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1 The geometric algebra approach to (s)pinors

Let (M,g) be a paracompact, smooth, connected and oriented pseudo-Riemannian manifold of

dimension d = p+q, where p and q denote the numbers of positive and negative eigenvalues of the

metric. Inhomogeneous differential forms on M form a Z-graded C∞(M,R)-module Ω(M)
def.
=

Γ(M,∧T ∗M), whose fixed rank components we denote by Ωk(M) = Γ(M,∧kT ∗M). The usual

approach to the spin geometry [1] of (M,g) starts with the Clifford bundle Cl(T ∗M) of the

pseudo-Euclidean vector bundle T ∗M , where the latter is endowed with the pairing ĝ induced

by g. Then a spinor bundle S over (M,g) is 1 a bundle of modules over the even sub-bundle

Clev(T ∗M) while a pinor bundle is a bundle of modules over Cl(T ∗M). Sections of these bundles

are called spinors and pinors, respectively and correspond in physics to particles of arbitrary

spin; of course, a pinor is a spinor in a natural fashion. The case of spin 1/2 arises when S is a

bundle of simple modules over Clev(T ∗M) or Cl(T ∗M), in which case we say that S is a spin or

pin bundle, respectively.

The Kähler-Atiyah bundle and Kähler-Atiyah algebra. Since the fibers of Cl(T ∗M) are

given by a universal construction, the Clifford bundle is only determined up to isomorphism

and hence its association to (M,g) fails to be strictly functorial. This makes the construction

less rigid than it can be, thereby inducing subleties in the development of the theory. The

problem can be cured by using a particular realization of the Clifford bundle (which in some

ways goes back to Chevalley [3] and Riesz [4]) known as the Kähler-Atiyah bundle of (M,g). The

latter is functorially determined by (M,g), thereby ‘rigidifying’ part of the theory of (s)pinors.

The Chevalley-Riesz construction identifies the underlying vector bundle of Cl(T ∗M) with the

exterior bundle ∧T ∗M of M while transporting the Clifford product of the former to a unital,

associative but non-commutative fiberwise binary operation on the latter which we denote by ⋄

and call the geometric product of (M,g). By definition, the Kähler-Atiyah bundle of (M,g) is the

bundle of unital associative algebras (∧T ∗M, ⋄), while the Kähler-Atiyah algebra is its C∞(M,R)-

algebra of global sections (Ω(M), ⋄), where we denote the operation induced on global sections

1See [2] for the relation with the approach through vector bundles associated with covers of the bundle of

pseudo-orthonormal frames.
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through the same symbol. The geometric product is uniquely determined by the differential and

metric structure of (M,g). Though it is inhomogeneous with respect to the natural Z-grading of

the exterior bundle, it does preserve rank parity and hence it is even with respect to the induced

Z2-grading.

Generalized products. The Chevalley-Riesz construction implies that the geometric product

admits an expansion into a finite sum of binary fiberwise-bilinear operations △k : ∧T ∗M ×M

∧T ∗M → ∧T ∗M (k = 0 . . . d) which are homogeneous of degree −2k with respect to the rank

grading, being known as the generalized products determined by the metric g. This expansion

takes the form:

⋄ =

[ d2 ]
∑

k=0

(−1)k △2k +

[ d−1
2 ]

∑

k=0

(−1)k+1 △2k+1 ◦(π ⊗ id∧T ∗M ) , (1.1)

where π is a certain unital automorphism of the Kähler-Atiyah bundle (known as the parity

automorphism), being defined through:

π
def.
= ⊕d

k=0(−1)kid∧kT ∗M .

Connection to ‘partial quantization’. Expansion (1.1) can be viewed as the semiclassical

expansion of the geometric product when the latter is identified with the star product arising

in a certain ‘vertical’ partial quantization procedure in which the role of the Planck constant

is played by the inverse of the overall scale of the metric g. In the classical limit g → ∞ (i.e.

when M is of ‘infinite size’ when measured by g), the geometric product reduces to △0, which

coincides with the wedge product ∧. The corrections to this limit occur as powers in the inverse

of the size ofM , thereby providing a natural realization of ‘compactification/decompactification’

limit arguments which are sometimes used in supergravity and string theory.

