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It is the purpose of this report to give a rigorous definition
of superfluidity and to show that neither the off-diagonal long range
order { ODLRO ) nor the Bose-Einstein condensation can be a sufficient
condition for superfluidity. The sufficient condition for superfluidity

in a system possessing the ODLRO is alsc presented.

We start with the Hamiltonian

H = I §j2/2m OVUE S, )
J
together with the cyclic condition
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v{ rl,.o., rj_l, rj+L,rj+l, . ,rN) = V{ rl’ ves, rj,...,rN)
where L = (L, 0, 0)Yor {0, L, 0)or (0, 0, L ). The impurity

potential as well as the potential for interparticle forces are included
in V. Suppose a uniform external field be switched onl. It exerts
the force E(t) = E exp( & t ) (e >0) on a particle along the
positive direction of the x-axis. The field is described by the vector
potential F(t) = ( F(t) , 0, 0 ) with 09,F(t) = E(t) . Then the
Hamiltonian is y{, = I ;i- ( §j + F(t) )2 + vV . In the infinite
b m
past the system is supposed to be in the equilibrium state described by
the canonical or the grand canonical density matrix o « exp{-B(H~uN)1},
The above situation represents the system contained in a slowly rotating
torus. We follow the logic of Kubo's linear response theoryz. The
linear response current against the external field F(t) is
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where J = I pjx/ m o, H *++ = [H, «+1, <(....‘> = Tr {«=- },
and ¢ * denotes the average over impurity distributions. The presence

.,

of im§urities is crucial in a consideration on superfluidity, The re-
sponse current is expressed as )y = N”lJ(t) = jl(t) + jz(t) ,
where jl(t) = A F(t) and jz(t) = 0o, E(t) with
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A= o N < J Hx J and Gs < 2 )J> .

In the above the projection operator Q is defined by
(3 = 9 and O

i

nm for En # Em for En = E .

m
it is only jz(t) that corresponds to the ordinary Ohmic current,
In fact, if we take the thermodynamic limit (denoted by Lim) and then

2 () Q

which is a generalized version of the Greenwood formula3 for the Ohmic

put € - 0 , we obtain

conductivity. The other component jl(t) represents the persistent
current, which is non-dissipative: If A 1is non-vanishing, then a finite

current exists even for an infinitesimal E(t). We have the following;

Lim A > 0 : Superfluidity.
Lim A = O H Normal fluidity,
Lim A < 0 : The assumed (ground) state is unstable.

Note that the perfect conductor ¢ = = and the superconductor Lim A
> 0 are entirely different,

To see that the ODLRO does not necessarily lead to Lim A > 0 ,
we consider here the ground state of ideal Bosons in a large one-dimen-
sional ring with a single §-function potential at the origin. The single
particle Hamiltonian is Hl = ~(1/2m}{4/ 4 x )2 + g 8(x) .
The even parity solution of Hy P K E d:k is dk « cos[k({L/2)
- x)] for 0 < x < L , where k 1is determined by tan(kL/2) = mg/k

and Ek = k2/2m. The odd parity solutions of Hy ¢ = E ¢ 15 ¢
sin{(27n/L) ({(L/2) - x)] with n =1, 2, *** and En = (2wn/L) (l/2m)
The ground state of Hy is described by ¢k0 where ko is the minimum
value of k. PFor large L , ks = (m/L) - (Zw/Lzmg) + +++« , Thus
X 2
E<“’o [J 1y {“'e> = 4 5 [<e 10" | %l
N B* m 4= (2m/L)? - ko®
Lim_ 64 4 n? . 1
. 2 _ 3 o
T™“m n=l( 4n 1) m .,

The Thomas-Kuhn sum rule A = 0 , which holds in any non-cyclic system,

has been restored by a single scatterer 1n the cyclic system. Our
system exhibits the condensation <!b ]a ] W '> gN/1% and
the obLRO ¢ ¥o | ¥ (') wix") | oV = 2 (N/L) # 0 , though there

is no superfluidity.
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Finally a system of interacting Bosons containing low concentration
Of impurities is considered. Suppose that the system possesses the ODLRO

lim Lim ~ﬂ§ﬁ“§') qif"I$> = {"Qzﬁ, # 0., We start with the formulal
! z v 'r)'u‘ o0 : -1.2 - %
A = - 2N "L -::_'<J {x') (Q/H" )J(X">'~"
where X 50 g *
'y = . 8 (x, - xT) o+ S(xy - ox! j
Jx') (1/2m) T 5 { Py (xJ x') (xj x') Py }

and x' # x", We consider the case |x' - x"] » « ., It is proved that

‘4' T % o -
4{5?(x') gyJ(xu§>ﬁ = fdy'dz' fdy"dz" lim i {/ -/ )dt e Sftlr(;'t;;HO)
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where
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with 3 = 3/3x and p{x) = the density operator. The last term in T |
does not contribute when | x' - x"|+ » . We adopt the decoupling approx-
imation, which is believed to be valid in this limit.
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where %k = 2Un/L, L= volume , and
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with a =9 TU(E) e a
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The gquantity fdm({'A(k,w Y/ w) is obtained by a general argument.

The result is dew <Atk ) = m? <, ¢2 'S ; where f(k) may be a

oo ” k2 £(k) '
function of k in the impure system. In the case of pure systems con-
sidered by the Josephson-Baym theory"r%, £(k) = Pg +
The condition for superfluidity is found to be £(k) = constant = Bs
{for small k including the smallest one, namely, k =22§/L y.

A = - _g_j;gi;iz 7 expl ik{x'-x"}] = “T—i;f—i; > 0
47 3
PP k#0  Ps

where p = mN/Q . if Py is defined by the London equation, then

Y . - PR N
Py = < 82 }2 /Py - The condition f(k) - 3; { k >0) is not
trivial. In the system of ideal (non-interacting) Bosons containing

macroscopic number of impurities, £(k) diverges as K2 , which is

rigorously proved, In this case 4 = 0 .
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