Low Mass Z ′ , RH Neutrinos, Verifiable

LFV, and Proton Decay

A key ansatz to resolve the issue of large mixing in the neutrino sector and small

mixing in the quark sector has been suggested to be through type-II seesaw domi-

nance [284] via renormalization group evolution of quasi-degenerate neutrino masses

that holds in supersymmetric quark-lepton unified theories [28, 29] or SO(10) and

for large values of tan β which represents the ratio of vacuum expectation values

(VEVs) of up-type and down type Higgs doublets. In an interesting approach to

understand neutrino mixing in SUSY theories, it has been shown [285] that the

maximality of atmospheric neutrino mixing is an automatic cosnsequence of type-II

seesaw dominance and b−τ unification that does not require quasi-degeneracy of the

associated neutrino masses. A number of consequences of this approach have been

explored to explain all the fermion masses and mixings including type-II seesaw,

or a combination of both type-I and type-II seesaw [49, 92, 93, 96–99, 286] through

SUSY SO(10). As a further interesting property of type-II seesaw dominance, it has

been recently shown [47, 50, 287] without using any flavor symmetry that the well

known tri-bimaximal mixing pattern for neutrino mixings is simply a consequence

of rotation in the flavor space. Although several models of type-II seesaw domi-

nance in SUSY SO(10) have been investigated, precision gauge coupling unification

is distorted in most cases.

Certain charged fermion mass fittings in the conventional one-step breaking of

SUSY GUTs including fits to the neutrino oscillation data require the left-handed

triplet to be lighter than the type-I seesaw scale. The gauge coupling evolutions be-

ing sensitive to the quantum numbers of the LH triplet ∆L(3,−2, 1) under SM gauge
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group, tend to misalign the precision unification in the minimal scenario achieved

without the triplet being lighter. Type-II seesaw dominance in one SUSY SO(10) [44]

and another split SUSY or non-SUSY model [45] has been reviewed in chapter 1.

The purpose of this work is to show that in a class of models descending from non-

SUSY SO(10) or from Pati-Salam gauge symmetrty, type-II seesaw dominance at

intermediate scales (M∆ ' 108 − 109 GeV) and MN ∼ O(1) − O(10) TeV can be

realised by cancellation of the type-I seesaw contribution but with a Z ′ boson at

∼ O(1) − O(10) TeV scale accessible to the large Hadron Collider (LHC) where

U(1)R × U(1)B−L breaks spontaneously to U(1)Y through the vacuum expectation

value (VEV) of the RH triplet component of Higgs scalar contained in 126H that car-

ries B−L = −2. We also discuss how the type-II seesaw contribution dominates over

the linear seesaw formula. Whereas in all previous Type-II seesaw dominance models

in SO(10), the RH Majorana neutrino masses have been very large and inaccessible

for accelerator energies, the present model predicts these masses in the LHC acces-

sible range. In spite of large values of the WR boson and the doubly charged Higgs

boson ∆++
L ,∆++

R masses, it is quite interesting to note that the model predicts a new

observable contribution to 0νββ decay in the WL−WL channel. The key ingredients

to achieve type-II seesaw dominance by complete suppression of type-I seesaw contri-

bution are addition of one SO(10) singlet fermion per generation (Si, i = 1, 2, 3) and

utilization of the additional Higgs representation 16H to generate the N − S mixing

term in the Lagrangian through Higgs-Yukawa interaction. The underlying leptonic

non-unitarity effects lead to substantial LFV decay branching ratios and leptonic

CP-violation accessible to ongoing search experiments. We derive a new formula for

the half-life of 0νββ decay as a function of the fermion singlet masses and extract

lower bound on the lightest sterile neutrino mass from the existing lower bounds

on the half-life of different experimental groups. For certain regions of parameter

space of the model, we also find the proton lifetime for p→ e+π0 to be accessible to

ongoing or planned experiments.

Compared to earlier existing SO(10) based type-II seesaw dominant models whose

RH neutrino masses are in the experimentally inaccessible range and new gauge

bosons are in the mass range 1015−1017 GeV, the present model predictions on LHC

scale Z ′, light and heavy Majorana type sterile neutrinos, RH Majorana neutrino

masses in the range ' 100− 1000 GeV accessible to LHC in the WL −WL channel

through dilepton production, the LFV branching ratios closer to experimental limits,

and dominant 0νββ decay amplitudes caused by sterile neutrino exchanges provide

a rich testing ground for new physics signatures.
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This chapter is organized as follows: in Sec. 5.1 we briefly discuss the TeV scale

left-right gauge theory with low-mass WR, Z ′ bosons, light neutrino masses and

associated non-unitarity effects. In Sec. 5.2, we have discussed the branching ratios

for lepton flavor violating decays. In Sec. 5.3, we have implemented the idea in a

SO(10) grand unified theory and derive Dirac neutrino mass matrix at the TeV scale.

In Sec. 5.4, we have briefly discussed the phenomenon of Z ′ boson.

5.1 Type-II seesaw dominance

5.1.1 The Model

More explicit discussions on Model-I and Model-II are given in Sec. 5.3. In Model-I,

the first step of symmetry breaking takes place by assigning the GUT-scale VEV to

the neutral component of the Higgs submultiplet (1, 1, 15) ⊂ 210H of SO(10) under

Pati-Salam gauge symmetry SU(2)L×SU(2)R×SU(4)C . As this neutral component

carries D-Parity even quantum number [36,37], the GUT symmetry breaks without

breaking D-Parity. In Model-II, the D-Parity itself breaks down at the GUT scale by

assigning, in addition, the GUT scale VEV to the D-Parity odd singlet component

(1, 1, 1)H ⊂ 210H [36, 37]. The second step of symmetry breaking in both models

is implemented by assigning intermediate scale VEV to the Higgs scalar component

σ(1, 3, 0, 1) ⊂ 45H . The third step of symmetry breaking in both models is ma-

terialised by assigning TeV scale VEV to the neutral component of the RH scalar

triplet ∆R(1, 3,−2, 1) which generates the TeV scale Z ′- boson and the RH neutrino

masses. The Type-II seesaw dominance occurs in Model-I by the natural presence of

the LH triplet ∆L(3, 1,−2, 1) ⊂ 126H that acquires the desired induced VEV needed

to drive the seesaw mechanism. Type-II seesaw contribution dominates by suppress-

ing the linear seesaw term with the help of appropriate finetuning of parameters. In

Model-II the mass of the LH triplet ∆L(3, 1,−2, 1) is kept at the intermediate scale

by fine tuning of parameters to implement type-II seesaw seesaw dominance while

the linear seesaw term is naturally suppressed in this case.

For subsequent discussions it is necessary to clarify about the various fermions

and their charges under different gauge symmetries as shown in Table 5.1.

It is clear that a RH neutrino (N) and all 15 standard fermions of one generation

are in different fundamental representations of LR gauge theory G2213. Together
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Field Family G2113 G2213 SO(10)(
u
d

)
L

3
(
2, 0, 1/3, 3

) (
2, 1, 1/3, 3

)
16(

u
d

)
R

3
(
1,±1/2,−1/3, 3

) (
1, 2,−1/3, 3∗

)
16(

ν
l

)
L

3
(
2, 0,−1, 1

) (
2, 1,−1, 1

)
16(

N
l

)
R

3
(
1,±1/2,−1, 1

) (
1, 2,−1, 1

)
16

Si 3
(
(1, 0,−1, 1)

) (
1, 1,−1, 1

)
1

Table 5.1: Standard fermions and RH neutrino (N) as fundamental representations
of left-right gauge theory contained in the spinorial representation 16 ⊂ SO(10).
The sterile neutrinos Si are singlets under SM and all other gauge groups mentioned
here.

they are in a single spinorial representation 16 ⊂ SO(10). For the purpose of im-

plementing type-II seesaw dominance by cancelling out type-I seesaw, lepton flavour

violation (LFV), lepton number violation (LNV), and leptogenesis, the model also

introduces three additional fermions Si(i = 1, 2, 3) which are singlets under SO(10)

and all other subgroups including the SM. But each of them is contained in the fun-

damental representation 27 ⊂ E6 which decomposes under SO(10) as 27 = 16+10+1

and comprises of 10 more non-standard fermions. In our notation the symbol Ŝi(N̂i)

denote the mass eigen states of Si(Ni) with the respective mass eigen value while

the symbols without hats denote flavour states.

5.1.2 Type-II seesaw

We have added to the usual spinorial representations 16Fi(i = 1, 2, 3) for fermion rep-

resentations in SO(10), one fermion singlet per generation Si(i = 1, 2, 3). The G2213

symmetric Yukawa Lagrangian descending from SO(10) symmetry can be written as

LYuk =
∑
i=1,2

Y `
i

(
ψL ψR Φi

)
+ f(ψcR ψR∆R + ψcL ψL∆L)

+ yχ
(
ψR S χR + ψL S χL

)
+ (h.c.) , (5.1)

where Φ1,2 ⊂ 10H1,H2 are two bidoublets, (∆L,∆R) ⊂ 126F and (χL, χR) ⊂ 16H .

As discussed in Sec.2, the spontaneous breaking of G2213 −→ G2113, takes place by

the VEV of the RH triplet σR(1, 3, 0, 1) ⊂ 45H carrying B − L = 0 which does not
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generate any fermion mass term. We introduce VEVs for Higgs scalars Φi, ∆R and χR

for spontaneous symmetry breakings leading to G2113 −→ SM −→ U(1)em×SU(3)C .

The quantity generating N −S mixing term is M = yχ〈χ0
R〉. In addition vχL = 〈χ0

L〉
and vL = 〈∆0

L〉 are automatically induced even though the LH doublet χL and

the RH triplet ∆L are assigned vanishing VEVs directly. In models with inverse

seesaw or extended seesaw [86, 87, 242, 288–292] mechanisms, a bare mass term of

the singlet fermions µSS
TS occurs in the Lagrangian. Being unrestricted as a gauge

singlet mass term in the Lagrangian, determination of its value has been left to

phenomenological analyses in neutrino physics. Larger values of the parameter near

the GUT-Planck scale [293] or at the intermediate scale [270, 271] have been also

exploited. On the other hand, fits to the neutrino oscillation data through inverse

seesaw formula require much smaller values of µS [83–87, 242, 258, 260–262]. Even

phenomenological implications of its vanishing value have been investigated recently

in the presence of other non-standard and non-vanishing fermion masses [295–298]

in the 9 × 9 mass matrix. Very small values of µS is justified on the basis of ’t

Hooft’s naturalness criteria representing a mild breaking of global lepton number

symmetry of the SM [294]. While we consider the implication of this term later in

this section, at first we discuss the emerging neutrino mass matrix by neglecting it.

In addition to the VEVs discussed for gauge symmetry breaking at different stages,

we assign the VEV to the neutral component of RH Higgs doublet of 16H with

< χR(1, 1/2,−1/2, 1) >= Vχ in order to generate N − S mixing mass term MNS

between the RH neutrino and the sterile fermion where the 3× 3 matrix M = yχVχ.

We define the other 3 × 3 mass matrices MD = Y (1)vu and MN = fVR. We also

include induced small contributions to the vacuum expectation values of the LH Higgs

triplet vL =< ∆L(3, 0,−2, 1) > and the LH Higgs doublet vχL =< χL(2, 0,−2, 1) >

leading to the possibilities ν − S mixing with ML = yχvχL and the induced type-II

seesaw contribution to LH neutrino masses mII
ν = fvL given in eq.(5.8). The induced

VEVs are shown in the left and right panels of Fig.5.1. We have also derived them

by actual potential minimisation which agree with the diagramatic contribution.

Including the induced VEV contributions, the mass term due to Yukawa Lagrangian

can be written as eq.(4.7). In the (ν, S,NC) basis the generalised form of the 9× 9

neutral fermion mass matrix after electroweak symmetry breaking can be written as

eq.(4.2). In this model the symmetry breaking mechanism and the VEVs are such

that MN > M � MD. The RH neutrino mass being the heaviest fermion mass

scale in the Lagrangian, this fermion is at first integrated out leading to the effective

Lagrangian at lower scales [234,235,239,240] as in eq.(4.9). Whereas the heaviest RH
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neutrino mass matrix MN separates out trivially, the other two 3× 3 mass matrices

Mν , and mS are extracted through various steps of block diagonalisation [87].The

details of various steps are given in Appendix B and the results are

Mν = mII
ν +

(
MDM

−1
N MT

D

)
− (MDM

−1
N MT

D) +ML(MTM−1
N M)−1MT

L

−ML(MTM−1
N M)−1(MTM−1

N MT
D)− (MDM

−1
N M)(MTM−1

N M)−1MT
L

+MDM
−1µSMDM

−1T ,

MS = µS −MM−1
N MT + ....,

MN = MN . (5.2)

From the first of the above three equations, it is clear that the type-I seesaw

term cancels out [234, 235, 239, 240] with another of opposite sign resulting from

block diagonalisation. Then the generalised form of the light neutrino mass matrix

turns out to be

Mν = fvL +MLM
−1MN(MT )−1MT

L

−[MLM
T
DM

−1 +MT
LMD(MT )−1]. (5.3)

With ML = yχvχL that induces ν − S mixing, the second term in this equation is

double seesaw formula and the third term is the linear seesaw formula which are

similar to those derived earlier [270,271]. From the Feynman diagrams, the analytic

expressions for the induced VEVs are

vL ∼
VR
M2

∆L

(
λ1v

2
1 + λ2v

2
2

)
,

(5.4)

vχL ∼
Vχ
M2

χL

(λ′1M
′
1v1 + λ′2M

′
2v2) ,

= Cχ
VχMR+vwk

M2
χL

, (5.5)

where vwk ∼ 100 GeV, and

Cχ =
(λ′1M

′
1v1 + λ′2M

′
2v2)

(MR+vwk)
. (5.6)
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Figure 5.1: Feynman diagrams for induced contributions to VEVs of the LH triplet
(diagram (a)) and the LH doublet (diagram (b)) in Model-I and Model-II.

In eq.(5.5), vi(i = 1, 2) are the VEVs of two electroweak doublets each originating

from separate 10H ⊂ SO(10) as explained in the following section, and M ′
1,M

′
2 are

Higgs trilinear coupling masses which are normally expected to be of order MR+ . In

both the models VR = 5− 10 TeV and Vχ ∼ 300− 1000 GeV. Similar expressions as

in eq.(5.5) are also obtained by minimisation of the scalar potential.

5.1.3 Suppression of linear seesaw and dominance of type-II

seesaw

Now we discuss how linear seesaw term is suppressed without fine tuning of certain

parameters in Model-I but with fine tunning of the same parameters in Model-II.

The expression for neutrino mass is given in eq.(5.3) where the first, second, and

the third terms are type-II seesaw, double seesaw, and linear seesaw formulas for

the light neutrino masses. Out of these, for all parameters allowed in both the

models (Model-I and Model-II), the double seesaw term will be found to be far

more suppressed compared to the other two terms. The structures of Model-I and

Model-II are more explicitly illustrated in the following Sec. 5.3 and in Fig.(5.3)

and in Fig.(5.3). Therefore we now discuss how the linear seesaw term is suppressed

compared to the type-II seesaw term allowing the dominance of the latter. In Model-
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I where LR discrete symmetry (parity) breaks at the GUT scale, gauge coupling

unification has been achieved such that MP = MχL ∼MU ≥ 1015.6 GeV, M∆L
= 108

GeV where M ′
1 ∼ M ′

2 ∼ MR+ ∼ 109 GeV. Using these masses in eq.(5.3), we find

that even with Cχ ∼ 0.1− 1.0

vχL ∼ 10−18 eV − 10−17 eV,

vL ' 0.1 eV − 0.5 eV,

(5.7)

Such induced VEVs in the Model-I suppress the second and the third terms in

eq.(5.3) making the model quite suitable for type-II seesaw dominance although the

Model-II needs fine tuning in the induced contributions to the level of Cχ ≤ 10−5 as

discussed below.

In Model-II where parity breaks at the intermediate scale (MP ), M∆L
∼ MχL ∼

MP ∼ 109 GeV. Without any fine tuning of the parameters in eq.(5.4), we obtain

vL ∼ 10−10 GeV. From eq.(5.5) we get vχL ∼ Cχ × 10−6 GeV ∼ 10−7GeV for

Cχ ∼ 0.1. With (MD)(3,3) ≤ 100 GeV and MD

M
' 0.1 − 1, the most dominant third

term in eq.(5.3) gives Mν ≥ 10−8 GeV. This shows that fine tuning is needed in the

parameters occuring to reduce Cχ ≤ 10−5 to suppress linear seesaw and permit type-

II seesaw dominance in Model-II whereas the type-II seesaw dominance is achieved

in Model-I with Cχ ' 0.1 − 1.0 without requiring any such fine tuning. In what

follows we will utilise the type-II seesaw dominated neutrino mass formula to study

neutrino physics neutrino-less double beta decay, and lepton flavor violations in the

context of Model-I although they are similar in Model-II subject to the fine tuning

constraint on Cχ. Thus the light neutrino mass is dominated by the type-II seesaw

term in both models.

Mν ' fvL. (5.8)
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5.1.4 Right-handed neutrino mass prediction

Global fits to the experimental data [299–303] on neutrino oscillations have deter-

mined the mass squared differences and mixing angles at 3σ level

sin2 θ12 = 0.320, sin2 θ23 = 0.427,

sin2 θ13 = 0.0246, δCP = 0.8π,

∆m2
sol = 7.58× 10−5eV2,

|∆matm|2 = 2.35× 10−3eV2. (5.9)

For normally hierarchical (NH), inverted hierarchical (IH), and quasi-degenerate

(QD) patterns, the experimental values of mass squared differences can be fitted

by the following values of light neutrino masses

m̂ν = (0.00127, 0.008838, 0.04978) eV (NH)

= (0.04901, 0.04978, 0.00127) eV (IH)

= (0.2056, 0.2058, 0.2) eV (QD) (5.10)

We use the diagonalising Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. UPMNS

UPMNS =

 c13c12 c13s12 s13e
−iδ

−c23s12 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12s13c23e

iδ c13c23

 , (5.11)

and determine it numerically using mixing angle and the leptonic Dirac phase from

eq. (5.9)

UPMNS =

 0.814 0.55 −0.12− 0.09i

−0.35− 0.049i 0.67− 0.034i 0.645

0.448− 0.057i −0.48− 0.039i 0.74

 . (5.12)

Now inverting the relation m̂ν = U †PMNSMνU
∗
PMNS where m̂ν is the diagonalised

neutrino mass matrix, we determine Mν for three different cases and further deter-

mine the corresponding values of the f matrix using f =Mν/vL where we use the

predicted value of vL = 0.1 eV. Noting that

MN = fVR =MνVR/vL, we have also derived eigen values of the RH neutrino mass

matrix M̂Ni as the positive square root of the ith eigen value of the Hermitian matrix

M †
NMN .
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NH

f =

 0.117 + 0.022i −0.124− 0.003i 0.144 + 0.025i

−0.124− 0.003i 0.158− 0.014i −0.141 + 0.017i

0.144 + 0.025i −0.141 + 0.017i 0.313− 0.00029i

 (5.13)

|M̂N | = diag(160, 894, 4870) GeV. (5.14)

IH

f =

0.390− 0.017i 0.099 + 0.01i −0.16 + 0.05i

0.099 + 0.01i 0.379 + 0.02i 0.176 + 0.036i

−0.16 + 0.05i 0.176 + 0.036i 0.21− 0.011i

 (5.15)

|M̂N | = diag(4880, 4910, 131) GeV. (5.16)

QD

f =

 2.02 + 0.02i 0.0011 + 0.02i −0.019 + 0.3i

0.0011 + 0.02i 2.034 + 0.017i 0.021 + 0.21i

−0.019 + 0.3i 0.021 + 0.21i 1.99− 0.04i

 (5.17)

For vL = 0.1 eV, we have

|M̂N | = diag(21.46, 20.34, 18.87) TeV (5.18)

but for vL = 0.5 eV, we obtain

|M̂N | = diag(4.3, 4.08, 3.77) TeV. (5.19)

These RH neutrino masses predicted with vL = 0.1 eV for NH and IH cases and with

vL = 0.5 eV for the QD case are clearly verifiable by the LHC

The sterile neutrino mass matrix with a scaling property:

As a new oservation we point out a scaling property of sterile neutrino mass matrix.
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The mass matrix of the sterile neutrino in the µS → 0 limit [294] is

mS = −M 1
MN

MT , (5.20)

where M is the N −S mixing mass term in the Yukawa Lagrangian. Here we note a

new interesting “scaling” property of ms in view of its connection with G2113 gauge

symmetry breaking, the RH neutrino mass MN , and the N − S mixing matrix M .

This property has implications on sterile neutrino mass eigen values, leptogenesis,

and dilepton production through displaced vertices.

“When the RH neutrino mass matrix MN and the N − S mixing matrix M are

rescaled as

MN → (X.MN),

M → [(
√
X).M ], (5.21)

the sterile neutrino mass matrix ms and its mass eigen values are unchanged.”

5.1.5 Neutrino parameters and non-unitarity condition

Using the constrained diagonal form of M as mentioned above, the mass matrix µS

is determined using the gauged inverse seesaw formula and neutrino oscillation data

provided that the Dirac neutrino mass matrix MD is also known. The determination

of MD at the TeV scale, basically originating from high- scale quark-lepton symmetry

G224D or SO(10) GUT, is carried out by predicting its value at the high scale from

fits to the charged fermion masses of three generations and then running down to

the lower scales using the corresponding RGEs in the top-down approach. It is to be

noted that for fits to the fermion masses at the GUT scale, their experimental values

at low energies are transported to the GUT scale using RGEs and the bottom-up

approach [208,304].
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5.1.5.1 Determination of Dirac neutrino mass matrix

The RG extrapolated values at the GUT scale are [208,304–306],

µ = MGUT:

m0
e = 0.00048 GeV,m0

µ = 0.0875 GeV,m0
τ = 1.8739 GeV,

m0
d = 0.0027 GeV,m0

s = 0.0325 GeV,m0
b = 1.3373 GeV,

m0
u = 0.001 GeV,m0

c = 0.229 GeV,m0
t = 78.74 GeV, (5.22)

The V 0
CKM matrix at the GUT scale is given by

V 0
CKM =

 0.97 0.22 −0.0003− 0.003i

−0.22− 0.0001i 0.97 0.036

0.008− 0.003i −0.035 + 0.0008i 0.99

 . (5.23)

For fitting the charged fermion masses at the GUT scale, in addition to the two

complex 10H1,2 representations with their respective Yukawa couplings Y1,2, we also

use the higher dimensional operator [208]

κij
M2

G

16i16j10H45H45H, (5.24)

In the above equation the product of three Higgs scalars acts as an effective 126†H op-

erator [83–85]. With MG 'MPl or M 'Mstring, this is suppressed by (MU/MG)2 '
10−3 − 10−5 for GUT-scale VEV of 45H . Then the formulas for different charged

fermion mass matrices are

Mu = Gu + F, Md = Gd + F,

Me = Gd − 3F, MD = Gu − 3F. (5.25)

Following the procedure given in [208], the Dirac neutrino mass matrix at the GUT

scale is found to be

MD(MR0) =

 0.014 0.04− 0.01i 0.109− 0.3i

0.04 + 0.01i 0.35 2.6 + 0.0007i

0.1 + 0.3i 2.6− 0.0007i 79.20

GeV . (5.26)

This value of MD will be utilized for all applications discussed subsequently in this

work including the fit to the neutrino oscillation data through the inverse seesaw for-

mula, predictions of effective mass parameters in 0ν2β, computation of non-unitarity
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measure of Expt. bound
non-unitarity C0 C1 C2 C3

|ηee| 2.0× 10−3 3.5× 10−8 2.7× 10−7 3.1× 10−6

|ηeµ| 3.5× 10−5 3.9× 10−7 3.4× 10−6 1.5× 10−5

|ηeτ | 8.0× 10−3 9.4× 10−6 2.8× 10−5 6.4× 10−5

|ηµµ| 8.0× 10−4 4.7× 10−6 2.3× 10−5 6.9× 10−5

|ηµτ | 5.1× 10−3 1.1× 10−4 2.2× 10−4 3.2× 10−4

|ηττ | 2.7× 10−3 2.7× 10−3 2.7× 10−3 2.7× 10−3

Table 5.2: Experimental bounds of the non-unitarity matrix elements |ηαβ| (column
C0) and their predicted values for degenerate (column C1), partially-degenerate
(column C2), and non-degenerate (column C3) values of M = diag (M1,M2,M3).

and CP -violating effects, and lepton flavor violating decay branching ratios.

The light active Majorana neutrino mass matrix is diagonalized by the PMNS

mixing matrix Uν such that U †νmνU
∗
ν = m̂ν = diag (mν1 ,mν2 ,mν3). The non-unitarity

matrix at the leading order is still N ' (1− η)Uν , see Appendix D for details.

Thus η is a measure of deviation from unitarity in the lepton sector on which

there has been extensive investigations in different models [86–88]. Assuming M

to be diagonal for the sake of simplicity, M ≡ diag(M1,M2,M3), gives ηαβ =
1
2

∑
k MDαkM

−2
k M∗

Dβk, but it can be written explicitly for the degenerate case (M1 =

M2 = M3 = MR). The determination of the Dirac neutrino mass matrix MD(MR0)

at the TeV seesaw scale is done which was discussed in [86,304–306].

5.1.5.2 Estimation of non-unitarity matrix

In order to study non-unitarity effects and lepton flavor violations, we assume the

N−S mixing matrix M to be diagonal for the sake of simplicity and also for exercising

economy of parameters,

M = diag (M1,M2,M3), (5.27)

The non-unitarity deviation η is defined as

η =
1

2
X.X† = MDM

−2M †
D,

ηαβ =
1

2

∑
k=1,2,3

MDαkM
∗
Dβk

M2
k

. (5.28)

62



which for the degenerate case, Mi = MDeg(i = 1, 2, 3), gives,

η =
1GeV2

M2
Deg

× 0.0394 0.146− 0.403i 4.17− 11.99i

0.146 + 0.403i 3.602 105.8− 0.002i

4.173 + 11.9i 105.805 + 0.002i 3139.8

 . (5.29)

For the general non-degenerate case of M, we saturate the upper bound |ηττ | <
2.7× 10−3 [185] to derive

1

2

[
0.1026

M2
1

+
7.0756

M2
2

+
6762.4

M2
3

]
= 2.7× 10−3, (5.30)

where numerical values i the LHS inside the square brackets are in GeV2 and Mi’s

are in GeV. By inspection this equation gives the lower bounds

M1 > 4.35 GeV, M2 > 36.2 GeV,M3 > 1120 GeV, and for the degenerate case

MDeg = 1213 GeV.

For the partial degenerate case of M1 = M2 6= M3 the solutions can be similarly

derived as in ref [86] and one example is M(100, 100, 1319.67) GeV .

5.2 Lepton flavor violation

In the present non-SUSY SO(10) model, even though neutrino masses are governed

by high scale type-II seesaw formula, the essential presence of singlet fermions that

implement the type-II seesaw dominance by cancelling out the type-I seesaw contri-

bution give rise to experimentally observable LFV decay branching ratios through

their loop mediation. The heavier RH neutrinos in this model being in the range

of ∼ 1 − 10 TeV mass range also contribute, but less significantly than the singlet

fermions.

5.2.1 Branching ratio and CP violation

One of the most important outcome of non-unitarity effects is its manifestation

through ongoing experimental searches for LFV decays such as τ → eγ, τ → µγ,

µ → eγ. In these models the RH neutrinos and the singlet fermions contribute to

the branching ratios [83–86, 307–310] Because of the condition MN >> M , neglect-

ing the RH neutrino exchange contribution compared to the sterile fermion singlet
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contributions [208], our estimations for different cases of M values are presented in

Table 6.2. These values are many orders larger than the standard non-SUSY pre-

dictions for branching ratios, Br ' 10−50. Our predictions are accessible to ongoing

or planned searches [223–229, 232]. In these models contribution to the branching

ratios due to the heavier the RH neutrinos is subdominant compared to the lighter

singlet fermions

Br (`α → `β + γ) =
α3

w s
2
w m

5
`α

256π2M4
W Γα

∣∣GNαβ + GSαβ
∣∣2 , (5.31)

where GNαβ =
∑
k

(
Vν N

)
αk

(
Vν N

)∗
β k
I
(
m2
Nk

M2
WL

)
,

GSαβ =
∑
j

(
Vν S

)
α j

(
Vν S

)∗
β j
I

(
m2
Sj

M2
WL

)
,

and I(x) = −2x3 + 5x2 − x
4(1− x)3

− 3x3lnx

2(1− x)4
.

(5.32)

Because of the condition MN >> M , the RH neutrino exchange contribution is

however damped out compared to the sterile fermion singlet contributions.

For the degenerate case

∆∆J 12
eµ = −2.1× 10−6,

∆∆J 23
eµ = −2.4× 10−6,

∆∆J 23
µτ = 1.4× 10−4,

∆∆J 31
µτ = 1.2× 10−4,

(5.33)

we have the branching ratio

BR(µ→ eγ) = 6.43× 10−17,

BR(τ → eγ) = 8.0× 10−16,

BR(τ → µγ) = 2.41× 10−12. (5.34)

Because of the presence of non-unitarity effects in the present model , the leptonic

CP-violation can be written as [86,185,190,311–317]. The moduli and phase of non-
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Figure 5.2: Variation of scalar triplet mass M∆L
(upper curve) and LFV branching

ratio (lower curves) as a function of the lightest neutrino mass for different values of
λ in a type− II seesaw dominant model following normal ordering. The horizontal
thick band represents separation of the vertcal axis between the upper and the lower
figures. The three alomost horizontal lines represent the LFV branching ratios for
M = 1.3 TeV.

unitarity and CP-violating parameter for the degenerate case is given in 5.35.
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|ηeµ| = 2.73× 10−8,

δeµ = 1.920,

|ηeτ | = 4.54× 10−7,

δeτ = 1.78,

|ηµτ | = 2.31× 10−5,

δµτ = 2.39× 10−7. (5.35)

Our estimation presented in 5.35 shows that in a wider range of the parameter

space, the leptonic CP violation parameter could be nearly two orders larger than

the CKM-CP violation parameter for quarks.

Our predictions for branching ratios as a function of the lightest neutrino mass

are shown in in Fig.5.2 for the type-II dominance case. In this figure we have also

shown variation of the LH triplet mass as expected from the type-II seesaw formula.

But inspite of the large value of the triplet mass that normally predicts negligible

LFV branching ratios, our model gives experimentally accessible values.

