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Spontaneous and Stimulated Emission

We have already mentioned the term ‘spontaneous radiation’ in Chap. 5.
It was used as a synonym with the notion of the random–phase wave fields
summation. In terms of statistics, radiation emitted at random phases is char-
acterized by a spectral–angular distribution of the average power flow. The
total field phase is also random in this context. At the same time, it is clear
that any realization of the emitter ensemble could be, in a sense, coherent if
capable of preserving the fixed correlation between individual emitters during
a time interval sufficiently long. For instance, the process of the regular wave
scattering by a fixed lattice of charged particles meets these conditions (see
Sect. 5.2.2). Surely, the oscillation phase of each particle, prescribed by the
wave under scattering, remains correlated with the particle location even if
the latter is random. Therefore, a certain degree of coherence is inherent in
the total radiation, emitted by this ensemble. Naturally, if the emitters are
characterized by a regular spatial distribution, the effects of the radiation
coherence are more expressive.

The above–given reasoning relates to fixed ensembles of emitters. As
regards the systems which are substantially nonequilibrium (e.g., flows of
charged particles), there arises a question: to what extent can regular spa-
tial distributions of emitters keep the coherence in time? Such steady regular
distributions might radically alter the basic characteristics of spontaneous ra-
diation, i.e., its spectral–angular distribution and total radiation power. On
the one hand, it seems that regular distributions of a large number of inde-
pendent emitters cannot survive. The matter is that, influenced by a lot of
uncontrollable disturbing factors (thermal spread of emitter velocities, colli-
sions, etc.), radiation would rather quickly lose its coherence. On the other
hand, symmetry of the processes of emission and absorption of radiation by
individual particles indicates that identical emitters cannot be independent
of one another: each of them reacts to the radiation fields emitted by other
particles. As a result of this, the amplitude and, what is more, the phase of
the emitter proper radiation field is subjected to certain changes. There takes
place such a reaction even if individual emitters are quasi neutral (e.g., atoms)
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and separated from one another by large distances. As regards charged parti-
cles in a dense beam, their interaction can also be influenced by comparatively
short–range Coulomb forces. The necessity of taking into account these forces
essentially complicates the quantitative description of the radiation emission
by the corresponding ensembles.

In rarefied ensembles, Coulomb fields are negligible and collective interac-
tion between individual emitters is realized via long–range microwave fields
only. The symmetry between the processes of the radiation emission and ab-
sorption means that the processes are mutually complementary. Absorption
is, of course, a stimulated process meaning that its rate is proportional to
the existing electromagnetic power. So is the complementary process that can
be called the stimulated emission. The corresponding notions had been for
the first time introduced by A. Einstein [2], who used them for the analyti-
cal explanation of the black body equilibrium radiation law. In the course of
development of quantum theory, the mechanism of the stimulated radiation
emission was explained directly.

The quantum genesis of the notion somewhat hampered its application to
classical (nonquantum) systems, in particular to intense flows of high–energy
electrons. Perhaps, only elaboration of the theory of free electron lasers has
revealed the profound correlation between the stimulated emission and the
principle of operation of quite traditional devices of microwave electronics
(e.g., klystrons or TWT). To emphasize this inner link, we will discuss briefly
the quantum and classical interpretations of notions of the spontaneous and
stimulated emission. Peculiarity of the mechanisms of realization of these ef-
fects in classical ensembles of emitters (flows of charged particles) is also to
be discussed below.

6.1 Semiquantum Interpretation

Einstein’s semiphenomenological theory is based on the following considera-
tion: in an equilibrium ensemble of emitters the spectral distribution of the
radiation energy density is a result of a mutual balance of elementary acts
of emitting and absorbing the field energy quanta by individual emitters. For
deriving quantitative characteristics of intensity of these processes, the no-
tions of probabilities of the stimulated (‘st’) and spontaneous (‘st’) emission
of photons as well as the probability of their stimulated absorption were intro-
duced. Transitions between the energy levels Em and En were stimulated by
the external microwave radiation of frequency ωmn. The transition probability
was supposed to be proportional to the spectral density of the radiation field
energy � (ωmn):

wst
mn = Bmn� (ωmn) . (6.1)
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Probabilities of emission (m > n) and absorption (m < n) processes per
unit time were supposed to be equal so that Bmn = Bnm.1 The latter state-
ment corresponded to the supposition that both the processes were symmetric.

Under the equilibrium condition of the ‘emitters + field’ system, the total
numbers of the emission and absorption transitions per unit time have to be
equal:

wtot
mnNm = wtot

nmNn. (6.2)

Here Nm and Nn are numbers of the emitters with energies Em and En,
respectively. These numbers in equilibrium are correlated via Boltzman’s dis-
tribution:

Nn

Nm
= exp

(
− h̄ωmn

kT

)
. (6.3)

(For simplicity, the energy levels themselves are considered to be nondegen-
erated.) As it follows from (6.2) and (6.3), the transition probabilities are in
the ratio:

wtot
mn

wtot
nm

= exp
(

h̄ωmn

kT

)
. (6.4)

Physically it is evident that absorption transitions can be nothing but
stimulated ones:

wtot
nm = wst

mn = Bnm� (ωmn) ; m > n. (6.5)

However, as (6.4) indicates, if the value of h̄ω/kT is finite, the total probability
of the radiation emission wtot

mn is larger than the probability of the stimulated
radiation emission wst

mn. This conclusion is equivalent to the statement that
radiation emission, in contrast to absorption, is possible even at the so–called
‘zero’ energy of the external microwave field. So, the notion of additional
(‘spontaneous’) radiation, independent of the energy density of the stimulating
field � (ωmn), has been introduced:

wsp
mn = wtot

mn − wst
mn. (6.6)

It was the absence of any dependence on the external field that conditioned
calling such transitions the spontaneous ones (i.e., those taking place without
any external influence).

As it follows from the above-given expressions, the density of the radiation
field energy is determined by the relation:

� (ωmn) =
wsp

mn

Bmn [exp (h̄ωmn/kT ) − 1]
. (6.7)

The relation (6.7) should look like the classical Rayleigh–Jeans spectrum
when h̄ωmn → 0:
1 Later on these parameters were called Einstein’s coefficients.
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� (h̄ωmn � kT ) =
ω2

mn

π2c3
kT.

Making use of this limit, one can relate the coefficients Bmn to the probability
of the spontaneous emission wsp

mn:

Bmn =
π2c3

h̄ω3
mn

wsp
mn. (6.8)

Substitution of this expression into the right–hand side of (6.7) finally yields
the classical Planck formula:

� (ωmn) =
h̄ω3

mn

π2c3 [exp (h̄ωmn/kT ) − 1]
. (6.9)

Within the quantum theory, correctness of the semiphenomenological con-
siderations used as a basis for derivation of (6.8) and (6.9) has been completely
proved as well as the equality between the probabilities of the stimulated ab-
sorption and emission. Really, matrix elements of these transitions have turned
out to be modulo equal and proportional to the amplitude of the radiation
field at the frequency corresponding to this transition. As the probabilities of
the emission and absorption transitions are proportional to the square of the
matrix element, these characteristics turn out to be also proportional to the
spectral density of the radiation field energy. In this sense, the notion of spon-
taneous transitions, postulated by Einstein, looks like being somewhat con-
tradictory to the causality principle. Really, the atom, not influenced by any
external force, ought to stay on the corresponding excited level. At present,
this apparent paradox is only of historical interest because it has been obvi-
ated because of development of quantum electrodynamics. Briefly speaking,
the essence of the matter is explicable in the following way.

