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How to read. And a word on notation.

This dissertation is divided into four chapters. Each chapter builds on a publica-
tion. However, the text in the dissertation is not restricted to these publications.
As a whole, this dissertation can be read as four distinct but not perpendicular
angles on the study of microscopic degrees of freedom in string theory.

There are two ways to read the cohesion of this work. The first two and the
final chapter can be considered as the physics, as referred to in title of the dis-
sertation. The third chapter covers mathematical topics. Only the final chapter
relies explicitly on results obtained in chapter three.

Another way to interpret the structure of this work is to view chapters one
and two as the first part, encompassing the study of black hole microstates. The
final two chapters can then be seen as a second part, spanning different manifes-
tations of the moonshine phenomenon in string theory.

Each chapter is preceded by a brief and general introduction that is directed
to the novice in the subject matter. Also, the preface is directed to the most
general audience and the reader, whatever his background may be, is warmly
welcomed te read this invitation to this dissertation. The main body of the
chapters is of a technical nature and knowledge of string theory is presumed in
formulating the content.

Finally, a word on notation is in order. Natural units are used for the speed
of light, Planck’s constant and Boltzmann’s constant: c = 1, ~ = 1, kB = 1,
but not for Newton’s constant. This choice was made because many different
dimensions are considered in this work, and we want to keep track of this by
writing the D-dimensional Newton’s constant as GD.

The author aimed at using a consistent notation throughout this dissertation.
As it covers both topics in physics and mathematics, this may occasionally result
in irregular notation. Most notably J.P. Serre’s convention is adapted to denote
fields in boldface instead of blackboard script. Hence, the fields Fq, Q, R and
C will be denoted by Fq, Q, R and C. We also use boldface for rings, e.g. Z
for the ring of integers and Zp for the ring (Z/pZ)∗. The finite group Z/nZ is
also denoted by Zn, and sometimes even abbreviated to Zn = n. Technically
this choice is made to denote the monster group in the conventional blackboard
script, M, without confusing it for a field. But also because the author agrees
with J.P. Serre in that blackboard script is a boldface script for the blackboard,
and not strictly necessary à propos to printed text.





Preface

Suppose — suppose — the end of the world is near, and whatever your fate
may be — a colossal comet, nuclear annihilation, a virulent virus — you have
reconciled with the depressing fact that the eradication of mankind is inevitable.
And imagine that in this horrible scenario you get the chance to, in our Final
Day, write down one idea, one piece of information in one sentence, and store
it in a vault for the next intelligent generation to be found. What then would
you pass on to these archaeologists of the distant future? What single idea is so
simple and slim that it can be expressed in a single sentence, while being deep
enough to expose the complexity and intelligence that characterizes contempo-
rary mankind?
When confronted with this happily hypothetic conundrum, the physicist Richard
P. Feynman opted for the idea that

“ ... all things are made of atoms — little particles that move around in perpetual
motion, attracting each other when they are a little distance apart, but repelling
upon being squeezed into one another.”

He commented that

“In that one sentence, you will see, there is an enormous amount of information
about the world, if just a little imagination and thinking are applied.”

Feynman’s imagination was rather exceptional and his thinking notoriously deep,
but it is true that the “atomic hypothesis” is remarkably fruitful and abundant
in conceptual consequences. It is the fundamental premise of chemistry, and it
teaches us why and how substances react with each other to form new types of
matter. It clarifies and classifies the diversity of matter we encounter in Nature.
It is through atoms and molecules that we understand why water freezes and
evaporates, why substances in general change phases at certain temperatures,
and why matter expands and compresses as the temperature is changed. Even
the notion of temperature itself radically changes when we accept that matter is
made of atoms.

Despite drifting around in philosophy for thousands of years, it was only un-
til the early 19th century that the atom got promoted to a scientific concept,
when Dalton used it to explain the “law of multiple proportions” (the observa-
tion that elements react in ratios of small integers), and the first periodic table
was published in 1869. That this took a while is not that surprising: the length
scale that is associated with a typical atom is 10−9 meter, and on scales well
above that, say that of the centimeter and up, for a lot of phenomena in nature
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we do not need the atoms to describe them accurately. Kepler’s laws of planetary
motion, Newton’s laws of mechanics and Bernouilli’s equation of fluid dynamics
are all independent of atomic knowledge. They describe physics at a vastly larger
scale than that of the atom and it is only at the small scale that these laws start
being inaccurate. Vice versa, however, we can understand these theories that
apply at the larger scales as being laws that originate from the microscopics,
and it is by averaging over the small scale physics that we recover the large scale
physics. Unfortunately, averaging is an irreversible procedure. Sole knowledge of
the average, or “effective” laws gives us little, if any, insight in the microscopics.
We do realize that we can only be glad that such effective or average theories do
exist. To describe, say, the flow of water, we certainly do not want to keep track
of al the atoms that constitute this liquid. A liter of water is made up of more
than 1025 H2O molecules.

Occasionally even at large scales, such “effective” descriptions of the phenomena
can harbor signs of their own underlying microscopic description. Phase tran-
sitions of fluids are not described by the theory of Bernouilli and can only be
understood through knowledge of the microscopic nature of the substance, and
the spectrum of blackbody radiation requires a fundamental, quantized energy-
scale. Another example can be found in the anomalous behavior of Mercury
around its perihelion, that was in its time already a hint that the theories of
Newton and Kepler were not complete. It was Einstein’s theory of General Rel-
ativity that cured this discrepancy.

Where by now we understand that matter is made of atoms, and atoms are
made of quarks and electrons, gravity has always been very proficient in hiding
its true microscopic nature. From a conceptual and fundamental point of view
there has to be such a micro- or quantum-gravity, as the absence of a quantum
picture of gravity would violate some deep principles within quantum mechanics.
But also, akin of the theory of fluids, occasionally, gravity gives us subtle hints
regarding its own microscopic nature.

Most famously, Einstein’s theory of gravity predicts the existence of black holes:
massive, dense objects with a gravitational pull so extreme not even light can
escape them. Today, black holes surpassed the status of theoretic constructs
and there are plentiful up in the heavens. After depleting their fuel, a massive
star will collapse into a black hole, and we have many reasons to believe that
Sagitarrius A*, sitting in center of our very own Milky Way, is in fact a massive
black hole.

Black holes are large scale structures. They are surrounded by a large “hori-
zon” — a surface beyond which there is no return — that is of the order of its
own mass, and for a ballpark figure: the estimated horizon radius of Sagitarrius
A* is about 20 times the radius of the sun. That black holes are surrounded
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by this obscuring horizon makes them inherently hard — if not impossible — to
observe directly. Still, today no one dares to claim what exactly goes on behind
the horizon.

A first step towards the “atomic” description of a black hole was made by Stephen
Hawking. In a famous computation Hawking showed that black holes are in fact
not entirely black, but rather a very dark purple. At the very edge of the hori-
zon they radiate weakly, and due to this radiation we can associate a specific
temperature with a black hole. It is as if — albeit very dim and weakly —
black holes leak some of the information they hide behind their horizon away
to their distant observers. Admittedly, the radiation is so weak and the associ-
ated “Hawking temperature” so low, that Hawking’s observation is of a rather
unpractical, unobservable nature, but its conceptual consequences can not be
overestimated.

Explicitly, Hawking’s result states that the temperature of a black hole is in-
versely proportional to its mass: if we increase the mass of a black hole by a
factor of two, the temperature decreases by a factor of one half. Smaller black
holes are hotter. Hawking’s result is very universal, and the derivation does not
rely on too many details of the black hole in question. This means that what-
ever microscopic description of black holes and gravity one cooks up, it has to
reproduce Hawking’s result to be viable.

We can compare this situation with the more mundane study of liquids and
gasses, where the concept of temperature is intimately related with a micro-
scopic description of the substance. Intuitively we may think of temperature as
a measure of how rocky the molecules of a gas are wiggling in space. Much like in
the case of these gasses, the Hawking temperature provides us a window into the
black hole microscopics. In fact, contemporaries of Hawking were quick to show
that from the temperature we can derive how many of these black holes “atoms”
or microstates there should be. This led to a surprising conclusion. The intuition
of the physicist would lead him to predict that the number of microstates should
depend on the volume of a system. However, it was shown that the amount
of microstates of a black hole depends only on the area of the horizon. So the
challenge set by these results is that for a theory of quantum gravity — a mi-
croscopic theory of gravity — to be feasibly, it has to reproduce this peculiar
result that the number of microstates of a black hole is a function of its area only.

This is a dissertation in string theory. And string theory is a quantum the-
ory of gravity. Among its fundamental constituents are strings — tiny objects
that have a length and a tension. Much like the string of a violin, these strings
can be excited, and in string theory it is one of these excitations that represents
the graviton: the microscopic, quantum particle of gravity.
Being a microscopic theory of gravity, it should pass the black hole “test”: it has
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to reproduce the peculiar fact that the number of microstates inside a black hole
depends of its area only. And it is one of the milestones of string theory that
indeed, for specific black holes that occur in the theory, string theory manages to
explain what these microstates are, and counting these states one finds agreement
with the formulae of Hawking and others. On the day this dissertation is printed
string theory is the only theory of quantum of gravity that can claim this success.

String theory does not answer all the questions about black holes and their
microscopic description. For example, string theory does not yet very concretely
explains the microscopic nature of realistic black holes, that is black holes in four
dimensions such as Sagittarius A*. But even for the black holes where string the-
ory has been successful in describing its microscopic nature, there are still many
open questions, both of a technical and a conceptual nature.

1 Black holes and microstates

String theory is a theory of gravity. In its low energy limit it reduces to known
theories of supergravity, most notably the ten dimensional supergravities of type
IIA and type IIB. As such, the theory has black holes as solutions to its equations.
But string theory is much more than a theory of gravity: beside the string and
its graviton excitation, there are many elementary objects that are fundamental
to understand the full theory. There are D-branes, orientifolds, exotic branes,
and monopoles, to name but a few of these object. And it is in these objects that
we, in some examples, can understand what the microscopic degrees of freedom
are.

In a famous example, that is worked out explicitly in chapter I of this dis-
sertation, a four dimensional supersymmetric black hole is constructed in string
theory. Its microscopic degrees of freedom are understood to be due to a five-
brane and the degeneracy is computed as an index of this fivebrane as it warps
itself around the compact, small dimensions. A general strategy to compute the
entropy of this brane-system is to consider the two-dimensional conformal field
theory living on the world-volume. In this two-dimensional field theory we can
consider the partition function Z(T ) as a function of the temperature T . This
function captures all the information about the number of states of the system
and we can extract the behavior of the number of states at high temperature
using Cardy’s formula.

1.1 The Cardy formula

We want to know the entropy of the conformal field theory living on the world-
volume of the brane so we can compare it with the black hole entropy. To this
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end we consider the partition function Z(τ) of the conformal field theory:

Z(τ) =
∑
n

d(n)e2πiEnτ . (1)

In this notation, d(n) denotes the number of ways the system can arrange itself so
that it has total energy En. It is convenient to introduce the notation q = e2πiτ

so that the partition function is Z = Z(q) =
∑
n
d(n)qn, and the degeneracy d(n)

can be read off as d(n) = 1
2πi

∮
γ
Z(q)dq.

A partition function is a tool we encounter in mathematics an physics alike. In
physics, we use partition functions to describe statistical and thermal properties
of a system with a large number of microscopic particles. The partition function
Z(τ) packs information about the degeneracies at different energy scales and
from it thermal properties such as internal heat, entropy and specific heat can
be extracted, typically by taking suitable (logarithmic) derivatives of Z(τ).

In mathematics, we use the partition function in similar vain as a tool to
package the degeneracies of some mathematical quantity at some index level.
Let me specify this with the canonical example that will occur later in this
dissertation.

Consider the following mathematical problem: Let n ∈ N be an integer. We
can ‘split’ up n additively by writing it as the sum of smaller integers and we
can typically do so in many ways:

4 = 1 + 1 + 1 + 1 = 1 + 3 = 2 + 1 + 1 = 2 + 2.

In this case there are four different ways of splitting up the number 4. We say
there are four partitions of 4. Actually, we like to call 4 itself its own partition,
the ‘trivial’ partition, so there are five in total. Now consider the more general
question: how many partitions does a general integer n have. Let’s denote the
number of partitions of n by the symbol p(n). We introduce a ‘formal’ symbol
xand construct a function F (x) — the partition function for the number of
partitions — by taking the nth power of x and multiplying this with p(n), in the
end summing over everything:

F (x) =
∑
n

p(n)xn = p(0) + p(1)x+ p(2)x2 + p(3)x3 + p(4)x4 + . . .

= 1 + 1 · x+ 2 · x2 + 3 · x3 + 5 · x4 + . . .

It is convenient to introduce such a function F (x) because in mathematics it is
somewhat easier to manipulate functions than it is to manipulate lists of numbers.
For example, using function analysis, we can now quite easily deduce how many
partitions very large numbers have. The answer turns out to be:

p(n) ∼ exp

(
π

√
2n

3

)
as n→∞ (2)
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For the details of this derivation, see chapter III.
In physics, we can write a partition function as Z =

∑
n
d(n)qn where d(n)

denotes the number of microscopic configurations corresponding to an energy
En. Here d(n) is a quantity of interest as it gives the entropy of the system:
S = log d(n). Just like in the case of the partition of integers, we would like to
use methods in functional analysis to estimate the entropy — the logarithm of
the number of microstates — from this partition function.

For conformal field theories — the theories relevant for the microscopic count-
ing of black holes in string theory — Cardy used just such techniques to compute
this entropy, a famous result known as the Cardy entropy or the Cardy formula.
Because it plays a rather central role in this thesis lets consider the derivation of
the entropy of a conformal field theory and focus on the regime of its validity.

Consider a conformal field theory with a central charge c and a set of primary
operators {Φi} of conformal dimension DΦi = ∆iΦi. We will be interested in
the degeneracy d(∆) of primary operators Φ having a fixed conformal dimension
∆. To that end we introduce the partition sum

Z(τ) =
∑
∆

d(∆)e2πiτ(∆−c/24) (3)

The parameter τ is related to the temperature T as τ = iβ/2π+µ with β = 1/T .
We will focus on the purely imaginary case, µ = 0. The conformal invariance
allows us to define the theory on a torus T = C/(Z⊕ τZ) and reparametrization
invariance on the torus implies the modular invariance of Z(τ):

Z(τ) = Z(−1/τ) (4)

The low temperature behavior of Z(τ) is determined by the ground state, that
is the state with ∆ = 0, so that, exploiting the modular invariance in equation
(4), the high temperature limit reads

lim
τ→0

Z(τ) = exp

(
2πi

τ

c

24

)
(1 + . . .) . (5)

Taking a Laplace transform of the partition sum (3) we can compute the degen-
eracies

d(∆) =

∫ i∞

−i∞
dτe−2πiτ(∆−c/24)Z(τ). (6)

For high temperature we may plug in expression (5) to obtain

d(∆) =

∫ i∞

−i∞
dτ exp

(
−2πiτ(∆− c/24) +

2πi

τ

c

24

)
(1 + . . .) . (7)

For large ∆ we may evaluate the formula (7) at the saddle point

τ2
∗ = − c/24

∆− c/24
(8)
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to obtain Cardy’s formula

d(∆) = exp 4π

√
c

24

(
∆− c

24

)
. (9)

We understand that the derivation holds only for high temperature τ → 0 and
small saddle point values for τ∗, that is for

∆� c

12
(10)

This will be important especially in chapter IV of this thesis.
In the example worked out in the first chapter — the four dimensional black

hole in M-theory — the Cardy formula of the conformal field theory on the
brane world-volume matches the macroscopic area formula computed on the
gravitational side. This result, first obtained by [SV96] (the example we work it
is based on [MSW97]), is one of the benchmark successes of string theory.
So string theory manages, for a specific genre of black holes (black holes with
supersymmetry), to account for the entropy by computing the Cardy entropy of
the conformal field theory living on the brane world-volume. Albeit being a very
important, pretty and satisfactory answers, it leaves a lot of questions about
black holes — even the string theoretic, supersymmetric ones — unaddressed.
This dissertation delves into some of the technical and conceptual conundrums
that the string theoretic account of black holes entropy gives us. We lay out four
different lines of flight in this dissertation, each chapter devoted to such a line.
The questions that are addressed in the chapters are laid out in the following
section.

2 Four questions, four chapters

This thesis consists of four chapters, each aiming at addressing a question that
directly or indirectly relates to (black hole) microscopics in string theory.

2.1 Gravitational microstates and fuzzballs

String theory reduces to familiar theories of supergravity in its low energy limit.
In this low energy reduction, we find black hole solutions. To suppress quantum
gravitational effects, we need to take the string coupling, gs, large: gs � 1. It is in
this regime that we can really trust the black hole solution and its corresponding
area entropy formula.

However, to get into the regime where we can compute the microscopic en-
tropy — the regime where we can reasonably describe the relevant physics in
terms of a conformal field theory and use Cardy’s formula — we should consider
string theory at very small string coupling, gs � 1. At this regime in the moduli
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space, the string length is larger than the Schwarzchild radius and the black hole
physics will be subject to large, stringy corrections. The fact that the micro-
scopic entropy still matches the macroscopic area formula can be understood by
the fact that in the field theory we are computing a supersymmetric index that
is topologically protected and is constant on the moduli space.

Still, this begs the following question: consider, at very small string coupling,
one of these microscopic degrees of freedom in the field theory. Slowly crank
up the coupling constant gs to adiabatically end up in the gravitational regime,
where everything is described in terms of supergravity. What then, in this regime,
should be the representation or interpretation of this microstate. Where does it
fit inside the supergraviational theory?

Sameer Mathur proposed that in the gravitational regime, the microscopic
degree of freedom is a fuzzball : a solution to Einstein’s equation that asymptot-
ically looks like the black hole solution it is the microstate of, without having a
horizon or a singularity. Mathur proposed that around the horizon there are as
many of these fuzzballs as the macroscopic area formula for black holes computes.

In the first chapter we show how such microstate geometries can support
the mass of the black hole they constitute. We show how a no-go theorem,
preventing such smooth horizonless solutions to support a non-zero mass, can be
circumvented in higher dimensions by taking into account non-trivial topology on
the higher dimensional space-time manifold. We elucidate this principle by going
over a wide variety of microstate geometries in six dimensions — supersymmetric
and non-supersymmetric — and show how the non-trivial topology can support
the non-zero mass for these black holes.

2.2 Conformal quantum mechanics

The Cardy formula — the formula that is ultimately used to count the mircro-
scopic degrees of freedom of string theoretic black holes at weak string coupling
— is a formula that counts the number of primary operators of large confor-
mal dimension in a two-dimensional conformal field theory. In the spirit of
AdSD+1/CFTD dualities [Mal99, GKP98, Wit98a], in the successful cases where
the Cardy formula does count black hole microstates, such black holes have a
three-dimensional AdS3 factor in their near-horizon geometry. Even in the cases
where the near horizon geometry has an AdS2 factor, this factor can typically
be seen as the base of some Hopf-fibration that lifts to the same AdS3 factor,
and we can still apply the techniques of two-dimensional conformal field theory.

However, there are examples in string theory of black holes with an AdS2

factor in their near-horizon geometry, where it is not at all clear how to uplift
such solutions to a larger AdS3 structure. When we compactify M-theory on a
generic Calabi-Yau three-fold with no U(1) isometry, it is not clear at all if this
is possible. In these cases accounting for the black hole microscopics in terms of
a field theory has faced problems indeed.

Rather that to fit the AdS2 structure inside an AdS3 space, we consider
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applying the AdSD+1/CFTD philosophy directly to the AdS2 space. The field
theory then, following the dictionary of AdS/CFT, should be one-dimensional,
hence a (super-symmetric) quantum mechanics. Inspired by brane constructions
and the works [DM96, Den02] we consider quiver quantum mechanics. In the
second chapter we show for a class of quiver quantum mechanical systems that
arise from D-brane set-ups that they have a conformal symmetry in a rather non-
trivial fashion. We also comment on the stability of the vacua of the solution
space against thermal perturbations, thus testing if these ground states could
account for non-supersymmetric microstates.

2.3 Patterns in the tail of Cardy’s formula

The Cardy formula is an expression for the high energy degeneracies of con-
formal primaries in a two-dimensional conformal field theory. One formulates
the partition sum Z =

∑
d(n)qn of the conformal field theory in question, and

Cardy’s formula estimates d(n) for large n. In its form of euqation (??), it is an
approximation, with corrections of order n−1/2, and one may wonder if there are
better approximations that take into account next-to leading order contributions
in n as well.

Conformal field theories have a huge number of symmetries. In fact, being
defined on a torus, conformal field theoretic partition functions enjoy modular
invariance. The modular group is an infinite dimensional group, and this infinite
number of symmetries can be exploited to not just improve the accuracy of
Cardy’s result, but in fact render it into an exact expression. In the mathematics
literature this was already known and worked out by Rademacher in e.g. [Rad38].
With Rademacher’s result we can, from rather minimal information about a
conformal field theory, exactly compute all the degeneracies d(n).

The partition function harbors thermal and entropic information. But it can
also be interpreted from a Hamiltonian point of view as a trace over the Hilbert
space H of the system:

Z = TrHq
H . (11)

From this point of view, the coefficients d(n) enclose information of the Hilbert
space. For example, if some group G acts on the Hilbert space, than the par-
tition function organizes itself in the irreducible representations of G, and the
coefficients d(n) contain information about the dimensions of these irreducible
representations.

When compactifying string theory on the K3 manifold — the only non-trivial
Calabi-Yau two-fold — the physics at small string coupling is captured by a
modified form of the partition function Z(τ, z), a form that takes into account
a conserved charge in the supersymmetric algebra. Although technically a bit
more intricate, this modified partition function, called the elliptic genus, is in
many ways like a partition function. Notably, it enjoys a form of modular in-
variance. And just like in the case of modular functions, there is an analogue of
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Rademacher’s result in this case. We expand the function Z(τ, z):

Z(τ, z) =
(∑

D(n)qn
)
F(τ, z) + G(τ, z) (12)

where we used some techniques in the theory of such elliptic genera (we refer to
chapter III for the technical details, where for example the functions F and G
are given explicitly). Upon inspection of the coefficients D(n), for example with
Rademacher’s technique, we recognize the dimensions of irreducible representa-
tions of a large but finite group one would not at all a priori expect to play a
role in the physics. This coincidence — the relation between a modular object
and a large finite group — is very surprising and so historically referred to as
‘moonshine’.

In the mathematical community there was, already in 70’s, an example known
of such ‘moonshine’. In this famous monstrous moonshine phenomenon, the
modular object was a bit simpler, and the finite group way larger and more com-
plicated. There, the observation led to a conjecture — the monstrous monshine
conjecture — that was ultimately proven by Borcherds, an effort awarded with
the Fields medal.

In the third chapter of this thesis we review monstrous moonshine, give a brief
summary of how Borcherds came to his proof, and discuss some more examples
of occurrences of such moonshinesque behavior in functions we encounter in
string theory. We consider a generalized moonshine behavior and give evidence
for generalized moonshine for a list of groups called the umbral groups. We
also briefly mention the physical relevance by highlighting a connection with the
Farey tail — a gravitational interpretation of the Rademacher expansions of such
elliptic genera.

2.4 The Cardy regime for the BTZ black hole

The black holes for which string theory has been successful in counting the mi-
croscopic degrees of freedom are notably black hole solutions in four ([MSW97])
and five ([SV96]) dimensions.

In three dimensions, Einstein’s theory of gravity is trivial; there is no propa-
gating degree of freedom. Still, surprisingly, this theory has a black hole solution:
the BTZ black hole [BTZ92]. Being of a rather topological nature, it still obeys
the famous result that its entropy is proportional to its area, and for these black
holes we would like to know what the microscopic degrees of freedom really are.

A big hint towards the fact that the BTZ macroscopic entropy really is count-
ing something is that, once again, the entropy can be naturally cast in the form
of a Cardy formula. This hints towards the existence of some conformal field
theory that is the effective field theory of some brane set-up.

That we find a Cardy like formula is rather surprising for the following reason:
the BTZ black hole entropy can be cast in the form of a Cardy formula only at
temperatures of the order of one, T ∼ 1, wheres the Cardy formula only applies



to very high energies, hence high temperatures T � 1 (known as the Cardy
regime).

In the final chapter we investigate this discrepancy in limits. Taking up ideas
of Witten from his revisitation of three-dimensional gravity [Wit07], we consider
a rather putative conformal field theory that has a lot of the desired properties
one needs for the field theory to be a candidate dual of three dimensional gravity.
This conformal field theory is the symmetric product orbifold theory of the mon-
ster conformal field theory. The monster theory we already encounter in chapter
III in the context of monstrous moonshine, and in the final chapter we use some
techniques developed in the third chapter to show how in the context of three
dimensional gravity, the Cardy regime should really not be the high energy ex-
pansions (or high temperature limit) but rather the limit of large central charge
— the limit where quantum gravitational effects on the horizon of the black hole
can be neglected. This is also the limit we would take in a bona fide AdS/CFT
scenario.

In arguing for the large central charge regime, we develop a framework where
we introduce a conjugate variable for the central charge in the theory space of
symmetric orbifolds. We interpret this chemical potential rather physically and
consider the grand canonical ensemble of these theories. We also comment on
the phase transitions we encounter as we vary both the temperature and this
new chemical potential.





I

The Fuzz about Black Holes

The laws we use to describe Nature depend on the scale at which we do exper-
iments. If we want to write down the laws governing planetary motion in our
solar system, Schrödinger’s equation — the equation that describes the evolution
of (sub)atomic particles — will not appear on the blackboard. And vice versa,
Hubble’s law — the law that describes the expansion of the universe — will not
be taught in chemistry class.

Another example is the study of water, where a scale is set by the tempera-
ture. At low temperature where water is in its solid state (ice), we use the physics
of lattices and crystals. At room temperature we use the hydrodynamic differ-
ential equations to describe the streaming of water and at high temperatures we
use the statistical and thermal physics of gasses.

At very high temperature we describe water in terms of a microscopic degree
of freedom: the H2O molecule. The liquid phase and its hydrodynamics is an
effective description of a large number of these molecules. The molecules are still
there, but their bulk behavior is described by laws and equations that differ from
those at high temperature: different scales, different physics.

The same principle hold in the study of the universe. We use Newton’s and
Kepler’s laws to study the planetary motions, but to understand the expansion
of the universe, or motion in strong gravitational fields, we need the laws of
Einstein. Newton’s laws are approximations to Einstein’s equations, and apply
only at different scales namely in weak gravitational fields.

The Einstein equation,

Rµν − 1
2Rgµν = 8πGDTµν (1)

is a differential equation for the metric gµν . Schwarzschild famously found the
spherical solutions in vacuum that would lead to the notion of black holes: mas-
sive and dense objects that allow for a surface outside its matter distribution,
such that anything crossing this surface — the horizon — would never come
back out again. We still lack a complete picture of what a black hole precisely is,
and what is going on behind this obscure horizon. What prevents us from really
understanding black holes is that we have no definite microscopic, fundamental
description of a strong gravitational field. Its like we’re studying water, without
having knowledge of the H2O molecule.

As was told in the preface of this dissertation, the first leap towards such a
microscopic understanding of strong gravitational fields and black holes was made
by Stephen Hawking in [Haw75] . With a computation in quantum field theory
in curved space-time he showed that black holes are actually not totally black,
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but radiate particles at the horizon, inducing a temperature — the Hawking
temperature — that is inversely proportional to M , the black hole mass:

TH =
1

8πMGD
. (2)

In thermal physics, temperature is intimately related with the amount of mi-
croscopic information there is availably in a closed system. In fact, in a closed
system of fixed volume, the first law of thermodynamics states that the change
in internal energy U is proportional to the change in entropy S, and that the
constant of proportionality is the temperature:

dU = TdS. (3)

Integrating this relation with respect to the energy gives us an expression for the
entropy in terms of the temperature. There is another interpretation of entropy
due to Boltzmann, and that is in terms of the number of ways the microscopic
degrees of freedom can occupy some closed system. Or rather, the logarithm
thereof, as: S = kb logN . The number N can really be thought of as the number
of degrees of freedom a system has. Hence knowing the entropy grants us direct
information about the microscopics of the system.

Integrating the first law of thermodynamics in the context of black holes,
teaches us that the entropy of a black hole is proportional to A, its area, as was
noted by Bekenstein in [Bek73]. Hawking’s result allows us to fix the constant
of proportionality, to obtain the celebrated formula

S =
A

4GD
, (4)

now known as the Bekenstein-Hawking entropy, SB.H..
This is a very big hint towards finding a microscopic description of strong

gravitational fields. Whatever microscopic degree of freedom we suggest, its
entropy should be proportional to the area.

String theory offers such a microscopic picture of this black hole entropy.
It is one of the mile stone success of string theory that it not only proposes a
microscopic degree of freedom that accounts for the entropy, but it also matches
the universal relation by Bekenstein and Hawking.

Being a huge success, it does not solve all the questions about the micro-
scopics. Going back to the analogy with water, understanding the molecular
structure of water is one thing, but still we would like to understand how the
hydrodynamic equations of water come about and what the role of the molecules
is at is at room temperature.

We start this chapter with showing a beautiful example of a microscopic
account in string theory, of actually M-theory. Later on we address the following
issue: starting with the string theoretic microstates of a black hole at weak
coupling, how do we understand these microstates as we turn up the coupling,
eventually ending up in the supergravity regime.
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Taking a lead of the fuzzball program (see [Mat05] for a review) — the pro-
gram that proposes the interpretation of these microstates in terms of smooth
horizonless solutions to Einstein’s equations — we set out to show how in the
context of six-dimensional supergravity. This is a very natural arena for the
important class of three-charge black holes. We show how these solutions can
support the mass of the black hole in question. But first we briefly go through
the famous derivation of black hole microstates in string theory and introduce
the concept of microstate geometries.

1 Black hole microstates in M-theory

In the low energy limit, string and M-theory are effectively described by super-
gravity ([GSW88a, GSW88b, Pol07a, Pol07b] is the canonical literature). For
string theory, the description is in terms of a ten dimensional supergravity of
type-IIA or type-IIB. For M-theory the low energy effective theory is in terms
of eleven dimensional supergravity. We can make contact with lower dimen-
sional physics by compactifying these theories on manifolds, leaving us with
lower dimensional theories of supergravity, coupled to matter content, depend-
ing on the manifold of compactification. As most theories of gravity, these lower
dimensional theories admit black hole (or black brane) solutions that have a
corresponding Bekenstein-Hawking entropy SBH . At this point, the manifold of
compactification looks as if its only role is to get rid of superfluous dimensions.
This is not the case: if we want to identify the SBH with a microscopic en-
tropy, we must search within this manifold. Typically, a system of branes nests
itself inside the compactification manifold. On these branes we can study the
world-volume, that typically has an effective description in terms of a conformal
field theory in two dimensions. We then can use Cardy’s formula to identify a
statistical entropy with this CFT. We will show an example where this statisti-
cal entropy matches — in the appropriate regimes — the Bekenstein-Hawking
entropy SBH .

1.1 Black holes in M-theory

We will show an example of microstate counting in string theory. We treat the
case of extremal black hole solutions in N = 2 supergravity in four dimensions
[MSW97]. This theory finds a realization in compactified M-theory, where we
can compute the number of microstates by counting the index of wrapped M5-
branes. But first we compute the Bekenstein-Hawking entropy of the extremal
black hole solutions.
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Macroscopics

In the low energy limit, M-theory is effectively described by eleven dimensional
supergravity. We make contact with four dimensional physics by compactifying
this theory on M × S1. Picking M to be a Calabi-Yau three-fold M = CY3, we
are left with N = 2, d = 4 supergravity on the noncompact R4 [GSW88b]. In
this theory we will be considering two types of multiplets, the bosonic content
of which is:

� A gravity multiplet
(
gµν , X

0
µ

)
� Vector multiplets

(
Xα
µ , z

α
)
, α = 1 . . . nv.

The number nv depens on the specific type of Calabi-Yau. In fact, nv = h1,1(X),
where h1,1(X) is the Hodge-number of (1, 1)-forms on X.
Writing F Iµν for the field-strengths (I = 0, . . . , nv), we can write down the four
dimensional effective action

I =
1

16πG4

∫
d4x
√
−g
(
R+ 2gαβ∂

µza∂µz
b

+
1

4

(
NABF+A ∧ F+B − N̄ABF−A ∧ F−B

))
(5)

where we have split F I into F+I and F−I (I = 0 . . . nv), its self and anti-self dual
parts, respectively. The moduli space parameterized by z = {zα} is equipped
with the metric gαβ(z, z̄) and has the structure of a special Kähler manifold
[Gre96].
The theory admits extremal charged black hole solutions that have a global
AdS2 × S2 topology, and a metric:

ds2 = − r2

|Z|2
dt2 + |Z|2

(
dr2

r2
+ r2dΩ2

)
(6)

The function |Z| is the central charge and equals for extremal black holes the
mass of the black hole: |Z| = M . It also relates to the area as A = 4π|Z|2 so
that

SBH = π|Z|2 (7)

Much like in the case of the Reissner-Nördstrom black hole, where in the extremal
case M2 = q2 + p2, in the N = 2 caes, Z is a function of all the magnetic and
electric carges (pA, qA), where

pA =
1

4π

∫
Σ2

FA (8)

qA =
1

4π

∫
Σ2

GA (9)
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where GA = Im ? FI + ReFI , FI = NIJF J . The Dirac-Schwinger-Zwanziger
quantization condition dictates that p · q ∈ Z.
In principal the central charge could’ve depended on the scalar moduli z as well.
However, the scalars are fixed at the horizon in terms of the charges by the
attractor mechanism [FKS95]. We will express the central charge as follows.
First we will express |Z| as a function of both the electric and magnetic charges
and the scalar fields. Then we solve for the scalars in terms of the charges and so
find an expression for |Z| = |Z(pA, qA)|. We first need to introduce some tools
in special geometry [Str90].
The N = 2 d=4 supergravity is special because the scalar fields define a special
Kähler manifold (see e.g. [FVP12]). It is convenient to parameterize the scalar
zα in terms of XA, A = 0 . . . nv, with the constraint

NABX
AX̄B = −1/G4 = −e−K(X,X̄) (10)

The function K = K(X, X̄) is tha Kähler potential that induces that ω, the
Kähler form: ω = ∂∂̄K, that in turn defines the metric on the moduli space,
iωαβ = gαβ . A central role in special geometry is played by the prepotential
F (X):

F (X) = −dabcX
aXbXc

6X0
(11)

where dabc =
∫

CY3
αa∧αb∧αc is the triple intersection form on CY3, {αa} an inte-

gral basis of H2(CY3,Z) (or H1,1

∂̄
(CY3)). This prepotential allows a formulation

of the vector matter action in superspace, I = Ig + Iv, Iv = Im
∫
d4xd4θF (X).

We also introduce the derived quantities FA = ∂AF (X), FAB = ∂A∂BF (X).
Now the doublet (XA, FA) is a symplectic section and the equations of motions
are invariant under Sp(2nv + 2) rotations of this doublet. With these notions we
can conveniently write the central charge as

|Z|2 = Y aqa − FA(Y )pa, (12)

where Y A = Z̄eK/2XA. The attractor equations that follow from supersymmetry
are

pA = 2Re(iY A), (13)

qA = 2Re(iZ̄eK/2FA). (14)

Solving these equations for the scalar moduli and plugging them into the ex-
pression for the central charge leads to the compact expression for the entropy

SBH = 2π
√
|D|q̂0 (15)
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where we used the abbreviations |D| = dabcp
apbpc, q̂0 = q0− 1

2q
2, dabcp

c = − qaqb6q2 .
Demanding weak curvature of the solution requires

|D| � |M |, (16)

|M | the volume of the CY3.

Microscopics

We computed the Bekenstein-Hawking entropy of extremal N = 2 black holes in
four dimensions. Here we will show how to account for this entropy microscopi-
cally in M-theory.

In M-theory, (black hole) configurations with electric and magnetic charge
vector (p0, pA, q0, qA) are obtained by wrapping an M5-brane on a five-cycle in the
manifold of compactification S1×M with M Calabi-Yau, with total momentum
q0 on S1 and KK-monopole charge p0 on S1. For simplicity we take p0 = 0
throughout.

We take a four-cycle P ∈ H4(M,Z) and wrap the M5-brane on P × S1. The
four-cycle P has a Poincaré dual two-form [P ] ∈ H2(M,Z). Let ωA be a basis
of two-forms, 〈ωA〉Z = H2(M,Z). so that [P ] decomposes as P =

∑
A

pAωA. The

charges qA are obtained by turning on self-dual anti-symmetric tensors on the
M5-brane world-volume.

In the limit where the volume of the Calabi-Yau is much smaller than the
radius R of S1, |M | � R6, the low-energy dynamics of the M5-brane world-
volume is described by an N = (0, 4) sigma model on Rt × S1. This is SCFT
has central charge cL and left-moving momentum q̄0. The Cardy-formula gives
us, for q0 � cL, the entropy

Smicro = 2π

√
cLq̄0

6
. (17)

Note that for large q0 we can approximate q0 = q̄0. We first compute the central
charge. The central charge cL is the sum of all moduli: the moduli dP of the M5-
brane on P , the number b−2 of left-moving scalars on the S1 and three additional
degrees of freedom for three spatial translations degrees of freedom:

cL = dP + b−2 + 3. (18)

Using Riemann-Roch, we can compute dP as

dP = 2w − 2, w =

∫
M

ePTd(M) =

∫
M

(
P 3

6
+

1

12
Pc2(M)

)
. (19)

Also b−2 can be computed with indices as b−2 = 1
2 (χ− σ) with χ =

∫
P
c2(P ), the

Euler characteristic of P , and σ = − 2
3χ + 1

3

∫
P
c1(P ) ∧ c1(P ) the signature of



2. Microstate geometries 19

P . We can compute these Chern-classes of P in terms of Chern-classes of M .
Taking this together gives

cL =

∫
M

P 3 + c2 · P = |D|+ c2 · P (20)

so that:

Smicro = 2π
√
|D|q0 +O(1/|D|). (21)

It can be shown that turning on self-dual anti-symmetric two-forms on the M5
world-volume induces exactly the shift in q0 7→ q̂0 = q0 − 1

2q
2. So indeed:

SBH = Smicro (22)

to leading order in D−1. In fact the one-loop corrections (the D−1 terms) also
match on both sides, see [MSW97].