Recursive construction. The higher generalized products △k (k = 1 . . . d) depend on g, their

action on inhomogeneous differential forms (=sections of ∧T ∗M) being determined recursively

through:

ω△k+1 η =
1

k + 1
gab(eayω)△k (ebyη) =

1

k + 1
gab(ιeaω)△k (ιebη) ,

where ι denotes the so-called interior product, which is defined as the adjoint of the wedge

product with respect to the pairing induced by g on ∧T ∗M (see [5] for details). In the formulas

above, (ea)a=1...d denotes a local frame of TM and (ea)a=1...d its dual local coframe (which

satisfies ea(eb) = δab and g(ea, eb) = gab, where (gab) is the inverse of the matrix (gab)). For

latter reference, recall that the corresponding contragradient frame (ea)# and coframe (ea)#
satisfy (ea)# = gabeb and (ea)# = gabe

b, where the # subscript and superscript denote the

(mutually-inverse) musical isomorphisms between TM and T ∗M , given respectively by lowering

and raising of indices with the metric g. For latter reference the main antiautomorphism (also
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known as reversion) of the Kähler-Atiyah bundle is the involutive antiautomorphism which acts

on global sections through:

τ(ω) = (−1)
k(k−1)

2 ω , ∀ω ∈ Ωk(M) .

The generalized products satisfy various identities which are consequence of associativity and

unitality of the geometric product and of the fact that the volume form ν = volM ∈ Ωd(M) of

(M,g) satisfies:

ν ⋄ ν = (−1)q+[
d
2 ]1M =

{

(−1)
p−q

2 1M , if d = even

(−1)
p−q−1

2 1M , if d = odd
,

ν ⋄ ω = πd−1(ω) ⋄ ν , ∀ω ∈ Ω(M) .

Hence ν is central in the Kähler-Atiyah algebra (Ω(M), ⋄) when d is odd and twisted central

(i.e., ν ⋄ ω = π(ω) ⋄ ν) when d is even. In Table 1, we indicate the values of p − q (mod 8) for

which the volume form ν has the corresponding properties. Various aspects of the geometric

algebra formalism are discussed in detail in [5–7].

ν ⋄ ν = +1 ν ⋄ ν = −1

ν is central 1(R),5(H) 3(C),7(C)

ν is twisted central 0(R),4(H) 2(R),6(H)

Table 1: Properties of the volume form.

Reconsidering (s)pinor bundles. A pinor bundle S can now be viewed as a bundle of modules

over the Kähler-Atiyah bundle of (M,g), the module structure being defined by a morphism of

bundles of algebras which we denote by γ : (∧T ∗M, ⋄) → (End(S), ◦). Since we are interested in

pinors of spin 1/2, we assume that γ is fiberwise irreducible. Since Clev(T ∗M) identifies with the

sub-bundle of algebras (∧evT ∗M, ⋄), a spinor bundle is a bundle of modules over the latter, being

called a spin bundle when its fibers are simple modules. A particularly important role in the

study of (s)pin bundles is played by the endomorphism γ(ν) ∈ Γ(M,End(S)), which is central

or twisted central in the algebra (Γ(M,End(S)), ◦) depending on the value of p− q (mod 8).