The spectral density of the free radiation field energy may be presented
as the sum of energies h̄ω of the photons characterized by the corresponding
frequency:

� (ωmn) = h̄ωmnn (ωmn) .

Here n(ω) is the number of such photons. Consequently, the relation (6.6) of
the total probability to the probability of the spontaneous transition may be
written as

wtot
mn = [1 + n (ωmn)] wsp

mn. (6.10)

The unity in the square brackets corresponds to the spontaneous emission,
which takes place even if n(ω) = 0.

On the other hand, as it is known from quantum electrodynamics, the
spectral density of the field total energy is determined by the formula:

E =
[
1
2

+ n (ω)
]

h̄ω .

The first term on the right-hand side of this equation corresponds to the
so-called zero oscillations, i.e., exactly to the case when n(ω) = 0.
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An interesting interpretation follows from this expression. The sponta-
neous radiation emission is not spontaneous in the literal sense: the process
is, at least half, stimulated by zero oscillations of the electromagnetic field. A
detailed analysis (e.g., see [4]) indicates that this explanation does make sense.
And what is more, the second half of the total probability of the spontaneous
radiation emission is also stimulated. However, in this case, zero oscillations
of the emitter itself play the role of the stimulating factor.

In the experiment, the existence of spontaneous emission transitions has
to indicate itself in two ways. First, it is some broadening of spectral lines,
which is conditioned by finiteness of the atom life time in the excited state:
τsp ∝ (wsp)−1. Second, positions of the corresponding energy levels are to be
shifted with respect to their locations in the absence of zero oscillations. As a
matter of fact, both the effects have been observed experimentally. This fact
makes the basic proof of the determining role played by the zero oscillations
in the spontaneous radiation emission (even if to say nothing about brilliant
conformity of Planck formula with the whole totality of the experimental
data).

In general, phases of the spontaneous radiation, directions of the propa-
gation of the corresponding waves, and their polarizations are not correlated
because the zero oscillations themselves are of the occasional nature. Phys-
ically, it means that the spontaneous radiation emitted by an ensemble is
incoherent. Therefore, the above–studied radiation emission by the system of
particles, the power of which is equal to the sum of the radiation powers of
individual emitters, is also called spontaneous.

There are two suppositions implied in this reasoning. Both of them are
inherent in the system of emitters that is in dynamic equilibrium with the
isotropic radiation. First, photons are characterized only by the frequency ω
without fixation of direction of radiation propagation. Second, the emitter
energy distribution is supposed to be thermodynamically equilibrium (Boltz-
mann distribution). It is easy to generalize the first supposition for the number
of photons of a given mode n(k) (k implies the totality of the indexes, de-
scribing the mode).2 Other suppositions, such as the symmetry of the Einstein
coefficients and their link with the spontaneous transition probability, can now
be considered as proved by the quantum relations:

Bmn = Bnm;
wtot

mn = wsp
mn [1 + N ] ; (6.11)

wtot
k↓ = wsp

k↓ [1 + N ] .

The arrows here indicate the energy variation as a result of the transition.
These relations are not linked with the thermodynamic equilibrium sup-

position. So, one may write down a kind of a kinetic equation describing a
temporal evolution of an average number of photons of the wave vector k
2 As regards free plane waves, k is the wave vector.
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interacting with emitters of energy E . If the emitters energy distribution is
f (E , t), then

∂nk

∂t
=
∫

{f(E , t)wk↓ + nkf(E , t)wk↓ − nkf(E − h̄ω, t)wk↑}dE . (6.12)

The first term in the curled brackets describes the probability of the sponta-
neous emission of a photon k of energy h̄ω. The third term corresponds to the
absorption process rate, which is proportional to the probability wk↑, to the
number of existing photons3 nk, and to the population of the level E − h̄ω the
transition starts from.

The second term describes an inverse process of the induced emission pro-
portional to the number of photons as well. As has been discussed above, this
addendum is necessary to provide a stationary distribution with
∂n/∂t = 0 if the emitters energy distribution is Boltzmann one. Really, in
the steady state with f (E) ∝ exp (−E/κT ), the expression in the brackets
has to vanish so that

n (k) =
1

exp (h̄ω/κT ) − 1
. (6.13)

Multiplying (6.13) by the quantum energy h̄ω and by the phase volume for
the isotropic radiation 4π |k|2 dk, one gets the Planck formula (6.9).

It is worth to note here that if the energy distribution is inverse, i.e. if
f(E) > f(E − h̄ω), the second term could be predominant. Under this condi-
tion, exponential growing of number of photons takes place and all of them
are exact copies of the first “initiating” photon. One can easily recognize this
as lasing which is due to the stimulated emission. In what follows we consider
this effect of main importance in the classic limit omitting effects specific for
quantum emitter (i.e., for quantum lasers).

6.2 Classical Limit

Transferring the concept of stimulated and spontaneous emission to classical
(nonquantum) systems meets certain difficulties. Obviously, this is the spon-
taneous emission to be identified with numerous examples in Part I, where
no external electromagnetic waves influencing the particle motion were con-
sidered. However, there is a small discrepancy in this approach: the radiation
phase is strictly determined for a classical particle in contrast with the quan-
tum spontaneous radiation. It is not surprising: in the quantum description
with a determined number of photons the field phase is not defined because
of the uncertainty principle, while a number of photons are meaningless in
classical electrodynamics.
3 We keep the same notation nk for the quantum average of the number of photons.
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The physical meaning of the stimulated emission as additional to the spon-
taneous one is much less obvious in classical electrodynamics. The extra ac-
celeration caused by an external wave does generate some radiation. However,
the process is weak and must be regarded as scattering because wave vectors
of the corresponding waves do not coincide with that of the incident wave as
it should be for stimulated processes.

In spite of that, the concept above can be definitely applied to classical
beam systems. Really, the absorption – radiation symmetry for a given wave
can be understood as the equality of phase intervals corresponding to the
increase and decrease in the particle energy. The temporal variation of the
number of quanta is to be interpreted as variations in the field energy spec-
tral density. As regards the quantum discreteness of energy levels, it was used
above only for derivation of Planck formula and was not essential for men-
tioned lasing. Summing, one should expect that the kinetic relation (6.12)
is valid even for h̄ → 0 and that it could describe the stimulated effects in
classical nonequilibrium systems with inverse populations.

