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Abstract

A 3.2 m variable polarization Delta undulator [1] has been

installed at the end of the LCLS undulator line. The Delta

undulator acts an an afterburner in this configuration, using

bunching from upstream planar undulators to produce ra-

diation with arbitrary polarization. To optimize the degree

of polarization from this device, a reverse taper has been

proposed [2] to suppress background radiation produced in

upstream undulators while still microbunching the beam.

Here we extend previous work on free electron lasers with

a slowly varying undulator parameter [3] to show there is

a strong energy spread dependence to the maximum allow-

able detune from resonance. At LCLS, this energy spread

limitation keeps the reverse taper slope in the slowly varying

regime and limits the achievable degree of circular polariza-

tion.

INTRODUCTION

Circularly polarized x-rays can be used to probe ultra-

fast demagnetization processes [4], image nanoscale spin or-

der [5], and probe the chirality of biomolecules [6]. However,

no x-ray Free Electron Lasers (FELs) offer direct production

of circular x-rays. A helical undulator called the Delta und-

ualtor is being commissioned at the Linac Coherent Light

Source (LCLS) to address this shortcoming [7].

The Delta undulator is not long enough operate alone and

reach appreciable power levels. The electron beam must

therefore be prepared in advance of the Delta undulator to

maximize the power produced in the circular polarization

mode. A reverse tapered planar undulator line preceding

the Delta undulator was proposed [2] to maximize the mi-

crobunching in a beam entering the Delta undulator while

suppressing the background linear field. In this paper we

present a constraint on the effectiveness of the reverse taper

technique in FELs with a relatively large energy spread.

In the following sections, the 1D FEL equations are ex-

plored in the slowly varying detune regime. For an undulator

of period λu , Pierce parameter ρ, and z-dependent resonant

energy γr (z), the detune from the initial energy γ0 is

δ =
γ0 − γr (z)

γ0

. (1)

The detune is slowly varying when it’s change over a gain

length LG ≈ λu/4πρ is significantly less than the gain

bandwidth, which is typically several ρ [3]. Thus the slowly

∗ Work supported by U.S. DOE Office of Basic Energy Sciences under

Contract No. DE-AC02-76SF00515.

varying technique is valid when

λu

4πρ

�����
dδ

dz

�����
< ρ. (2)

At LCLS, successful 720 eV reverse taper configurations op-

erate with a maximum reverse taper detune of δ = −0.005

applied over six undulator modules, or 20 m. These condi-

tions mandate a Pierce parameter satisfying

ρ >

√

λu

4π

�����
dδ

dz

�����
= 7.7 × 10−4. (3)

Typical 720 eV reverse taper runs operate at a peak current

of 5 kA with a 30 um transverse beam size, resulting in a

Pierce parameter of 2.2 × 10−3. It is therefore instructive to

apply the slowly varying solution of the FEL equations to

soft x-ray experiments at LCLS.

In the following section we review important aspects of

FELs with slowly varying parameters. In subsequent sec-

tions we apply this formalism to a reverse tapered undulator

to calculate an energy spread limit on the effectiveness of a

reverse tapered undulator line. Finally, 3D simulations are

compared with results from the 1D theoretical framework.

WKB REVIEW

The Vlasov and Maxwell equations can be expressed in

matrix form [3],

d

dz̄

(

aν
fν

)

= iM

(

aν
fν

)

, (4)

M = *
,
−ν̄ −i

∫ ∞
−∞ dη̄

−i dV
dη̄

−
(

η̄ − δ̄
) +
-
. (5)

The dimensionless FEL variables used here are

z̄ = 2ρku z (6)

η̄ =
γ(z) − γc (z)

γ0ρ
(7)

δ̄ =
γc (z) − γr (z)

γ0ρ
(8)

ν̄ =
∆ν

2ρ
(9)

aν = −
eK[JJ]

4γ2
0
mc2ku ρ

e−i∆νku zEν (10)

fν =
2ku ρ

2

k0

Fν, (11)

where ρ and ku are the Pierce parameter and undulator

wavenumber. The Lorentz factor γ0 defines the mean beam
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energy at the start of the undulator line, while γc (z) and

γr (z) represent the mean beam energy in the absence of

FEL interaction and the beam energy resonant with the rms

undulator parameter value au (z),

γr (z) =

√

k0

2ku

(

1 + au (z)2
)

(12)

The radiation wavenumber resonant at the start of the un-

dulator line is k0. In an undulator line in a reverse taper

configuration, au increases with z.

