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What is especially striking and remarkable is that in
fundamental physics a beautiful or elegant theory is

more likely to be right
than a theory that is inelegant.

--Murray Gell-Mann--





Abstract
The results presented in this work allow for new insights into the production of excited
η mesons in photon-proton collisions measured with the CLAS detector. Results are
presented for a meson of mass m = 1280.1 ± 0.4MeV/c2 seen in the π+π−η invariant
mass spectrum. For this state a differential cross section for center-of-mass energies
up to 3.35GeV is determined. For the enhancement at the lower mass two mesons are
candidates, the f1(1285) and the η(1295). For none of them a differential cross section
has been measured in photoproduction up to this center-of-mass energy before.
Results for the mass and the width as well as an interpretation of the decay angular
distribution are presented in order to gain insight on the identity of the resonance at
1280MeV/c2.
Furthermore, a significant contribution of a resonance with a mass of 1400MeV/c2 has
been detected. This resonance might be identified as η(1405). With respect to specific
models the η(1405) is negotiated as a glueball. Therefore this resonance is of huge
importance, as glueball production is expected to be suppressed in photoproduction. The
differential cross section for center-of-mass energies from 2.35GeV up to 3.35GeV in bins
of the cosine of the production angle is presented.
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1 Introduction

1.1 The Standard Model of Particle Physics

Physicists have been driven by the desire to understand the nature of the world on the
most fundamental level and they are still on their quest to achieve a deeper understanding
of matter. To obtain this knowledge physicists began to aim a beam of accelerated
particles at a suitable target material, called it a scattering experiment and measured
the emerging products with a system of detectors.
Nowadays the experiments are becoming more and more sophisticated than ever be-
fore to enable the experimentalists’ search for new particles and other states of matter.
Nevertheless there are a lot of questions remaining.
A multitude of subatomic particles were found, demanding some kind of sorting or
classification scheme. The easiest way to sort found states is by mass. Therefore, the
lightest, non-composed particles, e.g. electron and its neutrino, became classified as leptons.
A variety of states which are not fundamental particles, because they are made of quarks,
were sorted in an additional class named hadrons, which derives from the Greek word
for heavy or bulky.
The large group of hadrons requires further classification into hadrons with integer and
half-integer spin. Those particles with half-integer spin are termed baryons from the
Greek prefix bary-, including for example proton and neutron, because of their weight
tending to be heavy. Hadrons with integer spin were named mesons, from the Greek
prefix meso- meaning middle, due to their tendency to be of medium weight.
Hadrons can decay via three of the four fundamental forces of nature, the gravitation is
negligible because it has a nearly infinitesimal influence on particles with low mass in
comparison to the other forces: electromagnetism, the weak interaction and the strong
nuclear force.
Leptons for example only interact by the weak nuclear force and electromagnetism. The
strong nuclear force is responsible for holding protons and neutrons together into nuclei.
It is named that way because it is the strongest force in nature. Decays via the strong
nuclear force happen fast (approximately in the order of 10−24 s, compared to the weak
interaction which may decay times up to seconds).
Radiative decays or decays involving photons occur because of the electromagnetic force,
which is responsible for binding electrons in shells around nuclei as well.
Finally the weak interaction allows hadrons to decay into lepton pairs or conducts the
β decay mode of radioactive atoms. Furthermore, the weak nuclear force allows flavored
mesons, like kaons, to decay into a meson and leptonic pairs or just lepton pairs.
There are more mesons that decay via the weak interaction than mesons which decay
via strong interactions, giving us evidence that they have something special in common.
In 1964 Murray Gell-Mann proposed a revolutionary idea: the quark model. He proposed
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that hadrons are composed of smaller fundamental particles called quarks. At first the
model involved three quarks with the flavors: up, down and strange. These quarks got
properties assigned like spin and electric charge. Later Sheldon Lee Glashow and James
Borken predicted the existence of a fourth quark, the charm quark. The charm quark
prompted a mass formula to calculate the masses of the known mesons correctly and was
needed to explain the suppression of flavor-changing neutral currents (GIM mechanism).
The two last quarks were found in 1977 and 1995 at the Fermilab, called bottom and top.
Due to the spin of 1/2 which is carried by each quark they underlie Paulis exclusion
principle, which states that no two identical fermions simultaneously occupy the same
quantum state. Additional to this they have other various intrinsic properties like mass
and color. They are grouped like the leptons in three generations including two quarks
and two leptons each. The first contains the up and down and the e and νe, the second
generation contains the next heavier ones, the charm and strange and the µ and its
neutrino, while the third generation contains the last two quarks and the τ lepton and its
neutrino. Up to now every search for a fourth generation had no positive result. Particles
which contain higher generation quarks tend to decay to particles containing quarks of the
first generation which leads to the circumstance that only quarks of the first generation
exist in our everyday-world.
Last there are the so called gauge bosons which are the carrier of the fundamental forces.
The Higgs field gives particles mass, while the symmetries controlling their interactions
suggest they should be massless. The electromagnetic force is carried by the uncharged
photon. The electromagnetic force has an infinite range because of the zero photon mass.
But its strength decreases with increasing distance. The electroweak force is mediated
by the W± and Z0 bosons. The W bosons are charged and each other’s antiparticle
while the Z is uncharged and is its own antiparticle. The W bosons are capable of
changing the quark charge and weak isospin. They can also change the quark flavor. The
neutral Z boson can change the energy, momentum or spin of a quark. The Quantum-
Electro-Dynamics (QED) is the first theory which includes quantum mechanics as well
as special relativity and describes the interaction between photons and matter. In the
1970’s the electroweak force was integrated into the theory. But for the description of
strong interacting particles, another theory was needed.
The QCD features an analogon to the electric charge of the QED, the color. In contrast
to QED there are three ”charges” of color: blue, red and green. The carrier of the strong
nuclear force are the gluons and the theory describes the interactions inside hadrons
and between quarks. Gluons are massless particles and carry a color and an anti-color
simultaneously. Following the SU(3) group theory they form a color octet and a singlet
which is symmetrically build of all three colors and three anti-colors. As a carrier of the
color charge they are the intermediaries between quarks and the color charge allows them
to self-interact.
As mentioned before the power of the electromagnetic force decreases with increasing
distance. In QCD a similar, but inverse, effect happens. For small distances between
the quarks they do not feel the binding force. They are quasi free and this is called
asymptotic freedom. It is possible to describe QCD in this scale perturbatively. If the
distance between quarks increases the strong force raises.
If one pulls two quarks contained in a meson apart the strength of the gluon flux be-
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1 Introduction

tween them increases. If this distance increases over a threshold a new quark anti-quark
pair is formed out of the vacuum. This leads to the observation that no quark can be
observed alone and free, but only in bound states. This phenomenon is called confine-
ment. Information about the structure of hadrons and their interactions can be gained
by spectroscopy.

1.2 Meson Spectroscopy
One part of spectroscopy is the study of properties of quantum-mechanical states to
understand their interactions with the goal to gain further knowledge about QCD in
the non-perturbative regime. Hadron spectroscopy measures the masses and widths of
bound quark systems and compares them to QCD predictions. More resonances have
been found than mesons are predicted by theory. Mesons are build of a quark and an
anti-quark and have to be further classified into light and heavy mesons due to their
different quark contents and the consequential different behavior. The light mesons are
assembled from the three lightest quarks: up, down and strange. Heavy mesons consist
of at least one charm or bottom quark.
It is much easier to distinguish the mass states of the heavy meson spectrum from one
another, because those states are well separated from one another. The masses of light
mesons are often overlapping due to their often large width. Assuming that they carry
the same quantum numbers it is allowed that ss states as well as uu and dd mix. It
is possible to form nine different quark compositions from the three quarks and their
anti-quarks, according to the SU(3) group theory. These nine compositions form an octet
and a singlet. Those formations can be further sorted and classified with the help of their
quantum numbers. Quarks are fermions, and therefore carry a spin of 1/2 hence they
can couple to a total spin S of either 0 or 1.
Their complete set of quantum numbers is expressed in the spin parity notation JPC ,
where J is the total angular momentum and can be calculated with |L−S| ≤ J ≤ L+S.
L is the orbital angular momentum and S is the spin angular momentum.
The other two quantum-numbers P and C are the parity P = (−1)L+1 and the charge
conjugation C = (−1)L+S . If the quark and anti-quark do not have a relative angular
momentum to each other (L=0), only quantum numbers of JPC = 0−+ and JPC =
1−− are allowed. Mesons with a JPC = 0−+ are called pseudo-scalar mesons whereas
mesons with JPC = 1−− are vector-mesons. The analysis of this thesis deals mostly with
pseudo-scalar mesons thus the pseudo-scalar meson spectrum is explained furthermore.
In figure 1.1 the pseudo-scalar meson nonet containing the ground states is shown. The
quark component of the mesons of the nonet are listed below

π+ =|ud? K+ =|us?
π− =|ud? K− =|us?

π0 = 1√
2
|uu− dd? K0 =|ds?

K
0 =|ds?

η1 = 1√
3
|dd + uu + ss? η8 = 1√

6
|dd + uu− 2ss?
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-1 -1/2 +1/2 +1

+1
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0
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0I3 I3

Figure 1.1: Nonet of lightest pseudoscalar mesons sorted by their strangeness S and the
third component of Isospin I3. Left: octet, Right: singlet.

The two wave-functions η1 and η8 mix to form the mesons η and η? and θ is the mixing
angle.

?
η
η?

?
=
?

cos(θ) −sin(θ)
sin(θ) cos(θ)

??
η8
η1

?

The mixing angle of the pseudoscalar meson nonet is approximately θ = −11.5◦. There-
fore, the observed particle η is near the η8 and the η? is close to the η1. Different meson
nonets could be formed out of the same quark compositions as mentioned above. The only
difference between them are the spin and angular momentum as well as radial excitations.
An orbital angular momentum of larger than one and radial excitations of the valence
quarks lead to different masses and decay characteristics.
As mentioned above, many of the predicted mesons were found as well as some additional
resonances which do not fit into the underlying systematics and can not be integrated
into one of the meson nonets. Those additional mesons can be explained with exotic
particles which are described further in the next section.