In the classical limit, the photon energy and the distance between energy
levels are negligible. So, the energy population can be considered as continuous
and can be presented as the expansion:

f(E − h̄ω) ≈ f(E) − h̄ω
∂f

∂E + · · · . (6.14)

Multiplying (6.12) by h̄ω and using (6.14), one gets

∂Wk

∂t
=
∫ {

f(E) +
∂f

∂E Wk

}
pk(E)dE , (6.15)

where pk is the intensity of the spontaneous emission of the wave k by an
emitter of energy E . The value Wk = h̄ωnk is, of course, the electromagnetic
energy density of the mode. Integrating the second term in right-hand side of
(6.15) by parts and putting, for simplicity, f(Emin) = 0, we obtain

∂Wk

∂t
= Pk − Wk

∫
f(E)

∂pk

∂E dE , (6.16)

where
Pk =

∫
f(E)pk(E)dE

is the spontaneous radiation power integrated over all emitters. In particular,
for a monoenergetic ensemble4 of energy E0

∂Wk

∂t
= Pk − Wk

(
∂Pk

∂E

)

0

. (6.17)

4 We call an ensemble monoenergetic if its energy distribution is narrow enough
but still is much wider than h̄ω to ensure the expansion (6.14).
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This equation is of the same structure as (6.12) but does not contain h̄.
It shows that the energy spectral density variations take place because of the
spontaneous and stimulated emission, the last being proportional to the den-
sity itself. The lasing effect is also presented. However, the condition of lasing
looks different than that in a quantum system. It says that the derivative
∂Pk/∂E has to be negative and large enough. In other words, to get lasing the
intensity of spontaneous emission of the given mode should depend sharply on
the emitter energy. In quantum systems it is ensured automatically because of
the levels discreteness and thus the inverse population is of the main impor-
tance. On the contrary, a classical beam system is populated obviously only
at large energies so that the inverse population exists for granted and means
just the free energy availability. In this case, this is the sharp dependence of
the spontaneous emission on energy that must be ensured.

Of course, the relation (6.17) obtained as a limiting case of (6.12) does not
explain the mechanism of the stimulated emission in classical electrodynamics.
Both of them are based on the energy considerations and contain no infor-
mation about the field phase. It was completely approved in a steady state
when the number of photons was fixed and the phase was random. However,
for a temporal evolution of the average number of photons the average phase
has to depend on time as well. Really, growing predominance of the emission
over absorption (lasing) may take place from the classical point of view only
under condition of developing phasing of individual emitters. This phasing is
nothing but an appearance of a certain coherence. These arguments lead to
the conclusion that the stimulated emission of a given field mode is, in a way,
equivalent to the development of its coherence.

Coming to beam systems with the expressed direction of motion along
the z-axis a narrow-band character of the spontaneous spectrum is associated
with the condition of synchronism which links the phase velocity of the wave
and the particle longitudinal velocity. The width of the spectrum is condi-
tioned, first of all, by the finite wave–particle interaction distance. The profile
of the spectrum can be obtained from the general considerations. Really, if
the particle velocity has a component oscillating with a frequency Ω(γ), the
amplitude of a quasi-synchronous spectral harmonic is proportional to

k

∫ L

0

exp [i ((ω ± Ω)z/v − kz)] dz = ikL
exp (−iµ) − 1

µ
, (6.18)

where

µ =
(

1 − ω ∓ Ω

kv

)
kL (6.19)

is the phase slippage of the particle with respect to the wave at the total
distance of interaction L. The spontaneous emission power as a function of µ
is proportional to the absolute value of (6.18) squared:

Pk(µ) = Pk(0)
sin2(µ/2)
(µ/2)2

, (6.20)
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Fig. 6.1. Profile of the spontaneous emission line and its derivative (below)

This universal expression for a profile of the spontaneous radiation spectral
line of a single particle at a finite length is shown in Fig. 6.1.

The value of µ depends on the phase velocity and the particle velocity in
the fixed combination. So, coming back to (6.17), one can state: for a fixed
frequency an equilibrium energy exists (µ = 0) that provides the maximal
spontaneous emission. At this energy the induced emission vanishes, but it
appears for nonequilibrium energies if µ > 0 where the corresponding deriv-
ative in (6.17) is negative. At the opposite side of the resonance (µ < 0),
there is the region of the wave absorption. For large µ the particle neither
radiates nor absorbs. Treating the particle beam as a medium, one can talk
about a band of its optical activity coinciding with the spontaneous emission
band. It consists of two symmetric subbands: one of absorbtion and that of
stimulated emission (see Fig. 6.1). The latter is possible, of course, only in an
active (inversely populated) medium with some intrinsic free energy.

6.3 Stimulated Emission and Beam Phasing

Of course, the arguments above should be considered just as leading ones. First
of all, it is unclear to what extent they are valid for nonstationary systems.
Second, they do not take into account a degradation of the initial energy
distribution, i.e., inevitable saturation effects and beam energy spreading.
The last but not the least, the arguments are of a phenomenological character
and do not reveal the physics of the correlations developing in the beam of
particles. So far as the correlations are related to phasing, we briefly consider
below the particles phase dynamics in an external wave.

6.3.1 Phase Dynamics in Quasi-Synchronous Wave

In Chap. 5, we have considered the coherent emission of a single mode by
a structure of individual emitters. Now the problem is, in a way, opposite:
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this is the development of a spatial structure under action of a monochro-
matic wave that is of interest. One can call it the second side of the united
process of the development of coherence both in the particle motion and in
the electromagnetic field.

For the sake of simplicity we consider the electric field of the form

E(z, t) = E0 exp (iϕ) ; ϕ = kz − ωt ; z ≥ 0

neglecting its dependence on transverse coordinates and treating the ampli-
tude E0 as constant. Doing this, we ignore the initial stage of the process
when the stimulated monochromatic radiation is just appearing against the
spontaneous background exactly as we ignored above the prehistory of the
emitters lattice. The constancy of the amplitude implies an input signal large
enough to be practically unchangeable by additional radiation. Beside that,
we neglect Coulomb interaction of the particles. It is clear, by intuition, that
all these simplifications are approved only for low-intensity beams.

The particles motion in the absence of the wave is supposed to be a su-
perposition of the longitudinal velocity βc and of transverse oscillations of
frequency ω, small enough not to influence the longitudinal velocity (in a par-
ticular case of Cherenkov interaction the oscillation amplitude can be zero).
We shall accept these conditions for granted because they are quite obvious in
many cases of interest (e.g., for an undulator). The constant particle energy
means then the constant rate of the particle phase slipping with respect to
the wave

dϕ

dz
= k

(
1 − ω ∓ Ω

kβc

)
. (6.21)

For a nonzero wave amplitude the energy and the phase slippage undergo
variations which can be presented as a superposition of slow (in ω-scale) sys-
tematic changes and ripples vanishing in average. Omitting the sign of aver-
aging, one can write down an obvious relation for the systematic part

dγ

dz
= gk cos ϕ, (6.22)

where g is a maximal possible increase in the particle energy per a wavelength
expressed in mc2 units. This dimensionless amplitude is a small parameter
in the overwhelming majority of cases of interest. Of course, it depends on
field and trajectory configurations but is always proportional to the wave
amplitude.

