
Track Clustering and Vertexing algorithm for L1 Trigger

Gustavo I. Cancelo

Abstract-One of the keystones of the canceled BTeV experiment
(proposed at Fermilab’s Tevatron) was its sophisticated three-
level trigger. The trigger was designed to reject 99.9% of light-
quark background events and retain a large number of B decays.
The BTeV Pixel Detector provided a 3-dimensional, high
resolution tracking system to detect B signatures. The Level 1
pixel detector trigger was proposed as a two stage process, a
track-segment finder and a vertex finder which analyzed every
accelerator crossing. In simulations the track-segment finder
stage outputs an average of 200 track-segments per accelerator
crossing (2.5MHz). The vertexing stage finds vertices and
associates track-segments with the vertices found. This paper
proposes a novel adaptive pattern recognition model to find the
number and the estimated location of vertices, and to cluster
track-segments around those vertices. The track clustering and
vertex finding is done in parallel. The pattern recognition model
also generates the estimate of other important parameters such
as the covariance matrix of the cluster vertices and the minimum
distances from the tracks to the vertices needed to compute
detached tracks.

I. INTRODUCTION

HE problem of event vertexing requires identifying vertices
and estimating their position. Generally, both tasks are

done with the help of data supplied by subdetectors with
tracking capabilities such as pixel detectors or silicon strips
detectors (SSD). Before the vertexing stage, track finder
stages find tracks or track segments for use in the vertexing
process. Since there may be more than one primary vertex and
or secondary vertices, identifying the number of vertices is a
clustering task that associates tracks to vertices. Once the
tracks and vertices have been sorted out, each group of tracks
can be used to fit corresponding vertex parameters. We
observe that this is a “chicken and egg” kind of problem
because we need good vertex estimations to be able to
separate the tracks into clusters and we cannot have good
vertex estimations if we don’t know what tracks belong in
which cluster. The problem is typical in pattern recognition
and is usually approached by iterative adaptive methods. In
these methods the parameters of the cluster representative (e.g.
vertex coordinates) are allowed to move and the cluster
members (e.g. tracks) are allowed to change clusters during
each iteration. Most adaptive clustering algorithms are based
on models, where the model is a probability distribution
function. However, most of the time the order of the model is
unknown (e.g. the number of vertices). This is a serious
complication because most algorithms are not good at
detecting the order of the model. Another important problem
in clustering is finding a good metrics to sort the data out.

Data is clustered based on their distance to the cluster
representative vectors. Distance is defined by:

qxD M−= , where M is a certain metric. The two most used
metrics are the Euclidean and the Mahalanobis metrics. In the
later case, () (qxCqxqxD

T
M −−=−= −1) , where x and q

are d-dimensional vectors and C is the covariance matrix of
the sample data. The Euclidean distance is a special case of
the Mahalanobis metrics where C=σ2I, being I the identity
matrix. The Mahalanobis distance is preferred when the
variance along each dimension of x is different. However,
neither one of those metrics is able to capture clustering in the
data.

II. MODEL AND METRIC SELECTION

Clustering processes use parametric or non-parametric models.
For the vertexing process we have chosen the Gaussian
mixture model due to the clustered structure of the data. The
vertexing process clusterizes tracks based on their distance of
closest approach to the vertices, which are the cluster
representatives. The track distance of closest approach to the
vertices depends on the detector resolution and errors. It is
logical to think that the error in measuring distances from
tracks to an associated vertex is Gaussian distributed, and the
probability distribution function (pdf) of all the distances
between tracks and vertices is a sum of Gaussians. Hence, the
pdf of all the distances to all the cluster centers is,

() ()∑
=

=
k

j
jjj CxGxp

1
,,μα (1)

where G(*) is a single d-dimensional Gaussian of mean μj and
covariance matrix Cj. αj is the probability that data x belongs
to cluster j, μj and Cj are the mean and covariance matrix of
the Gaussian associated to cluster j. For the vertexing problem,
αj is the probability that track x comes from vertex j, μj are the
coordinates of vertex j, and Cj is the covariance matrix of all
the tracks associated to that vertex. In principle, αj is model
free and is one of the parameters that must be estimated. The
only constrains on αj are:
αj > 0, and (i.e. every track must belong to a cluster) ∑