Local expressions. Given a local pseudo-orthonormal frame (ea) of (M,g) with dual local

coframe (ea), a general inhomogeneous form ω ∈ Ω(M) expands as:

ω =

d
∑

k=0

ω(k) =U

d
∑

k=0

1

k!
ω(k)
a1...ak

ea1...ak with ω(k) ∈ Ωk(M) , (1.2)

where ea1...ak
def.
= ea1 ∧ . . . ∧ ea

k
and the symbol =U means that equality holds only after re-

striction of ω to U . We let γa
def.
= γ(ea) ∈ Γ(U,End(S)) and γa

def.
= gabγ

b ∈ Γ(U,End(S)) be

the contravariant and covariant ‘gamma matrices’ associated with the given local orthonormal

(co)frame and γa1...ak denote the complete antisymmetrization of the composition γa1 ◦ . . . ◦ γak .
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Spin projectors and spin bundles. Giving a direct sum bundle decomposition S = S+⊕S−
amounts to giving a product structure on S, i.e. a bundle endomorphism R ∈ Γ(M,End(S)) \

{−idS, idS} satisfying:

R2 = idS .

A product structure shall be called a spin endomorphism if it also satisfies:

[R, γ(ω)]−,◦ = 0 , ∀ω ∈ Ωev(M) .

A spin endomorphism exists only when p − q ≡8 0, 4, 6, 7. When S is a pin bundle, the re-

striction γev
def.
= γ|∧evT ∗M : (∧evT ∗M, ⋄) → (End(S), ◦) is fiberwise reducible iff. S admits a

spin endomorphism, in which case we define the spin projectors determined by R to be the

globally-defined endomorphisms PR
±

def.
= 1

2 (idS ± R), which are complementary idempotents in

Γ(M,End(S)). The eigen-subbundles S± def.
= PR

± (S) corresponding to the eigenvalues ±1 of R

are complementary in S and R determines a nontrivial direct sum decomposition γev = γ+⊕γ−.

The effective domain of definition of γ. We let ∧±T ∗M denote the bundle of twisted

(anti-)selfdual forms [5]. Its space Ω±(M)
def.
= Γ(M,∧±T ∗M) of smooth global sections is the

C∞(M,R)-module consisting of those forms ω ∈ Ω(M) which satisfy the condition ω ⋄ ν = ±ω.

Defining:

∧γT ∗M
def.
=

{

∧T ∗M , if γ is fiberwise injective (simple case) ,

∧ǫγT ∗M , if γ is not fiberwise injective (non − simple case) ,

∧−γT ∗M
def.
=

{

0 , if γ is fiberwise injective (simple case) ,

∧−ǫγT ∗M , if γ is not fiberwise injective (non− simple case) ,

one finds that γ restricts to zero on ∧−γT ∗M and to a monomorphism of vector bundles on

∧γT ∗M . Due to this fact, we say that ∧γT ∗M is the effective domain of definition of γ.

Schur algebras and representation types. Let S be a pin bundle of (M,g) and x be

any point of M . The Schur algebra of γx is the unital subalgebra Σγ,x of (End(Sx), ◦) defined

through:

Σγ,x
def.
= {Tx ∈ End(Sx) | [Tx, γx(ωx)]−.◦ = 0 , ∀ωx ∈ ∧T ∗

xM} .

The subset Σγ = {(x, Tx) | x ∈M , Tx ∈ Σγ,x} = ⊔x∈MΣγ,x is a sub-bundle of unital algebras

of the bundle of algebras (End(S), ◦) called the Schur bundle of γ. The isomorphism type of

the fiber (Σγ,x, ◦x) is denoted by S, being called the Schur algebra of γ. Real pin bundles S fall

into three classes: normal, almost complex or quaternionic, depending on whether their Schur

algebra is isomorphic with R, C or H. Some of the properties of these types are summarized

in the tables below. When γ is fiberwise irreducible (i.e. in the case of pin bundles), the Schur

algebra depends only on p− q (mod 8), being indicated in parantheses in Tables 1 and 3. The
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S
p− q