The frequency detune is∆ν = (k−k0)/k0 = ν−1, where k

is the radiation wavenumber. The Fourier component of the

electric field is Eν . The electron energy distribution is rep-

resented by a smooth distribution V (η) and a microbunched

perturbation δF (θ, η, z). The Fourier component of the of

the distribution function is

Fν =
1

2π

∫

δF (θ, η, z)e−iνθdθ, (13)

which can be integrated to give the bunching parameter

bν =

∫

Fνdη. (14)

Eq. (4) has been solved in the case of a slowly varying

δ̄(z) to be of the form

(

aν
fν

)

= Ψ0 exp

(

−i

∫

z̄

0

(µ0(τ) + µ1(τ)) dτ

)

, (15)

where µ0 is the zeroth order growth rate and µ1 is a small

first order correction. The eigenvector Ψ0 is

Ψ0(z) ∝ *
,

1
i

µ0−(η̄−δ̄)
dV

dη̄

+
-
. (16)

With the change of variables

µ̂ = µ0 − δ̄ (17)

ν̂ = ν̄ − δ̄, (18)

the zeroth order growth rate satisfies

µ̂ − ν̂ =
∫ ∞

−∞

dη̄

η̄ − µ̂
dV

dη̄
(19)

The imaginary part of µ̂ and leads to exponential field growth.

In subsequent sections we ignore the imaginary part of µ1

as it is small and negative in a reverse tapered undualtor [3].

UPPER BOUND ON THE DETUNE

Given an energy distribution V (η̄), the growth rate Im( µ̂)

can be calculated numerically. The growth rate is typically

largest at a small negative ν̂. In a reverse taper, however, δ̄

may take on large negative values, leading to a large positive

ν̂. If ν̂ is too large, the imaginary part of µ̂ reaches zero,

killing the FEL interaction. In this section we explore the

energy spread dependent limit on the combined detune ν̂.

For a Gaussian beam with an energy standard deviation

of ζ , V (η̄) takes the form

V (η̄) =
1
√

2πζ
e−η̄

2/2ζ2

. (20)

Using this energy distribution, Eq. (19) can be expressed in

terms of the error function erf(x),

µ̂ − ν̂ = −
1

ζ2
− i

√

π

2

µ̂

ζ3
e−µ̂

2/2ζ2 *
,
1 + erf *

,
i µ̂
√

2ζ

+
-
+
-
, (21)

where

erf(x) =
2
√
π

∫

x

0

e−t
2

dt . (22)

FEL growth stops when Im( µ̂) = 0. The detune ν̂ and energy

spread ζ are purely real, so FEL growth stops when

0 = Re


µ̂ e−µ̂

2/2ζ2 *
,
1 + erf *

,
i µ̂
√

2ζ

+
-
+
-


(23)

However, the error function is purely imaginary for purely

imaginary argument, so Eq. (23) implies Re( µ̂) = Im( µ̂) =

0. Referring back to Eq. (21), this implies the upper limit

on ν̂ at a given energy spread ζ is simply

ν̂ ≤
1

ζ2
. (24)

A contour plot of Im( µ̂) is shown as a function of the

scaled energy spread and detune in Fig. 1. The Im( µ̂) = 0

contour is parameterized by ν̂ = 1/ζ2, as denoted by the

dotted line.

Table 1: Distribution Dependent ν̂ Boundary

V(η̄) Width (rms) Boundary

Eq. (20) ζ ν̂ = 1/ζ2

Eq. (A5) ζ ν̂ = 1/2ζ2

X-ray FEL’s often use a laser heater to combat the mi-

crobunching instability [8]. The laser heater imparts a non-

Gaussian energy spread on an initially Gaussian beam, modi-

fying V (η̄). If the pre-laser heater energy spread is ingorably

small, the ν̂ boundary still takes a simple form. Coinci-

dentally, as observed by one of us1, the growth rate itself

resulting from a matched laser heater is algebraic. These

results are discussed in the appendix. Table 1 presents a

summary, where the energy spread dependent upper limit

on the detune is reported for FEL’s operation with different

energy distributions.

1 A. Marinelli
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Figure 1: A numerical calculation of the growth rate Im( µ̂)

as a function of the scaled detune ν̂ and the scaled rms energy

spread ζ . FEL’s with a finite energy spread operate most

efficiently with a small negative ν̂ (yellow, green). However,

a reverse tapered FEL may operate near the Im( µ̂) = 0

boundary. This boundary is parametrized by Eq. (24). In

this calculation the energy distribution is assumed to be

Gaussian with a standard deviation of ζ .