Note that this computation is executed in the Coulomb branch, where the
five-branes are far apart and graviton scattering between them can be ignored.
This condition is met if

|D| � |M | (23)

which is the exact opposite regime of the regime (16). The volume of the Calabi-
Yau — a hypermultiplet scalar — acts as a coupling constant. The microscopic
entropy Smicro counts BPS states and - assuming no wall-crossing phenomena -
we expect that the quantity Smicro(p

A, qA; |M |) is constant on the hypermultiplet
moduli-space, or at least constant under continues changes in |M |.

2 Microstate geometries

In the previous section we saw an example of a general principle at play for
black holes in string theory. We find a configuration of D- or M-branes that
produces a black hole geometry in the decoupling regime. This geometry has an
associated SBH(g), where g is a coupling constant that needs to be small in order
for quantum gravity effects to suppressed at the horizon. Then, going back to the
D-brane picture, we go to a limit where the brane ensemble is described in terms
of a (S)CFT, where we can compute a microscopic index Smicro with Cardy’s
formula. To stay in the Coulomb branch, the coupling constant g should be large
compared to the charges. We then compare SBH(g) and Smicro(g) and indeed,
in a lot of realizations in string theory, we find to leading order in a large-charge
expansions that SBH |g�1 = Smicro|g�1. The fact that these indices agree despite
being computed in different regimes of g is understood as invariance of the BPS
or Witten index under continuous deformations: The BPS is a topological and
hence protected quantity on the moduli space.
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This does not however address the following question: Start, at weak coupling
g � 1 with one of the microstates in the D- or M-brane configuration. Now
continuously crank up the coupling to g � 1, ending up in the regime where we
can trustfully describe physics in terms of a gravitational theory. What is then
- in terms of this gravitational theory - the physical picture of this microstate?
Or, in terms of Einstein’s equations: what type of solution does it correspond
to?

Mathur proposed an answer to this question in an effort that is now collec-
tively called the fuzzball program. His resolution to the problem is that in a
theory of gravity, for a black hole with Bekenstein-Hawking entropy SBH , there
are in that theory eSBH smooth and horizonless solutions that are to be identified
with the black hole microstates. These solutions he called fuzzballs, and should
asymptote to the black hole geometry.

The first question to ask is: do fuzzballs exist? Are there smooth horizonless
solutions to Einstein’s equations?

2.1 A no-go theorem and its refute

Of course there are smooth horizonless solutions to Einstein’s equations in D
dimensions. The maximally symmetric solutions flat space and AdS in D di-
mensions are smooth and horizonless. But for a fuzzball to be the microstate of
a generic black hole, we want it to support the mass of the black hole. So we
are really looking for a smooth horizonless solution to Einstein’s equations with
non-vanishing ADM-mass. But here we encounter the no-go theorem:
For a solution of Einstein’s equation to support non-vanishing ADM mass, it
must have a horizon
or, more catchy: There are no solitons without horizons. This seems to kill
Mathur’s fuzzball conjecture right away. But a no-go theorem is as strong as
the assumptions that go into it. And indeed, it is in weakening those assump-
tions that we learn how to circumvent the no-go and find existence of non-trivial
fuzzballs. Let’s make this more rigorous.

Consider Einstein gravity in four dimensions with vector matter turned on.
The action reads

S =
1

16πG4

∫
d4x

(
R− 1

4F
2
)

(24)

with the Einstein quation

Rµν = 8πG4

(
Tµν − 1

2gµνT
)
, (25)

where Tµν = −FµλF νλ + 1
4g
µνFαβF

αβ and dF = 0. If a solution gµν to equation
(25) has a timelike Killing vector K = (Kµ), that leaves the the fields invariant,
LKF = 0, we can define a globally conserved quantity, the conserved mass:

M =

∫
S2

?dk = −2

∫
Σ

KµRµνdx
ν = 16πG4

∫
Σ

KµFµλF
λ
ν dx

ν (26)
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where the S2 in the integral is a closed space-like surface at infinity.
Now Cartan’s “master formula” states that LKF = d(iKF ) + iK(dF ). so that
LKF = 0 implies d(ikF ) = 0. In four dimensions, d(ikF ) = 0 implies ikF =
0, unless there are non-trivial one-cycles, so that under the assumption that
space-time is simply-connected, we can conclude that M = 0. The upshot of
the circumvention of this no-go theorem in higher dimensions is that, in higher
dimensions, the formula d(iKF ) = 0 may still allow for the presence of non-
trival forms, say iKF = ω + dη, dω = 0. The form ω may then support non-
vanishing mass. We will illustrate this idea for a wide variety of solutions in six
dimsional supergravity, commenting along the way on how to reduce from six to
five dimensions.

3 Microstate geometries in six dimensions

Six dimensions is natural arena to study three-charged black holes. Also, if
we want to understand non-extremal and non-supersymmetric black holes the
JMaRT solution of [JMRT05] is a good starting point, and this solution has is
naturally described in six dimensions.

Motivated by the no-go theorem of the previous section, we here set out to
explore how microstate geometries in six dimensions can support mass. As we
saw, the resolution will lie in understanding the global properties and topology of
the space-time of these solutions. But first we set up the techniques to compute
mass in six dimensional gravity: Komar integrals and the Smarr formula.

3.1 Smarr formula in six dimensions

We discuss Komar integrals, the relation to the energy and tension of a solu-
tion, a Smarr formula for smooth horizonless solutions using topology and their
application to six-dimensional supergravity with tensor multiplets.

3.1.1 Komar integrals

Any Killing vector K of a metric on a D-dimensional Lorentzian spacetime de-
fines a conserved quantity through a Komar integral:

QK =
1

8πGD

∫
∂V∞

?dK =
1

8πGD

∫
∂V∞

(∂µKν − ∂µKν)dΣµν , (27)

where we integrate over a closed spatial surface at infinity. Killing vectors enjoy
the property ∇2Kµ = −RµνKν . With the help of Stokes’ theorem, we can then
rewrite this as a bulk integral over a volume V on a spatial hypersurface with
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boundary ∂V∞ ∪ ∂Vint:

QK = − 1

4πGD

∫
V

?(KµRµνdx
ν)− 1

8πGD

∫
∂Vint

dSµν(∂µKν − ∂µKν) . (28)

For a spacetime with a timelike Killing vector K, one usually relates the Komar
integral to the ADM mass. However, this is only valid for an energy-momentum
tensor that asymptotically approaches that of a weak static dust source, with
T00 � T0i, Tij and ∂0gij = 0 asymptotically. For a string-like object spanning
the y direction, we expect that T00 and Tyy will be of the same order, so we need
to slightly modify the story.

3.1.2 ADM integrals

We now review the relevant results of [TZ01]. To relate the Komar integral to
physical quantities such as the ADM energy, we consider an energy-momentum
tensor that has asymptotically p+1 dominating diagonal components T00, Taa, a =
1 . . . p and p < D−3. We assume all other components of the energy-momentum
tensor are subleading compared to these. We take the p coordinates to be com-
pact and consider the linearization around a flat metric, gµν = ηµν + hµν with
Minkowski reference metric

ds2
D = −dt2 +

p∑
a=1

dyadya +

n∑
i=1

dxidxi , n = D − p− 1 . (29)

We write the Einstein equation as

Rµν −
1

2
Rgµν = 8πGDTµν . (30)

The energy density E , average tension T and angular momentum density J are

E =

∫
dnx〈T00〉 , (31)

T = − 1

p

p∑
a=1

∫
dnx〈Taa〉 , (32)

Jij =

∫
dnx(xi〈Tj0〉 − xj〈Ti0〉) . (33)

with the average over the compact space 〈X〉 = 1/Vp
∫
dpyX. From the linearized

Einstein equation, one can then deduce the relations to the linearized metric
components hµν [TZ01]:

E = − 1

16πGD(n− 2)

∫
∂V∞

dSi∂i((n− 1)h00 − haa) , (34)

T = − 1

p

1

16πGD(n− 2)

∫
∂V∞

dSi∂i(p h00 − (n+ p− 2)haa) . (35)
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These are the formulae that relate the asymptotic expansion of an extended
object (where Taa is not negligible compared to T00) to its mass and tension.
After dimensional reduction over the p internal directions, the ADM mass in
D − p dimensions is given by E . The angular momentum density can still be
read off from the off-diagonal metric components:

g0i =
16πGD
ΩD−2

xjJji

ρn
+ . . . , (36)

where ΩD−2 is the volume of the unit (D − 2)-sphere and ρ the radius in the
four spatial dimensions.

3.1.3 Normalization of the Komar integrals

We now discuss the relation of the Komar integral to the energy density and
tension.

Timelike Killing vector.

One readily shows that for a timelike Killing vector K that asymptotes to K∞ =
∂t , we have the normalization

E − p

(D − 3)
T = − 1

16πGD

(D − 2)

(D − 3)

∫
∂V∞

dSµν(∂µKν − ∂νKµ) . (37)

For p = 0, we retrieve the usual relations between the ADM mass M = E and
the asymptotic form of the metric components [Pee00, GW14]

g00 = −1 +
16πGD

(D − 2) ΩD−2

M

ρD−3
+ . . . , (38)

gij =

(
1 +

16πGD
(D − 2) (D − 3) ΩD−2

M

ρD−3

)
δij + . . . . (39)

Null Killing vector.

Most of this chapter is concerned with supersymmetric solutions in six dimen-
sions. For these, it is useful to discuss p = 1 and consider null coordinates:

u =
t− y√

2
, v =

t+ y√
2
. (40)

For a null Killing vector K that asymptotically becomes K∞ = ∂u, one finds:

E + T = − 1

8πGD

(n+ p− 1)

(n− 2)

∫
∂V∞

dSµν(∂µKν − ∂νKµ) . (41)
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Note that these results, as in [TZ01], are in principle only valid for time-independent
metric perturbations. Metrics with a null Killing vector ∂u do not in general have
to be time-independent. However, the time-dependence of the metric is heavily
constrained. Since we average (integrate) over the internal, compact direction y,
the resulting averaged metric must be time-independent and the results for the
Komar integrals remain valid.

The normalization of the Komar integral (27), which we use in a 6D super-
gravity context for strings (p = 1), implies that:

QK = −1

2
(E + T ) . (42)

3.1.4 Six-dimensional supergravity

Here we discuss the six-dimensional setup relevant for the three-charge black hole.
First we consider an arbitrary number nT of tensor multiplets; for superstrata in
six dimensions, nT = 2. We also explicitly give the formulas for nT = 1, which is
relevant for all of the examples we discuss except the superstrata of section 4.1.4.

Minimal supergravity with nT tensor multiplets

The six-dimensional supergravity theories of relevance to this chapter have an
SO(n,m) global symmetry, with n the number of tensors in the gravity multiplet.
In the D1-D5-P frame, the relevant six-dimensional theories are obtained by a
compactification on T 4 or K3, which respectively give N = (2, 2)-supergravity
with SO(5, 5) global symmetry and N = (2, 0)-supergravity with an SO(5, 21)
symmetry group.

Luckily, we do not need the full details of these extended supergravity theo-
ries. Rather, we can consider a consistent truncation to ‘minimal’ six-dimensional
supergravity with only N = (1, 0) supersymmetry. This theory has SO(1, nT )
global symmetry where nT is the number of tensor multiplets and is in principle
arbitrary as it is unfixed by supersymmetry. For our purposes, nT will be either
1 or 2, see appendix B for more details on the reduction from 10D. Even though
we focus on the theory with SO(1, nT ) global symmetry, our results and in par-
ticular the Komar integrals (50) and (51) below are straightforwardly extended
to the bosonic sector of six-dimensional supergravity theories with more super-
symmetry, by formally replacing the SO(1, nT ) metric ηrs with the metric of the
appropriate global symmetry group.

When nT > 1, the equations of motion of the tensor fields do not follow
from an action. We can still consider the ‘pseudo-action’ [FRS98, Ric01] for the
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bosonic fields1

L =
1

4
R− 1

2
∂µvr∂

µvs − 1

12
MrsG

r
µνρG

s µνρ, (43)

that captures the equations of motion of the scalar fields and the metric. The
scalars parametrize the coset SO(1, nT )/SO(nT ). They can be organized in

the SO(1, nT )-matrix V =

(
vr
xMr

)
with M = 1 . . . nT and r = 0 . . . nT .2 They

enter the tensor dynamics through the scalar metric M = ηV TV η, with η the
SO(1, nT )-metric, or in index notation

Mrs = vrvs + xMr x
M
s . (44)

The dynamics of the nT + 1 tensor fields Gr are captured by the self-duality
conditions and Bianchi identities

MrsG
s = ηrs ? G

s , dGr = 0 , (45)

where ? is the six-dimensional Hodge star operator. Finally, the Einstein equa-
tion reads:

Rµν = 2∂µv
r∂νvr +

1

2
MrsG

r
µαβG

s αβ
ν . (46)

Smarr formula

We are concerned with field configurations that respect the symmetry of a Killing
vector K. This means the Lie derivative of the fields with respect to K vanishes:

LKgµν = 0 , LKvr = 0 , LKGr = 0 . (47)

Since dGr and LK = d iK + iK d, we can write the three-form and its dual as

iKG
r = dΛr +Hr , (48)

for some globally defined one-forms Λr and closed but not exact two-forms Hr.
The Einstein equation (46) becomes

KµRµν =
1

2
∇ρ (MrsΛ

r
σG

s
ν
ρσ) +

1

2
(MrsHρσG

s
ν
ρσ) . (49)

1To avoid confusion with standard notation H for harmonic forms, we do not follow the
notation of [FRS98, Ric01] for the three-forms and the kinetic matrix. To convert, use Gr =
Hr
theirs and Mrs = (Grs)theirs.
2It is customary to write the SO(1, nT ) conditions V ηV T = V T ηV = η in component

notation as vrvr = 1, vrxMr = 0, vrvs − xMr xMs = ηrs.



26 I. The Fuzz about Black Holes

Then the Komar integral (28) is:

QK = − 1

8πG6

∫
V

MrsH
r
ρσG

s ρσ
ν dV ν

− 1

8πG6

∫
∂Vint

(
MrsΛ

r
σG

s σ
µν dS

µν + (∂µKν − ∂µKν)
)
. (50)

As in [GW14], we find that we can support matter (non-zero Komar integrals)
with horizons or with topology. For trivial topology, Hr = 0 and the Smarr
formula (50) relates the Komar integral to horizon quantities (area, charges and
angular momenta). If also no horizons are present, the right-hand side of (50) is
zero and we get a vanishing Komar integral for the Killing vector K.

We are interested in spacetimes without inner boundaries. With (45), we find

QK =− 1

4πG6

∫
V

ηrsH
r ∧Gs , (51)

so that only non-trivial topology can allow for non-zero Komar integrals.

One tensor multiplet

For many of the solutions in this chapter we can restrict to SO(1, 1) supergravity
with nT = 1. Including only one extra tensor multiplet in addition to the minimal
supergravity multiplet is convenient as it allows for a Lagrangian description of
the theory. The single self-dual three-form G+ of the gravity multiplet can be
combined with the single anti self-dual three-form G− of the tensor multiplet in
one unconstrained three-form G = 1

2 (G+ +G−). The action becomes

L =
1

4
R− 1

2
∂µX∂

µX − 1

12
e2
√

2XGµνρG
µνρ. (52)

We introduce the dual three-form (equivalent to (45)):

G̃ = e2
√

2X ? G . (53)

To compare to the discussion of section 3.1.4, we can choose G0 = G,G1 = G̃.
The SO(1, 1) metric is then η = σ1, and one can choose the SO(1, 1) scalar
matrix as V = exp(

√
2Xσ3), where σi are the Pauli matrices.

The Einstein equation can be (re)written as:

Rµν = 2∂µX∂νX +
1

2

(
e2
√

2XGµabG
ab
ν + e−2

√
2XG̃µabG̃

ab
ν

)
. (54)

The Komar integral (51) is then

QK =− 1

4πG6

∫
V

(
H ∧ G̃+ H̃ ∧G

)
, (55)
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with the harmonic forms H, H̃ defined through

iKG = dΛ +H , ĩKG̃ = dΛ̃ + H̃ (56)

for some global one-forms Λ.

Supersymmetry

Let us also mention the fermionic content of the SO(1, 1) theory. The gravity
multiplet consists of (eµ, ψ

α
µ , B

+
µν) with B+ a self-dual tensor such that G+ ≡

dB+ = ?G+. The tensor multiplet consists of (B−µν , χ
α, X) with G− ≡ dB− =

− ? G−. The supersymmetry transformations of the fermions are:

δψαµ = (∂µ −
1

4
e
√

2XG+
µνσγ

νσ)εα , (57)

δχα =
1

2i
(
√

2γµ∂µX +
1

6
e
√

2XG−µνργ
µνρ)εα. (58)

Given a Killing spinor εα we can construct the bilinear vector:

Kµε
αβ = ε̄αγµε

β , (59)

which is always a null Killing vector, K ·K = 0. The supersymmetry equations
imply (using the form notation K ≡ Kµgµνdx

ν):

dK = 2e
√

2X iKG
+ = iK(e

√
2XG+ e−

√
2XG̃) , (60)

iKdX = 0 , (61)

since the self-dual part of G is given by G+ = 1/2(G+e−2
√

2XG̃). Using iK ?G =
?(G ∧K), this allows us to write the null charge associated with K as

QK =
1

8πG6

∫
∂V∞

?dK = − 1

8πG6

∫
∂V∞

(
G̃+G

)
∧K , (62)

where we have assumed that X = 0 at infinity, which we can always do for
asymptotically flat spacetimes. In the microstate geometries of section 4, we
find that ∂V∞ = S1 × S3, and the Killing vector K projected on this spacelike
surface is (proportional to) the isometry along the compact S1. In the notation
of the metric (64) below, K = −dv at spatial infinity. This means we simply get:

QK = − Lv
8πG6

∫
S3

(
G̃+G

)
= −Lvπ

4G6
(Qe +Qm), (63)

where Lv = 2πRv is the size of the S1 direction parametrized by v (at constant
time). This relation is thus simply the BPS condition in 6D relating the null
charge associated to K to the electric and magnetic charges of the solution.
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4 Examples in six dimensions

Having set up the formalism, we are now ready to work out in detail the (null)
Komar integrals for known six-dimensional microstate geometries. We first an-
alyze suppersymmetric extremal solutions in section 4.1 and treat non-extremal
examples in section 4.2.

4.1 Supersymmetric examples

We now analyze in detail the null Komar integral for known smooth supersym-
metric solutions to six-dimensional supergravity. The structure of supersymmet-
ric solutions in 6D minimal supergravity was studied in [GMR03] and including
an additional vector multiplet and one tensor multiplet in [CMC04]. Using the
Killing spinors of such supersymmetric solutions, one can always construct a null
Killing vector which locally is V = ∂u. The metric can then be shown to take
the form:

ds2
6 = −2H−1(dv + βidx

i)[du+ ωidx
i +
F
2

(dv + βidx
i)] +Hdx2

4, (64)

where dx4 is the line element on the 4D “base space” B, the one-forms β =
βidx

i, ω = ωidx
i only have legs on B and the functions H,βi, ωi,F are in general

functions of v and all of the 4D base coordinates xi. The conditions that these
functions (and the three-form and scalar) must satisfy for supersymmetric solu-
tions can be found in [CMC04], or [BGSW12] whose conventions and notation
we follow. Note that the ansatz (64) only holds for sections 4.1.1-4.1.3, in section
4.1.4 we extend the ansatz for two tensor multiplets.

4.1.1 General expectations

It is instructive to first work out the ADM integrals E and T for the three-charge
solutions of our interest. Asymptotically, the metric (64) approaches that of the
three-charge black string for which H = (Z2Z3)−1/2,F = −Z1, ω = 0, β = 0 and
Zi = 1 + Qi/ρ

2, with ρ the standard radial coordinate of the 4D base B = R4.
The asymptotic metric perturbation in the coordinates t, y (40) is

h00 =
1

2

Q2 +Q3 +Q1

ρ2
+O(ρ3) , hyy =

1

2

−Q2 −Q3 +Q1

ρ2
+O(ρ3) . (65)

and we find that

E =
πLy

4πG6

(
Q2 +Q3 +

1

2
Q1

)
, T =

πLy
4πG6

(
Q2 +Q3 −

1

2
Q1

)
, (66)
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with y ∼ y+Ly. Note that E is the ADM mass after dimensional reduction over
the y-circle.3 Using (42), we anticipate that the Komar integral will be:

QK = −1

2
(E + T ) = −πLy

4G6
(Q2 +Q3) , (67)

and does not involve the momentum charge Q1.

4.1.2 The uplift of five-dimensional microstate geometries

As a warm-up, we consider the uplift of five-dimensional microstate geometries.
Komar integrals and Smarr formulae for those geometries were discussed at
length in [GW14], hence we do not go into much detail here. The solutions
are completely smooth multi-centered solutions of the 5D STU model with three
gauge fields AI (I = {1, 2, 3}) and three scalarsXI , constrained byX1X2X3 = 1.
The 5D Lagrangian is given by (161). The 6D theory of minimal supergravity
coupled to one tensor multiplet (52) gives exactly this STU model when dimen-
sionally reduced to 5D. See appendix A for more details.

The 5D solutions that we are interested in are given by the metric [GG05,
EEMR05, BW05]:

ds2
5 = −Z−2(dt+ k)2 + Zds2

4, Z = (Z1Z2Z3)1/3. (68)

where the 4D base space B is Gibbons-Hawking: it is a U(1) fibration with
coordinate ψ over flat R3. The solutions are then determined by specifying the
poles of eight functions V,KI , LI ,M , which are harmonic functions on R3. For
instance, we have ZI = LI +CIJKK

JKK/2V with CIJK = |εIJK |. These eight
harmonic functions must satisfy stringent conditions in order for the full 5D
spacetime to be completely regular and asymptotically flat [BW08, GW14].

The gauge potentials in 5D are:

AI = −Z−1
I (dt+ k) +BI , (69)

where BI is a magnetic potential (only well-defined locally). The scalars are
given by:

XI =
Z

ZI
. (70)

For asymptotically flat 5D spacetimes, we have asymptotically:

ZI ∼ 1 +
QI
4r

= 1 +
QI
ρ2
, (71)

3Note that the dimensional reduction in section 4.1.2 and appendix A.2 is a reduction over
the spacelike v-circle, which will give a different resulting 5D ADM mass in terms of Q1, see
eq. (73).
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with r the usual radial coordinate on R3 and ρ = 4r is the radial coordinate
on the four-dimensional base. In microstate geometry literature, the charges QI
are normalized through the asymptotic expansion of the electric field in 5D as
F0ρ ∼ 2QIρ3 and not with factors involving the volume of the three sphere that
are more common from Gaussian integrals. This means that we have:

− 1

16πG5

∫
∂V∞

?5FI =
π

4G5
QI . (72)

For the six-dimensional metric, scalar and tensor solutions see eqs. (170).

The topology of the base

The poles of V (‘centers’) indicate where the ψ-fibre degenerates in the 4D base
space (although the complete 5D spacetime is always completely smooth). Since
the ψ-fibre degenerates at each center, we can construct non-contractible compact
two-cycles in the 4D space, which are also compact two-cycles in the full 5D
geometry. These two-cycles are constructed by taking the ψ-fibration over an
arbitrary path in R3 between two centers. This completely determines the 5D
homology structure of simply connected solutions. For N = 2p + 1 centers, the
global topology is that of a p-fold connected sum of (S2 × S2) with a point
removed, for N = 2p centers the topology is (R2 × S2)#(S2 × S2)# . . .#(S2 ×
S2).4

The five-dimensional ADM mass of these solutions can be written as [GW14]

MADM,5D = − 1

32πG5
CIJKα

I

∫
Σ4

F J∧FK =
π

4G5
αIQI =

π

4G5
(Q1+Q2+Q3),

(73)

where αI = 1 for asymptotically flat solutions and Σ4 is a spacelike surface of
constant time. The integral of F J∧FK is computed “entirely with cohomology”,
by calculating the flux of the F I over the non-trivial compact two-cycles of the
geometry as well as the intersection number of these two-cycles.

The topology of the uplift

The six-dimensional uplift of (68) is a non-trivial fibration of the new coordinate
v. From the expression for the three-form:

2G = (X3)−2 ?5 F
3 + F 2 ∧ (dv +A1), (74)

we can easily see that we have:

2 iKG = d
(
λ2(dv +A1)

)
+ d

(
Z−1

1 Z−1
2 (dt+ k)

)
+ F 1, (75)

4We only discuss V =
∑
i qi/|x− xi| with |qi| = 1, such that the centers are smooth points

in the full space, and
∑
i qi = 1, such that the space is asymptotically flat.
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where we have defined λI = Z−1
I −1. The form given in the first term, λ2(dv+A1),

is well-defined. The second term is Z−1
1 Z−1

2 (dt + k) and is also a well-defined
form (as discussed in [GW14]). This implies the cohomology split:

2 Λ = λ2(dv +A1) + Z−1
1 Z−1

2 (dt+ k), (76)

2H = F 1. (77)

Similarly, we can find Λ̃, H̃ by switching the roles of Z2 and Z3 in the above
expressions. Note that also 2H̃ = F 1.

The null charge is then:

QK = − 1

4πG6

∫
V

(
H ∧ G̃+ H̃ ∧G

)
(78)

= − 1

16πG6

∫
V

(
F 1 ∧ (F 3 ∧ dv) + F 1 ∧ (F 2 ∧ dv)

)
(79)

=
Lv

16πG6

∫
Σ4

(
F 1 ∧ F 3 + F 1 ∧ F 2

)
(80)

= −Lvπ
4G6

(Q2 +Q3), (81)

where we used the cohomological computation of the integral F I ∧F J in 5D over
Σ4 [GW14], and V = S1(v)×Σ4. We see that the null charge is simply the sum
of electric and magnetic (string) charges. Note that in five dimensions, Q1 is on
the same footing as Q2,3, but in six dimensions it is a momentum charge and
does not appear in the null charge QK .

The analysis above shows us that we clearly still have non-trivial compact
two-cycles in six dimensions which are given by the trivial uplift of the two-cycles
of the five-dimensional solution. These are the cycles supporting the cohomo-
logical flux H, H̃ ∼ F 1. The S1-fibration of the coordinate v over the compact
two-cycles of the five-dimensional geometry also introduces new non-trivial three-
cycles. Over these cycles, the cohomology elements F 2,3 ∧dv have non-zero flux.

However, this is not quite the end of the story. In 6D, we must also have a
non-trivial three-sphere at infinity. Indeed, the (electric string) charge in 6D is
defined as:

Qe =
1

2π2

∫
S3(∞)

e2
√

2X ? G, (82)

where S3 is the S3 at infinity perpendicular to the string which is along v. Since

the equation of motion for the three-form is simply d(e2
√

2X ?G) = 0, this S3 at
infinity must be non-contractible to be able to support non-zero flux for smooth
solutions free of singularities. Note that this non-trivial three-cycle is absent in
the original 5D geometry. This can be explained by the fact that this three-
cycle must be homologically equivalent to an S1(v) fibration over a two-cycle in
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the 4D base (which we mentioned above). These new (compared to 5D) non-
trivial three-cycles in constant time-slices of the six-dimensional geometry are an
interesting feature of the S1(v) uplift.

4.1.3 D1-D5 microstate geometries and supertubes

We are now ready to discuss the topology and the Komar integral for more
generic solutions of the D1-D5-P system. In this section, we first focus on the D1-
D5 supertube solutions of Lunin and Mathur [LM01, LMM02]. As we explain in
section 4.1.4, the result (102) for the Komar integral is the same for more generic
D1-D5 supertubes and D1-D5-P superstrata, since those describe wiggles of the
D1-D5 supertube and are topologically equivalent.

The D1-D5 Lunin-Mathur geometries are solutions to six-dimensional super-
gravity with only one tensor multiplet:

ds2 = − 2√
Z1Z2

(dv + β)(du+ ω) +
√
Z1Z2ds

2
4, (83)

e2
√

2X =
Z1

Z2
, (84)

2B = −Z−1
1 (du+ ω) ∧ (dv + β) + γ2. (85)

Here ds2
4 is the 4D flat metric with coordinates xi (i = {1, . . . , 4}) and a1, γ2, β, ω

are forms on the 4-manifold. The D1-D5 microstate is completely determined by
profile functions gi(v), i = 1 . . . 4 with 0 ≤ v ≤ L. Certain important functions
are given by (for the complete list of fields, see for example [GMPR13]):

Z2 = 1 +
Q5

L

∫ L

0

1

|xi − gi(v′)|2
dv′, Z1 = 1 +

Q5

L

∫ L

0

|ġi(v′)|2

|xi − gi(v′)|2
dv′,

(86)

A = −Q5

L

∫ L

0

ġj(v
′)dxj

|xi − gi(v′)|2
dv′, dB = − ?4 dA, (87)

β =
−A+B√

2
, ω =

−A−B√
2

, (88)

dγ2 = ?4dZ2. (89)

Perhaps the easiest explicit profile is the once-wound circle, given by (with
L = 2πRy):

g1(v) = a cos(v/Ry), g2(v) = a sin(v/Ry), g3(v) = g4(v) = 0. (90)

Then we can parametrize the (flat) 4D metric as:

ds2
4 =

f

r2 + a2
dr2 + fdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2, (91)
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and the above functions become:

Z1 = 1 +
Q1

f
, Z2 = 1 +

Q5

f
, (92)

A = −a
√
Q1Q5

sin2 θ

f
dφ, B = −a

√
Q1Q5

cos2 θ

f
dψ, (93)

f = r2 + a2 cos2 θ, (94)

where Q1 = a2R2
y/Q5, and the D1-D5 string at xi = Fi(v) is now at r = 0, θ =

π/2 (f = 0).

Topology and homology

The topology of the D1-D5 system with once-wound circular profile was discussed
in [LMM02]. Any D1-D5 geometry with profile g′i(v) that can be continuously
deformed into a circle will share the same topology of R2 × S3. At infinity we
have an S3(θ, φ, ψ) of the 4D base, which deforms continuously to the non-trivial
S3(θ, φ̃, ψ̃) in the interior with φ̃ = φ+ t/R, ψ̃ = ψ + y/R, while S1(y) (keeping
ψ̃ fixed) shrinks to zero size in the interior.

Hence we clearly have exactly one non-trivial three-cycle given by the three-
sphere at infinity, and one non-trivial (non-compact) two cycle, given by the vol-
ume element of the R2 factor. The three-cycle is again needed in this singularity-
free geometry in order for the geometry to be able to support non-zero three-form
flux. The intersection number between the two-cycle and the three-cycle is sim-
ply +1 (with suitable orientations of the cycles).

Cohomology and null charge

For a general D1-D5 geometry, we have:

2 ikG = d(Z−1
1 (dv + β)) (95)

=
1√
2
d
(
Z−1

1 (dy +B) + Z−1
1 (dt−A)

)
. (96)

Note that there is no obvious easy split to be made by defining λ1 = Z−1
1 −1 and

splitting off terms proportional to λ1. This is because the fibres A,B typically
have singularities on the string profile and/or in the origin. So we can leave the
well-behaved one-form Λ implicit:

2H ≡ iKG− dΛ = d(Z−1
1 (dv + β))− dΛ, (97)

since the integrals we will perform are independent of Λ anyway. In the explicit
example of the once-wound circular profile, we can easily see that

1

Lv

∫
R2

H =
1

Lv

(
Lv
2

)
=

1

2
, (98)
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where we integrate the R2 cycle from the string profile (at r = 0, θ = π/2) to
r =∞, and we used that Z−1

1 (f = 0) = 0 and Z−1
1 (r =∞) = 1.

We see that H is the cohomological dual of the non-trivial two-cycle in the
geometry, as expected. The harmonic part of the three-form G and its dual G̃
are both proportional to the volume form of the non-trivial three-cycle S3:

1

2π2

∫
S3(∞)

G = Q5,
1

2π2

∫
S3(∞)

G̃ = Q1, (99)

as these parts precisely define the D1 and D5 charges of the geometry. Putting
this together gives for the null charge:

QK = − 1

4πG6

∫
R2×S3

(
H ∧ G̃+ H̃ ∧G

)
(100)

= − 1

4πG6

(∫
R2

H

)
(+1)

(∫
S3

G̃

)
− 1

4πG6

(∫
R2

H̃

)
(+1)

(∫
S3

G

)
(101)

= −Lvπ
4G6

(Q1 +Q5) , (102)

where we used the intersection number to split the integral into separate integrals
over the non-trivial cycles.

4.1.4 D1-D5-P superstrata

The most general three-charge microstate geometries that fall within six-dimensional
supergravity arise from reduction on a rigid T 4 [GMPR13]. These solutions ex-
cite all IIB supergravity fields in ten dimensions (metric, Ramond-Ramond fields
C(0), C(2), C(4), as well as B(2) and the dilaton φ1). The solutions can be inter-
preted as solutions in minimal supergravity in six dimensions coupled to two
tensor multiplets, see appendix B.

These solutions require extending the results of section 4.1.3 in two ways:
considering an extra tensor multiplet, and adding the momentum charge P. Only
then can we cover both generic D1-D5 geometries with a rigid T 4 [KST07] and
the D1-D5-P superstrata [BGR+15]. However, these more general solutions are
topologically equivalent to the D1-D5 supertubes (83). We will show that the
Komar integral is unchanged.

The general superstrata solutions as given in [GR13, BGR+15], in six-dimensional
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language, fit within the ansatz [GMPR13, BGR+15]:

ds2 =
P

Z1Z2

(
− 2√
P

(dv + β)

[
du+ ω +

F
2

(dv + β)

]
+
√
Pds2

4

)
, (103)

e2φ =
Z2

1

P
, (104)

χ =
Z4

Z1
, (105)

2B = −Z2

P
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2, (106)

B′ = −Z4

P
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2, (107)

P = Z1Z2 − Z2
4 , (108)

where, similar to the D1-D5 ansatz, ds2
4 is the 4D flat metric and β, ω, a1, a4, γ2, δ2

are forms on this 4D base. We refer to [GMPR13, BGR+15] for the full set of
supersymmetry equations and equations of motion and only quote those that we
need:

dγ2 = ?4dZ2 , dδ2 = ?4dZ4 . (109)

The tensor B comes from the dimensional reduction of C(2) while B′ descends
from B(2) in 10D; the scalar φ is simply the 10D dilaton while χ is the 10D axion
C(0). For more information on the dimensional reduction from 10D to 6D and the
realization of the SO(1, 2) symmetry, see appendix B. This ansatz reduces to the
D1-D5 ansatz (83) when Z4 = a4 = δ2 = 0; the tensor multiplet parametrized by
the fields B′, χ is set to zero, truncating the SO(1, 2) theory down to SO(1, 1).

The tensor multiplet scalars τ = χ+ie−φ parametrize the coset SO(1, 2)/SO(2).
While B and its field strength G = dB are unconstrained, the tensor B′ satisfies
a duality relation. Indeed, the field strength:

G′ = dB′ − 2
χ

e−2φ + χ2
dB, (110)

is anti self-dual in six dimensions:

G′ = − ? G′. (111)

Thus, we find the correct tensor field content for the SO(1, 2) theory of minimal
supergravity with two tensor multiplets.

The null charge is given by (see also appendix B):

QK = − 1

4πG6

∫
V

(
H ∧ G̃+ H̃ ∧G

)
+

1

8πG6

∫
V

(H ′ ∧G′) , (112)

where H, H̃ are defined as in (56), similarly H ′ is the harmonic part of iKG
′,

and the dual form G̃ is now defined by:

G̃ =
e2φ

1 + e2φχ2
? G. (113)
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For the superstrata of [BGR+15], the terms in (112) involving G, G̃ can easily
be seen to give the same contribution ∼ (Q1 +Q5) as for the D1-D5 microstates
above. The term involving G′ does not contribute. It is easiest to realize this by
seeing that dB′ and χdB fall off too fast at infinity to have a non-zero integral∫
S3
∞
G′; in essence, this is because Z4 falls off faster at infinity than Z1 or Z2

(which give the Q1, Q5 contributions to the null charge as in the D1-D5 case
above).5 We conclude that:

QK = −Lvπ
4G6

(Q1 +Q5) , (117)

just as for the D1-D5 supertube.

That the null charge gives the same result for D1-D5-P superstrata as for
the D1-D5 supertubes is not so surprising from a topological point of view. The
important thing to note is that a generic superstratum solution has the same
topology as the D1-D5 round supertube. Superstrata describe fluctuations on
top of a topologically non-trivial S3 (shape modes depending on two variables),
just as generic two-charge supertubes describe one-dimensional shape modes on
the S3. This is the same S3 present for the round supertube discussed in section
4.1.3, and therefore supertubes and superstrata have a similar topological three-
cycle.

5To see this fall-off explicitly we quote the behaviour for the most general D1-D5 supertube
invariant under T 4 rotations. This has five profile components gi, i = 1 . . . 4 and g5, and the
fields are [GR14]:

Z2 = 1 + Q5
L

∫ L
0

1
|xi−gi(v′)|2

dv′ , Z4 = −Q5
L

∫ L
0

ġ5(v
′)

|xi−gi(v′)|2
dv′ ,

Z1 = 1 + Q5
L

∫ L
0
|ġi(v′)|2+|ġ5(v′)|2
|xi−gi(v′)|2

dv′ dγ2 = ∗4dZ2 dδ2 = ∗4dZ4 ,

A = −Q5
L

∫ L
0

ġj(v
′) dxj

|xi−gi(v′)|2
dv′ dB = − ∗4 dA ,

β = −A+B√
2

ω = −A−B√
2

F = 0 , a1 = a4 = x3 = 0 ,

(114)

An explicit example is a round profile in the R4 base and a non-zero g5 component:

g1(v) = a cos(v/Ry), g2(v) = a sin(v/Ry), g3(v) = g4(v) = 0, g5(v) = −
b

k
sin(v/Ry) .

(115)

The D1-D5 seed solution of [BGR+15] starts from such a profile. Then we have that

Z1 = 1 +
Q1

f
+ c1

sin2k θ cos(2kφ)

(r2 + a2)kf
, Z2 = 1 +

Q5

f
, Z4 = c4

sink θ cos(kφ)
√
r2 + a2f

, (116)

where c1 = Q1a
2b2

2a2+b2
and c4 =

√
Q1Q5

a+2+b2/2
bak are constants. Clearly Z4 falls off too fast for

the H′ ∧ G′-term to contribute to the Komar integral. For superstrata solutions, we refer to
[GR13, BGR+15].
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4.2 Non-extremal example

We now discuss the JMaRT solutions of [JMRT05], which have an interpretation
as microstate geometries of the five-dimensional overspinning three-charge black
hole. In the IIB frame, these are smooth solitons, with a natural interpretation
in six-dimensional supergravity after dimensional reduction on the compact T 4.