mod 8

∧T ∗
xM

≈ Cl(p, q)
∆ N

Number of

choices for γ
γx(∧T ∗

xM)
Fiberwise

injectivity of γ

R 0,2 Mat(∆,R) 2[
d
2
] = 2

d
2 2[

d
2
] 1 Mat(∆,R) injective

H 4,6 Mat(∆,H) 2[
d
2
]−1 = 2

d
2
−1 2[

d
2
]+1 1 Mat(∆,H) injective

C 3,7 Mat(∆,C) 2[
d
2
] = 2

d−1
2 2[

d
2
]+1 1 Mat(∆,C) injective

H 5 Mat(∆,H)⊕2 2[
d
2
]−1 = 2

d−3
2 2[

d
2
]+1 2 (ǫγ = ±1) Mat(∆,H) non-injective

R 1 Mat(∆,R)⊕2 2[
d
2
] = 2

d−1
2 2[

d
2
] 2 (ǫγ = ±1) Mat(∆,R) non-injective

Table 2: Summary of pin bundle types. N
def.
= rkRS is the real rank of S while ∆

def.
= rkΣγS

is the Schur rank of S. The non-simple cases are indicated through the blue shading of the

corresponding table cells. The red color indicates those cases for which a spin endomorphism

can be defined.

real Clifford algebra Cl(p, q) (which, up to isomorphism, coincides with any fiber of the Kähler-

Atiyah bundle) is non-simple iff. p − q ≡8 1, 5 (this is indicated in the tables through the blue

shading).

injective non-injective

surjective 0(R),2(R) 1(R)

non-surjective 3(C),7(C),4(H),6(H) 5(H)

Table 3: Fiberwise character of real pin representations γ.

Fiberwise injectivity and surjectivity of γ. Basic facts from the representation theory of

Clifford algebras imply:

1. γ is fiberwise injective iff. Cl(p, q) is simple as an associative R-algebra, i.e. iff. p− q 6≡8 1, 5

(the so-called simple case).

2. When γ is fiberwise non-injective (i.e. when p − q ≡8 1, 5, the so-called non-simple case),

we have γ(ν) = ǫγ idS , where the sign factor ǫγ ∈ {−1, 1} is called the signature of γ. The two

choices for ǫγ lead to two inequivalent choices for γ. The fiberwise injectivity and surjectivity of

γ are summarized in Table 3.

Using the approach outlined above, one can re-formulate numerous constructions which

are common in spin geometry and its applications to gravitational physics (in particular, to

supergravity and string theory). For example, one can give [7] a unified, systematic and compu-

tationally efficient approach to a certain class of Fierz identities which are central in the study

of supergravity backgrounds. One can also use this approach to develop [5, 6] certain aspects

of spin geometry in a manner which allows progress in the analysis and classification of flux
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backgrounds as well as in the analysis of effective actions in string theory. Since a full treatment

of each of these directions is quite technical and involved, we shall merely illustrate this with an

example.

2 Application to general N = 2 flux compactifications of eleven-dimensional

supergravity on eight-manifolds.

Consider eleven-dimensional supergravity on a connected, oriented eleven-manifold M̃ admitting

a spin structure. The physical fields are the metric g̃ (taken to be of mostly plus Lorentzian sig-

nature), the three-form potential C̃ with non-trivial four-form field strength G̃ and the gravitino

Ψ̃M . The pin bundle S̃ of M̃ can be viewed as a bundle of simple modules over the Clifford bun-

dle of T ∗M̃ . The supersymmetry generator is a section of S̃. Vanishing of the supersymmetry

variation of the gravitino requires:

δη̃Ψ̃M
def.
= D̃M η̃ = 0 . (2.1)

The ‘supercovariant derivative’ D̃M takes the form: TM̃ ,

D̃M
def.
= ∇̃spin

M −
1

288

(

G̃NPQRΓ̃
NPQR

M − 8G̃MNPQΓ̃
NPQ

)

(2.2)

in a local orthonormal frame (ẽM )M=0...10, where ∇̃spin
M = ∂M + 1

4 ω̃MNP Γ̃
NP is the connection

induced on S̃ by the Levi-Civita connection of M̃ , ω̃MNP are the totally covariant spin connec-

tion coefficients and Γ̃M are the gamma ‘matrices’ of Cl(10, 1) in the irreducible representation

characterized by Γ̂11 = +idS̃ . Setting M̃ = M3 ×M with usual warped product ansatz for g̃