=

=
k

j
j

1
1α

A natural metric to use in a clustering problem modeled by a
Gaussian mixture is the Kullback-Leibler divergence. The KL
divergence measures the divergence between two pdf
distributions

() ()() () ()
() dx
xp

qxpqxpxpqxpKL ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

|log||||

Note that KL(*) meets the conditions to be a metric:
KL(0)=0 (i.e. KL=0 for p(x|q)=p(x))

T

FERMILAB-CONF-05-481-CD

KL>0 for p(x|q)≠p(x) because p(x|q) is always greater or equal
than p(x), hence log(p(x|q)/p(x))>0.

Parameter optimization is done minimizing the KL divergence
of the parametric distribution for instance

0(*)0(*)
==

Cd
dKLand

d
dKL

jjμ
. However, since KL divergence

usually has unknowns, the later calculations must be turned
into estimations.

The KL divergence metric leads us to the Maximum
Likelihood algorithm. The problem of estimating vertex
coordinates and their covariance matrices becomes a
Maximum Likelihood estimation. In particular we have
applied the Expectation-Maximization algorithm (E-M) which
is a well known variant of Maximum Likelihood. The E-M
algorithm is an efficient iterative way of computing the
Maximum Likelihood when the data model has missing
information. The missing information concept helps the
estimations of certain parameters in the model that otherwise
would complicate the algorithm. The missing information
parameters can be chosen as convenient.

We illustrate the missing information concept in the
vertexing problem as follow. The data model for the vertexing
problem is the mixture Gaussian model defined in equation
(1). For the moment we will assume that we know the number
of clusters k (i.e. number of vertices). We define the missing
information as j, the cluster index, which has a probability αj.
As said, the αj’s are not model constrained. The missing
information will help us overcome the problem of having this
unstructured unknown in the model. The αj’s can be added to
the list of parameters to be estimated by the ML algorithm.
However, in the derivation of the algorithm we need to
compute the conditional probability P(j|x) which represents
the probability of each cluster given a particular sample x. For
the vertexing problem P(j|x) represents the probability mass
function that assigns tracks (represented by their distances of
maximum approach) to each vertex.

Section 3 introduces the EM algorithm, section 4 shows that
the KL divergence metrics that measures the distance between
the pdfs of the data (including the missing data) and the
current estimation of the data leads to the EM algorithm,
section 5 applies the theory to the vertexing problem section 6
shows some simulation results.

III. THE EXPECTATION MAXIMIZATION ALGORITHM

Let x represent the data sample and θ the unknown vector of
parameters. Maximum Likelihood estimates θ maximizing the
likelihood function P(x|θ). Since the distributions are

Gaussian, ML uses the log likelihood L(θ) = ln(P(x|θ)). The
EM algorithm is an iterative procedure that finds successive
estimations of θ (i.e. θ(1), θ(2),.., θ(N)) while guaranties that L(θ)
increases in every iteration (i.e. L(θ(n+1)) > L(θ(n)), n=1,..,N.

This is equivalent to maximizing the difference
L(θ(n+1)) - L(θ(n)) = ln(P(x| θ(n+1))) - ln(P(x| θ(n))) (2)

We incorporate the missing information in the data model
using the total probability theorem,

() () (∑
=

=
k

j
jPjxPxP

1
|.,|| θθθ)

)

Then equation (2) can be expressed by

() () () () (())(

1

)1()1()()1(|ln|.,|ln n
k

j

nnnn xPjPjxPLL θθθθθ −⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=− ∑

=

+++ (3).