4.2.1 Metric and gauge fields

The solitons are obtained by demanding the metric ansatz appropriate for de-
scribing the non-extremal three-charge black hole to be smooth. Usually, the
five-dimensional physical charges are quoted, which in this case are the ADM
mass MADM,5D, the electric charges Q1, Q5, Qp, and the two angular momenta
Jψ, Jφ:6

MADM,5D =
Lyπ

4G6

m

2

∑
I

cosh 2δI , Jψ = −Lyπ
4G6

m(a1c1c2c3 − a2s1s2s3) ,

(118)

QI =
m

2
sinh 2δI , Jφ = −Lyπ

4G6
m(a2c1c2c3 − a1s1s2s3) ,

(119)

given in terms of parameters m, δ1, δ5, δp, a1, a2 and with the notation si =
sinh δi, ci = cosh δi. The supersymmetric limit is m, a1, a2 → 0, δi → ∞ while
keeping QI ,m/

√
ai fixed. We note that the 6D ADM mass (for the asymptoti-

cally R4,1 × S1 spacetime) is actually:

MADM,6D =
Lyπ

4G6

m

2
(cosh 2δ1 + cosh 2δ5 + 2 cosh 2δp) , (120)

so the contribution due to the momentum charge (which is the charge from the
graviphoton in reducing from 6D to 5D) is different.

We choose to write the metric and gauge fields in the notation of [CM14].
The metric, scalar and gauge field in 6D are (note that B = −C2/2, with C2 the

6Standard conventions in the literature are to take G5 = π/4, which would render the
prefactor Lyπ/(4G6) = 1. As in the rest of the paper, we instead choose to keep the explicit
factors of G6 in all of the relevant formulae. We also choose a normalization for the QI that
is the same as the rest of the paper, instead of the usual normalization which would include a
factor of Lyπ/(4G6) in the definition of the QI as well.
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RR two-form of [JMRT05]):

ds2
6 =

1

Hp(H1H5)1/2

[
−Hm (dt+ k)

2

+H2
p

(
(dy +Bmp +

cp
sp
k) +

cp
sp

(H−1
p − 1)(dt+ k)

)2
]

+ (H1H5)1/2ds2
4, (121)

e2
√

2X =
H1

H5
, (122)

−2B =
c1
s1
dt ∧ dy − c1

s1
H−1

1 (dt+ k) ∧ dy −B1 ∧ dz −
c1cp
s1sp

H−1
1 dt ∧ dk

− sp
cp
dt ∧B1 −

c1
s1
H−1

1 dt ∧B3

+ms5c5
r2 + a2

2 +ms2
1

fH1
cos2 θdψ ∧ dφ . (123)

where the quantities used are defined by:

ds2
4 = f

(
r2

g
dr2 + dθ2 + sin2 θdφ2 + cos2 θdψ2

)
+H−1

m

(
a1 cos2 θdψ + a2 sin2 θdφ

)2 − (a2 cos2 θdψ + a1 sin2 θdφ
)2
,

(124)

k =
m

f

[
− c1c5cp

Hm

(
a1 cos2 θdψ + a2 sin2 θdφ

)
+ s1s5sp

(
a2 cos2 θdψ + a1 sin2 θdφ

) ]
, (125)

B(i) =
m

fHm

c1c5cp
sIcI

(
a1 cos2 θdψ + a2 sin2 θdφ

)
. (126)

Everything is built from the following functions:

Hi = 1 +
ms2

i

f
, (127)

Hm = 1− m

f
, (128)

f = r2 + a1 sin2 θ + a2
2 cos2 θ, (129)

g = (r2 + a2
1)(r2 + a2

2)−mr2 = (r2 − r2
+)(r2 − r2

−). (130)

The three-form is simply G = dB. The dual potential, G̃ = dB̃ is then given
by:

B̃ =B with s1 ↔ s5; c1 ↔ c5;H1 ↔ H5. (131)
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4.2.2 Constraints for smooth solutions

Smooth JMaRT solutions are determined for fixed charges Q1, Q5, Qp, by two
integers m,n. One can extend these to include Zk orbifolds with k an integer.
They have the following relations between their parameters:

r2
+ = − a1a2

s1s5sp
c1c5cp

, (132)

M = a2
1 + a2

2 − a1a2

[
c21c

2
5c

2
p + s2

1s
2
5s

2
p

s1c1s5c5spcp

]
. (133)

The constant t slices have the topology of R2×S3/Zk. The non-contractible S3

is spanned at the origin r = r+ by the coordinates θ, ψ̃, φ̃, with the identifications

ψ̃ = ψ − spcp
a2c1c5cp − a1s1s5sp

y , φ̃ = φ− spcp
a1c1c5cp − a2s1s5sp

y , (134)

The following quantization conditions ensure that the identification y → y+2πR
is a closed orbit:

spcp
a2c1c5cp − a1s1s5sp

R = m,
spcp

a1c1c5cp − a2s1s5sp
R = n , (135)

for integers m,n.

The R2 factor has a smooth origin at r = r+, where the t = constant part
of the metric has the form (up to irrelevant constant prefactors)

ds2|dt=0 = dρ2 +
ρ2

R2
dy2 , (136)

with the identification y ∼ y + 2πRk and the radius given by

R =
Ms1c1√
a1a2

√
s1c1s5c5spcp

c21c
2
5c

2
p − s2

1s
2
5s

2
p

. (137)

4.2.3 Komar integral

We want to study the Komar integral, which reduces for this topology to

QK = − 1

4πG6

∫
V

(
H ∧ G̃+ H̃ ∧G

)
(138)

= − 1

4πG6

(∫
R2

H

∫
S3

G̃+

∫
R2

H̃

∫
S3

G

)
(139)
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The non-contractible S3 is homologically equivalent to the one at infinity ap-
pearing in Gauss’ law. Hence we can perform the S3 integral at spatial infinity:

1

4πG6

∫
S3(∞)

G = − 1

8πG6
lim
r→∞

∫
d

[
ms5c5

r2 + a2
2 +ms2

1

fH1
cos2 θdψ ∧ dφ

]
(140)

= − π

4G6
lim
r→∞

ms5c5
r2 + a2

2 +ms2
1

fH1
cos2 θ

∣∣∣∣θ=π/2
θ=0

=
π

4G6
Q5

(141)

To obtain the H-integral, we can in principle split the interior product of the
Killing vector with the three-form as

iKG = dΛ +H . (142)

However, for our purposes we do not need to do this explicitly: the integral
of iKG and of H are identical, as the contribution of dΛ for Λ a well-defined
one-form cancels anyway.

To make contact with the supersymmetric limit later, we consider the Killing
vector

K = ∂t + α∂y . (143)

with α a constant. Then we find that locally

dω ≡ iKG|t=const. , (144)

ω =
c1
s1
H−1

1

(
dy + (

cp
sp
− α)k +B(p)

)
− c1
s1
dy +

(
sp
cp
− α

)
B(1) . (145)

The one-form ω is zero at infinity and well-behaved at any finite distance, but
note that it is not globally well-defined. The integral

∫
R2 iKG3 only receives

a contribution from the origin r = r+. A short computation shows that for
constant ψ̃, φ̃:

B(i)|r=r+ = −spcp
sici

dy , k|r=r+ = 0 . (146)

and hence the first bracket in (145) does not contribute in the R2–integral. The
other terms give:∫

R2

H =

∫
R2

iKG = −Lyωy|r=r+ = Ly

(
c1
s1

+
s2
p − αspcp
s1c1

)

= Ly
M1 +Mp − αQp

Q1
, (147)
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using the notation

Mi =
m

2
cosh(2δi) , (148)

which gives the contribution to the 5D ADM mass in the i-channel (so that
MADM,5D = (Lyπ)/(4G6)

∑
iMi).

In the end, we find that (139) becomes

QK = − Lyπ

4G6

(
M5 +Mp − αQp

Q5
Q5 +

M1 +Mp − αQp
Q1

Q1

)
(149)

= − Lyπ

4G6
(M1 +M5 + 2(Mp − αQp)) . (150)

For α = 0, we have K = ∂t and we retrieve the 6D ADM mass (120) for the
Komar charge QK . Note that each term of the second line contributes to the
Mp-channel. Also, in a sense, the non-extremality resides only in the integral

over H; the integrals over S3 of G3, G̃3 contribute the charge. For α = 1, so that
K = ∂t + ∂y, the Komar charge in the supersymmetric limit becomes the usual
null charge QK = −(Lyπ)/(4G6)(Q1 +Q5).

Appendix

A Uplift of five-dimensional multi-center solutions

A.1 General reduction

Reducing 6D minimal supergravity plus a tensor multiplet gives the STU model
in 5D. The 6D metric ĝab decomposes into the 5D metric gab, a graviphoton A1

a,
and a scalar φ2. The three-form gives two gauge fields: Ĝabc ∼ (?5F

2)abc and
Ĝab6 ∼ F 3

ab. Finally, our 6D scalar gives a scalar in 5D X̂ = φ1. We can then
reparametrize the 5D scalars φ1, φ2 to get the usual three constrained scalars XI

of the STU model.
We use hats to denote 6D quantities in this section; unhatted quantities, such

as indices, are 5D. We start with the 6D Lagrangian:

√
−ĝL6 =

√
−ĝ
[
R̂− 2∂µ̂X∂

µ̂X − 1

3
e2
√

2X̂Ĝµ̂ν̂ρ̂Ĝ
µ̂ν̂ρ̂

]
. (151)

We call the (spacelike) coordinate along which we reduce y. The reduction
ansatz for the metric is:

dŝ2 = eφ2/
√

6ds2
5 + e−3φ2/

√
6(dy +A1

adx
a)2, (152)
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with inverse:

(∂ŝ)2 = e−φ2/
√

6(∂s5)2−2e−φ2/
√

6A1µ∂µ∂y+(e3φ2/
√

6+e−φ2/
√

6(A1)2)∂2
y . (153)

The Einstein-Hilbert Lagrangian then reduces to:

1

G6

√
−ĝR̂ =

1

G5

√
−g
[
R− 1

2
(∂φ2)2 − 1

4
e−4φ2/

√
6φ2(F 1)2

]
, (154)

where G6 = LyG5. Note that
√
−ĝ = eφ2/

√
6√−g5.

The kinetic term for the 6D scalar X̂ gives the contribution:

1

G6

√
−ĝ
[
−2∂µ̂X∂

µ̂X
]

=
1

G5

√
−g
[
−2(∂φ1)2

]
. (155)

Finally, reducing the three-form can be done most easily using form notation.
The reduction ansatz is:

2 Ĝ = e−2
√

2φ1+2φ2/
√

6 ?5 F
3 + F 2 ∧ (dy +A1), (156)

which also implies:

2 ?̂ Ĝ = e2φ2/
√

6 ?5 F
2 + e−2

√
2φ1F 3 ∧ (dy +A1). (157)

Then the reduction of the kinetic term is:

2 e2
√

2X ?̂Ĝ ∧ Ĝ = dy ∧
[

1

2
e−2
√

2φ1+2φ2/
√

6F3 ∧ ?5F3

+
1

2
e2
√

2φ1+2φ2/
√

6 ?5 F2 ∧ F2 + F 3 ∧ F 2 ∧A1

]
. (158)

Summarizing, the reduction gives us the 5D Lagrangian:

√
−gL5 =

√
−g
[
R− 1

2
(∂φ2)2 − 1

4
e−4φ2/

√
6φ2(F 1)2 − 2(∂φ1)2

−1

4
e2
√

2φ1+2φ2/
√

6(F 2)2 − 1

4
e−2
√

2φ1+2φ2/
√

6(F 3)2

]
− 1

4
εµνρσλA1

µF
2
νρF

3
σλ. (159)

To bring this to the usual STU form, we can define:

X1 = e2φ2/
√

6, X2 = e−φ2/
√

6−
√

2φ1 , X3 = e−φ2/
√

6+
√

2φ1 , (160)

so that X1X2X3 = 1, and the Lagrangian can be written as:

L5 = R− 1

4

1

(XI)2
(F I)2 − 1

2

(∂XI)2

(XI)2
− 1

4
e−1εµνρσλA1

µF
2
νρF

3
σλ, (161)
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with sum over I = {1, 2, 3} implied. This is the usual form of the STU La-
grangian. We can also write this as:

L5 = R−1

2
QIJF

I
µνF

J µν−QIJ∂µXI∂µXJ− 1

24
e−1CIJKε

µνρσλAIµF
J
νρF

K
σλ, (162)

where we have CIJK = |εIJK | and:

1

6
CIJKX

IXJXK = 1, (163)

QIJ :=
9

2
XIXJ −

1

2
CIJKX

K , (164)

XI :=
1

6
CIJKX

JXK . (165)

A.2 Uplifting SUSY solutions

The most general 6D supersymmetric metric can be written as [GMR03, CMC04]:

ds2
6 = −2H−1(dv + β)[du+ ω +

F
2

(dv + β)] +Hdx2
4, (166)

= −H−1F [dv + β + F−1(du+ ω)]2 +H−1F−1(du+ ω)2 +Hdx2
4.
(167)

The rewriting of the metric in the second line shows us that we can reduce along
v as long as it is a spacelike coordinate, i.e. F < 0 everywhere. The reduction
gives us:

ds2
5 = −H−4/3F−2/3(du+ ω)2 +H2/3(−F1/3)dx2

4,

e−3φ2/
√

6 = H−1(−F),

A1 = β + F−1(du+ ω). (168)

We see that the 6D null coordinate u becomes a timelike coordinate in 5D
[GMR03].

With the metric, gauge fields and scalars in 5D given by (68)-(70), we can
then identify the appropriate 6D quantities in terms of the 5D ones as follows:

F = −Z1, ω = k, β = B1, H = (Z2Z3)1/2. (169)
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For reference, the full 6D fields are given by:

ds2
6 = − 1

Z1(Z2Z3)1/2
(du+ k)2 + (Z2Z3)1/2ds2

4

+
Z1

(Z2Z3)1/2
(dv − Z−1

1 (du+ k) +B1)2,

e
√

2X = e
√

2φ1 = X
1/2
1 X3 =

Z
1/2
2

Z
1/2
3

.

2G = X−2
3 ?5 F

3 + F 2 ∧ (dv +A1). (170)

B Rigid T 4 Reduction of IIB and SO(1, 2) Truncation

The reduction of IIB supergravity to six-dimensional N = (1, 0) supergravity
with 2 tensor multiplets goes in two steps. In a first step, reduction of the bosonic
sector on a rigid T 4 gives a theory with SO(2, 2) global symmetry [DLP99]. Then
the compatibility with D1-D5-P supersymmetries as in [GMPR13] leads to the
bosonic sector of the SO(1, 2) invariant supergravity.

First, we reduce IIB supergravity on a T 4, keeping only the components of
the fields with indices over the remaining six dimensions. This gives us two
dilatons (from the 10D dilaton φ and the breathing mode of the T 4); two axions
(from the 10D axion C(0) and from the only relevant component of C(4)), along
with the two reduced three-forms coming from the potentials C(2) and B(2). The
reduction ansatz is [LLPT99, DLP99]:

ds2
10,str = eφ1/2

(
eφ2/2ds2

6 + e−φ2/2ds2
T4

)
, C(0) = χ1,

φ = φ1, C(2) = C(2),

B(2) = B(2), C(4) = −χ2 vol(T4) + · · · ,
(171)

where ds2
T4

and vol(T 4) are the flat metric and flat volume element on T 4. The
· · · in C(4) are other terms that follow from the self-duality condition F(5) =
?F(5). Note that we use the IIB supergravity conventions as in [BGR+15]. The
resulting 6D Lagrangian is [DLP99]:

L6D,SO(2,2) = R− 1

2
(∂φ1)2 − 1

2
(∂φ2)2 − 1

2
e2φ1(∂χ1)2 − 1

2
e2φ2(∂χ2)2

− 1

12
e−φ1−φ2H2

(3) − e
φ1−φ2

1

12
F 2

(3) + χ2H(3) ∧ dC(2), (172)

with F(3) ≡ dC(2) − C(0)H(3). This reduction/truncation has an SO(2, 2) ∼=
SL(2)1×SL(2)2 symmetry where each τi = χi+ie

−φi parametrizes an SL(2)/SO(2)
coset. The SO(2, 2) is not a symmetry of the tensor Lagrangian, but rather of
the equations of motion and Bianchi identities. Those can be written as Bianchi
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identities of an SO(2, 2) vector of field strengths Gr with components(
G1

G2

)
≡
(
dB(2)

dC(2)

)
,

(
G3

G4

)
≡
(

dL6D

dG2

−dL6D

dG1

)
= −eφ2(iσ2)·M1·

(
?G1

?G2

)
+χ2

(
G1

G2

)
.

(173)

Those tensors obey the duality relation (compare (45)):

MrsG
s = ηrs ? G

s , (174)

with the off-diagonal SO(2, 2) metric η = (iσ2)⊗ (iσ2) and scalar matrix

M =M2(τ2)⊗M1(τ1), with Mi = ViV
T
i , Vi =

(
e−

1
2φi χie

1
2φi

0 e
1
2φi

)
. (175)

It is important to realize that this SO(2, 2) theory cannot be the bosonic part
of any supergravity theory. One can perform a further truncation to obtain a
theory that can be the bosonic part of SO(1, 2) ∼= SL(2) supergravity by setting
τ2 = f(τ1) with f an SL(2)-transformation. This identifies a ‘diagonal’ SL(2)
subgroup in SO(2, 2) ∼= SL(2)1 × SL(2)2. The four tensors Gr then decompose
in a singlet and a triplet under this truncation. Consistency of the truncation
requires that we put the singlet to zero.

We are interested in solutions with the supersymmetries of the D1-D5-P
system [GMPR13], giving the truncation:

τ2 = − 1

τ1
. (176)

The τ2 equation of motion then requires that we put the singlet G1 +G4 to zero.
The remaining three field strengths are

Ĝ1 =
1

2
(G3 −G2) , Ĝ2 =

1

2
(G2 +G3) , Ĝ3 =

1

2
(G4 −G1) , (177)

Dropping the hats again, Gr then obeys the self-duality relation with the SO(1, 2)
matrix

V = exp(χE+) exp(φH/2) , E+ =

0 0 1
0 0 1
1 −1 0

 , H =

0 2 0
2 0 0
0 0 0


(178)

and the Komar integral (51) applies.
To make the connection to the theory with one tensor multiplet clear, we

write the vanishing singlet as an anti self-duality constraint on a three-form G′:

G′ = − ? G′, G′ = dB(2) + χ2dC(2) =
e−2φ1H(3) − χ1F(3)

e−2φ1 + χ2
1

. (179)



We can then take G ≡ (1/2)dC(2) to be the (unrestricted) tensor that is the
combination of the other self-dual and anti self-dual tensors. In section 4.1.4,
we take φ = φ1, χ = χ1 and B = (1/2)C(2), B

′ = B(2). An obvious further
truncation of this SO(1, 2) theory is to take G′ = 0, χ1 = 0 which leaves us
with the SO(1, 1) sector used in large parts of this paper, after the identification
φ1 =

√
2X.

For the SO(1, 2) theory with the unrestricted three-form G and the anti self-
dual three-form G′ as defined above, the generalization (50) of (55) for the null
charge reduces to:

QK = − 1

4πG6

∫
V

(
H ∧ G̃+ H̃ ∧G

)
+

1

8πG6

∫
V

(H ′ ∧G′) , (180)

where H, H̃ are defined as in (56), keeping in mind the SO(1, 2)-generalized
definitions for the dual form:

G̃ =
e2φ1

1 + e2φ1χ2
1

? G, (181)

The harmonic form H ′ is defined by the split:

iKG
′ = dΛ′ +H ′, (182)

where Λ′ is a globally defined one-form.



II

Black Chemistry

In the previous chapter we have learned how to describe the microstates of a black
hole in terms of primary fields of the effective conformal field theory living on the
world-volume of a compactified system of D- or M-branes. We used techniques
of two dimensional conformal field theory - notably Cardy’s formula - and hence
we were tacitly concerned with black holes that have an AdS3 factor in their
near-horizon geometry. Even the four dimensional black-holes we encountered in
the introduction of chapter I could be seen as the reduction from five dimensions
— where the black hole has an AdS3 factor — to four dimensions. In the spirit
of the AdS/CFT conjecture, we then indeed expect such black holes to have a
description in terms of a two dimensional CFT. This in not necessarily a generic
set-up.

There is namely a class of extremal black holes that arises in string theory
and M-theory that can be obtained by considering a Calabi-Yau compactifica-
tion, with generic SU(3) holonomy, of eleven dimensional M-theory down to
five non-compact dimensions. Typically, such a Calabi-Yau will not have U(1)
isometries that we can easily T -dualize along. Yet, wrapping branes around the
supersymmetric cycles of the Calabi-Yau yields extremal five-dimensional black
holes [BMPV97, KKV99], which again have an SL(2,R) isometry in the near
horizon. This AdS2 does not naturally fit inside an AdS3 with a two-dimensional
CFT dual.1 Remarkably, attempts to count the microstates of such supersym-
metric black holes have faced significant difficulties [HKMT09]. In fact, whenever
the precise counting of microstates has been successful it has involved a Cardy
formula [SV96, Vaf98, MSW97]. Lacking the larger Virasoro structure, one may
wonder where the ‘isolated’ SL(2,R) of these black holes originates and to what
extent it is robust. Perhaps an additional motivation for understanding such an
‘isolated’ AdS2 geometry is the emergence of an SL(2,R) symmetry in the world-
line data of the static patch of de Sitter space [AHH12, Ann12]. It is interesting
to note that the static patch of four-dimensional de Sitter space is conformally
equivalent to AdS2×S2, whose ‘isolated’ SL(2,R) does not seem to reside within
a larger structure containing a Virasoro algebra.

One particular way the SL(2,R) isometeries of the black hole manifest them-
selves is in the worldine dynamics of D-particles propagating in the near horizon
region. We might then ask whether there are microscopic models, such as matrix

1One might also consider this AdS2 as a degenerate limit of the warped AdS3/NHEK near
horizon geometry of the rotating black hole, in the limit of vanishing angular momentum. The
SL(2,R) might then be a global subgroup of the full symmetries associated to the duals of
such geometries [GS09, ALP+09, Ann09, GHSS09, GS11, DHH12].
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quantum mechanics models with a large number of ground states, whose effective
eigenvalue dynamics describe an SL(2,R) invariant multiparticle theory.2

Some insight into these issues can be provided by studying certain quiver
quantum mechanics models, which capture the low energy dynamics of strings
connecting a collection of wrapped branes [DM96, Den02, DM11, BBdB+12,
LWY12, MPS12, MPS13] in a Calabi-Yau compactification of type IIA string
theory to four-dimensions. Under certain conditions these quiver theories have
an exponential number of (supersymmetric) ground states whose logarithm goes
as the charge of the branes squared, which is the same scaling as the entropy
of a supersymmetric black hole in N = 2 supergravity. It has been argued
[DM11, BBdB+12] that the near horizon AdS2 of these supersymmetric black
holes is related to the exponential explosion in the number of ground states in
the quiver quantum mechanics. The states in question are referred to as pure-
Higgs states since they reside in the Higgs branch of the quantum mechanics,
where all the branes sit on top of each other. Interestingly, going to the Coulomb
branch after integrating out the massive strings stretched between the wrapped
branes, leads a non-trivial potential and velocity dependent forces governing the
wrapped brane position degrees of freedom in the non-compact space. More-
over, whenever the Higgs branch has an exponentially large number of ground
states, the Coulomb branch exhibits a family of supersymmetric scaling solutions
[Den02, DM11, BWW08] continuously connected to its origin. The equations
determining the positions of the wrapped branes in such supersymmetric zero
energy scaling solutions are reproduced in four-dimensional N = 2 supergravity
[Den02], believed to be the appropriate description of the system in the limit of
a large number of wrapped branes.

In this note we would like to touch upon some of these issues. We do so by
discussing two aspects of the Coulomb branch of such quiver theories, particu-
larly those describing three wrapped branes containing scaling solutions.

First we derive the Coulomb branch Lagrangian of a three node quiver model
(see figure II.1), and establish the existence of a low energy scaling limit where
the theory exhibits the full SL(2,R) symmetry of conformal quantum mechanics
[?, ?, ?, ?]. These scaling theories have velocity dependent forces, a non-trivial
potential as well as a metric on configuration space. It is also worth noting that
the full quiver quantum mechanics theory is itself not a conformal quantum me-
chanics (and most certainly not a two-dimensional conformal field theory). The
emergence of a full SL(2,R) symmetry rather than only a dilatation symmetry
in the scaling limit is not guaranteed, and is reminiscent of the emergence of a

2The original N × N Hermitean matrix models [BIPZ78] in the double scaling limit has
eigenvalue dynamics described by free fermions which naturally have an SL(2,R) symmetry.
Of course, such models contain only the eigenvalue degrees of freedom due to the U(N) gauge
invariance that allows for a diagonalization of the matrix, and hence do not have O(N2) degrees
of freedom. These models are dual to strings propagating in two dimensions (for some reviews
see [Kle91, GM93, Pol94]).
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full SL(2,R) in the near horizon geometry of extremal black holes.

Second, we study the behavior of the Coulomb branch upon integrating out
the strings in a thermal state, rather than in their ground state. At sufficiently
high temperatures, the Coulomb branch melts into the Higgs branch. This is
reminiscent of the gravitational analogue where increasing the temperature of a
black hole increases its gravitational pull, or a particle falling back into the finite
temperature de Sitter horizon.

1 Quiver quantum mechanics

In this section we discuss the quiver quantum mechanics theory and its Coulomb
branch. These theories constitute the low energy, non-relativistic and weakly
coupled sector of a collection of branes along the supersymmetric cycles of a
Calabi-Yau three fold. The wrapped branes look pointlike in the four-dimensional
non-compact Minkowski universe.

1.1 Full quiver theory

The N = 4 supersymmetric quiver quantum mechanics comprises the follow-
ing fields: chiral multiplets Φαij = {φαij , ψαij , Fαij} and vector multiplets Xi =
{Ai,xi, λi, Di}. The ψαij are the fermionic superpartners of the φαij , the λi are
the fermionic superpartners of the scalars xi, Ai is a U(1) connection, and Fαij
and Di are auxiliary scalar fields. The Φαij transform in the (1̄i,1j) of the
U(1)i × U(1)j . The index α = 1, 2, . . . , |κij | denotes the specific arrow con-
necting node i to node j (see figure II.1). The chiral multiplets encode the low
energy dynamics of strings stretched between the wrapped D-branes of mass mi

sitting at three-vector positions xi in the non-compact four-dimensions. The
index i = 1, 2, . . . , N denotes the particular wrapped D-brane. The electric-

magnetic charge vector, Γi = (Q
(i)
I , P

(i)
I ), of the wrapped branes depends on the

particular cycles that they wrap, and the Zwanziger-Schwinger product of their

charges are given by the κij = (P
(i)
I Q

(j)
I −Q

(i)
I P

(j)
I ). The κij count the number

of intersection points in the internal manifold between wrapped branes i and j.
In what follows we measure everything in units of the string length ls which we
have set to one.

The Lagrangian L = LV + LC + LW for the three-node quiver quantum
mechanics [Den02] describing the low energy non-relativistic dynamics of three
wrapped branes which are pointlike in the (3 + 1) non-compact dimensions is
given by:

LV =

3∑
i=1

µi

2

(
q̇i · q̇i +DiDi + 2iλ̄iλ̇i

)
− θiDi , (1)
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Figure II.1: A 3-node quiver diagram which captures the field content of the
Lagrangian L = LV +LC +LW , each piece of which is given in (1), (2), and (5).
This quiver admits a closed loop if κ1, κ2 > 0 and κ3 < 0.

and,

LC =

3∑
i=1

|Dtφiα|2 −
(
qi · qi + siD

i
)
|φiα|2 + |F iα|2 + iψ̄iαDtψiα

− siψ̄iα(σ · qi)ψiα + i
√

2
(
siφ̄

i
αλ

iεψiα − h.c.
)
. (2)

In (1-2) and what follows we will mostly work with the relative degrees of freedom
(i.e. xij ≡ xi − xj , Dij ≡ Di − Dj , etc.) since the center of mass degrees of
freedom decouple and do not play a role in our discussion. The notation we
use is somewhat non-standard (for example (q1,q2,q3) ≡ (x12,x23,x13)) and
is given in appendix A along with all of our conventions. We note that the
relative Lagrangian is only a function of two of the three vector multiplets, since
q3 = q1 + q2, D3 = D1 + D2 and λ3 = λ1 + λ2. The si encode the orientation
of the quiver. For the majority of our discussion we choose s1 = s2 = −s3 = 1,
corresponding to a closed loop like the one in figure II.1. The reduced masses
µi (which we denote in superscript notation in (1-2)) are related to the masses
mi ∼ 1/gs, where gs is the string coupling constant, of the wrapped branes
sitting at the xi by:

µ1 =
m1m2

m1 +m2 +m3
, µ2 =

m2m3

m1 +m2 +m3
, µ3 =

m1m3

m1 +m2 +m3
. (3)

The superpotential, which is allowed by gauge invariance only when the quiver
has a closed loop, is given by:

W (φ) =
∑
α,β,γ

ωαβγφ
1
αφ

2
βφ

3
γ + higher order terms , (4)

(where we take coefficients ωαβγ to be arbitrary) and contributes the following
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piece to the Lagrangian:

LW =

3∑
i=1

(
∂W (φ)

∂φiα
F iα + h.c.

)
+

3∑
i,j=1

(
∂2W (φ)

∂φiα∂φ
j
β

ψiαεψ
j
β + h.c.

)
. (5)

In this note we only consider cubic superpotentials and ignore the higher order
terms. This is consistent so long as the φiα are small, which in turn can be
assured by taking the |θi| sufficiently small [DM11].

The theory contains a manifest SO(3) global R-symmetry. In the absence of
a superpotential, the Lagrangian is diagonal in the arrow (Greek) indices and
thus the theory also exhibits a U(|κ1|)×U(|κ2|)×U(|κ3|) global symmetry under
which the φiα transform as U(|κi|) vectors. The superpotential explicitly breaks
this symmetry down to the U(1)1 × U(1)2 × U(1)3 gauge symmetry.

The theory can be obtained by dimensionally reducing anN = 1 gauge theory
in four-dimensions to the (0 + 1)-dimensional worldline theory. It can also be
viewed as the dimensional reduction of the N = 2 two-dimensional σ-models
studied extensively, for example, in [Wit93]. In order for the theory to have
supersymmetric vacua we also demand that the Fayet-Iliopoulos constants sum
to zero: θ1 + θ2 + θ3 = 0.

In units where ~ = 1 is dimensionless, and where we choose dimensions for
which [t] = 1, the dimensions of energy are automatically set to [E] = −1. We
also find the following dimensional assignments: [φ] = 1/2, [D] = −2, [x] = −1,
[µ] = 3, [ωαβγ ] = −3/2, [ψ] = 0, [λ] = −3/2, [F ] = −1/2 and [θ] = 1. The mass
squared of the φiα fields upon integrating out the auxiliary D fields is given by
M2
ij = (|xij |2 + θi/mi − θj/mj). For physics whose energies obey E2/M2 � 1

we can integrate out the massive φiα fields and study the effective action on the
Coulomb branch. Finally, notice also that the coupling ωαβγ has positive units
of energy and is thus strong in the infrared limit since the natural dimensionless
quantity is ωαβγ/E

3/2. The contribution from φiα loops grows as κi and thus the
effective coupling constant at low energies is given by geff ∼ gsκ. In the large
geff limit, the wrapped branes backreact and the appropriate description of the
system is given by four-dimensional N = 2 supergravity [Den02].

1.2 Some properties of the ground states

An immediate question about the above model regards the structure of the
ground states Ψg

[
Φiα,Q

i
]

of the theory, satisfying: Ĥ Ψg

[
Φiα,Q

i
]

= 0. Though

an explicit expression for the full Ψg

[
Φiα,Q

i
]

remains unknown, the degeneracy
of ground states has been extensively studied [Den02, DM11, BBdB+12, LWY12,
MPS12, MPS13]. In particular, the degeneracy of ground states localized near
Qi = 0, i.e. the ground states of the Higgs branch of the theory, were shown to
grow exponentially in κi when the theory contains a superpotential, the quiver
admits closed loops (e.g. κ1, κ2 > 0 and κ3 < 0) and the κi obey the triangle
inequality (i.e. |κ2|+ |κ3| ≥ |κ1| and cyclic permutations thereof). This growth
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is related to the exponential explosion in the Euler characteristic of the complete
intersection manifold M [DM11] given by imposing the constraints from the F -
term (δF iαL|F iα=0 = 0) onto the D-term constraints (δDiL|Di=0 = 0).3 Since κi

goes as the charge squared of the associated U(1) gauge symmetry, the number
of ground states scales in the same way as the Bekenstein-Hawking entropy of
the associated black hole solutions in the large geff limit. Though a complete
match between the ground states of a single Abelian quiver model and the en-
tropy of a BPS black hole in N = 2 supergravity is not known,4 the vast number
of microstates makes these systems potentially useful candidate toy models to
study features of extremal or near extremal black holes.

Other pieces of Ψg localized near Φiα = 0, i.e. the (quantum) Coulomb branch
of the theory, have also been studied [Den02]. Unlike the Higgs branch quiver
with a closed loop, superpotential and an exponential growth in its number of
ground states, it was found that the number of Coulomb branch ground states
grows only polynomially in the κi. Interpreting the qi as the relative positions of
wrapped branes, these ground states can be viewed as describing various multi-
particle configurations, as we will soon proceed to describe in further detail. To
each ground state in the quantum Coulomb branch there exists a corresponding
ground state in the Higgs branch, but the converse is not true. Another way to
view this statement is that whenever a given Ψg has non-trivial structure in the
Qi directions and peaks sharply about Φiα = 0, it will also have a non-trivial
structure in the Φiα directions and peak sharply about Qi = 0 but not vice versa.

2 Coulomb branch and a scaling theory

For large enough |qi| we can integrate out the massive Φiα’s (in their ground
state) from the full quiver theory (1). This can be done exactly given that the Φiα
appear quadratically in (1) whenever the superpotential vanishes. One finds the
bosonic quantum effective Coulomb branch Lagrangian (up to quadratic order
in q̇i and Di):

Lc.b. =
1

2

2∑
i=1

Gij
(
q̇i · q̇j +DiDi

)
−

3∑
i=1

si|κi|Ad(qi)·q̇i−
(
si |κi|
2|qi|

+ θi
)
Di . (6)

3As an example, we can take θ1, θ2 < 0. Then the complete intersection manifold is given

by setting φ3α = 0, imposing the κ3 F -term constraints: ωαβγφ
1
αφ

2
β = 0, inside a CPκ

1−1 ×

CPκ
2−1 space coming from the D-term constraints: |φ1α|2 = −θ1 and |φ2α|2 = −(θ2 − θ1).

The space is a product of CPk’s since we have to identify the overall phase of the φiα due to
the U(1) gauge connection. When |κ1| + |κ2| − 2 ≥ |κ3|, which for large κ amounts to the
κi satisfying the triangle inequality, the number of constraints become less or equal to the

dimension of CPκ
1−1 ×CPκ

2−1, allowing for more complicated topologies for M.
4Indeed, there are several quiver diagrams with the same net charges and one might suspect

that all such quivers are required to obtain the correct entropy of the supersymmetric black
hole (see for example [LWY14]).
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The terms linear in q̇i andDi follow from a non-renormalization theorem [Den02],
whereas the quadratic piece in q̇i is derived in appendix D.1. Recall that the
system is only a function of q1 and q2 since q3 = q1 + q2. The three-vector Ad

is the vector potential for a magnetic monopole:

Ad(x) =
−y

2r(z ± r)
x̂+

x

2r(z ± r)
ŷ , (7)

and Gij is the two-by-two metric on configuration space:

[Gij ] =

(
µ1 + µ3 + 1

4
|κ1|
|q1|3 + 1

4
|κ3|

|q1+q2|3 µ3 + 1
4
|κ3|

|q1+q2|3

µ3 + 1
4
|κ3|

|q1+q2|3 µ2 + µ3 + 1
4
|κ2|
|q2|3 + 1

4
|κ3|

|q1+q2|3

)
. (8)

Upon integrating out the auxiliary Di-fields, we obtain a multi-particle quantum
mechanics with (bosonic) Lagrangian:

Lc.b. =
1

2

2∑
i=1

Gij q̇
i · q̇j −

3∑
i=1

si|κi|Ad(qi) · q̇i − V (qi) . (9)

That the quantum effective Coulomb branch theory has a non-trivial potential
V (qi) should be contrasted with other supersymmetric cases such as interacting
D0-branes or the D0-D4 system [DKPS97] where the potential vanishes and the
non-trivial structure of the Coulomb branch comes from the moduli space metric.
The potential V (qi) is also somewhat involved and is given in appendix D.2.

2.1 Supersymmetric configurations

The supersymmetric configurations of the Coulomb branch consist of time inde-
pendent solutions which solve the equations V (qi) = 0. For (6), this amounts
to:

si |κi|
|qi|

+
s3 |κ3|
|q3|

+ 2θi = 0 , i = 1, 2 . (10)

In appendices B and C we review that these supersymmetric configurations are
robust against corrections of the Coulomb branch theory from the superpotential
and from integrating out higher orders in the auxiliary D fields.

2.1.1 Bound states

There are bound state solutions [Den02, Den00] of (10) which are triatomic (or
more generally N -atomic if dealing with N wrapped branes) molecular like con-
figurations. Of the original nine degrees of freedom, three can be removed by
fixing the center of mass. Then the bound state condition (10) fixes another
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two-degrees of freedom. Thus, bound state solutions have a four-dimensional
classical moduli space. Due to the velocity dependent terms in the Lagrangian,
the flat directions in the moduli space are dynamically inaccessible at low en-
ergies – the particles resemble electrons in a magnetic field. Several dynamical
features of the three particles were studied in [NO08, AAD+13].

2.1.2 Scaling solutions

There are also scaling solutions [DM11] of (10) which are continuously connected
to the origin |qi| = 0. They occur whenever the κi form a closed loop in the
quiver diagram (e.g. κ1, κ2 > 0 and κ3 < 0) and obey the same triangle inequality
(|κ2| + |κ3| ≥ |κ1| and cyclic permutations thereof) that the |qi| are subjected
to. These solutions can be expressed as a series:

|qi| = |κi|
∞∑
n=1

anλ
n , λ > 0 . (11)

The coefficient a1 = 1, while the remaining an can be obtained by systematically
solving (10) in a small λ expansion, and will hence depend on θi. The moduli
space of the scaling solutions is given by the three rotations as well as the scaling
direction parameterized by λ. Though the angular directions in the moduli space
are dynamically trapped due to velocity dependent forces, the scaling direction
is not and constitutes a flat direction even dynamically.