(see [5, 8–10]), condition (2.1) reduces to the following two conditions (known as the constrained

generalized Killing (CGK) pinor equations [5]) for the internal part ξ ∈ Γ(M,S) of η̃, which is

a section of the pin bundle S of the internal manifold M :

Dmξ = 0 with Dm
def.
= ∇spin

m +Am , Am = −
1

4
fnγ

n
mγ9 +

1

24
Fmpqrγ

pqr + κγmγ9 , (2.3)

Qξ = 0 with Q =
1

2
γm∂m∆−

1

288
Fmnpqγ

mnpq −
1

6
fmγ

mγ9 − κγ9 , ∀m,n, p, q = 1 . . . 8 .(2.4)

We refer to conditions (2.3) and (2.4) above as the differential and algebraic constraints, re-

spectively; they have two independent global solutions (ξ1, ξ2) when the background preserves

N = 2 supersymmetry (see [5, 6]). In (2.3) and (2.4), the gamma ‘matrices’ γm transform in

the representations of the real Clifford algebra Cl(8, 0), while κ is a positive real number which

is proportional to the square root of the cosmological constant of the external AdS3 space.

The Fierz isomorphism. When (M,g) has Euclidean signature with d ≡8 0, 1, the morphism

γ : (∧T ∗M, ⋄) → (End(S), ◦) is surjective and has a partial inverse [5] which allows one to

translate the CGK pinor conditions into conditions on differential forms on M constructed as

bilinear combinations of sections of S. The process is encoded by the so-called Fierz isomorphism

[5], which identifies the bundle of bispinors S⊗S with a sub-bundle ∧γT ∗M of the exterior bundle
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playing the role of ‘effective domain of definition’ 2 of γ. As explained in detail in [5, 7, 11, 12],

one can construct admissible bilinear pairings B on the pin bundle satisfying certain properties3,

using which one defines a B-dependent bundle isomorphism:

E : S⊗S → End(S) where Eξ,ξ′(ξ
′′)

def.
= B(ξ′′, ξ′)ξ such that Eξ1,ξ2◦Eξ3,ξ4 = B(ξ3, ξ2)Eξ1,ξ4 ,

which induces the Fierz isomorphism Ě = γ−1 ◦E : S ⊗ S → ∧γT ∗M mentioned above.

Lift to a nine-manifold. To investigate general supersymmetric compactifications on eight-

manifolds, one must analyze the CGK pinor equations (2.3), (2.4). The requirement of N = 2

supersymmetry means that these equations must have two linearly independent global solutions

ξ1, ξ2 ∈ Γ(M,S) — whose values ξ1(x), ξ2(x) ∈ Sx then are [6] also linearly independent at any

point x of M . To simplify the analysis, one can lift [6] the problem to the nine-dimensional

metric cone M̂ over M . The solutions (ξ1, ξ2) determine a point on the second Stiefel manifold

V2(Sx) of each fiber Sx of S. Thus solutions can be classified according to the orbit of the

representation of Spin(8) on Sx, which induces a corresponding action on V2(Sx). Since the

latter action fails to be transitive, a generic basis (ξ1, ξ2) of solutions of the CGK pinor equations

does not determine a global reduction of the structure group ofM . Using the natural embedding

Spin(8) ⊂ Spin(9) ⊂ Cl(9, 0), the action of Spin(8) on V2(Sx) extends to an action of Spin(9),

which turns out to be transitive — thereby suggesting that an interpretation in terms of reduction

of structure group could be given upon passing to some Riemannian nine-manifold naturally

associated withM . The action of Spin(9) can indeed be geometrized [6] by passing to the metric

cone M̂ over M , whose Clifford bundle is of non-simple type [5–7, 13]. Using the construction

of [6], this allows one to provide a global description of 8-manifold compactifications preserving

N = 2 supersymmetry through reduction of the structure group of M̂ (rather than of M itself).