5.3 Implementation in specific SO(10) models

Symmetry breaking chain

To discuss the above phenomenology we have considered the two-step breaking of

the LR gauge theory [208],

Model-I

SO(10)→ G2213D → G2113 → SM. (5.36)

Model-II

SO(10)→ G2213 → G2113 → SM. (5.37)

In the Model-II, SU(2)L×SU(2)R×U(1)B−L×SU(3)C×D [≡ G2213D](g2L = g2R)

is obtained by breaking the GUT-symmetry and by giving vacuum expectation value

(VEV) to the D-Parity even singlet (1, 1, 0, 1) ⊂ (1, 1, 15) ⊂ 210H [36–38] where the

first, second, and the third set of quantum numbers of the scalar components are
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under G2213P , the Pati-Salam symmetry G224, and SO(10), respectively. As a result,

the Higgs sector is symmetric below µ = MU leading to equality between the gauge

couplings g2L(M+
R ) and g2R(M+

R ) . In this case the LR discrete symmetry (≡ Parity)

survives down to the intermediate scale ,MR+ = MP . The second step of symmetry

breaking is implemented by assigning VEV to the neutral component of the right-

handed (RH) Higgs triplet σR(1, 3, 0, 1) ⊂ 45H that carries B − L = 0. The third

step of breaking to SM is carried out by assigning the order 5− 10 TeV VEV to the

G2113 component ∆0
R(1, 1,−2, 1) contained in the RH triplet ∆R(1, 3,−2, 1) ⊂ 126H

carrying B − L = −2. This is responsible for RH Majorana neutrino mass gen-

eration MN = fvR where vR = 〈∆0
R〉 and f is the Yukawa coupling of 126† with

SO(10) spinorial fermionic representation :f16.16.126†H. We introduce SO(10) in-

variant N − S mixing mass via yχ16.1.16†H and obtain the mixing mass M = yχVχ

where Vχ = 〈χ0
R〉 by noting that under G2113 the submultiplet χ0

R(1, 1/2,−1, 1) is

contained in the G2213 doublet χR(1, 2,−1, 1) ⊂ 16H . The symmetry breaking in the

last step is implemented through the SM Higgs doublet contained in the bidoublet

φ(2, 2, 0, 1) ⊂ 10H) of SO(10). This is the minimal Higgs structure of the model,

although we will utilise two different Higgs doublets φu ⊂ 10H1 and φd ⊂ 10H2 for

fermion mass fits. In Model-I, the GUT symmetry breaks to LR gauge symmetry

G2213(g2L 6= g2R) in such a way that the D-parity breaks at the GUT scale and

is decoupled from SU(2)R breaking that occurs at the intermediate scale. This is

achieved by giving GUT scale VEV to the D-parity odd singlet scalar component

in (1, 1, 0, 1)H ⊂ (1, 1, 15)H ⊂ 45H where the first, second , and third submulti-

plet is under G2213, the Pati-Salam symmetry G224, and SO(10), respectively. In

this case by adopting the D-Parity breaking mechanism [36,37] in SO(10) normally

the LH triplet component ∆L(3, 1,−2, 1) ⊂ 126H and the LH doublet component

χL(2, 1,−1, 1) ⊂ 16H acquire masses at the GUT scale while the RH triplet and

RH doublet components, ∆R(1, 3,−2, 1) ⊂ 126H χR(1, 2,−1, 1) ⊂ 16H , can be made

much lighter. We have noted that in the presence of color octet at lower scales, found

to be necessary in this Model-I as well as in Model-II, precision gauge coupling is

achieved even if the the parameters of the Higgs potential are tuned so as to have

the LH triplet mass at intermediate scale, M∆L
' 108 − 109 GeV. The presence

of ∆L(3, 1,−2, 1) at the intermediate scale plays a crucial role in achieving Type-II

seesaw dominance as would be explained in the following section. The necessary

presence of lighter LH triplets in GUTs with or without vanishing B − L value for

physically appealing predictions was pointed out earlier in achieving observable mat-

ter anti-matter oscillations [396, 397], in the context of low-scale leptogenesis [240],
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and type-II seesaw dominance in SUSY, non-SUSY and split-SUSY models [44, 45],

and also for TeV scale LR gauge theory originating from SUSY SO(10) grand unifi-

cation.

In what follows, while safeguarding precise unification of gauge couplings at the

GUT scale, we discuss allowed solutions of renormalisation group equations for the

mass scales MU ,MR+ , and MR0 as a funtion of the mass MC of the lighter color octet

C8(1, 1, 0, 8) ⊂ 45H . The renormalization group coefficients for the minimal cases

have been given in Appendix A to which those due to the color octet scalar in both

models and the LH triplet ∆L in Model-I in their suitable ranges of the running scale

have been added.

Model-I:

As shown in Table 5.3 for Model-I, with M∆L
= 108 GeV the G2213 symmetry is

found to survive down to MR+ = (108− 1010) GeV with larger or smaller unification

scale depending upon the color octet mass. In particular we note one set of solutions,

MR0 = 10 TeV, MR+ = 109.7GeV, MU = 1015.62GeV,

M∆L
= 108 GeV, MC = 1010.9GeV. (5.38)

As explained in the following sections, this set of solutions are found to be attractive

both from the prospects of achieving type-II seesaw dominance and detecting proton

decay at Hyper-Kamiokande. with MU = 6.5× 1015 GeV when the color octet mass

is at MC ∼ 1011 GeV. As discussed below the proton lifetime in this case is closer

to the current experimental limit. With allowed values of MR0 = (5 − 10) TeV,

this model also predicts MZ′ ' (1.2− 3.5) TeV in the accessible range of the Large

Hadron Collider. Because of the low mass of the Z ′ boson associated with TeV scale

VEV of VR, the type-II seesaw mechanism predicts TeV scale RH neutrino masses

with known mixings among them. These RH neutrinos can be testified at the LHC

or future high energy accelerators. The RG evolution of gauge couplings for the set

of mass scales given in eq.(5.38) is presented in Fig.5.3 showing clearly the unification

of the four gauge couplings of the G2213 intermediate gauge symmetry.

Model-II:

As shown in Table 5.4 for Model-II, the G2113D symmetry is found to survive down

to MR+ = MP = 108.2 GeV with MU = 6.5 × 1015 GeV when the color octet mass

is at MC = 108 GeV. As discussed below the proton lifetime in this case is closer to

the current experimental limit. One example of RG evolution of gauge couplings
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M0
R MC M+

R MG α−1
G τp

(TeV) (GeV) (GeV) (GeV) (Yrs.)
10 104.5 109 1016.9 41.1 5.4× 1039

10 105 108.9 1016.74 41.4 1.1× 1039

10 107 109 1016.4 41.7 8.4× 1037

10 1010.9 109.7 1015.63 41.9 3.2× 1034

5 107.8 108.8 1016.4 41.5 9× 1037

Table 5.3: Allowed mass scales as solutions of renormalization group equations for
gauge couplings for Model-I with fixed value of the LH triplet mass M∆ = 108 GeV,
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Figure 5.3: Two loop gauge coupling unification in the SO(10) symmetry breaking
chain with MU = 1015.62 GeV and M+

R = 109.7 GeV, M∆L
= 108 GeV with a low

mass Z ′ boson at M0
R = 10 TeV for Model-I.

M0
R MC M+

R MG α−1
G τp

(TeV) (GeV) (GeV) (GeV) (Yrs.)
10 104.5 107.886 1016.15 40.25 4.3× 1036

10 105.5 107.89 1016.04 40.64 1.6× 1036

10 108 108.789 1015.62 41.49 3.9× 1034

10 108.5 108.8 1015.5 41.69 1.12× 1034

5 105.8 107.2 1015.83 41.15 2.3× 1035

Table 5.4: Allowed mass scales as solutions of renormalisation group equations for
Model-II as described in the text.
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Figure 5.4: Two loop gauge coupling unification in the SO(10) symmetry breaking
chain with MU = 1015.62 GeV and MR+ = 108.7 GeV with a low mass Z ′ boson at
M0

R = 10 TeV for Model-II.

is shown in Fig.5.4 for MR0 = 10 GeV, MR+ = 108.7 GeV, MC = 108 GeV, and

MU = 6.5×1015 GeV. Clearly the figure shows precise unifucation of the three gauge

couplings of the intermediate gauge symmetry G2213P at the GUT scale. For all other

solutions given in Table-I the RG evolutions and unification of gauge couplings are

similar. In both the models, with allowed values of MR+ � MR0 = 5− 10 TeV, the

numerical values of gauge couplings g2L, g1R and gB−L predict [85,105–111],

MZ′ = (1.2− 3.5)TeV. (5.39)

5.3.1 Proton lifetime prediction

In this section we discuss predictions on proton lifetimes in the two models and com-

pare them with the current Super-Kamiokande limit and reachable limits by future

experiments such as Hyper-Kamiokande [318–321]. Currently, the Superkamiokande

detector has reached the search limit

(τp)expt.(p→ e+π0) ≥ 1.4× 1034 yrs, (5.40)
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The proposed 5.6 Megaton years Cherenkov water detector at Hyper-Kamiokane,

Japan is expected to probe into lifetime [318–321],

(τp)Hyper−K.(p→ e+π0) ≥ 1.3× 1035 yrs, (5.41)

The width of the proton decay for p→ e+π0 is expressed as [146,322,323]

Γ(p→ e+π0) =

(
mp

64πf 2
π

)
×
(
gG

4

MU
4

)
|AL|2|ᾱH |2(1 +D + F )2 ×R. (5.42)

where R = [(A2
SR + A2

SL)(1 + |Vud|2)2] for SO(10), Vud = 0.974 = the (1, 1) element

of VCKM for quark mixings, ASL(ASR) is the short-distance renormalization factor

in the left (right) sectors and AL = 1.25 = long distance renormalization factor.

MU = degenerate mass of 24 superheavy gauge bosons in SO(10), ᾱH = hadronic

matrix element, mp = proton mass = 938.3 MeV, fπ = pion decay constant = 139

MeV, and the chiral Lagrangian parameters are D = 0.81 and F = 0.47. With

αH = ᾱH(1+D+F ) = 0.012 GeV3 obtained from lattice gauge theory computations,

we get AR ' ALASL ' ALASR ' 2.726 for both the models. The expression for the

inverse decay rates for the models is expressed as,

τp = Γ−1(p→ e+π0) =
64πf 2

π

mp

(
MU

4

gG4

)
×

1

|AL|2|ᾱH |2(1 +D + F )2 ×R
.

(5.44)

where the factor Fq = 2(1 + |Vud|2)2 ' 7.6 for SO(10). Now using the given values

of the model parameters the predictions on proton lifetimes for both the models are

given in Table 5.3 and Table 5.4. We find that for proton lifetime predictions acces-

sible to Hyper-Kamiokande detector [318–321], it is necessary to have a intermediate

value of the color octet mass MC ≥ 108.6GeV in Model-II and MC ≥ 1010.8GeV

in Model-I. The predicted proton lifetime as a function of the color octet mass is

shown in Fig. 5.5 both for Model-I and for Model-II. These analyses suggest that

low color octet mass in the TeV scale and observable proton lifetime within Hyper-

Kamiokande limit are mutually exclusive. If LHC discovers color octet within its

71



achievable enegy range, proton decay searches would need far bigger detector than

the Hyper-K detector. On the other hand the absence of color octet at the LHC

would still retain the possibility of observing proton decay within the Hyper-K limit.
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Figure 5.5: Variation of proton lifetime as a function of color octet mass MC for
Model-I (upper curve) and Model-II (lower curve). The horizontal line is the present
experimental limit.

5.4 Brief discussion on low mass Z ′ boson.

Although in our model the Z ′ boson is present at TeV scale, there is no effect

of this boson on the electroweak precision observables, STU parameters and other

electroweak constraints. We also point out occurence of small Z − Z ′ mixings while

indicating briefly a possible application for dilepton production.

In the allowed kinematical region, we have estimated the partial decay widths,

Γ(Z → SiSi) = Γνν̄Z [
∑
α

|
(
VνSα,i

)
|4] (i = 1, 2), (5.45)

where the standard value Γνν̄Z = 0.17 GeV and VνSα,i = (MD/M)α,i with α = νe, νµ, ντ

and i = 1, 2, 3. We then obtain Γ(Z → S1S1) = 1.2 × 10−14 GeV for NH, IH, and

QD cases, and Γ(Z → S2S2) = 6.6× 10−11 GeV for QD case only. Similarly we have

estimated the partial decay width

Γ(W → lSi) = ΓlνW [
∑
α

|
(
VνSα,i

)
|2] (i = 1, 2), (5.46)
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and obtained Γ(W → eS1) ' Γ(W → eS2) = 3.5 × 10−9 GeV, Γ(W → µS1) '
Γ(W → µS2) = 1.8×10−7 GeV, and Γ(W → τS1) ' Γ(W → τS2) = 1.0×10−5 GeV.

These and other related estimations cause negligible effects on electroweak precision

observables [324] primarily because of small ν−S mixings determined by the model

analyses. In addition to these insignificant tree level corrections, new physics effects

may affect the electroweak observables indirectly via oblique corrections through

loops leading corrections to the Peskin-Takeuchi S, T, U parameters [266,267,325]. In

this model the neutral generator corresponding to heavy Z ′ is a linear combinations of

U(1)R and U(1)B−L generators while the other orthogonal combination is the U(1)Y

generator of the SM [85, 105–111, 116–118]. The Z − Z ′ mixing in such theories is

computed through the generalised formula tan2 θzz′ =
M2

0−M2
Z

M2
Z′−M

2
0

where M0 = MW√
ρ

0
cos θW

.

In our model since the LH triplet ∆L(3,−1, 1) has a very small VEV vL = 0.1−0.5 eV

<< Vew, the model is consistent with the tree level value of the ρ- parameter. ρ0 = 1.

The radiative corrections due to the 125 GeV Higgs of the SM and the top quark yield

ρ ' 1.009 [326]. The new neutral gauge boson Z ′ in principle may have additional

influence on the electroweak precision parameters as well as the Z−pole parameters

if MZ′ << O(1) TeV [85, 105–111, 329, 330]. The most recent LHC data has given

the lower bound MZ′ ≥ 1.6 TeV [328]. Since our model is based on extended seesaw

mechanism, we require VR >> Vew = 246 GeV and this implies MZ′ >> MZ but

accessible to LHC. Under this constraint MZ′ ∼ O(5−10) TeV are the most suitable

predictions of both the models discussed in this work. As some examples, using

such values of MZ′ and the most recently reported values from Particle Data Group

[331,332] of sin2 θW = 0.23126±0.00005, MW = 80.385±0.015GeV, MZ = 91.1876±
0.0021 GeV, ρ0 = 1.01, we obtain θzz′ = 0.00131±0.0003, 0.0005±0.00012, 0.0003±
0.00008, and 0.0002± 0.00006 for MZ′ = 2.0 TeV, 5.0 TeV, 7.5 TeV, and 10 TeV,

respectively. Because of the smallness of the values, these mixings are consistent

with the electroweak precision observables including the Z− pole data [85,105–111,

329, 330, 334, 335]. Some of these masses may be also in the accessible range of the

ILC [333]. Details of experimental constraints on Z −Z ′ mixings as a function of Z ′

masses would be investigated elsewhere.
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Chapter 6
Neutrinoless Double Beta Decay and Resonant

Leptogenesis

A basic feature of our type-II seesaw dominance model which we discuss in this

chapter is that, it gives a new contribution to neutrinoless double beta decay in the

WL−WL channel although the WR boson mass is '108 GeV. In addition, our model

provides a mechanism for resonant leptogenesis [189] mediated by TeV scale quasi-

degenerate pair of sterile neutrinos. Two different cases have been identified. In the

Case (a) while the light sterile neutrino S1 of first generation mediates dominant con-

tribution to double beta decay and like-sign dilepton events with displaced vertices

in the channels eejj, eµjj, and µµjj, resonant leptogenesis is allowed to be mediated

by heavy quasi-degenerate sterile neutrino pairs S2 and S3 belonging to the second

and the third generations. In another class of solutions identified as the alternative

Case (b), dominant double beta decay and dilepton events with displaced vertices are

mediated by the allowed lighter mass of S2 while resonant leptogenesis is mediated

by the heavy quasi-degenerate sterile neutrino pairs, S1 and S3. In addition to QD

hierarchy of light neutrino masses, most important fact is that we also show how

all these results hold in the presence of NH neutrino masses. This result might be

important if the recent cosmological bound [336] is finally established.This chapter

is organized as below. In Sec.6.1 we discuss the phenomenon of neutrinoless double

beta decay. Neutrinoless double beta decay half life and effective mass parameter

are discussed in Sec.6.2. In Sec.6.3 we discuss the mechanism of leptogenesis.

74



6.1 Neutrinoless double beta decay

Even with the vanishing bare mass term µS = 0 in the Yukawa Lagrangian of eq.(5.1),

the singlet fermions Si(i = 1, 2, 3) acquire Majorana masses over a wide range of

values and, in the leading order, the corresponding mass matrix given in eq.(5.2) is

mS = −M 1
MN

MT . As far as light neutrino mass matrix is concerned, it is given

by the type-II seesaw formula of eq.(5.8) which is independent of the Majorana

mass matrix mS of singlet fermions. But the combined effect of substantial mixing

between the light neutrinos and the singlet fermions, and the Majorana neutrino

mass insertion mS due to the singlet fermions, the Feynman diagram of Fig.(6.1)

gives rise to new contributions to the amplitude and the effective mass parameter

for 0νββ in the WL−WL channel. This may be contrasted with conventional type-II

seesaw dominated non-SUSY SO(10) models with only three generations of standard

fermions in 16i(i = 1, 2, 3) where there are negligible contributions to 0νββ decay

due to non-standard particle exchanges. The charged current interaction Lagrangian

for leptons in the present model in the flavor basis is

LCC =
g√
2

∑
α=e,µ,τ

[
`αL γµναLW

µ
L + `αR γµNαRW

µ
R

]
+ h.c. (6.1)

In the present model the W±
R bosons and the doubly charged Higgs scalars, both left-

handed and right handed, are quite heavy with MWR
∼ M∆ ' 108 − 109 GeV that

make negligible contributions to the RH current effects and Higgs exchange effects

for the 0νββ decay amplitude. The most popular standard and conventional contri-

bution in the W−
L −W

−
L channel is due to light neutrino exchanges. But one major

point in this work is that even in the W−
L −W

−
L channel, the singlet fermion exchange

allowed within the type-II seesaw dominance mechanism, can yield much more dom-

inant contribution to 0νββ decay rate. For the exchange of singlet fermions (Ŝj),

the Feynman diagram is shown in the Fig.6.1. The heavier RH neutrino exchange

contributions are found to be negligible compared to the singlet fermion exchange

contributions since mNi >> msi . To visualise this clearly we note that every neutrino

flavour state να is a superposition of mass eigen states ν̂i, Ŝi, and N̂i, (i=1,2,3).

να = V νν
αi ν̂i + V νs

αi Ŝi + V νN
αi N̂i (6.2)
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Figure 6.1: Feynman diagrams for neutrinoless double beta decay contribution with
virtual Majorana neutrinos ν̂i, and Ŝi in the WL −WL-channel.

, where (i=1,2,3) and (α = e,µ,τ). In the mass basis, the contributions to the decay

amplitudes by ν, S ans N exchanges are estimated as

ALLν ∝
1

M4
WL

∑
i=1,2,3

(Vννe i )2 mνi

p2
(6.3)

ALLS ∝
1

M4
WL

∑
j=1,2,3

(
VνSe j

)2

mSj

(6.4)

ALLN ∝
1

M4
WL

∑
j=1,2,3

(
VνNe j

)2

mNj

, (6.5)

where |p| ' 190 MeV represents the magnitude of neutrino virtuality momentum

[337–346]. Using uncertainities in the nuclear matrix elements [343–346] we have

found it to take values in the range |p| = 120MeV−200MeV. In order to understand

physically how the singlet fermion Majorana mass insertion terms as a new source of

lepton number violation contributes to 0νββ process, we draw the Feynman diagram

Fig.6.1. with mass insertion. In this model, the Majorana mass matrix for the singlet

fermion after block diagonalisation is mS = −MM−1
N MT . Then exchanges of such

singlets generate dominant contribution through their mixings with active neutrinos
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and this mixing is proportional to the Dirac neutrino mass MD. Similarly

V νs
ej =

(
MD

M

)
ej

,

V νN
ej =

(
MD

MN

)
ej

. (6.6)

It is important to note that in SO(10), MD 'Mu the up-quark mass matrix. This is

another factor in enhancing neutrinoless double beta decay contribution. It is clear

from the Fig. 6.1 that the singlet fermion exchange amplitudes are derived [87] to

have the same form as in eq.(6.4).

6.1.1 Nuclear matrix elements and normalized effective mass

parameters

By now it is well known that different particle exchange contributions for 0ν2β de-

cay discussed above are also modified by the corresponding nuclear matrix elements

which depend upon the chirality of the hadronic currents involved [343–346]. In-

cluding all relevant contributions except those due to heavy doubly charged Higgs

exchanges, and using eq. (6.3) - eq. (6.5), we express the inverse half-life in terms of

effective mass parameters with proper normalization factors. Thus after taking into

account the nuclear matrix elements [343–346] leads to the half-life prediction

[
T 0ν

1/2

]−1
= G0ν

01

{
|M0ν

ν |2|ην |2 + |M0ν
N |2|ηLNR |

2 + |M0ν
N |2|ηRNR |

2 (6.7)

+ |M0ν
λ |2|ηλ|2 + |M0ν

η |2|ηη|2
}

+ interference terms. (6.8)

where the dimensionless particle physics parameters are

|ην | =

∣∣∣∣∣
∑

i Vνν̂
2

ei mν i

me

∣∣∣∣∣
|ηRN | = mp

(
MWL

MWR

)4
∣∣∣∣∣VNN̂

2

ei

mNi

∣∣∣∣∣
|ηLN | = mp

∣∣∣∣V Nν̂
ei

mNi

+
V Sν̂
ei

mSi

∣∣∣∣
|ηλ| =

(
MWL

MWR

)2 ∣∣∣∣Uei(MD

MN

)
ei

∣∣∣∣
|ηη| = tan ζLR

∣∣∣∣Uei(MD

MN

)
ei

∣∣∣∣ . (6.9)
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In eq. (6.9), me (mi)= mass of electron (light neutrino), and mp = proton mass.

In eq. (6.8), G0ν
01 is the the phase space factor. Besides different particle physics

parameters, it contains the nuclear matrix elements due to different chiralities of

the hadronic weak currents such as (M0ν
ν ) involving left-left chirality in the stan-

dard contribution, and (M0ν
ν ) due to heavy neutrino exchanges involving right-right

chirality, (M0ν
λ ) for the λ-diagram, and

(
M0ν

η

)
for the η-diagram. Explicit numer-

ical values of these nuclear matrix elements discussed in ref. [343–346] are given in

Tab. 6.1.

Isotope
G0ν

01 [10−14 yrs−1] M0ν
ν M0ν

N M0ν
λ M0ν

η
refs. [343–346]

76Ge 0.686 2.58–6.64 233–412 1.75–3.76 235–637
82Se 2.95 2.42–5.92 226–408 2.54–3.69 209–234
130Te 4.13 2.43–5.04 234–384 2.85–3.67 414–540
136Xe 4.24 1.57–3.85 160–172 1.96–2.49 370–419

Table 6.1: Phase space factors and nuclear matrix elements with their allowed ranges
as derived in refs. [343–346]

In order to arrive at a common normalization factor for all types of contributions,

at first we use the expression for inverse half-life for 0ν2β decay process due to only

light active Majorana neutrinos,
[
T 0ν

1/2

]−1

= G0ν
01 |M0ν

ν |
2 |ην |2.

6.2 Effective mass parameter and half-life

Adding together the 0νββ decay amplitudes arising out of light-neutrino exchanges,

singlet fermion exchanges, and the heavy RH neutrino exchanges in the WL −WL

channel from eq.(6.3), eq.(6.4), eq.(6.5) and using suitable normalisations [343–346],

we express the inverse half life

[
T 0ν

1/2

]−1 ' G0ν
01|
M0ν

ν

me

|2|(mee
ν + mee

S + mee
N )|2,

= K0ν |(mee
ν + mee

S + mee
N )|2,

= K0ν |meff |2. (6.10)

In the above equation G0ν
01 = 0.686 × 10−14yrs−1, M0ν

ν = 2.58 − 6.64, K0ν = 1.57 ×
10−25yrs−1eV−2, and the three effective mass parameters for light-neutrino, singlet
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fermion, and heavy RH neutrino exchanges are

mee
ν =

∑
i

(Vννe i )2 mνi , (6.11)

mee
S =

∑
i

(
VνSe i

)2 |p|2

mSi

, (6.12)

mee
N =

∑
i

(
VνNe i

)2 |p|2

mNi

, (6.13)

with

meff = mee
ν + mee

S + mee
N . (6.14)

Here mSi is the eigen value of the S− fermion mass matrix mS, and the magnitude of

neutrino virtuality momentum |p| = 120 MeV−200 MeV. As the predicted values of

the RH neutrino masses carried out in Sec. 5.1.4 have been found to be large which

make their contribution to the 0νββ decay amplitude negligible, we retain only con-

tributions due to light neutrino and singlet fermion exchanges. The estimated values

of the effective mass parameters due to the S− fermion exchanges and light neutrino

exchanges are shown separately in Fig. 6.2 where the magnitudes of corresponding

mass eigen values used have been indicated.

6.2.1 Numerical estimations of effective mass parameters

Using the equations of normalized mass parameters [87], we estimate numerically

the nearly standard contribution due to light neutrino exchange and the dominant

non-standard contributions due to singlet fermion exchanges.

A.Nearly standard contribution

In this model the new mixing matrix N ≡ Vνν = (1− η)Uν contains additional

non-unitarity effect due to non-vanishing η [87] Using MDeg = 1213 GeV the N-S

mixing mass in the degenerate case, we estimate

Nei = (0.81437, 0.54858, 0.1267 + 0.0922i). (6.15)

Since all the η− parameters are constrained by |ηαβ| < 10−3, it is expected that
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|Nei| ' |Uei| for any other choice of M . In the leading approximation by neglecting

the ηαi contributions, the effective mass parameter in the the WL−WL channel with

light neutrino exchanges is expressed as

mee
ν =

∑
i

N 2
eim̂i

' (c12c13)2m̂1e
iα1 + (s12c13)2m̂2e

iα2 + s2
13e

iδm̂3, (6.16)

where we have introduced two Majorana phases α1 and α2. As discussed subsequently

in this section, they play crucial roles in preventing cancellation between two different

effective mass parameters. Using α1 = α2 = 0 and the experimental values of light

neutrino masses and the Dirac phase δ = 0.8π from eq.(5.9), the light neutrino

exchanges have their well known values,

|mee
ν | =


0.0039 eV NH,

0.04805 eV IH,

0.23 eV QD.

(6.17)

B. Dominant non-standard contributions

The (ei) element of the ν − S mixing matrix is [87]

VνSei = (
MD

M
)ei. (6.18)

where the Dirac neutrino mass matrix MD has been given in eq.(5.26) and M =

diag(M1,M2,M3). We derive the relevant elements of the mixing matrix VνS using

the structures of the the Dirac neutrino mass matrix MD given in eq.(5.26) and

values of the diagonal elements ofM = diag(M1,M2,M3) satisfying the non-unitarity

constraint in eq.(5.30). The eigen values of the S− fermion mass matrix mS are

estimated for different cases using the structures of the RH Majorana neutrino mass

matrices given in eq.(5.14), eq.(5.16), and eq.(5.18) in the formula mS = −M 1
MN

MT .

It is clear that in the effective mass parameter the non-standard contribution due to

sterile fermion exchange has a sign opposite to that due to light neutrino exchange

and also its magnitude is inversely proportional to the sterile fermion mass eigen

values. In the NH case the estimated effective mass parameters are shown in Fig.6.2

where the values of diagonal elements of M and the eigen values of ms have been

specified. For comparison the effective mass parameters in the standard case without
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singlet fermions have been also given. It is clear that for allowed masses of the

model, the non-standard contributions to effective mass parameters can be much

more dominant compared to the standard values irrespective of the mass patterns of

light neutrino masses, in NH, IH or QD cases.
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Figure 6.2: Variation of the effective mass parameters with lightest LH neutrino mass.
The dominant non-standard contributions due to fermion singlet contributions are
shown by three horozontal lines with corresponding mass values in GeV units. The
subdominant effective mass parameters due to NH and IH cases shown are similar
to the standard values.

6.2.2 Cancellation between effective mass parameters

When plotted as a function of singlet fermion mass eigen value mS1 , the resultant ef-

fective mass parameter shows cancellation for certain region of the parameter space,

the cancellation being prominent in the QD case. Like the light neutrino masses, the

singlet fermion masses mSi are also expected to have two Majorana phases. When

all Majorana phases are absent, both in the light active neutrino as well as in the

singlet fermion sectors, it is clear that in the sum of the two effective mass param-

eter there will be cancellation between light active neutrino and the singlet fermion

contributions because of the inherent negative sign of the non-standard contribution.

Our estimations for NH, IH, and QD patterns of light neutrino mass hierarchies are

discussed separately.

A. Effective mass parameter for NH and IH active neutrino masses
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In Fig. 6.3, we have shown the variation of the resultant effective mass parameter

with mS1 for NH and IH patterns of active light neutrino masses. It is clear that for

lower values of mS1 , the singlet fermion exchange term continues to dominate . For

larger values of mS1 the resultant effective mass parameter tends to be identical to

the light neutrino mass contribution due to the vanishing non-standard contribution.

We note that the values |meff | = 0.5−0.1 eV can be easily realised for |mS1| = 3−5

GeV in the NH case but for |mS1| = 1− 2 GeV in the IH case.
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Figure 6.3: Variation of effective mass of 0νββ decay with the mass of the lightest
singlet fermion for the value of |p| = 190 MeV .

B. Effective mass parameter for QD active neutrinos

The variation of effective mass with mS1 for the QD case with one experimentally

determined Dirac phase δ = 0.8π and assumed values of two unknown Majorana

phases is given in Fig. 6.4. The left-panel of Fig. 6.4 shows the variation with

α1 = α2 = 0 for different choices of the common light neutrino mass m0 = 0.5 eV,

0.3 eV , and 0.2 eV for the upper, middle, and the lower curves, respectively, where

cancellations are clearly displayed in the regions of ms1 = 0.4 − 1.5 GeV. However,

before such cancellation occurs, the dominance of the singlet exchange contribution

has been clearly shown to occur in the regions of lower values of mS1 . For larger

values of mS1 > 5 GeV, the singlet exchange contribution tends to be negligible and

the light QD neutrino contribution to meff is recovered. In the right panel of Fig.