Since the –ln(.) is a convex function, we use Jensen’s
inequality

()∑∑
==

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ k

j
jj

k

j
jj zz

11
ln..ln λλ (4)

Now we introduce the cluster’s posterior probability P(j|x,

θn) in equation (3). P(j|x,θn) represents cluster’s j probability
given a certain data and set of parameters (i.e. during the n-th
iteration of the algorithm). Then equation (3) becomes

() () () () ()
() ()()θ

θ
θθθθθ n

k

j n

n
nnnn xP

xjP
xjPjPjxPLL |ln

,|
,|.|.,|ln

1
111 −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=− ∑

=
+++

, which can be rearranged as

() () () () ()
() (()θ

θ
θθθθθ n

k

j n

nn
nnn xP

xjP
jPjxPxjPLL |ln

,|
|.,|.,|ln

1

11
1 −⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=− ∑

=

++
+) (5)

Using Jensen’s inequality (4) and defining

()θλ nj xjP ,|= and () (
()

)
θ

θθ
n

nn
j xjP

jPjxP
z

,|
|.,| 11 ++= , equation (5)

becomes

() () () () ()
() ()()θ

θ
θθθθθ n

k

j n

nn
nnn xP

xjP
jPjxPxjPLL |ln

,|
|.,|ln.,|

1

11
1 −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥− ∑

=

++
+

() () () () ()
() ()∑

=

++
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥−

k

j nn

nn
nnn xPxjP

jPjxPxjPLL
1

11
1 |,|

|.,|ln.,|
θθ
θθθθθ (6)

Let () () () ()
() ()∑

=

++
+ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=Δ

k

j nn

nn
nnn xPxjP

jPjxPxjP
1

11
1 |,|

|.,|ln.,||
θθ
θθθθθ

Equation (6) tells us that Δ(θn+1|θn) is a lower bound of the

log-likelihood function and that maximizing Δ(θn+1|θn)
increases the log-likelihood. Figure 1 shows one iteration of
the estimation process.

Figure 1: one step in the Maximum Likelihood estimation process

We can estimate the vector parameter θ calculating

() (){ }

() () () ()
() () ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

+=

∑
=

+

+

k

1j nn
nn

θ
1n

nn
θ

1n

θ|xPθx,|jP
θ|j.Pθj,|xP.lnθx,|jPθLargmaxθ

θ|θΔθLargmaxθ (7)

Equation (7) can be simplified eliminating all the terms that
are constant with respect to θ.

() (()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
=

+

k

j
nn jxPxjP

1
1 |,ln.,|maxarg θθθ

θ
) (8)

Note that equation (8) maximizes the conditional

expectation Ej|x,θ of the logarithm of P(x, j|θ) with respect to θ.
That can be expressed as

()()(){ }θθ θ
θ

|,lnmaxarg ,|1 jxPE nxjn =+
 (9)

The two steps of the E-M algorithm are now evident in
equation (9). The first step, E-step, calculates the conditional
expectation Ej|x,θ using the current estimation of the vector
parameter θn. The second step, M-step, maximizes the
expectation with respect to θ.

The convergence properties of the EM algorithm are
discussed in detail by McLachlan et al. [1]. Every iteration the
new θn+1 increases the log likelihood function until a local
maximum is reached.

IV. APPLYING E-M TO THE VERTEXING PROBLEM

In the Gaussian mixture model (equation (1))
 () ()∑

=

=
k

j
jjj CxGxp

1
,, μα

the distances of maximum approach from tracks to each
vertex is represented by a single Gaussian G(x,μj,Cj), where μj
and Cj must be estimated. Please note that:
P(j|xi) is the probability that track I belongs to a vertex j.
p(j,x) is the probability density function of the “complete
data”. Also, p(j,x) = p(x|j) p(j)
P(j) = αj is the cluster probability.
p(x|j) = G(x,μj,Cj) is the data error distribution in each cluster.

The KL divergence function measures the distance between

the distribution of the “complete data” p(x,j) and the
distribution of the “complete data” given the current estimate
of the parameter vector p(x,j| θn). Unfortunately p(x,j) is
unknown otherwise the problem would be already solved. The
KL divergence is KL(p(x,j| θn) || p(x,j)).