Requiring that the series expansion converges, i.e. (an+1λ
n+1)/(anλ

n) � 1,
leads to the condition:

λ� 1

θ
. (12)

Because of this condition on the λ’s, one should be cautious when dealing with
such scaling solutions. They occur in the near coincident limit of the branes
where the bifundamentals that we have integrated out become light. In order
for the mass of the bifundamentals, M2

ij =
(
|xij |2 + θi/mi − θj/mj

)
, to remain

large we require:(
θ

µ

)1/2

� |qi| . (13)

Taking µi = ν µ̂i and |qi| = |q̂i|/να the inequalities (12) and (13) can be satisfied
in the limit ν →∞, with µ̂i, q̂i, κi and θi fixed and furthermore α ∈ (0, 1/2).

Notice that (12) implies that the distances between particles in a scaling
regime ∼ λκ is much less than the typical inter-particle distance of a bound
state ∼ κ/θ.
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2.2 Scaling theory

To isolate the physics of the Coulomb branch in the scaling regime we take an
infrared limit of the Lagrangian (6), pushing the qi near the origin and dilating
the clock t. In particular, we would like the ∼ κ/|qi|3 part of the metric in
configuration space to dominate over the ∼ µ piece leading to:

|qi| �
(
κ

µ

)1/3

. (14)

Additionally we must satisfy the inequalities (12) and (13). Again taking µi =
ν µ̂i, qi = q̂i/να and in addition t = να t̂ with fixed µ̂i, q̂i, κi and θi, we can also
satisfy (14) in the limit ν → ∞, so long as we also ensure α ∈ (1/3, 1/2).5 The
rescaling of t is required to maintain a finite action in the scaling limit. In type II
string compactifications µ ∼ 1/lP ∼

√
v/gsls, where lP is the four-dimensional

Planck length and v is the volume of the Calabi-Yau in string units [Den02],
therefore the ν →∞ limit corresponds to a parametrically small string coupling.
Furthermore the scaling throat deepens as we increase the mass of the wrapped
branes.

The rescaling above amounts simply to setting the θi and µi to zero in (6) and
replacing qi and t with q̂i and t̂. We call the remaining Lagrangian with vanishing
θi and µi the scaling theory. Notice from equation (75) that the potential V (qi)
in this limit becomes a homogeneous function of order one, i.e. V (ν q̂i) = νV (q̂i)
and the linear in velocity term is retained.

2.2.1 Consistency of the small Di expansion

One can infer from the supersymmetry variations [Den02] that supersymmetric
configurations have vanishing Di. Furthermore, as we have already noted, we
have performed an expansion in small Di fields prior to integrating them out (see
appendix C for more details) in order to obtain the Coulomb branch. Thus, in
order for a scaling theory to exist and be consistent with a small Di expansion,
it must be the case that zero energy scaling configurations exist.

Had we considered a two-particle theory, where no such scaling solutions can
exist, taking a small q limit would be inconsistent with the small D expansion.
That is because the dimensionless small quantity in our perturbation series is
actually D/|q|2 and the supersymmetric configuration D = 0 occurs at |q| =
−κ/2θ. Expanding the non-linear D equation (C.1) (see appendix C) in powers
of ε ≡ D/|q|2, while imposing |q| � (θ/µ)1/2, one finds the following consistency
condition:

ε =

(
θ

µ

)
1

|q|2
+

(
κ

2µ

)
1

|q|3

(
1− 1

2
ε+O(ε2)

)
. (15)

5Another limit one might imagine is given by: |qi| � (κ/µ)1/3, |qi| � κ/θ. In this case
the metric on configuration space remains flat while the potential scales like ∼ 1/|q|2.
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Indeed, the first term on the right hand side is negligible by construction, since
we took |q| � (θ/µ)1/2 to keep the strings massive. Smallness of the second term
in the equation would require |q|3 � κ/µ, in contradiction with the condition
(14) required to isolate the scaling theory.

We now consider the three-node case for si that admit a closed loop in the
quiver. For small ε2 ≡ D2/|q2|2 (taking all masses the same and θ1 = θ2 = θ and
again imposing |q2| � (θ/µ)1/2) the equation of motion of the auxiliary D2-field
(in the form of (53)) is given by:

ε2 =
3θ

2µ|q2|2
+
|κ2|

2µ|q2|3

(
δ − 1

2
ε2 +O(ε22)

)
(16)

where δ ≡ 1− |q2|
2 |κ2|

(
|κ1|
|q1| + |κ3|

|q3|

)
measures how close the configuration is to the

scaling solution. For sufficiently small δ ∼ ε� 1 we can consistently satisfy (16)
in addition to imposing the scaling inequalities (14).

In this sense the scaling theory is in fact a theory of the deep infrared con-
figurations residing parametrically near the zero energy scaling solutions. This
is consistent with the dilation of time required to obtain the scaling theory.

3 Conformal quivers: emergence of SL(2,R)

In this section we uncover that the bosonic scaling theory action, i.e. (9) with the
θi and µi set to zero, has an SL(2,R) symmetry. This is the symmetry group
of conformal quantum mechanics [?]. The group SL(2,R) is generated by a
Hamiltonian H, a dilatation operator D and a special conformal transformation
K, with the following Lie algebra:

[H,D] = −2iH , [H,K] = −iD , [K,D] = 2iK . (17)

As we have already mentioned, the full SL(2,R) symmetry is not guaranteed
by the existence of time translations and dilatations alone [BPMSV00]. This is
suggested by the fact that the H and D operators form a closed subalgebra of
the full SL(2,R). The presence of a full SL(2,R) is actually quite remarkable,
particularly given the specific form of the scaling theory Lagrangian which has
velocity dependent forces and a non-trivial potential.

As discussed in the previous section, it is not true that, for any finite κi, µi

and θi, the Coulomb branch can be described precisely by the scaling theory
action. There will always be small corrections that break its manifest scaling
symmetry: qi → γ qi, and t → t/γ. This is comforting, given that the full
quiver theory has a finite number of ground states—yet a conformal quantum
mechanics has a diverging number of arbitrarily low-energy states, with a den-
sity of states that behaves as dE/E. The corrections serve as a cutoff for the
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infrared divergence in the number of states, such that the Coulomb branch can
fit consistently inside the full quiver theory (related discussions can be found in
[BBdB+12, dBESMVdB09]).

3.1 Conditions for an SL(2,R) invariant action

The conditions under which an action will be SL(2,R) invariant (up to pos-
sible surface terms) have been studied extensively in [MS00, BPMSV00, Pap00].
Showing that a general theory with bosonic Lagrangian describing N degrees of
freedom :

L =
1

2
q̇i Gij q̇

j −Ai q̇i − V (q) , i = 1, 2, . . . , N (18)

has an SL(2,R) symmetry is equivalent to finding a solution to the following
equations [Pap00]:

2 ∇(iZj) = Gij , (19)

−Zi∂iV = V , (20)

2 Zi = ∂if , (21)

ZjFji = 0 , Fij ≡ ∂[iAj] . (22)

Equations (19) and (20) ensure the existence of a dilatation symmetry. In par-
ticular, equation (19) implies that the metric on configuration space allows for
a conformal Killing vector field (also referred to as a homothetic vector field).
Equations (21) and (22) ensure the that the action remains invariant under spe-
cial conformal transformations, where f is an arbitrary function of the qi. Indices
are raised and lowered with the metric Gij .

Interestingly, equation (21) imposes that the conformal Killing form Zi of
the metric be exact, which is generically not the case. Hence the existence
of a dilatation symmetry does not necessarily imply the symmetry of the full
conformal group.

Once a solution to (19-22) is found, the three conserved quantities are then
given by [Pap00]:

Qn =
1

2
tn+1 q̇iGij q̇

j −(n+1)tnZiGij q̇
j+tn+1V (q)+Fn , n = −1, 0, 1 (23)

where F−1 = F0 = 0 and F1 = f . The charge Q−1 is the Hamiltonian, whereas
Q0 and Q1 are related to dilatations and special conformal transformations,
respectively. These three charges generate the SL(2,R) algebra (17) (up to
factors of i) under the Poisson bracket. In what follows, we find Zi and f for
the scaling theory described in section 2.2.

3.2 Two particles

As a warm up, we can study a simple model consisting of a two node quiver
with an equal number of arrows going to and from each node, with a total
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number κ > 0 arrows altogether. This is the theory describing, for example, the
low energy dynamics of a wrapped D4-D0 brane system (see [DKPS97]). The
bosonic Lagrangian for the relative position q = (qx, qy, qz) on the Coulomb
branch, in the scaling limit, is given by:

L =
κ

2

q̇2

|q|3
. (24)

The above Lagrangian is also the non-relativistic limit of one describing a BPS
particle in an AdS2 × S2 background. The wordline theory has three degrees
of freedom and a diagonal metric on configuration space: gij = κ |q|−3 δij . In
addition to the Hamiltonian H, the above theory has a dilatation operator D
and special conformal generator K given by:

D = i
(
qi ∂i + |q|−9/2 ∂i |q|9/2 qi

)
, K = 2κ |q|−1 , (25)

such that the SL(2,R) algebra is satisfied. It is thus a simple example of a
conformal quantum mechanics.

3.3 SL(2,R) symmetry of the full three particle scaling theory

For our particular problem, it is useful to note that the index structure of the
relative coordinates, i.e. i = 1, 2, 3, is trivially tensored with the spatial index im-
plicit in bold vector symbols (e.g. q = (qx, qy, qz)). Introducing Qα ≡

(
q1,q2

)
,

with α = 1, 2, . . . , 6, our Lagrangian (9) (with µi and θi set to zero, and si that
admit a closed loop) takes the form:

Lc.b. =
1

2
Q̇α Gαβ Q̇

β −A(Q)
α Q̇α − V (Qα) , (26)

where Gαβ and the six-dimensional vector potential can be extracted from (9).
An expression for the vector potential is simple to write down and is given by:

A(Q)
α =

(
s1 |κ1|Ad(q1) + s3 |κ3|Ad(q1 + q2) ,

s2 |κ2|Ad(q2) + s3 |κ3|Ad(q1 + q2)
)
. (27)

where Ad(x) is the vector potential for a magnetic monopole and is given in
(7). It is straightforward to check, using Mathematica for example, that the
conditions (19-22) are indeed satisfied. We find Zα = −Qα and f = 2 QαGαβQ

β .
The explicit generators of the SL(2,R) are given by:

H = −1

2

(
1√
G
∂α
√
G− iA(Q)

α

)
Gαβ

(
∂β − iA(Q)

β

)
+ V (Qα) , (28)

D = i

(
Qα∂α +

1√
G
∂α
√
GQα

)
, (29)

K = 2 QαGαβQ
β , (30)
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where we have used that QαA
(Q)
α = 0. The generator K simplifies to:

K =
|κ1|
2|q1|

+
|κ2|
2|q2|

+
|κ3|
2|q3|

. (31)

We thus conclude that the bosonic scaling theory is an interacting multi-
particle SL(2,R) invariant conformal quantum mechanics with velocity depen-
dent forces. The theory admits a further SO(3) symmetry acting on the spatial
three-vectors.

3.3.1 N -particle case

Though we do not prove it here, it is natural to conjecture that the N -particle
scaling theory will be an N -particle conformal quantum mechanics. Indeed, for
any closed loop of Ni-particles we expect that in the corresponding throat there
will be a conformal quantum mechanics with D and K as in (28) except Qα runs
over all the 3Ni bosonic degrees of freedom. The one loop metric on configuration
space in the Coulomb branch, i.e. the coefficient of q̇i · q̇j , will be equivalent to
that of DiDj (which is far easier to compute) upon integrating out the massive
strings for general quivers. Interestingly, when there are more than three nodes,
there may be several distinct closed loops allowing for their own scaling throat
and several distinct scaling throats may coexist, within its residing a decoupled
conformal quantum mechanics theory.

3.3.2 Superconformal quantum mechanics

It is worth remarking that the Coulomb branch is in fact a supersymmetric
quantum mechanics with four supercharges QiS and an SO(3) global R-symmetry
group. This follows from effective field theory. We are integrating out the heavy
chiral Φiα multiplet in its supersymmetric ground state. Thus, the low energy
effective theory of the vector multiplet will be endowed with the four supercharges
of the parent quiver theory. Of course, there could be anomalies that arise in
the process. For instance, the discrete time reversal symmetry of the full quiver
theory is violated in the Coulomb branch by the linear in velocity terms. This
is an anomaly which does not spoil the supersymmetry of the Coulomb branch,
and occurs due to a zero mode in the functional determinant of the ψiα fermions.
As shown in [?] for the two node case, one can compute the supercharges of the
low energy effective theory in a systematic fashion using perturbation theory.

We have shown above that the bosonic Lagrangian of this theory exhibits
an SL(2,R) symmetry. In order to establish that this extends to a supercon-
formal quantum mechanics we must establish the existence of four supersym-
metric special conformal generators Si. These will be given by the commutator
Si = i[QiS ,K]. As discussed in [MS00], one must also ensure that the commuta-
tor [QiS , D] = −iQiS is satisfied in order to have a superconformal system. This
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is guaranteed due to the manifest scale invariance of the supersymmetric action:
qi → γ qi, λi → γ3/2 λi with t→ t/γ.6 Hence the scaling theory is a supercon-
formal multiparticle theory.

3.3.3 Gravity

As discussed in the introduction, the emergence of a full SL(2,R) in the deep
scaling regime is reminiscent of the emergence of a full SL(2,R) in the deep
AdS2 throat in gravity, which could end at a horizon or cap off at the locations
of entropyless D-particles. The symmetry group manifests itself in the dynamics
of wrapped branes moving in a ‘geometry’ resulting from integrating out the
interconnecting strings and extends upon similar observations made for other
multiparticle systems in [MS00, BPMSV00, MS99]. However, we must point
out that the conformal quantum mechanics obtainde here comes directly from
the low energy dynamics of strings interacting with wrapped branes, i.e. the
quiver theory, rather than from a gravity calculation of the moduli space of a
multi-black hole system. It would in fact be interesting to repeat such gravita-
tional Ferrel-Eardley type calculations [BPMSV00, MS99, FE87, GR86, MSS02]
for the low energy velocity expansion of the corresponding one-half BPS scaling
solutions [Den00] in N = 2 supergravity. This might give an operational mean-
ing to the AdS2/CQM correspondence [Str99, ANT08, Sen11, MMS99, CJPS11]
(particularly in the large gsκ limit and within the AdS2 scaling region). Recall
that in the classical supergravity limit, the gravitational backreaction of a brane
becomes parametrically small given that its mass goes like 1/lP .7 Furthermore,
as emphasized in the introduction, our system is a quiver quantum mechanics
that does not necessarily reside inside a larger two-dimensional conformal field
theory, and thus the SL(2,R) may be of the ‘isolated’ type.

3.4 Wavefunctions in the scaling theory

Given the existence of an SL(2,R) invariant scaling theory, one natural question
is whether a quantum state will stay localized within the scaling regime or if
its wavefunction will spread away from the scaling regime, or even fall back
into the Higgs branch (where 〈|qi|〉 = 0). One particular direction in which a
wavefunction might easily spread is the scaling direction where the potential is
identically zero and where there are (classically) no velocity dependent magnetic

6Though we have not presented the piece of the Lagrangian quadratic in λi, which will be of
the form ∼ κ λ̄ λ̇/|q|3 in the scaling region, the linear piece is fixed by supersymmetry [Den02]
to be (50), which is enough to read off the scaling dimension of λi.

7This approach is reminiscent of attempts to match the Coulomb branch of the BFSS matrix
model [BFSS97, BB97] with eleven-dimensional supergravity calculations. A basic difference
is the presence of the ability to zoom into a deep AdS2 throat in the geometry and that the
microscopic quiver model is vector like rather than matrix like.



3. Conformal quivers: emergence of SL(2,R) 61

forces.
Studying the quantum mechanics problem of the full three-particle scaling

theory is difficult. Instead, we will look at the wavefunctions of the simpler
wrapped D4-D0 model discussed in section 3.2. The zero angular momentum
piece of the Schrödinger equation in spherical coordinates (i.e. qx = q cos θ sinφ,
qy = q sin θ sinφ and qz = q cosφ, q ≡ |q|) is:

− 1

2
√
g
∂i
√
g gij ∂j ψE = − 1

2κ
q5/2 ∂

∂q
q1/2 ∂

∂q
ψE = E ψE , (32)

which can easily be solved: ψE(q) ∼ √q exp
(
±2i

√
2κE/q

)
.8 These energy

eigenstates are non-normalizable at small q with respect to the covariant inner
product:

〈ψ1|ψ2〉 =

∫
d3q
√
g ψ∗1(q) ψ2(q) . (33)

Non-normalizability of energy eigenstates is common for scale invariant theories
[?], the non-normalizability means that energy eigenstates leak into the Higgs
branch.

As in [?], we can consider instead eigenstates ψλ(q) of the H + aK operator
with eigenvalue λ ≡

√
a
(
n+ 1

2

)
∈ R, where a is a constant with appropriate di-

mensions. If we define a variable x = q/(κ
√
a), then the zero-angular momentum

wavefunctions ψλ(x) satisfy

1

2

(
−x5/2 ∂

∂x
x1/2 ∂

∂x
+

4

x

)
ψλ =

(
n+

1

2

)
ψλ , (34)

The normalizable wavefunctions are given by confluent hypergeometric functions:

ψλ(x) = N e−2/x U

(
1− n

2
,

3

2
,

4

x

)
, (35)

where N is a finite normalization factor that depends on κ and a. Whenever
n ∈ N, the expression for U

(
1−n

2 , 3
2 ,

4
x

)
simplifies significantly. We can also

obtain asymptotic expressions near x = 0 and x =∞:

U

(
1− n

2
,

3

2
,

4

x

)
= x−n/2

(
2n−1

√
x+O

(
x3/2

))
, for x ∼ 0 , (36)

=

√
π x

2 Γ [(1− n)/2]
− 2

√
π

Γ [−n/2]
+O

(
x−1/2

)
, for x−1 ∼ 0 . (37)

8If we include the angular variables we would find ψlmE = QEl (q)Yml (θ, φ) with Yml spherical

harmonics and QEl can be written in terms of Bessel functions. Here we only look at l = 0

modes, ψE(q) = QE0 (q).
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Figure II.2: Examples of H + aK eigenfunctions. Left: Plot of ψ̃λ(x) for n ∈
(0.2, 5.2) in unit increments. Right: Plot of ψ̃λ(x) for n ∈ (−5.7,−0.7) in unit
increments.

The dependence on κ and a drops out of all expectation values of operators as
a function of x labeled O(x), hence we can instead normalize the wavefunctions
ψ̃λ(x) ≡ ψλ(x)|κ,a=1 and reinstate the dependence on κ and a in expectation
values of operators by looking at the dependence of O(x) on the variable x and
how it transforms when we take q → xκ

√
a. Examples of ψ̃λ(x) are displayed in

figure II.2.

To understand whether these states leak back into the Higgs branch, we
consider for example 〈x〉λ. This is only finite if n is an odd positive integer for
which 〈x〉λ = 8 (or equivalently 〈q〉λ = 8κ

√
a ), otherwise 〈x〉λ is infinite. This

can be seen from the fact that for positive and odd n, Γ[(1− n)/2] diverges and
the O(

√
x) term in the large x expansion (37) dissappears. However, for any

λ(n) there exists a number s < 1 such that 〈xs〉λ is finite. Similarly, when n is
an odd positive integer, there exists a number s > 1 such that 〈xs〉λ is infinite.
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Thus a large class of H + aK eigenstates do not leak into the Higgs branch for
large κ.

Finding the wavefunctions in the three-node Coulomb branch is clearly more
complicated. There are now six-degrees of freedom and a non-trivial potential
V (qi). However, at the classical level, the scaling direction remains flat and
motion along it is uninhibited, neither by the potential nor by any velocity
dependent magnetic forces. So if the wavefunction has any chance of spreading,
it will do so along the scaling direction. Our previous analysis of the two particle
wavefunctions, which deals essentially with the scaling direction, suggests that
at least some H + aK eigenstates do not leak into the Higgs branch.9

We end this section with an important question. The SL(2,R) symmetry
we have been discussing so far resides in the Coulomb branch of the full quiver
theory. In particular it resides in the scaling regime of the Coulomb branch
which is connected to the Higgs branch at its tip, i.e. where all the qi become
vanishingly small. How does the SL(2,R) structure act on (if at all) the Higgs
branch degrees of freedom? Perhaps a way to answer this question is via the
Higgs-Coulomb map of [BV99] (further developed in the context of quiver theo-
ries in [BBdB+12]). Indeed, an SL(2,R) symmetry acting on the states residing
in the Higgs branch would resonate closely with the appearance of an SL(2,R)
isometry of the AdS2 in the near horizon region of the extremal black hole.

4 Melting molecules

We have seen that the low energy excitations of the scaling regime in the Coulomb
branch are described by a multiparticle SL(2,R) invariant quantum mechanics.
It was noted that this is reminiscent of the SL(2,R) that appears in the near
horizon geometry of an extremal black hole or the AdS2 geometry outside a
collection of extremal black holes that reside within a scaling throat. If we
heat up such a collection of black holes (for example by making the centers
slightly non-extremal) they will fall onto each other due to gravity’s victory over
electric repulsion. Naturally, then, we might ask what happens to our scaling
theories and more generally the Coulomb branch configurations upon turning
on a temperature?10 This amounts to integrating out the massive strings, i.e.
the chiral multiplet, in a thermal state as opposed to their vacuum state. In
this section we assess the presence of bound states and scaling solutions as we
vary the temperature. Roughly speaking, this is the weak coupling version of

9We also note that the quantization of the classical solution space of scaling configurations
was considered in [dBESMVdB09], where it was found that the expectation value of the total
angular momentum operator was non-vanishing.

10Aspects of supersymmetric quantum mechanics at finite temperature are discussed in
[Fuc85, DKM86, RR88]. An incomplete list of more recent studies including numerical simu-
lations is [KLL01b, KLL01a, KNT07, CW07, AHNT08, LSWY15, IKRS13, ABT11].
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the calculations in [AAB+12, CV12, CMV13, AADP15] where the multicentered
solutions were studied at finite temperature.11 We find that the bound (but non-
scaling) configurations persist at finite temperature until a critical temperature
after which they either classically roll toward the origin or become metastable.
This amounts to the ‘melting’ of the bound state. Scaling solutions on the other
hand do not persist at finite temperature and instead the potential develops a
minimum at the origin, even at small temperatures.

As was alluded to, what we find is somewhat analogous to heating up a
collection of extremally charged black holes, known as the Majumdar-Papapetrou
geometries [Maj47, Pap47], by making the masses of the centers slightly larger
than their charges. Doing so will cause the black holes to collapse into a single
center configuration upon the slightest deviation from extremality.

4.1 Two nodes - melting bound states

Consider the low energy dynamics of two wrapped branes, which is given by a
two node quiver. There can be no gauge-invariant superpotential in this case
since the quiver admits no closed loops. The relative Lagrangian is:

LV =
µ

2

(
q̇2 +D2 + 2iλ̄λ̇

)
− θD ,

LC = |Dtφα|2 −
(
|q|2 +D

)
|φα|2 + iψ̄αDtψα − ψ̄αq · σψα−

i
√

2
(
φ̄αψ

αελ− λ̄εψ̄αφα
)
,

where Dtφα ≡ (∂t + iA)φα. The matter content is given by a chiral multiplet
Φα = {φα, ψα} and a vector multiplet Q = {A,q, D, λ} (A is a one-dimenional
U(1) connection). The index α = 1, 2, . . . , κ (where κ > 0) is summed over.

If we keep |q| constant and set to zero the fermionic superpartners λ, we
can integrate out the φα and ψα fields to get the effective bosonic action on the
position degrees of freedom:

Leff =
µ

2
D2 − θD − κ log det

(
−(∂t + iA)2 + |q|2 +D

)
+ κ log det

(
−(∂t + iA)2 + |q|2

)
. (38)

If we wish to study the system at finite temperature T ≡ β−1, we must Wick
rotate to Euclidean time t→ itE and compactify tE ∼ tE +β. Notice we cannot

11In fact, [AAB+12, AADP15] explored how the effective potential of a D-particle/black
hole bound state changed as the temperature of the black hole was increased. Hence, a closer
analogy to [AAB+12] would be to consider a four-node mixed Higgs-Coulomb branch as in
figure II.8. One node is ‘pulled’ away from the remaining three, such that one can integrate
out all connecting heavy strings in some thermal state. The remaining three nodes, which we
choose to contain a closed loop (and hence have exponentially many ground states), are in the
Higgs branch which is also considered to be at some finite temperature. One could then study
the Coulomb branch theory for the position degree of freedom of the far away wrapped brane
as a function of the temperature.
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set the zero mode of A to zero since one can have non-trivial holonomy around
the thermal circle. The φα fields have periodic boundary conditions and the ψα
fields have anti-periodic boundary conditions around the thermal circle. The
operator ∂tE has as eigenvalues the Matsubara frequencies ωn = 2πnT for the
bosonic case and ωn = 2π(n+1/2)T for the fermionic case, where n ∈ Z. Hence,
it is our task to evaluate:

L
(T )
eff =

µ

2
D2 − θD − κ

β
log det

(
4π2(n+ a)2T 2 + |q|2 +D

)
+
κ

β
log det

(
4π2(n+ 1/2 + a)2T 2 + |q|2

)
, (39)

where we have defined a ≡ A/2πT . Notice that L
(T )
eff depends on the connection

A which we eventually need to path-integrate over. Upon evaluating the deter-
minant (see appendix E for details), one finds the effective thermal potential is
given by:

V (T,D, a) = −µ
2
D2 + θD+ κT log

cosh

(√
|q|2+D

T

)
− cos(2πa)

cosh
(
|q|
T

)
+ cos(2πa)

 , (40)

which has the correct low temperature limit limT→0 V (T,D, a) = −µD2/2 +
θD − κ|q| + κ

√
|q|2 +D, in accordance with the results of [Den02]. Our task

is to now perform the path integral of e−βV (T,a) over D and a. In doing so, we
must be careful to ensure that D > −|q|2 such that integrating out the string
is justifiable. Differentiating (40) with respect to a we find that V (T,D, a) has
a minimum at cos(2πa) = 1 for all T and D > −|q|2. Solving the saddle point
equations for D must be done numerically.

The potential V has two scaling symmetries associated to it. Configurations
related by:

T → γ T , |q| → γ |q| , D → γ2D , µ→ γ−2δ µ , θ → δ θ , κ→ γδ κ ,

(41)

have respective potentials related by: V (µ, θ, κ, |q|, D, T )→ δγ2V (µ, θ, κ, |q|, D, T ).
The qualitative features of the potential thus only depend on scale invariant
quantities:

κ̃ ≡ κ
(

µ

|θ|3

)1/2

, T̃ ≡ T
(
µ

|θ|

)1/2

, |q̃| ≡ |q|
(
µ

|θ|

)1/2

, (42)

and the scaling-invariant potential is given by Ṽ ≡ V µ
|θ|2 . Note that our finite

temperature analysis breaks down for T ∼ 1 in string units, where the effects of
massive string modes start to kick in. However, we may still consider large T̃
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as long as we restrict ourselves to parameter regions where our approximation
remains valid, e.g. T � 1 and µ/|θ| � 1. We use the scaling symmetries to fix
µ = |θ| = 1 and study the thermal phases of the theory as a function of T̃ and
κ̃, noting that we can always extract physical quantities by properly rescaling µ
and θ.

4.1.1 Thermal phases

Having derived the thermal effective potential we can now describe the different
thermal configurations for the two-node quiver. The physically distinguishable
phases have potentials Ṽ with the following distinct properties:

1. A single stable minimum away from |q̃| = 0 .

2. Two non-degenerate minima away from |q̃| = 0 .

3. Two degenerate minima away from |q̃| = 0 .

4. Two minima with one at |q̃| = 0 where:

(a) the minimum at |q̃| = 0 is the global minimum,

(b) the minimum at |q̃| > 0 is the global minimum.

5. A single minimum at |q̃| = 0 .

Examples of each of these thermal configurations are displayed in figures IV and
II.4.

Depending on the location in the (κ̃, T̃ )-plane, the system will be driven
(either through thermal activation or quantum tunneling) to the most stable
configuration. If the system is in a metastable configuration, such a process can
take exponentially long. At high enough temperatures, the system will eventually
fall back to |q̃| = 0 where the Higgs and the Coulomb branch meet, mimicking
gravitational collapse or the melting of the molecule.

Note that for bound states in N = 2 supergravity, the effective potential
of a small probe around a large hot black hole, as studied in [AAB+12], never
exhibited two minima away from |q̃| = 0 (that is we never noticed potentials
of types 2-4b). Since supergravity is a good effective description at large geff ∼
gsκ, it would be interesting to see if this behavior matches qualitatively in the
Coulomb branch as κ̃ is increased. An example of this is shown in figure II.5.

A way to think about the high temperature melting transition is to integrate

out the auxiliary D-fields first, which induces a quartic interaction
(
|φα|2

)2
/µ for

the bifundamentals. Since this interaction is relevant, it will play a minor effect
at sufficiently large temperatures, namely for T � µ−1/3. Thus, at high temper-
atures we are dealing with a collection of κ non-interacting complex bosonic and
fermionic degrees of freedom with square masses (|q|2 + θ/m) and |q|2 respec-
tively. In addition, due to the U(1) connection we must only consider the gauge
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Figure II.3: Thermal effective potentials of a two node quiver (θ = −1 and
µ = 1). As the temperature is increased the system explores various thermal
configurations of stable and metastable minima. From top left to bottom right
the system is of type 1 → 2 → 3 → 2 → 4a → 5.

invariant states: the spectrum is constrained to those states annihilated by the
U(1) charge operator. A particularly convenient gauge is the temporal gauge,
A = 0. At some fixed high temperature, the number of gauge invariant modes
that aren’t Boltzmann suppressed increases with decreasing mass and thus the
dominant contribution to the free energy will come from for the lightest possible
mass, i.e. |q| = 0. This can be viewed as an entropic effect [Ver11].
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Figure II.4: Thermal effective potentials of a two node quiver (for θ = −1 and
µ = 1). Left : An example of phase type 4b. Right : A case where the potential
of the supersymmetric minimum decreases as the temperature is increased. A
similar observation was made for supersymmetric bound states in [AAB+12].

4.2 Three nodes - unstable scaling solutions

A similar analysis for three nodes gives rise to the following effective thermal
potential:

V (T,Di, ai) =

3∑
i=1

−µ
i

2
DiDi + θiDi

+ |κi|T log

cosh

(√
|qi|2+siDi

T

)
− cos(2πai)

cosh
(
|qi|
T

)
+ cos(2πai)

 . (43)

Our main interest to understand the behavior of the scaling potential at
finite temperature, and in particular the flat scaling direction. Thermal effects
will kick in when |qi| . T . Since zero temperature scaling solutions occur for
arbitrarily small |qi|, it is sufficient to perform a small temperature expansion.
The dimensionless quantities capturing the thermal transition are |qi|/T . As in
the two-node case, one must integrate out the U(1) connections ai and the Di.
For the case where the κ1 = κ2 = −κ3 > 0 we can identify a critical point along
the scaling direction |qi| = λ|κi|: a1 = 1, a2 = 0, D1 = 0 and D2 = 0. On this
saddle the potential becomes:

V ∗(T ) = 2 T

3∑
i=1

|κi| log

[
tanh

(
λ|κi|
2T

)]
, (44)

which is negative definite. Of course there could be more dominant saddles
that make the potential even lower than the above. So more generally, this
procedure must be done numerically, even in the small temperature expansion, as
the equations governing the connections are intractable analytically. It amounts
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Figure II.5: Thermal effective potentials of a two node quiver (θ = −1 and
µ = 1). As κ̃ is increased we note that the first minimum disappears.

to numerically minimizing a function of four variables, namely a1, a2, D1 and
D2 (recall that a3 = a1 + a2 and D3 = D1 +D2).

Since we are interested in the scaling branch we can set θi = µi = 0 in our
analysis.12 The resulting potential (with θi = µi = 0) then exhibits the following
scaling relation:

κi → δ κi , T → γ T , |qi| → γ |qi| , Di → γ2Di , (45)

such that V (κi, |qi|, Di, T )→ γ δ V (κi, |qi|, Di, T ). From the scaling symmetries
we observe that the numerical value of the temperature is of little meaning, all
that matters for the thermal phase structure is whether or not it vanishes. This
is to be expected since we are dealing with a scale invariant system.

In figure II.6 we display the potential at T = 0 (left) and T 6= 0 (right) in the
scaling direction |qi| = λ |κi| for κ1 = κ2 = −κ3 = 1. At T = 0, we naturally
find that it is vanishing for all λ. At T 6= 0 we see that for radial values larger
than the temperature, the scaling direction is still effectively flat, but for radii of
order the temperature the thermal potential quickly falls. The numerics are in
good agreement with the analytic expression (44). Hence, at finite temperature

12The reason we set θi = 0 is for computational simplicity and numerical clarity. We could
have started a Coulomb branch with non-zero θi’s which has scaling solutions for |qi| = λκi +
O(λ2) in the limit λ→ 0 and found similar results.



70 II. Black Chemistry

Figure II.6: Thermal potential along the scaling direction |qi| = λ κi for κ1 =
κ2 = −κ3 = 1 at T = 0 (left) and T 6= 0 (right).

the system falls back into its Higgs branch. It would be interesting to explore
this phenomenon in more generality for a larger number of nodes.

5 Emergence and Holography

We have observed the emergence of a full SL(2,R) symmetry from a quiver
quantum mechanics model which itself is not a conformal quantum mechanics.
The SL(2,R) manifested itself in the effective theory of the position degrees of
freedom of the D-particles, once the heavy strings were integrated out. Super-
symmetry played an important role in the previous discussion given that the form
of the quiver Lagrangian (1) is heavily constrained by it. But as was mentioned
in the introduction, the SL(2,R) symmetry appears for geometries that need not
be supersymmetric. In this final speculative section, we consider the idea that
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randomness (in the Wignerian sense) is behind the SL(2,R) and observe that
dilatations imply special conformal transformations for one dimensional systems
whose dilatation symmetry is geometrized into an additional radial direction.
Finally, we discuss some possible extensions.13

5.1 Random Hamiltonians and emergent SL(2,R)?

It would be interesting to understand whether the emergence of such an SL(2,R)
from systems with large numbers of degrees of freedom, such as matrix quantum
mechanics, could be more general. For instance, if there are a large number of
almost degenerate vacua in the putative microscopic dual of AdS2, one might
imagine an approximate scale invariance emerging at large N due to the forma-
tion of almost continuous bands of low energy eigenvalues.

More generally, if the Hamiltonian is sufficiently complicated due to the mul-
titude of internal cycles being wrapped by the branes, one might imagine drawing
it from a random ensemble HN of N ×N Hermitean matrices. We can then for-
mulate the following problem. Draw an N ×N Hermitean matrix H ∈ HN and
assess (under some as of yet unspecified measure, perhaps the Frobenius norm is
a possibility) how well the matrix equations (17) can be satisfied, given arbitrary
Hermitean matrices D and K. In particular, are the equations better satisfied
as we increase N .14 The emergence of an SL(2,R) from a random ensemble of
Hamiltonians, if true, would be similar in spirit to the emergence of the Wigner
distribution of eigenvalue spacings from random matrices that is almost universal
to quantum systems that become chaotic in the classical limit.

Interestingly, an ensemble of random Hamiltonians with a scale invariant
distribution of eigenvalues was found in [AOI10]. We hope to return to this
question in the future.

5.2 Holographic considerations

If one assumes that there exists a gravitational dual to the theory, and in addition
that a scaling symmetry t → λat exists along with a radial transformation z →
λ2z one obtains the two-dimensional metric (see for example [Nak15]):

ds2 = −dt
2

za
+
dz2

z2
, (46)

which is nothing more than AdS2 (albeit in unusual coordinates). The isometry
group of AdS2 is SL(2,R) and thus, holographically a dilatation symmetry seems
to imply the existence a full SL(2,R) symmetry. This is not true in higher
dimensions unless one also assumes Lorentz invariance of the boundary metric.

13We would like to acknowledge Frederik Denef, Diego Hofman and Sean Hartnoll for many
interesting discussions leading to these ideas.

14Of course, given the fact that SL(2,R) has no finite dimensional unitary representations,
the equations can only be satisfied exactly for N =∞.
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Another feature of conformal quantum mechanics that contrasts with higher
dimensional conformal field theory is that there is no normalizable SL(2,R)
invariant ground state. On the other hand, d-dimensional conformal field theories
have an SO(d, 2) invariant ground state wavefunctional. We view this as a hint
that whatever the holographic description of AdS2 is, it is not necessarily a
conformal quantum mechanics off the bat. Indeed, the quiver quantum mechanics
whose ground state degeneracies count a large fraction of the microstates of a
black hole with an AdS2 near horizon are not conformal quantum mechanics in
and of themselves. Instead, the SL(2,R) symmetry of AdS2 might only become
exact in some kind of large N limit,15 as opposed to the SO(d, 2) symmetries of
AdSd+1 which should persist at finite N (assuming the β-function of the dual
CFT vanishes at finite N as is the case for N = 4 SYM).

5.3 Possible extensions

As a final note, we would like to mention some open questions and extensions
to our discussion. We have left question of superpotential corrections to the
Coulomb branch of the three-node quiver untouched. Though the superpotential
will not affect the ground state energy or existence of scaling solutions, it will cor-
rect the higher powers in the velocity expansion and it would be interesting to un-
derstand whether the SL(2,R) symmetry is preserved by such corrections. The

quartic interaction coming from integrating out the D-terms,
(
|φα|2

)2
/µ, is dom-

inated by an expansion in cactus diagrams in the large κ limit. There is no such
cactus diagram expansion for the interaction coming from integrating out the
F -term, the quartic bosonic interaction being:

∑
α,β,γ,β̃,γ̃ ωαβγω

∗
αβ̃γ̃

φiβφ̄
i
β̃
φjγ φ̄

j
γ̃ .