We therefore consider the (punctured) metric cone M̂ = (0,+∞)×M (with squared line element

given by ds2cone = dr2 + r2ds2), where the canonical normalized one-form θ = dr is a special

Killing-Yano form with respect to the metric gcone of M̂ . We can pull back the Levi-Civita

connection of (M,g) along the natural projection Π : M̂ → M and also lift the connection

(2.3) from S to the pin bundle Ŝ of M̂ – using the fact [6] that Ŝ can be identified with the

Π-pullback of S. We define Π∗(h) = h ◦ Π for h ∈ C∞(M,R). It turns out that the morphism

γcone : ∧T ∗M̂ → End(Ŝ) is determined by the morphism γ of the manifold M . The bundle

morphism γcone is fiberwise surjective but not fiberwise injective, so there are two inequivalent

choices distinguished by the property γcone(νcone) = ±id
Ŝ
, where νcone is the volume form of M̂ .

We choose to work with the representation of signature +1, which satisfies γcone(νcone) = +id
Ŝ
.

Then the Kähler-Atiyah algebra (Ω(M̂), ⋄cone) of the cone can be realized through the truncated

model (Ω<(M̂),♦cone) of [6], where Ω<(M̂) = ⊕4
k=0Ω

k(M̂) and ♦
cone is the reduced geometric

product of the cone. Rescaling the metric through g → 2κ2g, the connection induced on Ŝ by

2When d ≡8 0 in Euclidean signature, the bundle morphism γ is fiberwise injective and we have ∧
γT ∗M =

∧T ∗M . When d ≡8 1, the effective domain of γ is a proper sub-bundle of the exterior bundle since γ fails to be

injective in that case.
3These properties are symmetry, type and — when applicable — isotropy
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the Levi-Civita connection of M̂ takes the form:

∇Ŝ
em

= ∇S
em

+ κγ9m , ∇Ŝ
∂r

= ∂r , where m = 1 . . . 8 .

Defining the connection D̂
def.
= D∗ = ∇Ŝ,cone+Acone as the pullback of (2.3) to M̂ , the expression

for Acone becomes [6]:

Acone = Π∗(A)−
1

2r
emcone ⊗ γcone((e

cone
m )♯cone ∧ θ) ,

where Π∗(A) denotes the pull-back connection and (econem )♯cone is the one-form dual to the base

vector econem with respect to the metric on M̂ . Lifting to the cone and ‘dequantizing’ as in

[5, 6], the connection Am of (2.3) and the endomorphism Q from (2.4) induce the following

inhomogeneous differential forms on M̂ :

Ǎm =
1

4
ιeconem

F +
1

4
(econem )♯ ∧ f ∧ θ , Q̌ =

1

2
r(d∆)−

1

6
f ∧ θ −

1

12
F − κθ . (2.5)

Analysis of CGK pinor equations. We are interested in form-valued pinor bilinears written

locally as follows (where the subscript ‘+’ denotes the twisted self-dual part [5, 6]) :

Ě
(k)

ξ̂i,ξ̂j
≡ Ě

(k)
ij =

1

k!
B(ξ̂i, γ

cone
a1...ak

ξ̂j)e
a1...ak
+ , where a1 . . . ak ∈ {1 . . . 9} ,

with i, j ∈ {1, 2} and in the weighted sums:

Ěij =
N

2d

d
∑

k=0

Ě
(k)
ij ,

which are inhomogeneous differential forms generating the algebra (Ω+(M̂ ), ⋄). Here, N = 2[
d
2 ]

is the real rank of the pin bundle S, d = 9 is the dimension of M̂ and we normalized the two

pinors through B(ξi, ξj) = δij . Using the properties of the admissible bilinear paring on Ŝ, we

find:

B(ξ̂i, γ
a1...ak
cone ξ̂j) = (−1)

k(k−1)
2 B(ξ̂j, γ

a1...ak
cone ξ̂i) , ∀i, j = 1, 2 ,

which implies that the non-trivial form-valued bilinears of rank ≤ 4 are three 1-forms Vk dual

to the vector fields with local coefficients given (after raising indices to avoid notational clutter)

by:

V a
1 = B(ξ̂1, γ

a
coneξ̂1) , V a

2 = B(ξ̂2, γ
a
coneξ̂2) , V a

3 = B(ξ̂1, γ
a
coneξ̂2) (2.6)

together with one 2-form K, one 3-form Ψ and three 4-forms φk with strict coefficients given
similarly by:

K
ab = B(ξ̂1, γ

ab
coneξ̂2) , ψ

abc = B(ξ̂1, γ
abc
coneξ̂2) , φ

abce
1 = B(ξ̂1, γ

abce
cone ξ̂1) , φ

abce
2 = B(ξ̂2, γ

abce
cone ξ̂2) , φ

abce
3 = B(ξ̂1, γ

abce
cone ξ̂2).

The forms above are the definite rank components of the truncated inhomogeneous forms:

Ě<11 =
1

32
(1+V1+φ1) , Ě

<
12 =

1

32
(V3+K+ψ+φ3) , Ě

<
21 =

1

32
(V3−K−ψ+φ3) , Ě

<
22 =

1

32
(1+V2+φ2)
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which are the basis elements of the truncated Fierz algebra of [5, 6] and satisfy the truncated

Fierz identities4:

Ě<ij♦Ě
<
kl =

1

2
δjkĚ

<
il , ∀i, j, k, l = 1, 2 . (2.7)

The full analysis of these equations is quite involved [14]. We list only some of the relations

implied by the truncated Fierz identities:

ιV1V3 = 0 , ιV1φ3 − ψ + V1 ∧K = 0 , ιV3φ1 + ψ − V1 ∧K = 0 . (2.8)

Let us also discuss the constraints on these forms implied by the CGK pinor equations. As

explained in [5, 6], the differential constraints (2.3) imply:

dĚ<ij = ea ∧ ∇aĚ
<
ij where ∇aĚ

<
ij = −[Ǎa, Ě

<
ij ]−,♦ , ∀i, j ∈ {1, 2} , (2.9)

whereas the algebraic constraints (2.4) reduce to:

Q̌♦Ě<ij ∓ Ě<ij♦τ̂(Q̌) = 0 , ∀i, j ∈ {1, 2} . (2.10)

The complete set of conditions can be found in [14], only part of which will be reproduced

here. The first equation in (2.10) (the one with the minus sign) for Ě<12 leads to the following

constraints when separating into rank components:

ιf∧θK = 0 , (2.11)

rιd∆K +
1

3
ιf∧θψ −

1

6
ιψF − 2κιθK = 0 , (2.12)

1

3
ιf∧θφ3 −

1

6
F △3 φ3 + r(d∆) ∧ V3 + 2κV3 ∧ θ = 0 , (2.13)

while using the truncated inhomogeneous form Ě<11 amounts to:

−
1

3
f ∧ θ +

1

3
ιf∧θφ1 −

1

6
F △3 φ1 + r(d∆) ∧ V1 + 2κV1 ∧ θ = 0 . (2.14)

Expanding (2.9) for Ě<11 and Ě<12 gives the following expressions for the covariant derivatives of

V1 and V3:

∇mV1n =
1

2
fsθpφ1

sp
mn −

1

12
Fspqmφ1

spq
n and ∇mV3n =

1

2
fsθpφ3

sp
mn −

1

12
Fspqmφ3

spq
n .

(2.15)

Upon antisymmetrization, these give the differential constraints:

dV1 = ιf∧θφ1 −
1

2
F △3 φ1 and dV3 = ιf∧θφ3 −

1

2
F △3 φ3 .

Using the differential and algebraic constraints for the form-valued pinor bilinears, one can

investigate [14] the geometric implications of theN = 2 supersymmetry condition. This analysis,

as well as the a discussion of the physics implications, is rather involved and we shall not attempt

to summarize it here.

4Note that we will omit writing the ’cone’ superscript on ♦
cone to simplify notation.
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