θn+1θn

L(θ) Δ(θn+1| θn)

L(θn)

L(θn+1)
Δ(θn+1| θn)

θ

() ()() () ()
()∑∫

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

k

j

n
nn dx

jxP
jxPjxPjxPjxPKL

1 ,
|,ln|,,|||, θθθ

 (10)

The parameter set θ concentrates the unknowns αj,μj,Cj for

i=1,..k.

We develop an estimation algorithm for the parameter set of
equation (10) based on the E-M algorithm of equation (9)

()()(){ }θθ θ
θ

|,lnmaxarg ,|1 jxPE nxjn =+

() (()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

= ∑
=

+

k

j
nn jxPxjP

1
1 |,ln.,|maxarg θθθ

θ
)

Clearly, the E-step must find the expectation Ej|x,θ where

()
()
()∑

=

= k

j

n
j

n
j

n
j

n
j

n
j

n
j

n

CxG

CxG
xjP

1

)()()(

)()()(

,,

,,
,|

μα

μα
θ

 (11)

αj
(n+1) is readily available from (11) using

(∑
=

+ =
N

i
ni

n
j xjP

N 1

)1(,|1
θα) (12)

, where i=1,..,N indexes over all the data set and xi is a d-
dimensional vector.

The maximization step finds a new parameter set estimate
()(){ }

() (
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=

=

∑
=

+

+

k

1j
n

θ
1n

θx,|j
θ

1n

θx,|j.lnPθx,|jPargmaxθ

θ|jx,PlnEargmaxθ n

)
 (13)

the maximization of (13) leads to

()

()∑

∑

=

=+ = N

i
ni

i

N

i
ni

n
j

xjP

xxjP

1

1)1(

,|

.,|

θ

θ
μ

or () i

N

i
nin

j

n
j xxjP

N
.,|1

1
)(

)1(∑
=

+ = θ
α

μ (14)

()() ()

()∑

∑

=

=+

−−
= N

i
ni

n
ji

Tn
ji

N

i
ni

n
j

xjP

xxxjP
C

1

)()(

1)1(

,|

..,|

θ

μμθ

or ()() (μμθ
α

)()(

1
)(

)1(..,|1 n
ji

Tn
ji

N

i
nin

j

n
j xxxjP

N
)−−= ∑

=

+C (15)

The Trigger algorithm iteratively calculates equations (11)

to (15) until convergence. The convergence criteria is chosen,

as convenience, based on the rate of change of the parameters
being estimated. We have chosen 1% for simulation.

V. NUMBER OF CLUSTERS

The derivation of the E-M algorithm of section 3 assumes
that the number of clusters k is known. This is not the case for
vertexing problem. If we define k as a new parameter in the
model, k represents the order of the model, i.e. the number of
Gaussians in the Gaussian mixture. We can include k in the
definition of the KL divergence and make the divergence a
function of F(θ,k). However, in order to use the E-M approach
we must keep k constant, otherwise we do not know how
many Gaussians are in the model and how many parameters
we need to estimate. A way of finding k is to calculate
F(θopt,k) as in section 4, r times, running k from 1 to r, and
using θk

opt the value that minimizes F(θopt,k) for that value of
k. Then k is the argmink F(θopt,k). So F(θopt,k) has a minimum
when k is equal to the correct number of clusters in the
distribution.

The bigger problem in finding k is that if we have no idea
about the value of k the algorithm may become computer
intensive. Lei Xu [2] demonstrated that the F(θopt,k) equals to

() rkfor
C

kF
k

j
opt
j

opt
jopt

j ,..,1ln.
1

)(

)(
)(=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
= ∑

= α
α (16)

A good heuristic in finding k is to use previous knowledge.
If after analyzing a sufficient number of events we have a
reasonable estimate of the μ and C in the distribution of
number of vertices per event we can start with a value in
excess and rapidly discard the number of vertices that have no
tracks associated with them. We show that this approach
works very well is the simulation.

