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 Introduction 2.19.1

Beam transfer functions (BTF)s encapsulate the stability properties of charged particle 
beams [1,2]. In general one excites the beam with a sinusoidal signal and measures the 
amplitude and phase of the beam response. Most systems are very nearly linear and one can 
use various Fourier techniques to reduce the number of measurements and/or simulations 
needed to fully characterize the response. Schottky noise is associated with the finite 
number of particles in the beam. This signal is always present. Since the Schottky current 
drives wakefields, the measured Schottky signal is influenced by parasitic impedances.    

 Beam Transfer Functions 2.19.2

BTFs can be for longitudinal or transverse motion, for a single bunch or multiple 
bunches. In principle they are always the same with a sinusoidal drive yielding the phase 
and amplitude of the response. When there are no collective effects the BTF is relatively 
straightforward to calculate. One simply needs to get the response of a single particle and do 
appropriate averaging of the initial synchrotron and betatron coordinates. When space 
charge and or wakefields are present things get more interesting. There is a profound 
difference between coasting and bunched beams. Longitudinal coasting beam BTFs are 
effectively a homework problem. Transverse BTFs of coasting beams can be solved within 
the approximation of transverse forces that vary linearly [3].  This covers the important case 
of arbitrary wall wakes and space charge with a transverse KV distribution. The inclusion of 
wall induced frequency spread from octupolar fields is straightforward to include but the 
effects of nonlinear space charge forces have only been addressed in crude approximation. 
Of course one can always do simulations but the difficulties associated with numerical 
convergence can be significant.  

Transfer functions of bunched beams with collective effects are difficult to calculate. The 
author knows of no closed form solutions. Various ways to numerically solve for 
appropriate moments of the Vlasov equation have been developed but generally it seems 
that numerical simulations give the quickest, most reliable results, at least for bunches that 
are short compared to the circumference of the synchrotron [4]. In this case it is possible to 
use a relatively straightforward Fourier technique to obtain the BTF spanning an entire 
revolution line with only 2 independent simulations. The idea is quite simple. Suppose you 
have a bunch that is short compared to the radius of the accelerator so that the a signal at the 
revolution frequency, frev, has a small phase advance along the bunch. Then along the bunch 
an excitation at frequency f looks much like an excitation at frequency f+frev except for a 
slip in phase from turn to turn. So, one just calculates the impulse response function of the 
bunch from single turn kicks of sin(2πft) and cos(2πft) and employs linearity. Figure 1 
shows a simulation of the transverse beam transfer function [4]. 
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Figure 1: Transverse beam transfer function obtained from two simulations. While calculated for a 
bunched beam the resolution is intentionally low to suppress the synchrobetatron structure. 

This transfer function was obtained for a bunched beam below transition with a fractional 
betatron tune of 0.25 and a negative chromaticity. This broadens the sideband near -0.25 and 
leads to enhanced Landau damping of the unstable modes with n-Qβ >0. While this figure 
was made for a bunched beam the individual synchrobetatron lines have been smoothed 
over. When individual synchrobetatron lines are resolved the data become quite rich. 
Figure 2 shows the resistive part of the BTF measured at low frequency in the presence of a 
step wake potential (like long stripline beam position monitors) for various chromaticity 
values [4].  
 

                     
 
Figure 2: Low frequency transverse beam transfer function obtained from two simulations. This is a 
high resolution image showing the detailed synchrobetatron structure. 

The solid lines in the figure are from simulations while the crosses are from a solution of the 
Vlasov equation. The near perfect agreement suggests both techniques are accurate. It is 
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clear there is a rich behavior waiting to be measured and in fact many measurements have 
been done. See [5] for a good example. It is hoped that the new methods of calculation will 
allow for more and better understanding of parasitic impedances.  

 Schottky Signals 2.19.3

Schottky signals have been used to measure the broad band longitudinal impedance in 
RHIC. The technique is straightforward. In a stable beam the broad band impedance creates 
a potential well distortion that modifies the synchrotron frequency. By measuring the 
synchrotron frequency as a function of intensity one gets the broad band impedance.  There 
is one subtlety in this technique. Any measurement one makes is, by necessity, a 
measurement of a collective mode of the beam. This includes the self excited Schottky 
modes. If the center frequency of the Schottky signal is too low the coherent tune shift can 
be quite different from the estimated incoherent response. A toy model will illustrate the 
idea. Suppose we have N particles in the bunch and approximate the equation of motion for 
particle j as 
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where ω is the unperturbed synchrotron frequency, zj is the longitudinal position of particle j,  
and Δ is the small, coherent frequency shift. For an actual wake field the sum on the right 
would be over W(zj-zk) with the highly nonlinear wake W. Such a wake is easily used in 
simulations, but not analytically tractable.  Solving Eq. (1) yields 
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where the overbars denote arithmetic means. Measurements that are dominated by the ajs 
and bjs are sensitive to the impedance. The current from the bunch is 
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where 2πR=cT for our relativistic beam. Inserting Eq. (2) in Eq. (3) and defining φ=z/R,  
the current for a single value of m is 
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With the caveat, corresponding to subtracting the arithmetic means in Eq. (2), 
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The p=0 term in the sum of Eq. (4) has frequency ω and is the coherent mode in the toy 
model. Hence we need p and m to be large enough so that Eq. (5) has little effect. We also 
need the arguments of the Bessel functions to be significant. The data shown in Fig. 3 are 
the center frequencies of synchrotron lines measured in the yellow RHIC ring as a function 
of the central curvature of the current pulse [6]. The linear correlation, corresponding to the 
variation in synchrotron tune with beam current, is clear. Figure 4 shows the broad band 
impedance obtained from the slopes of the lines in Fig. 3. For p>2 there is a nearly constant 
value. The larger values at p=1 and 2 are ascribed to low lying collective modes, similar to 
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the p=0 mode in the toy model. The blue results in Fig. 6 assume the accelerator was stable 
during data acquisition. The green lines allow for a linear drift of the synchrotron tune with 
time. The differences are comparable to the error bars. 
 

                        
Figure 3: Measured synchrotron frequency shifts as a function of intensity for 12 synchrotron 
sidebands. 

                        
Figure 4: Broad band impedance needed to produce the slopes observed in Fig. 3. 

 Conclusions 2.19.4

Beam Transfer Functions and Schottky signals are useful to constrain both machine 
impedance and beam dynamics. BTFs can be simulated quite well allowing for a detailed 
comparison between model and measurement. Conversely, Schottky signals can be used to 
study the fields present when there are no large collective oscillations, greatly simplifying 
the analysis. Additionally, these measurements are made with stable beams allowing for 
adequate set up time and minimal beam loss. 
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