1.3 Exotic Particles
Examples for exotic particles are compositions of quarks and anti-quarks as well as gluonic
degrees of freedom: qqg, qqgg. These states are called hybrids. Also possible are so called
multi-quark states like pentaquarks which consist of four or more valence quarks and
antiquarks.
In the previous chapter the rules to figure out the quantum numbers for each particle
have been discussed. Some particles happen to have quantum numbers which can not be
constructed under these selection rules. Those states are called spin-exotics and they do
not fit into the meson or baryon classification scheme. Some examples for exotic quantum
numbers are

JPC = 0−−, 0+−, 1−+, 2+−, 3+−, ...

4
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Exotic quantum numbers are allowed due to more degrees of freedom (e.g. gluonic) than
for a normal meson. One of the biggest challenges in their identification is, that exotic
particles do not have to have exotic quantum numbers. This makes it rather difficult to
separate meson states from exotic particles because the same quantum numbers allow
for mixing of these states.
The third group of exotic particles are glueballs. Glueballs are particles which consist
of two or three bound gluons, they are particles purely constructed from valence gluons.
Gluons are the intermediary particles of the strong force. These types of particles are
possible because they are a direct consequence from quantum chromo dynamics which
allows for a self-coupling of gluons. They have no charge and no mass and they carry a
color and an anticolor. They follow the same SU(3) symmetry as quarks, and therefore
form a singlet and an octet. The singlet is a total symmetric wave function and is not
able to change the color of a quark and it is purely colorless which enables the gluon to
exist outside the confinement, but it has never been observed in nature.
A glueball of two gluons can have a spin of 0, 1, or 2 whereas it can only be 0 or 2 if
the angular momentum is even and 1 if the angular momentum is odd. For a two gluon
system this results in the following quantum numbers, cf. table 1.1.

Table 1.1: List of possible quantum numbers for glueballs.
L S JPC

0 0,2 0++, 2++

1 1 0−+, 1−+, 2−+

2 0,2 0++, 2++, 4++

3 1 2−+, 3−+, 4−+

As one can see in the second line of table 1.1 glueballs are allowed to have the same
quantum numbers as pseudoscalar mesons. This makes an experimental proof difficult,
because it allows for a mixing of ordinary mesons with glueballs. Glueballs decay differ-
ently than mesons. As they do not consist of any quarks they can not violate the OZI
rule.
The OZI rule is named after Susumu Okubo, George Zweig and Jugoro Iizuka and explains
the imbalance of certain decay modes. It says that if a Feynman diagram of a strongly
occurring process can be split by just cutting internal gluon lines, this process is heavily
suppressed. This leads to the characteristic of a flavor blind decay. Flavor blind decaying
particles decay with the same branching fraction regardless of the flavor of the final state
under the presumption that the available phase space does not influence the decay. This
means that glueballs can decay to ππ modes as well as to KK modes, under the condition
that the decay is not forbidden by conservation laws. Every mode is another possibility
to identify probable glueball candidates.
A different approach is to make a theoretical prediction to be able to limit the search
field for experimental measurements. Several different models have been developed and
allowed to calculate possible masses of glueballs to compare to the experimental data.
The first is the Bag model [1] which considers gluons confined to a bag the same way
as the quarks are confined in a hadron. The Fluxtube model has been established later
and considers the glueball as a self-contained or closed fluxtube [2]. The results of these

5
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Figure 1.2: Glueball masses predicted by lattice QCD (blue), compared to the measured
masses of established mesons (black). [3]

models are comparable to those of the lattice QCD calculations. Lattice QCD solves the
QCD at discrete points in space and time positioned on a lattice. If the lattice becomes
infinitely large and the points have an infinitesimal small distance from one another then
continuum QCD is recovered. Nevertheless, LQCD is able to produce predictions for the
masses of possible glueballs and one of those predictions can be seen in figure 1.2.

The blue markers are the predictions for the masses of glueballs of [3] and the black
markers resemble the measured masses of known mesons. One resonance with isospin
zero and spin zero is established for the scalar meson nonet: the a0(1450) which leaves
two empty spaces. For these spaces three candidates are observed: f0(1370), f0(1500)
and f0(1710). The f0(1370) is also well established, as the second highest mass state.
The other two particles, from which only one fits into the nonet, are possible candidates
for the scalar state with the biggest proportion of gluonic degrees of freedom. The first
is the f0(1500) which has a much smaller decay width (Γ = 109 MeV [3]) as the other
mesons of the nonet.

Furthermore glueballs can not couple electromagnetically, and therefore the decay into
two photons in first order is suppressed strongly. On the other hand, the f0(1710) is much
closer to the predicted mass of the lowest scalar glueball, but it couples to two photons,
whereas the f0(1500) does not couple to two photons. Nevertheless the status of these
resonances still remains ambiguous [4, 5, 6] . Similar conditions apply to the pseudoscalar
meson nonet and the first angular excitations of its mesons, which are treated in the next
section.

There are different experimental approaches for the identification of exotic particles.
There is for example the circumstance that sometimes more mesons have been found
than needed for the occupation of the nonet. This is helpful if the exotic particle has
“normal” quantum numbers. Another way to clearly identify an exotic particle are its
exotic quantum numbers. Furthermore exotic particles might show a different decay
behavior as normal hadrons.

6
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1.4 Experimental Status
For the pseudoscalar meson nonet of the first radial excitation more candidates have been
found than expected. Three η-mesons have been observed in the mass region between
1.2 and 1.5 GeV/c2. Two of them are considered to be the first radial excitation of the
η and η?, which leaves one resonance which does not fit into the classification scheme.
The mesons are named η(1295), η(1405) and η(1475). The η(1295) and η(1405) decay
to π+π−η each, while the latter one has been never seen before in photoproduction.
Therefore, it is of particular interest to search for these resonances via photoproduction,
as some ambiguities about theses resonances remain.
In this section the experimental situation of the higher η mass states as well as the status
of the vector meson f1(1285) are discussed, because the f1(1285) is closely connected,
from the experimental point of view, to the current discussion. At first an overview of
experimental measurements is given and in the next step an overview over the current
interpretation.

f1(1285)
The f1(1285) was first observed in the middle of the 1960’s at Brookhaven National
Laboratory [7] as well as at CERN [8]. In both experiments the collision of two protons
was used, and both detected an enhancement in KKπ which was found to have the
quantum numbers JPC = 1++.

Figure 1.3: Results of the spin parity analysis from the WA102 collaboration. a) shows
the fits of a background function with three Breit Wigner functions for the η?,
f1(1285) and f1(1420), whereas b) illustrates the same, but under the condition
of interference between the two f1 resonances. c) and d) are the results for the
hypothesis of a 1++ wave or a 0−+ wave. [9]

7
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Figure 1.4: LE3 π+π−η mass spectra: (a) total spectrum, the fit of a Gaussian plus poly-
nomial background for the f1(1285) region is superimposed on the data; (b) for
P 2
T < 0.02GeV 2, arrows show the location of η(1295) and η(1440). [10]

The WA102 experiment at CERN was aimed to find non-qq states in central production
in pp. On this data an analysis of the f1(1285) was performed in decays to ππη, ππππ,
ρ0γ and KKπ. The f1(1285) is known to couple more strongly to the ρ0γ state than the
η(1295). The collaboration extracted a branching fraction f1(1285)→ ρ0γ that is about
10 times smaller compared to f1(1285)→ ππη, Γρ0γ

Γππη = 0.10± 0.01± 0.02 [9], which aids
the observation of f1(1285). In addition to this a spin-parity analysis was conducted of
the ππη final state. The results of this are presented in figure 1.3.
The authors of this publication have drawn the conclusion that central pp production is
a clean production process for the f1(1285) and that they did not need a contribution of
a 0−+ wave to describe the data. Central production is also under discussion as a good
environment to produce glueballs, because two mesons are scattered diffractively and no
valence quarks are exchanged.
The L3 experiment at LEP/CERN measured the f1(1285) in γγ fusion in e+e− →
e+e−γγ → e+e−KSK±π∓ and e+e− → e+e−γγ → e+e−ηπ+π−. If the photons are real,
meaning a Q2 ? 0 where Q2 represents the virtuality of the photons, the production of
a spin 1 particle is strongly suppressed. If the photon becomes more and more virtual at
high Q2, the production of spin 1 mesons is favored in comparison to the spin 0 mesons.
In figure 1.4 the invariant π+π−η mass is presented. The upper plot presents a fit to the
data using a Gaussian signal and a polynomial function for the background to the data.
The fit yields a mean of 1280 ± 4MeV/c2 and a width of 21 ± 4MeV, consistent with
the values of f1(1285). In order to demonstrate that there is no contribution from a 0−+

wave, the mass spectrum is shown for a ππη transverse momentum of P 2
T < 0.02GeV2,

8



1 Introduction

whereas the P 2
T equals Q2 in good approximation. No contributions from η(1295) and

η(1440) have been observed. An upper limit for the production of the two resonances
with a confidence level of 95% for the π+π−η decay was set [10].