VI. DISTANCE OF MAXIMUM APPROACH

In order to associate tracks to vertices we have used their
distance of maximum approach. The L1 trigger simulations
are based on simulations of the BTeV pixel detector. The first
stage of the L1 trigger, described in [3], finds track segments
corresponding to the inner most and the outer most section of
each track. Each segment is represented by a triplet of points
using (x,y,z) coordinates. For trigger level 1 we have used
only the inner segment of the track. However, a better fitting
can be used for other trigger levels or the off-line analysis. It is
worth to mention that the method to find the distance of
closest approach is independent of the EM algorithm although
very important because directly influence the error of the
measurements and the EM algorithm convergence rate.

Let each track segment be represented by 3 points with
coordinates P1=(x1,y1,z1), P2=(x2,y2,z2), P3=(x3,y3,z3), and let

P0=(x0,y0,z0) be the point of closest approach to the vertex
V=(xv,yv,zv). Then the distance of closest approach between
the track and the vertex is defined by
x0 = x1 + mx (z0 - z1)
y0 = y1 + my (z0 - z1)
z0 = (zv + mx (xv - x1) + my (yv - y1) + z1 (mx + my)) / (1 + mx

2
+ my

2)
where mx and my are the segment slopes in the xz and yz
planes respectively. The point of closest approach must be
recalculated every time the vertex position changes, but this is
done very fast because it only requires of sums and
multiplications by constant factors (i.e track slopes are
constant for all iterations).

VII. SIMULATIONS

We have run a simulation with min bias and b flavor events.
The simulation starts with a guess for number of vertices.
Once the estimation converges the function F(k) of equation
(16) is calculated. If there are vertices with no tracks those
vertices are removed. If all vertices have tracks we increase
the order of the model and run again. After convergence a new
value of F(k) is obtained. We chose the model that minimizes
F(k).

Figure 2 a and b show the X-Z view of a particular event
with 3 primary vertices. The algorithm is run with a model of
order 4. The black asterisks represent the estimated position of
the four the vertices. Since the event only has 3 primary
vertices, one estimated vertex does not collect any tracks.
Figure 2 b is a close up of the same event showing in detail the
tracks associated to two close primary vertices.

Figure 2a: Single event simulation for the primary vertex estimation

algorithm.

Figure 2b: Single event simulation for the primary vertex estimation

algorithm.

The algorithm shows to converge and find over 99.5% of
the primary vertices. The errors are listed in Table I.

TABLE I
SIMULATION ERRORS

 mean (μ) sigma (μ)
x coordinate 275 65
y coordinate 1620 481
z coordinate 1107 280

VIII. DISCUSSION

The proposed algorithm applies an adaptive pattern
recognition model to find the number and the estimated
location of vertices, and clusters track-segments around those
vertices. The track clustering and vertex finding is done in
parallel. The pattern recognition model also generates the
estimate of other important parameters such as the covariance
matrix of the cluster vertices. The cancellation of the BTeV
experiment left the simulation work unconcluded. It is
expected that the number of vertices that the algorithm can
find depends strongly on the data error model which depends
on the way the distance of closest approach is determined. A
follow up on this work should be aimed to reduce the
measurement error in the data model.

REFERENCES
[1] Geoffrey McLachlan and Thriyambakam Krishnan. The
EM Algorithm and its Extensions. John Willey & Sons, New
York, 1996.

[2] Xu Lei, “Bayesian Ying-Yang machine clustering and
number of clusters”, Pattern Recognition Letters”, vol. 18, pp
1167-1178, 1997.

[3] Cancelo, G.; Gottschalk, E.; Pavlicek, V.; Wang, M.; Wu,
J, “Failure related dataflow dynamics in a highly parallel
processor for L1 triggering” IEEE Transactions on Nuclear
Science, Vol. 51, Issue 3, Part 3, June 2004 pp.1158-1162.
.

	I. INTRODUCTION
	II. MODEL AND METRIC SELECTION
	III. THE EXPECTATION MAXIMIZATION ALGORITHM
	IV. APPLYING E-M TO THE VERTEXING PROBLEM
	V. NUMBER OF CLUSTERS
	VI. DISTANCE OF MAXIMUM APPROACH
	VII. SIMULATIONS
	VIII. DISCUSSION