The radiation reaction, that is, the proper field of a single particle is not
included in the equation. This approximation is valid if the width of the
spontaneous radiation spectral line is determined mainly by a finite length of
the interaction path rather than by particle acceleration.

For a synchronous particle, by definition, the phase slippage is zero because
its velocity βs = (ω∓Ω)/kc. For small energy deviations from the equilibrium,
we can present the phase shift per a unit of length as
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dϕ

dz
= αk (γ − γs) , (6.23)

where the index s denotes synchronous values and

α = −βph

(
∂

∂γ

ω ∓ Ω

ωβ

)

s

(6.24)

is the phase slippage sensibility to energy variations.
Equations (6.22) and (6.23) describe the phase stability mechanism well

known in the theory of accelerators (see, e.g., [33]). For g = const they have
an integral of motion (Hamiltonian):

H = (γ − γs)2 −
2g

α
sin ϕ, (6.25)

which predicts stable “synchrotron” oscillations5 around equilibrium values
ϕs = sign(α)π/2 and γ = γs. If deviations from the equilibrium values are
small, the Hamiltonian (6.25) can be presented as

H = (γ − γs)
2 +

g

|α| (ϕ − ϕs)
2

.

This positive quadratic form corresponds to harmonic oscillations of period
2π
√
|α| /g in space. Note that this period is expressed in units of the wave-

length and usually exceeds the latter.
The synchrotron oscillations are nonlinear, their period increasing with

the amplitude. For H = 4π/ |α|, the period becomes infinitely large. The
corresponding phase trajectory

(γ − γs)
2 =

4g

|α| +
2g

α
(sin ϕ − sinϕs)

is called a separatrix, dividing trapped particles oscillating around the equi-
librium from nontrapped or librating ones. The latter ones slip in phase with
respect to the wave in the positive or negative direction, depending on the sign
of α(γ − γs). The separatrix passes through the points γ = γs and ϕ = ϕs ∓ π
with a maximum deviation from the ϕ-axis

γmax − γs ±
√

4g/ |α| (6.26)

taking place at ϕ = ϕs. The qualitative structure of other phase trajectories
(supplied with arrows) is shown in the Fig. 6.2.

6.3.2 Phase Bunching by External Wave (Low-Gain Regime)

Let us consider now evolution of particles initially distributed uniformly over
phases and having the same initial energy γi > γs. In the plane (ϕ, γ), this
5 Also known in electronics as bounce oscillations.
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Fig. 6.2. Phase trajectories and beam bunching at zk < π/2
√

α/g. Dashed lines
show initial distributions

distribution is presented by a straight line γ = γi (see Fig. 6.2). Moving along
bent phase trajectories, half of the particles are accelerated and half deceler-
ated (i.e., are absorbing or radiating). At the beginning these processes are
quite symmetric what corresponds to the symmetry of Einstein coefficients.
But accelerated particles move faster to the right in Fig. 6.2 and overtake
the decelerated ones. As a result, the particles begin to bunch in the phase
region of deceleration, disturbing the initial symmetry between absorption
and radiation in the latter’s favor. If the initial energy is lesser than γs, the
bunching process goes in opposite direction resulting in absorption. One can
easily see that this scenario describes the amplification and absorption bands
discussed above. If the initial energy is outside the optical activity band, the
phase trajectories are almost straight lines, bunching vanishes, and the beam
stays transparent.

The exact solution of (6.22) and (6.23) can be obtained in terms of elliptical
functions. However, it is rather cumbersome and is not really necessary if we
limit ourselves by the initial stage of bunching described above. Because of
the smallness of the amplitude g, one can exploit a perturbation theory if the
interaction distance is not very large.

In the zeroth approximation (g = 0) just kinematic slipping takes place:

ϕ = ϕi + ζ; ζ = αkδiz; δ = γ − γs.

Substituting this in (6.22) gives the induced energy modulation of the first-
order

δ − δi =
g

αkδi
[sin(ϕi + ζ) − sin ϕi]

and the corresponding dynamical phase slippage:

ϕ = ϕi + ζ +
g

αδ2
i

[cos ϕi − cos(ϕi + ζ) − ζ sinϕi] . (6.27)

Note that both values vanish after averaging over initial phases. This means,
in particular, that the first-order radiation losses are zero because the num-
bers of absorbing and radiating particles are equal (one can remind again the
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symmetry of Einstein coefficients). However, the induced phase shift (6.27)
does disturb the symmetry. In the next approximation

dγ

dz
= kg cos(ϕi + ζ) − g2k

αδ2
i

sin(ϕi + ζ) [cos ϕi − cos(ϕi + ζ) − ζ sin ϕi] . (6.28)

Averaging over initial phases gives now
〈

dγ

dz

〉
= − g2k

2α (γi − γs)
2 [sin ζ − ζ cos ζ] , (6.29)

i.e., an additional induced energy change proportional to the field amplitude
squared. The average energy loss for this induced or stimulated radiation can
be calculated by integrating (6.29) once more and noting that the kinematic
phase shift at the length L is µ = αkLδi :

〈γ(L) − γs〉 = g2 αk3L3

µ3

[
cos µ − 1 +

µ

2
sinµ

]
= g2 αk3L3

4
d
dµ

(
sinµ/2

µ/2

)2

.

(6.30)

To calculate the radiation power emitted by the beam as a whole, one
should multiply (6.30) by the number of particles passing the region per unit
time, i.e., by I/q where I is the beam current. This power obviously contains
the spontaneous radiation spectral line profile (6.20), exactly in the same way
as the phenomenological expression (6.16). Beside, the average radiation losses
are proportional to g2, i.e., to the external wave power. So, the stimulated
emission in a classical system really can be interpreted as coherence self-
organization due to the autophasing mechanism with a consequent increase
in the radiation spectral brightness within the optical activity region.

The dependence of the radiation power on the phase slippage parameter
deserves a special comment. For a fixed interaction length the power is max-
imized by µ ≈ 2.6, that is, the wave that overtakes the beam almost by a
wavelength is the most prosperious.6 Note that the exactly synchronous wave
is not amplified at all while all slow waves are attenuated.

These calculations predict the evolution of the initially monoenergetic
beam as well. The method of successive approximations used above works
only if the induced phase shift is small enough, or under qualitative condi-
tions:

δi �
√

g/α min {µ, 1}, (6.31)

kL � 1
√

αg
min {µ, 1}. (6.32)

6 This is true for g = const only, i.e., for the low-gain regime.
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So, the case µ > 1 corresponds to particles situated mainly or totally outside
the separatrix. Note that this is the condition to realize the optimizing value
µ = 2.6 (see the footnote on page 109). In the case of µ < 1 almost all particles
can be initially trapped.