IMPLICATIONS FOR REVERSE TAPER

EXPERIMENTS

The purpose of a reverse tapered undulator line is to sup-

press the field growth relative to the bunching. At a given

frequency ν, this means

�����
bν

aν

�����
≫ 1 (25)

is desirable. In this section, we relate this condition to the

scaled detune ν̂.

Using the definition of bν given in Eq. (14) and the evo-

lution of fν and aν shown in Eqs. (15,16), the ratio of the

bunching factor to the field is

�����
bν

aν

�����
=

�������

∫

dη̄ exp
(

−i
∫

z̄

0
(µ0 + µ1) dτ

)

1
η̄−µ̂

dV

dη̄

exp
(

−i
∫

z̄

0
(µ0 + µ1) dτ

)

�������
(26)

=

�����
∫

dη̄

η̄ − µ̂
dV

dη̄

�����
, (27)

which can be simplified with the dispersion relation in

Eq. (19),

�����
bν

aν

�����
= | µ̂ − ν̂ |. (28)

Evidently, the ratio of the bunching to the field at a given

location along the undulator line depends only on the present

detune and growth parameter. As long as the slowly varying

approximation is satisfied, |bν/aν | is independent of the

taper history.

Often the magnitude of µ̂ is close to zero, so | ν̂ | ≫ | µ̂|
for a large detune. In fact µ̂ is exactly zero on the boundary

discussed in the previous section. Therefore a large scaled

detune ν̂ means

�����
bν

aν

�����
≈ ν̂. (29)

As seen in previous section, the energy spread places an

upper limit on ν̂. This upper limit transfers to the present

situation,

�����
bν

aν

�����
≤

1

ζ2
=

ρ2γ2
0

σ2
γ

, (30)

where σγ is the rms beam energy spread in units of mec2. A

beam with a relatively large energy spread cannot suppress

the field strength relative to the bunching strength.

3D SIMULATION

In a SASE FEL with a reverse tapered undulator, the

bunching and field evolve over a range of frequencies. The

framework presented above is relevant for a particular fre-

quency ν, but it can help explain the bunching evolution in

a 3D reverse taper simulation with a large energy spread.

In Fig. 2, the bunching spectrum evolution during two

time-dependent Genesis simulations is shown. Both simu-

lations were done in a reverse tapered undulator, where the

resonant energy decreases (black line) because of a stepwise-

increasing undulator K value. The common simulation pa-

rameters are shown in Table 2.

Table 2: Genesis Simulation Parameters

Qauntity Value Units

energy (γ0mec2) 3.969 GeV

energy spread (σγmec2) 3.5, 7.0 MeV

transverse emittance 0.6 µm

photon energy (nominal) 700 eV

undulator period 3.0 cm

starting K value 3.50

ending K value 3.52

undulator gap K value 0.0

undulator modules 6

peak current 5.5 kA

phase space ideal Gaussian beam

Pierce Parameter (ρ) 2.2 × 10−3

The difference between the two simulations is in energy

spread. The top simulation in Fig. 2 uses a 3.5 MeV rms

energy spread, while the bottom simulation uses a 7.0 MeV

energy spread. In both simulations bunching grows at a

range of energies between what is resonant at the start and

end of the undulator line (693 eV - 700 eV).

In the 3.5 MeV energy spread simulation, bunching grows

at a wide range of frequencies, peaking in intensity at a

frequency in the middle of the reverse taper range. This
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Figure 2: The bunching spectral intensity evolves as a func-

tion of distance along the undulator line in two time depen-

dent Genesis simulations: σγmc2
= 3.5 MeV (top), and

7.0 MeV (bottom). The spectral intensity is plotted in ar-

bitrary units but on the same scale in the top and bottom

simulations. The black line traces the energy resonant to the

reverse tapered undulator at a particular location.

is consistent with the theoretical expectation for a slowly

varying reverse taper [3]. In the 7.0 MeV case, however,

bunching growth is less successful. Bunching initiated at a

particular frequency early on in the undulator line cannot be

amplified in undulator segments with a larger detune. This is

a result of the limitation in Eq. (24), which can be rewritten

in a more illuminating form

Ehν,max(z) = 2Ehν0
*
,
ρ3
γ2

0

σ2
γ

+

∆γ(z)

γ0

+
-
+ Ehν0

, (31)

where Ehν0
= 700 eV, ∆γ(z)/γ0 reaches a minimum of

−0.0049 at the end of the undulator line, and other parame-

ters are given in Table 2. Ehν,max(z) is the maximum photon

energy that will experience exponential growth due to the

FEL instability. Plugging in the two different energy spread

values, this means

Ehν,max(end) =

{

714 eV, σγmec2
= 3.5 MeV (32)

698 eV, σγmec2
= 7.0 MeV (33)

at the end of the undulator line. In the high energy spread

case, no FEL growth will take place above 698 eV. This

matches the drop in bunching spectral intensity in the bot-

tom panel if Fig. 2 above 698 eV in the final undulator seg-

ment. No such constraint on FEL growth is placed on the

3.5 MeV energy spread simulation, all relevant frequencies

are amplified.