Thus we are confronted with how (if at all) does one organize a large κ expansion
in this case. By dimensional analysis, and inspection of the two-loop Feynman
diagrams (see figure II.7), we expect the velocity squared piece of the Coulomb
branch Lagrangian in the scaling regime to become (up to O(1) coefficients):

δLc.b. ∼ |κ| q̇ · q̇
(

1

|q|3
+

(|κ| |ω|)2

|q|6
+O

(
|κ|5|ω|4

|q|9

))
, (47)

where |ω|2 ∼ |κ|−3
∑
α,β,γ |ωαβγ |2. In order for the superpotential contribution

to be subleading we would further require:

|q| � (|κ|ωαβγ)2/3 , (48)

in addition to the condition (14) that forces the system into the scaling regime.
Thus, we clearly see that the effect of the superpotential (a relevant deforma-
tion) becomes important in the deep infrared region of the scaling regime, where
detailed stringy physics begins to manifest itself and potentially destroys the
SL(2,R).

15This SL(2,R) might persist in a perturbative treatment of a supergravity solution but not
at finite N , unless of course it resides in a much larger Virasoro structure.
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Figure II.7: 2-loop Feynman diagrams contributing to the δxδx term of the
effective Lagrangian. Solid lines represent φ, while dotted lines correspond to ψ
propagators.

We have also left untouched the issue of larger numbers of nodes. In such a
case one could consider mixed Higgs-Coulomb branches. For example, we could
consider a four-node quiver where three nodes are in their Higgs branch and the
remaining one residing far away in the Coulomb branch (see also [IKLL02, IP08]),
as shown in figure II.8. Given the exponentially large number of ground states
in the Higgs branch of a three node closed loop quiver, heating such a system up
might provide a useful toy model for a D-particle falling into a black hole.

Appendix

A Notation

For convenience, we have used a compact notation whereby latin superscripts
denote relative degrees of freedom or arrow directions in the quiver, for example:
(q1,q2,q3) ≡ (x12,x23,x13) or (φ1

α, φ
2
β , φ

3
γ) ≡ (φα12, φ

β
23, φ

γ
13). The supermulti-

plets in this notation are: Φiα = (φiα, ψ
i
α, F

i
α) and the relative vector multiplet

is denotes as Qi = (Ai,qi, λi, Di). The only exception to the rule is given by
θ1 ≡ θ1, θ2 ≡ −θ3 and θ3 = 0.

Furthermore, we have: q3 = q1 + q2, D3 = D1 + D2, λ3 = λ1 + λ2. So with
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Figure II.8: A schematic representation of a system in a mixed Higgs-Coulomb
branch. The long arrows represent very massive strings. Note that there is a
closed loop connecting Γ1, Γ2 and Γ3.

respect to the vector multiplet fields, the relative Lagrangian is only a function
of q1, q2, D1, D2, λ1 and λ2. We also have: |φiα|2 ≡

∑
α |φiα|2.

The orientation of the quiver is encoded by the si. For three nodes we deal
with the case of a quiver with a closed loop, and without loss of generality the
particular choice s1 = 1, s2 = 1 and s3 = −1, corresponding to κ1, κ2 > 0 and
κ3 < 0. An example of a quiver without closed loops is s1 = −1, s2 = 1, s3 = −1.

The spinors (ψiα)a and (λi)a with a = 1, 2 transform in the 2 of the SO(3)
and the anti-symmetric symbol ε12 = +1 is such that λiεψiα ≡ (λi)aε

ab(ψiα)b.
The σ = (σx, σy, σz) are the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
. (49)

For example ψ̄iασ
xψiα ≡ (ψ̄iα)a(σx)a

b
(ψiα)b. Finally the U(1) covariant derivative

Dtφiα ≡
(
∂t + iAi

)
φiα.

We will occasionally revert back to the original xi notation, particularly in
the appendices.

B Superpotential corrections of the Coulomb branch

It is interesting to compute the effects on the Coulomb branch dynamics due
to quantum corrections from the superpotential. This amounts to a two-loop
calculation. It is important to note that due to a non-renormalization theorem
in [Den02], the linear piece of the N = 4 supersymmetric quantum mechanics
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Lagrangian is constrained to be of the form:

L(1) =
∑
i

(−Ui(x)Di + Ai(x) · ẋi)+
∑
i,j

(
Cij(x)λ̄iλj + Cij(x) · λ̄iσλj

)
, (50)

with:

Cij = ∇iUj = ∇jUi =
1

2
(∇i ×Aj +∇j ×Ai) , Cij = 0 . (51)

This form receives no corrections due to quantum effects originating from the su-
perpotential. This means, in particular, that the supersymmetric configurations
of the Coulomb branch which solve Ui = 0 for all i, both bound and scaling, are
unmodified in the presence of a superpotential.

On the other hand, the quadratic piece can receive quantum corrections in
the presence of a superpotential. An example of a Feynman diagram contributing
to the DiDj term is given in figure II.9.

φ31

φ23

D1 D2

Figure II.9: Example of Feynman diagram contributing to DiDj from the super-
potential.

C Finite D-terms

When going to the Coulomb branch one integrates out the massive scalars, ex-
pands in small D/r2, solves for the D equations of motion and feeds the solution
back into the action. We would like to show here that the supersymmetric con-
figurations are in fact preserved for finite D.

In the case of two node quivers, upon integrating out the chiral multiplet
degrees of freedom (φα, Fα, ψα) one finds the following non-linear equations for
D (we take θ1 + θ2 = 0 and κ > 0):

µD − θ =
κ

2
√
|q|2 +D

, θ ≡ θ1 − θ2 . (52)

Given that the above equation is a cubic equation in D, one can find analytic
solutions, which we are given in appendix C.1. It is straightforward to see that at
|q| = −κ/(2θ), D = 0 is a solution to the non-linear equations. Plugging D = 0
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back into the Lagrangian (which for zero velocity is the potential itself) shows
that at |q| = −κ/(2θ) the system has a zero energy. Away from |q| = −κ/(2θ)
the Lagrangian receives finite D corrections. It is not hard to convince one’s self,
however, that the potential will never acquire another minimum due to finite D
effects. We argue this in appendix C.1.

For three nodes the non-linear equations ofDi become (we take θ1+θ2+θ3 = 0
and pick the κ’s to form a closed loop in the quiver diagram):

µ1D1 + µ3D3 − θ1 =
|κ1|

2
√
|q1|2 +D1

− |κ3|
2
√
|q3|2 −D3

, (53)

and cyclic permutations thereof. These equations can no longer be solved ana-
lytically. If we set the θ’s to zero we can see that at |qi| = λ |κi|, Di = 0 solves
the linear equations and so the scaling solutions persist at finite D for zero θ.
For non-zero θ’s, setting |qi| = λ |κi|+O(λ2) and expanding in small λ, we find
that again Di = 0 is a consistent solution order by order in the λ perturbation
theory. The existence of new bound states or scaling solutions which are non-
supersymmetric due to finite D effects becomes far more intricate in this case.
A preliminary numerical scan seems to suggest there are none and we hope to
report further on this in the future.

C.1 Non-linear D-term solutions for two-node quivers

For two-nodes, the D-term equation is given by (52). This equation can be
solved analytically for D. Supersymmetric bound states are found when κ θ < 0
at |q| = −κ/(2θ). In what follows, we choose κ > 0 and allow θ to have any
sign. Equation (52) is equivalent to solving(

D − θ

µ

)2 (
D + |q|2

)
− κ2

4µ2
= 0 , (54)

which can be turned into a depressed cubic of the form x3 + px + s = 0 using

the subsitution D → x− 1
3

(
|q|2 − 2θ

µ

)
and identifying

p ≡ −1

3

(
|q|2 +

θ

µ

)2

, and s ≡ − κ2

4µ2
+

2

27

(
|q|2 +

θ

µ

)3

. (55)

Since p < 0, the three roots of this equation may be written as [wik]:

Dk = −1

3

(
|q|2 − 2θ

µ

)
+ 2

√
−p

3
cos

(
1

3
arccos

(
3s

2p

√
−3

p

)
− k 2π

3

)
, (56)

for k = 0, 1, 2. For all roots to be real, the arguments of the arccos must be

between [−1, 1], which implies 4p3 + 27s2 ≤ 0 or |q|2 ≥ − θ
µ + 3

2

(
κ2

2µ2

)1/3

. The

k = 0 branch is real for all values of |q|.
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Figure II.10: Plot of D0 for µ = −θ = κ = 1. Notice that the solution is real for
all values of |q|.

Figure II.11: Left: Plot of <[D1] (blue) and <[D2] (violet). Right: Plot of =[D1]
(blue) and =[D2] (violet). Both plots are for µ = −θ = κ = 1. Notice that when
complex, the solutions form a conjugate pair.
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Figure II.12: Left: Plot of V evaluated on D0 for µ = −θ = κ = 1. Right: Plot
of V evaluated on the perturbative D solution in violet, compared with the full
non-perturabative D0 in blue.

In figures II.10 and II.11 we show some plots of the solutions. In figure II.12
we display the effective potential for the D0 solution and its comparison to the
effective potential obtained by expanding D to second order in D/|q|2 and then
evaluating the potential on-shell. We notice that the position of the minimum is
unaffected. Evaluating the potential on the D1 and D2 results in an unphysical
complex potential for small values of |q|. Scanning the parameters for all possible
combinations of signs of (κ, θ) results in no other bound states.

D Three node Coulomb branch

In this appendix we present some details leading to the Coulomb branch La-
grangian of a three-node quiver. As was shown in [Den02], the N = 4 supersym-
metric quantum mechanics of a U(1) vector multiplet has a Lagrangian whose
linear piece in the velocity and D fields is completely fixed by supersymmetry.
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Explicit expressions are given in (50) and (51).
In section D.1 below, we show that the coefficient of the ẋi · ẋj term of the

Lagrangian is the same as that of the DiDj term, upon integrating out the chiral
matter. In section D.2 we integrate out the auxiliary D fields in the Coulomb
theory and obtain an expression for the effective potential on the position degrees
of freedom.

D.1 Second order Lagrangian for three-node quiver

Recall the Lagrangian of a n-node quiver theory, after setting the fermionic λ
fields to zero, is given by:16

L =
∑
i

mi

2

(
|ẋi|2 +D2

i

)
− θiDi +

∑
j→i

(
|φ̇ij |2 + F 2

ij + iψ̄ijψ̇ij

)
−
∑
j→i

[(
|xij |2 +Dij

)
|φij |2 + ψ̄ij σ · xij ψij

]
. (57)

For the case n = 3 there are three pairs of (i, j) to be considered: (1, 2), (2, 3)
and (3, 1). We do not consider contributions from the superpotential in this ap-
pendix. We take κ12 > 0, κ23 > 0 and κ31 > 0.

The φij propagator is given by:

Dφij (ω) =
i

ω2 − |xij |2
(58)

and the ψij propagator is given by:

Dψij (ω) =
−i

ω2 − |xij |2

(
ω − zij −xij + iyij
−iyij − xij ω + zij

)
, (59)

where xij = (xij , yij , zij) (recall that each lower index denotes its corresponding
node). We evaluate our momentum integrals on the imaginary axis, which is
guaranteed to give the same result had we evaluated the integral along a real
contour with the usual Feynman pole prescription, to lowest order in the the
external momenta l. Higher order terms in the external momenta will differ by
factors of i.

Di Dj term

First let us consider the diagonal terms and more specifically the contribution
to D1D1. The two diagrams that contribute are shown in figure II.13. The first

16For the purposes of this subsection we use the original notation, i.e. xi, λi, φij , ψij ,
xij ≡ (xi − xj). and so on. We also supress the Greek indices on the chiral multiplet fields.
Also, we do not decouple the center of mass degrees of freedom and switch off the superpotential.
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φ12

D1 D1

φ31

D1 D1

(i) (ii)

Figure II.13: 1-loop Feynman diagrams contributing to the D2
1 term of the ef-

fective Lagrangian.

diagram, series expanded for small external momentum l, is given by

1

2
(−i)2κ12

∫
dω

2π
Dφ12

(ω)Dφ12
(ω + l) =

κ12

8|x12|3
− l2κ12

32|x12|5
, (60)

while the second is given by

1

2
(−i)2κ31

∫
dω

2π
Dφ31

(ω)Dφ31
(ω + l) =

κ31

8|x31|3
− l2κ31

32|x31|5
. (61)

Therefore, ignoring the l2 terms, the total contribution to the effective La-
grangian is

Leff,D2
1

=
D2

1

8

(
κ31

|x31|3
+

κ12

|x12|3

)
. (62)

The D2
2 and D2

3 terms can be obtained by cyclic permutation.
Now let us consider the off diagonal terms and more specifically D1D2. The

only diagram that contributes to 1-loop order is:

φ12

D1 D2

This diagram differs only by a sign and a factor of 2 compared to (i) of figure
II.13. Therefore, the D1D2 term of the effective Lagrangian is

Leff,D1D2 = −D1D2

(
κ12

4|x12|3

)
. (63)

Other off diagonal terms can be obtained by cyclic permutation.
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δxi · δxj term

In order to obtain the correction to the quadratic velocity terms in the La-
grangian, we consider fluctuations the bosonic degrees of freedom xi+δxi. Terms
of this form can be divided in terms that are diagonal in the quiver such as
δx1 · δx1 and others that are off diagonal such as δx1 · δx2. For each of these
there is a further subdivision to terms that are diagonal in the vector compo-
nent such as δx1δx1 and δx1δx2 and terms that are off diagonal in the vector
component such as δx1δy1 and δx1δy2.

We begin by considering terms that are off diagonal in the quiver index, and
off diagonal in the vector index. For concreteness we will study δx1δy2. The
diagrams that contribute are shown in figure II.14. The first diagram, series

φ12

δx1 δy2

ψ12

δx1 δy2

(a) (b)

Figure II.14: 1-loop Feynman diagrams contributing to the δx1δy2 term of the
effective Lagrangian.

expanded for small external momentum l, is given by:

4x12y12(−i)iκ12

∫
dω

2π
Dφ12

(ω)Dφ12
(ω+l) = −κ12

(
x12y12

|x12|3
− l2x12y12

4|x12|5

)
+O(l3) .

(64)

The second diagram, series expanded for small external momentum l, is given
by:

κ12(−i)i
∫
dω

2π
tr(σ1Dψ12(ω)σ2Dψ12(ω + l))

= −κ12

(
−x12y12

|x12|3
+

lz12

2|x12|3
+
l2x12y12

4|x12|5

)
+O(l3) . (65)

Summing the two, the only term that remains uncancelled is the term linear in
l.

Next we consider term off diagonal in the quiver index, but diagonal in the
vector index, for example δx1

1δx
1
2. The contributing diagrams are shown in figure

II.15. The first diagram is given by (64) with y12 replaced by x12. The second
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φ12

δx1 δx2

ψ12

δx1 δx2

(a) (b)
φ12

δx1 δx2

(c)

Figure II.15: 1-loop Feynman diagrams contributing to the δx1δx2 term of the
effective Lagrangian.

diagram gives:

κ12(−i)i
∫
dω

2π
tr(σ1Dψ12(ω)σ1Dψ12(ω + l))

= −κ12

(
|y12|2 + |z12|2

)( 1

|x12|3
− l2

4|x12|5

)
+O(l3) . (66)

The third diagram is given by:

2iκ12

∫
dω

2π
Dφ12

(ω) =
κ12

|x12|
. (67)

Let us now consider terms that are diagonal in the quiver index. The Feynman
diagrams contributing to δxa1 δxb1 are shown in figure II.16. One finds after
similar calculations the following contribution to the effective Lagrangian:

Leff (δ~x1δ~x1) = κ12

(
lz12δx1δy1

4|x12|3
+
lx12δy1δz1

4|x12|3
+
ly12δz1δx1

4|x12|3

)
+ κ31

(
lz31δx1δy1

4|x31|3
+
lx31δy1δz1

4|x31|3
+
ly31δz1δx1

4|x31|3

)
(68)

− κ12l
2δx1 · δx1

8|x12|3
− κ31l

2δx1 · δx1

8|x31|3
. (69)
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φ12

δxa1 δxb1

ψ12

δxa1 δxb1

(a) (b)
φ12

δxa1 δxb1

φ31

δxa1 δxb1

(c) (d)

ψ31

δxa1 δxb1

φ31

δxa1 δxb1

(e) (f)

Figure II.16: 1-loop Feynman diagrams contributing to the δxa1 δx
b
1 term of the

effective Lagrangian.

Quadratic Lagrangian

Having computed all relevant Feynman diagrams that amount to integrating
out the φij and ψij fields we can now write the resulting quadratic piece of the
effective Lagrangian:

L
(2)
eff =

∑
i

mi

2

(
|ẋi|2 +D2

i

)
+

1

8

∑
i→j

|κij |
|xij |3

(
|ẋi − ẋj |2 + (Di −Dj)

2
)
. (70)

Notice that the coefficient of ẋi · ẋj indeed matches that of Di Dj . This can be
simply generalized to the N -particle case, where the Lagrangian takes the same
form as (70). As was noted before, the linear piece was fixed by supersymmetry
and given by (50) and (51) [Den02].
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D.2 Coulomb branch potential

In this appendix we give the necessary formulae for the three-node Coulomb
branch potential. Upon integrating out the chiral fields Φα in (1), while keeping
the qi fixed and time independent, and expanding up to quadratic order in the
Di fields, the D-dependent piece of the Lagrangian is:

LD =
3∑
i=1

(
µi

2
Di Di − θiDi − si

|κi|
2|qi|

Di +
|κi|

8|qi|3
Di Di

)
. (71)

Noting that D3 = D1 + D2, we must integrate out D1 and D2 from LD. The
resulting on-shell Lagrangian is simply the potential −V (qi). The equations of
motion for Di, using s1 = s2 = −s3 = 1, are given by:

(
µ1 + µ3 +

|κ1|
4|q1|3

+
|κ3|

4|q3|3
)
D1 +

(
µ3 +

|κ3|
4|q3|3

)
D2

= θ1 +
s1|κ1|
2|q1|

+
s3|κ3|
2|q3|

(72)

(
µ2 + µ3 +

|κ2|
4|q2|3

+
|κ3|

4|q3|3
)
D2 +

(
µ3 +

|κ3|
4|q3|3

)
D1

= θ2 +
s2|κ2|
2|q2|

+
s3|κ3|
2|q3|

(73)

Writing the above equations as: aijD
i = ci, the solution is simply given by:

D1 =
a12c2 − a22c1
a2

12 − a11a22
, D2 =

a12c1 − a11c2
a2

12 − a11a22
. (74)

Notice that the supersymmetric solution Di = 0 is indeed given by c1 = c2 = 0
which is nothing more than equation (10).

Scaling Limit

In the scaling regime, where µi = 0, θi = 0, and κ1 > 0, κ2 > 0 and κ3 < 0 (or
equivalently s1 = s2 = −s3 = 1), the potential can be written as:

V (qi) =
1

α+ β + γ

(
α+ β

2γ
|q3|4 +

α+ γ

2β
|q2|4 +

β + γ

2α
|q1|4

− |q1|2|q2|2 − |q1|2|q3|2 − |q2|2|q3|2
)
, (75)

where

α =
|q1|3

κ1
, β =

|q2|3

κ2
, and γ = −|q

3|3

κ3
. (76)
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E Thermal determinant

The thermal effective potential for the two-node quiver at finite temperature can
be derived from (38):

Leff =
µ

2
D2−θD−κ ln det

(
−(∂t + iA)2 + |q|2 +D

)
+κ ln det

(
−(∂t + iA)2 + |q|2

)
Wick rotating t 7→ itE and periodically identifying tE ∼ tE + β, introduces the
thermal ensemble. The operator ∂tE has eigenvalues on the Matsubara frequen-
cies: ωn = 2πnT for bosons and ωn = 2π(n + 1

2 )T for fermions, with n ∈ Z.
With a ≡ A/2πT and denoting |q|2 ≡ s this yields:

L
(T )
eff =

µ

2
D2 − θD − κ

β

∑
n∈Z

ln
(
4π2(n+ a)2T 2 + s+D

)
+
κ

β

∑
n∈Z

ln
(
4π2(n+ 1/2 + a)2T 2 + s

)
,

where we have now included a 1/β in the coefficient of the sums to cancel out the

contribution from the integral over Euclidean time in SE =
∫ β

0
dtE L

(T )
eff . Taking

a derivative with respect to s:

dL
(T )
eff

ds
=
κ

β

∑
n∈Z

f(n) = −κ
β

∑
n∈Z

1

4π2(n+ a)2T 2 + s+D

+
κ

β

∑
n∈Z

1

4π2(n+ 1/2 + a)2T 2 + s
. (77)

We will treat the two sums separately using contour integration methods. We
write (77) as f(n) = −f1(n) + f2(n), denoting the two summands respectively.
Consider:∮

C
πf1(z) cot(πz) =

∮
C
F (z)dz

= 2πi

(
ResF (z)|z=z+ + ResF (z)|z=z− +

∑
n∈Z

ResF (z)|z=n

)
,

with z± = −a ± i
2πT

√
s+D and ResF (z)|z=z± = ± i cot(∓ i

2T

√
s+D+πa)

4T
√
s+D

and C
a circle of radius R around the origin with R → ∞. Given that F (z) decays
rapidly enough, the integral evaluates to zero along C and we obtain:

−
∑
n∈Z

f1(n) = − i

4T
√
s+D

(
cot

(
i

2T

√
s+D + πa

)
− cot

(
− i

2T

√
s+D + πa

))
(78)



For the fermionic sum, the procedure is completely analgous, and (using cot(x+
π/2) = − tan(x)) we find:

∑
n∈Z

f2(n) = − i

4T
√
s

(
tan

(
i
√
s

2T
+ πa

)
− tan

(
− i
√
s

2T
+ πa

))
. (79)

We need to integrate these two sums with respect to s to obtain L
(T )
eff . Using the

following identities:
∫ cot(a

√
x+b)√
x

dx = 2 log sin(a
√
x+ b)/a and

∫ tan(a
√
x+b)√
x

dx =

−2 log cos(a
√
x+ b)/b, we find:

L
(T )
eff =

µ

2
D2 − θD − κT log

cosh

(√
|q|2+D

T

)
− cos(2πa)

cosh
(
|q|
T

)
+ cos(2πa)

 , (80)

as claimed.



III

Monstrous Farey Tails

In mathematics and in physics alike, equations and relations are significant or —
more poetically — beautiful or deep or serious, if the equation or relation con-
nects concepts that were a priori not at all connected and conceptually far apart.

With this notion equalities of the sort 2 + 2 = 4 are not very deep, as they relate
natural numbers to natural numbers. But the arithmetic relation eπi = −1 can
be dubbed deep as it relates the transcendental, imaginary and integer numbers
in an elegant way.

In his ‘A Mathematician’s Apology’ [Har40], G.H. Hardy went further, and wrote
that

The ‘seriousness’ of a mathematical theorem lies not in its practical consequences,
which are usually negligible, but in the significance of the mathematical ideas
which it connects. We may say, roughly, that a mathematical idea is ‘significant’
if it can be connected, in a natural and illuminating way, with a large complex
of other mathematical ideas. Thus a serious mathematical theorem, a theorem
which connects significant ideas, is likely to lead to an important advance in
mathematics itself and even in other sciences.

With this notion, the moonshine conjecture1 can be considered as one of the
more serious relations in contemporary mathematics. It connects the branches:
finite group theory, Kac-Moody algebra’s, representation theory, modular forms
and conformal field theory, to name but a few.

In this chapter we first introduce all the objects needed to formulate the mon-
strous moonshine conjecture. We articulate the actual conjecture by Conway and
Norton and give a brief overview of the proof by Borcherds. We then go on to in-
troduce generalizations of the monstrous moonshine theorem: to umbral groups
and to Norton’s ‘generalized (monstrous) moonshine’. In the end we will con-
nect these generalizations to what we may call ‘generalized umbral moonhine’.
For more introductory reading material we refer to [Bor98, Gan04, Gan06] and
references therein.

1In the general setting I refrain from using the term ‘theorem’, as not all aspects of moon-
shine are proven at this point. In the context of the monster group, a proof is established and
we may say monstrous moonshine theorem.
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1 Monstrous moonshine

The Princeton Companion to Mathematics [Pri08] opens its lemma on Monstrous
Moonshine with the wisecrack:

In 1978 McKay noticed that 196884 ≈ 196883.

Really what McKay noticed was that 1 + 196883 = 196884. As it stands, this
is indeed not deep at all and. But when we learn what these numbers represent
we should be more baffled: the first, 1 and 196883, represent the dimensions
of irreducible representations of the monster group. The second represents a
Fourier coefficient in the j-function. These two objects, the monster group and
the j-function, both play prominent roles in two entirely different branches of
mathematics (finite groups and modular forms respectively) and that there is
such a direct relation between the two is surprising and mysterious (or moon-
shine) indeed.

Before going on about the monstrous moonshine conjecture, let us introduce
these two objects: the monster group and the j-function.

1.1 The monster group

Over the course of the 20th century, the finite simple groups have been classified
in a true tour de force (see for example [Gor82] and references therein). The
declared completion of the classification in [Gor82] is a little premature and
should be supplemented with [ALSS11] . It is the cumulative work of hundreds
of mathematicians — with or without help of computers — written down in
hundreds of journal publications on thousands of pages.

A bit like in the classification of semi-simple Lie algebras, the finite simple
groups are classified as follows. First there are a couple of infinitely big families:
the cyclic groups of prime order, the alternating groups of degree bigger than
five and the simple groups of Lie type. And then there are 26 groups that do
not fit in any of these families. These are called the sporadic simple groups. The
monster group M is the largest finite sporadic group. It really is monstrous as
it has an order of

|M| = 246 ·320 ·59 ·76 ·112 ·133 ·17 ·19 ·23 ·29 ·31 ·41 ·47 ·59 ·71 ≈ 8×1053. (1)

The group was predicted to exist in the seventies by Griess and Fischer, and
in 1982 Griess constructed M as the automorphism group of a non-associative
algebra, without using a computer, see [Gri82].

The monster group has 194 conjugacy classes and hence 194 irreducible rep-
resentations. The first nontrivial representation has dimension 196883. A small
portion of the 194 by 194 character table is printed in table (III.1).

From this table we can read off the dimensions dn of the irreducible repre-
sentations, dn = χn(1A). These numbers will be important for the observation



1. Monstrous moonshine 89

Table III.1: A portion of the character table of the Monster group

[g] 1A 2A 2B 3A 3B 3C . . .

χ1 1 1 1 1 1 1
χ2 4196883 4371 275 782 53 −1
χ3 21296876 91884 −2324 7889 −130 248
χ4 842609326 1139374 12974 55912 −221 −248
χ5 18538750076 8507516 123004 249458 1598 248
χ6 19360062527 9362495 −58305 297482 1508 −247
...

of moonshine later. We will now switch gears and introduce another important
object we need to formulate the monstrous moonshine conjecture: the j-function.

1.2 Modular forms, functions and curves

That modular forms arise in the moonshine story is probably not very surprising,
as modular forms pop up pretty much always when integers and number theory
are mentioned. As Martin Eichler apocryphally stated: “there are five elemen-
tary arithmetical operations: addition, subtraction, multiplication, division, and
modular forms”. Indeed in modern number theory, modular forms play a central
role and they play a big role in the story of moonshine. We start with a crash
course in the theory of modular forms and functions, highlighting only the most
elementary concepts of the theory. We refer to [Ser73, RS11, BGHZ08] for more
thorough coverage of the subject matter.

Let H denote the upper-half plane: H = {z ∈ C | Im(z) > 0}. A modular
form f of weight k on the (congruence) subgroup Γ ⊂ SL2(Z) is complex function
f on the upper half-plane, f : H → C that satisfies:

1. f is holomorphic on H

2. f(γ · τ) = (aτ + b)kf(τ) for γ =

(
a b
c d

)
∈ Γ, γ · τ = aτ+b

cτ+d

3. f(τ) is holomorphic at τ = i∞

A modular form on Γ = SL2(Z) is called a cusp form if it vanishes at the boundary
of the upper half-plane, that is if f(i∞) = 0. Also we call f a modular function
if it is meromorphic at H but has k = 0, f(γ · τ) = f(τ). We will later need the
notion of modular forms or functions with automorphic factors, where condition
2 is relaxed to

f(γ · τ) = ε(γ)(aτ + b)kf(τ), γ =

(
a b
c d

)
∈ Γ, |ε(γ)| = 1
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Modular forms of weight k (and cusp forms) on a congruence subgroup Γ form
a vector space Mk(Γ) (or Sk for cusp forms) over the complex numbers. Taking
for now Γ = SL2(Z) we will briefly list some properties of these vector spaces.
We will for now write Mk(Γ) = Mk and Sk(Γ) = Sk. The dimensions of the
vector spaces are:

dimC (Mk) =

{
bk/12c, if k ≡ 2(12)

bk/12c+ 1, otherwise
(2)

dimC (Sk) =

{
bk/12c − 1, if k ≡ 2(12)

bk/12c, otherwise
(3)

so the first non-trivial cusp-form arises at dimensions 12. It plays a central role
in the theory of modular forms and in string theory: S12 is spanned by

∆(τ) = q
∏
n=1

(1− qn)24, (4)

where q = exp(2πiτ).
As T = ( 1 0

1 1 ) ∈ SL2(Z), and |q(τ)| < 1 for τ ∈ H, we can view a modular
form f(τ) as a funcion f = f(q(τ)) with a well-defined (Fourier) series expansion

f(q) =

∞∑
n=−∞

anq
n, (5)

with an = 0 for almost all −∞ < n < 0 for modular functions, a0 = 0 for cusp
forms and an = 0 for all −∞ < n < 0 in the case of modular forms.

It is through these Fourier coefficients an that we make contact with number
theory. As an example, consider again ∆(q). This function is related to partitions
of integers. A partition λ ` n of a natural number n is a sum decomposition of n
in smaller integers, for example 1 + 3 ` 4. If we denote the number of partitions
of an integer by p(n) then the generating function of p(n) can be shown to be

F (q) =

∞∑
n=0

p(n)qn =

∞∏
n=0

1

1− qn
(6)

and indeed, qF (q)−24 = ∆(q).

Pointwise multiplication is a map · : Mk ×Mk′ → Mk+k′ . This map endows
the total space of modular forms, M =

⊕
k

Mk with the structure of a ring. This

ring is generated by the two modular function E4(τ) and E6(τ):

M = 〈E4, E6〉C (7)
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where E4 and E6 are known as Eisenstein series of weight 4 and 6 respectively.
An Eisenstein series E2l of weight l is the sum

E2l =
1

ζ(2l)

∑
(m,n)∈Z′

(m+ nτ)−2l (8)

where the factor ζ(2l) (ζ(z) the Riemann zeta function) is conventional, chosen so
that, for example, E2

4 = E8 and E4E6 = E10, in accordance with the dimension
formulas (2). The notation Z′ = Z− {0} is used in summations.

We can use ∆(q) and the Eisenstein series to construct a modular invariant
function that is holomorphic everywhere except for a simple pole at the cusp
τ = i∞. Defining g2 = 60E2, we introduce the j-function, or Klein’s invariant
j(τ):

j(τ) = 1728
g3

2

∆
. (9)

The j-function defines a bijection between the fundamental domain H/SL2(Z)
and C×. It has a q-series that starts with

j(q) =

∞∑
n=−1

anq
n =

1

q
+ 744 + 196884q + 21493760q2 + . . . (10)

The j-function is special in that all modular functions are rational functions
of j(q). It is called the generator of the function field on the modular curve
X(1) = H/SL2(Z). For later reference, we want to make this a little more
precise before going further.

Let Γ ⊂ SL2(Z) be a commensurable subgroup. For our purposes we will be
interested in the cases Γ ∈ {Γ(N),Γ0(N),Γ1(N)} where

Γ(N) =

{(
a b
c d

)
|a ≡ d ≡ ±1(N), b ≡ c ≡ 0(N)

}
(11)

Γ0(N) =

{(
a b
c d

)
|c ≡ 0

}
Γ1(N) =

{(
a b
c d

)
|a ≡ d ≡ ±1(N), c ≡ 0(N)

}
Another important subgroup is the Fricke group, defined as follows. Let Fn be
the Fricke involution Fn : τ 7→ −1/Nτ . Then the Fricke group Γ0(n)+ is defined
as

Γ0(n)+ = 〈Γ0(n), Fn〉 (12)

These groups act on the upper half-plane H, with coordinate τ , as fractional lin-
ear transformations on τ . Upon taking the quotient of H with a congruence sub-
group Γ, we get a variety X(Γ), referred to as a modular curve. The most com-
mon ones are X(N) = H/Γ(N), X0(N) = H/Γ0(N) and X1(N) = H/Γ1(N).
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For each modular curve X(Γ) we define the cusps as the points we need to add
to X(Γ) to compactify it to X(Γ). For the case X(1) = H/Γ(1) (Γ(1) = SL2(Z)),
we can simply compactify H× = H ∪ {∞} and X(1) = H×/Γ(1). For other
congruence subgroups we may need more points — cusps — to add to compactify
the corresponding modular curve. The number of points equals the number of
orbits of Γ on Q ∪ {∞}.

Now consider on the variety X(Γ) the field of functions

k(X(Γ)) = {f : X(Γ)→ C× | f meromorphic}. (13)

The set is a field under pointwise addition and multiplication. For the modular
curves, these fields are finitely generated, and when the modular curve has genus
zero — the only case we will be considering — the modular function field is
generated by a single function. We call this function the Hauptmodul of the
modular curve. Sometimes we will write JΓ for the Hauptmodul corresponding
to Γ. The j-function is the Hauptmodul for the modular curve X(1):

k(X(1)) = 〈 j 〉C. (14)

This generator is unique upto a multiplicative factor and an additional shift (it
is the unique generator of the affine projective function field). We will also use
the shifted j-function J(q) a lot:

J = j − 744. (15)

For another example, the Hauptmodul for X0(2) is denoted jΓ0(2), and has a
q-series

jΓ0(2) = q−1 + 276q − 2048q2 + 11202q3 + . . . (16)

Typically, for N low enough, the Hauptmoduls of Γ0(N) can be expressed as
quotients of Dedekind η-function. For example,

jΓ0(2) = η(τ)24/η(2τ)24 + 24 (17)

jΓ0(3) = η(τ)12/η(3τ)12 + 12. (18)

The Fricke group Γ0(2)+ is genus-zero as well2. The Hauptmodul reads

jΓ0(2)+ =

((
η(τ)

η(2τ)

)12

+ 26

(
η(2τ)

η(τ)

)12
)2

= q−1 + 104 + 4372q + 96256q2 + 1240002q3 + . . . (19)

We have now introduced all the objects we need to state the original monstrous
moonshine conjecture.

2The group Γ0(p)+ has genus zero if and only if
p ∈ {2, 3, 5, 7, 11, 13, 17, 23, 29, 31, 41, 47, 49, 71}. Note that this is the set of prime divisors of
the order of M.
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1.3 The monstrous moonshine conjecture

As eluded to in the beginning of this section, the mathematician John McKay
observed that there is a similarity between the coefficient an in the q-series in
expression (10), and the dimensions of the irreducible representations of the
monster table as listed in table (III.1). In fact, using an for the coefficients of
the j-functions and dn = χn(1A), we can note the following identities:

a1 = d1 + d2 (20)

a2 = d1 + d2 + d3

a3 = 2d1 + 2d2 + d3 + d4

a4 = 3d1 + 3d2 + d3 + 2d4 + d5

McKay took these observations to suspect the existence of an infinite dimensional
(graded) module VM over the monster group,

VM =

∞⊕
n=−1

Vn (21)

were, comparing with table (III.1), V−1 = χ1, V0 = {0}, V1 = χ1 + χ2, V2 =
χ1 + χ2 + χ3, so that indeed,

∞∑
n=−1

dim(Vn)qn = 1 + 196994q2 + . . . = J(q) (22)

As it stands the observation is completely trivial and vacuous, as we can at will
add trivial representations in the graded module to obtain the j-function. But
the existence of a module means we could take characters of other group elements
as well.

We now only evaluated the characters at the identity element of the monster
group. Should the monster module VM exist, this reasoning should apply for all
elements of the monster group, that is, for every element g ∈ M we can write
down

Tg(τ) =

∞∑
n=−1

chVn(g)qn. (23)

where chVn is now the character of Vn. These series were suggested by Thompson
in [Tho79] and are known as McKay-Thompson series. The functions Tg(τ) are
class functions and only depend on the conjugacy class of g in M, Tg(τ) = T[g](τ).
With this notation, the proposal is that T[1A] = J(q). We are now ready to state
the monstrous moonshine conjecture.

Conjecture. [Conway-Norton] For each g ∈ M, the McKay-Thompson series
Tg(τ) is the Hauptmodul JΓg (τ) for some commensurable genus-zero subgroup Γg
of SL2(Z).
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We see now that indeed the conjecture not only is about the j-function, but
also applies for example to the Hauptmodul jΓ0(2) as in equation (16). Comparing

with the character table (III.1) and write jΓ0(2) − 24 =
∞∑

n=−1
an[2B]qn:

a1[2B] =χ1(2B) + χ2(2B) (24)

a2[2B] =χ1(2B) + χ2(2B) + χ3(2B)

...

and we may write T2B(τ) = jΓ0(2) − 24. The theorem states that for each
conjugacy class of M we can find such a Hauptmodul. For example also: T2A =
jΓ0(2)+ − 104.
From a technical point of view it seems natural that only genus-zero subgroups
arise as there we have a canonical choice, up to an overall factor and an additional
constant, for the Hauptmodul. Subgroups Γ of higher genus have function fields
defined on them that are generated by more than one generator and it seems
like there is no such canonical choice. Geometrically it is less understood why
moonshine at this point only works for genus zero.
The theorem (1.3) as it stands is proven by Borcherds, a proof famously awarded
with the Fields medal in 1984. His proof can be deconstructed into four steps.

1. Construct a module V that has the additional structure of a “Vertex Op-
erator Algebra” (VOA)

2. From V , construct a Lie algebra M togehter with a group action by the
monster group M.

3. Use the Weyl-Kac denominator formula to show that the functions Tg(τ)
are “completely replicable”.

4. Show that the Tg(τ) are Hauptmoduls for genus-zero subgroups of SL2(Z).

The module in step (1) was constructed by Frenkel, Lepowsky and Meurman
[FLM88]. They created V as the vertex algebra of physical states of bosonic
strings moving on a target space (R26/Λ)/Z2, with Λ the Leech lattice, and
they showed that the monster group M acts naturally on this space as a group of
global isometries. Its explicit construction is rather tedious and lengthy (500+
pages) and we will not describe it here and luckily we do not need all the details
of the construction. The VOA of [FLM88] is a graded module, and has the

property that
∞∑

n=−1
dim(Vn)qn = J(τ), so this is a big step towards the proof of

moonshine indeed. One basically would like to show that this module is in fact
the sought for graded module in the conjecture (1.3).