6.4, the upper curve corresponds to α1 = π, α2 = π at m0 = 0.2 eV. The middle

line corresponds to α1 = π, α2 = 0 at m0 = 0.5 eV .The lower line corresponds to

α1 = 0, α2 = π at m0 = 0.3 eV. We find that because of introduction of appropriate

Majorana phases the dips in two curves have disappeared.
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Figure 6.4: Variation of effective mass of 0νββ decay with the mass of the lightest
singlet fermion for QD light neutrinos with one Dirac phase (left) and one Dirac
phase and two Majorana phases (right).

6.2.3 Half-life as a function of singlet fermion masses

In order to arrive at a plot of half-life against the lightest singlet fermion mass in

different cases, at first we estimate the mass eigen values of the three singlet fermions

for different allowed combinations of the N−S mixing matrix elements satisfying the

non-unitarity constraint of eq.(5.30) and by using the RH neutrino mass matrices

predicted for NH, IH, and QD cases from eq.(5.14), eq.(5.16), eq.(5.18), and eq.(5.19).

These solutions are shown in Table 6.2.

We then derive expressions for half-life taking into account the contributions of the

two different amplitudes or effective mass parameters arising out of the light neutrino

and the singlet fermion exchanges leading to

[
T 0ν

1/2

]
=

m2
s1

K0ν |p|4(MD/M)e1
4

[
|1 +X + Y |

]−2

, (6.19)

where

X =
(MD/M)e2

2

(MD/M)e1
2

mS1

ms2

+
(MD/M)e3

2

(MD/M)e1
2

mS1

mS3

, (6.20)

Y = mee
ν

mS1

p2(MD/M)2
e1

. (6.21)

Here we have used the expression for mee
ν given in eq.(6.11). In eq.(6.19), Y = 0 gives

complete dominanace of the singlet fermion exchange term. However this formula of

half-life is completely different from the one obtained using inverse seesaw dominance
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M m̂s(NH)
(GeV) (GeV)

(40,400,1180) (1.2,502,883)
(100,400,1180) (7.65,515,909))
(150,400,1180) (16,533,951)
(200,400,1180) (25,558,1011)
(250,400,1180) (35,588,1093)
(300,400,1180) (43,622,1200)
(350,400,1180) (50,659,1331)

M m̂s(IH)
(GeV) (GeV)

(40,450,1280) (0.4,54.32,7702)
(60,450,1280) (0.9,54.4,7705)
(70,450,1280) (1.2,54.4,7706)
(100,450,1280) (2.5,55,7715)
(300,450,1280) (22,56,7831)
(400,450,1280) (36.2,59,7933)
(450,450,1280) (42,64,7996)

M m̂s(QD)
(GeV) (GeV)

(100,600,1500) (0.5,17.7,109))
(130,600,1500) (0.8,17.7,109)
(200,600,1500) (1.97,17.7,109)
(300,600,1500) (4.4,17.7,109)
(350,600,1500) (6.05,17.7,109)
(400,600,1500) (8,17.7,109)
(500,600,1500) (12.3,17.7,109)
(600,600,1500) (17.7,17.7,109)

Table 6.2: Eigen values for singlet fermion mass matrix for different allowed N − S
mixing matrix elements for NH, IH, and QD patterns of light neutrino masses

in SO(10) [88]. In this model half-life depends directly to the square of the lightest

singlet fermion mass and it is independent of the right-handed neutrino mass which

is non-diagonal. But in [88], the half-life of neutrino less double beta decay is directly

proportional to the fourth power of the lightest singlet fermion mass and square of

the lightest right handed neutrino mass leading to a different result.

A. Half-life in the NH and IH cases

We have computed the half-life for NH and IH patterns of active neutrino masses,

taking the contributions of singlet fermion as well as light active neutrino exchanges.

This is shown in the left-panel for NH case and in the right panel for IH case in

Fig.6.5. Taking both X term and Y term in eq.(6.19) , we find that for smaller

value of mS1 ,the contribution due to sterile neutrino is dominated for both NH

and IH. But with the increase in the value of mS1 , the half-lfe increases showing

its decreasing strength. The predicted half-life curve satuarates the experimental

data at mS1 ' 3 GeV and mS1 ' 2 GeV, for NH and the IH cases, respectively.

The interesting predictions are that if the lightest sterile neutrino mass satisfies the
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bound mS1 ≤ 3GeV , then the 0νββ decay should be detected with half-life close to

the current experimental bound even if the light neutrino masses have NH pattern

of masses. Similarly the corresponding bound for the IH case is mS1 ≤ 2 GeV. But

in [88] which has inverse seesaw dominant formula for mν , the corresponding bound

for the NH and IH case is mS1 ≤ 14 GeV.
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Figure 6.5: Variation of half-life of 0νββ decay with the sterile neutrino mass for
NH(left) and IH(right) patterns of light active neutrino masses for |p| = 190 MeV.

B. Lifetime prediction with QD neutrino masses.

For QD masses of light active neutrinos we considered the X term and Y term of

eq.(6.19) i.e including both the sterile neutrino exchange and light neutrino exchange

contributions. For the light-neutrino effective mass parameter occuring in Y , we

have considered three different cases with common light-neutrino mass values m0 =

0.2eV, 0.3eV, and 0.5eV resulting in three different curves shown in the left- and

the right- panels of Fig. 6.6. In the left-panel only the experimentally determined

Dirac phase δ = 0.8π has been included in the PMNS mixing matrix for light QD

neutrinos while ignoring the two Majorana phases(α1 = α2 = 0). In the right

panel while keeping δ = 0.8π for all the three curves, the Majorana phases have been

chosen as indicated against each of them. As the sterile neutrino exchange amplitude

given in eq.(6.11) is inversely proportional to the eigen value of the corresponding

sterile neutrino mass mSi , even in the quasi-degenerate case this contribution is

expected to dominate for allowed small values of mSi . This fact is reflected in both

the figures given in Fig.6.6. When Majorana phases are ignored, this dominance

gives half-life less than the current bounds for mS1 < 0.5 GeV when m0 = 0.5

eV, but for mS1 < 0.7 GeV when m0 = 0.2 − 0.3 eV. When Majorana phases

are included preventing cancellation between the two contributions, these crossing
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points are changed to mS1 < 0.7 GeV when m0 = 0.3 eV, but mS1 < 1.0 GeV

when m0 = 0.2− 0.5 eV. In one of the paper [88] which is inverse seesaw dominant,

the corresponding bound for the QD case is mS1 ≤ 12.5 GeV. The peaks in the

half-life prediction in the curves appear because of cancellation between the two

effective parameters. Inclusion of Majorana phases annuls cancellation resulting in

constructive addition of the two effective mass parameters and reduced values of

half-life accessible to ongoing searches. For larger values of mS1 >> 20 GeV, the

sterile neutrino contribution to 0νββ amplitude becomes negligible and the usual

contributions due to light quasi-degenerate neutrinos are recovered.
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Figure 6.6: Variation of half-life of 0νββ decay with the mass of the lightest singlet
fermion for QD light neutrinos with one Dirac phase (left) and with one Dirac phase
and two Majorana phases (right).

6.2.4 Scattered plots for singlet fermion exchange dominated

half-life

The nonstandard contributions to half life of double beta decay as a function of

sterile neutrino mass has been discussed in [86–88,208,243]. The models predict ν−S
mixing and sterile neutrino masses which have been used to predict the half-life in

the case of different hierarchies of light neutrino masses:NH, IH, and QD. Using the

estimations of ref. [88] which are also applicable to models of refs. [87,208,242,243],

scattered plots for the predicted half-life are shown in Fig.6.7, Fig.6.8, and Fig.6.9

for the three types of neutrino mass hierarchies.

In Fig.6.10 we show predictions in the QD case excluding and including the CP

phases of Majorana type sterile neutrinos. The cancellations between light neutrino
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Figure 6.7: Scattered plots for half-life prediction of double beta decay as a function
of neutral singlet fermion mass in the case of normal hierarchy (NH) of light neutrino
masses from 76Ge nucleus (left-panel) and from 136Xe nucleus right panel.

Figure 6.8: Same as Fig.6.7 but for inverted hierarchy (IH) of light neutrino masses.
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Figure 6.9: Same as Fig.6.7 but for quasi degenerate (QD) type light neutrino masses.

exchange amplitude and the sterile neutrino exchange amplitude is shown by the two

peaks. When CP phases associated with the Majorana type sterile neutrino mass

eigen value(s) are included, the peaks are smoothened as shown by dotted lines [88].

6.2.5 Sterile neutrino mass prediction from double beta de-

cay half-life

In Fig.6.11 estimations on the lightest sterile neutrino masses are predicted which

saturate the current experimental limit on the observed double beta decay half life

using Ge−76 and Xe−136 nuclei for three different light neutrino mass hierarchies

in each case. The uncertainties in the predicted masses correspond to the existing

uncertainty in the neutrino virtuality momentum |p| = 120 − 200 MeV. The green

horizontal line represents the average value

m̂S1 = 18± 4 GeV, (6.22)

of the lightest sterile neutrino mass determined from double beta decay experimental

bound [88]. Lower values of this mass has been obtained using light neutrino assisted

type-II seesaw dominance [208].

These predictions suggest that sterile neutrino exchange contribution dominates

the double beta decay rate even when the light neutrino masses have NH or IH type of

mass hierarchies. To predict double beta decay saturating the current experimental

bounds, it is not necessary that light neutrinos should be quasi-degenerate in mass.
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Figure 6.10: Prediction of half-life for double beta decay as a function of sterile
neutrino mass in the case of QD type mass hierarchy with the common mass pa-
rameter m0 = 0.23 eV. The peaks correspond to cancellation between light neutrino
and sterile neutrino exchange amplitudes when Majorana CP phases of sterile neu-
trino is ignored. The dotted line shows the absence of peaks when CP phases are
included [88]

Figure 6.11: Prediction of light sterile neutrino mass from the saturation of experi-
mental decay rates of ongoing searches for different active neutrino mass hierarchies.
The horizontal green line indicates the average value of all results.
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On the other hand if double-beta decay is not found with half-life close to the current

limits, then the solutions with light sterile neutrino masses in the range ∼ (2 − 15)

GeV are ruled out, but the model with larger mass eigen values easily survives.

6.3 Leptogenesis

6.3.1 Singlet fermion assisted resonant leptogenesis in non-

SUSY SO(10)

An extensive review of thermal leptogenesis with reference to LFV is available

in [347]. With the neutrino mass following a modified type-I seesaw at a scale

≥ 108 GeV, thermal leptogenesis has been investigated. It is well known that TeV

scale RH neutrinos can participate in resonant leptogenesis contributing to enhanced

generation of leptonic CP-asymmetry that is central to generation of baryon asym-

metry of the universe via sphaleron interactions. The experimental value of baryon

asymmetry of the universe is 8.66±11×10−11 [348]. Here we briefly discuss a recent

work [208] where quasi-degenerate sterile neutrinos at the TeV scale in non-SUSY

SO(10) have been shown to achieve resonant leptogenesis through their decays. The

Feynman diagrams at the tree level and with vertex and self energy corrections are

shown in Fig.6.12.

Figure 6.12: Tree and one-loop diagrams for the Sk decay contributing to the CP-
asymmetry. All fermion-Higgs couplings in the diagrams are of the form V h where
h = N − l − Φ Yukawa coupling and V 'M/MN .

The CP-asymmetry formula for the resonant leptogenesis is [208]

εSk =
∑
j

Im[(y†y)2
kj]

|y†y|jj|y†y|kk
Rkj, (6.23)
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where

Rkj =
(m̂2

Sk
− m̂2

Sj
)m̂SkΓSj

(m̂2
Sk
− m̂2

Sj
)2 + m̂2

Sk
Γ2
Sj

, (6.24)

y = (M/MN)h, h = MD/Vwk, and Vwk ' 174 GeV. This leads to the baryon asym-

metry

YB ' εSk
200Kk

, (6.25)

where

Kk =
ΓSk

H(m̂Sk)
, (6.26)

In eq.(6.26) H(m̂Sk) is the Hubble parameter at temperature m̂Sk .

H(m̂sk) = 1.66g1/2
∗

m̂2
sk

MPlanck

, (6.27)

where g∗ ' 107. In eq.(6.26) the singlet fermion decay width is

Γsk =
1

8π
m̂sk(y

+y)kk (6.28)

Defining

δi =
|m̂Si − m̂Sj |

ΓSi
(i 6= j), (6.29)

the depleted washout factor is [349]

Keff
i ' δ2

iKi. (6.30)

Here we discuss two cases for the sterile neutrino contribution towards leptogenesis

and baryon asymmetry: (a) m̂s1 is light, m̂s2 and m̂s3 are quasi-degenerate; (b) m̂s2

is light, m̂s1 and m̂s3 are quasi-degenerate.

Case (a). m̂s1 light, m̂s2 and m̂s3 heavy and quasi-degenerate.

Using an allowed interesting region of the parameter spaceM ' diag.(146, 3500, 3500)
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ms1 ms2 ms3 Baryon T 0ν
1/2

(GeV) (GeV) (GeV) asymmetry (1025yrs.)
1 500 500 8.0× 10−11 2.72
10 500 500 8.1× 10−11 16.01
500 1 500 8.1× 10−11 0.0494
500 3 500 8.2× 10−11 2.19

Table 6.3: Predictions for baryon asymmetry and double-beta decay half-life as a
function of sterile neutrino masses.

GeV, VR = 104 GeV, and MN = fVR we get

m̂Si = diag.(1.0, 595.864.., 595.864..)GeV, (6.31)

leading to K2 = 4.0× 107. Using (m̂S2 − m̂S3) ' 4× 10−7 GeV, we obtain

εS2 = 0.512,

YB = 8.0× 10−11. (6.32)

Case (b) m̂s2 light, m̂s1 and m̂s3 heavy and quasi-degenerate.

Choosing another allowed region of the parameter spaceM ' diag.(3200, 146, 3200)

GeV, similarly we get

m̂Si = diag.(500.567.., 1.0, 500.567..)GeV, (6.33)

leading to K1 = 8× 106. Using (m̂S1 − m̂S3) ' 9× 10−5 GeV, we obtain

εS1 = 0.128,

YB = 8.1× 10−11. (6.34)

In Case (a) with m̂S1 ∼ O(1) GeV, the lightest sterile neutrino acts as the most

dominant source of 0νββ decay whereas the heavy quasi-degenerate pair of sterile

neutrinos S2 and S3 mediate resonant leptogenesis. Similarly in the alternative

scenario of Case (b) with m̂S2 ∼ O(1) GeV, the second generation light sterile

neutrino acts as the mediator of dominant double beta decay while the heavy quasi-

degenerate pair of the first and the third generation sterile neutrinos mediate resonant

leptogenesis. Because of the resonant leptogenesis constraint, we note that either

Case (a) or Case (b) is permitted, but not both.
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Our predictions for the double beta decay half-life and the baryon asymmetry in

Case (a) and Case (b) are presented in Table .6.3. It is clear that for smaller mass

eigen values of sterile neutrinos in Case (a) or Case (b), it is possible to saturate

current experimental limit on the double-beta decay half-life while explaining the

right order of magnitude of the baryon asymmetry. Thus, in addition to the Case

(a) found in ref. [208], we have shown another possible alternative scenario as Case

(b).

Before concluding this section certain interesting results on thermal leptogene-

sis derived earlier are noted. Thermal leptogenesis with a hybrid seesaw and RH

neutrino dark matter have been proposed by introducung additional U(1) gauge

symmetry [201]. Thermal leptogenesis in extended seesaw models have been inves-

tigated earlier [198, 350–353] which are different from our cases reported here and

earlier [184, 208]. Possibilities of falsyfying high-scale leptogenesis on the basis of

certain LHC results and also on the basis of LFV and 0νββ decay results have been

suggested [354,355] . Prospects of dark matter in the minimal inverse seesaw model

has been also investigated in ref. [356,357]

6.3.2 Resonant leptogenesis with light NH masses

As noted earlier, the motivation for this analysis is based upon the possibility that

light neutrino masses may be NH type rather than QD type as suggested from recent

cosmological bound [336] with ∑
mν < 0.15eV, (6.35)

and more stringent bound [358]∑
mν < 0.12eV. (6.36)

Although such cosmological bounds may need further confirmation by laboratory

experiments on earth, it is worth while to see if our models may be able to account

for BAU even if NH hierarchy is adopted.

We have choose an interesting region of the parameter spaceM ' diag.(38.27, 752.1, 1219.0)

GeV. Then using the RH neutrino mass matrix MN derived in ref. [208] in the NH

case, we get

m̂Si = diag.(1.2, 1348.86.., 1348.86...)GeV. (6.37)

93



containing the desired mass patterns. In this case using eq.(6.28), we have derived

the two decay widths

ΓS3 = 8.63GeV, (6.38)

ΓS2 = 0.009GeV. (6.39)

Noting the corresponding value of the Hubble parameter

H(m̂S3) = 2.91× 10−12GeV, (6.40)

the washout factor due to the S3 decay is estimated using eq.(6.26)

K3 = 2.96× 1012. (6.41)

Using |m̂S2 − m̂S3| ' 0.003 GeV and eq.(6.23), the CP-asymmetry

εS3 = 0.00583. (6.42)

Using eq.(6.29), we have calculated damping factor or the depletion factor for this

large washout

δ3 = 0.0003. (6.43)

Leading to the effective washout factor through eq.(6.30)

Keff = 405367. (6.44)

With this depleted washout, the baryon asymmetry formula of eq.(6.25) that turns

to be

YBD ' εSk
200Keff

. (6.45)

gives

YB = 8.0× 10−11. (6.46)

With the value of Ŝ1 mass given in eq.( 6.37) we have verified that the double beta
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decay lifetime is predicted with a value close to the current experimental limit.

Thus we have shown that for NH pattern of light neutrino masses that favours the

recent cosmological bound [336], a light sterile neutrino mass ∼ 1.2 GeV allowed in

both the SO(10) models mediates dominant double beta decay. In this case resonant

leptogenesis is implemented by a pair of quasi-degenerate heavy masses ' 1348.86

GeV of the sterile neutrinos of the second and the third generations which is also

permitted within the allowed parameter space. In this case also the scaling law of

eq.(5.21) can be applied to examine the validity of resonant leptogenesis for a wider

range of Z ′ boson masses. In the next two sections we have shown how the lightest

sterile neutrino mediates displaced vertices for like-sign dilepton production in the

channels pp→ eejj and pp→ µµjj at LHC.

6.3.3 Leptogenesis in extended MSSM and SUSY SO(10)

In the conventional type-I seesaw based leptogenesis models where heavy RH neu-

trino decays give rise to the desired lepton asymmetry [359], the Davidson-Ibarra

bound [360,361] imposes a lower limit on the scale of leptogenesis, MN1 > 4.5× 109

GeV [360, 361]. This also suggests the lower bound for the reheating temperature

after inflation, TRH ≥ 109 GeV, that would lead to overproduction of gravitinos

severely affecting the relic abundance of light nuclei since the acceptable limit has

been set as TRH ≤ 107 GeV [362]. Several attempts have been made to evade the

gravitino constraint on leptogenesis where sterile neutrino assisted results are inter-

esting. Obviously gravitino constraint is satisfied in models with TeV scale resonant

leptogenesis [363]. Also in the singlet fermion extended SUSY SO(10) where RH

neutrinos are heavy pseudo Dirac neutrinos and neutrino mass formula is through

inverse seesaw [212], there is no problem due to gravitino constraint [83–85,292]. We

discuss the cases where all the three types of neutrinos are Majorana fermions.

6.3.4 Leptogenesis with extended seesaw dominance

With extended seesaw realisation of leptogenesis in two types of SUSY models have

been investigated under gravitino constraint:(i)MSSM extension with fermion sin-

glets [234–238], and (ii) Singlet extension of SO(10) with intermediate scale G2213

gauge symmetry. [239,240]. We discuss their salient features.
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6.3.4.1 MSSM extension with fermion singlets

The Dirac neutrino mass matrix is identified with the charged lepton mass matrix in

this model where MSSM is extended with the addition of heavy RH neutrinos Ni as

well as additional singlets Si [234,235], one for each generation. As already explained

in the limit MN > M >> MD, µS extended seesaw formula, which is the same as the

inverse seesaw formula for active neutrino mass. In this case resonant leptogenesis

is implemented via quasi-degenerate RH neutrino decays at the TeV scale. It is

well known that such resonant leptogenesis scenario with MN1 ∼ MN2 ∼ 1 TeV

implemented through canonical seesaw, needs a very small mass splitting between

the RH neutrinos
(MN2

−MN1
)

(MN2
+MN1

)
∼ 10−6. With the the tension arising out of fitting the

neutrino oscillation data being transferred from type-I seesaw to extended seesaw

in the presence of additional sterile fermions, it is not unimaginable that this fine

tuning associated with very tiny RH neutrino mass splitting could be adequately

alleviated. The fermion singlets Si give rise to a new self-energy contribution and

using this successful resonant leptogenesis has been found to be possible for a much

larger mass ratio
MN2

MN1
∼ 10. Possibilities of ∼ 100 MeV to ∼ 10 GeV mass range for

light sterile neutrinos have been pointed out. In a separate analysis the possibility

of singlet Majorana fermion or singlet scalar as candidates of dark matter has been

pointed out [236]. Realisation of doubly coexisting dark matter candidates in the

context of extended seesaw framework has been pointed out [237].

6.3.4.2 Leptogenesis in SUSY SO(10)

In non-SUSY minimal LR models where MD is similar to charged lepton mass ma-

trix successful leptogenesis emerges with intermediate scale hierarchical RH neutrino

masses [364]. In SUSY SO(10) the underlying quark-lepton unification forces the

Dirac neutrino mass to be similar to the up-quark mass matrix. This pushes the

type-I seesaw scale closer to the GUT scale, MR ≥ 1014 GeV and rules out the possi-

bility of low scale WR bosons accessible to accelerator searches in foreseeable future

unless the canonical seesaw ansatz is given up, for example, in favour of inverse

seesaw with TeV scale pseudo Dirac neutrinos and WR bosons [83–85, 292]. With

heavy right-handed Majorana neutrinos and GUT-scale LR breaking scale, success-

ful leptogenesis has been implemented in realistic SUSY SO(10) [365]. With the help

of an effective dim.5 operator ansatz which originates from renormalisable interac-

tions at GUT-Planck scale in SUSY SO(10) (without using 126H) both thermal and

non-thermal leptogenesis [367–369] have been discussed with heavy hierarchical RH
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neutrino masses [370,371]. Possible solutions to the allowed parameterspace to evade

gravitino constraint have been also discussed in this work.

Apart from the models with resonant leptogenesis, possibility of leptogenesis un-

der gravitino constraint in SUSY SO(10) has been realised with hierarchical RH

neutrinos assisted by sterile neutrinos. As already noted above, in these cases the

extended seesaw formula controls the neutrino mass as a result of cancellation of

type-I seesaw contribution. Gauge coupling unification in these SO(10) models re-

quires the G2213 symmetry to occur at the intermediate scale in the renormalizable

model [240]. A common feature of both these models [239, 240] is the generation of

lepton asymmetry through the decay of hierarchical sterile neutrinos through their

respective mixings with heavier RH neutrinos which are also hierarchical.

An important and specific advantage of heavy gauge-singlet neutrino decay to

achieve leptonic CP asymmetry is the following: The singlet neutrino of mass ∼ 105

GeV which decays to lφ though its mixing with RH neutrino of mass ∼ 1010 GeV has

a small mixing angle ∼ 10−5. This small mixing ensures out-of-equilibrium condition

by making the decay rate smaller than the Hubble expansion rate in arriving at CP

asymmetry at lower temperatures ∼ 300 GeV.
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Chapter 7
Sterile Neutrino Mediated Dilepton Events with

Displaced Vertices, and its Collider Phenomenology

In our type-II seesaw dominant model production in SO(10) discussed in earlier

chapters, both the Z ′ boson and the right handed neutrino are present at TeV scales.

Quite recently, as an interesting and novel manifestation of Majorana type of RH

neutrino that drives type-I seesaw, it has been pointed out that if WR boson is at

the TeV scale and a RH neutrino mass needed for the seesaw is sufficiently light, it

would mediate 0νββ decay while like-sign di-electron signals caused due to displaced

vertices mediated by the RH neutrino mass in the range 1− 80 GeV would provide

more interesting model signatures through eejj events devoid of standard model

backgrounds [182, 372] without missing energy. It is worthwhile to point out that

the mechanism of like sign dilepton production at accelerators was at first suggested

by Keung and Senjanovic [373]. Then these like-sign di-electron signals and 0νββ

decay events would indicate the presence of the gauge theory at the TeV scale.

Even if there is no WR gauge boson at the TeV scale, this approach predicts the

novel possibility of like-sign dilepton events which can be observed at ATLAS or

CMS detectors. In such a type-I seesaw model as the associated RH neutrino is

sufficiently light, it is necessary to fine-tune the associated Dirac neutrino Yukawa

coupligs to small values, 10−7−10−6 to fit the neutrino oscillation data. Secondly, it

may be difficult to implement TeV scale resonant leptogenesis for which two quasi-

degenerate heavy masses of RH neutrinos of two other generations may be needed and

this possibility needs further investigation. Also such a single RH neutrino model

may not adequately mediate detector events at CMS or ATLAS in the channels

pp → µµjjX, or pp → eµjjX for which much heavier RH neutrino masses appear

to be needed. In addition, the heavy-light neutrino mixings in this model can be

anywhere bounded by the DELPHI [374] and the double beta decay experimental
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limits.

In this chapter we discuss how the two non-SUSY SO(10) models discussed in

our paper [208], as indicated by eq.(5.36) and eq.(5.37), predict a rich structure

of like-sign di-electron and di-muon events with displaced vertices at LHC detec-

tors along with dominant contributions to double beta decay. These can materialise

when the prevailing LFV constraints and heavy RH neutrino masses allow one of the

singlet fermions (≡ sterile neutrinos) to be sufficiently light. In contrast to models

along this line including those of ref. [182, 372] where heavy -light neutrino mixings

are assumed under the DELPHI [374] and the double beta decay constraints , these

mixings in our models are predicted from all charged fermion mass fit at the GUT

scale and the LFV constraints. The Dirac neutrino mass matrix derived in this

manner serves as important ingredient for predictions of LFV, LNV, and dilepton

production events. Two different cases have been identified. In the Case (a)while

the light sterile neutrino S1 of first generation mediates dominant contribution to

double beta decay and like-sign dilepton events with displaced vertices in the chan-

nels eejj, eµjj, and µµjj, resonant leptogenesis is allowed to be mediated by heavy

quasi-degenerate sterile neutrino pairs S2 ans S3 belonging to the second and the

third generations. Identified as the alternative Case (b), dominant double beta de-

cay and dilepton events with displaced vertices are mediated by the allowed lighter

mass of S2 while resonant leptogenesis is mediated by the heavy quasi-degenerate

sterile neutrino pairs, S1 and S3. We also explore detection possibilities of the ex-

tra Z ′ boson predicted by these two models at the Large Hadron Collider (LHC)

and the International Linear Collider (ILC). We further predict heavy RH Majorana

neutrino production cross sections through the like-sign dilepton production at the

LHC detectors in the WL −WL channel.

In Sec.7.1 below we have discussed heavy-light neutrinos mixings and predictions

for new physics effects. In Sec.7.2 we have discussed dilepton signals with displaced

vertices. Dilepton signature of RH neutrinos is discussed in Sec.7.3. In Sec.7.4 we

have discussed the collider phenomenology of Z ′ boson.
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7.1 Heavy-light neutrinos mixings and predic-

tions for new physics effects

We mention briefly how the matrix elements for ν−S and ν−N mixings have been

derived from all charged fermion mass fits at the GUT scale and by utilising N − S
mixing matrix M from LFV constraint and the MN matrix from fits to neutrino

oscillation data.

(i) The ν − S mixing:

In predicting the LFV branching ratios we have used the simplifying diagonal struc-

ture for the N − S mixing matrix M,

M = diag. (M1,M2,M3), (7.1)

As shown in eq.(5.26), the Dirac neutrino mass matrix resulting from charged fermion

mass fit at the SO(10) unification scale is

MD(MR0) =

 0.014 0.04− 0.01i 0.109− 0.3i

0.04 + 0.01i 0.35 2.6 + 0.0007i

0.1 + 0.3i 2.6− 0.0007i 79.20

GeV . (7.2)

Noting that out ν-s mixing matrix [208]

V νs =
MD

M
, (7.3)

using eq.(7.1) and eq.(5.26) in eq.(7.3) we get the elements of the νl − S mixing

matrix

V (lS) =

MDe1/M1 MDe2/M2 MDe3/M3

MDµ1/M1 MDµ2/M2 MDµ3/M3

MDτ1/M1 MDτ2/M2 MDτ3/M3

 . (7.4)

(ii) The ν −N mixing matrix:

Similarly the ν−N mixing matrix, for generalised class of non-diagonal matrices

MD and MN can be written as

V νs =
MD

MN

, (7.5)
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V (lN) =

(MD/MN )e1 (MD/MN )e2 (MD/MN )e3

(MD/MN )µ1 (MD/MN )µ2 (MD/MN )µ3

(MD/MN )τ1 (MD/MN )τ2 (MD/MN )τ3

 . (7.6)

Using eq.(5.26) and eq.(5.14) we find that, in the case of NH masses of light active

neutrinos, the elements of the ν −N mixing matrix are

V (lN) =

 −0.7 + 2i 0.16− 0.26i 0.98− 2.01i

−13.31− 16.76i 8.1− 11.52i 15.94 + 3.409i

−718− 492i −46− 352i 510 + 141i

× 10−4

(7.7)

As we discuss in Sec.7.2 and Sec.7.3, these mixings are needed to predict dilepton

signals with displaced vertices (DLSD) in the WL−WL
channel mediated by lighter

sterile neutrinos and like-sign dilepton production cross sections mediated by heavy

RH neutrinos in the channel pp→ l±l±jjX at different LHC energies.

7.2 Dilepton signals with displaced vertices

In the first part of this section we discuss decay width, half-life, and displaced lengths

of sterile neutrinos. In the second part we make predictions on DLSD events in our

models.