If the interaction length exceeds the value (6.32), one can predict the
faster particles outrunning the slower ones, the distribution “overturning”
and filamentation taking place. At the final stage of this mixing, the phase
distribution would be symmetric again with a corresponding increase in the
energy spread. The larger is the initial µ value the later this filamentation
occurs. From the viewpoint of physics the process can be interpreted as a
nonlinear saturation of the stimulated emission (or absorbtion) accompanied
by beam heating. The corresponding length (by order of magnitude)

Lsat = 1/k
√

αg

can be called the distance of saturation.
Although the results of this section are restricted by the fixed field approxi-

mation, i.e., do not take into account possible amplitude and phase variations,
they can be directly used in some cases of interest. In particular, if the field is
“locked” in a cavity of a finite Q-value and the amplification exceeds certain
threshold, one may foresee a steady state with a time independent estab-
lished amplitude. For large Q, this amplitude could be large enough although
the transient process takes a long time. This low-gain regime is typical for
generators of coherent radiation with low current beams, where the feedback
necessary for self-excitation is provided by a cavity.7 These problems will be
considered in detail in Part III.

6.3.3 Spatial Amplification in Particles Flow (High-Gain Regime)

Nevertheless, high gain systems are also important from the general viewpoint
as well as for applications. Suppose that there is no feedback and the steady
state self-consistent field depends essentially on the longitudinal coordinate
being determined by an input signal and by emitted radiation. This regime
may be called a high-gain spatial amplification of the input signal by the
beam. Naturally, only those input waves could be amplified that are inside
the beam optical activity domain.

Of course, the spatial amplification depends on electrodynamic properties
of the system as a whole. But, basing on general arguments, one should expect
that a quasi-synchronous mode would be mainly amplified if, of course, it is
presented in the input signal. This is the mode that, according to the previous
considerations, pumps the energy out of the beam most effectively. So, we
restrict ourselves below by this one-mode approximation, bearing in mind
that modes are independent in a linear system. Other suppositions are the
same as above including the near-zone interaction being neglected.
7 Or by a negative group velocity typical for backward wave tubes.
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So, we consider now the field amplitude growing with distance but being
independent of time. Note, by the way, that the beam represents both active
and reactive loads for the wave changing its phase ψ(z) as well as the ampli-
tude g(z). Taking this into account, the equations of phase dynamics (6.22),
(6.23) are to be rewritten as

dδ

dz
= kg(z) cos (φ + ψ) ,

dφ

dz
= kαδ. (6.33)

In the same way as in the previous section we get in the first approximation
with respect to g:

δ = δi + k

∫ z

0

g(z′) cos (ϕi + kαδiz
′ + ψ(z′)) dz′;

ϕ = ϕi + kαδiz

+ k2α

∫ z

0

dz′
∫ z′

0

g(z′′) cos (ϕi + kαδiz
′′ + ψ(z′′)) dz′′

or, with the same precision,

dϕi

dϕ
− 1 (6.34)

= k2α

∫ z

0

dz′
∫ z′

0

g(z′′) sin [ϕ − kαδi (z − z′′) + ψ(z′′)] .

Note that this expression describes particles bunching in the ϕ space.
Now we need the second equation relating field variations to beam bunch-

ing. Restricting ourselves by plane motion with the amplitude of the oscillation
velocity ṽ, we note that a single particle at the phase ϕ creates a resonant
harmonic of the transverse current equal to

qṽ

4πβc
exp [i (kz − ϕ(z))] .

Averaging it over all initial phases with the help of (6.34) yields the driving
transverse current

j⊥ = −j0
ik2αṽ

8πβc
exp (ikz) (6.35)

×
∫ z

0

dz′
∫ z′

0

g(z′′) exp [−ikαδi (z − z′′) + iψ(z′′)] dz′′.

Looking for a solution of the wave equation for the corresponding transverse
component of the electric field

d2E

dz2
+ k2E = −i

4πk

c
j⊥,
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we present it as E0(z) exp (ikz), where the complex amplitude E0(z) is a slow
function of the argument. Neglecting its second derivative, we get

dE0

dz
= i

k2j0ṽα

4c2β
(6.36)

×
∫ z

0

dz′
∫ z′

0

g(z′′) exp [i (−kαδi (z − z′′) + ψ(z′′))] .

Note now that, by definition,

g =
qṽ

2kβmc3
|E0| and g exp (iψ) =

qṽ

2kβmc3
E0.

Substituting that into (6.36) yells the self-consistent equation for the electric
field amplitude:

dE0

dz
=

i
L3

r

∫ z

0

dz′
∫ z′

0

E0(z′′) exp [−ikαδi (z − z′′)] dz′′, (6.37)

where

Lr = 2
(

β2c2I0

kj0αṽ2

)1/3

(6.38)

with I0 = mc3/q ≈ 17 kA. For reasons explained below, Lr can be called a
radiation length.

Equation (6.35) can be easily reduced to the third-order differential linear
equation:

d
dz

(
d
dz

+ ikαδi

)2

E0 =
i

L3
r

E0. (6.39)

The solution of this equation under the initial condition

E0 = 1 ; dE0/dz = 0 ; d2E0/dz2 = 0 for t = 0 (6.40)

represents a complex amplification coefficient describing amplitude and phase
characteristics of the process. 8

Looking for a solution in the form exp(iνz), one gets the characteristic
equation

ν (ν + kαδi)
2 = −L−3

r . (6.41)

An equation of this type will be investigated in details in Chap. 10. Here
we just note that the coefficients in (6.41) are real. So it has either three
real roots or one real and two complex conjugated ones. In the first case, all
three linearly independent partial solutions are of an oscillatory type. Their
linear combination cannot exceed essentially the initial field, meaning that
8 We suppose that the final signal amplitude is small enough to exclude nonlinear

processes.
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amplification does not occur. In the second case, which takes place under
condition

µr > −2−2/33 ; µr = kαδiLr (6.42)

one of the complex conjugated roots has a negative imaginary part and the
corresponding partial solution grows exponentially with an e-fold length Lr.
Note that µr has a meaning of the kinematic phase shift at the length Lr

related to the corresponding detuning in initial energy.
If the distance z is essentially smaller than Lr, as it happens for small

currents, the amplification coefficient slightly exceeds unity. One can easily
see that this leads to the result discussed above: at a fixed length, maximal
amplification occurs for the wave with the optimal kinematic phase shift µ ≈
2.6, but the gain itself is small and linearly proportional to the beam current.

Unlike the case of an almost constant amplitude, the high–gain amplifica-
tion takes place not only at positive µ values but also at small negative ones
if the condition (6.42) is fulfilled. The maximal gain is reached for the exactly
synchronous wave9 when the total solution under the initial condition (6.40)
is relatively compact:

E0 =
1
3

[
exp (iz/Lr) + 2 exp (−iz/2Lr) cosh

(√
3z/2Lr

)]
; (6.43)

|E0| =
1
3

√

1 + 4 cosh
(√

3z/2Lr

)
cos (3z/2Lr) + 4 cosh2

(√
3z/2Lr

)
.