Borcherds needs step (2) for the following reason. If we can promote the
VOA of [FLM88] to a Lie algebra M, and can show that it is a (generalized)
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Kac-Moody algebra (gKMA, also sometimes called Borcherds algebra), we can
use the Kac-Weyl denominator formula to generate replication formulas for the
functions Tg(τ). We mean by replication formulas for some functions, formulas
that generate the relations between the Fourier coefficients of the functions. The
technical definitions is as follows: let Hn be the Hecke-like operator acting on a
function fg(τ) as:

Hnfg(τ) =
∑
ad=n
b mod d

fga

(
aτ + b

d

)
(25)

for g a group element of some group G (here, of course, G = M). The fg is
called replicable if each Hnfg(τ) has a Fourier expansion Hnfg(τ) =

∑∞
n=−1 aiq

i.
Replicability will allow us to construct all the functions Tg(τ) from a small
amount of data. We then only need to show that these functions are Haupt-
moduls.

We briefly introduce the concept of a gKMA. First, recall the following prop-
erties of a finite dimensional Lie algebra g:

1. g has an invariant symmetric bilinear form (, )

2. g has a Cartan involution ω, ω2 = id

3. g is graded, g =
⊕
n∈Z

gn, gn finite dimensional and ω|g0 = −1, g0 the Cartan

subalgebra

4. (g, ω(g)) > 0 for all g ∈ gn, g 6= 0.

Now if we relax condition (4) to the condition:

4’ (g, ω(g)) > 0 for all g ∈ gn, g 6= 0 and n 6= 0,

we promote g to a Generalized Kac-Moody algebra. Many of the properties and
concepts of the theory of Lie algebras carry over to gKMA’s rather straightfor-
wardly. For the purpose of this review, we will need the Weyl-Kac denominator
formula, that is indeed just the analogue of Weyl’s denominator formula for the
case of Lie algebra’s. For a gKMA G, let W be its Weyl group, ρ the Weyl
vector, {α} the set of roots. For w ∈ W , denote detw = ±1: det(w) = +1 if w
is the product of an even number of reflections, det(w) = −1 if its the product
of an odd number of reflections. Furthermore let ε(α) = (−1)n if α is the sum
of n orthogonal (imaginary) simple roots that are all orthogonal to the lowest
weight vector. Let ε(α) = 0 if otherwise. With these concepts, the Weyl-Kac
denominator formula reads

eρ
∏
α>0

(1− eα)
mult(α)

=
∑
w∈W

det(w)w(eρ
∑
α

ε(α)eα). (26)
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For example, when applied to sl2[z, z−1], this reduces to the Jacobi triple product
identity.
In the seminal [Bor92] Borcherds constructs from V a gKMA M that is Z⊕ Z-
graded and has the monster group M acting on it. The simple roots of this
gKMA are the vectors β1,n = (1, n) for n = −1 or n ∈ N, and these simple roots
β1,n each have multiplicity cn, where cn is still the coefficient of the j-function.
It can be shown that the multiplicity of a root αm,n = (m,n) 6= (0, 0) are cnm.
If we now write p = e(1,0) = e2πiσ, q = e(0,1) = e2πiτ , we find a denominator
identity for M:

p−1
∏
m>0
n≥−1

(1− pmqn)cmn = j(σ)− j(τ). (27)

This truly beautiful formula was noted earlier by Zagier, Norton and Koike, none
of whom bothered to publish their proof before Borcherds. This formula already
induces relations between the coefficients of j(τ), for example 2(c4−c3) = c21−c1.
In fact, formula (27) induces enough non-trivial polynomial relations for all the
coefficients to be computable form only the first five coefficients c1, . . . c5. To give

an example, one such polynomial relation reads c4n+2 − c2n+2 =
n∑
k=1

ckc2n−k+1.

In chapter IV of this dissertation we will even give this formula a physical inter-
pretation, and think of it as a grand canonical partition function.

Conway and Norton had already conjectured in [CN79] the existence of rela-
tions similar to the expression (27) for the McKay-Thompson series Tg, namely

p−1 exp

− ∑
k,m>0
n∈Z

cmn(g)
pmkqnk

k

 = Tg(σ)− Tg(τ), (28)

where Tg(τ) =
∑
n∈Z

cn(g)qn.

Borcherds proved these relations using the gKMA M. The Hauptmoduls now
are completely replicable: there are all sorts of polynomial relations between the
coefficients of the McKay-Thompson series, and we only need the first couple of
coefficients to determine all the coefficients of the Hauptmoduls (preferably on
a computer).

1.4 Generalized monstrous moonshine

A few years after the “discovery” of the monstrous moonshine, Norton proposed
a generalization of the conjecture. In [Nor87] he proposed that for every com-
muting pair in the monster group, (g, h) ∈ M ×M, we can attach a function
Tg,h(τ) such that

1. Tg,h(τ) = Tgk,hk(τ)
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2. ξγTg,h(γτ) = Tgahc,gbhd(τ) for Γg,h ⊂ SL2(Z) and ξ24
γ = 1

3. Tg,h(τ) is a Hauptmodul for some genus-zero Γg,h ⊂ SL2(Z) with Γ(M) ⊂
Γg,h

4. Te,h(τ) = Th(τ) where Th(τ) the McKay-Thompson series of monstrous
moonshine

5. Tg,h(τ) =
∞∑

n=−1
ĉhCng (h)qn

where Cg =
∞⊕

n=−1
Cng is an infinite dimensional graded module of the cen-

tralizer subgroup CM(h) and ĉhH(h) denotes the projective character of the
projective representation of a group H. The reason behind this proposal can
be made more clear and intuitive by thinking about the functions Tg,h(τ) as
twisted and twined partition functions of some orbifolded conformal field theory.
A lot of the concepts in a vertex operator algebra — the structure introduced
to prove the monstrous moonshine conjecture — have an analogy in terms of
objects in a (rational, meromorphic) conformal field theory. The vertex algebra
is like the chiral (algebra) H of vertex operators corresponding to a sector of
representations of the Virasoro algebra that contains the vacuum, with a group
G (G = M for monstrous moonshine) acting as the group of endomorphisms of
H. We will be interested in dividing the algebra by its group of endomorphsims
and will be looking at the orbifolded theory H/G. In this theory, some states
are projected out, but there will also arise new sectors that pick up a G-valued
holonomy, see below. Then, for example, the McKay-Thompson series Tg(τ) of
monstrous moonshine is really the graded trace Zg:

Tg(τ) = Zg(τ) = TrH
(
gqL0−1

)
(29)

for g ∈ G = End(H). Note that Ze = J(τ). For each h ∈ G there is a unique
twisted module Hh. Physically his is the sector of twisted states: states φ(z)
that pick up a monodromy h: φ(e2πiz) = h · φ(z). We refer to [Don92] for a
formal definition of a twisted module.

For an element g ∈ CG(h) — the centralizer of h in G — g induces a linear
map onHh so we can define the twisted orbifold trace function, or twist-h twine-g
partition function

Zg,h(τ) = TrHh
(
gqL0−1

)
. (30)

Note that H = ⊕[h]Hh where [h] denotes the conjugacy class of h. We can now
see that Zg,h = ζγZgk,hk , |ζγ | = 1. If we think in terms of operators φ(z) on the
torus T = Z⊕ τZ, then the partition function Zg,h can be seen as the partition
function of states with boundary condition

φ(z + 1) = h · φ(τ), φ(z + τ) = g · φ(z) (31)
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That is why we sometimes use a box notation:

Zg,h(τ) = g2
h

(τ) (32)

where the box is a pictorial representation of the torus T and g and h denote te
boundary condition along its cylces. Let A and B denote the two cycles of the

torus: H1(T,Z) = 〈A,B〉Z. For γ =

(
a b
c d

)
∈ SL2(Z) we have an action on the

cycles (A,B):

γ · (A,B) = (cB + dA, aB + bA) (33)

so that the partition function transforms as

g2
h

(τ) = ξ(γ, g, h) gahb 2
gchd

(γτ). (34)

The partition function g2
h

(τ) is invariant under modular transformations up to a

phase for some subgroup Γg,h ⊂ SL2(Z).
The phase ξ(γ, g, h) is, for a fixed γ, a map ξ : G × G → C×. As explained
in the appendix, the pahse ξ is actually a two-cocycle in the group cohomology
H2(CG(h), U(1)) that can be universally computed from the third cohomology
[DW90] ψh : H3(G,U(1)) → H2(CG(h), U(1)). Unfortunately, for the monster
group the group cohomology H3(M, U(1)) is not computed yet. For some of the
centralizers however we can compute the group cohomology and determine the
phases ξ(γ, g, h).

For low orders of group elements, some of the centralizer subgroups are listed
in table (III.2), where we see the Baby Monster B (the second largest simple finite

Table III.2: Centralizer subgroups of M for low p = ord(h)

p 2 3 5 7 11 13
Ch(M) 2.B 3.Fi 5×HN 7×He 11×M12 5× L3(3)

sporadic group), the Fisher group Fi, the Harada-Norton group, the Mathieu
group M12 and the atlas group L3(3). In this notation, we abbreviated Zn = n.
Also, G × H denotes the direct product of groups and A = G.H denotes the
group A that is not isomorphic to G×H but has G and H as normal subgroups
(that is, A is the nontrivial extension of G by H).

All the listed groups are finite simple groups and can be found in the AT-
LAS [CCN+85]. It is conjectured that for all these groups, there is again a
Hauptmodul with a McKay-Thompson series Th(τ) that is conjectured to be a
genus-zero Hauptmodul. As will be explained later, but can already be seen
from the defintions, the independent orbits of functions Tg,h under the action of
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M× SL2(Z) are classified by the rank-two Abelian subgroups of M. Consider to
this end the rank-two subgroup 〈g, h〉 ∼= Z2 × Z2 with g, h, gh all in class 2A.
First of all,

Te,g(τ) = Te,h(τ) = T2A(τ) = q−1 + 4372q + 96256q2 + . . . (35)

Tg,e = Th,e = Te,g(τ/2) = q−1/2 + 4372q1/2 + 96256q + . . . (36)

Tg,g = Th,h = −iTg,e(τ + 1) = q−1/2 + 4372q1/2 − 96256q + . . . (37)

Here we see that Tg,e(τ + 1) = iTg,g(τ), and there is a non-trivial multiplier
system.

Finally the funtion Tg,h is a bit harder to find but constructed in [?]:

Tg,h(τ) =
√
J(τ)− 984 = q−1/2 − 492q1/2 − 22590q3/2 + . . . (38)

For another example, the case of the Harada-Norton group HN, the McKay-
Thompson series reads

T5A,e(τ) = jΓ0(5)+ − 6 =

(
η(τ)

η(5τ)

)6

+ 53

(
η(5τ)

η(τ)

)6

=
1

q
+ 134q + 760q2 + 3345q3 + 12256q4 + 39350q5 + . . . (39)

2 Umbral moonshine

A natural question to ask is: does the moonshine phenomenon only occur for
the monster group and the Hauptmoduls? Or are there more groups that have
infinite dimensional modules, the McKay-Thompson series of which are Haupt-
moduls, or other modular objects? The answer is yes. Well, first of all there
are the groups that arise as centralizer subgroups as in section 1.4, and they
have their McKay-Thompson series. But there is an interesting generalization
of monstrous moonshine to groups that are not per se centralizer subgroups of
the monster, and where the modular objects are not Hauptmoduls but more in-
tricate. We will discuss the generalization of moonshine for the monster groups
to moonshine for the “umbral groups” in this .

2.1 Mathieu moonshine

In [EOT11] Eguchi, Ooguri and Tachikawa reported on a phenomenon very much
like that of moonshine. The function in question is not the j-function, but the
elliptic genus of K3. This is a topological quantity encountered in string theory
when compactifying heterotic string theory on a K3 manifold. Consider a two
dimensional sigma model with target space K3. Let L0 and L̄0 denote the zero
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modes of the Virasoro operators and J3
0 the zero mode of the z-component of the

affine su(2) algebra that arises as the R-symmetry of the N = 4 sigma model on
K3. If we furthermore let FL and FR denote the left and right moving fermion
numbers, the elliptic genus is defined as a modified Witten index, namely

Ell[K3](τ ; z) = TrR(−1)FL+FRqL0 q̄L̄0y4J3
0 , (40)

where q = e2πiτ , y = eπiz. For the manifold K3 this quantity was computed in
[EOTY89] to be

Ell[K3](τ ; z) = 8

[(
θ2(τ ; z)

θ2(τ ; 0)

)
+

(
θ3(τ ; z)

θ3(τ ; 0)

)
+

(
θ4(τ ; z)

θ4(τ ; 0)

)]
, (41)

where {θi(τ ; z) are the Jacobi theta functions.
On special values the elliptic genus reduces to more familiar topological quan-

tities and we can check that indeed Ell[K3](τ ; 0) = χ(K3) = 24,Ell[K3](τ, 1/2) =
σ(K3) = 16+O(q). The elliptic genus is known to be a weak Jacobi form [Wit87].
We follow the conventions of [EZ85] and refer to appendix (A )for more details
on (weak) Jacobi forms. For now it suffices to state that a Jacobi form φ(τ, z)
of level 1, weight k and index m is a function φ : H×C→ C with the following
properties:

1. φ(γ · τ, γ · z) = (cτ + d)k exp( 2πimcz2

cτ+d )φ(τ, z) where γ ∈ Γ ⊂ SL2(Z)

2. φ(τ, z + λτ + µ) = exp−2πim(λ2τ + 2λz)φ(τ, z) for λ, µ ∈ Z

3. φ(τ, z) =
∑
n≥0

r2≤4mn

c(n, r)qnyr, q = exp 2πiτ , y = exp 2πiz.

A Jacobi form is called weak if c(n, r) = 0 unless n ≥ 0. The space of Jacobi
forms of weight-0 and index-1 is actually one-dimensional so with this knowledge
the result (41) is rather trivial.

Expanding the elliptic genus on K3 in terms of characters of the N = 4
superconformal algebra, the authors of [EOT11] noticed that

Ell[K3](τ ; z) = 24chR
h=

1
4 ,`=0

(τ ; z) +H(2)(τ)
θ1(τ ; z)2

η(τ)3
(42)

H(2)(τ) = −2q−1/8 + q−1/8
∞∑
n=1

Anq
n, (43)

where the first few coefficients An read A1 = 45, A2 = 231, A3 = 770, A4 =
2277, A5 = 5796, A6 = 13915, . . .. The first five coefficients are also the dimen-
sions of irreducible representation of the Mathieu group M24, another group in
the list of sporadic simple groups, see table (III.3) where we printed de dimen-
sions of some of the irreducible representation χi of M24 (where i is ordered along
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Table III.3: Dimensions of the irreducible representations of M24

i 1 2 3 4 5 6 . . . 10 11 . . . 20 . . .
Tr(χi) 1 23 45 45 231 231 . . . 770 770 . . . 2277 . . .

with the size of the dimension of χi, and an overline denotes a dimension of a
conjugate representation).

The coefficient A6 we can also write as the linear combination of dimensions
of irreducible representations of M24. This of course resonates a lot with the
monstrous moonshine conjecture. With the monstrous moonshine in mind, one
is now immediately led to conjecture the existence of a graded M24-module3

K(2):

K(2) =

∞⊕
n=0

K
(2)
n−1/8 (44)

with the property that
∞∑
n=0

dim
(
K

(2)
n−1/8

)
qn−1/8 = H(2)(τ). Again this would

trigger the study of the McKay-Thomson series of this module: H
(2)
g (τ) =∑∞

n=0 chKn−1/8
(g)qn−1/8, hoping we can classify these functions like in the case

of monstrous moonshine, where the McKay-Thompson series were conjectured
to be the genus-zero Hauptmoduls.

The first challenge is to find a precise articulation of a conjecture, analogous
to Conway and Norton’s conjecture (1.3). What troubles a precise analogue is
that the functions Hg(τ) turn out to be not exactly modular functions. Instead,
for every g in M24, they are mock modular forms[?]f weight 1/2 of Γg ⊂ SL2(Z)
[EH11]. Mock modular forms are peculiar objects that were already studied by
Ramanujan in his “Lost Notebooks” [Ram88]. They were rigorously defined only
quite recently by Zwegers in [Zwe08] and we give his definition here:

A (weakly holomorphic) mock modular form of weight k on the congruence sub-
group Γ ⊂ SL2(Z) is a holomorphic function h(τ) on the upper half-plane H if
it obeys the criteria:

1. h(τ) is holomorphic

2. |h(τ)| ≤ C| exp(cτ)| for some constants C, c as τ → α ∈ Q for all α ∈ Q

3. There is a holomorphic modular form f(τ) of weight 2− k on Γ such that

the completion ĥ(τ) = h(τ)+(4i)k−1
∫∞
−τ̄ (z+τ)−kf(−z̄)dz is a holomorphic

3The superscript (2) on the module K(2) will become clear in a bit
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from of weight k on Γ with multiplier system χ : Γ → C×. We call f(z)
the shadow of h(τ).

In condition (3), ĥ(τ) need not be holomorphic, and what we mean by a multi-
plier system χ for a modular form F (τ) of weight k is that F (γτ) = χ(γ)(c +
dτ)−kF (τ). It is in this definitions that all Hg(τ) are mock modular forms of
weight 1/2. For example, H(2) as in expression (43) is a mock modular form in
the sense that

Ĥ(τ) = H(τ) + 24(4i)−1/2

∫ ∞
τ̄

(z + τ)−1/2η(−z̄)3dz (45)

transforms as a weight-1/2 modular form on Γ(1), with shadow η(z)3.
The trouble in finding a direct analogue for conjecture (1.3) is that first of

all here Γg is not per se a genus-zero subgroup. But it may not even matter if
it would, as there is no clear way in which we can see any of these Hg(τ) as the
generator of some function field. In [CD12] this was keenly solved with a method
inspired by concepts borrowed from physics: the Farey tail and Rademacher
series. Before we go on to explain how the genus-zero property of monstrous
moonshine is mimicked in the case at hand, the case of the Mathieu group M24,
we will introduce Rademacher series and the closely related Farey tail expansion.

2.2 Farey tails and Rademacher series

As was noted in section 1.2, the theory of modular functions and forms makes
contact with number theory through the Fourier expansions of a modular func-

tion or form f(τ) =
∞∑

n=−∆

anq
n. It is these an that harvest interesting relations

between natural numbers, so in the theory of modular forms knowledge of these
coefficients an is fundamental.
Let’s make this more concrete through an example. As discussed in section
1.2, there is an intimate relation between partitions of integers and modularity.
Recall that the partition function

F (τ) =

∞∑
n=0

p(n)qn, (46)

where p(n) is the number of partition of the integer n, is related to the modular
(cusp) form ∆(τ), and in fact: qF (τ)−24 = ∆(τ). What does the modularity of
∆ teaches us about the coefficients p(n)?
First of all, as was already observed by Hardy and Ramanujan [GH18] using the
modularity of ∆(τ) we can estimate the p(n) for large n as follows:

log p(n) ' π
√

2n

3
+O(n−1). (47)
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In fact, Hardy and Ramanujan concluded the following in [GH18]. Consider
a weight-k modular form f(τ) on Γ ⊂ SL2(Z) with Fourier expansion f(τ) =
∞∑

n=−c
anq

n. Then the coefficient an is approximated by

an = 1
2

√
2
∣∣∣ c
24

∣∣∣1/4−k/2 (n− c/24)
k/2−3/4

e2π
√
|c/6|(n−c/6)

(
1 +O(n−1/2)

)
, (48)

where we assumed a−c = 1, but this is not important. The derivation of equation
(48) is straightforward. It is basically an approximation of the contour integral
an =

∮
f(q)q−n−1dq on its saddle-point after performing an S-transformation

(S =

(
0 −1
1 0

)
for Γ = SL2(Z)). This formula, due to Hardy and Ramanujan,

is actually Cardy’s formula in a mathematical disguise (or rahter, vice versa). In
the derivation of [Car86], Cardy assumes the modularity of a partition function
Z(τ) =

∑
n anq

n of a two-dimensional CFT of a torus C/(Z ⊕ τZ). The c in
(48) is then just the central charge of the CFT and n plays the role of L0, the
energy eigenvalue, and indeed:

S[CFT ] = log an ∼ 2π
√

c
6 (L0 − c/24). (49)

Going back to the coefficients of modular forms, the derivation of the formula
(48) only uses one element of the group Γ. But Γ is infinite dimensional and we
expect to be able to get a better approximation. We can actually exploit the
infinity of Γ to get an exact answer for the coefficients. The first example of an
exact computation of coefficients of a modular object was by Rademacher, and

is was on computing the coefficients of the j-functions j(τ) =
∞∑

n=−1
cnq

n. The

derivation [Rad38] uses a nice way to draw the contour using Ford circles based
on Farey sequences. The result is

cn =
2π√
n

∞∑
k=1

Ak(n)

k
I1

(
2π
√
n

k

)
, (50)

with n > 0. Here Ik(z) = i−kJk(ik) is the imaginary Bessel function of the first
kind, Jk(z) = 1

π

∫ π
0

cos(kτ − z sin(τ)))dτ for k ∈ Z. Slightly more general, we
can perform such a “Rademacher series” for any weight-k modular form f(τ) on
Γ [Rad43]. To this end, first split f(τ) into its polar part f−(τ) and its non-

polar part, f = f− + f̂ , f =
∑∞
n=−c q

n, f− =
∑
n<0

anq
n. We can then write a

Rademacher series for the coefficients an:

an = 2π
∑
i<0

(
n− c/24

|i− c/24|

)
ai

∞∑
r=1

1

r
Kl(n− c/24, i− c/24; r)×

I1−k
(4π

r

√
|i− c/24|(n− c/24)

)
(51)
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where we used the Kloosterman sum Kl(n, i; r) =
∑
d(r) exp 2πi

(
dnr + d−1 i

r

)
where d(r) means d mod r. Note that in equation (50), Ak(n) = Kl(n,−1, k).
It is from the asymptotics of the Bessel function Iα(z) ∼ 1

2πz e
z as Re(z) → ∞

that the expression (48) is an approximation of equation (51).
Expression (51) looks rather cumbersome indeed. We can however simplify the
expression as follows. First, map the function f(q) to its Farey Transform Zf =

(q∂q)
1−w

f(q). Note that Z• : Mk → M2−k, that is Farey’s transform maps
weight-k modular forms to weight-(2 − k) modular forms. Now let Z−f = Zf− ,
the polar part of the transform. That is, let ãn be the Fourier coefficients of

Zf =
∞∑
−c
ãnq

n, then Z−f =
∑
n<0

ãnq
n. Then the Rademacher series (51) can be

recast as

Zf =
∑

Γ\Γ∞

(cτ + d)w−2Z−f (qγ) (52)

where Γ∞ = 〈
(

1 1
0 1

)
〉 ⊂ Γ and qγ = γ · q = exp 2πi

(
aτ+b
cτ+d

)
. We see that the

Rademacher series of the Farey transform is really just a Poincaré series. In the
context of physics this series is also referred to as a Farey tail.

Lets illustrate these relations by applying them to the j-function j(τ) =
∞∑

n=−1
cnq

n. The Rademacher series simplifies to (50) and the Farey tail becomes

j′(τ) =
∑

Γ\Γ∞

exp
(
−2πiaτ+b

cτ+d

)
(cτ + d)2

(53)

Now recall from the constructions in the proof of the moonshine conjecture that
the partition function j(τ) can be seen as the partition of a conformal field theory
at central charge c = 24. Witten proposed in [?] to investigate the resemblances
between this extremal CFT and pure gravity at Chern-Simons level k = 24. For
the AdS/CFT conjecture to hold in this picture, we should have the equalities of
partition functions ZAdS = ZCFT where Z is the partition function. In [MS98]
it was shown that in three-dimensional gravity, the solutions come in an SL2(Z)
family and we can write the partition function of AdS3 as

ZAdS3 =
∑

G∈geometries

eS[G] =
∑

Γ\Γ∞

M(τ ; γ)qγ (54)

where M(τ ; γ) = 1
(cτ+d)2 , the measure factor for the gravity partition sum. So

the Farey tail expansions can through AdS/CFT duality be read as a sum over
saddle points - geometries - of gravity in AdS3. In the original proposal [?],
the Farey tail was executed in a more rigorous setting, where AdS/CFT stands
firm. The modular object in question there is not the j-function, but the elliptic
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genus χ(τ, z; k) of the Hilbert scheme of k points on K3. For large k we believe
the AdS/CFT duality to hold in this context, so that χ(τ, z; k) can be seen
as a gravitational partition function, on AdS3 × S3 × K3. The elliptic genus
Ell[K3](τ, z) on K3 itself we gave in equation (41) and if we decompose it in
its Fourier coefficients Ell[K3](τ, z) =

∑
n≥0
r2≤4n

c(n, r)qnyr we can find the elliptic

genus χ(τ, z, k) on Hilbk(K3), the Hilbert scheme of k point on K3 using the
generating function from DMVV, [DMVV97]:

∞∑
k=1

χ(q, y; k)pk =
∏

n>0,m≥0
`∈Z

(1− pnqmy`)−c(nm,`) (55)

We can subsequently use a Farey transform that generalizes to Jacobi forms. In
this case, take an index-k weight-w Jacobi form φ(τ, z). Then its Farey Transform

Fφ is defined as Fφ =
∣∣q∂q − 1

4k (y∂y)2
∣∣3/2−w · φ(τ, z). We can then perform

the Rademacher series and identify all terms with quantities in a Chern-Simons
theory on SU(2)× S3 ×K3.
It is a beautiful result that the Rademacher series has an application in physics.
Here we will use the Rademacher series in finding the equivalent of the genus
zero property (that was so important in formulating the monstrous moonshine

conjecture) in the formulation of moonshine for the mock modular forms H
(2)
g (τ).

The trick is to first find a set of conditions that is equivalent to the genus-
zero property of the Hauptmoduls for some Γ in monstrous moonshine, without
explicitly having to compute the function-fields associated to that Γ. In [DF11]
it was shown that such a condition exist indeed in terms of a Rademacher sums
as follows, and we will first illustrate the idea for monstrous moonshine.

Consider for Γ ⊂ SL2(Z) the Γ-invariant function Tg : H → C, Tg holomor-
phic with a simple pole in q at the cusp τ = i∞. Also, for the same Γ, consider
the following Rademacher sum:

RΓ(τ) = Reg

 ∑
γ∈Γ\Γ∞

q−1
γ

 (56)

The convergence properties of the sum in (56) are subtle and we need some reg-
ularization. For example, for the case Γ = Γ(1) = SL2(Z), we know the sum
should be RΓ(1)(τ) ∈ k(X(1)), that is the Rademacher sum should be propor-
tional to the j-function up to a shift. In his work [Rad39], Rademacher already
noticed that

j(τ) = −12 + lim
K→∞

∑
|c|,|d|≥K
(c,d)=1

e

(
−aτ + b

cτ + d

)
− e

(
−a
c

)
(57)
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where in the sum the subtraction by e
(
−ac
)

is the unique factor that renders the
sum convergent without spoiling the Γ(1)-invariance. This is the regularization
procedure for all congruence subgroups in SL2(Z). We also introduced the no-
tation e(x) = exp(2πix) for brevity.
Going back to the monstrous moonshine, the following was shown in [DF11]:
Let T : H → C be a holomorphic function, invariant under Γ ⊂ SL2(Z). Fur-
thermore let T (τ) have a simple pole in q = e(τ) at the cusp at infinity. Then
k(X(Γ)) = 〈T 〉, that is T generates the function of fields on the modular curve
X(Γ), iff T = RΓ. Following up, the interesting conclusion in [DF11] is that:

Conjecture. [Conway-Norton-Duncan-Frenkel] For each g ∈ M, the McKay-
Thompson series Tg(τ) satisfies Tg(τ) = RΓg (τ), with Γg the invariance group
of Tg(τ).

With this conjecture in hand, we can try to formulate a conjecture for the
Mathieu group, as we no longer should need the genus-zero property. That does
need however the expansion of the Rademacher apparatus to the more general
mock modular forms. Recall that the modular objects in the Mathieu moon-
shine conjecture, Hg(τ), are mock modular forms of weight 1/2. In [DF11]
the techniques of Rademacher summation were suitably generalized for the pur-
pose of Mathieu moonshine. In a slim notation the Rademacher sum for some
Γg ⊂ SL2(Z) is

Rn|h(τ) = Reg

 ∑
γ∈Γ0(n)\Γ∞

−2q
−1/8
γ[n,h]

 . (58)

The input of the Rademacher sum is now the integers (n, h). They encode
information about the cycle-shape of g ∈ M24, written as a permutation on 24
letters. The integer n is the order of g and h the length of the shortest cycle in
this representation. As always, further input is the polar order, −1/8 in this case,
and the congruence subgroup Γ0(n). The action of γ[n, h] on q now also depends
on the cycle information (n, h). We will write the rather cryptic notation in
expression (59) out more explicitly, along the lines of (57).

Rn|h = lim
K→∞

∑
γ∈BK

e

(
− cd
nh

)
e
(
−γτ

8

) ε−3(γ)

(cτ + d)1/2
(59)

where ε(γ) is the multiplier system of η(τ) and BK is the “rectangle” BK =
{γ mod Γ∞|0 < c < K,−K2 < d < K2}.
We are now ready to state the Mathieu Moonshine conjecture [CD12]

Conjecture. [Cheng-Duncan] For each element g ∈M24 the McKay-Thompson

series H
(2)
g satisfies H

(2)
g = Rn|g.
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Note that besides having the conceptual advantage of circumventing the
genus-zero property of monstrous moonshine, conjecture (2.2) has the computa-
tional advantage that with the input of just the polar term q−1/8, the cycle-shape
of g and the congruence subgroup Γ0(n), we can simply compute Rn|h on a com-
puter and compare results with the McKay-Thompson series. The conjecture
(2.2) has been verified for a large number of coefficients. What remains to be
constructed is the actual module K(2) as in equation (44). At press time, this is
still an open problem.

2.3 The umbral groups

The elliptic genus (41) on K3, Ell[K3](τ, z), is a (weak) Jacobi form of weight 0
and index 1. Upon decomposition into characters of the N = 4 superconformal
algebra, the mock modular object H(2) naturally arises, and this object is sub-
ject to the Mathieu moonshine conjecture (2.2). Inspired by this conjecture, we
may wonder if we can generalize this conjecture to weak Jacobi forms of higher
index m. Lets restrict to Jext0,m, the space of weak Jacobi forms of weight 0 and
index m that have an expansion in terms of characters of the N = 4 supercon-
formal algebra. It was shown in [CDH14] that dim Jext0,m−1 = 1 if m − 1|12 and
zero otherwise. So in this generalizations we can hope to find an analogue of
the conjecture (2.2) only for the integers m = 2 (which corresponds to Math-
ieu moonshine) and m = 3, 4, 5, 7, 13. In analogue with the decomposition of

Ell[K3](τ, z) we may take an extremal Jacobi form Z(`)(τ) = 2φ
(`)
1 with φ`1 a

weak extremal Jacobi form of index `−1, ` ∈ Λ = {2, 3, 4, 5, 7, 13}. We first split
of ψ(`) = Ψ1,1Z

(`), where

Ψ1,1 = −1
θ1(τ, 2z)η(τ)3

θ1(τ, z)2
. (60)

Then we take the “finite part” ψ(`),F (where ψ(`) = ψ(`),F + ψ(`),P and ψ(`),P

the polar part. Now, as is typical for Jacobi forms, we may decompose ψ(`),F in
a theta-expansion

ψ(`),F (τ, z) =

`−1∑
r=1

H(`)
r (τ)θ̂(`)

r (τ, z) (61)

where the index-m theta functions are θ̂
(m)
r = θ

(m)
−r − θ

(m)
r , with (see appendix

(A) for more on theta expansions and the notation used in [EZ85])

θ(m)
r (τ, z) =

∑
n∈Z

q(2mn+r)2/4my2mn+r. (62)

Note that here H
(2)
1 is the mock modular form that we already encountered

in conjecture (2.2), H
(2)
1 = H

(2)
e . This explains the superscript notation. The
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other objects, H
(`)
r , are vector valued mock modular forms. This means that

the completion (recall the definition (3) of mock modular forms) Ĥ
(`)
r of H

(`)
r

transforms as Ĥ
(`)
r (τ) = νrs(γ)Ĥ(γτ)

(`)
s (cτ + d)−k for weight k (here k = 1/2),

ν(γ) a matrix-valued function on Γ for γ ∈ Γ. They all have an expansions

H
(`)
r (τ) = −2δr,1q

−1/4` + O(q1/4`) and it actually follows from spectral flow
of the N = 4 superconformal algebra that the mock modular forms have an
expansion

H(`)
r =

∑
n

cr(n− r2/4`)qn−r
2/4`. (63)

Now that we have found the proper generalization for the object H(2)(τ) of Math-
ieu moonshine, we can look at its Fourier coefficients to see if we can recognize
the dimensions of irreducible representations of other (simple) groups. We take
some examples from [CDH14]:

H
(2)
1 = 2q−1/8

(
− 1 + 45q + 231q2 + 770q3 +O(q4)

)
(64)

H
(3)
1 = 2q−1/12

(
− 1 + 16q + 55q2 + 144q3 +O(q4)

)
(65)

H
(3)
2 = 2q2/3

(
10 + 44q + 110q2 + 280q3 +O(q4)

)
(66)

H
(4)
1 = 2q−1/16

(
− 1 + 7q + 21q2 + 43q3 +O(q4)

)
(67)

H
(4)
2 = 2q3/4

(
8 + 24q + 56q2 + 112q3 +O(q4)

)
(68)

H
(4)
3 = 2q7/16

(
3 + 14q + 28q2 + 69q3 +O(q4)

)
(69)

In H
(2)
1 we of course recognize the dimensions of the irreducible representations

of M24 and, after pulling out our ATLAS of Finite Groups [CCN+85] we rec-

ognize in H
(3)
1,2 the characters of the group 2.M12, where M12 denotes another

Mathieu group and n.G means the group with normal subgroup Zn such that
(n.G)/Zn = G. In the context of finite groups we will occasionally write n = Zn.
At ` = 4 we recognize in the series (67) and (68) the dimensions of the irre-
ducible representations of the group 2.AGL3(2), the affine linear group in three
dimensions over the field F2. In fact this pattern permeates for all `, that is,
for each ` we can find a group G(`) such that the dimensions of its irreducible

representations are recognized in the functions H
(`)
r . As the functions that are

attached do these groups are (vector valued) mock modular forms, and as such
are characterized by their shadow, the groups that correspond to these functions
are called umbral groups (the word umbra stand for “a shaded area ...” in the
Merriam-Webster). The index ` is referred to as the lambency (where lambent is
Latin for licking, as the flame of a candle that licks like a tongue in the darkness,
or “softly bright or radiant” in the same dictionary — expressing the moonshine
of it all). The umbral groups in question are listed in table (III.4).
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Table III.4: The umbral groups G(`), (`− 1)|12

l 2 3 4 5 6 7 13
G` M24 2.M12 2.AGL3(2) GL2(5)/2 GL2(3) SL2(3) 4

Knowing the drill by now, we are led to conjecture the existence of modules

K(`) =
⊕

0<r<l

K(`)
r (70)

K(`)
r =

⊕
k∈Z

K
(`)
r,k−r2/4` (71)

where the grading in the module (71) is in accordance with the expansion of the
functions (63). Note that the modules K(`) are bi-graded over Z × Q. These
modules first of all should have the property that

H(`)
r =

∑
k∈Z

r2−4k`<0

dim
(
K

(`)
r,k−r2/4`

)
qk−r

2/4`. (72)

And here we again want to associate functions H
(`)
g,r to all group elements g ∈

G(`) so that these functions should equal graded characters over these bi-graded
modules K(`):

H(`)
g,r =

∑
k∈Z

r2−4k`<0

ch
K

(`)

r,k−r2/4`
(g)qk−r

2/4`. (73)

Just like in the case of Mathieu moonshine, there is now the nuisance of refor-
mulating a moonshine conjecture like in the case of the monster group, as there
is no direct analogue of the genus-zero property. We saw in section 2.2 how to
formulate the Mathieu moonshine conjecture using the Rademacher sum. Here
we will have to do the same. We only need to extend the Rademacher sum tech-
niques discussed in section 2.2 to vector valued modular forms. The idea is very
much like in formula (59), just a little more cumbersome, and we will not spell
out all details here but rather refer to [CD12] for technical details. Importantly,
the conjecture of umbral moonshine can be extended for all umbral groups:

Conjecture. [Cheng-Duncan] For the umbral groups G(`), with

` ∈ {2, 3, 4, 5, 7, 13}, we have H
(`)
g = R

(`)
n|g

where R
(`)
n|g is a generalization of the Rademacher sum to (`−1)-vector-valued

mock modular objects of weight-1/2.
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After the first umbral moonshine paper [CDH14], it was noted that the um-
bral groups G(`) in table (III.4) are all automorphism groups of Niemeir lattices.
There are 23 such lattices X all with their own group of automorphisms GX and
in [CDH13] the umbral moonshine conjecture was expanded to a conjecture on
umbral moonshine for all these groups GX , each with their own vector valued
mock modular form that acts as the McKay-Thompson series of a graded module
GX .
In [DGO15], it was proven that the umbral moonshine modules K(l) exist, al-
though no explicit construction was given. Earlier in [Gan12] already established
this for the group M24.

3 Generalized umbral moonshine

We have now formulated Umbral Moonshine, and one might expect a form of
generalized moonshine for the umbral groups, that is the existence of mock mod-

ular forms H
(l)
g,h for the umbral group G(`) so that the coefficients of H

(`)
g,h contain

information about the centralizer subgroups CG`(g) ⊂ G(`).
In [GPRV13, GPV13] this idea was applied to the biggest of the umbral

groups, the Mathieu group M24. As stated in the introduction and as we will
see below, a crucial ingredient in computing the properties of the twisted and

twined partition function Z
(`)
g,h(τ) under modular transformations is the third

cohomology group H3(G(`), U(1)). For the monster group we unfortunately do
knot yet know what this group is explicitly, but for the Mathieu group M24 we
do know the result [DSE09]:

H3 (M24, U(1)) ∼= Z12 (74)

This will allow a computation of the modular properties of the twisted twined
elliptic genera. Taking up the original observation on the K3 elliptic genus as
described in section 2.1 and the concepts of generalized umbral moonshine in
section 1.4 the the following construction follows quite naturally:
Consider a K3 sigma model H, a supersymmetric conformal field theory, with
some automorphism group G = End(H). Let g, h ∈ G and [g, h] = 1. Let Hg de-
note the g-twisted subsector Hg ⊂ H. Here we implicitely presume the existence
of a vertoex operator algebra that has M24 as global group of endomorphisms,
although an exlplicit construction is lacking at this point.