7.2.1 Decay width, half-life, and displaced lengths

The Feynman diagram for the production of like-sign dileptons along with two jets

in the WL−WL channel is given in Fig.(7.1). When the RH Majorana neutrino has

mass near the TeV scale or heavier and very short lifetime and path length, almost

instantly it mediates like sign dilepton (LSD) production events some of which have

been observed at the LHC detectors [375]. The standard model background is a

major source of uncertainty in identifying such events. But when the mass of the

sterile neutrino (≡ singlet fermion) is O(1−10) GeV and its mixing with active light

neutrinos is small, then it is expected to cause DLSD events with negligible standard

model background uncertainties and with no missing energy [182, 376, 378–383]. If

the neutrino transverse decay length lies between 1 mm and 1 m, a DLSD signal could

be recorded at ATLAS or CMS [379]. As already explained in Sec.7.1, because of the

SO(10) model predictions of heavy-light mixing matrix elements Vei, Vµi (i = 1, 2),

either S1 or S2 could be capable of mediating the displaced vertices resulting in the
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like-sign dilepton events eejj, µµjj, and eµjj provided that the signal strength is

strong enough under different cut conditions.

The decay width of the i-th light sterile neutrino Si(i = 1 or 2) which would be

required in estimating collider signals is defines as [182,372,377]

ΓSi =
3G2

F

32π3
m5
si

∑
l

|Vlsi |2, (7.8)

where GF = Fermi coupling constant and Vlsi is the element of ν − s mixing matrix

defined through eq.(7.4).

Figure 7.1: Feynman diagram for like-sign dilepton production process l±l±jj in the
WL −WL channel in the pp collision process at LHC

At LHC the sterile neutrino (≡ singlet fermion) mediated dilepton production

cross section can be expressed in terms of bare cross section and heavy-light mix-

ing [377]

σ(pp→ Sl± → l±l±jj) = (2− δl1l2)Sl1l2σ0(S),

Sl1l2 =
|Vl1sVl2s|2∑
l=e,µ,τ |Vls|2

, (7.9)

where l = e or µ and σ0(S) is the bare cross section arising out of the exchange of the

sterile neutrino S. In addition to ref. [377], the cross section has been also estimated

in ref. [182] and the two sets of results have been found to agree. The number of

events within the displaced length limit can be defined through the formula [372]

N = L × σ(pp→ Sl± → l±jj)× ACUT × PN,

PN = e−d1/L − e−d2/L, (7.10)
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where L is the beam luminosity, ACUT = Acceptance factor under a cut condition

[384], L = sterile neutrino decay length defined below, PN = probability of the

sterile neutrino to decay within the distances between d1 and d2. For example we

have chosen below d1 = 10−3 m and d2 = L = 1 m to compute the predicted events

via displaced vertices. Thus the number of events decreases considerably due to the

imposition of the cut, smallness of heavy-light mixings, and the factor PN . The cut

acceptance factor has been estimated which can be easily inferred from Fig.1 and

Fig.2 of ref. [182].

In our Model-I and Model-II, the heavy light mixings as well as the sterile neu-

trino masses are predicted by the underlying mechanism in SO(10). We investigate

how these model predictions are accommodated in the almost model-independent

approach of ref. [182]. We also predict the number of events that can be produced

through displaced vertices in other channels like eµjj, µµjj, and eτjj. In each case

considered within our models, in addition to the lightest sterile Majorana neutrino of

mass ∼ O(1) GeV, there are two sterile neutrinos and three RH Majorana neutrinos

all of which have masses ∼ O(1) TeV or larger. Thus compared to the lightest sterile

neutrino exchange, all other contributions to the dilepton production are treated as

negligible. This assumption is consistent with the results of ref. [377] which predict

very large (very small) cross sections for very light (very heavy) sterile neutrino mass.

Using eq.(7.8) we have the corresponding half-life τSi = Γ−1
Si

. For average en-

ergy Ei of the i-th sterile neutrino, taking into account the time-dilatation factor

γ̄i = Ei/m̂si on the half life, the boosted decay length is

L = cγ̄iτsi

= 4875γ̄i(
GeV

m̂Si

)5 10−7

|Vlsi |2
. (7.11)

For large transverse momentum value compared to mass

γ̄i ∼ |~pTSi |/m̂Si , (7.12)

and the formula of eq.(7.11) reduces to the one given in ref. [379].

We find from eq.(7.11) that for a given average value of Ei, the decay length L

and γ̄i, the plot log(|V 2
lsi
|) vs. log(m̂Si) gives a straight line curve with a negative

slope and curves with four different values of L = 1mm, L = 0.01, 0.1 m and 1 m
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yield four parallel straight lines where the upper most (lower most) one correspond

to the smallest (largest) of the four lengths. But in the log(|V 2
lSi
|) vs. m̂Si plot, i,e in

the semi-logarithmic plot, instead of straight lines, the corresponding curves appear

with concavity towards the right-hand side as shown in Fig.7.2. The pink coloured

shaded region indicates the parameter space for which at most five dilepton events

are observable at LHC.

We follow the strategy of ref. [182] in showing the constraints due to various cut

conditions. The dashed lines of Fig.7.2 are the superposed images of the correspond-

ing lines of Fig.1(a) signifying different cut conditions imposed upon the primary

and the secondary leptons but without imposing any cut on the two jets. Fig.7.3

is drawn in a similar fashion as Fig.7.2 but they carry the superimposed images of

dashed lines of Fig.1(b) of ref. [182] where both leptonic and jet cut conditions have

been imposed.

The two solid lines in each of Fig.7.2 and Fig.7.3 are the upper and lower limits

of experimental measurements on double beta decay half life. The upper most green

coloured line in both the figures represent the experimental limit from DELPHI [374]

measurement.

Fixing the expected number of events as ≤ 5 for the luminosity L = 300fb−1 and

noting the limiting value of heavy-light mixing VlSi to which the LHC measurement

would be sensitive under a given cut condition as displayed in Fig.7.2 or Fig.7.3,

we estimate the value of ACUT using the results of ref. [377], the formula of eq.(7.9)

and eq.(7.10) for each value of mass m̂Si in the intersection region of the dashed

line and the pink coloured region. Since the estimated bare cross cross section is

almost constant over the range of m̂Si within the shaded region, the values of ACUT

obtained for different points are nearly equal.

Thus using the computational results [182, 377], luminousity L = 300fb−1 and

pe1T > 30 and |ηe| < 2.5, the values are ACUT ' 1, 0.1, 0.01 and 0.001 for pe2T > 7

GeV, pe2T > 30 GeV, pe2T > 35 GeV, and pe2T > 45 GeV, respectively. For the same

luminosity, pe1T , pe2T > 7 GeV, and |ηe,j| < 2.5, the derived values are ACUT '
0.05, 0.1, 0.003 and 0.001 for pjT = 10 GeV, pjT = 10 GeV, pjT = 15 GeV, and pjT = 20

GeV, respectively. Fixing pjT > 15 GeV and |ηe,j| < 2.5 for pe1T > 30 GeV, and

pe2T > 7 GeV gives ACUT ' 0.005 for the three values of the luminosity L =50 fb−1,

300 fb−1, and 3000fb−1 corresponding to |Vls|2 = 10−5, 10−6, and 10−7, respectively.

In what follows we we will use these numerical results on ACUT to make pre-

dictions in our models in different channels where the sterile neutrino masses and

heavy-light mixings are predicted by the two SO(10) models.
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Figure 7.2: Constraints on active-sterile neutrino mixings including DELPHI and
neutrinoless double beta decay limits. The lower-most solid line of the pink colored
shadow region having upward concavity corresponds to L = 1 m and the upper-
most line corresponds to L = 0.001 m where the displaced vertex search at LHC is
expected to be sensitive. The dashed lines correspond to different pT cuts: pe1T > 40
GeV, pe2T > 7 GeV, pe1T > 40 GeV, pe1T > 45 GeV and |ηe| < 2.5 with luminosity
300fb−1. The two lower solid curves with positive slopes indicate the double beta
decay limits.
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Figure 7.3: Constraints on active-sterile neutrino mixings including DELPHI and
neutrinoless double beta decay limits. The lower-most solid line of the pink colored
shadow region having upward concavity corresponds to L = 1 m and the upper-
most line corresponds to L = 0.001 m where the displaced vertex search at LHC is
expected to be sensitive. The dashed lines correspond to different pT cuts: pe1T > 30
GeV, pe2T > 7 GeV, pjT >10, 15, and 18 GeV and |ηe,j| < 2.5 with luminosity 300fb−1.
The two lower solid curves with positive slopes indicate the double beta decay limits.
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7.2.2 Prediction of dilepton signals with displaced vertices

Utilising the formulas of eq.(7.9), eq.(7.10), and eq.(7.11) in Sec.7.2.1 we have identi-

fied in an almost model-independent manner, the allowed region in the |VlSi |2 vs. m̂Si

plane where detection of like-sign dilepton events with displaced vertices is possible.

In this section we specify correlations of these model-independent results with the

actual model parameters and observables allowed within Model-I and Model-II. An

important point shown in this section is that the heavy-light mixings predicted by

our Mode-I and Model-II based on SO(10) which have been used to predict double

beta decay life or leptogenesis as discussed above are noted to fall in the sensitive

region of the model-independent search identified in Sec.7.2.1. The connection of

dilepton events with resonant leptogenesis and BAU is noted for the first time in

this work. These solutions are shown in Table 7.1, Table 7.2, and Table 7.3. In

Table 7.1 assuming QD hierarchy of light neutrino masses as in Case (a) and fix-

ing the value of M = (142.548, 3521.91, 3259.1) GeV, we have obtained three sets

of solutions for the mass eigen values of eq.(5.20) corresponding to three different

values of VR = (10, 5, 3.3) TeV and MZ′ = (5.95, 2.975, 1.963) TeV. These three sets

predict the three different mass eigen values of the first generation sterile neutrino

m̂S1 = (5, 10, 15) GeV and for all these values the predicted modulus square of mix-

ing is |V 2
es1
| = 10−8. It can be clearly recognised from Fig.7.2 these are the desired

solutions in the pink coloured shaded region where both dominant double beta decay

and observable dilepton events with displaced vertices are predicted. In addition,

since each set of solutions is associated with heavy quasi-degenerate sterile neutrino

masses of the second and the third generations, resolution of the issue of BAU is also

accommodated.

As the solutions reported in Table 7.1 do not conform to jet cut conditions, in

Table 7.2 we report three sets of solutions corresponding to m̂S2 = (5, 10, 15) GeV

expected to mediate dominant double beta decay and observable dilepton events

with displaced vertices for |V 2
es2
| = 2 × 10−7 which fall in the identified in the pink

coloured shaded region of Fig.7.3. These solutions are consistent with the respective

leptonic and jet cut conditions. Further a pair of quasi-degenerate heavy sterile

neutrinos of first and the third generations would ensure BAU generation by resonant

leptogenesis.

Quite interestingly, in the case of NH hierarchy of light neutrino masses consistent

with recent cosmological bounds [336, 358], the solutions to parameter values corre-

sponding to dominant double beta decay, BAU generation by resonant leptogenesis,

and observable dielectron production through displaced vertices are shown in Table
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7.3 which match with the corresponding pink coloured shaded region of Fig.7.3 in

conformity with the desired cut conditions on leptons and jets.

Compared to the DLSD events in the channel pp → eejj, those in the case of

pp → µµjj are expected to be more prominent even at L = 50fb−1 because of the

high value of the predicted quantity |Vµs2 |
2 = 10−5. Naturally for stronger luminosity

like L = 300fb−1, the event rates are expected to be six times larger. Lower pT cuts

would further increase these event rates.

m̂s VR Events at L(300) MZ′

(GeV) (GeV) (fb−1) (TeV)
(5, 2805.6, 2805.6) 104 6 5.95
(10, 5611.2, 5611.2) 5× 103 6 2.975
(15, 8501.9, 8501.9) 3.3× 103 6 1.963

Table 7.1: Prediction of like sign dielectron events via displaced vertices in the eejj
channel as a function of sterile neutrino mass m̂s1 = 5, 10, and 15 GeV for M =
(142.548, 3521.91, 3259.1) GeV, vL=0.5 eV in the QD case of light neutrino masses,
momentum cut pe2T > 7 GeV, pe1T > 30 GeV, |ηe| < 2.5, ACUT = 1, and |V 2

es1
| = 10−8.

m̂s VR Events at L(300) MZ′

(GeV) (GeV) (fb−1) (TeV)
(2494.03, 5, 2494.03) 104 6 5.95
(4988.06, 10, 4988.06) 5× 103 6 2.975
(7557.67, 15, 7557.67) 3.3× 103 6 1.963

Table 7.2: Prediction of like sign dielectron events via displaced vertices in the
eejj channel as a function of sterile neutrino mass m̂s2 = 5, 10, and 15 GeV for
M = (3088.52, 142.37, 3294.86) GeV, vL=0.5 eV in the QD neutrinos, momentum
cut pe2T > 7 GeV, pe1T > 30 GeV, pjT > 10 GeV |ηe,j| < 2.5, ACUT = 0.05, and
|V 2
es2
| = 2× 10−7.

m̂s VR Events at L(300) MZ′

(GeV) (GeV) (fb−1) (TeV)
(5, 5535.96, 5535.96) 104 6 5.95
(10, 11071.8, 11071.8) 5× 103 6 2.975
(15, 16624.5, 16624.5) 3.3× 103 6 1.963

Table 7.3: Prediction of like sign dielectron events via displaced vertices in the eejj
channel as a function of sterile neutrino mass m̂s1 for M = (34.6726, 681.403, 1104.41)
GeV, vL=0.5 eV in the NH neutrinos, momentum cut pe2T > 7 GeV, pe1T > 30 GeV,
pjT > 10 GeV, |ηe,j| < 2.5, ACUT = 0.05, and |V 2

es1
| = 2× 10−7.
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7.3 Dilepton signature by heavy RH neutrino ex-

change

After discussing the manifestation of sterile neutrinos in Model-I and Model-II of

[208] through various physical processes like double beta decay, dilepton signals with

displaced vertices, and resonant leptogenesis, in this section we investigate if the

TeV scale RH neutrinos present in both the models may manifest at the LHC, par-

ticularly, through the like-sign dilepton [387–389, 391] production events that may

materialise inside the ATLAS or the CMS detectors. Since the WR boson mass is

quite heavy MWR
> 108 GeV, only the WL −WL channel is dominant for the pro-

cess pp → l±l±X where l = e, µ. The heavy RH Majorana neutrino exchange cross

section is given by [203]

σ(pp→ Nl± → l±jj) = σprod(pp→ WL → Nl±)

×BR(N → l±jj) (7.13)

We use the parton level differential cross section [297]

dσ̂LHC
dcosθ

=
kβ

32πŝ

ŝ+M2

ŝ

g4

48

(ŝ2 −M4)(2 + βcos2θ)

(ŝ−M2
W )2 +M2

WΓ2
W

, (7.14)

where k = 3.89× 108 pb and β = ŝ2−M2

ŝ2+M2 .

With the identification Q =
√

(ŝ) and s = E2
CM , the total production cross section

is given by [243,297]

σprod =
kg4

768πs

∫ 1

τ0

γ
dτ

τ

∫ 1

τ

dx

x
[fu(x,Q)fd̄(

τ

x
,Q) +

(u→ d̄, d̄→ u)], (7.15)

where

τ =
ŝ

E2
CM

, γ =
ŝ+M2

ŝ
× (ŝ2 −M4)(2 + β/3)

(ŝ−M2
W )2 +M2

WΓ2
W

(7.16)

For computation of the production cross section we have utilized the CTEQ6M

parton distribution functions [393] in eq.(7.15).

The branching ratio is estimated using
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BR(N → l±jj) =
Γ(N → l±W )

ΓtotN
×BR(W → jj) (7.17)

with BR(W → jj) = 0.676. The total width is calculated by sum of all the partial

widths [203]

Γ(N → l±W ) =
g2|VνN |2

64π

MN
3

MW
2 (1− MW

2

MN
2 )2

×(1 +
2MW

2

MN
2 ), (7.18)

Γ(N → νlZ) =
g2|VνN |2

128πCos2θw

MN
3

MZ
2 (1− MZ

2

MN
2 )2

×(1 +
2MZ

2

MN
2 ), (7.19)

Γ(N → νlh) =
g2|VνN |2

128π

MN
3

MW
2 (1− Mh

2

MN
2 )2 (7.20)
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Figure 7.4: The prediction of signal cross section for the heavy RH neutrino mediated
dimuon production at run-II of LHC with

√
s = 14 TeV.

The heavy-light neutrino mixing plays a crucial role in calculating the signal

cross section. In our model the heavy-light neutrino mixing matrix for heavy RH
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neutrinos is MD

MN
, where MD is the Dirac neutrino mass matrix and MN is the RH

neutrino mass matrix. An interesting aspect of the models is that both the matrices,

MD and MN , are already predicted by TeV scale gauge symmetry breaking, the

neutrino oscillation data, and charged fermion mass fits at the GUT scale.

In the case of vanilla seesaw model investigated in [203], the heavy-light neutrino

mixing is V 2
lN = mν/MN which is quite small and gives rise to a cross section σ(pp→

µµjjX) ' 10−16 pb in the WL − WL channel for exchanged heavy RH neutrino

mass ' 100 GeV. On the other hand if the heavy-light mixing is assumed to be

as large as V 2
lN = 3 × 10−3 [203], the cross section is also large leading to σ(pp →

µµjjX) ∼ 6 × 10−2 pb. However we do not assume any such large mixings here.

In our type-II seesaw dominant models where all the heavy-light neutrino mixings

are predicted, the estimated value of dimuon signal cross section in the WL −WL

channel turns out to be ' 5×10−4(2×10−5) pb for the mass of MN1 = 100(200) GeV

resulting in nearly 24(12) events for beam luminosity L = 300fb−1 after including the

cuts [377]. This result is shown in fig.(7.4). Thus if the RH neutrino masses are within

MN1 ≤ 300 GeV, they are detectable at LHC run-II at
√
s = 14 TeV for projected

beam luminosity L = 3000 fb−1, although the RH neutrino masses MN1 ≤ 200

GeV are detectable with beam luminosity L = 300 fb−1. In these models the larger

values of RH neutrino masses, MN1 > 500 GeV, are likely to escape detection at

LHC through like-sign dilepton production signals. These conclusions remain valid

after imposing the various cut conditions applicable to the pp → l±l±jjX channels

[203,377]. In the case of MN2 we have similar conclusion.

7.4 Z ′ detection at colliders

One important and interesting feature of this work is the prediction of extra neutral

Z ′ boson at the TeV scale accessible for detection at LHC, International Linear

Collider [ILC], and future collider experiments. In this section we estimate relevant

cross sections which may help in identifying the Z ′-boson signals.

7.4.1 Cross section of Z ′ production at LHC

In this section we discuss the possible signatures of the Z ′ boson at LHC experiment

through opposite sign dilepton production cross sections. In the dilepton channel

we compare our estimated Z ′ production cross section with those obtained by CMS

experiment [390] in the channel pp→ Z ′X → l+l−X where l = e, µ.
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The resonant production cross section for the opposite sign dilepton production

mediated by Z ′ boson resonance is [392,395]

σ(pp→ Z ′ → ff̄) =
π

48s
[cuwu(s,M

2
Z′)

+cdwd(s,M
2
Z′)], (7.21)

where

cu = g′2(gu
2

V + gu
2

A )Br(l+l−), (7.22)

cd = g′2(gd
2

V + gd
2

A )Br(l+l−), (7.23)

and Br(l+l−) is the branching ratio defined through

Br(l+l−) =
Γ(Z ′ → l+l−)

ΓZ′
,

Γ(Z ′ → l+l−) =
g′2M ′

Z [gl
2

v + gl
2

A ]

48π
,

ΓZ′ =
g′2M ′

Z

48π
[9(gu

2

V + gu
2

A ) + 9(gd
2

V + gd
2

A )

+3(ge
2

V + ge
2

A ) + 3(gν
2

V + gν
2

A )]. (7.24)

The numerical values of different quantities occurring in eq.(7.22), eq.(7.23), and

eq.(7.24) are [392]

guV = 0.329; gdV = −0.591, guA = −0.46,

gdA = 0.46, geV = 0.068, gνV = 0.196,

geA = 0.46, gνA = 0.196, g′ = 0.59.. (7.25)

In eq.(7.21) wu(d) is related to the parton luminosities dLuū
dMz′2

and
dLdd̄
dMz′2

. Therefore

they depend only upon the collider energy and the Z ′ mass [392,395],

111



wu(d) =
∑

q=u,c(d,s,b)

∫ 1

0

dx1

∫ 1

0

dx2

∫ 1

0

dzfq/P (x1,M
2
z′)

fq/P (x2,M
2
z′)∆qq(z,M

2
z′) + fg/P (x1,M

2
z′)

[fq/P (x2,M
2
z′) + fq/P (x2,M

2
z′)]∆gq(z,M

2
z′)

+(x1 ↔ x2, P ↔ P )δ(
M2

z′

s
− zx1x2), (7.26)

where fi/P (x,M2) is the parton distribution function (PDF) for the proton,

∆gq(z,M
2
z′) = δ(1− z) +

αs(M
2
z′)

π
CF

[
δ(1− z)

(
π2

3
− 4

)

+4

(
ln(1− z)

1− z

)
+z[0,1]

− 2(1 + z)ln(1− z)

−1 + z2

1− z
lnz

]
, (7.27)

∆gq(z,M
2
z′) =

αs(M
2
z′)

2π
TF

[
(1− 2z + 2z2)ln

(1− z2)

z

+
1

2
+ 3z − 7

2
z2

]
, (7.28)

with CF = 4/3 and TF = 1/2.

The production cross section in the channel pp → Z ′X → l±l∓X as a function

of invariant dilepton mass (= MZ′) is shown in Fig.7.5. This result suggests that at
√
s = 14 TeV the number of Z ′ production events could be as large as 250 in the

region of MZ′ ∼ 1 TeV even for 30 fb−1 beam luminousity. However to get sizeable

number of events in the region of MZ′ ∼ 2 − 3 TeV, the beam luminousity has to

increase beyond several 1000 fb−1.
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Figure 7.5: The signal cross section for the the Z ′ boson resonance mediated cross
section as function of its mass, MZ′ , in the production channel pp→ Z ′X → l±l∓X.

7.4.2 Ratio of Z′ signal-Z signal cross section at LHC

The CMS collaboration [390] has measured the cross section ratio

σ(pp→ Z ′ → l±l∓X)/σ(pp→ Z → l±l∓X) (7.29)

as shown in Fig. 7.6 as a function of the Z ′ mass MZ′ . Our prediction using l = e is

shown by almost a slanted linear curve with falling value of the ratio with increasing

value of MZ′ plotted along the X-axis. The solid (dotted) black lines denote the

observed (expected) ratios. The yellow (green) region shows the expected values at

95% (68%) From this Fig.7.6 by comparison with the CMS data we find that in our

model the lower limit of the Z ′ mass is predicted to be MZ′ ∼ 2.8 TeV.

7.4.3 Z-Z ′ mixing angle and pp→ W+W− +X at LHC

In this subsection we discuss possible signature of Z ′ boson through the production

of W+W− pairs for different values of Z −Z ′ mixings at the LHC. The Z-Z ′ mixing

in the SO(10) embedding of two step breaking of left-right gauge symmetry has been

computed through the formula

tan2 φzz′ =
M2

0 −M2
Z

M2
Z′ −M2

0

, (7.30)

where M0 = MW√
ρ

0
cos θW

[208]. In our model since the LH triplet ∆L(3, 1,−2, 1) has

a very small VEV vL = 0.1 − 0.5 eV << Vew, the model is consistent with the tree

113



Figure 7.6: The ratio of the Z ′ boson and Z boson signal cross sections as a function
of Z ′ mass. The CMS data [390] is shown at different confidence levels of expectations
by the dark bands . The solid zig-zag curve denotes observed fluctuations about the
median which has been shown by the dotted line. The falling behavior indicated by
the red linear curve is our prediction as a function of M = MZ′ plotted along the
X-axis.

level value of the rho-parameter, ρ0 = 1. The radiative corrections due to the 125

GeV Higgs of the SM and the top quark yield ρ ' 1.009 [208].

The potential of LHC to discover Z − Z ′ mixing effects in the channel pp →
W+W− + X has been investigated [394]. In this paper we estimate the variation

of differential cross section with respect to the invariant mass MW+W− ≡ M of the

produced W+W− pair for different Z − Z ′ mixings. The corresponding differential

cross section for the process pp→ W+W−+X averaged over quark colors can be ob-

tained starting from the basic W+W− production cross section by quark-antiquark

annihilation qq̄ → W+W− mediated by Z ′ boson [394]

dσ̂Z
′

dcosθ
=

πα2cot2θw
48

β3
w(V 2

2,f

+A2
2,f )sin

2φ
ŝ

(ŝ−M2
Z′)

2 +M2
Z′Γ

2
Z′

×(
ŝ2

M4
w

sin2θ

+4
ŝ

M2
w

(4− sin2θ) + 12sin2θ), (7.31)
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where Γ′Z is the decay width of Z ′, βW =
√

1− 4M2
W/ŝ, φ is the Z-Z ′ mixing angle,

vf and af are the vector and axial vector coupling, ŝ is the Mandelstam variable for

square of c.m. energy, and θ is the angle between W− and the quark in the W+W−

center of mass frame [394].

V1f = gfV cosφ+ gf
′

V sinφ, (7.32)

V2f = gf
′

V cosφ− g
f
V sinφ,

A1f = gfAcosφ+ gf
′

A sinφ,

A2f = gf
′

A cosφ− g
f
Asinφ,

gf
′

V =
cosβ

cosθw ∗
√

6
,

gf
′

A =
cosφ+

√
5/3sinβW

2cosθw ∗
√

6
.

The values of gfV and gfA are given in eq.(7.25).

dσqq̄
dMdydz

= K
2M

s

∑
[fq/p1(η1)fq̄/p2(η2)

+fq̄/p1(η1)fq/p2(η2)]

×dσ̂qq̄
dz

, (7.33)

where s = center of mass energy, z = cos θ, and θ = angle between quark and W bo-

son, and fq/p1(η1,M) and fq̄/p2(η2,M) are PDFs for protons P1 and P2, respectively.

We have taken K = 1.2 [394] and use CTEQ-6L1 parton distribution functions for

numerical computation.

By integrating the right hand side of eq.(7.33) over Z, the rapidity of W± pair y and

invariant mass M around the resonance peak (MR − δM/2,MR + δM/2), we get

σ(pp→ W+W− → X) =

∫ MR+δM/2

MR−δM/2

dM

∫ Y

−Y
dy

×
∫ zcut

−zcut
dz[

dσqq̄
dMdydz

]. (7.34)
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Figure 7.7: Invariant mass distribution of W pairs in pp→ W+W−+X at the LHC
with

√
S = 14 TeV. The red, blue, and the brown curves are for the values of the

Z − Z ′ mixing angle φ at 1.2× 10−3, 0.9× 10−3, and 0.7× 10−3, respectively.

In our model the computed values of mixings are sinφ = 1.2× 10−3, 0.9× 10−3,

and 0.7× 10−3 at invariant mass values of 2.3 TeV, 3.5 TeV, and 4 TeV respectively.

The distribution curves are shown in fig.(7.7) for these three sets of values. Our

predicted results give the value of dσ
dM

= 0.52 (fb/GeV) for MZ′ = 3.5 TeV, dσ
dM

= 0.3

(fb/GeV) for MZ′ = 2.3 TeV, dσ
dM

= 0.001 (fb/GeV) for MZ′ = 4.0 TeV. The

predicted values of the peak positions at 2.3 TeV and 4 TeV can also provide a

test of the models if such a Z ′ is present in nature.

7.4.4 Z ′ cross section at ILC

The international linear collider (ILC) is expected to provide a rigorous experimental

verification of various Z ′ models as far as their predicted masses are concerned. In

our model, the variation of the predicted annihilation cross section via Z ′ resonance

with center of mass energy of the colliding lepton beams is given in Fig.7.8. To

estimate this cross section we have used the total decay width of Z ′ boson [392]

defined through eq.(7.24) and eq.(7.25).

The signal cross section at ILC is given by

σ(l+l− → Z ′ → f+f−) =
12π

M2
Z′

ΓllΓff

× s

(s−M2
Z′)

2 +M2
Z′Γ

2
Z′

(7.35)

The signal cross section is found to be 70 pb at the center of mass energy
√
s =

2800 GeV which corresponds to the Z ′ mass. Therefore its presence can be easily
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Figure 7.8: The signal cross section of the Z ′ boson as a function of its center of
mass energy at ILC.

detected even for as low a luminousity as O(1) pb−1.
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Chapter 8
Summary and Conclusion

In this thesis we have investigated the prospects of experimentally verifiable beyond

standard model physics in a type-II seesaw motivated non-SUSY SO(10) grand uni-

fication framework. The type-II seesaw mechanism can be successfully implemented

with a low mass Z ′ boson which can be accessible at LHC and planned accelerators.

The type-II scenario for explaining light neutrino masses and mixings may emerge

from the suggested texture of 9 × 9 neutrino mass matrix. The unification theories

based upon SO(10) group are particularly interesting. All the SM fermions of one

generation plus a right handed neutrino can be accommodated in the irreducible 16

dimension representation. Since SO(10) is a large group, its spontaneous symmetry

breaking to SM may pass through various intermediate symmetries. Once interme-

diate symmetries are present in the theory, gauge coupling unify nicely without any

requirement of supersymmetry.

In Chapter 1 we have motivated the need to study non-SUSY unification model with

experimentally reachable BSM predictions. We have also presented the scheme of

investigation, briefly. In Chapter 2 we recapitulated the SM and its ineptitude in ex-

plaining various BSM phenomena. In Chapter 3 we motivated and briefly discussed

the SU(5) and SO(10) GUT prototypes. We also briefly described the conventional

seesaw mechanisms (type-I, II and III) which can explain small neutrino masses very

naturally. Interestingly, in Chapter 4 we have discussed the mechanism where the

type-I seesaw term is cancelled out in the presence of SO(10) singlet fermions. Af-

ter the block diagonalization of 9 × 9 neutrino mass matrix, there are two type-I

seesaw terms with opposite signs resulting in the cancellation that results due to

the addition of these three extra fermion singlets, one per generation. Depending

upon the choice of various parameters suitably we have also shown, the possibility

of dominance of different seesaw mechanisms. We have discussed the condition for

118



inverse seesaw dominance, type-II seesaw dominance, double seesaw dominance and

linear seesaw dominance. In Chapter 5 we have investigated the prospects of type-II

seesaw mechanism for neutrino masses in a non-SUSY SO(10) GUT model which

passes through two intermediate symmetries (G2213 at 108 GeV and G2113 at TeV)

to reach to SM. A SO(10) singlet fermion (S) per generation is introduced to get

type-II seesaw. At TeV scale, Z ′ boson acquires mass through spontaneous breaking

of U(1)R×U(1)B−L gauge symmetries into U(1)Y generated predominantly through

Higgs representation 126H . The left-right gauge theory is restored at the G2213 in-

termediate energy scale. The Dirac neutrino mass matrix MD is the necessary input

to estimate lepton number and lepton flavor violating contributions, non-unitarity

effects as well as leptonic CP-violation. This matrix has been explicitly computed

using the associated renormalization group equations in the presence of G2213 and

G2113 intermediate gauge symmetries via bottom-up and top-down iterative meth-

ods, and by implementing the model constraints on the fermion masses at GUT

scale. The N − S mixing matrix M is estimated using the current non-unitarity ex-

perimental constraint. The predominant Dirac mass matrix together with TeV scale

heavy neutrino masses N − S mixing matrix M give the branching ratio predictions

only few orders less than the current bound. The LFV branching ratios calculated

in our model are Br(µ→ eγ) = 6.43× 10−17, Br(τ → eγ) = 8× 10−16, Br(τ → µγ)

= 2.41× 10−12 .