(6.44)

It is worth to note that the increment is proportional to j
1/3
0 .

For µ = 0 the characteristic equation (6.41) has the roots

νn = L−1
r exp [iπn/3] , n = 0, 1, 2.

The asymptotic behavior of the electric field amplitude is determined by the
root with maximal imaginary part, i.e., ν0 = L−1

r exp (iπ/3).
The mechanism of the spatial amplification is a basic one for a variety of

high–power amplifiers, using high–current electron beams. Besides, it can be
used in coherent radiation sources where spontaneous radiation plays the role
of the input signal. The selective mechanism of the spatial amplification shares
out a narrow spectral line from the spontaneous radiation spectrum. In the
theory of free electron lasers, such regime is called SASE (Self-Amplification
of Spontaneous Emission) and appears as a direct analog of optical superra-
diance [35]. The notion of “spontaneous coherent radiation” used sometimes
is intrinsically contradictory on our opinion. We will return to these problems
in Sect. 10.

Considerations above are related to a flow of harmonic oscillators with
amplitude determined by ṽ. Of course, the increase in the wave power comes
9 We mean the asymptotic behavior.
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from the total energy of particles which must be accompanied by a change of
the oscillations amplitude. As it has been proved in Part I, a resonant interac-
tion under conditions of a normal Doppler effect damps the amplitude and the
amplification is limited because of oscillation energy exhaustion. Prolongation
of interaction would lead to the inverse process of wave absorption. However,
under conditions of the anomalous Doppler effect, this saturation does not
exist and the oscillations amplitude grows at the account of an additional
decrease in the particle longitudinal momentum.

6.4 Dynamic Chaos

All material above was based on the assumption that a particle interacts with a
single harmonic wave under synchronous or resonance conditions. Being quite
productive for explanation of the induced radiation mechanism as a result
of particles self-bunching in the wave, this assumption still needs additional
discussion of its applicability, especially in the case of large amplitude fields.

We do not mean here negligible changes of a particle trajectory still gov-
erned by external fields while radiation fields can be treated as perturbations.
The dimensionless electric field amplitude g introduced by (6.22) remains
small in practically all cases of interest. Thereby, all our arguments were
based on consideration of resonances (Cherenkov type, Doppler-shifted os-
cillator resonances, cyclotron ones, etc.,). For small g factors only resonant
conditions and a long-term wave–particle interaction can provide a large en-
ergy transfer from particles to the wave (amplifiers and oscillators) or vice
versa (accelerators). In the case of large g, a particle could get a relativistic
velocity during one period of the wave and the resonant conditions would lose
their paramount importance. Electrodynamics of so large fields is still in the
developmental stage.

Nevertheless, even within the frames of the resonant perturbation theory,
one cannot exclude a simultaneous action on the particle of two waves of dif-
ferent frequencies satisfying approximate resonant conditions for two different
degrees of freedom, for example, of Cherenkov and cyclotron type. For very
small wave amplitudes, when these resonances are reliably separated, provide
two well-separated stability regions one can consider them independently. But
an increase in field amplitude which is desirable for high-power devices leads
to an increase in the resonances width. In a sense they can act together, so
that the particle motion in the phase plane becomes unpredictable and close
to stochastic one. They call this phenomenon as a dynamic chaos limiting,
naturally, the power increase and broadening the spectrum of oscillations.
The last plays, of course, an essential role.

Remaining within the frames of the self-consisting theory and neglecting
the radiation damping, one can consider fields as external ones and formulate
the problem as canonical one. This permits to use the well-developed power-
ful formalism of Hamiltonian mechanics, especially the resonant perturbation
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theory. This implies that the Hamiltonian of the dynamical system under con-
sideration (in our case of a particle in the external field) can be presented as a
sum of two terms: H = H0 +H1. Here H0 is a nonperturbed Hamiltonian and
H1 is a small periodic perturbation. Note that the canonical formulation of
the problem implies the applicability of the Liouville theorem which simplifies
essentially the description of the energy exchange between the particle and
the field.

So, the processes of interest can be investigated using the theory of small
perturbations acting over a long period of time. It will be shown below that the
particle motion can be reduced to dynamics of either one nonlinear pendulum
or that of a system of interacting pendulums. In the first case, the particle
motion remains regular, and in the second, it can be chaotic. The conditions
of this change will be discussed below, but before we discuss we need the
basic notions of the resonant perturbation theory applied to the problems of
microwave electronics.

6.4.1 Resonant Perturbation Theory

The main ideas and methods of the resonant perturbation theory will be con-
sidered as applied to motion of a particle under action of two waves, denoted
below by indices 1 and 2. Let the system be described by a Hamiltonian in
action–phase variables

H = H0 (J1, J2) + H1 (J1, J2, θ1, θ2) , (6.45)

where H0 is a nonperturbed Hamiltonian and H1 is a perturbation supposed
to be periodic over θ1, θ2. So, it can be presented as a Fourier series:

H1 =
∑

l,n

Hl,n exp [i (lθ1 + nθ2)] , (6.46)

where l, n are integers. Suppose a resonance condition is fulfilled, that is, there
exists a relation between the proper frequencies of the nonperturbed system
ω1, ω2:

rω1 − sω2 ≈ 0 , (6.47)

where

ω1 =
∂H0

∂J1
, ω2 =

∂H0

∂J2
, θ̇1 = ω1 , θ̇2 = ω2 , r, s integers.

It is necessary to describe slow (in the proper frequencies scale) but systematic
variations of the values J1,2, which are integrals of motion in the absence of
perturbations.

Let us come to the variables denoted by a bar by means of a generating
function

F2 = (rθ1 − sθ2) J̄! + θ2J̄2 . (6.48)
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According to general rules [31], we get

J1 =
∂F2

∂θ1
= rJ̄1, J2 =

∂F2

∂θ2
= −sJ̄1 + J̄2,

(6.49)

θ̄1 =
∂F2

∂J̄1
= rθ1 − sθ2, θ̄2 =

∂F2

∂J̄2
= θ2.

The third equation of the system (6.49) yields

˙̄θ1 = rθ̇1 − sθ̇2 = rω1 − sω2 = 0.

So, the first new angular variable turns out to be a slow varying one while the
second coincides with the original phase (θ̄2 = θ2). Taking into account (6.46)
and the resonant conditions (6.47), we obtain the new Hamiltonian:

H̄ = H0

(
rJ̄1,−sJ̄1 + J̄2, rθ̄1 − sθ̄2, θ̄2

)
(6.50)

+
∑

l,n

Hl,n

(
J̄
)
exp

[
i
r

(
lθ̄1 + (ls + nr) θ̄2

)]
.

Note that fast motion in (6.50) is represented by θ̄2, while θ̄1 is slow because
of the resonant conditions (6.47). So, one can expect that the application of
the perturbation theory would not give rise to appearance of new essential
resonances. Really, as far as θ̄1 is a slow variable while θ̄2 is a fast one, a
resonance can occur only at large values r. These are so-called secondary
resonances developing under certain peculiar circumstances only. Otherwise
resonant terms are not presented in (6.50). Thus, the procedure above reduces
the problem to investigation of particle motion in a vicinity of a single chosen
resonance.