Γγγ(η(1440))× BR(η(1440)→ ηππ) < 95 eV
Γγγ(η(1295))× BR(η(1295)→ ηππ) < 66 eV

η(1295)
The first hint for a new pseudoscalar resonance in the mass region of 1290MeV/c2 was
found in 1979 at the Argonne National Laboratory. A IJP = 00− resonance with a
mass of 1275MeV/c2 and with a width of 70MeV decaying into π+π−η was seen in
π−p → nπ+π−η with a production cross section three times higher than that of the
f1(1285). A partial wave analysis was conducted and the mass spectrum could be well
described by a Breit-Wigner shaped 0−+ resonance on top of a nearly flat background,
as illustrated in figure 1.5a [11].
Secondly the E852 collaboration found further evidence for the η(1295) [12]. The E852
experiment was located at the Brookhaven National Laboratory and studied pion proton
scattering. The results of the analysis showed a low contribution from the f1(1285)
decaying into π+π−η, but they found a large contribution from a 0−+ wave. The partial
wave analysis was conducted on data taken at an momentum of 18GeV/c in the channel
π−p→ nπ+π−η as well. They observed two scalar resonances, the η(1295) and the η(1440)
(discussed later in section 1.4). The η(1295) was observed at a mass of 1282 ± 5MeV/c2

with a width of 66 ± 13MeV. The extracted intensity of the 0−+a0π wave is shown
in figure 1.5b. Their partial wave analysis also revealed that a weak contribution of a
1++a0π is needed to describe the enhancement in the a0π spectrum. Both resonances,
the η(1295) and f1(1285) were found to have nearly the same width which hints for

(a) Addition of intensity curves ob-
tained by PWA in comparison
to the mass spectrum in 5 MeV
bins.[11]

(b) a) 0−+a0π intensity, b) 0−+ση intensity and c) total
0−+ intensity. [12]

Figure 1.5: E852 partial wave results for πN → Nππη.
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an ambiguity in the partial wave analysis (PWA). But an extended Monte Carlo study
pointed out that the results were not an artifact of the PWA.
The Crystal Barrel collaboration used this wave in a partial wave analysis of pp →
ηπ+π−π+π− and achieved an improvement in the likelihood. But they optimized the fit
with a mass of 1255± 10 MeV/c2 and a width of 90± 23MeV and they did not observe
an enhancement in the ηππ spectrum, neither at 1255MeV/c2 nor at 1295MeV/c2. For
this reason and because the likelihood did not improve significantly they regarded the
fitted signal as an upper limit [13].
The DM2 experiment at Orsay-DCI studied e+e− annihilations and saw a pseudoscalar
resonance in J/ψ → γπ+π−η at a mass of 1265MeV/c2 [14]. They limited the partial
wave analysis to angular momenta lower or equal to one and kept the 0−+ wave because it
was subject to smaller fluctuations, but emphasized that this choice was arbitrary. Later
analyses based on higher statistics could not reproduce this observation.

η(1405)
In the first observation only one enhancement at a mass of 1425MeV/c2 was found in
1967 at CERN PS with the Saclay 81 cm bubble chamber. The resonance was seen in
pp decaying to KKπ with the intermediate states a0(980)π and K∗(892)K where both
channels contributed in equal measure [15]. The resonance with the quantum numbers
IGJP = 0+0− was named E and considered as the first radial excitement of the η? or as
a glueball.
In 1980 the resonance was seen by the Mark II collaboration at the Stanford Linear

Figure 1.6: Partial wave analysis results of the OBELIX collaboration: partial wave inten-
sities and the (0−+)K∗K S-wave phase motion. [16]
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Accelerator Center. In radiative decays J/ψ → KKπ a resonance was observed. Though
the E was seen at the mass mentioned before they identified their enhancement at a
mass of 1440+0.01

−0.015 MeV/c2 preliminary as E [17]. Afterwards the particle was renamed to
η(1440). The successor experiment Mark III saw the same particle in the ηππ spectrum,
but at a significantly lower mass of 1400MeV/c2 and named it ι. This controversy was
named the E/ι puzzle. The region between 1400MeV/c2 and 1500MeV/c2 is named the
E/ι region because two or three resonances have been seen in the KKπ, ηππ and ρ0γ
final state.
It is now known that the E/ι is split into two states, namely the η(1405) and the η(1475),
while the former tends to decay mainly through a0(980)π and the latter to KKπ.
The first indication for this split up was published by the DM2 collaboration in 1992.
They identified two separate resonances utilizing a partial wave analysis. They also looked
into radiative J/ψ decays and the same final states as mentioned above. They found the
masses to be 1421 ± 14MeV/c2 and 1459 ± 5MeV/c2 for the η(1405) and the η(1475)
and the widths to be 63± 18MeV and 75± 9MeV respectively. The quantum numbers
are those of a pseudoscalar resonance for both states [14].
Another measurement was made by the OBELIX collaboration in pp→ K±K0

missπ
∓π+π−

at LEAR (CERN) [16]. They confirmed the existence of η(1405) decaying mainly to
(Kπ)sK in the lower part of the E/ι region as well as η(1475) decaying to K∗K and the
f1(1420) decaying into the same final state. The intensities as a result of a PWA analysis
are shown in figure 1.6.

1.5 Status of Excited η States

From the current point of knowledge, several scenarios to resolve the problem of too
many resonances as candidates for the first radial excitation of the pseudoscalar meson
nonet are discussed:

• The first scenario is, that the η(1295) exists. If so then it would be the first radial
excitation of the η. The characteristics of the η(1405) would become dubious again.
Due to its production in gluon rich environments and its decay to final states
containing ππη or KKπ, it might be dealt as a potential glueball or a particle with
a large gluonic component. The remaining η(1475) would then be the first radial
excitation of the η?.

• The next explanation neglects the existence of the η(1295), because it is degenerate
in mass and width with the f1(1285). In this case the η(1405) and η(1475) are the
first radial excitations of η and η? and the η(1405) is not an exotic resonance.

• The last possible scenario is that the η(1405) and η(1475) are not two separate
mesons, but the wave function of a meson called η(1440) with two nodes leading
to two apparently different states. Then the η(1295) would be the excitation of the
η and the η(1440) would be the excitation of η?. If the η(1295) does not exist an
additional meson at a higher mass is missing as radial excitation for the η?.
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As shown in the previous chapter there are a lot of ambiguities left for the first radial
excitations of the mesons of the pseudoscalar ground states nonet. The η and η? are
unmistakably identified. In contrast to this, the η(1295) is questionable.
In the same mass region the axial vector meson f1(1285) is observed too. In addition to
this the f1(1285) decays into the same final states as the η(1295). The disentanglement
of the f1(1285) and the η(1295) can only be achieved with sophisticated methods like a
partial wave analysis and a high statistic data set. Besides the difficulties of differentiating
the two particles by mass is that the decay amplitudes of the decay of a pseudoscalar
meson in three pseudoscalar mesons does not feature any specific characteristics. This
means that the matrix elements are isotropic and flat. Therefore, it is possible to fake a
0−+ wave contribution if wrong assumptions for acceptance and resolution were made,
statistics were too low or wrong assumptions in the partial wave analysis were made.
The η(1405) has been seen in gluon-rich production processes only, like pp annihilation
and radiative J/ψ decays.
All three particles decay to π+π−η with a sufficiently large branching fraction, to be
measurable in the decay channel π+π−η if produced. The photoproduction offers an
elimination criterion for some of the scenarios mentioned above as it provides a production
process without a large gluonic component. Therefore, particles with a gluonic degree
of freedom should be suppressed in first order production, as the photon only couples
electromagnetically. If the η(1405) is a glueball it should not be seen in photoproduction.
Both the η(1295) and the f1(1285) can be produced by this production mechanism,
therefore this analysis yields a further measuring point to clarify the status of the η(1295).
To discuss further what production processes are possible in photoproduction a short
introduction on these will be given
In particle physics, the Mandelstam variables are used to describe scattering processes
with two incoming and two outgoing particles. The four-momenta of the incoming par-
ticles are labeled with p1, p2 and the outgoing ones with p3, p4. Then the Mandelstam
variables s,t and u are defined as s is also known as the squared center of mass energy and

s = (p1 + p2)2 = (p3 + p4)2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2.

t as the four-momentum transfer. The sum of the four-momenta of the four participating
particles squared is equal to the sum of the three Mandelstam variables. To describe
the interaction between the incoming and outgoing particles, three Feynman graphs are
needed.
During the s-channel process an intermediate resonance can be produced. In the case of
photoproduction the incoming photon and proton can couple to a baryon resonance, for
example a N∗, which is showed in figure 1.7a.
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a) s-channel b) t-channel c) u-channel

Figure 1.7: Production processes.

The t-channel process is also called meson-exchange process. In this case the incoming
photon exchanges a virtual meson with the target proton. The process described by this
diagram does not produce a peak in the cross section by itself, that can be experimentally
observed. Imagine another diagram attached to this, where particle three and four form
again the virtual exchange particle. This can be done again and again and is called
”ladder” contributions. The sum of all these contributions can produce a peak in the
cross section.
For the u-channel process the proton and the resonance are simply interchanged, in
comparison to the t-channel process. The virtual particle in this process can be a baryon
or a baryon resonance.

1.6 Motivation
So far no one has ever searched for excited η states in photon induced reactions. The
CLAS experiment provides a high statistic, photoproduction data set and the possibility
to examine the pπ+π−η final state for the η(1295), f1(1285) and η(1405), with the highest
beam energy in photoproduction up to date.
The measurement of the η(1295)/f1(1285) and the η(1405) in a photoproduction channel
yields several advantages.
The η(1405) has never been seen in γγ fusion or photoproduction. In contrast to this it
has been seen in J/ψ decays which are classified as a gluon rich environment. Secondly
the η(1405) decays to final states containing pions as well as kaons. Both facts support
the hypothesis of the η(1405) having a significant gluonic content.
If one takes the possibility of the η(1405) being a glueball into account, the photopro-
duction grants a perfect elimination criterion. Under the assumption the η(1405) has a
large gluonic component its production should be suppressed in photoproduction.
The t-channel process is hereby responsible for a gluon-poor environment and delivers
a good exclusion criterion if the outgoing resonance is produced via this process. The
process responsible for the production can be identified via the differential cross section
in bins of the production angle of the produced resonance. The s-channel process is
believed to produce a symmetric distribution, while the u- and t-channel process should
produce peaks in the backward and forward direction, respectively.
Secondly the f1(1285) as well as the η(1295) decay both to π+π−η in the final state.
Therefore, by analyzing this data set another measuring point is provided which of the

13
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both particles is produced in photoproduction. For this identification it is possible to
extract the mass and width of the resonance as well as the decay angular distribution.
The decay angular distribution is interesting because the final state particles are all
pseudoscalar mesons. If a pseudoscalar meson decays only to pseudoscalar mesons the
decay angular distribution features different structures in contrast to an axial vector
meson decaying into the same final state.
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The analysis of this work was performed on data produced with an electron beam from
the Continuous Electron Beam Accelerator Facility (CEBAF) converted to a photon
beam and recorded by the CEBAF Large Acceptance Spectrometer (CLAS), located at
the Thomas Jefferson National Accelerator Facility (JLab). At JLab three experimental
halls (A, B, and C) are provided with a continuous-wave electron beam of up to 6GeV
in energy and 200µA in current from the CEBAF accelerator. The CLAS experiment is
housed in Hall B and is perfectly suited to detect final states of multiple charged particles
across a broad range of angles. Therefore, the 5.71GeV electron beam is converted into
a Bremsstrahlung photon beam by the Hall B photon tagger which incidents on a 40 cm
long liquid hydrogen target. This analysis is based on a data set taken by the g12
run group in 2009. The experimental proposals made for this runtime include meson
spectroscopy, baryon spectroscopy and in-medium modification measurements.