The element h induces a linear action on Hg and we may consider the g-
twisted h-twined genus φg,h(τ, z):

φg,h(τ, z) = TrHg

(
h(−1)FL+FRqL0 q̄L̄0y4J3

0

)
(75)

Note that φe,e is just the elliptic genus, φe,e = Ell[K3](τ, z) and φe,h are the
h-twined genera as in [EH11, Che10, GHV10]. Combining the properties of
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te Mathieu genus and its expansion in terms of characters of the N = 4 SCFT
algebra, and the properties of the generalized moonshine functions, the g-twisted
h-twined genera are in [GPRV13] conjectured to enjoy the following properties
for φg,h(τ, z):

1. Ellipticity and Modularity (weak Jacobi):
φg,h(τ, z + κτ + κ′) = e(−κ2 + 2κz)φg,h(τ, z)

φg,h(γτ, γz) = χg,h(γ)e
(
cz2

cτ+d

)
φgahc,gbhd(τ, z)

2. Conjugation:
φg,h(τ, z) = ξg,h(k)φgk,hk(τ, z)

3. Expansion in Projective Characters:
φg,h(τ, z) =

∑
0≤r∈λg+ 1

N Z

TrHg,r (ρg,r(h)) ch 1
4 +r,`

(τ, z)

4. Consitency :
φe,e = Ell[K3](τ, z) and φe,g as in [Che10, GHV10]

5. Group Cohomology :
χg,h ∈ H2 (CM24

(g), U(1)) , ξg,h ∈ H2 (CM24
(g), U(1)).

Moreover there is an ω ∈ H3 (M24, U(1)) and a surjective map
ψg : H3 (M24, U(1)) → H2 (CM24(g), U(1)) so that ω and ψg completely
determine the two-cycles χg,h and ξg,h.

The first condition states that all g-twisted h-twined genera are weak Jacobi
forms of weight 0 and index 1 and with a multiplier system χg,h under a subgroup
Γg,h ⊂ SL2(Z). The second states that the genera are not quite class functions
but rather ‘projective’ class functions, that is class functions up to a phase. In
the third we see the generalized moonshine property. In this notation, N denotes
the order of the twist, ord(g) = N . The factor λg ∈ Q is the overall fractional
power in the q-expansion. For example, λe = 1/8. We also denote with ch 1

4 +r,`

the characters of the N = 4 algebra (actually the Ramond sector therof). The
Hg,r now iss the graded g-twisted module, Hg =

⊕
rHg,r and each component

carries a projective representation ρg,r of the centralizer subgroup CM24(g). We
refer to the appendix for more on projective representations and the relation with
group cohomology. The fourth statement is simply a statement of consistency
that ensures normalizations or on par with those of earlier results. Finally, the
fifth condition states that we can actually compute the phases and multipliers
from group theory.

3.1 Classification of the M24 genera

For each pair of commuting elements (g, h) ∈ M24 ×M24 we in principle have
an associated g-twisted h-twined genus φg,h(τ, z) obeying the conditions 1-5 in
the list above. But actually from the condition we see that many such paris are
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related by an SL2(Z) transformation or an action from the group by conjugation.
In fact, we can extend the action of SL2(Z) to an action of the full GL2(Z) by
noting that

φ∗g,h(τ, z) = χg,h
(

1 0
0 −1

)
φg,h−1(τ, z) (76)

where φ∗(τ, z) = φ(−τ̄ ,−z̄) and z̄ denotes complex conjugation. So we may
append the matrix

(
1 0
0 −1

)
to SL2(Z) giving the full general linear group GL2(Z).

So the first thing we will want to do is classify the independent genera, that is,
take the set P = {(g, h) ∈M24 ×M24 | [g, h] = 1}/ (GL2(Z)×M24). The action
of GL2(Z) on a pair (g, h) just generates the rank two Abelian subgroup 〈g, h〉 ⊂
M24. Together with the action of M24 onto itself by conjugation this means that
the independent g-twisted h-twined genera φg,h are in one-to-one correspondence
with M24-conjugacy classes of rank-two Abelian subgroups 〈g, h〉 ⊂ M24. The
Abelian subgroups of rank-one correspond to the functions φe,g. These functions
are already computed in [GPRV13, GPV13]. There are indeed 21 such rank-one
Abelian subgroups in M24. There are however a total of 34 rank-two Abelian
subgroups 〈g, h〉 hence 34 possible independent g-twisted h-twined genera φg,h.

But upon closer inspection at the conditions 1-5 in the twisted twined gen-
era, we can conclude that actually some may be obstructed on group theoretic
grounds. We can actually find two different such obstructions:

1. Consider g, h, k pairwise commuting elements of M24. Conjugation invari-
ance up to phases inplies that φg,h = ξg,h(k)φg,h so that is we may find
such a triplet (g, h, k) with ξg,h(k) 6= 1 we may conclude that φg,h = 0.

2. Consider a pair (g, h) so that (gk, hk) = (g−1, h−1) for some k ∈ M24.
Conjugation and modularity imply φg,h = χg,h

(−1 0
0 −1

)
ξg−1,h−1(k)φg,h.

So for such a pair (g, h) that has χg,h
(−1 0

0 −1

)
ξg−1,h−1(k) 6= 1 we may

conclude that φg,h = 0.

The quest is now to find cases in the 34 rank-two Abelian subgroups that are
not obstructed. For analyses like this, and the classification of the 34 mentioned
rank-two subgroups and their conjugation calsses, we use GAP [GAP]. So first
we have to understand how to compute the phases and multipliers from the group
theory. To this end we go back to the interpretation of the twisted and twined
genera in terms of partition functions of an orbifolded conformal field theory. In
[DVVV89] it was shown that the partition sum Z(τ ;M/G) of a conformal field
theory on the orbifold M/G,G ⊂ End(M) can be expanded as

Z(τ ;M/G) =
∑
[A]

1

|CG([A])|
∑

g∈CG(g[A])

Zg[A],h (77)

where still

Zg,h(τ) = TrHg
(
ρg(h)qL0−1

)
= g2

h
(τ) (78)
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As can be seen in the list 1-5, the twisted sectors Hg form projective represen-
tations of CG(g), where in this context G = M24. We refer to appendix C for
more on projective representations, but a projective representation ρ of G has

ρ(g1)ρ(g2) = c(g1, g2)ρ(g1g2) (79)

where c(·, ·) : G × G → U(1) is a 2-cocycle, c ∈ H2(G,U(1)). Hence, again see
appendix for details, we can conclude that

Zg,h =
cg(h, k)

cg(k, hk)
Zgk,hk (80)

where cg ∈ H2(CG(g), U(1)). In [Ban90] the modular properties of twisted
twined paritition functions are worked out:

Zg,h(τ + 1) = cg(g, h)Zg,gh(τ) (81)

Zg,h(−1/τ) = ch(g, g−1)Zh,g−1(τ) (82)

Together we can now express the multipliers and the phases for the genera in
terms of the two-cycles cg:

χg,h
(

0 −1
1 0

)
=

1

ch(g, g−1)
(83)

χg,h ( 1 1
0 1 ) = cg(g, h) (84)

χg,h
(

1 0
0 −1

)
=

1

cg(h, h−1)
(85)

ξh,g(k) =
cg(h, k)

cg(k, hk)
(86)

Finally, there is a surjective map ψg : H3(G,U(1)) → H2(CG(g), U(1)) that
takes a 3-cocycle α and sends it to a 2-coycle cg. This map is inspired by work
on Chern-Simons theory on finite groups, and was first introduced in [DW90].
The map reads, explicitly:

ψg(α) = cg(h1, h2) =
α(g, h1, h2)α(h1, h2, g

h1h2)

α(h1, gh1 , h2)
(87)

The trick is then to find the unique 3-cocycle α that reproduces the phases and
multipliers for the known and trivial genera φe,h so we can subsequently com-
pute, from this α, all the phases and multipliers for φg,h.
Here we first of all need to be able to do explicit computations on H3(G,U(1)).
Fortunately, the group structure of H3(M24, U(1)) is known as
H3(M24, U(1)) ∼= Z12, but we will also need to be able to do explicit computa-
tions on the cocycles, that is find actual representations of the cycles. For the
group M24, that has |M24| = 210 · 33 · 5 · 11 · 23 = 244823040 this is hard if not
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impossible to do by hand. For all the computations in the cocyles, we therefore
used GAP [GAP], the system for computational discrete algebra. In GAP we
used the package HAP [HAP], a package for homological algebra programming
that provides functions for group (co)homology. We refer to the arXiv files of
[GPRV13, GPV13] for the transcripts of the GAP files with a complementary
text file on how to open and read them.

First, after listing all the 34 rank-two Abelian subgroups of G(2) = M24, we
have to scan these groups and check if they give rise to an obstruction. After
tossing out all the obstructed subgroups, we are left with a smaller set

A(`) = {〈g, h〉 ∈ P | (g, h) unobstructed}. (88)

For the group M24 we list the unobstructed rank-two Abelian subgroups in table
(III.5). We listed the group-structure of the rank-two Abelian subgroup as well
as the congruence subgroup under which the corresponding function has the
conjectured modular behavior. This congruence subgroup is π(Γ̃g,h), where

Γ̃g,h =
{((

a b
c d

)
, k
)
∈ SL2(Z)×M24 | (gahc)k, (gbhd)k = (g, h) or (g−1, h−1)

}
(89)

and π : SL2(Z) × M24 → SL2(Z) denotes the projection on the special linear
matrix. Finally in the table we listed the names of the conjugacy classes of the
group elements according to the conventions in GAP which are as close to the
ATLAS conventions as possible.

Table III.5: The unobstructed rank-two Abelian subgroups of M24

# Structure Γg,h Element names

1 Z2 × Z4 Γ0(2) (2A)(2B)2(4A)4

2 Z4 × Z4 Γ0(2) (2A)3(2A)8(4B)4

3 Z4 × Z4 Γ0(2) (2A)3(2A)8(4B)4

4 Z2 × Z8 Γ0(4) (2A)(2B)2(4B)4(8A)8

5 Z3 × Z3 Γ(1) (3A)8

6 Z3 × Z3 Γ0(3) (3A)2(3B)6

Knowledge of the congruence subgroups and the multiplier system and phases
proves to be sufficient to construct the g-twisted h-twined genera for the M24

explicitly.
To see this, first of all we note that the space of weak Jacobi forms Jk,m forms
a ring, generated over the modular forms (see appendix (A) for details):

Jk,m = 〈φ0,1, φ−2,1〉M∗ (90)
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that is to say, let φk,m be a weight-k index-m weak Jacobi form. Then

φk,m =

m∑
i=0

ωi(τ)φ0,1(τ, z)m−iφ−2,1(τ, z)i (91)

with ωi(τ) ∈ Mk+2i(Γg,h, χ) a modular form on Γg,h with multiplier system χ.
We refer to the appendix (A) for details and definitions on φ0,1 and φ−2,1.

In the case of interest — index 1, weight 0 weak Jacobi forms with appropriate
multiplier systems — this extends to the observation that

φ(τ, z) = c0φ0,1(τ, z) + c1ω2(τ)φ−2,1(τ, z) (92)

where c0 ∈ C and ω2(τ) a weight-2 modular function on Γg,h with multiplier χ.
For weak Jacobi forms with non-trivial multiplier system this readily yields that
c0 = 0. For the cases at hand4 we can write ω2(τ) as an eta-product:

ω2(τ) =

∏
ηdi(niτ)∏
ηdj (njτ)

(93)

We know the multiplier systems of the eta functions η(nτ) so we just need to
find an eta-product that matches the multiplier χ.
As an example, consider the example of group #4 in the list (III.5). The rank-
two Abelian subgroup is generated by an element g ∈ 2B and h ∈ 8A. The
congruence subgroup is Γ0(4) and from the cohomology we can, using GAP
and HAP read off the multiplier system. To be completely specific, we take a
representation where M24 is considered as a subgroup of S24, generated by the
three elements M24 = 〈σ1, σ2, σ3〉 with (and we omit cycles of length one):

σ1 = (1, 2, . . . , 22, 23)

σ2 = (3, 17, 10, 7, 9)(4, 13, 14, 19, 5)(8, 18, 11, 12, 23)(15, 20, 22, 21, 16)

σ3 = (1, 24)(2, 23)(3, 12)(4, 16)(5, 18)(6, 10)

(7, 20)(8, 14)(9, 21)(11, 17)(13, 22)(15, 19)

In this presentation we take for g ∈ 2B and h ∈ 8A:

g = (1, 10)(2, 14)(3, 8)(4, 5)(6, 22)(7, 20)(9, 18)

(11, 23)(12, 24)(13, 19)(15, 16)(17, 21)

h = (2, 14)(3, 9, 8, 18)(4, 6, 21, 19, 15, 24, 20, 11)

(5, 22, 17, 13, 16, 12, 7, 23)

With these cycle presentations we can find elements r and k such that
((gh4)k, (h−1)k) = (g, h) and (gr, (gh)r) = (g, h) with subsequent multiplier

4that is, the cases where M2(Γg,h, χ) does not contain newforms
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relations (83)-(86).

φ2B,8A(τ + 1) = cg(g, h)φg,gh = cg(g, h)
cg(gh, r)

cg(r, h)
φg,h = iφg,h (94)

φ2B,8A( τ
−4τ+1 ) =

∏3
i=1 ch(h, ghi)

ch(g, g)cgh4(h, h−1)

cg4h(h−1, k)

cg4h(k, h)
φg,h(τ) = −φg,h(τ)

(95)

Using the slightly abbreviated notation [a, b; c, d] =
(
a b
c d

)
we summarize this as

T = [1, 1; 0, 1], P = [1, 0;−4, 1], χ(T ) = i, χ(P ) = −1 for T, P ∈ Γ0(4).
The only eta-product that satisfies these properties is ω2(τ) = η(τ)2η(2τ)2.
Hence:

φ2B,8A = c1η(τ)2η(2τ)2φ−2,1. (96)

From the appendix A we read off that φ−2,1 = −ϑ1(τ,z)2

η(τ)6 . We fix the constant

c1 by matching the coefficients with those of the projective character table of
CM24

(2B) (this is an overall normalization so this does not at all render the
result trivial) and we find that with this requirement c1 = −4. Hence we indeed
make contact with the function that is found in [GPRV13], where they namey
find

φ2B,8A = 2
η(2τ)2

η(τ)4
ϑ1(τ, z)2 (97)

The other five functions can be found in the same way, using the eta-products,
or using the techniques of [GPRV13]. We list the results in table (III.6):

Table III.6: The unobstructed g-twisted h-twined genera φg,h for M24.

# 〈g, h〉 φg,h

1 〈2B, 4A2〉 4η(2τ)2

η(τ)4 ϑ1(τ, z)2

2 〈4B, 4A3〉 2
√

2η(2τ)2

η(τ)4 ϑ1(τ, z)2

3 〈4B, 4A4〉 2
√

2η(2τ)2

η(τ)4 ϑ1(τ, z)2

4 〈2B, 8A1,2〉 2η(2τ)2

η(τ)4 ϑ1(τ, z)2

5 〈3A, 3A3〉 0
6 〈3A, 3B1〉 0

Now we are ready to check the generalized moonshine conjecture. Again with
the aid of GAP we print the character tables for the projective representations
of the relevant centralizer subgroups CM24

([g]). For the worked out case g ∈ [2B]
we print the table and the decomposition of the graded module.



3. Generalized umbral moonshine 117

3.2 The type-A umbral groups

In this chapter we have introduced the concept of moonshine: the conjecture that
for specific groups there exist infinite graded modules such that the characters
of these modules equal certain specific (mock) modular objects. Orginally, the
conjecture was a statement about the monster group M and the j−function and
other Hauptmoduls jΓ, but we saw how the conjecture extends to the so-called

umbral groups G(`), with mock modular forms H
(`)
g attached to the conjugacy

classes [g] of G(`).
We also introduced a generalization of moonshine for the monstrous group (where
computations and proofs are still sparse) where Hauptmoduls were attached to
conjugay classes of centralizer subgroups of the monster group. We worked this
out more explicitly for the largest umbral group M24.
It is natural to extend this computation to all umbral groups G(`). That is
it is natural to conjecture the existence of infite graded modules for all the
centralizer subgroups CG(`)(g) where the characters of these modules are again
mock modular, or in terms of physics, where the g-twisted h-twined genus is a
weak Jacobi form with certain phases under some subgroup Γ ∈ SL2(Z). In this
final section we will present evidence that points towards the existence of such
modules.
In doing so we follow the rationale of finding the generalized g-twisted h-twined
genera for M24. That is, first we compute all rank-two subgroups of the umbral
groups G(`) and their conjgacy calsses, as they are in one to one correspondence

with the twisted twined genera φ
(`)
g,h. The amount #A(`) of such rank-two Abelian

subroups is listed in table (III.7). What we see right away from table (III.7) is

Table III.7: Umbral groups, their third cohomology and the number #A(`) of
rank-two Abelian subroups

` 2 3 4 5 7
G(`) M24 2.M12 2.AGL3(2) GL2(5)/2 SL2(3)
H3
(
G(`), U(1)

)
12 8⊕ 24 3⊕ 4⊕ 8 3⊕ 4⊕ 4 24

#A(`) 34 18 13 5 0

that lambency ` = 7 is obstructed from generalized moonshine right away, as
there are no rank-two Abelian subgroups in SL2(3). In the table we also included
the GAP/HAP computation of the third cohomology group H3(G(`), as the
multiplier systems and the phases are set by an elements α(`) ∈ H3(G(`)) through
the map (87). Then, for all these rank-two Abelian subgroups we compute
which ones are obstructed. The unobstructed subgroups are then listed in tables
(III.8),(III.9),(III.10) ending up, for the lambencies ` = 3, 4, 5, with a small list

of admissible independent genera φ
(`)
g,h.
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In this document we only consider lambencies ` ≤ 7 and we refer to [CdLW16]
for the higher lambencies.

Table III.8: The non-trivial rank-two Abelian subgroups of G(3)

# Structure Γg,h Generators Element names

1 Z2 × Z2 Γ(1) 〈2B,2a〉 (2B)(2C)
2

2 Z2 × Z2 Γ0(2) 〈2B,2b〉 (2A)(2B)
2
(2C)

3 Z2 × Z2 Γ(1) 〈2B,2e〉 (2C)
3

4 Z2 × Z4 Γ0(2) 〈2B,4a〉 (2B)(2C)
2
(4B)

2
(4C)

5 Z2 × Z2 Γ0(2) 〈2C,2b〉 (2C)
3

6 Z3 × Z3 Γ0(3) 〈3A,3a〉 (3A)
6
(3B)

2

7 Z3 × Z3 Γ0(3) 〈3B,3a〉 (3B)
8

8 Z3 × Z3 Γ0(3) 〈3B,3b〉 (3B)
8

9 Z3 × Z6 Γ0(6) 〈3B,6g〉 (2A)(3B)
8
(6B)

8

10 Z3 × Z6 Γ0(6) 〈3B,6h〉 (2A)(3B)
8
(6B)

8

11 Z4 × Z2 Γ0(4) 〈4A,2a〉 (2A)(2B)(2C)(4A)
4

12 Z6 × Z3 Γ0(6) 〈6A,3a〉 (2A)(3A)
6
(3B)

2
(6A)

6
(6B)

2

Table III.9: The unobstructed rank-two Abelian subgroups of G(4)

# Structure Generators Γg,h Element names

1 Z2 × Z4 〈2B,4b〉 Γ0(4) (2A)(2B)
2
(4A)

4

2 Z2 × Z2 〈2C,2c〉 Γ(1) (2C)
3

3 Z4 × Z4 〈4A,4c〉 Γ0(4) (2A)(2B)
2
(4A)

4
(4B)

8

Table III.10: The unobstructed rank-two Abelian subgroups of G(5)

# Structure Generators Γg,h Element names

1 Z2 × Z4 〈4A,4c〉 Γ
(5)
4A,4c (2A)(2B)(2C)

From the tables (III.8), (III.9) and (III.10) we see that there is, in the inde-
pendent twisting twining genera, only a rather small number of conjugacy classes
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of G(`) that acts as a twist element for the group. In these tables we identified:

Γ
(5)
4A,4c = 〈 ( 1 0

0 1 ) , ( 0 3
1 2 ) , ( 2 1

3 0 ) , ( 3 2
2 3 ) 〉 (98)

For example, for lambency ` = 5, we notice that only the twists occur for
g ∈ {2A, 4A} and we will see that the g ∈ 2A twist is trivial in a sense also so
that only twist g ∈ 4A So we will only consider these twists, as all others are in
some orbit of these or the trivial cases that stem from cyclic Abelian subgroups

(that is are in the orbit of the known umbral twinging genera φ
(`)
e,h. In the

appendix we print all the projective character tables for the centralizer subgroup
CG(`)([g]) for g a twist element that occurs in the tables (III.8), (III.9) and
(III.10) of independent generalized genera. We give the structural descriptions
of the centralizers themselves in tables (III.11), (III.12), (III.13). We also indicate
in these tables the degree of the central extension of the centralizer subgroups.
If the degree of the central extension is one, then the projective representation is
actually just equal to the ordinary representation. We computed the centarlizer
subgroups with GAP and used the notation where Zn = n. Also, G = L : M
denotes the semi-direct product, that is, L is normal in G, G = LM and L∩M =
{e}. The group Qk is the generalized quaternionic group:

Qk := 〈a, x |x2 = a2k−1

, a2k = 1, ak = a−1〉 (99)

Table III.11: The structure descriptions of the centralizer subgroups for ` = 3

g CG(3)(g) [Schur(C) : C]

2B ((((2×Q8) : 2) : 2) : 3) : 2 4
2C ((((2×Q8) : 2) : 2) : 3) : 2 4
3A 3× SL2(3) 3
3B 2× (((3× 3) : 3) : 2) 2
4A 4×A5 2

Table III.12: The structure descriptions of the centralizer subgroups for ` = 4

g CG(4)(g) [Schur(C) : C]

2B (((4× 4) : 2) : 2) : 3 4
2C (2× 2× 2× 2) : 2 16
4A (4× 4) : 2 2
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Table III.13: The structure descriptions of the centralizer subgroups for ` = 5

g CG(5)(g) [Schur(C) : C]

2B (4× 4) : 2 4
4A 4× S3 2

3.3 The umbral twisted twined genera

It is natural to extend the conjectures of generalized monstrous moonshine
and umbral moonshine to a combined conjecture that we may dub ‘general-
ized umbral moonshine’. The logic is the following: Consider again the (weak)

Jacobi form φ
(`)
h (τ, z) we encountered for umbral moonshine. We first intro-

duced an meromorphic Jacobi form of weight 0 and index ` − 1 by splitting of

ψ
(`)
h = Ψ1,1(τ, z)φ

(`)
h (τ, z) (see equation (60) for a recollection of the definition of

Ψ1,1). Then we introduce for ψ
(`)
h (τ, z) its finite (non-polar) part

ψ
F,(`)
h (τ, z) =

`−1∑
r=1

H
(`)
r,h(τ)θ̂(`)

r (τ, z) (100)

where now the H
(`)
r,h are vector valued mock modular forms that are, in the

umbral moonshine conjecture, the graded traces of the graded umbral modules

K
(`)
r . The theta functions are given in equation (62).

We want to generalized this à la generalized monstrous moonshine. Our
approach is as follows. First, in all the functions above, we replace the twining
element h by the ‘twisted twined’ notation h 7→ (e, h), where e ∈ G(`) is just the

identity element or trivial twist. This then gives rise to the Jacobi forms φ
(`)
e,h.

Next we conjecture the existence of Jacobi forms φ
(`)
(g,h) for (g, h) ∈ {G(`) ×

G(`) | gh = hg}. We conjecture that all such φg,h are Jacobi forms of index
`−1 obeying the conditions of generalized Mathieu moonshine (3)-(5), only with
condition 1. and 5. replaced by 1.’ and 5’. where in 5’. only the group M24 in
5. is replaced by the umbral group G(`) and in 1. the transformation property
of the Jacobi form of index 1 is replaced by the transformation properties of a
Jacobi form of index `− 1 weight 0:

1. Ellipticity and Modularity (weak Jacobi):
φg,h(τ, z + κτ + κ′) = e

(
(−κ2τ − 2κz)(`− 1)

)
φg,h(τ, z)

φg,h(γτ, γz) = χg,h(γ)e
(

(`− 1) cz2

cτ+d

)
φgahc,gbhd(τ, z)

We can now just like in the case of umbral moonshine introduce the meromorphic

weight 1 index ` − 1 Jacobi form ψ
(`)
g,h(τ, z) = Ψ1,1φ

(`)
g,h(τ, z) and consider the
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theta-decomposition of the finite part

ψ
F,(`)
g,h =

(`−1)∑
r=1

H
(`)
r (g,h)θ̂

(`−1)
r (101)

Now the consistincy condition φe,h = φh is replaced by the condition for the

mock modular forms H
(`)
r (g,h) that

H
(`)
r (e,h) = H

(`)
r,h (102)

where the H
(`)
r,h are the mock modular functions of umbral moonshine as in

[CDH14, CDH13].
The generalized umbral moonshine conjecture now states the following:
Consider an umbral group G(`), and element g ∈ G(`) and the centralizer sub-

group CG(`)(g). We conjecture the existence of an infinitely graded module C(`)
g

of the group CG(`)(g):

C(`)
g =

⊕
0<r<`

C(`)
g,r (103)

C(`)
g,r =

⊕
k∈Z

C(`)
g;r,k−r2/4` (104)

where the functions H
(`)
r (g,h) are

H
(`)
r (g,h) =

∑
k∈Z

r2−4k`<0

ĉh
(`)

Cg;r,k−r2/4`(h)qk−r
2/4` (105)

and again ĉh denotes projective character.

Our task in this section is, to find the functions H
(`)
r, (g,h) and compute its

q-expansions. In doing so we departure from the work on generalized Mathieu

moonshine in the following way. In trying to find the functions H
(`)
r (g,h), we as-

sume the modules (103) to exist and the functions H
(`)
r (g,h) to obey the conjecture

(105) indeed.

Next we start with the ‘trivial’ functions H
(`)
r (e,h) that were already computed

in [CDH14, CDH13].
Then using the generalized umbral moonshine conjecture, we compute all the

functions that are in the orbit of H
(`)
r (e,g) for some g, under the group action of

G(`)×GL2(Z), that is we compute all H
(`)
r,(g′h′) where (g′, h′) = (khck−1, khdk−1)

for some k ∈ G(`). This gives us a lot of functions and we can hope that this al-
ready gives rise to a unique decomposition of the module in therms of projective
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representations of the centralizer subgroups in question by demanding decom-
position in terms or projective characters. Generically however only knowledge

of the functions H
(`)
r/(g′h′) is not enough and there will not be a unique such

decompostions in the relevant projective chracters.

Note the following however. For lambency higher than ` = 2, the umbral
groups G(`) have a non-trivial centre. For the groups we consider here (` =
3, 4, 5), this centre is

Z(G(`)) = Z2 = 〈z(`)〉. (106)

In all stated cases, the element z(`) ∈ Z(G(`)) is a member of the conjugacy class
2A in the ATLAS definitions.
Note that quite trivially for the central element z(`), the centralizer subgroup

CG(`)(z(`)) is just the group itself, CG(`)(z(`)) = G(`). Hence it is natural to
conjecture that

H
(`)
r (z,h) = JrsH

(`)
s (e,h) (107)

where J is a unitary matrix with complex elements Jrs that are U(1)-valued.

We will illustrate how to obtain functions H`
r,(g,h) where (g, h) are not in the

orbit of (e, h′) by taking the example of ` = 5, g = 4A. We know that there
should be genuine generalized umbral moonshine functions in this case from table
??. First we compute via the Rademacher summation method the coefficients of

all the functions H
(`)
r;(g,h) such that g ∈ 4A and (g, h) ∼ (e, h′)or (z, h′′) where z a

central element of G(`) and ∼ denotes equivalence under the action of SL2(Z)×
G(5). These coefficients are printed in tables (III.14, III.15) with black letters
for the conjgacyclasses, as opposed to the red conjgacy classes in the centralizer
CG(5)(4A).
Next we demand a decomposition in terms of projective characters of CG(5)(4A).
We printed the projective character tables for the twist g = 4A in the appendix,
in table III.26. We find under this assumption a unique choice for the Fourier
coefficients of the new functions. In this case, the new functions read

H
(5)
r,(4A,4c) ∼ H

(5)
r,(4A,4d) ∼ H

(5)
r,(4A,2b) ∼ H

(5)
r,(4A,2c). (108)

Notice that for the “new” functions — the functions

H
(5)
1,(4A,h)(τ) =

∞∑
n=0

bnq
40n+1

80 (109)

H
(5)
2,(4A,h)(τ) =

∞∑
n=0

cnq
40n+9

80 (110)
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Table III.14: McKay–Thompson series H
(5)
4A,h;1

[h] 1a 2a 4a 4b 4c 4d 2b 2c 3a 6a 12a 12b

n/80

1 1 1 1 1 1 1 1 1 1 1 1 1
41 4 4 -4 4 0 0 0 0 -2 -2 2 -2
81 3 3 3 3 1 1 1 1 0 0 0 0
121 7 7 -7 7 1 1 1 1 1 1 -1 1
161 12 12 12 12 0 0 0 0 0 0 0 0
201 12 12 -12 12 0 0 0 0 0 0 0 0
241 20 20 20 20 0 0 0 0 2 2 2 2
281 28 28 -28 28 0 0 0 0 -2 -2 2 -2
321 36 36 36 36 0 0 0 0 0 0 0 0
361 49 49 -49 49 1 1 1 1 1 1 -1 1

Table III.15: McKay–Thompson series H
(5)
4A,h;2

[h] 1a 2a 4a 4b 4c 4d 2b 2c 3a 6a 12a 12b

n/80

9 3 3 3 3 1 1 1 1 0 0 0 0
49 5 5 -5 5 1 1 1 1 1 1 1 1
89 8 8 8 8 0 0 0 0 -2 -2 2 -2
129 12 12 -12 12 0 0 0 0 0 0 0 0
169 17 17 17 17 1 1 1 1 1 1 -1 1
209 24 24 -24 24 0 0 0 0 0 0 0 0
249 36 36 36 36 0 0 0 0 0 0 0 0
289 47 47 -47 47 1 1 1 1 1 1 1 1
329 60 60 60 60 0 0 0 0 0 0 0 0
369 84 84 -84 84 0 0 0 0 0 0 0 0

H
(5)
4A,h;3(τ) = H

(5)
4A,h;2(τ)

H
(5)
4A,h;4(τ) = H

(5)
4A,h;1(τ)

with h in red — the coefficients obey

bn =

{
1 if 40n+ 1 = k2 for some k ∈ N

0 else
(111)

(112)
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cn =

{
1 if 40n+ 9 = k2 for some k ∈ N

0 else
(113)

(114)

so that we may write these functions as theta functions, namely

H
(5)
(4A,4c),1(τ) =

∑
n∈Z

q(10n+1)2/80 (115)

H
(5)
(4A,4c),2(τ) =

∑
n∈Z

q(10n+3)2/80 (116)

or

H
(5)
(4A,4c),1 = θ

(5)
1 (τ/4, 0) (117)

H
(5)
(4A,4c),2 = θ

(5)
3 (τ/4, 0) (118)

Finally, we may write the finite part of full Jacobi form as

ϕF4A,4c(τ, z) =

4∑
r=1

H
(5)
r,(4A,4c)(τ)θ̂(5)

r (τ, z) (119)
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Appendix

A (Weak) Jacobi Forms

In this appendix we collect some relevant facts about (weak) Jacobi forms of
weight k and index m. All of the following is taken from [EZ85], also following
the notation of said citation.

A Jacobi form, that is a function φ(τ, z) with conditions (2.1)-(3) is called weak
if c(n, r) = 0 unless n ≥ 0. Condition (2) implies a periodicity of the coefficients
c(n, r) of the Jacobi forms, namely

c(n, r) = c(n′, r′) if r′ ≡ r mod 2m, n ≡ n+
r′2 − r2

4m
(120)

This, in turn, implies that we can expand a Jacobi form in terms of theta func-
tions. For a Jacobi form φ(τ, z) we have

φ(τ, z) =
∑

µ mod 2m

hµ(τ)θ(m)
r (τ, z) (121)

where the hµ(τ) are a set of 2m weight k − 1/2 vector valued modular forms

hµ(τ) = q−µ
2/4m

∑
n≥0

cn,µq
n (122)

and the index-m theta functions are

θ(m)
r =

∑
n∈Z

q(2mn+r)2/4my2mn+r. (123)

The space of weak Jacobi forms Jk,m of weight k and index m is isomorphic to
a direct sum of vector spaces of modular forms, namely

Jk,m ∼=
k+2m⊕
i=k

Mi, k even (124)

Jk,m ∼=
k+2m−3⊕
i=k+1

Mi, k odd (125)

and in fact, for k even, Jk,m is generated by two weak Jacobi forms, φ0,1 and
φ−2,1, that is for φk,m ∈ Jk,m:

φk,m =

m∑
i=0

ωiφ
i
−2,1φ

m−i
0,1 (126)
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where ωi ∈Mk+2i. Conventionally the generators are

φ−2,1 = −ϑ
2
1(τ, z)

η6(τ)
(127)

φ0,1 = − c

π2
pφ−2,1 (128)

where ϑ1 denotes the first Jacobi theta function and p the Weierstrass function.

B Group Cohomology

In this appendix we give a brief hands-on introduction to cohomology of discrete
groups, without assuming any knowledge about homological algabra, that is
we introduce the subject explicitely thourgh te definitions of co-chains. As an
application we will want to take G finite, but the statements below apply to
generic discrete groups.
Let A be a G-module and let i be an integer, i ≥ 0. The set of i-cochains is the
set Ci(G,A) of functions from Gi to A

Ci(G,A) =
{
f : Gi → A

}
. (129)

We can define a differential map di : Ci(G,A)→ Ci+1(G,A) as

di(f)(g0, g1, g2, . . . gn) = g0 · f(g1, g2, . . . gn)

+

n∑
k=0

(−1)kf(g0, . . . , gk−1gk, gk+1, . . . , gn) + (−1)n+1f(g0, . . . , gn−1).

(130)

This map enjoys the property that di+1 ◦ di = 0. Now we set B0(G,A) = 0 and
for i ≥ 1:

Zi(G,A) = ker di, Bi(G,A) = im di−1 (131)

Hi(G,A) = Zi(G,A)/Bi(G,A). (132)

We refer to Zi(G,A) as the set of i-cocycles and Bi(G,A) as the set of i-
boundaries of G with coefficients in A. The group Hi(G,A) is the ith cohomology
group of G with coefficients in A. It is a measure of how non-exact cochains are.
Note that the zeroth group cohomology is the set of elements in A fixed by G:
H0(G,A) = AG = {a ∈ A | ga = a for all g ∈ G}. For our purpouses we will be
intereseted in trivial G-modules only. For such a trivial G-module A, note that
H1(G,A) ∼= Hom(G,A), the group of homomorphisms form G onto A.
Also for trivial modules, the second cohomlogy group classifies the central exten-
sions of a group G. A central extension E of G by A is a short exact sequence

1→ A→ E → G→ 1 (133)
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with imA�E a normal subroup and G/E ∼= A, such that A ⊂ Z(A), where Z(E)
is the center of E. Two (central) extensions E1 and E2 are called isomorphic if
there is an isorphism φ : E1 → E2 such that the follow diagram commutes:

A −→ E1 −→ G

↓ ↓φ ↓ (134)

A −→ E2 −→ G

The set of isomorphism classes of such central extensions is then isomorphic to
H2(G,A). This will be important to us in the context of projective representa-
tions, as explained in appendix (C).
The notion of cohomology for finite groups makes contact with the topological
notion of cohomology as follows. Let X be a topological space that has πnX = 0
for all n ≥ 2, where πn denotes the nth homotopy group. Such a space X is
sometimes called aspherical. Let π1X = G be a discrete group. With these
presumptions we call X the classifying space BG of G, X = BG. Topologi-
cally, X depends only on π1X = K. In a broader context, BG is also called
an Eilernberg-Maclane space. For example, the unit circle S1 is the classifying
space of Z, S1 ∼= BZ. Small finite groups can give rise to rather complicated
calssifying spaces, as the example BZ2

∼= RP∞ examplifies.
The nth cohomology of BG with coefifcients in the G-module A is isomorphic to
the nth group cohomlogy:

Hn(BG,A) ∼= Hn(G,A) (135)

This theorem may sometimes help us in computing the cohomlogy of discrete
groups. Computing classifying space, however, is notoriously hard and the iso-
morphism (135) is primarily used vice versa.
Rather, we used GAP with the HAP package [GAP, HAP] to do the computa-
tion in group cohomlogy. To get some idea what type of group may arise, consider
the permutation group on three elements, G = S3 and its trivial Z-module. The
cohomology groups are then computed with GAP:

H1(S3,Z) ∼= 0

H2(S3,Z) ∼= Z2

H3(S3,Z) ∼= Z6

H4(S3,Z) ∼= Z2 ⊕ Z12

H5(S3,Z) ∼= Z2 ⊕ Z12

H6(S3,Z) ∼= Z2 ⊕ Z2 ⊕ Z12

and the cohomlogy Hn(S3,Z) stabalizes for n ≥ 6: Hn(S3,Z) ∼= H6(S3,Z) for
n ≥ 6.
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C Projective Representations

Projective representations play a central role in the theory of generalized moon-
shine. A projective representation ρ of G is a group homomorphism

ρ : G→ PGL(V,F) (136)

fromG onto the projective linear group PGL(V,F) = GL(V,F)/F∗ where GL(V,F)
is the group of general linear transformations on a vector space V over the field
F. We will be interested in the case F = C only, but the theory applies to any
field F.
One can formulate a projective representation in terms of a regular representation
as follows. First of all note that PGL(V,F) is a central extension of GL(V,F).
In fact for π : GL(V,F) → PGL(V,F), where π maps an element of SL2(Z) to
its corresponding equivalence class in PSL2(Z), we have ker(π) = Z (GL(V,F))
where Z (GL(V,F)) = {A ∈ GL(V,F) |A = diag(ai, . . . ai)} for some ai ∈ F.
This allows us to pull back ρ to a regular linear representation

σ : C → GL(V,F) (137)

where C is a central extenstion of G. We will often refer to C as the Schur cover
of G, and will sometimes write C = Schur(G).
Projective representations of a group G are classified by the second group coho-
mology of G, H2(G,F∗). We can see this as follows. A projective representation
ρ satisfies

ρ(gh) = c(g, h)ρ(g)ρ(h) (138)

for g, h ∈ G and c(g, h) : G×G→ F∗ a 2-coycle of G. Associativity of G implies
the condition on the cocyle

c(h, k)c(g, hk)− c(g, h)c(gh, k) = 0. (139)

The cocyle c depends on the choice of projective representation. We can chooce
another projective representation ρ′(g) ∼= ϕ(g)ρ(g) ∈ PGL2(Z) where
ϕ : G→ F∗ is a group homomorphism. This yields the equivalence

c′(g, h) = ϕ(gh)ϕ−1(g)ϕ−1(h)c(g, h) ∼= c(g, h) (140)

That is to say that a projective representation defines a unique cocycle in
H2(G,F∗) and vice versa. the cocycle c(g, h) is sometimes referred to as the
Schur multiplier. Note finally that the characters of projective representations
fail to be class functions. Let χ = Trρ denote the character of a projective
representation ρ, then clearly χ(g)χ(h) = c(g, h)χ(gh).
In printing the projective character tables for the centralizer subgroups that
we encounter in moonshine we also extensively used the following consitency



condition. Let g, h be commuting elements in G, gh = hg and let g̃ ∈ C be a lift
of an element g ∈ G to the central extension, so that λ : C → G, λ(g̃) = g. The
regular characters χ̃ = Trσ then should satisfy

χ̃
(
g̃h̃g̃−1h̃−1

)
=
c(h, g)

c(g, h)
(141)

D Projective Character Tables

We print out the (projective) character tables. The names of the conjugacyclasses
are as in GAP.
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IV

The Dark Side of the Moon

1 Introduction

The account of the microscopic degrees of freedom of a black hole is one of
the milestone successes of string theory. Since the first report [SV96], the mi-
crostates of many types of black holes have been understood in terms of degrees
of freedom of string theory. In [SV96], the Bekenstein-Hawking entropy of a five
dimensional supersymmetric black hole solution is computed. This black hole
solution is realized as a near horizon geometry of a stack of D-branes, the theory
of which has an effective description in terms of a 2-dimensional Conformal Field
Theory. One can associate a microscopic entropy to this effective theory with the
Cardy formula [Car86], and it is shown that this microscopic entropy correctly
reproduces the Bekenstein Hawking entropy of the black hole geometry, at least
to leading order in the charges.