It follows from (6.50) that there is only one slow varying term exp
[
iθ̄1l/r

]

in the sum representing the perturbation. In so far as the variable θ̄1 is
slow, one may average (6.50) over the fast variable θ̄2 (for justification of
this method see, for example, [31]):

H̄ = H̄0(J) + 〈H1〉 (6.51)

where

〈H1〉 =
1
2π

∫ 2π

0

H1dθ̄2.

Taking into account that the remaining term corresponds to ls + nr = 0, the
perturbed Hamiltonian takes the form:

〈H1〉 =
∞∑

p=−∞
H−rp,sp(J̄) exp

[
−ipθ̄1

]
where p = − l

r
s =

n

l
r . (6.52)
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The new averaged Hamiltonian is independent of θ̄2. So, the new canonical
action is an integral of motion:

J̄2 = J2 + sJ̄1 = J2 +
s

r
J1 = const. (6.53)

Hence, the original system (6.50) of two degrees of freedom is reduced to
the system (6.51) with one degree of freedom. The new canonical momentum
J̄2=const is an integral of motion and can be considered in what follows as a
parameter.

Let us consider now the system described by the Hamiltonian (6.51). Tra-
ditionally, the first step is determination of stationary points. According to
general rules, the equation for the stationary points has the form:

˙̄J1 = −∂H̄
∂θ̄1

= 0; ˙̄θ1 =
∂H̄
∂J̄1

= 0. (6.54)

For the overwhelming majority of systems of interest, members of the
series (6.52) decrease with increasing p. Bearing this in mind, one can leave
only three terms with numbers p = 0,±1. It should be noted also that the
perturbation is a real value, that is, H−l,m = Hm,−l. In result the Hamiltonian
(6.51) can be presented in the form:

H̄ = H̄0(J̄) + H0,0(J̄) + 2Hr,−s(J̄) cos θ̄1 . (6.55)

It follows from (6.54) and (6.55) that the stationary points are disposed
at 2Hr,−s(J̄) sin θ̄1 = 0 , θ̄10 = 0 , θ̄11 = π. The value of the new canonical
action at these points is determined by the equation:

∂H̄0

∂J̄1
+

∂H0,0

∂J̄1
+ 2

∂Hr,−s

∂J̄1
cos θ̄1 = 0. (6.56)

It should be noted also that as far as

∂H̄0

∂J̄1
=

∂H̄0

∂J1

∂J1

∂J̄1
+

∂H̄0

∂J2

∂J2

∂J̄1
= ω1r − ω2s ≈ 0

the second term in (6.56) vanishes and the equation for stationary points takes
the form:

∂H0,0

∂J̄1
± 2

∂Hr,−s

∂J̄1
cos θ̄1 = 0, (6.57)

where the sign plus is to be chosen for θ̄1 = 0 and the sign minus for θ̄1 = π.
It should be noted that variations in the canonical action θ̄1 can be large

while changes in the variable J̄1 are small (proportional to perturbations).
Hence, to describe the system near the resonance, the Hamiltonian (6.55) can
be expanded into a Taylor series over powers of a small deviation from the
stationary value of the canonical action J̄10 :
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H̄ = H̄0

(
J̄10

)
+

∂H0

∂J̄1

(
J̄1 − J̄10

)

+
1
2

∂2H0

∂J̄2
1

(
J̄1 − J̄10

)2 + 2Hr,−s

(
J̄10

)
cos θ̄1 + · · · (6.58)

Then
∆H ≡ H̄ − H̄0(J̄10) = G(∆J̄)2 − F cos θ̄1, (6.59)

where

G =
1
2

∂2H0

∂J̄2
1

and F = 2Hr,−s

(
J̄10

)
.

The Hamiltonian (6.59) known as a standard one describes the nonlinear
system dynamics in the vicinity of a resonance. The most interesting cases of
resonant interaction, including the particle phasing in a single external wave
considered above, can be reduced to its analysis.

Note that exactly the same arguments could be applied to the variable θ1.
In other words, the approximation under consideration describes two inde-
pendent resonances and yields the phase trajectory schematic pattern shown
in Fig. 6.3a.

6.4.2 Randomization of Motion

Strictly speaking, the concept of a single isolated resonance is adequate to
1-D conservative systems only. There are two exact integrals of motion in
such cases, namely an action and a phase of oscillation, which provide totally
determined motion. In the overwhelming majority of cases, such conditions
cannot be supported. Particularly, this relates to short-wave radiation where
the electrodynamic system permits a coexistence of a large number of proper
modes interacting with various degrees of particles freedom. Even for two
degrees of freedom, the resonances interact, in a sense. This coupling leads to
a principally new phenomena – to development of a dynamic chaos.10 It should
be emphasized that in microwave electronics this phenomenon mainly relates
to a nonlinear character of a particle motion in a wave. However, sometimes
a nonlinearity of interacting waves plays its role as well.

The possibility of chaotic regimes is of essential interest for both gen-
eral theory and applications. Really, a chaotic electrodynamic system should
generate wide spectrum radiation. This can be used for the development of
powerful generators of electromagnetic noise. On the other hand, such noisy
regime is definitely deleterious for narrow spectrum highly coherent radiation.
In both cases, the region of parameters corresponding to the dynamic chaos
is of a principal importance.
10 This relates as well to open one-dimensional systems where an external force is in

a certain resonant ratio with proper oscillations. Such systems can be described
in a 3-D phase space and are usually used for simple illustration of the chaos
development. However, such examples are hardly peculiar for our problems.
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The germs of the dynamic chaos are those points of the phase space where
two phase trajectories cross each over (homocline points). In our case they are
the saddle points which belong to a separatrix. The reason is rather obvious:
particles spend long time in the vicinity of these points and are subjects of
small but long-acting perturbations. Then a so-called local instability appears
when two points originally close together go away rapidly their separation
increasing exponentially with time. This is exactly what happens when two
points initially close but coming to a saddle point along different sides of a
separatrix have quite different destinations.

Under action of a small perturbation provided by other resonances, the
outgoing branches of a separatrix split and oscillate with increasing amplitude.
As a result, they cross each over creating new homocline points where the
process is repeated behaving like an avalanche. Then a kind of a particle
trajectories web appears and the motion becomes indistinguishable from the
stochastic one. Practically at every point phase trajectories run away from
each other.