2.1 CEBAF Accelerator
CEBAF is laid out as a multilevel recirculating linear accelerator (LINAC), shaped like
an oval racetrack with a length of 1.4 km length in total. CEBAF was designed to deliver
a high quality, continuous wave polarized electron beam of up to 6GeV with currents of
up to 200µA to the three experimental halls simultaneously. An aerial photograph of
the accelerator site is shown in Figure 2.1a.
The location of the injector, linear accelerators and the experimental halls are illustrated as
a schematic drawing (figure 2.1b). The accelerator was build in a new cost-saving design.
In comparison to former accelerators, CEBAF uses superconducting radio-frequency
cavities (SRF) to provide the acceleration gradient. Before that, only copper cavities
have been used, which are expensive to operate due to resistive heating.
The electron beam is produced in the injector by a laser incident on a GaAs photo-cathode
sample and is accelerated the first time to 67MeV by the injector LINAC. The incidents
are timed to pulses every 2 ns. These bunches pass an optical chopper to improve the
separation of the bunches before they are accelerated further. Each bunch is 90 µm in
length and separated 667 ps in time from the next bunch.
To gain an energy of ∼ 6GeV the electrons are accelerated by two LINACs on each side
of the racetrack. One LINAC consists of 168 superconducting radio-frequency (SRF)
Niobium cavities, a photo is presented in Figure 2.2a.
The injector supplies electrons in phase with the radio-frequency oscillating voltage.
Standing radio-frequency waves form inside the cavity and the electrons feel always a
force accelerating them in forward direction (cf. figure 2.2b).
This results in a positive electric force which accelerates each bunch simultaneously. Each
LINAC is capable of providing 600MeV of acceleration. Both LINACs are connected



2.2 Hall B Photon Tagger

(a)

North Linac

Injector

Recirculation Arces

Helium Refrigerator

South Linac

(b)

Figure 2.1: (a) Aerial view of the JLab accelerator site. The line in red indicates where the
accelerator and the the three experimental halls are located.
(b) CEBAF [18].

by nine recirculating arcs, four on one side and five on the other, which results in five
laps through the accelerator resulting in approximately 6GeV beam energy, prior to
extraction to the experimental halls. In each hall the beam energy can be controlled
by choosing the number of laps completed before extraction, but every hall can get the
highest energy, but not two the lower one. The beam switch-yard is capable of delivering
bunches in turn to each experimental hall every 2.004 ns.
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Figure 2.2: (a) A pair of CEBAF cavities [18]. (b) Schematic drawing of RF cavity.

2.2 Hall B Photon Tagger
The Hall B tagging system converts the CEBAF electron beam into a photon beam,
a schematic diagram is shown in Figure 2.3. The incoming electrons pass through a
gold-foil radiator. This radiator has a thickness of about 10−4 radiation lengths. While
passing through the radiator, electrons can produce Bremsstrahlung, when they interact
with the Coulomb field of the gold atoms. Thus the energy of the resulting photon is
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corresponding to the deceleration of the electrons. A small, but negligible, amount of the
electron energy is transferred to the nucleus of the gold atom. One can derive the energy
of the photon by measuring the energy of the scattered electrons:

Eγ = ECEBAF
e − Escattered

e ,

where Eγ is the energy of the Bremsstrahlung photon, ECEBAF
e the energy of the electron

coming from CEBAF and Escattered
e the energy of the recoil electron. After passing

through the radiator, the former electron beam is a mixture of non-scattered electrons,
recoil electrons and photons. The photons proceed to the CLAS target, while the electrons
are bend by a 1.75 T dipole magnet. The non-scattered, bended electrons proceed to the
beam dump, while the recoil electrons get bend towards the two hodoscope planes, each
made of overlapping arrays of scintillators.

Figure 2.3: Schematic diagram of the Hall B photon tagger in profile. The scintillator arrays
are marked with E- and T-counters, where the E-counters measure energy and
T-counters provide timing information. The dotted line depicts the trajectories
of the photons and the dashed line the trajectories of the electrons. [19]

The first layer of scintillators is used to determine the energy of the recoil electrons and
are thus called E-counters. It consists of 384 paddles which are 20 cm in length, 4mm
thick and range from 6 to 18mm in width. The overlapping design provides an increase
in the number of logical paddles to 767. The trajectory of an electron inside a magnetic
field is governed by its momentum. Consequentially we can measure the momentum of
the electron by knowing which paddle it has passed. If the momentum of the electron is
known, the energy of the emitted bremsstrahlung photon can be calculated. The energy
resolution of the E-plane is 0.1% of the incident electron beam energy.
Below the E-plane is a second scintillator plane of 61 paddles for timing information,
called the T-plane. These scintillators are 2 cm thick to provide a time resolution of 110 ps.
A good timing resolution is crucial to allow for the deduction of the photon which caused
the interaction at the CLAS target. It is also possible to identify the RF beam bucket,
in conjunction with timing information from tracks in CLAS, each photon is associated
with. The RF signal of the accelerator delivers the most accurate time measurement of
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the experiment and allows to calculate the event vertex time by propagating the RF time
from the radiator to the point in time where all final state particles were produced. The
event vertex time is the time at which all final state particles that were produced are at
the same point in space. Further information concerning the Hall B tagging system can
be found in [19].
The beam is further refined using collimators to trim the beam halos. A sweeping magnet
is installed to ensure that there are no charged particles left, which may have been created
by a contact between beam and collimators.
One other essential part of the tagging system is the Total Absorption Shower Counter
(TASC), located downstream of the target. The TASC is used to monitor the flux of the
photon beam, but it needs a much lower beam current and a thinner radiator to avoid
overload.

2.3 Experimental Target
During the g12 run a target cell of the g11 run group has been used. This cell is a tapered
cylinder with a length of 40 cm and 4 – 5.1 cm in diameter, where the smaller radius is in
downstream direction. The wall of the target is made of Kapton with a total thickness of
5µm and the beam windows on the ends of the cell are made of aluminum. In Figure 2.4
a computer graphic of the target cell can be seen.
For the g12 run the target was placed 90 cm upstream of the geometrical center of CLAS
to reduce the angle subtended by the forward hole in CLAS and filled with unpolarized
liquid hydrogen.
The density of the target is crucial for extracting a differential cross section. Therefore,
the temperature and pressure of the target cell are monitored.

Figure 2.4: Target cell used for the g12 run [20].

2.4 CLAS Detector
The CEBAF Large Acceptance Spectrometer (CLAS) detector is housed in Hall B at
Jefferson Lab. The CLAS detector is suitable for multiple particle detection. Its shape is
roughly spherical and divided azimuthally along the beamline into six individual parts
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which can be operated as independent detector packages, as shown in Figure 2.5. The
detector consists of the following subdetector components:

• Start Counter: The start counter surrounds the target cell and provides timing
information and is described in Section 2.4.1.

• Magnet: The magnet is made of six lobes and produces a toroidal field and is
described further in Section 2.4.2.

• Drift Chambers: The drift chambers are for charged particle tracking and mo-
mentum measurement, cf. Section 2.4.3.

• TOF: The time-of-flight system delivers timing information for the events and is
explained in Section 2.4.4.

• Čerenkov Counter: The Čerenkov counter enables distinction between pions and
leptons. Further information can be found in Section 2.4.5.

• EMC: The electromagnetic calorimeter (EMC) measures the energy of photons,
leptons and neutrons, see Section 2.4.6.

These subdetectors sum up to ∼ 40,000 readout channels for each trigger and their signals
have to be recorded by the Data Acquisition System (DAQ) (Section 2.5). The offline
reconstruction converts the digitized signals of all detectors into four-vectors and PID
information by means of a specialized software and batch computing. Based on the results
of the offline reconstruction the event selection and data analysis can be performed.

(a) (b)

Figure 2.5: (a) A photo of the CLAS detector without the TOF. (b) A schematic drawing
showing all subdetectors of CLAS ([18]).
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2.4.1 Start Counter
Photons can interact with protons in the target and produce new particles. The first
detector which these particles pass after leaving the target is the Start Counter (ST),
which can be seen in Figure 2.6. The ST resembles the hexagonal symmetry of the CLAS
detector. Each of the six parts is made up of four scintillator panels with a thickness of
2.2mm, which leads to a total of 24 readout channels. Towards the downstream end of
the start counter the scintillators are bent to the beamline and narrowed in width to
cover the front end of the target. The light output of the scintillators is collected with
phototubes which are attached to the upstream ends of the scintillators. The ST can
achieve a time resolution of 350 ps.
The output of the phototubes is further processed by a Time-to-Digital Converter (TDC)
and an Analog-to-Digital Converter (ADC), but only the time information is used in
the offline reconstruction. The time information of the events from the ST can be used
to associate hits in the photon tagger properly with tracks in CLAS to deduce the
responsible beam photon.
Most of the tracks which caused a signal in the ST will later cause a hit in the Time-
Of-Flight (TOF) as well. By combining the path length from ST to TOF and the time
difference between the two hits one can derive the velocity of the particle. Knowledge of
the particle velocity enables the propagation back to the event vertex inside the target
and the determination of the time when the event took place. This is crucial for high
multiplicity events, i.e., events with more than two tracks, to determine the correct beam
photon for each event. The list of hits in the tagger for the event can be compared with
an average of the times from the tracks’ start times and used to select the photon which
arrives at the event vertex at the same time as the tracks’ averaged event start time.
It is possible to combine the logic of the timing counters of the tagger with the ST to
record only events with a certain photon energy.