CONCLUSION

The electron beam energy spread places a strong con-

straint on the FEL field growth at large detunes from reso-

nance. This in turn limits the maximum achievable bunching

to field strength ratio. A high bunching to field strength ra-

tio is critical for successful operation of a helical undulator

like the Delta undulator following a reverse tapered planar

undulator line. The energy spread of LCLS in the soft x-ray

regime is large enough for this effect to limit the power con-

trast seen in the Delta undulator, restricting the maximum

achievable degree of polarization.

APPENDIX: LASER HEATER

DISTRIBUTION

A laser heater is used at LCLS to combat the microbunch-

ing instability by increasing the slice energy spread of the

beam. The electron energy distribution exiting a laser heater

depends on the initial distribution and the laser and electron

beam transverse matching. In this section the initial energy

distribution is assumed to be negligible relative to the energy

modulation from the laser heater.

For a beam with zero initial energy spread, a trans-

verse beam size of σx , and a laser energy modulation of

∆η̄
L
(r) sin(k

L
z) at the laser wavenumber k

L
, the post-laser

heater distribution function is

V (r, z, η̄) = δ
(

η̄ − ∆η̄
L
(r) sin k

L
z
) 1

2πσ2
x

e−r
2/2σ2

x , (A1)

where δ is the Dirac’s delta function and the radial depen-

dence of the energy modulation is

∆η̄
L
(r) = 2ζ e−r

2/4σ2
r (A2)

for an interaction with a maximum energy modulation of

2ζ . As in previous sections, the scale factor 2ζ will dictate

the width of the energy distribution. The factor of 2 is used

to set the resultant energy distribution to an rms width of

ζ . The distribution in Eq. (A1) can be integrated over the

transverse and longitudinal coordinates to find the energy

distribution function,

V (η̄) =

∫

2πrdr

∫

V (r, z, η̄)dz (A3)

=

1

2πζ

∫ 2B log(2ζ/η̄)

0

e−x
√

e−B
2x − η̄2/4ζ2

dx (A4)

where B = σr/σx and the assumption B ≥ 1 has been

applied. This integral can be rewritten in terms of Hyperge-

ometric functions, but it is more instructive to examine two
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Figure 3: The energy distribution from a matched beam (B =

1) and an unmatched beam (B = ∞) exiting the laser heater.

By assuming the energy spread entering the laser heater is

negligibly small, exact expressions for these distributions

are given by Eqs. (A5, A6).

special cases,

V (η̄) =



1

πζ

(

1 − η̄2/4ζ2
)1/2
, B = 1 (A5)

1

2πζ

(

1 − η̄2/4ζ2
)−1/2

, B → ∞. (A6)

These distributions are shown in Fig. 3. The matched beam

(B = 1) case, where laser heaters typically operate, exhibits

a centrally peaked and relatively narrow distribution. We

therefore proceed to solve for the growth rate using this

distribution.

Inserting Eq. (A5) into Eq. (19), it is clear that the growth

rate is the solution to an algebraic equation

2ζ2 ( µ̂ − ν̂) =
(

1 − 4
ζ2

µ̂2

)−1/2

− 1. (A7)

The roots of this polynomial are easily calculated with sym-

bolic processing software. As before, we seek the upper

limit on ν̂ for a given energy spread ζ . The upper limit is the

solution to the equation Im( µ̂) = 0. As before, this implies

µ̂ = 0, and the boundary is

ν̂ ≤
1

2ζ2
. (A8)

This boundary is plotted above the solution to Eq. (A7) in

Fig. 4. The rms energy spread of Eq. (A5) and the Gaussian

distribution in Eq. (20) are ζ . The detune limit is a factor of

two more stringent in the laser heater case for the same rms

spread.
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Figure 4: A numerical calculation of the growth rate Im( µ̂)

as a function of the scaled detune ν̂ and the scaled rms

energy spread ζ . In contrast to Fig. 1, here the growth rate is

calculated assuming a laser heater energy distribution given

by Eq. (A5). The upper limit on the scaled detune is given

by Eq. (A8).
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