This scenario looks rather apocalyptically and can open to question
the possibility of dynamical description of nonlinear systems in general.
Fortunately, the reality is not so bad. There is a remarkable theorem by
Kolmogorov–Arnold–Moser (KAM theorem) [36] telling that the dynamic
chaos takes place only in a close vicinity of a homocline trajectory if the
perturbation is small enough. Only a few phase trajectories leave this do-
main. So, the concept of almost independent resonances stated above still has
a right for existence. But in the case of large enough perturbations, numerous
computer simulations really show practically stochastic wandering of repre-
senting points over all phase space in the absence of external stochastic forces.
This remarkable and comparatively new result of classical mechanics actually
opens a way to the understanding of irreversible character of real physical
processes in nondissipating systems. Moreover, if the dissipation does exist,
a lot of remarkably new effects are predictable including so-called strange at-
tractors, a fractal structure of phase portraits etc. This theory is intensively
developing now and can be found in a row of specialized monographies [37].
Here we have to return to our main question – to the criterion of the dynamic
chaos regime and to its consequences. Unfortunately, KAM theorem itself does
not answer the question.

6.4.3 Criteria of Dynamic Chaos

The main problem in this context is a definition of the parameters domain
where the system becomes chaotic under action of several resonances. There
are several more or less formal criteria. In what follows we stay only on two
simplest ones.

Lyapunov’s Criterion

Consider a dynamic system described by the ordinary differential equations:



120 6 Spontaneous and Stimulated Emission

ẋi = fi (x) , i = {1...N} , (6.60)

where x(t) is an arbitrary trajectory of the system (6.60). Let x1(t) =
x(t) + δx(t) be another trajectory being in a close vicinity of x(t). Then for
a small deviation δx(t), one gets the following system of ordinary differential
equations:

δẋ = Mδx, (6.61)

where
M = {aik} ; aik ≡ ∂fi

∂xk
.

Generally, the matrix M depends on time, but we restrict ourselves at the
moment by the case when it has constant elements. A validity of this approx-
imation will be considered below.

For a constant matrix M, the general solution of (6.61) has the form:

δx =
∑

Cjej exp [λjt] , (6.62)

where ej are the proper vectors of the matrix M, λj are the corresponding
eigenvalues, and Cj are constants. It follows from (6.62) that for negative
Re λj < 0 the small deviations under consideration damp. They say that the
system is locally stable in this case. However, if just one of the eigenvalues has a
positive real part, the small deviations rise exponentially as well as deviations
of the phase trajectories. In these cases, the system is locally unstable.

Using this criterion, we identify the local instability with the possibility
of the dynamic chaos. The eigenvalues λj depend on the system (6.61) and
those parameters which give Re λj > 0 just for one eigenvalue determine the
dynamic chaos domain.

Mathematically, this criterion is immaculate but difficult for applications
if the matrix M depends on time. Then every point of the phase trajectory
requires a separate investigation of the eigenvalues.

Chirikov’s Criterion

Now we stay with another criterion based on simple physical arguments. In
spite of its semi-intuitional character, it describes qualitatively a great variety
of systems. One should not, of course, expect an exact quantitative result
all the more that dynamic chaos appearance is sometimes rather sensitive to
governing parameters.

Bearing in mind our particular interests, we shall consider now the motion
of a particle in the fields of two waves satisfying close resonance conditions.

Let us start with one isolated resonance (e.g., Cherenkov one) for certain
ω and k. As it was stated above, the equations of motion in this case look like
the equations of a nonlinear pendulum:

dγ

dz
= g cos ϕ ;

dϕ

dz
= αk (γ − γs) , (6.63)
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where g is a maximal increase in the particle energy (in units of mc2) per
unit of length which can be obtained from the wave. Note that we use the
energy deviation instead of the action in the general theory 6.4.1. In a case of
neighboring resonances, it does not matter but is more convenient for physical
interpretations.

The analysis of Sect. 6.3.1 shows that the regions of vibration and libra-
tions (phase slippage) are separated by a which passes via points γ = γs and
ϕ − ϕs ∓ π and has a spread along the energy axis

γmax − γs = ±
√

4g/k|α|

realized at γ = γs and ϕ−ϕs∓π. This spread should be identified as the non-
linear resonance width. The phase trajectory pattern was shown in Fig. 6.2.

Suppose now that the particle at the same time is in the vicinity of another
resonance that produces the same picture by itself. If their interaction is weak
enough, the resulting picture would look like that presented in Fig. 6.3

ba

Fig. 6.3. A phase portrait of a nonlinear system under action of two resonances. (a)
Almost independent resonances. (b) Overlapping resonances. The stochastic regions
are shadowed

Note that according to the previous section the separatrix of an almost
independent resonance has a narrow stochastic layer also shown in the figure.

According to the arguments above Fig. 6.3a describes satisfactory the mo-
tion if the waves phase velocities are essentially different. Otherwise, the res-
onances are close to each other, and the procedure of averaging above is not
justified anymore. One can foresee a situation when the stochastic layers of
both resonances are partially overlapped and a lot of additional homocline
points appear. The corresponding set of parameters can be identified as a cri-
terion of the dynamical chaos development11 (see Fig. 6.3b). This condition
suggested by B. Chirikov [38] is sometimes quoted as the resonances overlap-
ping criterion. Numerous analytic and computer investigations show that it
is in a good qualitative (and sometimes quantitative) agreement with reality
for a wide variety of systems.
11 The small additional islands of stability appear because of secondary resonances

mentioned above.
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Using this criterion to find the dynamic chaos condition, one has to find a
nonlinear resonance width and a distance from the nearest adjacent resonance.
In our particular case the latter is supposed to be a cyclotron one.

The distance between two resonances is determined by a difference be-
tween the corresponding equilibrium particle velocities or by a difference of
equilibrium energies. If this distance turns out to be lesser than a sum of
semi-widths of the resonances (including their stochastic layers), the parti-
cle dynamics becomes stochastic. Labeling parameters of the Cherenkov and
cyclotron resonances by indices 1 and 2, one has for the equilibrium values

ω1 − k1v1 = 0; ω2 − k2v2 = ±Ω0/γ2, (6.64)

where Ω0 = qB/mc is Larmor frequency in the magnetic field B. Assume for
simplicity that the resonances are close to each other. Then the difference of
the equilibrium energies is

|∆γ| =
∣∣γ3β∆β

∣∣ =
∣∣∣
∣
γ3β (β − βg)
1 ± γβ2Ω0/ω

∆k

k

∣∣∣
∣ , (6.65)

where βgc = ∂ω/∂k is the group velocity in the vicinity of the resonances. For
semiwidths of the resonances, one can take the expression (6.26). If they are
equal to each other, the condition of a stochastic regime takes a simple form:

√
g >

∣∣
∣∣

√
αγ3β (β − βg)

4 (1 ± γβ2Ω0/ω)
∆k

k

∣∣
∣∣ . (6.66)

Note that if the group velocity of the wave is close to the phase one, the
limiting amplitude can be rather small. For nonequal widths, one should take
into account that for a cyclotron resonance the phase slippage coefficient is
equal to

α = −β
∂

∂γ

ω ∓ Ω0/γ

ωβ
=

1 ∓ Ω0γ/ω

γ3β2
. (6.67)

In more detail, this effect will be considered in use to cyclotron resonance
masers (Sect.9) and to free electron lasers (Sect.10).