Figure 2.6: Drawing of the CLAS start counter. [21]

2.4.2 Superconducting Toroidal Magnet
An integral part of the detector is the toroidal magnet. The magnetic field forces charged
particles to move along non linear paths through the detector. The trajectory of each
particle is thereby traced by the tracking system ( Section 2.4.3). Given the trajectory
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and the strength and direction of the magnetic field, the momentum of the particle can
be determined.
The magnet is made up of six kidney-shaped nonferrous superconducting coils, which
are mounted every 60◦ in azimuthal direction. Tracks of charged particles are only bent
in polar angle and thus charged particles rarely enter two different sectors. In normal
operation mode the magnetic field causes negatively charged particles to be bent toward
the beam line and positively charged particles to be bent away from the beamline.
This results in a higher detection efficiency for positively charged particles, because the
particles which are bent inward have a higher chance to get lost in the beamline or the
forward hole. This makes a simplification of the tracking algorithms possible and allows
for optimization of the design of the drift chamber in the expense of acceptance.
The field of 2.5 T is reached at its normal operating current of 3861A. Two field maps of
the magnet are shown in Figure 2.7a and Figure 2.7b. Figure 2.7a illustrates the strength
of the magnetic field between two of the coils. The strength varies downstream as well
as radially, the highest magnetic field strength is in forward direction behind the target
and near the beamline and is lower in the downstream region and farther away from
the detector in radial direction. In Figure 2.7b the field centered at the target in the
x-y-plane is presented, the length of the lines are proportional to the field strength.

(a) (b)

Figure 2.7: (a) Contour plot of the constant magnetic field for the main CLAS toroid
between two coils.
(b) Magnetic field vectors for the CLAS toroid looking upstream in a plane
centered at the target position.[22]

2.4.3 Drift Chambers
Each single sector of CLAS contains three sets of Drift Chambers (DC) which are located
in three different regions R1, R2 and R3. A schematic drawing is shown in Figure 2.8. The
R1 drift chamber, the smallest one, is located near the target and beneath the lobes of the
torus and is, therefore, nearly field-free. The R1 drift chamber set is used to determine the
initial direction of charged tracks. For a high resolution for the momentum measurement
the R2 set of drift chambers is interleaved with the torus coils to measure at the point
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of the strongest magnetic field strength to gain the highest possible track curvature of
bent charged particles. The drift chamber set R3 is positioned at the largest radius of
the three sets and is the biggest one. In this region the magnetic field is low so that the
final direction of the charged track is measured.

Each region consists of six drift chambers corresponding to the six segments of CLAS.
Each chamber contains one superlayer of axial orientated wires (relative to the magnetic
field direction) and one stereo superlayer with sense wires in six layers at an angle of 6◦
with respect to the axial wires. The axial superlayer consists of six layers of sense wires
(only four in the case of R1) and the stereo superlayer consists of six layers of sense wires
as well. The wires of a superlayer are arranged in a hexagonal pattern with up to 192
wires per layer. Each layer is strung with 140 µm gold-plated aluminum alloy field wires
interspersed with 20 µm gold-plated tungsten sense wires to form a layer with the sense
wires in the middle, giving the chambers a good position measurement at a wide variety
of tracks.

The field wires are operated with a high negative voltage, where the sense wires are kept
on a positive potential. The chosen drift gas mixture contains 90% Argon and 10% CO2,
due to its ionization properties and additional non-flammable. The read out signals from
the sense wires are processed by preamplifiers and amplifier discriminator boards and
finally to the TDC to obtain the time information.

The single wire resolution is 330 µm and the momentum resolution is δp/p ≤ 0.5% for
1GeV/c. The resolution decreases with increasing polar angle, because of the magnetic
field strength. More information concerning the CLAS drift chamber can be found in
[23].

Figure 2.8: CLAS in x-z-plane showing the relative positions of the subdetectors. Three
sets of drift chambers can be seen, the first one near the target (R1), the second
one between the magnet coils (R2, dashed lines), and the third one outside the
magnets (R3). [23]
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Figure 2.9: A single sector of the CLAS TOF. [24]

2.4.4 Time-of-Flight

The TOF system is used to measure the arrival time of charged tracks after they passed
the detector. The TOF system is mounted 4m from the cryotarget downstream. By
dividing the path length of the particle by the time it needed to travel from the start
counter to the TOF, its velocity can be deduced. Knowing the momentum and its velocity
allows to calculate its mass, and thereby determine its identity. This characteristic makes
the time-of-flight system a part of the Level 1 trigger (Section 2.5).
The TOF consists of six sets, with 57 scintillator paddles each. One set can be seen in
figure 2.9.
These 57 scintillators are divided in three groups, based on the range in polar angle under
which they detect particles. The detectable forward angle ranges from 8.6◦ to 45.9◦ and
is covered by the first 23 scintillators. Paddles 24 to 53 cover an angular range of 45.9◦
to 131.4◦ and the last four paddles cover the angular range between 134.2◦ and 141◦.
The paddles of the first and last set are 15 cm in width and instrumented with 2 inch
photomultipliers. The middle set of paddles is 22 cm in width and instrumented with
3 inch photomultipliers. These photomultipliers are mounted on both sides of 5.08 cm
thick Bicron BC-408 scintillating plastic paddles.
The paddles which cover the most-forward angles are optimized with respect to the
time resolution, where as the scintillators for the larger angles are simply optimized for
expense reasons. Therefore, the timing resolution varies between 80 and 160 ps. The
photomultiplier signal is passed through leading-edge discriminators and readout by both
TDC and ADC. The ADC information can be rudimentary used to perform particle
identification, but is primarily used for calibration purposes. A more detailed description
of the TOF systems and its construction and performance is given in [24].

2.4.5 Čerenkov Counter

The Čerenkov counter (CC) is crucial for the distinction of pions and leptons. Leptons
traveling through the active volume of the CC can emit Čerenkov light, whereas light
hadrons like pions are not traveling faster than the speed of light in the detection gas.
The CC is made up of six identical modules, fitting to the CLAS design, and mounted
just outside the R3 drift chambers. Eighteen light-collection fixtures are mounted in
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(a) (b)

Figure 2.10: (a) The CLAS Čerenkov counter and the R2 drift chambers as well as the
torus to give a sense of position and scale. (b) Schematic drawing of the inner
construction of a single mirror pair. [26]

a single module. Each fixture covers a small range of the polar angle. One fixture is
made of two pairs of mirrors opposed to one another along the axis of the CC module.
The light emitted by the particles travels to the outer-surface mirrors which reflects and
focuses the light back across the body of the module to the hyperbolic inner-surface
mirrors which then reflect the light into photomultiplier tubes mounted along the edges
of the CC module (figure 2.10). Perflourobutane (C4F10) is used as detection gas. The
characteristics of perflourobutane allow a separation of leptons and pions only up to
2.5 GeV/c.
The CC is used to detect scattered beam electrons as well as for trigger setups because
of its fast response time [25].

2.4.6 Electromagnetic Calorimeter

The outermost part of CLAS is the Electromagnetic Calorimeter (EMC). The EMC is
used to detect neutral particles like photons or scattered leptons. The EMC is a sampling
calorimeter with six panels in total. Each panel has the shape of a triangle and is a stack
of 39 layers of plastic scintillators alternating with 2.2mm lead sheets. Each scintillator
(BC412) layer is segmented in 36 individual strips of 10mm thickness. The direction
of the strips of each layer is rotated by 120◦ with respect to the foregoing layer. These
rotations create a u-v-w geometry and make position measurements possible. A schematic
drawing of one panel is shown in figure 2.11.
The ratio of lead to plastic was chosen to be 0.2 so one third of the particle shower
energy is deposited in the scintillator. Every sector is logically divided into two stacks,
an inner one and an outer one. The inner stack includes eight logical layers while the
outer one has only five. Per module 216 photomultipliers are needed to supply 36 strips
per direction in each of the two stacks, which sums up to 1296 channels for the six panels.
The characteristics are as follows:
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2 Experimental Setup

• Energy resolution σ/E ≤ 0.13/
?

E(GeV)

• Position resolution δr ≈ 2 cm at 1GeV

• Response time for event trigger ? 100 ns (energy sum)

• Time-of-Flight resolution ≈ 1 ns

• π/e rejection ≥ 99% at E≥ 1GeV

One panel of the EMC is shown in figure 2.11 and additional information about the EMC
can be found in [27].