The predicted proton-lifetime in this model is found to be τp(p → e+π0) '
2.0 × 1034±1.0±0.34yrs where the first (second) uncertainty is due to GUT-threshold

effects (experimental errors). This lifetime is accessible to ongoing and planned

experiments. Thus, even though the model does not have low-mass RH W±
R bosons

in the accessible range of LHC, it is associated with interesting signatures on lepton

flavor, lepton number and baryon number violations. The predicted values of these

phenomena are in concordance with the predictions in the previous chapters.

In Chapter 6 we have discussed the phenomenon of neutrinoless double beta decay

and resonant leptogenesis through type-II seesaw framework in SO(10). Although

the WR boson is present at a high scale, there is a new contribution to the 0νββ

decay amplitude in the WL−WL channel due to the presence of extra fermion singlet.

The model is designed in such a way that the first generation sterile neutrino as well

as second generation sterile neutrino can contribute to the 0νββ decay . If the first

generation sterile neutrino is made light by the suitable choice of N − S mixing

term M, then the first light singlet fermion exchange contributes to the 0νββ decay.

Similarly if the second generation sterile neutrino is made light, then it can mediate

119



0νββ decay in the WL − WL channel. The model predicts the half life close to

the experimental bound at ms= 0.5 GeV for QD neutrinos, ms = 3 GeV for NH

neutrinos, and ms = 2 GeV for IH neutrinos.

In this Chapter 6 we have also discussed the generation of baryon asymmetry of

the universe in a novel fashion. Baryon asymmetry of the universe is achieved due

to the resonant leptogenesis of two quasi degenerate sterile neutrino pairs allowed in

the present model. For the case of QD type active neutrinos, we have showed that

the lightest singlet fermion of first generation mediates the 0νββ process as discussed

above, while the heavy quasidegenerate sterile fermions of second and third genera-

tion mediate resonant leptogenesis leading to right value of baryon asymmetry of the

universe. In the alternative possibility the lightest second generation singlet fermion

assists 0νββ but the heavy quasidegenerate singlet fermion of first and third genera-

tions mediate resonant leptogenesis leading to baryon asymmetry of the universe. In

case of the NH type active neutrino masses, only the lightest singlet fermion of first

generation is noted to mediate dominant 0νββ while heavier quasidegenerate singlet

fermion of second and third generations mediate resonant leptogenesis leading to the

right order of baryon asymmetry of the universe.

In Chapter 7 we have discussed the phenomenon of collider signature in a type-II

seesaw dominant model. In our model since the RH neutrino is present at TeV scale,

its signature can be verified experimentally in the PP collision through WL −WL

channel resulting in the production of dilepton events. In this model the Z ′ boson

is present at TeV scale. So the signature of Z ′ boson can be detected at different

collider experiments such as LHC and ILC.

Another interesting fact is that in this Chapter we have discussed the collider

signature of sterile neutrino through displaced vertex. Dilepton events can be ob-

served in the WL −WL channel during PP collision. Because of the SO(10) model

predictions of heavy-light mixing matrix elements, either first generation or second

generation sterile neutrino could be capable of mediating the displaced vertices re-

sulting in the like-sign dilepton events eejj, µµjj, and eµjj. Since in our model the

Dirac neutrino mass matrix MD and right handed neutrino mass matrix MN are

diagonal, we can detect the signature of dielectrons and dimuons in the PP collision.

In the displaced vertex since the background strength signal is very weak, 3-4 events

are sufficient to detect the signature of the sterile neutrino experimentally.

The above discussed model is self sufficiet enough to challenge some of the de-

merits of standard model such as non-zero neutrino mass, lepton flavour violation,

neutrinoless double beta decay, baryon asymmetry. The collider signature of right
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handed neutrino, sterile neutrino and Z ′ boson are discussed with predictions on sig-

nificant number of events. Our proposed model has attractive qualities of verifiability

or falsifiability through different types of ongoing experiments.
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[31] G. Senjanović, R. N. Mohapatra, Exact left-right symmetry and spontaneous

violation of parity, Phys. Rev. D, 12 (1975) 1502.

[32] H. Georgi and S. L. Glashow, Unity of All Elementary Particle Forces, Phys.

Rev. Lett., 32 (1974) 438-441.

[33] H. Georgi, The State of the Art - Gauge Theories. (Talk)”, AIP Conf. Proc.,

23 (1975) 575-582.

[34] A. De Rujula, Howard Georgi, and S. L. Glashow, Hadron Masses in a Gauge

Theory, Phys. Rev. D, 12 (1975) 147-162.

[35] Harald Fritzsch and Peter Minkowski, Unified Interactions of Leptons and

Hadrons, Annals Phys., 93 (1975) 1193.

[36] D. Chang, R. N. Mohapatra and M. K. Parida, Decoupling parity and left-right

symmetry breaking scales: A new approach to left-right symmetric models,

Phys. Rev. Lett., 52 (1984) 1072.

[37] D. Chang, R. N. Mohapatra and M. K. Parida, A new approach to left-right

symmetriy breaking in unified gauge theories, Phys. Rev. D, 30 (1984) 1052.

[38] D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, M. K. Parida, Experi-

mental tests of new SO(10) grand unification, Phys. Rev. D, 31 (1985) 1718.

[39] T. Yanagida in Workshop on Unified Theories, KEK Report 79-18, p. 95, 1979.

124



[40] M. Gell-Mann, P. Ramond and R. Slansky, Supergravity, p. 315. Amsterdam:

North Holland, 1979.

[41] S. L. Glashow, 1979 Cargese Summer Institute on Quarks and Leptons, p. 687,

New York: Plenum, 1980.

[42] R. N. Mohapatra and G. Senjanovic, Neutrino Mass and Spontaneous Parity

Violation, Phys. Rev. Lett., 44 (1980) 912.

[43] R. N. Mohapatra and G. Senjanovic, Neutrino masses and mixings in gauge

models with spontaneous parity violation, Phys. Rev. D, 23 (1981) 165.

[44] H. S. Goh, and R. N. Mohapatra, S. Nasri, SO(10) symmetry breaking and type

II seesaw, Phys. Rev. D, 70 (2004) 075022.

[45] R. N. Mohapatra, M. K. Parida, Type II Seesaw Dominance in Non-

supersymmetric and Split Susy SO(10) and Proton Life Time, Phys. Rev. D,

84 (2011) 095021.

[46] Alejandra Melfo, Alba Ramirez, Goran Senjanovic, Type II see-saw dominance

in SO(10), Phys. Rev. D, 82 (2010) 075014.

[47] G. Altarelli, G. Blankenburg, Different SO(10) Paths to Fermion Masses and

Mixings, J. High Energy Phys., 1103 (2011) 133.

[48] B. Bajc, G. Senjanovic, F. Vissani, How Neutrino and Charged Fermion Masses

are Connected Within Minimal Supersymmetric SO(10), hep-ph/0110310.

[49] S. Bertolini, M. Frigerio, M. Malinsky, Fermion masses in supersymmetric SO

(10) with type II seesaw mechanism: A nonminimal predictive scenario, Phys.

Rev. D, 70 (2004) 095002.

[50] P. S. Bhupal Dev, R. N. Mohapatra, M. Severson,Neutrino Mixings in SO(10)

with Type II Seesaw and θ13 Phys. Rev. D, 84 (2011) 053005, arXiv:1107.2378.

[51] K. S. Babu and R. N. Mohapatra, Predictive neutrino spectrum in mini-

mal SO(10) grand unification, Phys. Rev. Lett., 70 (1993) 2845-2848, hep-

ph/9209215.

[52] B. Brahmachari and R. N. Mohapatra, Unified explanation of the solar and

atmospheric neutrino puzzles in a minimal supersymmetric SO(10) model, Phys.

Rev. D, 58 (1998) 015001, hep-ph/9710371.

125



[53] Takeshi Fukuyama and Nobuchika Okada, Neutrino oscillation data versus min-

imal supersymmetric SO(10) model, JHEP, 0211 (2002) 011, hep-ph/0205066.

[54] Noriyuki Oshimo, Antisymmetric Higgs representation in SO(10) for neutrinos,

Phys. Rev. D, 66 (2002) 095010, hep-ph/0206239.

[55] Borut Bajc and Goran Senjanovic and Francesco Vissani, b-tau unification and

large atmospheric mixing: A Case for noncanonical seesaw, Phys. Rev. Lett.,

90518020 (2003) 051802, hep-ph/0210207.

[56] J. William Marciano and Goran Senjanovic, Predictions of Supersymmetric

Grand Unified Theories, Phys. Rev. D, 25 (1982) 3092.

[57] Ugo Amaldi, Wim de Boer, Hermann Furstenau,Comparison of grand unified

theories with electroweak and strong coupling constants measured at LEP, Phys.

Lett. B, 260 (1991) 447-455.

[58] Paul Langacker and Ming-xing Luo, Implications of precision electroweak ex-

periments for Mt, ρ0, sin2 θW and grand unification, Phys. Rev. D, 44 (1991)

817-822.

[59] N. G. Deshpande and E. Keith and Palash B. Pal, Implications of LEP results

for SO(10) grand unification, Phys. Rev. D, 46 (1993) 2261-2264.

[60] R. N. Mohapatra and M. K. Parida, Threshold effects on the mass scale pre-

dictions in SO(10) models and solar neutrino puzzle, Phys. Rev. D, 47 (1993)

264-272, hep-ph/9204234.

[61] D. G. Lee, R. N. Mohapatra, M. K. Parida and Merostar Rani, Predictions

for proton lifetime in minimal nonsupersymmetric SO(10) models: An update,

Phys. Rev. D, 51 (1995) 229-235, hep-ph/9404238.

[62] H. V. Klapdor-Kleingrothaus, A. Dietz, L. Baudis, G. Heusser, I.V. Krivosheina,

S. Kolb, B. Majorovits, H. Pas, H. Strecker, V. Alexeev, A. Balysh, A.

Bakalyarov, S.T. Belyaev, V.I. Lebedev, S. Zhukov (Kurchatov Institute,

Moscow, Russia), Latest results from the Heidelberg-Moscow double beta decay

experiment, Eur.Phys.J. A, 12 (2001) 147.

[63] C. Arnaboldi et al. [CUORICINO Collaboration], Results from a search for the

0νββ decay of 130Te, Phys. Rev. C, 78 (2008) 035502.

126



[64] C. E. Aalseth et al. [ IGEX Collaboration ], Phys. Rev. D, 65 (2002) 092007.

[65] J. Argyriades et al. [NEMO Collaboration], Measurement of the double beta de-

cay half life of 150-Nd and seach for neutrinoless decay modes with the NEMO3

detector, Phys. Rev. C, 80 (2009) 032501.

[66] I. Abt, M. F. Altmann, A. Bakalyarov, I. Barabanov, C. Bauer, E. Bellotti, S.

T. Belyaev, L. B. Bezrukov et al., A new 76Ge double beta decay experiment at

LNGS, [hep-ex/0404039]

[67] S. Schonert et al. [GERDA Collaboration], Nucl. Phys. Proc. Suppl., 145 (2005)

242 ; C. Arnaboldi et al. [CUORE Collaboration], Nucl. Instrum. Meth. A, 518

(2004) 775

[68] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, O. Chkvorets, Phys.

Lett. B, 586 (2004) 198 .

[69] H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, Mod. Phys. Lett. A, 21 (2006)

1547 .

[70] A. K. Alfonso et al. [CUORE Collaboration], Phys. Rev. Lett., 115 (2015)

102502.

[71] S.Schonert et al. (GERDA collaboration), The Germanium Detector Array

(Gerda) for the search of neutrinoless ββ decays of 76Ge at LNGS, Nucl. Phys.

Proc. Suppl.,145 (2005) 242.

[72] R. Arnold et al.(NEMO-3 Collaboration), Results of the search for neutrinoless

double- beta deay in 100MO with the NEMO-3 experiment, Phys. Rev. D, 92

(2015) 7 072011.

[73] A. Gando et al (KAMLAND-Zen collaboration), Limits on Majoron-emitting

double beta decays of 136Xe in the KamLand-Zen experiment, Phys. Rev.C,

86, (2012) 021601.

[74] A. Gando et al (KAMLAND-Zen collaboration),Limit on Neutrinoless double

beta decay of 136Xe from the First Phase of KamLAND-Zen and Comparison

with the Positive Claim in 76Ge, Phys. Rev. Lett.,110 (2013) 062502.

[75] M. Auger et al., Search for Neutrinoless Double-Beta Decay in 136Xe with EXO-

200, (EXO collaboration), Phys. Rev. Lett.,109 (2012) 032505.

127



[76] J. J. Schechter and J. W. F. Valle, Neutrinoless double beta decay in SU(2)×
U(1) theories, Phys. Rev. D, 25 (1982) 774.

[77] D. Aristizabal Sierra, M. Tortola, J. W. F. Valle, and A.Vicente, Leptogenesis

with a dynamical seesaw scale, JCAP, 07 (2014) 052, arXiv:1405.4706V2 [hep-

ph].

[78] Y. Fukuda et al. (SuperKamiokande Collaboration), Evidence for oscillation of

atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562-1567.

[79] M. Magg, C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys.

Lett. B, 94 (1980) 61.

[80] T. P. Cheng, L. F. Li, Neutrino masses, mixings and oscillations in SU(2)×U(1)

models of electroweak interactions, Phys. Rev. D, 22 (1980) 2860.

[81] G. Lazaridis, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in

SO(10), Nucl. Phys. B, 181 (1981) 287.

[82] J. J. Schechter and J. W. F. Valle, Neutrino masses in SU2 ×U1 theories Phys.

Rev. D, 22 (1980) 2227.

[83] P. S. Bhupal Dev and R. N. Mohapatra, TeV scale inverse seesaw in SO(10) and

leptonic non-unitarity effects, Phys. Rev. D, 81 (2010) 013001.

[84] P. S. Bhupal Dev and R. N. Mohapatra, Electroweak symmetry breaking and

proton decay in SO(10) SUSY GUT with TeV WR, Phys. Rev. D, 82 (2010)

035014.

[85] Tao Han, P. Langacker, Zhen Liu, Lian-Tao Wang, Diagnosis of a new neutral

gauge boson at the LHC and ILC for snowmass 2013, arXiv:1308.2738[hep-ph].

[86] R. L. Awasthi, M. K. Parida, Inverse seesaw mechanism in non-supersymmetric

SO(10), proton lifetime, non-unitarity effects and a low mass Z ′ boson, Phys.

Rev. D, 86 (2012) 093004, arXiv:1112.1826[hep-ph].

[87] R. L. Awasthi, M. K. Parida, S. Patra, Neutrino masses, dominant neutrinoless

double beta decay, and observable lepton flavor violation in left-right models

and SO(10) grand unification with low-mass WR, ZR bosons, JHEP, 08 (2013)

122, arXiv:1302.0672 [hep-ph].

128



[88] M. K. Parida, Ram Lal Awasthi, P. K. Sahu, Proton decay and new contri-

butions to 0ν2β decay in SO(10) with low-mass Z’ boson, observable n − n̄

oscillation, lepton flavor violation, and rare kaon decay, JHEP, 1501 (2015)

045, arXiv:1401.1412[hep-ph].

[89] R. N. Mohapatra, M. K. Parida, G. Rajasekaran, High scale mixing unification

and large neutrino mixing angle, Phys. Rev. D, 69 (2004) 053007, arXiv:0301234

[hep-ph].

[90] R. N. Mohapatra, M. K. Parida, G. Rajasekaran, Threshold effects on quasi-

degenerate neutrinos with high scale mixing unification, Phys. Rev. D, 71 (2005)

057301, arXiv: hep-ph/0501275.

[91] S. Agrawalla, M. K. Parida, R. N. Mohapatra, G. Rajasekaran, Neutrino mixings

ad leptonic CP violation from CKM matrix and Majorana phases, Phys. Rev.

D, 75 (2007) 033007, arXiv:hep-ph/0611225.

[92] B. Dutta, Y. Minura, R. N. Mohapatra, Origin of quark-lepton flavor in SO(10)

with type-II seesaw, Phys. Rev. D, 80 (2009) 095021.

[93] A. Joshipura, B. P. Kodrani, K. M. Patel, Fermion masses and mixings in a

µ− τ symmetric SO(10), Phys. Rev. D, 79 (2009) 115017 .

[94] H. S. Goh, R. N. Mohapatra, S. P. Ng, Minimal SUSY SO(10), b− τ unification

at large neutrino mixings, Phys. Lett.B, 570 (2003) 215, hep-ph/0303055.

[95] H. S. Goh, R. N. Mohapatra, S. P. Ng, Minimal SUSY SO(10) model and

predictions for neutrino mixings and leptonic CP violation, Phys. Rev. D, 68

(2003) 115008, hep-ph/0308197.

[96] K. S. Babu, C. Macesanu, Neutrino masses and mixings in a minimal SO(10)

model, Phys. Rev. D, 72 (2005) 115003.

[97] B. Dutta, Y. Mimura, R. N. Mohapatra, CKM CP violation in a minimal SO(10)

model for neutrinos and its implications, Phys. Rev. D, 69 (2004) 115014.

[98] S. Bertollini, T. Schwetz, M. Malinsky, fermion masses and mixings in SO(10)

models and the neutrino challenge to supersymmetric grand unified theories,

Phys. Rev. D, 73 (2006) 115012.

129



[99] C. S. Aulakh, S. K. Garg, The new minimal supersymmetric GUT: spectra, RG

analysis and fermion fits, Nucl. Phys. B, 857 (2012) 101, arxiv.0807.0917[hep-

ph].

[100] D. Chang, R. N. Mohapatra, Comment on the seesaw mechanisms for small

neutrino masses, Phys. Rev. D, 32 (1985) 1248.

[101] H. Nishino and others, Search for Nucleon Decay into Charged Anti-lepton

plus Meson in Super-Kamiokande I and II, Super-Kamiokande collaboration,

Phys. Rev. D, 85 (2012) 112001, aXiv:1203.4030 [hep-ph].

[102] Jennifer L. Raaf, Recent Nucleon Decay Results from Super-Kamiokande,

Super-Kamiokande Collaboration, Nucl. Phys. Proc. Suppl. 229-232, (2012) 559.

[103] J.L. Hewett and H. Weerts and R. Brock, and J.N. Butler,and B.C.K. Casey,

and others, Fundamental Physics at the Intensity Frontier, (2012), FERMILAB-

CONF-12-879-PPD, arXiv:1205.2671 [hep-ex].

[104] K.S. Babu and E. Kearns and U. Al-Binni and S. Banerjee and D.V. Baxter

and others, Baryon Nunber Violation, (2013), arXiv:1311.5285[hep-ph].

[105] P. Langacker, The physics of heavy Z ′ gauge bosons, Rev. Mod. Phys., 81

(2009) 1199, arXiv:0801.1345[hep-ph].

[106] P. Langacker, R. W. Robinet, J. L. Rosner, New heavy gauge bosons in PP

and P anti P collisions, Phys. Rev. D, 30 (1984) 1470.

[107] P. Langacker, Bounds on mixing between light and heavy gauge bosons, Phys.

Rev. D, 30 (1984) 2008.

[108] J. Erler, P. Langacker, S. Munir, and E. Roja, Improved constraints

on Z ′ bosons from electroweak precision data, JHEP, 08 (2009) 017;

arXiv:0906.2435[hep-ph].

[109] J. Erler and P. Langacker, Z bosons from E(6): collider and electroweak con-

straints, arXiv:1108.0685[hep-ph].

[110] M. -C Chen, B. A. Dobrescu, FERMILAB-PUB-08-676-T.

[111] A. Cakir, Prospects of new physics searches using high Lumi-LHC,

arXiv:1412.8503.

130



[112] CMS Collaboration, V. Khachatryan et al., Search for physics beyond the

standard model in dilepton mass spectra in proton-proton collision at
√
s = 8

TeV, JHEP, 04 (2015) 025, arXiv:1412.6302[hep-ex].

[113] A. E. Faraggi, M. Guzzi, Extra Z ′s and W s in heteotic-string deived models,

arXiv: 1507.07406.

[114] A. E. Faraggi, J. Rizos, A light Z ′ heterotic-string derived model, Nucl. Phys.

B, 895 (2015) 233.

[115] Paul. Langacker,The Physics of New U(1)′ Gauge Bosons, AIP Conf.Proc.1200,

(2010) 55-63,arXiv:0909.3260[hep-ph].

[116] For earlier work on Z ′ boson in GUTs embedding two-step breaking of left-

right gauge symmetry, see M. K. Parida, A. Raychaudhuri, Low-mass parity

restoration, weak-interaction phenomenology, and grand unification, Phys. Rev.

D, 26 (1982) 2364.

[117] M. K. Parida, C. C. Hazra, Are N Anti- oscillation and proton decay mutually

exclusive, Phys. Lett. B, 121 (1983) 355.

[118] M. K. Parida, C. C. Hazra, Superheavy Higgs scalar effects in effective gauge

theories from SO(10) grand unification with low mass right-handed gauge

bosons, Phys. Rev. D, 40 (1989) 3074.

[119] O.J.P. Eboli and J. Gonzalez-Fraile, and M.C. Gonzalez-Garcia, Present

Bounds on New Neutral Vector Resonances from Electroweak Gauge Boson Pair

Production at the LHC, Phys.Rev. D, 85 (2012) 055019, arXiv:1112.0316[hep-

ph].

[120] A. Falkowski and C. Grojean and A. Kamiska and S. Pokorski and A. Weiler,

If no Higgs then what?, JHEP, 111 (2011) 028, arXiv:1108.1183[hep-ph].

[121] Guido Altarelli, The Standard model and beyond, Nucl. Phys. B - Proceedings

Supplements, 75 (1999) 37-45, arXiv:hep-ph/9809532.

[122] F. Capozzi, G. L. Fogli, G.L. and E. Lisi,and A. Marrone, and D. Montanino

and others, Status of three-neutrino oscillation parameters, circa 2013, (2013),

arXiv:1312.2878[hep-ph].

131



[123] G. L. Fogli, E. Lissi, and A. Marrone and A. Melchiorri and A. Palazzo and

others, Observables sensitive to absolute neutrino masses. II,Phys.Rev. D, 78

(2008) 033010, arXiv:0805.2517 [hep-ph].

[124] J. Beringer et. al., Review of Particle Physics, 2012-2013. Review of Particle

Properties, Phys. Rev. D, 86 (2012) 010001, Particle Data Group. Berkeley.

[125] A. D. Sakharov, Violation of CP Invariance, CP Asymmetry, and Baryon

Asymmetry of the Universe, Pisma Zh.Eksp.Teor.Fiz.5, (1967), 32-35.

[126] Andrew G. Cohen and D.B. Kaplan and A.E. Nelson, Progress in elec-

troweak baryogenesis, Ann. Rev. Nucl. Part. Sci., 43 (1993) 27-70,arXiv: hep-

ph/9302210.

[127] M. Quiros, Field theory at finite temperature and phase transitions,

Helv.Phys.Acta, 67 (1994) 451-583.

[128] V. A. Rubakov and M. E. Shaposhnikov, Electroweak baryon number noncon-

servation in the early universe and in high-energy collisions, Usp. Fiz. Nauk,

166 (1996) 493-537, arXiv: hep-ph/9603208.

[129] Marcela S. Carena and M. Quiros and C.E.M. Wagner, Electroweak baryogen-

esis and Higgs and stop searches at LEP and the Tevatron, Nucl. Phys. B, 524

(1998) 3-22, arXiv: hep-ph/9710401.

[130] Gunter Sigl, Ultrahigh-energy cosmic rays: A Probe of physics and astrophysics

at extreme energies, Science, 291 (2001) 73-79, astro-ph/0104291.

[131] D.R.T. Jones, Two Loop Diagrams in Yang-Mills Theory, Nucl. Phys. B, 75

(1974) 531.

[132] D.R.T. Jones, The Two Loop beta Function for a G(1)×G(2) Gauge Theory,

Phys. Rev. D, 25 (1982) 581.

[133] Amol Dighe and Diptimoy Ghosh and Ketan M. Patel and Sreerup Raychoud-

huri, Testing Times for Supersymmetry: Looking Under the Lamp Post, Int. J.

Mod. Phys. A, 28 (2013) 1350134, arXiv:1303.0721 [hep-ph].

[134] Paul Langacker, The Standard Model and Beyond, CRC Press, New York

(2009).

132



[135] Paul Langacker, Grand Unified Theories and Proton Decay, Phys.Rept., 72

(1981) 185.

[136] Li Ling-Fong, Group Theory of the Spontaneously Broken Gauge Symmetries,

Phys. Rev. D, 9 (1974) 1723.

[137] V. Elias, S. Eliezer,and A. R. Swift, Comment on Group Theory of the Spon-

taneously Broken Gauge Symmetries, Phys. Rev. D, 12 (1975) 3356.

[138] R. N. Mohapatra, Unification and Supersymmetry:The Frontiers of Quark-

Lepton Physics, 2002, Springer, New York.

[139] H. Georgi, Lie Algebras In Particle Physics: From Isospin To Unified Theories,

1999, Frontiers in Physics, Westview Press, New York.

[140] Graham G. Ross, Grand Unified Theories, 1984, Frontiers in Physics, Westview

Press,New York.

[141] Borut Bajc, Grand Unification and Proton Decay,Lectures given in ICTP sum-

mer school on Particle Physics (2011).

[142] Savas Dimopoulos, Howard Georgi, Softly Broken Supersymmetry and SU(5),

Nucl. Phys. B, 193 (1981) 150.

[143] N. Sakai, Naturalness in Supersymmetric Guts, Z. Phys. C, 11 (1981) 153.

[144] Borut Bajc and Goran Senjanovic, Seesaw at LHC, JHEP, 0708 (2007) 014,

arXiv:hep-ph/0612029.

[145] Borut Bajc and Miha Nemevsek and Goran Senjanovic, Probing seesaw at

LHC, Phys. Rev. D, 76 (2007) 055011, arXiv:hep-ph/0703080.

[146] P. Nath, P. F. Perez, Proton stability in grand unified theories, in strings and

in branes, Phys. Rept., 441 (2007) 191.

[147] Rabindra N. Mohapatra and B. Sakita, SO(2n) Grand Unification in an SU(N)

Basis, Phys. Rev. D, 21 (1989) 1062.

[148] Pran Nath and Raza M. Syed, Analysis of couplings with large tensor rep-

resentations in SO(2N) and proton decay, Phys. Lett. B, 506 (2001) 68-76,

arXiv:hep-ph/0103165.

133



[149] K.S. Babu and Ernest Ma, Symmetry Breaking in SO(10): Higgs Boson Struc-

ture, Phys. Rev. D, 31 (1985) 2316.

[150] Masaki Yasue, How to break SO(10) via SO(4) × SO(6) down to SU(2)L ×
SU(3)C × U(1), Phys. Lett. B, 103 (1981) 33.

[151] Masaki Yasue, Symmetry Breaking of SO(10) and Constraints on Higgs Po-

tential. 1. Adjoint (45) and Spinorial (16), Phys. Rev. D, 24 (1981) 1005.

[152] Charanjit S. Aulakh and Aarti Girdhar, SO(10) a la Pati-Salam, Int. J. Mod.

Phys. A, 20 (2005) 865-894, arXiv:hep-ph/0204097.

[153] Takeshi Fukuyama and Amon Ilakovac and Tatsuru Kikuchi, and Stjepan Mel-

janac and Nobuchika Okada, SO(10) group theory for the unified model building,

J. Math. Phys., 46 (2005) 033505, arXiv: hep-ph/0405300.

[154] D. Chang and A. Kumar, Symmetry Breaking of SO(10) by 210-dimensional

Higgs Boson and the Michel’s Conjecture, Phys. Rev. D, 33 (1986) 2695.

[155] R.Slansky, Group Theory for Unified Model Building, Phys. Rept., 79 (1981)

1-128.

[156] John M. Gipson and R.E. Marshak, Intermediate Mass Scales in the New

SO(10) Grand Unification in the One Loop Approximation, Phys. Rev. D, 31

(1985) 1705.

[157] Stefano Bertolini and Luca Di Luzio and Michal Malinsky, Intermediate mass

scales in the non-supersymmetric SO(10) grand unification: A Reappraisal,

Phys. Rev. D, 80 (2009) 015013, arXiv:0903.4049 [hep-ph].

[158] Stephen M. Barr, A New Symmetry Breaking Pattern for SO(10) and Proton

Decay, Phys. Lett. B, 112 (1982) 219.

[159] Howard Georgi and Dimitri V. Nanopoulos, Ordinary Predictions from Grand

Principles: T Quark Mass in O(10), Nucl. Phys. B, 155 (1979) 52.

[160] Steven Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev.

Lett., 43 (1979) 1566-1570.

[161] Peter Minkowski, µ → eγ at a Rate of One Out of 1-Billion Muon Decays?,

Phys. Lett. B, 67 (1977) 421.

134



[162] R. Foot, H. Lew, X. G. He, G. C. Joshi, See-saw neutrino masses induced by

a triplet of leptons, Z. Phys. C, 44 (1989) 441.

[163] For more recent reviews see G. Altarelli, Neutrinos Today: An Introduction,

in Proceedings: 49th Recontres de Moriond on Electroweak Interactons and

Unified Theories, Thuile, Italy, March 15-22, (2014).

[164] A. Yu. Smirnov, Theories of Neutrino Masses and Mixings, Nuovo Cim.C, 037

(2014) no.3, 29-37.