1.1 The BTZ black hole and the Hawking-Page phase transition

In three dimensions, it has been noted that the Bekenstein-Hawking entropy of
the BTZ black hole has the form of a Cardy formula as well [?]. The BTZ black
hole is a solution to three-dimensional Einstein(-Maxwell) gravity with positive
cosmological constant Λ = −1/`2 with ` the AdS radius. The solution reads

ds2 = −
(r2 − r2

+)(r2 − r2
−)

r2
dt2 +

r2`2

(r2 − r2
+)(r2 − r2

−)
dr2 +r2

(
dφ+

r+r−
r2

)
(1)

where the mass and the angular momentum read

M =
r2
+ + r2

−
`2

, J =
2r+r−
`

. (2)

To this solution we can associate a Bekenstein-Hawking entropy

SBTZ =
A

4G(3)
= π

√
`(`M + J)

2G(3)
+ π

√
`(`M − J)

2G(3)
. (3)
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This expression remarkably is of the form of the Cardy formula if we make the
association of the central charge in formula (??) and further identify

M =
1

`
(L0 + L̄0)− c

12
(4)

J = L0 − L̄0 (5)

Then, indeed, if we for now put J = 0 and denote by ∆ the eigenvalue of L0

(note that L0 = L̄0), expression (3) reads

SBTZ = 4π

√
c

24

(
∆− c

24

)
(6)

in agreement with the Cardy formula (9) for ∆� 1.
In the canonical ensemble, pure gravity in AdS3 has two phases — the BTZ and
the thermal, global AdS phase — as competing saddle points. In a chiral theory,
the competing free energies read

logZBTZ =
π2c

6β
(7)

logZEAdS =
c

24
β (8)

where EAdS is an abbreviation for Euclidean AdS space, to remind us we’re in a
thermal ensemble. The theory picks the leading saddle point so to leading order
the gravitational free energy read

logZ = max{ logZBTZ , logZEAdS }. (9)

and there’s a Hawking-Page when logZBTZ = logZEAdS , that is at

β = 2π. (10)

Note that the two free energies of BTZ and EAdS are related by the S-transformation

S : β → 4π2

β
. (11)

This S transformation is part of a larger SL2(Z) structure we find in three di-
mensional AdS gravity [MS98, DMMV00]. In fact if we introduce the modular
variable τ = iβ

2π , there is, for every γ ∈ SL2(Z) a solution to pure three dimen-
sional gravity in AdS, and we can compute the free energy as

logZγ = − iπc
12

γ(τ), γ(τ) =
aτ + b

cτ + d
. (12)

Including all saddles of this sort gives a rich phase-space structure [MW10].
However, we will be interested in purely imaginary potentials τ , and in that case
only the BTZ and EAdS contribute to the partition function.
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The fact that the BTZ black hole has a Cardy formula is surprising for the
following reason. The derivation of the Cardy formula, as worked out in the
preface (), holds for a fixed central charge c and ∆ → ∞ (that is, for very high
temperature β → 0). However, the Bekenstein-Hawking entropy of the BTZ
black hole we trust only in the typical semiclassical limit

c→∞, ∆ ' c (13)

We would like to understand why and under what circumstances the entropy
of a (holographic) CFT obeys the Cardy formula in this different, semicalssical
regime. In [HKS14], this issue was cleared up in a rather general context of CFTs
that have holographic properties. We find it instructive to derive the validity of
Cardy’s formula in the holographic context in a different way. We find that it is
instructive to perform the calculation of [Car86] in the grand canonical ensemble,
introducing a chemical potential conjugate to the central charge.

Working in the grand canonical ensemble, we investigate the phase space
structure, not only as a function of the temperature, but now also as a function
of the chemical potential. We find that indeed turning on the chemical potential
conjugate to the central charge enriches the phase space, and we find a phase
transition a la Hawking and Page, now not just at a critical temperature, but
also at a critical chemical potential.

In what follows we will focus on CFTs in two dimensions that have the
following characteristics of a holographic field theory: a large N limit and a
low lying sparse spectrum. In particular, we will look at symmetric product
orbifolds of some seed CFT. For the sake of computation we will mainly be
interested in the extremal monster CFT for the seed theory, but some conclusions
extend straightforwardly to general symmetric product CFTs, and apply for
example to the D1-D5 CFT at the orbifold point. Although it has the named
characteristics of a holographic field theory, it is at this point not known if there is
a gravitational dual to the symmetric product of the monster theory, nor is there
an explicit embedding in string theory known at this point. We will however
present evidence that hints towards a higher spin dual.

1.2 The monster CFT and its symmetric products

The monster CFT is a conformal field theory of central charge c = 24, first
introduced by Frenkel et al., see [FLM88]. The CFT has, per construction, as a
partition function the j-invariant

Z(q) = j(q)− 744 = J(q) =
∑
n≥−1

c(n)qn = q−1 + 196884q +O(q2), (14)

where we use shifted J(q) = j(q) − 744, compared with the more conventional
definition of the j-invariant j(q). The j-invariant is a very rich mathematical
objects, encountered in the study of modular forms and it is the very j-invariant
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that has the monstrous moonshine property: its Fourier coefficients are also the
dimensions of a particular module of the monster group (the so called monster
module, V #). It is because of this that the CFT is called the monster CFT, and
that the CFT was constructed in the first place. In [FLM88], the theory was
realized as free bosons on R24/Z2 modulo the Leech lattice. More details are
presented in chapter (III) of this thesis.

The monster theory itself is probably not a complete holographic field theory.
There is no dimensionless quantity N that we can take to be very large (as c = 24
can hardly be considered large). What we can do however is take the c = 24
theory, and take the symmetric product orbifold CFT. Now, the N th symmetric
power of the CFT, (CFT)N/SN , will have central charge c = 24N , and we
can take N � 1. This procedure to obtain a putative holographic theory in the
context of AdS3/CFT2 is inspired by the holographic framework in the context of
the D1/D5 CFT (see e.g. [Mal99, AGM+00]). The symmetric product orbifold of
a seed CFT with primary operator content |Φi〉 takes the N -fold tensor product
of that CFT but projects out the states that are related by a permutation element
σ ∈ SN . This projects out a lot of states (of the order of N !) but it includes
a new sector of twisted states — states that pick up a monodromy in SN . See
[DHVW85, DHVW86, DVVV89] for more details on the construction.

Due to an identity by Dijkgraaf et al. [DMVV97, Dij98] and Keller [Kel11],
there is an expression for the generating function of the partition function (16)
of the N th symmetric orbifold:

Z(p, q) = p
∏
n≥1
m≥−1

(1− pnqm)−c(nm). (15)

For later use, the notation is such that q = exp(2πiτ), p = exp(2πiρ) where
τ = iβ+θ and ρ = iµ+φ. We will mostly be interested in the case τ = iβ, ρ = iµ.
Also, note that we shifted N by one, to make the formulas more symmetric.

2 The Cardy formula in the grand canonical ensemble

The spectrum of field theories that, in some limit, admit a holographic dual, can
typically be divided into two parts: the perturbative states (sometimes called
“light states”) on the one hand, and the black hole states on the other. The
sense in which the perturbative states are called “light” is that normally for a
holographic theory we need to take some dimensionless quantity, say N , very
large in order for quantum gravitational effects to be suppressed on the bulk
side of the duality. The energy of the (primary) states that describe the black
holes scales proportionally with N , whereas the energy of the “light” states does
not. The energy of the black hole primaries grows parametrically faster than the
energy of the light states.
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We can single out these primary operators and consider the partition function
Zpert.(q) and Zbh(q;N). The function Zpert(q) is the partition function of per-
turbative states. The partition sum Zbh(q;N) denotes the black hole partition
sum and encompasses the primary operators that have a conformal dimension
that scales with N .

It is instructive but not always easy to compute the function Zpert(q). We
can hope to address questions about the ground state through Zpert(q). But
also, investigating its behavior at large energies could tell us something about
the nature of the perturbative states: are they higher spin states (with Hagedorn
spectrum), is it a free field theory, etc.?

We will be considering such holographic theories that are labelled by an
integer N . We will introduce a chemical potential µ, conjugate to N . The reason
for this is two-fold. Firstly, we will show that the introduction of this potential
elucidates the validity of Cardy’s formula outside of the conventional Cardy
regime in the realm of holographic field theories. Also, we will be interested in
taking this potential more serious and investigate the phase-state structure as a
function of µ of the theory in the grand canonical ensemble.

Although we have reason to believe our results are more general we will focus
on the extremal monster CFT sitting at c = 24. For this theory we will introduce
the grand partition function

Z(p, q) =
∑
N

pN+1ZN (q) =
∑
N,M

D(N,M)pNqM . (16)

The aim of the first part of this chapter will be to show the following properties
of the degeneracies D(N,M):

D(N,M) =

{
exp 4π

√
NM if M ≥ N

exp 2π(M +N) if M < N
(17)

in the limit where N →∞. Further still we will show that for polar states M < 0,
the degeneracy of states is universal in that is does not explicitly depends on the
central charge but only on ∆ = N +M :

D(N,M) = D∞(∆) if M < 0 (18)

That for M above some scale, the spectrum behaves like a Cardy ensemble,
and for low M is independent of the central charge is in agreement with the
expectation of a putative gravitational dual description. In the intermediate
regime the perturbative states grow according to a Hagedorn spectrum, and this
is not per se generic. We do however encounter such behavior in the context
of N = 4 SYM and holographic higher spin theories such as the WN and hs[λ]
theories [KP02, HR10, GG11, GG14]. We will actually be able to extract the
perturbative part of the spectrum exactly and will show that

Zpert.(q) =
1

q2J ′(q)
=
∏
δ

(1− qδ)−d(δ), d(δ) =
∑

n+m=δ

c(nm) (19)
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In the final part of the chapter we will interpret the chemical potential µ that is
dual to the central charge N more physically and investigate the phase diagram
in the extended (β, µ) plane.

2.1 Symmetries and poles

The function Z(p, q) is a function of τ and ρ and is invariant under shifts τ 7→ τ+1
and ρ 7→ ρ + 1. Also, in the regime |p| < 1, |q| < 1 we may expand Z(p, q) in a
Fourier series

Z =
∑
N≥0

M≥−N

D(N,M)pN+1qM . (20)

We may recover the Fourier coefficients D(N,M) by means of an inverse Laplace
transform

D(N,M) =

∮
C

dp dq p−N−2q−M−1Z(p, q) (21)

The integrand is meromorphic so the coefficients D(N,M) can be computed
by Cauchy’s theorem as the residues at the various poles. Note that the value
D(N,M) not only depends on the integrand but also on the contours C in the
ρ and τ plane.

To compute the value D(N,M) we need to understand to pole structure of
Z(p, q). To this end reconsider the product identity in (15). From the product
identify we understand that there is a pole in Z(p, q) for all values such that
pnqm = 1, for integers n,m. Recall that the Fourier-expansion (20) is valid in
the |p| < 1 |q| < 1 regime. We hence need p = q and nm = −1 so that only
n = 1,m = −1 factor in the product formula gives a simple pole at p = q. But
the SL2(Z) that sends q 7→ qγ where

qγ = exp (2πiγ(τ)) , γ(τ) =
aτ + b

cτ + d
(22)

maps the pole at p = q to any modular image: p = qγ . So if we restrict both τ
and ρ to their fundamental domains, there is only one simple pole at p = q. Also
Z(p, q) is zero only if τ → i∞ and ρ → i∞. From this we can read extract an
algebraic closed form of Z(p, q). Namely, J(q) — the Klein invariant — has one
simple pole at q = 0 and a zero at the cusp τ = i∞. This together with the pole
structure dictates that the partition function Z(p, q) should upto normalization
be

Z(p, q) =
1

J(p)− J(q)
. (23)

This reflects the anti-symmetry, Z(p, q) = −Z(q, p). At high energy, the function
Z(p, q)> reads

Z>(p, q) =
p−1 − q−1

J(p)− J(q)
(24)
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and this function has modular invariance in both p and q as well as an exact Z2

symmetry exchanging p and q. The full automorphism group hence reads

G = SL2(Z)× SL2(Z) o Z2 ' O(2, 2;Z). (25)

2.2 The spectrum at high energy: excited states

In the limit of very high energy, M ≥ N and large N , we expect the ground state
to play a subleading role in computing the degeneracies of the primary operators
of the CFT. To compute the high energy degeneracy of states of the theory, we
will first split off the ground states of the theory. Observe that for each N , the
ground state contribution is q−N , so we can write down the geometric series that
is the generating series of all the ground state contributions:

Z0(p, q) =

∞∑
N=1

pN+1q−N =
1

p−1 − q−1
(26)

A comment on the radius of convergence is in order. Note that this expression
only strictly holds in the regime where |p/q| < 1 hence, β < µ. If we cross the
line β = µ and end up in the regime β > µ we could do an expansion in p−N .
This is however an expansion in theories with negative central charge, and this
regime is note stable. See section (3) for more about this and a relation with
the wall-crossing phenomenon. We single out this ground state contribution by
introducing

Z>(p, q) =
Z(p, q)

Z0(p, q)
(27)

We will start with computing the growth of the degeneracies of Z>(p, q), the
sum with the ground states factored out. We write

Z>(p, q) =
∑
N,M

D(N,M)pNqM =
∏

n,m≥1

(1− pnqm)−c(nm). (28)

Note that this expression is symmetric in p and q and this symmetry implies

D(N,M) = D(M,N) (29)

so that:

D(N,M) =

∮
C

dτdρ e−2πi(ρN+τM)Z>(ρ, τ) (30)

where C is a contour around the poles of Z>(ρ, τ). The poles of Z>(ρ, τ) are at
all images ρ = γ(τ), γ ∈ SL2(Z), but γ 6= id. So indeed,

D(N,M) =

∮
C

dτ
∑
γ 6=id

Res
∣∣
ρ=γ(τ)

(
e−2πi(ρN+τM)Z>(ρ, τ)

)
. (31)
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These poles are at (ρ − a/c)(τ + d/c) = −1/c2, a condition that is extremized
at ρτ = −1 or, now taking τ = iβ, ρ = iµ, at β = 1/µ. We approximate the
sum over the residues by only evaluating the sum at this pole, and to the saddle
point approximation. The saddle is at N/M = β2. The degeneracies are thus,
after performing the integral over µ:

D(N,M) =

∫
dβe2π(N/β+Mβ)Z>(1/β, β). (32)

Now the final point is that, in the Cardy limit, we can evaluate the integral at
the saddle and we get

D(N,M) = exp 4π
√
NM + . . . (33)

where the Cardy limit requires M ≥ N and N large.

2.3 Including the ground states

For moderate energies M < N we expect the ground states to start playing a role.
We will now analyze the full theory, with the ground states included. The full
partition function, including the ground states, can be written as Z = Z0 ×Z>
and we expand as in equation (20). We again compute the degeneracies D(N,M)
with the contour integral

D(N,M) =

∮
C

dpdq p−N−2q−M−1Z0(p, q)Z>(p, q). (34)

Plugging in the expansion Z0 from equation (35), it is not hard to write down
the degeneracies D(N,M) in terms of the coefficients D(N,M) as

D(N,M) =

N∑
k=0

D(N − k,M + k). (35)

From the analysis in the previous section we know that in the large-N limit we

may for large M write the D(N,M) ' exp
(

4π
√
NM

)
. In this same limit we

may estimate te sum as an integral to obtain

D(N,M) '
∫ N

k=0

dk e2π
√

(N−k)(M+k). (36)

and here still in the large N limit we may, as long as M < N , approximate this
integral at its saddle point that is at k = N−M

2 , obtaining

D(N,M) ' e2π(N+M) = e2π∆. (37)

So indeed, in the regime M < N , the degeneracies grow like a Hagedorn spec-
trum. Note that N +M = ∆ is the conformal dimension of a primary operator
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at central charge N . Also, in (37), we see that for M ≥ N the leading order
contribution comes now from the k = 0 saddle and the Cardy regime is found,
that is, D(N,M) ' exp (4πNM).
In principle, theories that develop a Hagedorn spectrum look problematic. The
idea is that for a general theory with a partition function

Z(β) =
∑
∆

ρ(∆)e−β∆, (38)

with a density of states ρ(∆) that is exponential, e.g. ρ(∆) = e2π∆, the function
Z(β) may develop, as β approaches 2π, a pole as then

Z(β) −→
∆→∞

1

2π − β
, (39)

and this leads to a singularity as β → 2π. This temperature is called the Hage-
dorn temperature, βH = 2π. Theories with resonance modes such as QCD and
string theory have such a Hagedorn temperature. In string theory, this singular-
ity is resolved by the creating of black holes. It is at the Hagedorn temperature
that in the context of string theory on AdS5×S5, the Hagedorn temperature de-
scribes the Hawking-Page phase transition. It is argued that this transition can
holographically, in the dual N = 4 theory, can be interpreted as deconfinement
[Wit98b, AMM+04].

In the theory we consider, there is a similar principle at play. It is namely
below the Hagedorn temperature βH , that the spectrum is dominated by the
perturbative states that have a density of states that grows like log ρ ∼ N +M ,
whereas at and above βH these particles disappear and are replaced by the states
that grow like Cardy’s formula, log ρ ∼

√
NM . Tentatively — in the absence

of a rigid holographic dual — calling the former the light states and the latter
the BTZ states, we can also here identify the Hagedorn phase transition with a
Hawking-Page phase transition.

2.4 Perturbative states and the Hagedorn temperature

So far we focused on the working in the microcanonical ensemble: we analyzed the
microscopic degeneracies D(N,M) and investigated their behavior in different
regimes. Here we will work in the canonical ensemble, and will choose to work
with variables (β,N) and (µ,M) to have more to say about the phases of the
theory in different regimes of the parameters.

The amazing formula (15) allows us to compute the full partition function
of the N th orbifold, as indeed now: ZN (q) =

∮
C
Z(p, q)p−N−1dp, where C is

a contour in the p−plane enclosing the poles of Z(p, q∗) at a fixed q = q∗.
Knowing where the poles are, we can compute the residues at these poles and
using Cauchy’s theorem, we can compute ZN (q).

For a fixed q, there is of course a pole at p = q. But as J(q) = J(qγ), where
qγ = γ · q, γ ∈ SL2(Z), there is a pole at every p = qγ , so we have to sum over
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all the residues at qγ to obtain ZN :

ZN (q) =
∑

γ∈SL2/Γ∞

Res|p=qγZ(p, q) =
∑

γ∈SL2/Γ∞

q−N−1
γ

J ′(qγ)
(40)

where qγ = γ · q = e2πi aτ+bcτ+d .
Note that the modular properties of J(q) and J ′(q) allow ZN (q) to be written

as

ZN (q) =
1

J ′(q)

∑
γ∈SL2/Γ∞

q−N−1
γ

(cτ + d)2
. (41)

The function

1/J ′(q) =

∞∑
n≥−2

anq
n =

∑
m≥−1

mc(m)qm−1 = −q−2 + . . . (42)

plays a special role, as it sits there for all values of N and does not itself depend
on N . Recall from the first section, that the spectrum of a holographic theory
can typically be divided into (at least) two parts: the light, perturbative states
and the black hole states, and that we may introduce separate partition functions
Zpert.(q) and ZBH(q;N) that encompass these states.

We want to identify 1/J ′(q) with the partition function of perturbative states
or, in the notation of [BKM15], 1/J ′(q) = ρ∞(q). On the other hand, the factor

Z(q;N) =
∑

γ∈SL2/Γ∞

q−N−1
γ

(cτ + d)2
(43)

we want to identify with the partition function for BTZ black hole primary states,
Z(g;N) = ZBH(q;N).

It is the partition sum 1/J ′(q) that may tell us something about the nature
of the field theory, as the partition function describes the degeneracy of the per-
turbative spectrum. We will begin by analyzing the behavior of the perturbative
degeneracies at large energies.

Note first of all that we can express 1/J ′(q) in terms of a product expression
as follows. First, note that, again using Cauchy’s theorem

1/J ′(q) = Res|p=q (Z(p, q)) (44)

so that now we can use the product expression of Z(p, q) to evaluate this residue:

1

q2J ′(q)
=
∏
n,m

(1− qn+m)−c(nm) (45)
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This product may appear to be one over two indices, n,m, but in fact we can
write it as a product over one index, say δ, in the following way. Let n+m, then

define d(δ) =
δ∑

k=1

c((δ − k)k). Now:

1/J ′(q) = q2
∞∏
δ=1

(1− qδ)−d(δ). (46)

This product expression shows that the perturbative spectrum is built out of
a gas of non-interacting particles, labelled by δ, each having a partition sum
Zδ = (1− qδ)−d(δ), and Zpert.(q) =

∏
δ

Zδ.

On the other hand, consider again the expression (35), and consider the case
where M < 0. The coefficients, in the regime M < 0, read

D(N,M) =

N+M∑
k=0

D(N +M − k, k) ≡ D∞(N +M), (47)

so we find that the perturbative part of the spectrum comes from the polar,
M < 0 states and we may write∑

∆

D∞(∆)q∆ =
1

q2J ′(q)
. (48)

First of all, note that we again may estimate the coefficients D∞ by approximat-
ing the sum (47) as an integral:

D∞(∆) '
∫ ∆

0

dke2π
√
k(∆−k) ' e2π∆, (49)

where we evaluated teh integral, in the limit of large ∆ — that is large N —
at the saddle k = ∆/2. As was noted in the previous section (35), it is not as
problematic as it seems that the perturbative states grow like a Hagedorn density
of states, as for M > N , that is at the Hagedorn temperature, these states are
not in the spectrum and the density of states of the leading contribution starts
growing a la Cardy.

3 Phase transitions in the grand canonical ensemble

In this section we will show that the perturbative states of the symmetric product
have a Hagedorn growth. We will also investigate the phase space structure, by
analyzing phase transitions in the grand canonical ensemble, that is look for
Hawking Page phase transitions as a function of both µ and β.
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3.1 Extended phase diagram

In the previous section we have seen that the in the symmetric product of
the extremal monster CFT we can single out the partition sums Zpert.(q) and
ZBH(N, q) and that Zpert. has a Hagedorn spectrum at large energies. Moreover,
for finite values of N we have seen how the perturbative spectrum develops a
singularity at τ = i, a singularity that is resolved by the addition of black hole
primaries in the large N limit. In this large N limit, a sharp phase transition
occurs exactly at this Hagedorn temperature [Kel11]. This is the Hawking-Page
phase transition. In the previous section we made use of the generating function
Z(p, q), where we treated p = exp(2πiρ) as a formal generating variable.

In this section we want to give a more physical interpretation to p and identify
ρ with the chemical potential - the cost in energy to add or subtract a copy to
the symmetric product. Introducing ρ as a chemical potential extends the phase
diagram to the (ρ, τ) plane. We have seen that there is a phase transition point
at τ = i. We expect that this picture extends to a richer phase diagrams when
ρ is turned on and we will show that this is the case indeed. Really, we will
be working with purely imaginary potentials only, and set iβ = τ and iµ = ρ.
Indeed, µ is the actual chemical potential — the conjugate variable to N — and
β is the inverse temperature, β = 1/T . We will mainly be interested in the phase
diagram (β, µ).

From the grand canonical partition function we see that a singularity develops
at β = µ and at the line βµ = 1. We will plot the following contour lines to get
a more detailed picture

〈N〉 = −∂µ logZ(µ, β) = constant. (50)

From the expression for the grand canonical partition function we get

〈N〉 = −1− J ′(p)

J(p)− J(q)
(51)

and in figure (IV.1) we draw the contour plot with lines of equal charge, as a
function of µ and β.

Indeed we recognize the singular lines at µ = β and µβ = 1.

4 Automorphic forms and N = 2 BPS states

Naturally we may wonder how specific or general the discussion has been so
far. We have been focussing on a theory that has a lot of symmetry and from
this point of view it is not clear if the analyses can be straightforwardly extended
to a more general set-up.
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Figure IV.1: Extended phase space contour plot of the extremal monster CFT

Hoewever, at no point in the discussion we exploited the monster symmetry
M — the global symmetry of the target-space. The symmetry we used in deriving
the results on the degenracy of states and the phase-space structure was always
a symmetry of the world-sheet, that is the O(2, 2;Z) symmetry acting on the
world-sheet parameters (τ, ρ). This O(2, 2;Z) symmetry is more commong in
string theory, and automorphism groups of that sort occur, for example, quite
generally in the context of heterotic string compactifications. It is in the same
context that product formulas like the one in equation (15) are encountered when
analyzing the spectrum op BSP states.

In the work on stringy BPS states by Harvey and Moore [HM96], it was in
fact shown that when computing certaing integrals in the context of threshold
corrections in N = 2 heterotic string compactifications, the monstrous product
formula (15) can be seen as a specific example in a more general set-up. In a
one-loop computation on stringy BPS states, in [HM96] the following integrals
are evaluated:

Is+2,2 =

∫
F

dτdτ̄

Im(τ)

 ∑
p∈Γs+2,2

q
1
2p

2
L q̄

1
2p

2
R

 f(q)− c(0)

 . (52)

In this notation, f(q) is a modular function of weight −s/2 with expansion

f(q) =

∞∑
n=−1

c(n)qn (53)

and F is the fundamental domain of SL2(Z). These integrals can be seen as the
counterparts of the one-loop computation on the pre-potential of N = 2 Yang-
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Mills theory [SW94] for N = 2 heterotic string compactifications with vetor
matter.

For the case s = 0, we may take f(q) = J(q), although in the reference the
normalization f(q) = q−1 − 240 + O(q) is chosen. In the normalization on par
with the one in this chapter, that is f(q) = J(q), the integral I2,2 can be worked
out to give

I2,2(τ, ρ) = −4 log

e−2πiτ
∏
n>0
m≥−1

(
1− e2πi(nτ+mρ)

)c(nm)

 (54)

so that,

1/I2,2 = log (Z(p, q)) . (55)

The formula for Is+2,2 generally have a product expansions, as was shown in
Borcherd’s work [Bor95] on automorphic forms on the group O(s+ 2, 2;R).

It would be interesting to generalize the work carried out in this chapter to the
more general epressions for Is+2,2, for s 6= 0. In [HM96], explicit computations
are done for the case s = 8 (s = 0 mod 8 is easier for technical reasons), where
contact is made with automorphic forms on O(10, 2;R). What prevents us from
directly generalizing our results to the case s 6= 0 is the presence of a Weyl vector
in front of the product expression for these situations [HM96, Bor95]. It would
be interesting to understand how to compute the behavior of the degeneracies of
(BPS) states and the Cardy regime in this more general set-up.
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Samenvatting

Het Einde is nabij. Stel. De wereld vergaat in rap tempo door om het even
wat — een alles vernietigend virus, Krijt-Paleo komeet of atoomapocalyps —
en, stel, je krijgt in dit hopelijk hypotetische scenario de kans om één boodschap
achter te laten voor een toekomstige intelligente beschaving. Een zin, een idee
waaruit de post-apocalyptische archeologen moeten leren hoe intelligent, complex
en beschaafd wij wel niet waren. Welke zin, welk idee is rijk maar bondig genoeg
om precies dit uit te drukken? Geconfronteerd met deze goddank denkbeeldige
vraag opteerde de natuurkundinge Richard P. Feynman voor het idee dat

“ ... alles bestaat uit atomen — kleine deeltjes die constant rondvliegen, elkaar
aantrekkend wanneer ze bij elkaar in de buurt komen, maar elkaar afstotend als
ze op elkaar botsen.”

Hij merkte op dat

“ ... je zal merken dat die ene zin zo vol zit met informatie over onze wereld,
wanneer we er slechts een beetje verbeeldingskracht en denkwerk op loslaten.”

De verbeeldingskracht van Feynman was op zijn minst opmerkelijk en zijn denkw-
erk bijzonder diep, maar het is waar dat de “atoomhypothese” bijzonder vrucht-
baar is en de conceptuele consequenties rijk van tal. Het formuleert de fun-
damentele premisse van de scheikunde. Het leert ons waarom en hoe materie
met elkaar reageert en nieuwe materie maakt. Het verklaart en klassificeert de
verscheidenheid aan materie die we waarnemen in de Natuur. Het is door de
atomen en moleculen dat we begrijpen waarom water bevriest en verdampt en
waarom stoffen in het algemenen verschillende fases aannemen, en waarom gassen
uitzetten en inkrimpen wanneer we de temperatuur veranderen. Zelfs het begrip
temperatuur krijgt een veel concretere betekenis wanneer we de accepteren dat
materie uit atomen bestaat.

Hoewel het al duizenden jaren rondzwerft in de filosofie, wordt het atoom pas
in het begin van de negentiende eeuw opgewaardeerd naar de wetenschappelijke
status wanneer Dalton het gebruikt om de “wet van meervoudige verhoudingen”
(de observatie dat elementen typisch reageren in verhoudingen van kleine gehele
getallen) uit te leggen, en de eerste periodieke tabel der elementen wordt in 1869
gepubliceerd. Dat dit zo laat in de ontwikkeling van de moderne wetenschap
plaats vindt hoeft niet verassend te zijn: de lengteschaal van een generiek atoom
is 10−9 meter, en op veel grotere lengteschalen — die van de centimeter en hoger
— hebben we het atomaire concept niet vaak nodig om natuurlijke fenomenen
nauwkeurig te beschrijven. De planetaire bewegingswetten van Kepler, de wetten



van Newton en Bernouilli’s vergelijkingen voor vloeistofdynamica staan los van
de kennis van het atoom. Deze wetten beschrijven de natuur op lengteschalen
veel groter dan die van het atoom, en het is pas wanneer we observaties doen
op de kleinste schaal dat deze wetten onnauwkeurig worden. Andersom echter,
kunnen we deze “grote” wetten begrijpen als komende van een onderliggende,
microscopische beschrijving, en het is door gemiddelden te nemen over de wetten
die het kleinste beschrijven, dat we de wetten van de lange lengteschaal terugvin-
den. Helaas is uitmiddelen een onomdraaibaar proces en geeft enkel kennis over
deze gemiddelde — “effectieve” — wetten weinig tot geen inzicht in de micro-
scopische achtergrond. We moeten ons wel beseffen dat we enkel blij mogen zijn
dat zulke effectieve, gemiddelde wetten überhaubt bestaan. Om het stromen
van water te beschrijven zouden we zeker niet alle watermoleculen in de gaten
willen blijven houden. Een liter water bestaat uit meer dan 1025 H2O moleculen.

Af en toe tonen deze “effectieve” wetten dat ze niet compleet zijn en dat er een
fundamentelere wet achter moet zitten. Faseovergangen van vloeistoffen worden
niet beschreven door de theorie van Bernouilli en kunnen alleen begrepen worden
met een microscopische kijk. En het afwijkende gedrag van Mercurius rond het
perihelion toont aan dat de wetten van Newton en Kepler niet compleet zijn:
Einstein’s theorie van de algemene zwaartekracht was nodig om dit te begrijpen.

We begrijpen nu dat materie uit atomen bestaat, en atomen op hun beurt uit
quarks en electronen, maar de zwaartekracht is altijd erg getalenteerd geweest in
het verbergen van haar eigen microscopische beschrijving. We weten echter dat
er zo’n “atomaire” beschrijving van zwaartekracht moet bestaan, omdat er an-
ders fundamentele wetten van de quantummechanica worden geschonden. Maar
ook hier, net als bij vloeistofdynamica, geeft bij tijd en wijle zwaartekracht een
hint naar haar eigen microscopische natuur.

Een bekende consequentie van Einstein’s theorie voor de zwaartekracht zijn
zwarte gaten: massieve, compacte objecten met een aantrekkingskracht die zo
intens is dat zelfs het licht er niet van aan kan ontsnappen. Zwarte gaten zijn
recentelijk de status van theoretisch concept gepasseerd en we hebben veel aan-
wijzingen dan Sagitarrius A*, in het midden van ons Melkwegstelsel, een zwart
gat is.

Zwarte gaten zijn objecten van de grote lengteschaal. Ze zijn omringd door
een grote “horizon” — een oppervlak waarachter er geen omkeren meer mogelijk
is — die van de orde is van hun eigen massa. Dit beteket dat de straal van de
horizon van Sagitarrius A* zo’n 20 maal de zonneradius bedraagt. Deze horizon
maakt het nagenoeg onmogelijk om een zwart gat direct waar te nemen, en tot
vandaag de dag weet niemand precies wat er achter deze obscure horizon precies
plaatsvindt.



Een eerste stap richting de “atomaire” beschrijving van zwarte gaten werd gedaan
door Stephen Hawking. Met een befaamde berekening liet hij zien dat zwarte
gaten eigenlijk niet helemaal gitzwart zijn, maar een licht paarse gloed uitstralen
aan de rand van hun horizon. Door deze straling kunnen we aan een zwart gat
een temperatuur associeren. Het is alsof zwarte gaten door deze straling een heel
klein beetje van hun informatie prijs geven aan waarnemers die er ver weg van
staan. Toegegeven, deze straling is zo zwak en de “Hawking temperatuur” zo
laag, dat deze vinding van een onpraktische, onwaarneembare aard is. Maar de
conceptuele consequenties kunnen niet overschat worden.

In concreto is Hawking’s conclusie dat de temperatuur van een zwart gat omge-
keerd evenredig afhangt van haar massa: als we de massa vergroten met een
factor twee dan verlaagt de temperatuur met een factor een half. Kleine zwarte
gaten zijn warmer. Dit resultaat is erg universeel en hangt niet af van specifieke
details van het zwarte gat. Dit betekent dat wanneer we een atomaire beschrijv-
ing opschrijven voor zwarte gaten en zwaartekracht, dat deze dan dit resultaat
zal moeten reproduceren.

We kunnen deze situatie vergelijken met de meer mundane studie van vloeistof-
fen en gassen, waar het concept van een temepratuur imtiem is gelieerd aan
een microscopische beschrijving van de stof. We kunnen intuitief nadenken over
temperatuur als een maat voor hoe hard de moleculen op en neer bewegen in de
ruimte. We kunnen dan, vergelijkbaar met de theorie van gassen, de Hawking
temperatuur beschouwen als een eerste hint richting de atomen van een zwart
gat. Tijdgenoten van Hawking konden al snel concluderen dat we met behulp
van de temperatuur kunnen berekenen hoeveel van deze atomen er moeten zijn.
De conclusie was opvallend. De intuitie van een natuurkundige zou hem doen
vermoeden dat het aantal deeltjes dat nodig is om een systeem, in dit geval een
zwart gat, te beschrijven af zou moeten hangen van het volume van dit systeem.
Er werd echter opgemerkt dat het aantal deeltjes in het geval van een zwart
gat enkel af hangt van het oppervlak van haar horizon. De uitdaging is dus om
een microscopische, “quantum” theorie van de zwaartekracht te vinden die dit
opmerkelijke resultaat reproduceert.

Dit is een dissertatie over snaartheorie. En snaartheorie is een quantumtheorie
van zwaartekracht. Een van haar fundementele bouwstenen is de snaar — een
klein object met een lengte en een spanning. Net als bij de snaar van een viool
kunnen de snaren aangeslagen worden, en in snaartheorie is het een van deze
aangeslagen toestanden die het gravition beschrijft: het miscroscopische deeltje
van de zwaartekracht. Daar het een quantum theorie van de zwaartekracht is
moet het Hawking’s zwarte gaten “test” doorstaan: het moet het opmerkelijke re-
sultaat reproduceren dat het aantal microscopische toestanden van een zwart gat
enkel afhangt van de oppervlakte van haar horizon. Het is een van de mijlpalen
van de theorie dat inderdaad voor specifieke zwarte gaten die we tegenkomen



binnen de snaartheorie de voorspelling van Hakwing precies uitkomt. Op de
dag dat deze thesis wordt afgedrukt is snaartheorie de enige quantumtheorie van
zwaartekracht die dit resultaat kan claimen.

Snaartheorie beantwoord (nog) lang niet alle vragen over zwarte gaten en hun
microscopische beschrijving. Snaartheorie is bijvoorbeeld nog niet erg succesvol
geweest in het begrijpen van realistische zwarte in vier dimensies zoals Sagitar-
rius A*. Maar zelfs in de succesvolle scenario’s blijven er nog veel vragen —
van technische en conceptuele aard — onbeantwoord. Deze thesis probeert bij
te dragen aan ons begrip van de microscopische aard van zwarte gaten vanuit
een snaartheoretisch perspectief door enkele van deze technische en conceptele
vragen op te lossen.
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