Figure 2.11: Exploded view of a module of the CLAS electromagnetic calorimeter. [27]

2.5 Trigger and Data Acquisition
Every detector is equipped with electronics to collect its signals. Signals are caused by
physics events, but not exclusively. They can get invoked by a number of background
sources like cosmic radiation passing through a detector element or electronic noise.
The trigger has to decide which sets of signals form a physics event. These signals are
collected and written to tape by the Data Acquisition System (DAQ). The signals come
from the channels of each subdetector like the sense wires of the drift chambers, the
photomultipliers of the ST, TOF, Cerenkov detector, and EMC and sum up to around
40,000 channels in total. The data is recorded in an event-based format, where the time
is divided up into finite intervals and the signals present in each detector at the end of
an interval are written to disk.
The discriminator monitors each channel. For each kind of signal a certain threshold is
defined and only signals exceeding these thresholds are allowed to be processed further.
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2.6 Event Reconstruction

Signals which passed the discriminator are regarded to originate from physics interac-
tion and are digitized by two types of hardware. The TDC simply reports the time at
which a signal arrives. The ADC digitizes an analog signal or rather reports a number
corresponding to the integral of the signal. Every TDC and ADC can handle a multitude
of signals in parallel and write their output to a single data stream. Software processes
running on server clusters communicate with each TDC and ADC and assemble their
data stream into an event-based data format which is then stored on a disk array. The
trigger opens up the possibility to store only certain events. The trigger definition itself
is a list of signals from various detectors which have to be present for a certain event.
As the DAQ monitors signals for finite intervals of time the trigger has to come to a
decision instantaneously or at least as quick as possible. During the g12 run every 100 ns
a decision was made. All the subsystems, except the drift chambers, can acquire signals
in a few nanoseconds. This allowed for the use of the Hall B tagger, ST, TOF, EMC, and
CC to define trigger conditions.
The most complex trigger configuration was made possible by using a Field Programmable
Gate Array (FPGA) as trigger supervisor. Each trigger condition can be changed during
running and twelve independent trigger conditions were in place during running. The
production trigger was the primary trigger and designed to record meson spectroscopy
events. It required three charged tracks at any beam photon energy or two charged tracks
with a high energy photon. These conditions can be met by implementing coincidences
between the start counter, time of flight, and a logic unit providing an OR between the
first 19 paddles of the tagger, called the master-OR (MORA). Various combinations of
these trigger rules occupied usually 6 slots in the supervisors, the other 6 rules were
dedicated triggers for other aspects of the g12 experimental program.
The drift chamber can be used for a trigger decision, but only at the second level (L2
trigger). In this scenario events which passed L1 are routed on to L2 which is mostly a
software routine and no pure hardware system. This software does perform an online,
and therefore, fast, but coarse, track reconstruction to confirm if the L1 decision was
caused by particles traveling through the detector.
During the g12 run the rate of records of the DAQ was 8 kHz, compared to g11 with
5 kHz. More information can be found in [26].

2.6 Event Reconstruction
After the data of the subdetectors have been written to disk, the events have to be
reconstructed. The reconstruction of events is done by searching for certain patterns in the
signals of the subdetectors. The first stage is called hit-based-tracking. The reconstruction
of an event is independently conducted for each sector and starts with the drift chambers.
Only the position of hit wires in a given sector is required. Adjacent hits in each superlayer
are grouped into clusters and these clusters are linked in each region following the drift
chamber geometry to produce track segments. A full hit-based track is reconstructed
if the track segments are linked once more across the three regions. The charge and
magnitude of the momentum of each track are given by the sign and magnitude of the
curvature of the track as it passes through the R2 drift chamber.
It is possible that signals are produced by noise so that whole clusters can be found
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2 Experimental Setup

which are not associated with physical tracks. Therefore, the hit-based tracks deliver a
first approximation only. These noise hits can be identified by extrapolating the tracks
to the suitable TOF panel and search for hits in panels where the track was supposed to
hit. TOF panels are read out by a TDC, too. This enables one to set an upper limit to
the times of the drift chamber hits correlated with the track. This is called time-based-
tracking. All drift chamber hits correlated with the track are checked for the time when
the hit happened starting in the inner part and going to the outer part where they are
required to be in increasing time order as the track moves outwards. All hits and clusters
which do not fit the requirements are removed and the track is refitted. This process
is repeated two more times with more stringent requirements to refine the momentum
measurements as well as the measurement of the event vertex, determined by the distance
of closest approach of the track to the beamline.
A set of tracking parameters is assigned after the time-based tracking algorithm has
filtered a set of hits which fits best to the signals. The track is then extrapolated to
the rest of the detectors. The start counter, Čerenkov counter and EMC are examined
for hits where the track intersected the detectors. If hits are found they are added to
the description of the track. In the final reconstruction a well-known state is assigned
to the track based on its mass and charge. The mass can be calculated using time and
momentum information

m = cp2

β2 ,

β = tTOF − tvertex
cl

,

where c is the speed of light, p is the track momentum, t are the start and end times of
the track measured by the start counter or tagger and the TOF and l is the length of the
track. The calculated masses are distributed in a certain range according to measurement
inefficiencies. Therefore, a threshold for the calculated value of m is defined for particle
identification:

Particle ID =





π if m < 0.3GeV/c2

K if 0.35 < m < 0.65GeV/c2

p if 0.8 < m < 1.2GeV/c2

d if 1.75 < m < 2.2GeV/c2

Sometimes the beam photon causing the event is not recorded by the tagger and another
one is chosen instead, or a single TOF paddle reports two hits in sequence, but with
different times. In those cases it can happen that the calculated masses are between the
cuts and, therefore, classified as unknown.

2.7 g12 Data Set
For this analysis data are used which have been recorded from August to December in
2009, called the g12 beam time.
An integrated luminosity of 68 pb−1 corresponding to 26 billion events were written to
tape. Those events are chopped in run files with approximately 50 million events each.
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Runs that were ended prematurely, because of poor beam quality or DAQ failure for
example were discarded as well as broken run files or run files with less than 1M events.
After the first refining process 622 “good” runs in total remain and occupy 121 terabytes
of disk space.
Additionally to this a Monte Carlo simulation has been used for the determination of
the detector efficiency as well as estimation of possible background channels.

2.8 Monte Carlo Event Generation
The accurate reconstruction of an event is affected by the efficiencies of the detectors.
Physical detectors are never ideal and every detector has its own inaccuracies and reso-
lutions which have to be taken into account. Events are generated in accordance to the
desired channel and propagated through the simulation of the detector. The result is
then processed further with all the cuts and analysis tools used for the data sample.
The GSIM package provides a full simulation of CLAS and contains all the inefficiencies
and resolutions of the sub-detectors. Regions where the simulation does not reproduce
the detector behavior in a reasonable way were cut out from our analysis as mentioned
in section 3.4. After this procedure we are able to calculate a fraction of events lost
as a function of their kinematics or acceptance. This enables us to correct the derived
quantities like differential cross sections or measured yields from the reconstructed events
accounting for detector efficiencies as well as the efficiency arising from our cuts.

2.8.1 Event Generation
For acceptance calculation events of the desired decay channels are needed. The decay
chains generated are listed in table 2.1. For each listed mother particle each mentioned
decay chain has been simulated.

Table 2.1: Simulated channels.
mother particles decay chains

η(1295), f1(1285), η(1405), X π+π−η(2γ)
π+π−η(3π0)

π+π−η(π+π−π0)
π+π−η(π+π−γ)

The simulation includes a Bremsstrahlung distribution for the beam photon energy.
For the η(1295), f1(1285) and η(1405) approximately 720 thousand events have been
generated each. In table 2.1 the X refers to an arbitrary resonance with a mass of 3GeV/c2

and a width of 10GeV/c2 to sample the available phase space for π+π−η uniformly and
randomly. Approximately 60 million events have been generated for this purpose. All
these generated events are called raw-monte-carlo and after they have been processed
through algorithms, the detector simulation and the analysis procedure, they are called
accepted-monte-carlo.
The generated events are passed to a software called gamp2part, because a PART bank
containing the Monte Carlo event is needed. gamp2part is customizable to smear the tar-
get distribution in x, y and z. The detector simulation GSIM is GEANT based and simulates
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the transition of the generated events, the simulated detector response and effects of the
materials on the path where the particle might scatter or react otherwise. Unfortunately
the simulation does not account for all effects and the timing and momentum resolution
is better than for the real data. For this purpose the software package GPP is used which
smears the timing and momentum resolution and removes dead TOF paddles and DC
wires. The resulting gsim file is then processed with a1c for cooking, which results in a
bos file like the real data. This a1c file is then treated like a data file and all analysis
procedures are applied as well.
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3 Event Selection

This analysis is a search for excited η resonances in photoproduction. The resonances of
interest for this analysis, the η?, η(1295) and the η(1405) decay all into π+π−η. The event
selection is based on purifying a data sample to retain only pπ+π−η events. The η is not
detectable, because of CLAS’ inability to detect neutral particles. Incidental background
in the data sample is caused by inefficiencies of the detector or reconstruction algorithms.
Another form of background is physics background. This can be caused by reactions with
a γp → pπ+π−η final state, but that are not originating from an intermediate excited
excited η, but eg. via baryon resonances.
The event selection is a crucial part of most physics analyses and is a compromise between
the removal of background events and the retaining of signal events. In an ideal world one
would be able to find a set of rules to choose only the signal events without loss, while the
background events are rejected. In reality one rejects some signal events along with most
of the background events. Ideally each selection of events increases the ratio of signal to
background events, but with every selection you lose events and, therefore, increase the
statistical uncertainties as well. Depending on the background source contaminating the
data sample systematic uncertainties can be introduced if the data sample is not clean
enough.
In the first step of the analysis the beam photon which triggered the event will be chosen.
Then the data samples gets refined further by rejecting events which did not have their
origin inside the target, which do not fit the particle identification (PID) requirements or
which momentum was too low to get reconstructed well. After all reasonable cuts have
been applied a method is used which suppresses the remaining background.

3.1 Preliminary Data Skim

The data was initially skimmed according to the number of charged tracks per event.
Exactly three tracks were required where two must have an assigned positive/negative
charge. In the next step PID information was used to demand the positive particles to
be a proton and a pion and the negative particle to be a pion. The final state is pπ+π−η.
The η can not be detected, as CLAS is only capable to detect charged particles well.
Therefore, the η is reconstructed via the missing mass of the pπ+π−.