[165] G. Senjanovic, Origin of Neutrino Mass, Pos PLANCK2015 (2016) 141; R. N.

Mohapatra, From Old Symmetries to New Symmetries: Quarks, Leptons, and

B-L, in “50 Years of Quarks” pp 245-263 (World Scientific, 2015).

[166] R. N. Mohapatra, Neutrino Mass as a Signal for TeV Scale Physics, Nucl. Phys.

B, 908 (2016) 423-435.

[167] J. W. F. Valle, Status and Implications of Neutrino Mass: A Brief Panorama,

Int. J. Mod. Phys. A, 30 (2015) no.3 1530034.

[168] O. G. Miranda, J. W. F. Valle, Neutrino Oscillation and Seesaw Origin of

Neutrino Masses, Nucl. Phys. B, 908 (2016) 436-455.

[169] H. Georgi, Unified Gauge Theories, In *Coral Gables 1975, Proceedings, The-

ories and Experiments In High Energy Physics*, New York 1975, 329-339.

[170] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons,

Annals Phys. 93 (1975) 193.

[171] X. Chu, A. Yu Smirnov, Neutrino mixing and masses in SO(10) GUTs with

hidden sector and flavor symmetries, JHEP, 1605 (2016) 135; arXiv:1604.03977.

[172] M. K. Parida, Intermediate left-right gauge symmetry, unification of couplings

and fermion masses in SUSY SO(10)XS(4), Phys. Rev. D, 78 (2008) 053004,

arXiv:0804.4571[hep-ph].

[173] M. K. Parida, K. Bora, P. K. Sahu, Flavor unification, dark matter, proton

decay and other observable predictions with low-scale S(4) symmetry, Phys.

Rev. D, 83 (2011) 093004, arXiv:1011.4577.

[174] C. Hagedorn, T. Ohlsson, S. Riad, M. A. Schmidt, Unification of gauge

couplings in radiative neutrino mass models, JHEP, 09 (2016) 111, arXiv:

1605.03986.

135



[175] M. Kadastic, K. Kanike, M. Raidal, Dark matter as the signal of grand uni-

fication, Phys. Rev. D, 80 (2009) 085020; Erratum: Phys. Rev. D 81 (2010)

029903.

[176] M. Kadastic, K. Kanike, M. Raidal, Phys. Rev. D, 81 (2010) 015902.

[177] T. Hambye, On the stability of particle dark matter, arXiv:1012.4587.

[178] M. Frigerio, T. Hambye, Dark matter stability and unification without super-

symmetry, Phys. Rev. D, 81 (2010) 075002.

[179] Y. Mambrini, M. Nagata, K. Olive, J. Quevillon, J. Zhang, Phys. Rev. D, 91

(2015) no.9 09500

[180] J. Schecter, J. W. F. Valle, Neutrinoless double beta decay in SU(2) × U(1)

theories, Phys. Rev. D, 25 (1982) 2951.

[181] R. N. Mohapatra, Neutrino mass as a signal of TeV scale physics, Nucl. Phys.

B, 908 (2016) 423-435.

[182] J. C. Helo, M. Hirsch, S. Kovalenko, Heavy neutrino searches at LHC with

displaced vertices, Phys. Rev. D, 89 (2014) 073005, arXiv:1312.2900 [hep-ph].

[183] S. Antusch, E. Cazzato, O. Fischer, Displaced vertex searches for sterile neu-

trinos at future lepton colliders, arXiv:1604.02420[hep-ph].

[184] Bidyut Prava Nayak, M. K. Parida, Dilepton events with displaced vertices,

double beta decay, and type-II seesaw dominance, TeV scale Z’ and heavy neu-

trinos, arXiv:1509.06192 and references therein.

[185] S. Antusch, J. P. Baumann, and E. Fernandez-Martinez, Non-standard neu-

trino interactions with matter from physics beyond the standard model, Nucl.

Phys. B, 180 (2009) 369, arXiv:0807.1003[hep-ph].

[186] S. Antush, C. Biggio, E. Fernandez-Martinez, M. Belen Gavela, J. Lopez-

Pavon, Unitarity of the leptonic mixing matrix, J. High Energy Phys., 10 (2006)

084, arXiv:hep-ph/0607020.

[187] D.V. Forero, S. Morisi, M. Tartola and J. W. F. Valle, Lepton flavour violation

and non-unitarity lepton mixing in low scale type-I seesaw, J. High Energy

Phys., 09 (2011) 142, arXiv:1107.6009[hep-ph].

136



[188] B. Dutta, R. N. Mohapatra, Lepton flavor violation and neutrino mixings in

3X2 seesaw model, Phys. Rev. D, 68 (2003) 056006, hep-ph/0305059.

[189] A. Pilaftsis, T. E. J. Underwood, Resonant leptogenesis, Nucl. Phys. B, 692

(2004) 303, hep-ph/0309342.

[190] J. Kersten, A. Yu. M. Smirnov, Right-handed neutrinos at LHC and the

mechanism of neutrini mass generation, Phys. Rev. D, 76 (2007) 073005,

arXiv:0705.3522[hep-ph].

[191] C. H. Lee, P.S. Bhupal Dev, R. N. Mohapatra, Natural TeV scale left-right

seesaw mechanism for neutrinos and experimental tests, Phys. Rev. D, 88 (2013)

093010, arXiv:1309.0774[hep-ph].

[192] Carl H. Albright, S.M. Barr, Leptogenesis in type-III seesaw mechanism, Phys.

Rev. D, 69 (2004) 073010, arXiv:hep-ph/0312224.

[193] C. H. Albright, S. M. Barr, Predicying quark and lepton masses ad mixings,

Phys. Lett. B, 452 (1999) 287.

[194] C. H. Albright, K. S. Babu, S. M. Barr, A minimality condition and atmo-

spheric neutrino oscillations, Phys. Rev. Lett., 81 (1998) 1167.

[195] P -H. Gu, M. Hirsch, U. Sarkar, J. W. F. Valle, Neutrino masses.leptogenesis

and dark matter in hybrid seesaw, Phys. Rev.D, 79 (2009) 03310,

arXiv:0811.0953.

[196] S. Goswami, S. Khan, A. Watanabe, Neutrino model, leptogenesis and dark

matter in hybrid seesaw, Phys. Lett. B, 693 (2010) 249, arXiv:0811.4744.

[197] Shao-Long Chen, M. Frigerio, E. Ma, Hybrid seesaw neutrino masses with A4

family symmetry, Nucl. Phys. B, 724 (2005) 423, hep-ph/0504181.

[198] P. -H. Gu, U. Sarkar, Leptogenesis with linear, inverse or double seesaw, Phys.

Lett. B, 694 (2011) 226, arXiv:1007.2323[hep-ph].

[199] M. Hirsch, S. Morisi, J. W. F. Valle, A4 based tri-bimaximal mixing within

inverse and linear seesaw, Phys. Lett. B, 679 (2009) 454, arXiv:0905.3056[hep-

ph].

[200] J. Chakrabortty, A. S. Joshipura, P. Mehta, S. K. Vempati, Conf. Proc.

C0908171 (2010) 493.

137



[201] F. P. Deppisch, W. -C. Huang, Dark matter and leptogenesis in a hybrid

neutrino mass model, JHEP, 1501 (2015) 066; arXiv:1411.2922[hep-ph].

[202] S. T. Petcov, W. Rodejohann, T. Shindou, Y. Takanishi, The seesaw mecha-

nism, neutrino Yukawa couplings, LFV decays l(i) → l(j)+gamma and leptoge-

nesis, Nucl. Phys. B, 739 (2006) 208, hep-ph/0510404.

[203] Chien-Yi Chen, P. S. Bhupal Dev, R. N. Mohapatra, Probing heavy-light neu-

trino mixing in left-right seesaw models at the LHC, Phys. Rev. D, 88 (2013)

033014.

[204] S. N. Gninenko. D. S. Gorbunov, M. E. Shaposhnikov, Search for GeV scale

sterile neutrinos responsible for active eutrino oscillations and baryon asymme-

try of the universe, Adv. High Enegy Phys. 2012 (2012) 718259.

[205] L. Canetti, M. Drewes, M. Shaposhnikov, Sterile neutrinos as the origin

of dark and baryonic matter, Phys. Rev. Lett. 110 (2013) no.6 061801,

arXiv:1204.3902[hep-ph].

[206] L. Canetti, M. Drewes, T. Hochsch, T. Frossard, M. Shaposhnikov, Dark mat-

ter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys.

Rev. D, D 87 (2013) 093008, arXiv:1208.4607[hep-ph].

[207] Shao-Long Chen, R. N. Mohapatra, S. Nussinov, R-parity breaking via type-II

seesaw, decaying gravitino dark matter and PAMELA positron excess, Phys.

Lett. B, 677 (2009) 311, arXiv:0903.2562[hep-ph].

[208] B. P. Nayak, M. K. Parida, New mechanism for Type-II seesaw dominance in

SO(10) with low mass Z’, RH neutrinos,and verifiable LFV, LNV and proton

decay, Eur. Phys. J. C, 75 (2015) 183, arXiv:1312.3185 .

[209] B. P. Nayak, M. K. Parida, Singlet fermion assisted dominant seesaw with

lepton flavor, and number violation, and leptogenesis, Adv. High Energy Phys.

2017 4023493, arXiv:1607.07236[hep-ph].

[210] A. Melfo, M. Nemevsek, F. Nesti, G. Senjanovic, Y. Zhang, Type-II seesaw at

LHC: the roadmap, Phys. Rev. D, 85 (2012) 055018, arXiv:1108.4416.

[211] G. Bambhaniya, P. S. Bhupal Dev, S. Goswami, The scalar triplet contribu-

tion to lepton flavor violation and neutrinoless double beta decay in left-right

symmetric model, JHEP, 1604 (2016) 046.

138



[212] R.N. Mohapatra, J. W. F. Valle, Neutrino mass and baryon number noncon-

servation in superstring models, Phys. Rev. D, 34 (1986) 1642 .

[213] R. N. Mohapatra, Mechanism of understanding small neutrino masses in su-

perstring theories, Phys. Rev. Lett., 56 (1986) 561.

[214] R. N. Mohapatra, Status of neutrino masses in supersymmetric and super-

string theories, Presented at conference C 86-06-11 (Osaka Beta Symposium

1986:0042).

[215] R. N. Mohapatra, Small neutrino masses in gauge theories”, Published in HEI-

DELBERG 1987, PROCEEDINGS NEUTRINO PHYSICS 27-43 (1987).

[216] C. H. Albright, search for solutions of superstring neutrino mass problem, Phys.

Lett. B, 178 (1986) 219.

[217] E. Witten, New issues in manifolds with SU(3) holonomy, Nucl. Phys. B, 268

(1986) 79.

[218] S. Nandi, U. Sarkar, A solution to neutrino mass problem in superstring E6

theory, Phys. Rev. Lett., 56 (1986) 564.

[219] J. W. F. Valle, Gauge theories and the physics of neutrino mass, Prog. Part.

Nucl. Phys., 26 (1991) 91-171.

[220] D. Wyler, L. Wolfenstein, Massless neutrinos in left-right symmetric models,

Nucl. Phys. B, 218 (1983) 205.

[221] J. Bernabeau, A. Santamaria, J. Vidal, A. Mendez, J. W. F. Valle, Lepton

flavor nonconservation at high energies in a superstring inspired standard model,

Phys. Lett. B, 187 (1987) 303.

[222] E. Ma, Lepton number nonconservation in E(6) inspired superstring models,

Phys. Lett. B, 191 (1987) 287.

[223] J. Adam et al. (MEG Collaboration), New limit on the lepton flavour violating

decay µ→ e gamma, Phys. Rev. Lett., 107 (2011) 171801, arxiv: 1107.5547[hep-

ex].

[224] K. Hayasaka et al, (Belle Collaboration), New search for tau → µ gamma and

tau → e gamma decay at Belle, Phys. Lett. B, 666 (2008) 16, arxiv:0705.0650

[hep-ex].

139



[225] U. Bellgardt et al., (SINDRUM Collaboration), Search for the decay µ+ →
e+e+e−, Nucl. Phys. B, 299 (1988) 1.

[226] W. H. Bertl et al., (SINDRUM II Collaboration), A search for µ-e conversion

in muonic gold, Eur. Phys. J. C, 47 (2006) 337.

[227] M. L. Brooks et al. (MEG Collaboration), Phys. Rev. Lett., 83 (1999) 1521.

[228] Y. Kuno (PRIME Working Group), Nucl. Phys. B. Proc. Suppl. 149 (2005)

376.

[229] For a review of earlier results see F. R. Joaquim, A. Rossi, Nucl. Phys. B, 765,

(2007) 71.

[230] J. Adam et al.,(MEG Collaboration), New constraint on the existence of µ+ →
e+ gamma decay, Phys. Rev. Lett., 110 (2013) 201801, arXiv:1303.0754.

[231] A. M. Baldini et al., (MEG Collaboration), Search for the lepton flavor violat-

ing decay µ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys.

J. C, 76 (2016) no.8 434 arXiv:1605.05081.

[232] B. Aubert et al. (BABAR Collaboration), Search for lepton flavor violation

in the decays τ → eγ and τ → µγ, Phys. Rev. Lett., 104 (2010) 021802,

arXiv:0908.2381.

[233] R. H. Bernstein, P. S. Cooper, Charged lepton flavor violation: An experi-

menter’s guide, Phys. Rept., 532, (2013) 27, arXiv:1307.5687.

[234] S. K. Kang and C. S. Kim, Extended double seesaw model for neutrino mass

spectrum and low scale leptogenesis, Phys. Lett. B, 646 (2007) 248, arXiv:hep-

ph/0607072.

[235] J. Ellis, D. V. Nanopoulos and K. Olive, Flipped heavy neutrinos from the solar

neutrino problem to baryogenesis, Phys. Lett. B, 300 (1993) 121, arXiv:hep-ph/

9211325 .

[236] H. S. Cheon, S. K. Kang, C. S. Kim, Low scale leptogeesis and dak

matter candidates in an extended seesaw model, JCAP, 0805:004 (2009),

arXiv:0710.2416v4 [hep-ph].

[237] H. S. Cheon, S. K. Kang, C. S. Kim, Phys. Lett. B, 675 (2009) 203-209.

140



[238] S. K. Kang, A. Patra, KeV sterile neutrino dark matter ad low scale leptoge-

nesis, arXiv:1412.4899v2 [hep-ph].

[239] S. K. Majee, M. K. Parida, and A. Raychaudhuri, Neutrino mass and low scale

leptogenesis in a testable SUSY SO(10) model, Phys. Lett., 668 (2008) 299.

[240] M. K. Parida and A. Raychaudhuri, Inverse seesaw, leptogenesis, observable

proton decay and ∆++
R in SUSY SO(10) with heavy WR, Phys. Rev. D, 82 (2010)

093017, arXiv:1007.5085[hep-ph].

[241] S. K. Majee, M. K. Parida, A. Raychaudhuri, and U. Sarkar, Low intermediate

scales for leptogenesis in supersymmetic SO(10) grand unified theories, Phys.

Rev. D 75, (2007) 075003.

[242] M. K. Parida, S. Patra, Left-right models with light neutrino mass prediction

and dominant neutrinoless double beta decay rate, Phys. Lett. B, 718 (2013)

1407-1412, arXiv:1211.5000[hep-ph].

[243] M. K. Parida, B. Sahoo, Planck-scale induced left-right gauge theory at LHC

and experimental tests, Nucl. Phys. B, 906 (2016) 77-104, arXiv:1411.6748[hep-

ph].

[244] B. Sahoo, M. K. Parida, Low mass right-handed gauge bosons from mini-

mal grand unified theories, Nucl. Part. Phys. Proc. 273-275 (2015) 2672-2644,

arXiv:1510.01096.

[245] E. Akhmedov, M. Lindner, E. Schnapka, J. W. F. Valle, Dynamical left-right

symmetry breaking, Phys. Rev. D, 53 (1996) 2752, hep-ph/9509255.

[246] E. Kh. Akhmedov, A. S. Josipura, S. Ranfone, J. W. F. Valle, Nucl. Phys. B,

441 (1995) 61.(LRS model with additional spontaneously broken U(1) global

symmetry: ντ → ν + J(Majoron) leading to nonvanishing mnu (due to S-ν

mixing . Gives low WR scale. Charged LFV Majoron decays: Br.(li → lj +J) >

10−4 − 10−6).

[247] S. Morisi, J. W. F. Valle, Neutrino masses and mixing: a flavor symmetry

roadmap, Fortsch. Phys., 61 (2013) 466-492, arXiv:1206.6678.

[248] F. Deppisch, Lepton flavor violation and flavor symmetries, Fortsch. Phys., 61

(2013) 622, arXiv:1206.5212[hep-ph].

141



[249] A. de Gouvea, P. Vogel, Lepton Flavor and Number Conservation Beyond the

Standard Model, Prog. Part. Nucl. Phys., 71 (2013) 75, arXiv:1303.4097[hep-

ph].

[250] S. Boucenna, S. Morisi, J. W. V. F. Valle, The low scale approach to neutrino

masses, Adv. High Energy Physics, 2014 (2014) 831598, arXiv:1404.3751[hep-

ph]

[251] F. Deppisch, Neutrino physics and LHC physics, Acta Phys. Polon. B, 46

(2015) no.11 2301.

[252] F. Deppisch, Neutrinos and coliider physics, New J. Phys., 17 (2015) no.3

036005, arXiv:1502.06541[hep-ph].

[253] A. Joshipura, J. W. F. Valle, Invisible Higgs decays and neutrino physics, Nucl.

Phys. B, 397 (1993) 105.

[254] M. Diaz, M. Garcia-Jarena, D. Restrepo, J. W. F. Valle, Seesaw Majoron

model of neutrino mass and novel signals in Higgs boson production at LEP,

Nucl. Phys. B, 527 (1998) 44, hep-ph/9803362.

[255] C. Bonilla, J. W. F. Valle, J. C. Romao, Neutrino mass and invisible Higgs de-

cays at the LHC, Phys. Rev. D, 91 no.11 (2015) 113015, arXiv:1502.01649[hep-

ph].

[256] J. Heeck, Interpretation of Lepton Flavor Violtion, arXiv:1610.07623[hep-ph].

[257] F. Deppisch, J. W. F. Valle, Enhanced lepton flavor violation in supersymmet-

ric inverse seesaw model, Phys. Rev. D, 76 (2005) 036001, hep-ph/0406040.

[258] F. Deppisch, T. Kosmas, J. W. F. Valle, Enhanced µ− e-conversion in nuclei

in the inverse seesaw model, Nucl. Phys. B, 752 (2006) 80, hep-ph/0512360.

[259] F. Deppisch, N. Desai, J. W. F. Valle, Is charged lepton flavor violation a high-

energy phenomenon, Phys. Rev. D, 89 (2013) 051302(R), arXiv:1308.6789[hep-

ph].

[260] J. Garoya, M. C. Gonjalez-Gartia, and N. Rius, J. High Energy Phys., 02

(2007) 021.

[261] C. Arina, F. Bazzochi, N. Forengo, J. C. Romao, and J. W. F. Valle, Minimal

supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys.

Rev. Lett., 101 (2008) 161802, arXiv:0806.3225[hep-ph].

142



[262] M. Malinsky, T. Ohlsson, Z. -z. Xing, and H. Zhang, Phys. Lett. B, 6791

(2009) 242.

[263] A. Abada, M. E. Krauss, W. Porod, F. Staub, A. Vicente, C. Weiland, Lepton

flavor violation in low-scale seesaw model: SUSY and non-SUSY contributions,

JHEP, 11 (2014) 048, arXiv:1408.0138[hep-ph].

[264] S. Boucenna, J. W. F. Valle, A. Vicente, Predicting chrged lepton flavor vi-

olation from 3-3-1 gauge symmetry, Phys. Rev. D, 92 (2015) no.5 053001,

arXiv:1502.077546[hep-ph].

[265] V. Cirigliano, A. Kurylov, M. J. Ramsey-Musolf, P. Vogel, Neutrinoless double

beta decay and lepton flavor violation, Phys. Rev. Lett., 93 (2004) 231802.

[266] M. E. Peskin, T. Takeuchi, New constraint on a strongly interacting Higgs

sector, Phys. Rev. Lett., 65 (1990) 964; Estimation of oblique electroweak cor-

rections, Phys. Rev. D, 46 (1992) 381.

[267] G. Altarelli, R. Barbieri, Vacuum polarization effects of new physics on elec-

troweak processes, Phys. Lett. B, 253 (1991) 161.

[268] A. Kumar, R. N. Mohapatra, A model for neutrino decays, Phys. Lett. B, 150

(1995) 191.

[269] E. Akhmedov, M. Lindner, E. Schnapka, J. W. F. Valle, Left-right symmetry

breaking in NJL approach, Phys. Lett. B, 368 (1996) 270, hep-ph/9507275.

[270] S. M. Barr, A different seesaw formula for neutrino masses, Phys. Rev. Lett.,

92 (2004) 101601, hep-ph/0309152.

[271] S. M. Barr, B. Kyae, A general analysis of corrections to standard seesaw

formulas in grand unified models, Phys. Rev. D, 70 (2004) 075005, arXiv:hep-

ph/0407154.

[272] T. Fukuyama, T. Kikuchi, T. Osaka, J. Cosmol. Astropart. Phys. 0703 (2007)

018.

[273] E. A. Garces, O. Miranda, M. Tartola, J. W. F. Valle, Low-energy neutrino-

electron scattering as a standard model probe: The potential of LENA as case

study, Phys. Rev. D, 85 (2012) 073006, arXiv:1112.3633[hep-ph].

143



[274] M. Malinsky, J. C. Romao, J. W. F. Valle, Novel supersymmetric SO(10)

seesaw mechanism, Phys. Rev. Lett., 95 (2005) 161801, arXiv:hep-ph/0506296.

[275] A. Das, N. Okada, Inverse seesaw neutrino ignatures at LHC and ILC, Phys.

Rev. D, 88 (2013) 113001, arXiv:1207.3734.

[276] A. Vicente, Lepton flavor violation in SUSY left-right symmetric theories, J.

Phys. Conf. Ser. 259 (2010) 012065, arXiv:1010.0799[hep-ph].

[277] A. Abada, M. Lucente, Looking for the minimal inverse seesaw realisation,

Nucl. Phys. B, 885 (2014) 651, arXiv:1401.1507[hep-ph].

[278] C. Weiland, Effects of fermionic singlet neutrinos on high- and low-energy

observables, Ph. D. Thesis, arXiv:1311.5860[hep-ph].

[279] M. Lindner, M. Platscher, F. Queiroz , A call for new physics: The muon

magnetic moment, and lepton flavor violation, arXiv:1610.06587[hep-ph].(both

in SM and LRS extn, MSSM )

[280] C. Bonilla, M. E. Krauss, T. Opterkuch, W. Porod, Perspectives of detecting

lepton flavor violation in left-right symmetric models, JHEP, 1703 (2017) 027,

arXiv:1611.07025[hep-ph].

[281] E. Ma, U. Sarkar, Neutrino masses and leptogenesis with heavy Higgs triplet,

Phys. Rev. Lett., 80 (1998) 5716, hep-ph/9802445.

[282] E. Ma, Neutrino mass from triplet and doublet scalars at the TeV scale, Phys.

Rev. D, 66 (2002) 037301, arXiv:hep-ph/0204013.

[283] T. Hambye, E. Ma, U. Sarkar, Supersymmetric triplet Higgs model of neutrino

masses and leptogenesis, Nucl. Phys. B, 602 (2001) 23.

[284] R. N. Mohapatra, M. K. Parida, and G. Rajasekaran, High scale mixing uni-

fication and large neutrino mixing angles, Phys. Rev. D, 72 (2004) 013002.

[285] B. Bajc, G. Senjanovic, F. Vissani, b-tau unification and large atmospheric

mixing: a case for non-canonical see-saw, Phys. Rev. Lett., 90 (2003) 051802.

[286] H. S. Goh, R. N. Mohapatra, S. P. Ng, Minimal SUSY SO(10) model and

predictions for neutrino mixings and leptonic CP violation, Phys. Rev. D, 68

(2003) 11508.

144



[287] P. S. Bhupal Dev, B. Dutta, R. N. Mohapatra, M. Severson,θ13 and Proton

Decay in a Minimal SO(10) ×S4 model of Flavor, Phys. Rev. D, 86 (2012)

035002, arxiv:1202.4012 [hep-ph].

[288] W. Grimus, L. Lavoura, The seesaw mechanism at arbitrary order: disentan-

gling the small scale from the large scale, JHEP, 0011 (2000) 042, arXiv:0008179

[hep-ph].

[289] M. Mitra, G. Senjanovic, F. Vissani, Neutrinoless double beta decay and heavy

sterile neutrinos, Nucl. Phys. B, 856 (2012) 26, arXiv:1108.0004 [hep-ph].

[290] M. Hirsch, H. V. Klapdor-Kleingrothaus, O. Panella, Double beta decay in

left-right symmetric models, Phys. Lett. B, 374 (1996) 7, arXiv: 9602306 [hep-

ph].

[291] S. Pascoli, M.Mitra, Steven Wong, The effect of cancellation in neutrinoless

double beta decay, Phys. Rev. D, 90 (2014) 093005, arxiv:1310.6218 [hep-ph].

[292] S. Blanchet, P. S. Bhupal Dev, R. N. Mohapatra, Leptogenesis with TeV scale

inverse seesaw model in SO(10), Phys. Rev. D, 82 (2010) 115025.

[293] M. Lindner, M. A. Schmidt, A. Yu. Smirnov, Screening of Dirac flavor structure

in the seesaw and neutrino mixing, JHEP, 0507 (2005) 048, hep-ph/0505067.

[294] G. ’t Hooft, in Proceedings of the 1979 Cargese Summer Institute on Recent

Developments in Gauge Theories, edited by G. t Hooft et al. (Plenum Press,

New York, 1980).

[295] M. B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, Minimal flavour see-

saw models, J. High Energy Phys., 09 (2009) 038, arXiv:0906.1461[hep-ph].

[296] A. Das, N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC,

Phys. Rev. D, 88 (2013) 103001, arXiv:1207.3734[hep-ph].

[297] P. S. Bhupal Dev, A. Pilaftsis, Minimal radiative neutrino mass mechanism

for inverse seesaw models, Phys. Rev. D, 86 (2012) 113001, arxiv:1209.4051

[hep-ph].

[298] A. Das, P. S. Bhupal Dev, N. Okada, Direct bounds on electroweak scale

pseudo-Dirac neutrinos from
√
s= 8 TeV LHC data, Phys. Lett. B, 735 (2014)

364, arXiv:1405.0177[hep-ph].

145



[299] G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, and A. M. Rotuno, Nucl. Phys.

B. Proc. Suppl., 188 (2009) 27.

[300] T. Schwetz, M. Tartola and J. W. F. Valle, here we are on θ13 :addendum to

global neutrino data and recent reactor fluxes: status of three-flavour oscillation

parameters, New J. Phys., 13 (2011) 063004, arXiv:hp-ph/1108.1376.

[301] D. V. Forero, M. Tartola and J. W. F. Valle, Global status of neutrino

oscillation parameter after neutrino-2012, Phys. Rev.D, 86 (2013) 073012,

arXiv:1205.4018[hep-ph].

[302] K. Abe et al., [T2K collaboration], Indication of electron neutrino appearance

from an accelerator produced off axis muon neutrino beam, Phys. Rev. Lett.,

107 (2011) 041801 ; arxiv:1106.2822

[303] M. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Global analyses of neutrino os-

cillation experiments, Nucl. Phys. B, 908 (2016) 199, arXiv:1512.06856[hep-ph].

[304] C. R. Das and M. K. Parida, New formulas and predictions for running fermion

masses at higher scales in SM, 2HDM and MSSM, Eur. Phy. J. C, 20 (2001)

121, arXiv:hep-ph/0010004.

[305] M. K. Parida and B. Purkayastha, New formulas and predictions for running

masses at higher scales in MSSM, Eur. Phy. J. C, 14 (2000) 159, arXiv:hep-

ph/9902374.

[306] M. K. Parida and N. N. Singh, Low energy formulas for neutrino masses

with tan beta dependent hierarchy, Phys. Rev. D, 59 (1999) 32022, arXiv:hep-

ph/9710328.

[307] A. Ilakovac, A. Pilaftsis, Flavour violating charged lepton decays in seesaw

type models, Nucl. Phys. B, 437 (1995) 491, [hep-ph/9403398].

[308] F. Deppisch, J. W. F. Valle, Enhanced lepton flavour violation in the supersym-

metric inverse seesaw model, Phys. Rev. D, 72 (2005) 036001, [hep-ph/0406040].

[309] M. Malinsky, T. Ohlsson, Z. -z. Xing, H. Zhang, Non-unitary neutrino mixing

and CP violation in the minimal inverse seesaw model, Phys. Lett. B, 679 (2009)

242-248, arXiv:0905.2889 [hep-ph].

146



[310] M. Hirsch, T. Kernreiter, J. C. Romao, A. Villanova del Moral, Minimal su-

persymmetric inverse seesaw: neutrino masses,lepton flavour violation and LHC

phenomenology, JHEP 1001 (2010) 103, arXiv:0910.2435 [hep-ph].

[311] E. Fernandez-Martinez, M. B. Gavela, J. Lopez-Pavon and O. Yasuda, CP-

violation from non-unitary leptonic mixing, Phys. Lett. B, 649 (2007) 427,

arXiv: hep-ph/0703098.

[312] K. Kanaya, Neutrino mixing in the minimal SO(10) model, Prog. Theor.

Phys.,64 (1980) 2278.

[313] M. Malinsky, T. Ohlsson, H. Zhang, Nonunitarity effects in a realistic low-scale

seesaw model, Phys. Rev. D, 79 (2009) 073009, arXiv:0903.1961[hep-ph].

[314] G. Altarelli and D. Meloni, CP violation in neutrino oscillations and new

physics, Nucl. Phys. B, 809 (2009) 158 , arXiv:0809.1041[hep-ph].

[315] F. del Aguila and J. A. Aguilar-Saavedra and J. de Blas, Trilepton signals:

the golden channel for seesaw searches at LHC, Acta Phys. Polon. B, 40 (2009)

2901, arXiv:0910.2720 [hep-ph].

[316] A. van der Schaaf, J. Phys. G, 29 (2003) 2755; Y. Kuno, Nucl. Phys. B Proc.

Suppl., 149 (2005) 376.

[317] F. del Aguila, J. A. Aguilar-Saavedra, Electroweak scale seesaw and heavy

Dirac neutrino signals at LHC, Phys. Lett. B, 672 (2009) 158, arXiv:0809.2096

[hep-ph].