3.2 Beam Photon Selection

Since g12 is a high luminosity run it is necessary to identify the photon which induced
the event, further called beam photon. The high beam current which intersects with the
radiator can produce a multiplicity of photons which then causes multiple hits in the
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Figure 3.1: Difference between the vertex time and the start counter time.

tagger. To select the right photon the start counter is used as described in 2.4.1. The
start counter reports the time and deposited energy of each hit.
The extrapolated tracks from the drift chamber can then be used to determine which
paddle is related to the track and where the event vertex is located in the target volume.
Including the information of the TOF the speed of the particle can be determined. Using
the distance between the event vertex and the hit paddle of the ST as well as the speed
information one can calculate the time the particle needed from the vertex to the ST
paddle, which then can be subtracted from the time when the particle hits the start
counter. This yields the time when the track was produced. Doing this for all tracks
which are averaged then, one obtains estimates for the time for each event. This time is
called the start counter vertex time.
The tagger has measured the remaining energy of the scattered beam electrons as well
as the time of entrance. Knowing the distance between the radiator and the hit paddle
as well as the distance between the radiator and the target, the time when the produced
photon hit the target can be determined. Comparing the time of the photon, the event
vertex time as well as the electron hit in the tagger with the best agreement enables one
to selected the photon that triggered the event.
CEBAF delivers a bunch of electrons every 2.004 ns and a beam current of 60–65 nA was
chosen which results in a photon flux of 5 · 108γ/s or about 50 photons measured by the
tagger for each event. In some cases it is possible that a photon produced by a beam
bucket before or after the current one is actually responsible for the event. To account
for this a cut is applied on the difference between the vertex time and the time measured
by the start counter (figure 3.1).
The possibility of having two photons which fit in the time window is high. The timing

32



3 Event Selection

 in 2 ns beam bucket γ# 
0 1 2 3 4 5 6 7

 N
or

m
al

iz
ed

 F
ra

ct
io

n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 γn 

Figure 3.2: Fraction for single and multiple beam photons within the 2 ns timing window.

given by the accelerator is the most accurate available, and therefore, it is not possible to
distinguish the event photon from the others by a timing perspective. The distribution
of the number of photons per beam bucket is shown in figure 3.2.
It is visible that most of the events have only one photon candidate per beam bucket,
but there is, still, a significant amount which has two or more photon candidates. The
probabilities for certain numbers of beam photon candidates in-time are listed below:

• 85.1% of the events have one in time photon,

• 12.5% of the events have two in time photons,

• 1.7% of the events have three in time photons

• and less than 0.5% of the events have more than 3 in time photons.

For this analysis the photon with the highest energy from all candidates was chosen.

3.3 g12 Corrections
To obtain the right values for the components of each 4-vector several corrections have to
be applied on the data which will be discussed in the following. The first is a final-state
particle momentum correction due to energy losses of a particle that travels through
matter. Also a correction for the sagging of the tagger which was handled by the tagger
calibration and finally a correction for changes in the magnetic field strength of the tagger
is applied.
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3.3 g12 Corrections

3.3.1 Energy Loss Correction

The momentum measurement of a particle starts after the particle passed through the
target and the start counter. Therefore the measured momentum is decreased by the
energy lost in matter. This energy loss is due to atomic excitation and ionization caused by
the charged particles while traveling through the matter. The energy loss is proportional
to the distance the particle has passed in the target volume, while it is assumed that the
angles are not affected by this. The energy loss of charged particles in matter is described
by the Bethe-Bloch equation:

−dE

dx
= 4π

mec2
nz2

β2

?
e2

4π?0

?2 ?
ln

2mec
2β2

I · (1− β2) − β2
?
∼ lnγ

β2

Light particles like electrons or positrons which travel with velocities of β ≈ 1 loose less
energy than heavy particles like protons. The energy loss routine is therefore not applied
to light particles. For those charged particles that are effected by an energy loss the
corrections were made for the intersected materials: liquid hydrogen, Kapton walls of the
target, beam pipe, the start counter and the air between the first set of drift chambers and
the start counter. The corrections are included as an add-on in the CLASEVENT software
package and were written by Eugene Pasyuk [28].

3.3.2 Beam Corrections

The correction for the incident beam photon energy is handled by the a1c software
package. The correction is due to a gravitational sagging of the tagger’s focal plane,
which leads to wrong energy measurements of the scattered electrons.
Another issue showed up during the complete run time. Initially the measured missing
mass was systematically too low , during the investigation the missing mass changed
depending on the run varying by as much as 10MeV. The issue was analyzed and corrected
using two decay different channels.
The reason of the changing missing mass was found to be caused by a changed magnetic
field strength of the tagger magnet. A shutdown of the tagger magnet took place and
after the restart the field strength changed although the tagger current was the same. A
known phenomena in magnetism is the hysteresis of the magnetic fields which allows for
a change in the field strength at the same current.
The selected test-channels include two charged pions of opposite charge and a proton or
neutron plus a positively charged pion which were selected as missing particles. The first
channel, γp→ π+π−p, was used to identify the correction needed, because all particles
are detectable by CLAS and the second, γp→ π+π+π−(n), to verify this correction.
The changed magnetic field strength affects the energy measurement of the scattered
electrons. The 4-vector of the beam photon is calculated by taking the difference of the
4-vectors of the electron beam and the scattered electron.

Pγ = PE0 − Pe
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The four-vector of the scattered electron Pe has to be corrected by a scalar factor x.
Using the equation

(Pγ + Ptarget − (Pπ+π−))2 = m2
p

P 2
π+π− − 2PtargetPπ+π− = 2Pγ(Pπ+π− − Ptarget)

with P 2
target = m2

p and P 2
γ = 0,

one can determine x to be

x =
PEo(Ptarget − Pπ+π−) +

P 2
π+π−

2 − PtargetPπ+π−

(PE0 − Pγ)(Ptarget − Pπ+π−)

The beam photon energy is then corrected by using this factor on the energy of the
scattered electron. The correction factor was calculated for each run and with 1/10 of
the data of each run to reduce statistical fluctuations.After the correction, the masses of
the proton and neutron are less than 1MeV off the PDG values.

3.4 Event Vertex and Fiducial Volume Cuts
The event selection for this analysis is restricted to events whose primary vertex is located
inside the liquid hydrogen of the target. Because of configurations or equipment failures it
may happen that the beam does not hit the liquid hydrogen contained in the target and
tracks are produced which originate in the target walls or the support structures. The
target for g12 is 40 cm in length and 4 cm in diameter and was centered 90 cm upstream.
To require only tracks which originated inside the liquid hydrogen it is necessary to take
the tracking resolution into account. The vertex resolution in radial direction is 5mm
and in 6mm z-direction.
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Figure 3.3: (a) z-vertex of pπ+π− events. The dark blue region contains the accepted events
(b) y vertex vs. x vertex. The white circle indicates the vertex position cut.
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3.5 TOF Fiducial Cuts

The cuts accounting for this are listed here

• the radial distance from the central axis of the target r =
?

x2 + y2 has to be less
than 2.5 cm

• the reconstructed common vertex of the z-position has to be within the range
[-110,-70] cm

and presented in figure 3.3.
A second set of cuts on geometric parameters is called Geometric fiducial cuts and rejects
events which occur in regions where the acceptance is not well understood and reliably
reproduced in simulations. These regions are defined by an upper and lower limit of the
Φ angle between the center of a sector and a track.
The fiducial boundaries of the Φ angle are defined by functions of momentum, charge
and polar angle. For each sector a different set of boundaries was derived. In general
the occupancy should not drop below 50% for a Φ angle between -10◦ and 10◦, which is
called the sector’s flat region. The flat region is defined as −10◦ < φ < 10◦. It can be
chosen between tight, loose and nominal cuts. For this analysis the nominal cuts were
chosen and an example before and after the cut can be seen in figure 3.4.

Figure 3.4: Angular distributions of θ(π+) Vs. Φ(π+) is shown before the fiducial volume
cut (left) and after the fiducial volume cut (right).

3.5 TOF Fiducial Cuts
In some cases wrong photons are selected as responsible for the event (see Section 3.2).
This can lead to wrong estimations for the start time of the event. Due to wrongly
estimated start times superluminal speeds of tracks may be possible. These tracks should
be removed from the data set, because they are nonphysical. The relativistic β which is
the actual speed of a particle divided by the speed of light. Two cuts are applied on:

• β < 1.04

• δβ < |βmeas − βcalc|
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Figure 3.5: Fitted β distribution for π+.

The β is chosen larger than one to take timing resolution into account. βmeas is solely
derived from the measurements of the time-of-flight system for each reconstructed particle
and βcalc is the calculated β using the momentum of the reconstructed particles.
To calculate the relativistic speed of a particle for a certain momentum one uses the
PDG value of the mass hypothesis assigned to the particle using equation (3.5.1).

βcalc =
p?

m2
PDG + p2

(3.5.1)

The difference δβ was derived by fitting a Landau function with a constant to the β
distributions of the pions. In figure 3.5 one can see the β distribution obtained for π+

and the fitted function in red.
The extracted sigma of the function is approximately 0.0135. The cut was chosen to take
all events within a 3σ region left and right of the calculated β.
In figure 3.6 the momentum of each detected particle versus the relativistic β is shown.
The colored lines depict the calculated β for kaons in violet, pions/protons in black and
muons in red.

Table 3.1: List of malfunctioning TOF paddles.
Sector Paddle Number

1 6, 25, 26, 35, 40, 41, 50, 56
2 2, 8, 18, 25, 27, 34, 35, 41, 44, 50, 54, 56
3 1, 11, 18, 23 35, 40, 41, 56
4 8, 19, 41, 56
5 48
6 1, 5, 24, 33, 56

It is clearly visible that the data sample is free of charged kaons, but that there is a
lepton contribution. The second plot illustrates the distribution after the applied cuts.
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3.6 Minimum Momenta
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Figure 3.6: (a) Momentum of the detected particle vs. the measured β. Colored lines
indicate calculated β for particles: Purple: kaons, Red: muons and Black: pro-
ton/pions (b) Momentum vs. β after cut.