[318] K. S. Babu et al., Baryon number violation, arXiv:1311.5285[hep-ph].

[319] A. de Gouvea et al., Neutrinos, arXiv:1310.4340[hep-ex].

[320] K. Abe et al., A search for nucleon decay via n→ ν̄π0 and p→ ν̄π+ in Super-

Kamiokande Phys. Rev. Lett, 113 (2014) 121802, arXiv:1305.4391[hep-ex].

[321] K. Abe et al., Nuclear Inst. And Methods in Physics Research A, 737C (2014)

253, arXiv:1307.0162[hep-ex].

[322] B. Bajc, I. Dorsner, M. Nemevsek, Minimal SO(10) splits supersymmetry, J.

High Energy Phys., 0811 (2008) 007, arXiv:0809.1069[hep-ph].

[323] P. Langacker, Grand unified theories and proton decay, Phys. Rept.,72 (1981)

185 .

147



[324] M. Ciuchini, E. Franco, S. Mishima, ans L. Silvestrini, Electroweak Precision

Observables, New Physics and the Nature of a 126 GeV Higgs Boson, JHEP,

08 (2013) 106, arXiv:1306.4644[hep-ph].

[325] T. Appelquist, B. A. Dobrescu, A. R. Hopper, Nonexotic Neutral Gauge

Bosons, Phys. Rev. D, 68 (2003) 035012; arxiv:hep-ph/0212073.

[326] F. Jegerlehner, M. Yu. Kalmykov, B. Kniehl, On the difference between the

pole and the MSbar masses of the top quark at the electroweak scale, Phys.

Lett. B, 722 (2013) 123, arxiv:1212.4319[hep-ph].

[327] K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38 (2014) 090001.

[328] CMS Collaboration, Measurements of the Properties of the New Boson with a

Mass Near 125 GeV, CMS-PAS-HIG-13-005; ATLAS Collaboration, Combined

Measurement of the Mass and Signal Strength of the Higgs Like Boson with the

ATLAS detector Using up to 25fb−1 of Proton-Proton Collision Data, ATLAS-

CONF-2013-014; Search for Direct Top Squark Pair Production in Events with a

Z Boson, b-Jets and Missing Transverse Momentum in 21fb−1 of Proton-Proton

Collisions at
√
s = 8TeV with the ATLAS Detector, ATLAS-COM-CONF-2013-

025 .

[329] J. Erler, P. Langacker, S. Munir, and E. Roja, Improved Constraints

on Z ′ Bosons from Electroweak Precision Data, JHEP, 08 (2009) 017,

arXiv:0906.2435[hep-ph].

[330] J. Erler and P. Langacker, Z ′ Bosons from E(6): Collider and Electroweak

Constraints, arXiv:1108.0685[hep-ph].

[331] C. Amsler et al. (Particle Data Group), Phys. Lett., 667 (2008) 1.

[332] K Nakamura et al. (Particle Data Group), J. Phys. G, 37 (2010) 075021.

[333] V. V. Andreev, G. M. Pick, P. Osland, Discriminating Z ′ from anamolous

trilinear gauge coupling signatures in the e+e− → W+W− at ILC with polarized

beams, Eur. Phys. J. C, 72 (2012) 2147, arXiv: hep-ph/9707235.

[334] J. C. Montero and V. Pleitez, Gauging U(1) symmetries and the number of

rifht handed neutrinos, Phys. Lett. B, 765 (2009) 64, arXiv:0706.0473[hep-ph].

148



[335] E.C.F.S. Fortes, J. C. Montero, and V. Pleitez, Asymmetries in e+e− → ff̄

processes at ILC for models with an extral neutral vector boson Z ′, Phys. Rev.

D, 82 (2010) 114007 , arXiv:1005.2991[hep-ph].

[336] N. Palanque-Delabrouille et al., Constraint on neutrino masses from SDSS-

III/BOSS Lyα and other cosmological probes, JCAP,1502 (2015) 02 045;

arXiv:1410.7244.

[337] R. N. Mohapatra, Limits on the Mass of the Right-handed Majorana Neutrinos,

Phys. Rev. D, 34 (1986) 909.

[338] M. Doi and T. Kotani, Double beta Decay and Majorana Neutrino, Prog.

Theor. Phys., 83 (1985) 1.

[339] K. Muto,E. Bender, and H. V. Klapdor-Kleingrothaus, Effects on Ground State

Correlations on 2 Neutrino Beta Beta Decay Rates and Limitations of the Qrpa

Approach, Z. Phys. A, 334 (1989) 177.

[340] M. Hirsch, K. Muto, T. Oda, and H. V. Klapdor-Kleingrothaus, Nuclear struc-

ture calculations of beta+ beta+ , beta+ /EC and EC/EC decay matrix elements,

Z. Phys.A, 347 (1994) 151.

[341] J. J. Gomez-Cadenas, J. Martin-Albo, M. Mezzetto, F. Monrabal, and M.

Sorel, The search for neutrinoless double beta decay, Riv. Nuovo Cim., 35 (2012)

29 , arXiv:1109.5515 [hep-ex].

[342] J. Lopez-Pavon, S. Pascoli and Chan-fai Wong, Can heavy neutrinos dom-

inate neutrinoless double beta decay ?, Phys. Rev. D, 87 (2013) 093007,

arXiv:1209.5342 .

[343] G. Pantis, F. Simkovic, J. Vergados, and A. Faessler, Neutrinoless Double Beta

Decay within QRPA with proton-neutron Pairing, Phys. Rev. C, 53 (1996) 695,

arXiv:nucl-th/9612036 [nucl-th].

[344] J. Suhonen and O. Civitarese, Weak interaction and nuclear-stucture aspects

of nuclear double beta decay, Phys. Rept., 300 (1998) 123.

[345] J. Kotila and F. Iachello, Phase space factors for double beta decay, Phys. Rev.

C, 85 (2012) 034316 , arXiv:1209.5722 [nucl-th].

149



[346] A. Faessler, A. Meroni, S. T. Petcov, F. Simkovic, and J. Vergados, Uncovering

multiple CP- no conserving mechanisms of double beta decay, Phys. Rev. D, 83

(2011) 113003, arXiv:1103.2434 [hep-ph].

[347] For a review of leptogenesis and LFV processes see E. Molinaro,CP violation

in the lepton sector, thermal leptogenesis and lepton flavor violation, Ph. D.

Thesis, SISSA, Italy (2010).

[348] Planck 2015 results. XIII. Cosmological parameters, A A, 594 (2016) A13,

arXiv:1502.01589[astro-ph.CO].

[349] S. Blanchet, T. Hambye, F. X. Josse-Michaux, Reconciling Leptogenesis

with Observable µ → e Gamma Rates, JHEP, 1004 (2010) 023, arXiv:

0912.3153[hep-ph].

[350] M. Hirsch et al., Thermal leptogenesis in extended supersymmetric seesaw,

Phys. Rev. D, 75 (2007) 011701.

[351] P. -H. Gu, U. Sarkar, Leptogenesis with linear, inverse or double seesaw, Phys.

Lett. B, 694 (2011) 226, arXiv:1007.2323.

[352] P. -H. Gu, M. Hirsch, U. Sarkar, J.W.F. Valle, Neutrino masses, leptogenesis

and dark matter in hybrid seesaw, Phys. Rev. D, 79 (2009) 033010.

[353] E. Ma, N. Sahu, U. Sarkar, Leptogenesis in an extended NMSSM model, J.

Phys.G, 34 (2007) no.4 741, hep-ph/0611257.

[354] F. Deppisch, J. Harz, M. Hirsch, W. -C. Huang, Falsifying high-scale leptoge-

nesis at LHC, Phys. Rev. Lett.,112 (2014) 221601, arXiv:1312.4447[hep-ph];

[355] F.Deppisch, J. Harz, M. Hirsch, W. -C. Huang, H. Pas, Falsifying high-scale

baryogenesis with neutrinoless double beta decay and lepton flavor violation,

Phys. Rev. D, 92 (2015) no.3 036005, arXiv:1503.04825[hep-ph].

[356] A. Abada, G. Arcadi, M. Lucente, Dark matter in the minimal inverse seesaw

mechanism, JCAP, 1410 (2014) 001, arXiv:1406.6556[hep-ph].

[357] A. Abada, S. Nasri, Renormalisation group equations of a cold dark matter,

Phys. Rev. D, 88 (2013) no.1 016006, arXiv:1304.3917[hep-ph].

[358] N. Palanque-Delabrouille et al., Neutrino masses and cosmology with Lyman-

alpha forest power spectrum, JCAP 1511 (2015) 011, arXiv:1506.05976.

150



[359] M. Fukugita, T. Yanagida, Barygenesis without grand unification, Phys. Lett.

B, 74 (1986) 45.

[360] S. Davidson, A. Ibarra, A lower bound on the right-handed neutrino mass from

leptogenesis, Phys. Lett. B, 535 (2002) 25.

[361] T. Hambye, G. Senjanovic, Consequences of Triplet Seesaw for Leptogenesis,

Phys. Lett. B, 582 (2004) 73, arXiv:hep-ph/0307237.

[362] M. Yu. Khlopov, Andrei D Linde, Is It Easy to Save the Gravitino?, Phys.

Lett. B, 138 (1984) 265-268.

[363] L. Boubekeur, T. Hambye, G. Senjanovic, Low-scale leptogenesis and soft su-

persymmetry breaking, Phys. Rev. Lett., 93 (2004) 111601.

[364] K. S. Babu, A. Bachri, H. Aissoui, Leptogenesis in Minimal Left-Right Sym-

metric Models, Nucl. Phys. B, 738 (2006) 76.

[365] X. Ji, Y. Li, R. N. Mohapatra, S. Nasri, Y, Zhang, Leptogenesis in realistic

SO(10) models Phys. Lett. B, 651 (2007) 195.

[366] K. Kumekawa, T, Moroi, T. Yanagida, Flat Potential for Inflaton with a Dis-

crete R-invariance in Supergravity, Prog. Theor. Phys., 92 (1994) 437.

[367] G. F. Giudice, M. Peleso, A. Riotto, T. Tkachev, Production of Mas-

sive Fermions at Preheating and Leptogenesis, JHEP, 9908 (1999) 014,

arXiv:9905242[hep-ph].

[368] T. Asaka, K. Hamaguchi, M.Kawasaki, T. Yanagida, Leptogenesis in Inflaton

Decay, Phys. Lett. B, 464 (1999) 12, arXiv:9906366[hep-ph].

[369] R. Jannernot, S. Khalil, G. Lazaridis, Q. Shafi, Inflation and monopoles

in supersymmetric SU(4)c × SU(2)L × SU(2)R, JHEP, 010 (2000) 012;

arXiv:0002151[hep-ph].

[370] J. C. Pati, Phys. Rev. D, 68 (2003) 072002; J. C. Pati, Leptogenesis

and Neutrino Oscillations Within A Predictive G(224)/SO(10)-Framework,

arXiv:0209160[hep-ph].

[371] J. C. Pati, Int. J. Mod. Phys. A18 (2003) 4135-4156, Subnucl. Ser. 40 (2003)

194-236.

151



[372] O. Castillo-Felisola, C. O.Dib, J. C. Helo, S. G. Kovalenko, S. E. Ortiz, Left-

Right Symmetric Models at the High-Intensity Frontier, Phys. Rev. D, 92

013001 (2015), arxiv: 1504.02489 [hep-ph].

[373] For the suggestion to observe like-sign dilepton signals at LHC via heavy RH

Majorana neutrino exchange in the WR−WR channel see W. -Y. Keung and G.

Senjanovic, Phys. Rev. Lett. B, 50 (1983) 1427 .

[374] DELPHI Collaboration, P. Abreu et.al., Search for neutral heavy leptons pro-

duced in Z decays, Z. Phys, C, 74 (1997) 57 .

[375] F.del Aguila, J. Aguilar-Saavedra, Distinguishing seesaw models at LHC with

multi-lepton signals, Nucl. Phys. B, 813 (2009) 22, arXiv:0808.2468 [hep-ph].

[376] Eder Izaguirre, Brian Shuve, Multilepton and Lepton Jet Probes of Sub-

Weak-Scale Right-Handed Neutrinos, Phys. Rev. D, 91 (2015) 093010,

arXiv:1504.02470 [hep-ph].

[377] Anupama Atre, Tao Han, Silvia Pascoli, Bin Zhang, The Search for Heavy

Majorana Neutrinos, J. High Energy Phys., 0905 (2009) 030 , arXiv:0901.3589

[hep-ph].

[378] Csaba Csaki, Eric Kulflik, Salvator Lombardo, Oren Slone, Searching for Dis-

placed Higgs Decays, Phys. Rev. D, 92 (2015) 073008, arXiv:1508.01522v2[hep-

ph].

[379] Alberto M. Gago, Pilar Hernandez, Joel Jones-Perez, Marta Losada, Alexander

Moreno Briceni, Probing the Type I Seesaw Mechanism with Displaced Vertices

at the LHC, arXiv: 1505.05880 [hep-ph].

[380] Matthew J. Strassle, Kathryn M. Zurek, Discovering the Higgs Through

Highly-Displaced Vertices, Phys.Lett. B, 661 (2008) 263-267, hep-ph/0605193.

[381] M. Gronau, C. N. Leung, J L. Roser, Extending limits on neutral heavy leptons,

Phys. Rev. D, 29 (1984) 2539 .

[382] ATLAS Collaboration(G. Aad et al), Search for massive, long-lived particles

using multitrack displaced vertices or displaced lepton pairs in pp collisions

at
√
s = 8 TeV with the ATLAS detector, Phys. Rev. D, 92 (2015) 072004,

arXiv:1504.05162[hep-ex].

152



[383] CMS Collaboration, V. Khachatryan et al, Search for long-lived neutral par-

ticles decaying to quark-antiquark pairs in proton-proton collisions at
√
s = 8

TeV Phys. Rev. D, 91 (2015) 012007, arXiv:1411.6530 [hep-ex]

[384] ATLAS Collaboration, Triggers for displaced decays of long-lived neutral par-

ticles in the ATLAS detector, JINST, 8 (2013) 07015.

[385] CMS Collaboration, S. Chatrchyan et al., Search for Heavy Neutrinos and WR

Bosons with Right-Handed Couplings in a Left-Right Symmetric Model in pp

Collisions at
√
s = 7 TeV, Phys. Rev. Lett., 109 (2012) 261802.

[386] CMS Collaboration, V. Khachatryan et al., Search for heavy neutrinos and W

bosons with right-handed couplings in proton-proton collisions at
√
s = 8 TeV,

Eur. Phys. J. C, 74 no.11 (2014) 311, arXiv:1407.3683.

[387] Issac Hueing, Garbriel Samach, David Tucker Smith, phys. Rev. D, 90 (2014)

075016.

[388] Antonio Uras, Low mass dilpton production with ALICE at the LHC, Nucl.

Phys. A, 932 (2014) 218-223.

[389] Debajyoti Choudhury, Rohini M Godbole, G Polesello, Measuring R-parity

violating couplings in dilepton production at the LHC, J. High Energy Phys.,

0208 (2002) 004, arXiv:hep-ph/0207248.

[390] E. Accomando, A. Belyaev, J. Fiaschi, S. Moretti, K. Mimasu, C. Shepherd-

Themistocleous, Forward-Backward Asymmetry as a Discovery Tool for Z ′

Bosons at the LHC, arXiv:1503.02672 [hep-ph].

[391] ATLAS Collaboration (Aad, Georges et al), Phys. Rev. D, 90 (2014) 05200.

[392] E. Accomando, A. Belyaev, L. Fedeli, S. F. King, C. Shepherd-Themistocleous,

Z ′ physics with early LHC data, Phys. Rev. D, 83 (2011) 075012,

arXiv:1010.6058 [hep-ph].

[393] J.Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. Nadolsky, and W. K. Tung,

New Generation of Parton Distributions with Uncertainties from Global QCD

Analysis JHEP, 07 (2002) 012, arXiv: hep-ph/0201195.

[394] V. V. Andreev, P. Osland, A. A. Pankov, Precise determination of Z-Z ′ mixing

at the CERN LHC, Phys. Rev. D, 90 (2014) 055025, arXiv:1406.6776 [hep-ph].

153



[395] M. Carena, A. Daleo, B. A. Doberscu, and Tim M. P. Tait, Z ′ Gauge Bosons

at the Tevatron, Phys. Rev. D, 70 (2004) 093009, hep-ph/0408098.

[396] M. K. Parida, Natural mass scales for observable matter-antimatter oscillations

in SO(10), Phys. Lett. B, 126 (1983) 220.

[397] M. K. Parida, Phys. Rev. D, 17 (1983) R2383.

[398] Howard Georgi and Sheldon L. Glashow, Gauge theories without anomalies,

Phys.Rev.D, 6 (1972) 429.

[399] J. Banks and H. Georgi, Comment on Gauge Theories Without Anomalies,

Phys.Rev. D, 14 (1976) 1159.

[400] Susumu Okubo, Gauge Groups Without Triangular Anomaly, Phys.Rev. D,

16 (1977) 3528.

[401] Frank Wilczek and A.Zee, Families from Spinors, Phys.Rev. D, 25 (1982) 553.

[402] Raza M. Syed, Couplings in SO(10) grand unification,(2005), arXiv:hep-

ph/0508153.

[403] M. K. Parida and P.K. Patra, Useful theorem on vanishing threshold contri-

bution to sin2(θW ) in a class of grand unified theories

[404] M.K. Parida and P. K. Patra, Theorem on vanishing multiloop radiative cor-

rections to sin2(θW ) in grand unified theories at high ma scales, Phys.Rev.Lett.,

68 (1992) 754.

[405] M. K. Parida, Vanishing corrections on intermediate scale and implications for

unification of forces., Phys.Rev.D, 57 (1998) 2736, arXiv:hep-ph/9710246.

154



Appendix A
Some Aspects of Grand Unified Theories

A.1 Anomalies

It happens sometimes that a symmetry of Lagrangian gets broken by quantum effects,

i.e the symmetry of Lagrangian is not a symmetry of quantized theory. Anomalies

appear in those symmetries involving both axial and vector currents, and reflect the

impossibility of regularizing the quantum theory (the divergent loop) in a way which

preserves symmetry. The grand unifications gauge groups, being non-abelian Lie

groups, are likely to meet triangular anomalies. We either choose a gauge group

which is either anomaly free or we fix it by canceling the anomaly as suggested

by [398–400] where we find that all SO(n) groups with n 6= 6 are anomaly free and

all the SU(n) groups with n ≥ 3 are anomalous. For an example in SU(5) GUTs the

representation space chosen for cancelling anomaly are 5 and 10. While considering

extension of such SU(n) theories the cancellation of anomaly has to be taken care

of. Here we list strength of anomaly for few representations of general SU(n) and

SU(4) being isomorphic to SO(6) it applies there as well.

A.1.1 Adler Anomalies for a SU(n) representation

As described above all the SU(n) groups with n ≥ 3 are anomalous groups, we need

to study the order of anomaly of the representations in general. Adler anomalies for

left handed fermion representations of SU(n) are as follows

• For totally antisymmetric left handed fermionic representation with m anti-

symmetric indices, the anomaly is

Aa =
(n− 3)!(n− 2m)

(n−m− 1)!(m− 1)!
(A.1)
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Young Tableaux Dimension Anomaly

n 1

n(n+ 1)/2 n+ 4

n(n+ 1)(n+ 2)/3! (n+ 3)(n+ 6)/2

n(n− 1)/2 n− 4

n(n− 1)(n− 2)/3! (n− 3)(n− 6)/2

(n+ 1)n(n− 1)/3 (n− 3)(n+ 3)

n− 1

{
... (n2 − 1) Adj. rep. 0

Table A.1: Adler anomalies for few simple representations in SU(n) gauge theories.
All SO(n), n 6= 6, theories are anomaly free. Anomalies for right-handed fermion
representations and corresponding complex conjugate representation will change the
sign.

• For totally symmetric left handed fermionic representation with m symmetric

indices, the anomaly is

As =
(n+m)!(n+ 2m)

(n+ 2)!(m− 1)!
(A.2)

For the two representations R1 and R2, A(R1 + R2) = A(R1) + A(R2) and A(R1 ⊗
R2) = D(R1)A(R2) +D(R2)A(R1) following the additive rule. Using these relations

we can calculate anomaly due to a mixed representation. To complete this sub-

section we list few representations in Young tableaux form write their dimension

and list anomaly in SU(n) Lie group.
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A.2 Quadratic Casimir and Dynkin index invari-

ants in SU(n)

In a group G = SU(n) group no of generators is n2−1. We denote generators of this

group in a specific representation R by Ma(R). The quadratic Casimir invariance is

defined as

δijC2(R) =
∑
a

∑
k

(Ma(R))ik(Ma(R))kj (A.3)

where a = 1, 2...dG; i, j, k = 1, 2, ...dR and dG (= n2 − 1), dR are the dimensions

of group G and representation R in the group, respectively. The Dynkin index

invariance is defined as

δabT (R) = Tr[Ma(R)Mb(R)] (A.4)

Obviously dRC2(R) = dGT (R). The properties of Dynkin index invariance are

T (R∗) = T (R) (A.5)

T (R1 +R2) = T (R1) + T (R2) (A.6)

T (R1 ⊗R2) = dR1T (R2) + dR2T (R1) (A.7)

T ( ) = 1/2 (A.8)

T

(
...

}
m− boxes

)
=

1

2

(n− 2)!

(m− 1)!(n−m− 1)!
(A.9)

T

 . . .︸ ︷︷ ︸
m− boxes

 =
1

2

(n+m)!

(n+ 1)!(m− 1)!
(A.10)

Using the above properties we can calculate C2(R), T (R) for any representation R.

C2(G) = n is the quadratic Casimir for the adjoint representation. For a represen-

tation of U(1)X we have C2(G) = 0, and C2(R) = T (R) = X2, where X is the

appropriately normalized charge of the symmetry.

The best way to get the Dynkin indexes of a group SU(n) is to first evaluate

them for SU(2) and then achieve rest iteratively. Like, the adjoint representation of

SU(2) can be easily estimated, T (Adj)SU(2) = 2. Now, since adjoint of SU(n + 1)

can be decomposed into SU(n) representations as as

Adj(n+ 1) =

(
Adj(n) n

n̄ 1.

)
(A.11)
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Therefore the Dynkin indexes are related as

T [Adj(n+ 1)] = T [Adj(n)] + T [n] + T [n̄] + T [1]

= T [Adj(n)] + 1 ≡ n+ 1. (A.12)

Similarly for two index (anti)-symmetric representations we have

T [(n+ 1)× (n+ 1)](A)S = T [n× n](A)S + T [n]. (A.13)

We remember that two index antisymmetric and symmetric representations in SU(2)

are singlet and adjoint representations also and their Dynkin index T (AS) = 0 and

T (S) = 2, respectively. Therefore

T [n× n](A)S = (0)2 + (n− 2)/2. (A.14)

A.3 Lorentz group

A point in four dimensional space-time manifold of Minkowaski space is denoted by

xµ = (t, ~x), where the laws of physics are invariant under Lorentz group. Vectorial

transformation in this group are denoted as x′µ = Λµ
νx

ν , leading to the quadratic

form x2 = xµxµ = ηµνx
µxν invariant. Hence Lorentz group is a non-trivial real

orthogonal group of 4× 4 real orthogonal matrices obeying

ηµνΛ
µ
ρΛ

ν
σ = ηρσ ≡ ΛTηΛ = η (A.15)

with det(Λ) = +1. The invariance of Lorentz symmetry can also be written as

xαx
α = (γµx

µ)(γνx
ν) (A.16)

This requires that {γµ, γν} = 2ηµν . This γµ defines a rank four clifford algebra.

It’s obvious that γ0
2 = 14 and γi

2 = −14. And γµ = Λµ
νγ

ν and γµ = ηµνγ
ν ,

tr(γµ) = 0. First and second condition on γ2
µ requires the hermiticity condition as

γ0 = γ†0 and γi = −γ†i . Hence eigen values are either ±1 or ±i and they occur in

pair. We require the dimension of these matrices to be at least 22 × 22 as there are

only three such γ matrices in 2 × 2 dimension i.e. Pauli matrices themselves, and

higher dimensional matrices will be reducible. Hence we find that the dimension of

fundamental representation is same as spinor representation, but their generators are
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quite different. Out of different possible representation we write them in the form

γ0 = σ1 ⊗ 12, γk = iσ2 ⊗ σk (A.17)

known as Weyl representation. The Weyl basis has simple chiral projections. One

more γ matrix we can define is the product of all four gamma matrices.

γ5 = iγ0γ1γ2γ3 (A.18)

and the chiral projections are read as

ψR
L

=
1

2

(
1± γ5

)
ψ (A.19)

γ0 =

(
0 12

12 0

)
, γk =

(
0 σk

σk 0

)
, γ5 =

(
12 0
0 −12

)
, ψ =

(
ψL
ψR

)
(A.20)

where ψL and ψR are the left-handed and right-handed two-component Weyl spinors.

γ′µ = Λµ
νγ

ν (A.21)

generating the Clifford algebra for γ ′ matrices. Transformation of a 22 dimensional

spinor under the above transformation of γ matrices is

ψ′(x′) = S(Λ)ψ(x) (A.22)

γµ’s are 22 × 22 matrix forms of spinor representation hence transform like

γ′µ = S(Λ)γµS
−1(Λ) (A.23)

we construct the explicit form of the transformation matrix, S(Λ) = e−
i
4
aαβΣαβ .

Simplification of infinitesimal rotation gives

Σµν =
i

2
[γµ, γν ] (A.24)

The generators Σ0,2 and Σ1,3 can be simultaneously diagonalised therefore we define

chirality operator as

γ5 = iΣ02Σ13 = iγ0γ1γ2γ3. (A.25)
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One can easily verify the following properties of chirality operator

γ†5 = γ5, tr(γ5) = 0, {γ5, γµ} = 0, γ2
5 = 0, [γ5,Σµν ] = 0. (A.26)

Thus a 4-dimensional spinor representation is reducible in to two 2-dimensional rep-

resentations. The generators of the reduced representations are 1
2
(1±γ5)Σµν . Charge

conjugation operators can be found to be product γ0γ2 or γ1γ3.

A.3.1 Lorentz scalar and vector constructs

If ψ is a Dirac spinor

Lorentz Scalars

ψ̄ψ = ψCψC = ψ̄LψR + ψ̄RψL

ψCψ = ψTLCψL + ψTRCψR

ψ̄ψC = ψLCψL
T

+ ψRCψR
T

(A.27)

Lorentz Vectors

ψ̄γµψ = ψ̄LγµψL + ψ̄RγµψR

ψCγµψ = ψTLCγµCψ̄
T
L + ψTRCγµCψ̄

T
R

ψCγµψ = ψTLCγµψR + ψTRCγµψL

ψ̄γµψ
C = ψ̄LγµCψ̄

T
R + ψ̄RγµCψ̄

T
L (A.28)

where

ψ̄ = ψ†γ0, ψ
C = Cψ̄T , ψ = ψL + ψR (A.29)

A.4 SO(2n) Algebra

The special orthognal group, SO(2n) is a group of 2n× 2n real orthogonal matrices,

O obeying

OTO = OOT = 1, det(O) = +1 (A.30)

A real 2n-dimensional column vector x transforms as

x′i = Oijxj ; i, j = 1, 2, . . . 2n. (A.31)
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such that

x′Tx′ = (Ox)TOx = xTOTOx = xTx. (A.32)

The transformation matrix, O can be parametrized as

O(a) = exp

(
i

2
aijLij

)
, such that aij = −aji (A.33)

The real numbers aij are the rotation parameters and under the local symmetry

transformation depend on space-time coordinate, and Lij are 2n × 2n linearly in-

dependent matrices and the generators of the group. Putting eq. (A.33) in the

eq. (A.30) and eq. (A.31) we get

LTij = −Lji. and (Lij)kl = −i(δikδjl − δilδjk); 1 ≤ k < l ≤ 2n. (A.34)

which gives tr(Lij) = 0 and the matrix is antisymmetric therefore it’s easy to write

the explicit form of generators. The generators Lij have zeros everywhere except at

the positions (i, j) and (j, i), which are occupied by −i and +i respectively, and addi-

tionally we have Lij = −Lji = L†ij. Therefore, the algebra of the real representation

can be calculated using the definition of generators, eq. (A.34) as

[Lij, Lkl] = −i (δjkLil + δilLjk − δikLjl − δjlLik) (A.35)

The higher rank tensors can be defined which transform as

A′i1i2...ip = Oi1j1Oi2j2 . . . OipjpAj1j2...jp (A.36)

The invariants of the group are second rank δij and 2nth rank Levi-Civita tensor.

The later can be proved using the definition of determinant, ie.

det(O) =
1

2n!
εi1i2...i2nεj1j2...j2nOi1i2...i2n,j1j2...j2n (A.37)

A higher rank tensor is reducible if it’s contraction with Kroncker delta or Levi-Civita

tensor gives a tensor of lower rank. The dimensionality of second rank anti-symmetric

tensor and second rank symmetric traceless tensor are n(2n− 1) and [n(2n+ 1)− 1].

Their transfornation follow the definition of eq. (A.36) for two indices. The dimension

of second rank antisymmetric tensor, which is also the adjoint representation of

the group, is same as the number of generators. Therefore, the transformation of

Lorentz-vectors under SO(2n) adjoint representation follow the similar properties
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with additional Lorentz index on gauge boson.

A.4.1 SO(2n) spinor representation

Similar to the Lorentz algebra in Minkowaski space, the invariant quadratic form of

SO(2n) symmetry is given by eq. (A.32). The quadratic form as square of linear

form can be written as

x2
1 + x2

2 + · · ·+ x2
2n = (x1Γ1 + x2Γ2 · · ·+ x2nΓ2n)2 (A.38)

if

{Γi,Γj} = 2δij1; i, j = 1, 2, . . . , 2n (A.39)

This 2n rank Clifford algebra gives

Γ2
i = 1 (no sum), and tr(Γi) = 0 (A.40)

We can prove by explicit iterative construction that “there exist 2n Hermitian ma-

trices Γi, i = 1, 2, . . . , 2n, which are 2n × 2n and satisfy the 2n rank Clifford alge-

bra” [401]. Thus from eq. (A.40) we see that their eigenvalues are +1 and −1 which

come in pair.

The invariance of linear term,
∑

i xiΓi demands the transformation of Γ as

Γi → Γ′i = OijΓj. (A.41)

The transformation of SO(2n) spinor is written as

Ψ(x)→ Ψ′(x′) = S(O)Ψ(x) and Γ′i = S(O) Γi S
−1(O) = OijΓj. (A.42)

where Ψ is a 2n dimensional spinor. The Γ′s follow the same Clifford algebra. The

explicit form of the transformation matrix

S(O) = exp

(
i

2
aijΣij

)
. (A.43)

Here Σij are the generators in the spinorial basis. Putting S(O) in eq. (A.42) and

using Oij = δij + aij we get

Σij =
i

4
[Γi,Γj] (A.44)

These antisymmetric (Σij = −Σji) and Hermitian (Σij = Σ†ij) generators satisfy the
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SO(2n) Lie algebra

[Σij,Σkl] = −i (δikΣjl − δilΣjk − δjkΣil + δjlΣik) , (A.45)

which is the usual commutation relation of SO(2n) generators in real representation,

eq. (A.35). The cartan subalgebra consist of n generators, say

Cartan subalgebra = [Σ1 2,Σ3 4, . . . ,Σ2n−1 2n] (A.46)

We can write, analogous to γ5 in Dirac theory, the group chirality operator using the

Cartan subalgebra

ΓP ≡
n∏
i=1

Σ2i−1 2i = (−1)nΓ1Γ2 . . .Γ2n (A.47)

with the properties

Γ2
P = 1, ΓP = Γ†P, tr(ΓP) = 0, [ΓP,Σij] = 0, {ΓP,Γi} = 0. (A.48)

Thus since ΓP 6= const.1 and [ΓP, S(O)] = 0, Schurs lemma suggests that 2n repre-

sentation is reducible, and Γ2
P = 1 and tr(ΓP) = 0 suggest that this representation

can reduce as 2n = 2n−1 ⊕ 2n−1 with opposite eigenvalues. Using the projection

operator

Γ± ≡
1± ΓP

2
(A.49)

we get

Ψ± = Γ±Ψ. (A.50)

Demanding the condition

ΨTBΨ = invariance⇔ ΨC = BΨ∗ (A.51)

we get ΣTB +BΣ = 0 leading to two possible solutions

B =
n∏
i

Γ2i and B =
n∏
i

Γ2i−1. (A.52)
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A.4.2 Bilinears and invariant constructs

From Ψ′(x′) = S(O)Ψ(x) and unitarity of S(O), S−1(O) = S†(O) we immediately

get bilinear structure

Ψ†Ψ Scalar (A.53)

Ψ†ΓiΨ Vector (A.54)

Ψ†ΓiΓjΨ 2nd rank tensor (A.55)

Ψ†Γi1Γi2 . . .ΓirΨ rth rank tensor (A.56)

Where r ≤ n. An antisymmetric combinations of these bilinears can be extracted

out by choosing the antisymmetric combinations of Γ matrices, Γ[i1Γi2 . . .Γir]. These

bilinears can be decomposed in terms of irreducible representations using the pro-

jection operator Γ± such that Ψ = Ψ+ + Ψ−. The surviving odd and even rank

antisymmetric tensors would be

Ψ†±Γ[i1Γi2 . . .Γir]Ψ∓ ; r − odd (A.57)

Ψ†±Γ[i1Γi2 . . .Γir]Ψ± ; r − even. (A.58)

For r = n they will form complex and real self dual and antiself dual. We assign

left-handed and right-handed CP -conjugate chirality to Ψ+ and Ψ− respectively. To

incorporate the Lorentz symmetry we insert γ0 and γ0γµ to make them Lorentz scalar

and vectors respectively. Thus the scalar and vector couplings of these bispinors look

like

Kab Ψ± aΓ[i1Γi2 . . .Γir]Ψ∓ bΦ
(asym)
i1i2...ir

; r − odd

K′ab Ψ± aγ
µΓ[i1Γi2 . . .Γir]Ψ± bV

(asym)
µi1i2...ir

; r − even, (A.59)

respectively. Here a, b are generation indices, µ is Lorentz index, K,K′ are coupling

constants, and Φ, V are Lorentz scalar and vectors of SO(2n) antisymmetric (asym)

tensors of rank r. The symmetries of K,K′ are decided by the properties of γ and Γ

matrices.

The demand for invariance of term constructed by ΨT and Ψ in eq. (A.51) can be

trivially implemented for writing bilinears using ΨT and Ψ. Now vector and scalar
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couplings are

Kab ΨT
± aCB

TΓ[i1Γi2 . . .Γir]Ψ± bΦ
(asym)
i1i2...ir

; r − even

K′ab ΨT
± aCγ

µBTΓ[i1Γi2 . . .Γir]Ψ∓ bV
(asym)
µi1i2...ir

; r − odd, (A.60)

for n-even, and for n-odd (r − even) ↔ (r − odd) in the eq. (A.60). A detailed

discussion on SO(2n) group with GUT orientation can be found in [152,402].
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Appendix B
One and Two Loop Beta Function Coefficients for

RG Evolution of Gauge Couplings

Symmetry ai bij
(GeV)

G213

(
−19/6, 41/10,−7

) 199/50, 27/10, 44/5
9/10, 35/6, 12

11/10, 9/2,−26


G2113

(
−3, 57/12, 37/8,−7

) 
8, 1, 3/2, 12

3/2, 33/57, 63/8, 12
9/2, 63/8, 209/16, 4

9/2, 3/2, 1/2, 26


G2213

(
−2,−3/2, 29/4,−7

) 
31, 6, 39/2, 12

6, 115/6, 3/2, 12
81/2, 6, 181/8, 4

9/2, 9/2, 1/2,−26


G2213D

(
−3/2,−3/2, 15/2,−7

) 
319/6, 6, 57/4, 12
6, 319/6, 57/4, 12

171/4, 171/4, 239/4, 4
9/2, 9/2, 1/2,−26


Table B.1: One-loop and two-loop beta function coefficients for gauge coupling evo-
lutions described in the text taking the second Higgs doublet mass at 1 TeV.
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Appendix C
Renormalization Group Evolution

Each of the two SO(10) models we have considered for type-II seesaw has two types

of nonstandard gauge symmetries, G2213 or G2213D and G2113. Here we derive RGEs

for running Yukawa and fermion mass matrices from which, following the earlier

approach [304], we derive RGEs for the mass eigenvalues and mixing angles. We

define the rescaled β-functions

16π2µ
∂Fi
∂µ

= βFi . (C.1)

With G2113 symmetry the scalar field Φd(2, 1/2, 0, 1) through its VEV vd gives masses

to down quarks and charged leptons while Φu(2,−1/2, 0, 1) through its VEV vu gives

Dirac masses to up quarks and neutrinos. These fields are embedded into separate

bi-doublets in the presence of G2213 and their vacuum structure has been specified

in Sec. 5. We have derived the beta functions for RG evolution of Yukawa matrices

(Yi), fermion mass matrices (Mi), and the vacuum expectation values (vu,d). The

rescaled beta functions are given below in both cases,

G2113 Symmetry:

βYu =

[
3

2
YuY

†
u +

1

2
YdY

†
d + Tu −

∑
i

Cq
i g

2
i

]
Yu,

βYd =

[
3

2
YdY

†
d +

1

2
YuY

†
u + Td −

∑
i

Cq
i g

2
i

]
Yd,
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βYν =

[
3

2
YνY

†
ν +

1

2
YeY

†
e + Tu −

∑
i

C l
ig

2
i

]
Yν ,

βYe =

[
3

2
YeY

†
e +

1

2
YνY

†
ν + Td −

∑
i

C l
ig

2
i

]
Ye,

βMu =

[
3

2
YuY

†
u +

1

2
YdY

†
d −

∑
i

C̃q
i g

2
i

]
Mu,

βMd
=

[
3

2
YdY

†
d +

1

2
YuY

†
u −

∑
i

C̃q
i g

2
i

]
Md,

βMD
=

[
3

2
YνuY

†
ν +

1

2
YeY

†
e −

∑
i

C̃ l
ig

2
i

]
MD,

βMe =

[
3

2
YeuY

†
e +

1

2
YνY

†
ν −

∑
i

C̃ l
ig

2
i

]
Me,

(C.2)

where the beta-functions for VEVs are

βvu =

[∑
i

Cv
i g

2
i − Tu

]
vu,

βvd =

[∑
i

Cv
i g

2
i − Td

]
vd, (C.3)

with

Tu = Tr(3Y †uYu + Y †ν Yν), Td = Tr(3Y †d Yd + Y †e Ye). (C.4)

The parameters occurring in these equations, and also in eq. (C.9) and eq. (C.10)

given below are

a =
3

2
, b =

1

2
, a′ = b′ = 0,

Cq
i = (9/4, 3/4, 1/4, 8), C l

i = (9/4, 3/4, 9/4, 0),

C̃q
i = (0, 0, 1/4, 8), C̃ l

i = (0, 0, 9/4, 0), Cv
i = (9/4, 3/4, 0, 0),

i = 2L, 1R,BL, 3C. (C.5)

G2213 Symmetry:
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Following definitions of Sec. 5 in the presence of left-right symmetry. the rescaled

beta functions for RGEs of the Yukawa and fermion mass matrices are

βYu = (YuY
†
u + YdY

†
d )Yu + Yu(Y

†
uYu + Y †d Yd) + TuYu + T̂1Yd −

∑
i

Cq
i g

2
i Yu,

βYd = (YdY
†
d + YuY

†
u )Yd + Yd(Y

†
d Yd + Y †uYu) + TdYd + T̂2Yu −

∑
i

Cq
i g

2
i Yd,

βYν = (YνY
†
ν + YeY

†
e )Yν + Yν(Y

†
ν Yν + Y †e Ye) + TuYν + T̂1Ye −

∑
i

C l
ig

2
i Yν ,

βYe = (YeY
†
e + YνY

†
ν )Ye + Ye(Y

†
e Ye + Y †ν Yν) + TdYe + T̂2Yν −

∑
i

C l
ig

2
i Ye,

βMu = (YuY
†
u + YdY

†
d )Mu +Mu(Y

†
uYu + Y †d Yd)−

∑
i

C̃q
i g

2
iMu + T̂1 tan βMd,

βMd
= (YdY

†
d + YuY

†
u )Md +Md(Y

†
d Yd + Y †uYu)−

∑
i

C̃q
i g

2
i ]Md +

T̂2

tan β
Mu,

βMD
= (YνuY

†
ν + YeY

†
e )MD +MD(Y †ν Yν + Y †e Ye)−

∑
i

C̃ l
ig

2
iMD + T̂1 tan βMe,

βMe = (YeY
†
e + YνY

†
ν )Me +Me(Y

†
e Ye + Y †ν Yν)−

∑
i

C̃ l
ig

2
iMe +

T̂2

tan β
MD, (C.6)

where the rescaled beta functions for VEVs βvu , βvd are the same as in eq. (C.3) with

different coefficients Cv
i defined below and functions Tu and Td are the same as in

eq. (C.4). Other two traces entering in this case are

T̂1 = Tr(3Y †d Yu + Y †e Yν),

T̂2 = Tr(3Y †uYd + Y †ν Ye). (C.7)

The parameters occurring in these equations and also in eq. (C.9) and eq. (C.10)

given below are

a = b = 2, a′ = b′ = 1,

Cq
i = (9/4, 9/4, 1/4, 8), C l

i = (9/4, 9/4, 9/4, 0), C̃q
i = (0, 0, 1/4, 8),

C̃ l
i = (0, 0, 9/4, 0), Cv

i = (9/4, 9/4, 0, 0), (i = 2L, 2R,BL, 3C). (C.8)

Then following the procedure described in [304], and using the definition of pa-

rameters in the two different mass ranges, given above we obtain RGEs for mass

eigenvalues and elements of CKM mixing matrix Vαβ which can be expressed in the
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generalized form for both cases,

Mass Eigenvalues:

βmi =

[
−
∑
k

C̃
(q)
k g2

k + ay2
i + 2b

∑
j=d,s,b

|Vuj|2y2
j + a′

T̂1 tan β

mi

∑
j=d,s,b

|Vuj|2mj

]
mi,

where i = u, c, t

βmi =

[
−
∑
k

C̃
(q)
k g2

k + ay2
i + 2b

∑
j=u,c,t

|Vdj|2y2
j + b′

T̂2

tan βmi

∑
j=u,c,t

|Vdj|2mj

]
mi,

where i = d, s, b

βmi =

[
−
∑
k

C̃
(l)
k g

2
k + ay2

i + 2b
∑

j=N1,N2,N3

y2
j + b′

T̂2

tan βmi

∑
j=N1,N2,N3

mj

]
mi,

where i = e, µ, τ

βmi =

[
−
∑
k

C̃
(l)
k g

2
k + ay2

i + a′
T̂1 tan β

mi

∑
j=e,µ,τ

mj

]
mi,

where i = N1, N2, N3 . (C.9)

CKM Matrix Elements:

βVαβ =
∑

γ=u,c,t;γ 6=α

[
a′
T̂1 tan β

mα −mγ

(V M̂dV
†)αγ +

b

v2
d

m2
α +m2

γ

m2
α −m2

γ

(V M̂2
dV
†)αγ

]
Vγβ

−
∑

γ=d,s,b;γ 6=β

Vαγ

[
b′

T̂2

tan β(mγ −mα)
(V †M̂uV )γβ

+
b

v2
u

m2
γ +m2

β

m2
γ −m2

β

(V †M̂2
uV )γβ

]
. (C.10)

Then using third generation dominance, the beta functions for all the 9 elements

are easily obtained for respective mass ranges where in addition to the parameters

in the respective cases in eq. (C.5) and eq. (C.8), a′ = b′ = 0 in the mass range

MR0 →MR+ with G2113 symmetry, but a′ = b′ = 1 in the mass range MR+ →MGUT

with G2213 or G2213D symmetry and, in the latter case, the nonvanishing traces T̂1,2

are easily evaluated in the mass basis.
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Appendix D
Block Diagonalisation and Determination of Mν

In this section we discuss the various steps of block diagonalisation in order to calcu-

late the light neutrino mass, sterile neutrino mass and right-handed neutrino mass

and their mixings. The complete 9× 9 mass matrix in the flavor basis {νL, SL, NC
R }

is

M =

m
II
ν ML MD

MT
L 0 M

MT
D MT MN

 , (D.1)

where ML = yχvχL , M = yχvχR , MN = fvR

and MD is the Dirac neutrino mass matrix as discussed in Sec. 5.

Assuming a generalized unitary transformation from mass basis to flavor basis, gives

|ψ〉flavor = V |ψ〉mass (D.2)

or

 να

Sβ

NC
γ

 =

V
νν
αi VνSαj VνNαk
VSνβi VSSβj VSNβk
VNνγi VNSγj VNNγk


 ν̂i

Ŝj

N̂k

 (D.3)

with

V†MV∗ = M̂ = diag
(
M̂νi ;M̂Sj ;M̂Nk

)
(D.4)
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HereMν is the 9×9 neutral fermion mass matrix in flavor basis with α, β, γ running

over three generations of light-neutrinos, sterile-neutrinos and right handed heavy-

neutrinos in their respective flavor states and M̂ν is the diagonal mass matrix with

(i, j, k = 1, 2, 3) running over corresponding mass states .

In the first step of block diagonalisation, the full neutrino mass matrix is reduced

to a block diagonal form M̂BD and in the second step we further block diagonal-

ize to obtain the three matrices as three different block diagonal elements, MBD=

diag(Mν ,mS,mN) whose each diagonal element is a 3× 3 matrix.In our estimation,

we have used the mass hierarchy MN > M � MD,ML, fvL. Finally in the third

step we discuss complete diagonalization to arrive at the physical masses and their

mixings.

D.0.2.1 Determination of MBD

With two unitary matrix transformations Q1 and Q2,

Q†MνQ∗ = M̂BD, (D.5)

where

Q = Q1Q2 (D.6)

i.e the product matrix Q = Q1Q2 directly give MBD from Mν Here M̂BD, and

MBD are the intermediate block-diagonal, and full block-diagonal mass matrices,

respectively,

M̂BD =

(
Meff 0

0 mN

)
(D.7)

and

MBD =

Mν 0 0

0 mS 0

0 0 mN

 (D.8)
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D.0.2.2 Determination of Q1

In the leading order parametrization the standard form of Q1 is

Q1 =

(
1− 1

2
R∗RT R∗

−RT 1− 1
2
RTR∗

)
, (D.9)

where R is a 6× 3 dimensional matrix.

R† = M−1
N

(
MT

D,M
T
)

= (KT , JT ) (D.10)

J = MMN
−1K = MDM

−1
N I = KJ−1 = MDM

−1 (D.11)

Therefore, the transformation matrix Q1 can be written purely in terms of dimen-

sionless parameters J and K

Q1 =

1− 1
2
KK† −1

2
KJ† K

−1
2
JK† 1− 1

2
JJ† J

−K† −J† 1− 1
2
(K†K + J†J)

 (D.12)

while the light and heavy mass matrices are

Meff =

(
fvL ML

MT
L 0

)
−

(
MDM

−1
N MT

D MDM
−1
N M

MTM−1
N MT

D MTM−1
N M

)
(D.13)

mN = MN + .. (D.14)

Denoting

Meff =

(
Z B

C D,

)
(D.15)

Z = fvL −MDM
−1
N MT

D, (D.16)

B = ML −MDM
−1
N M, (D.17)

C = MT
L −MTM−1

N MT
D, (D.18)
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D = MTM−1
N M, (D.19)

D.0.2.3 Determination of Q2

The remaining mass matrix Meff can be further block diagonalized using another

transformation matrix

S†MeffS∗ =

(
Mν 0

0 mS

)
(D.20)

such that in eq.(D.0.2.1)

Q2 =

(
S 0

0 1

)
(D.21)

S =

(
1− 1

2
P ∗P T P ∗

−P T 1− 1
2
P TP ∗

)
(D.22)

Using eq.(D.22) in eq.(D.20) ,we get through eq.(D.15)-eq.(D.19),

P † = (MTM−1
N M)−1

(
MTM−1

N MT
D −MT

L

)
= M−1MT

D −M−1MNM
−1ML (D.23)

where we have used yχ to be symmetric. leading to

Mν = mII
ν +

(
MDM

−1
N MT

D

)
−(MDM

−1
N MT

D) +ML(MTM−1
N M)−1MT

L

−ML(MTM−1
N M)−1(MTM−1

N MT
D)

−(MDM
−1
N M)(MTM−1

N M)−1MT
L ,

mS = −MM−1
N MT + ....,

(D.24)

The 3× 3 block diagonal mixing matrix Q2 has the following form

Q2 =

(
S 0

0 1

)
=

1− 1
2
II† I 0

−I† 1− 1
2
I†I 0

0 0 1

 (D.25)
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where we have used eq.(D.11) to define I = KJ−1 = MDM
−1.

Complete diagonalization and physical neutrino masses

The 3 × 3 block diagonal matrices Mν , mS and mN can further be diagonalized to

give physical masses for all neutral leptons by a 9× 9 unitary matrix U as

U =

Uν 0 0

0 US 0

0 0 UN

 . (D.26)

where the 3× 3 unitary matrices Uν , US and UN satisfy

U †νMν U
∗
ν = M̂ν = diag (Mν1,Mν2,Mν3) ,

U †SmS U
∗
S = m̂S = diag (mS1,mS2,mS3) ,

U †N mN U
∗
N = m̂N = diag (mN 1,mN 2,mN 3) (D.27)

With this discussion, the complete mixing matrix is

V = Q · U = Q1 · Q2 · U

=

1− 1
2
KK† −1

2
KJ† K

−1
2
JK† 1− 1

2
JJ† J

−K† −J† 1− 1
2
(K†K + J†J)

 ·
1− 1

2
II† I 0

−I† 1− 1
2
I†I 0

0 0 1


Uν 0 0

0 US 0

0 0 UN



=

1− 1
2
II† I − 1

2
KJ† K

−I† 1− 1
2
(I†I + JJ†) J − 1

2
I†K

0 −J† 1− 1
2
J†J

 ·
Uν 0 0

0 US 0

0 0 UN

 (D.28)
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Appendix E
SO(10) Representation

E.1 Decomposition of SO(10) irreducible represen-

tations

Since we have been extensively using the decomposition of various SO(10) represen-

tations in to it subgroups, and very often we required various scalar sub-multiplets at

various scalars following extended survival hypothesis and residing in the symmetry

at the corresponding scale, we would often require the decomposition table. We have

borrowed the tables for various representations from a very good review on SO(10)

group theory by Fukuyama et al [153].

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(6,1,1)

(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

3,1,1; 1
3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
5,−2

)
(1,2,2) (1,2,2; 0)

(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
5,−2

)
Table E.1: Decomposition of the representation 10
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(4,2,1)

(
3,2,1; 1

6

) (
3,2; 0, 1

6

) (
3,2; 1

6

)
(10,−1)(

1,2,1;−1
2

) (
1,2; 0,−1

2

) (
1,2;−1

2

) (
5, 3
)(

4,1,2
) (

3,1,2;−1
6

) (
3,1; 1

2
,−1

6

) (
3,1; 1

3

) (
5, 3
)(

3,1;−1
2
,−1

6

) (
3,1;−2

3

)
(10,−1)(

1,1,2; 1
2

) (
1,1; 1

2
, 1

2

)
(1,1; 1) (10,−1)(

1,1;−1
2
, 1

2

)
(1,1; 0) (1,−5)

Table E.2: Decomposition of the representation 16

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,3) (1,1,3; 0) (1,1; 1, 0) (1,1; 1) (10, 4)

(1,1; 0, 0) (1,1; 0) (1, 0)
(1,1;−1, 0) (1,1;−1)

(
10,−4

)
(1,3,1) (1,3,1; 0) (1,3; 0, 0) (1,3; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(10, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
10,−4

)
(15,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)(

3,1,1; 2
3

) (
3,1; 0, 2

3

) (
3,1; 2

3

) (
10,−4

)(
3,1,1;−2

3

) (
3,1; 0,−2

3

) (
3,1;−2

3

)
(10, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)

Table E.3: Decomposition of the representation 45

(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)
(1,3,3) (1,3,3; 0) (1,3; 1, 0) (1,3; 1) (15, 4)

(1,3; 0, 0) (1,3; 0) (24, 0)
(1,3;−1, 0) (1,3;−1)

(
15,−4

)
(20′,1,1)

(
6,1,1; 2

3

) (
6,1; 0, 2

3

) (
6,1; 2

3

) (
15,−4

)(
6,1,1;−2

3

) (
6,1; 0,−2

3

) (
6,1;−2

3

)
(15, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(15, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
15,−4

)
Table E.4: Decomposition of the representation 54
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,2,2) (1,2,2; 0)

(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
5,−2

)
(10,1,1) (1,1,1;−1) (1,1; 0,−1) (1,1;−1)

(
10, 6

)(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

6,1,1; 1
3

) (
6,1; 0, 1

3

) (
6,1; 1

3

) (
45,−2

)(
10,1,1

)
(1,1,1; 1) (1,1; 0, 1) (1,1; 1) (10,−6)(
3,1,1; 1

3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
5,−2

)(
6,1,1;−1

3

) (
6,1; 0,−1

3

) (
6,1;−1

3

)
(45, 2)

(6,3,1)
(
3,3,1;−1

3

) (
3,3; 0,−1

3

) (
3,3;−1

3

)
(45, 2)(

3,3,1; 1
3

) (
3,3; 0, 1

3

) (
3,3; 1

3

) (
45,−2

)
(6,1,3)

(
3,1,3;−1

3

) (
3,1; 1,−1

3

) (
3,1; 2

3

) (
10, 6

)(
3,1; 0,−1

3

) (
3,1;−1

3

)
(45, 2)(

3,1;−1,−1
3

) (
3,1;−4

3

) (
45,−2

)(
3,1,3; 1

3

) (
3,1; 1, 1

3

) (
3,1; 4

3

)
(45, 2)(

3,1; 0, 1
3

) (
3,1; 1

3

) (
45,−2

)(
3,1;−1, 1

3

) (
3,1;−2

3

)
(10,−6)

(15,2,2) (1,2,2; 0)
(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(45, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
45,−2

)(
3,2,2; 2

3

) (
3,2; 1

2
, 2

3

) (
3,2; 7

6

) (
45,−2

)(
3,2;−1

2
, 2

3

) (
3,2; 1

6

)
(10,−6)(

3,2,2;−2
3

) (
3,2;−1

2
,−2

3

) (
3,2;−7

6

)
(45, 2)(

3,2; 1
2
,−2

3

) (
3,2;−1

6

) (
10, 6

)
(8,2,2; 0)

(
8,2; 1

2
, 0
) (

8,2; 1
2

)
(45, 2)(

8,2;−1
2
, 0
) (

8,2;−1
2

) (
45,−2

)
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(6,1,1)

(
3,1,1;−1

3

) (
3,1; 0,−1

3

) (
3,1;−1

3

)
(5, 2)(

3,1,1; 1
3

) (
3,1; 0, 1

3

) (
3,1; 1

3

) (
45,−2

)(
10,3,1

)
(1,3,1; 1) (1,3; 0, 1) (1,3; 1) (15,−6)(
3,1,3; 1

3

) (
3,3; 0, 1

3

) (
3,3; 1

3

) (
45,−2

)(
6,1,3;−1

3

) (
6,3; 0,−1

3

) (
6,3;−1

3

)
(50, 2)

(10,1,3) (1,1,3;−1) (1,1; 1,−1) (1,1; 0) (1, 10)
(1,1; 0,−1) (1,1;−1)

(
10, 6

)
(1,1;−1,−1) (1,1;−2) (50, 2)(

3,1,3;−1
3

) (
3,1; 1,−1

3

) (
3,1; 2

3

) (
10, 6

)(
3,1; 0,−1

3

) (
3,1;−1

3

)
(50, 2)(

3,1;−1,−1
3

) (
3,1;−4

3

) (
45,−2

)(
6,1,3; 1

3

) (
6,1; 1, 1

3

) (
6,1; 4

3

)
(50, 2)(

6,1; 0, 1
3

) (
6,1; 1

3

) (
45,−2

)(
6,1;−1, 1

3

) (
6,1;−2

3

)
(15,−6)

(15,2,2) (1,2,2; 0)
(
1,2; 1

2
, 0
) (

1,2; 1
2

)
(5, 2)(

1,2;−1
2
, 0
) (

1,2;−1
2

) (
45,−2

)(
3,2,2; 2

3

) (
3,2; 1

2
, 2

3

) (
3,2; 7

6

) (
45,−2

)(
3,2;−1

2
, 2

3

) (
3,2; 1

6

)
(15,−6)(

3,2,2;−2
3

) (
3,2;−1

2
,−2

3

) (
3,2;−7

6

)
(50, 2)(

3,2; 1
2
,−2

3

) (
3,2;−1

6

) (
10, 6

)
(8,2,2; 0)

(
8,2; 1

2
, 0
) (

8,2; 1
2

)
(50, 2)(

8,2;−1
2
, 0
) (

8,2;−1
2

) (
45,−2

)
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(4C , 2L, 2R) (3C , 2L, 2R, 1B−L) (3C , 2L, 1R, 1B−L) (3C , 2L, 1Y ) (5, 1X)
(1,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (1, 0)

(15,1,1) (1,1,1; 0) (1,1; 0, 0) (1,1; 0) (24, 0)(
3,1,1; 2

3

) (
3,1; 0, 2

3

) (
3,1; 2

3

) (
10,−4

)(
3,1,1;−2

3

) (
3,1; 0,−2

3

) (
3,1;−2

3

)
(10, 4)

(8,1,1; 0) (8,1; 0, 0) (8,1; 0) (24, 0)
(6,2,2)

(
3,2,2;−1

3

) (
3,2; 1

2
,−1

3

) (
3,2; 1

6

)
(10, 4)(

3,2;−1
2
,−1

3

) (
3,2;−5

6

)
(24, 0)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(24, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

) (
10,−4

)
(10,2,2) (1,2,2;−1)

(
1,2; 1

2
,−1

) (
1,2;−1

2

) (
5, 8
)(

1,2;−1
2
,−1

) (
1,2;−3

2

) (
40, 4

)(
3,2,2;−1

3

) (
3,2; 1

2
, 1

3

) (
3,2; 1

6

) (
40, 4

)(
3,2;−1

2
,−1

3

) (
3,2;−5

6

)
(75, 0)(

6,2,2; 1
3

) (
6,2; 1

2
, 1

3

) (
6,2; 5

6

)
(75, 0)(

6,2;−1
2
, 1

3

) (
6,2;−1

6

)
(40,−4)(

10,2,2
)

(1,2,2; 1)
(
1,2; 1

2
, 1
) (

1,2; 3
2

)
(40,−4)(

1,2;−1
2
, 1
) (

1,2; 1
2

)
(5,−8)(

3,2,2; 1
3

) (
3,2; 1

2
, 1

3

) (
3,2; 5

6

)
(75, 0)(

3,2;−1
2
, 1

3

) (
3,2;−1

6

)
(40,−4)(

6,2,2;−1
3

) (
6,2; 1

2
,−1

3

) (
6,2; 1

6

) (
40, 4

)(
6,2;−1

2
,−1

3

) (
6,2;−5

6

)
(75, 0)

(15,3,1) (1,3,1; 0) (1,3; 0, 0) (1,3; 0) (24, 0)(
3,3,1; 2

3

) (
3,3; 0, 2

3

) (
3,3; 2

3

)
(40,−4)(

3,3,1;−2
3

) (
3,3; 0,−2

3

) (
3,3;−2

3

) (
40, 4

)
(8,3,1; 0) (8,3; 0, 0) (8,3; 0) (75, 0)

(15,1,3) (1,1,3; 0) (1,1; 1, 0) (1,1; 1) (10, 4)
(1,1; 0, 0) (1,1; 0) (75, 0)

(1,1;−1, 0) (1,1;−1)
(
10,−4

)(
3,1,3; 2

3

) (
3,1; 1, 2

3

) (
3,1; 5

3

)
(75, 0)(

3,1; 0, 2
3

) (
3,1; 2

3

)
(40,−4)(

3,1;−1, 2
3

) (
3,1;−1

3

)
(5,−8)(

3,1,3;−2
3

) (
3,1; 1,−2

3

) (
3,1; 1

3

) (
5, 8
)(

3,1; 0,−2
3

) (
3,1;−2

3

) (
40, 4

)(
3,1;−1,−2

3

) (
3,1;−5

3

)
(75, 0)

(8,1,3; 0) (8,1; 1, 0) (8,1; 1)
(
40, 4

)
(8,1; 0, 0) (8,1; 0) (75, 0)

(8,1;−1, 0) (8,1;−1) (40,−4)
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