The lepton band is cut out, but a pion lepton separation at high momenta is not possible.
In addition to this cut some TOF paddles were found to be faulty and therefore events
measured by them were removed from the further analysis procedure. The list of bad
paddles is listed in table 3.1. For more information see [29].

3.6 Minimum Momenta

The momentum of all charged particles has been corrected for energy losses. The lower
the momentum of the particle the more energy they lose. Therefore track reconstruction

38



3 Event Selection

becomes more and more difficult with decreasing momentum and the acceptance for
these particles can be affected. Former studies computed a fractional difference value for
Monte Carlo generated events and data.

A = |Adata − AMC |
Adata + AMC

Here Adata is the acceptance for a proton in the correct sector of CLAS for real physics
events and AMC is the acceptance for Monte Carlo events. The acceptance was calculated
by using the test channel γp → pπ+π− where events with charged pions were selected
and kinematically fit to the test channel. A should then be around zero if the Monte
Carlo simulation accurately describes the detector acceptance. Areas which show an A
deviating from zero are due to bad TOF paddles, the forward hole and low momentum
tracks.
It was found that it is sufficient to cut away events where the proton has a momentum
below 300MeV/c and the pions have a momentum below 100 MeV/c.

3.7 Kinematic Fit
In order to reduce more of the undesired contributions and to improve the resolution of
our distribution a kinematic fit was performed. The kinematic fit assigns a probability
nearer to one to each event in the case it originates from the reaction γp→ pπ+π−η. All
measured quantities are measured within certain error limits caused by measuring uncer-
tainties. The kinematic fit varies the measured quantities within their errors to match
energy-momentum conservation and invariant mass constraints using a χ2 minimization
algorithm. The fit delivers a likelihood for each event fulfilling the desired constraints of
the final state via the values of a χ2 probability or a confidence level value.

Kinematic Fitting
The goal of kinematic fitting is to make use of the energy and momentum conservation
laws to vary the values of our measured quantities within the uncertainties given by
the detector to improve the precision of our measurement. The kinematic fit adjusts the
physics hypotheses with a least squares method using Lagrange multipliers. As a formula
this can be written as

?η = ?y + ??,

where ?η is the n-dimensional vector of our measured observables, ?y is the vector of our
actual values and ?? are the deviations needed to shift the values to match the constraints.
The constraints, invariant masses and the conservation of momentum and energy, can
be used to deduce a certain number of unmeasured observables, as long as the number
of unmeasured observables is equal or smaller than the number of constraints. The
constraints can be written as

f(?x, ?η) = f(?x, ?y − ??) = 0,

where ?x is the m dimensional vector of unmeasured observables. ?f has to be linearizable
at (?x0, ?η0) with

?f(?x, ?η) = ?f0(?x0, ?η0) +
∂ ?f

∂(?x, ?η)(?x− ?x0, ?η − ?η0).
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3.7 Kinematic Fit

If f(?x, ?η) is linearizable then the solution with the least squares is reached when

L = χ2 = ??TCy?? + 2?λT ·
?
A(?x− ?x0) + B(?η − ?η0) + ?f(?x0, ?η0)

?
,

is minimal. Cy is the symmetric covariance matrix, the vector ?λT contains the Lagrange
multipliers, A and B are matrices which contain the derivatives of the constraints at
(?x0, ?η0) where A belongs to ?x and B to ?η.
In this case a kinematic fit with one constraint was performed under the condition of the
missing mass of pπ+π− being an η. If there are no systematic errors present the difference
between the fitted value ηi and the measured value yi should be zero when averaged
over many events. This is under the assumption that if there are no systematic errors
present the error should be Gaussian distributed and the error ?i has the same likelihood
to be positive as negative. To check for systematic uncertainties one can normalize the
distribution according to

pull(yi) =
ηi − yi?

σ2(ηi) + σ2(yi)
,

which is called the pull distribution from now on. The values of a pull distribution should
deviate around zero and they should have a width of one if the errors

√
σ2 of the data set

are set correctly. If the width is smaller or larger than one then the errors in the covariance
matrix Cy have been determined too large or small. If the mean of the distribution is
not positioned at zero then there are systematic uncertainties present. Those systematic
uncertainties, for example background in the range of the wanted missing particle, can
disfigure the pull distributions.
The second value to evaluate the probability of an event to contain the wanted final state
particles is the probability or the confidence level. The values of the confidence level range
from 0 to 1, where 1 indicates that the event’s measured values match the corresponding
values for an ideal event exactly. There are two constraints of how a reasonable confidence
level value distribution should look like. The first is that the distribution of confidence
level values for pure signal events, events which match all the constraints, should be
flat. The signal events should be distributed according to the distribution of errors in
measurement with respect to the quoted errors given in the covariance matrix. If the errors
are set correctly then the signal events should be evenly distributed in the confidence
level value distribution. Every event which does not match the constraints should have
a probability near zero.
The data is then kinematically fit to the missing particle for the reaction of interest, in
this case pπ+π−η. One problem of the kinematic fit is its handling of background events
in the missing mass spectrum of pπ+π− (figure 3.9). Most of the events directly under
the enhancement at 0.547GeV/c2 would probably match the kinematic constraints of
the kinematic fitter, but some of them are no real η events. All events in this analysis
are kinematically fitted, but the unfitted 4-vectors are kept, too. In the first step the
probabilistic event weight method (section 3.9) is used to remove non signal events. In
the further analysis, the probability for each event obtained from the kinematic fit can
be used to refine the distributions further.

40



3 Event Selection

3.8 First Look to Data

After applying all needed corrections and reasonable cuts, discussed before, the resulting
spectra of the missing mass distribution of pπ+π− and the invariant π+π−η mass are
illustrated in figure 3.7.
The left picture shows the missing mass of the pπ+π−, under the consideration that
the kinematics of the initial state system γp is known. An enhancement at a mass of
0.547GeV/c2 can be seen, which is identified as an η. It is clearly visible that a significant
background contribution remains below the η, which passed the selection for the final
state. The right picture presents the invariant mass of π+π−η, where a cut on the missing
mass of pπ+π− has been applied in the range from 0.5 to 0.6 GeV/c2. There are ≈ 18 ·106

selected π+π−η events left after the cut. At a mass of 0.9GeV/c2 a narrow signal is visible.
This resonance is the η?, which will be used later as a reference state. The differential
cross section of the η? will be extracted and compared to a previous measurement result
as a proof of concept, c.f. chapter 7.
The second major enhancement can be seen at a mass of approximately 1.28GeV/c2.
This signal could be originated by the η(1295), with a nominal mass of 1294± 4MeV/c2,
or the f1(1285) with a nominal mass of 1281.9± 0.5MeV/c2 [3].
A minor, broad bump can be seen at a mass of 1.4GeV/c2, which may be identified as
η(1405).
In chapter 6.2 the differential cross sections of both resonances will be presented along
with results for the mass and width of the η?.
Figure 3.7a suggests a signal-to-background ratio of approximately 1/3. This background
will infiltrate the π+π−η mass spectrum and all spectra including quantities derived
from the missing particle. Therefore another method is needed to reduce the background
further. For this purpose an event based background subtraction is applied, which is
described in section 3.9.
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Figure 3.7: (a) Missing mass of the reconstructed pπ+π−, (b) Invariant mass of π+π−η.
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3.9 Event Based Background Rejection

3.9 Event Based Background Rejection
Due to large background contributions in the data sample an event based background sub-
traction method is used in order to reduce the background further. The afore mentioned
background can not be reduced by applying cuts on observables (detailed information
can be found in [30]). The main goal of the method being applied here is to obtain a
probabilistic weight (Q-factor) for each event so to decide if it is a signal event or not.
To subtract the background in the data sample, every event is weighted with its own
Q-factor.
The method has two advantages compared to other methods, eg. a one-dimensional
sideband-subtraction:

• No knowledge about the origin of the background is required

• Preserving the possibility of an event-based analysis

An event based analysis is preferable, because there is no need to group events according
to one or more observables and consider them as a set. Another improvement is a better
characterization of systematic uncertainties. One is no longer influenced by the chosen
size of each kinematic bin which is most important for low statistic data. The biggest
advantage of this method is that the probabilistic weight is coupled to an event and not
to a certain observable.
The following subsections will deal with the general procedure and theoretical framework
as well as an estimation of errors. In the last subsection the application of the Q-factor
method to subtract background below the η and all derived quantities are explained.

3.9.1 General Procedure
All events have a common set of kinematic variables, further referred to as non-reference
coordinates. The main assumption for this method is that the behavior of the background
distributions does not change rapidly within a small cell of phase space and that there is no
quantum mechanical interference between signal and background. The last requirement
is that the non-reference-coordinates which are used to chose the nearest neighbors and
the coordinate the fit is applied onto are uncorrelated. In the next step one has to
define a metric to describe the position of each event in phase space based on the non-
reference-coordinates. To deduce information about the behavior of signal and background
distributions for each particular event one has to look at the events closest to this event
in phase space, the nearest neighbors (NNN ). At this point the event wise procedure
starts and is explained here on the example of one event called the seed-event.
To find the events closest to this seed-event a distance between two events A and B can
be calculated according to

DAB =

?????

i

?
ξAi − ξBi

ri

?2

, (3.9.1)

where ξ is the kinematic variable and i the index of the kinematic variable. ri is a
normalization factor and normally selected to be the range which the phase space variable
spans.
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3 Event Selection

Figure 3.8: Illustration of the selection of the nearest neighbors. x1 and x2 represent the
non-reference coordinates of a 2 dimensional phase space. The green dot is the
seed-event and the black dots are all other events. In this example the events
are evenly distributed in phase space and the nearest neighbors are all inside
a circle of a certain radius. All events inside the blue circle are chosen as the
NNN nearest neighbors of the seed-event and used to define the background
and signal characteristics at the seed-event’s point. In reality this has not to be
a circle, because the distributions of the corresponding phase space coordinates
do not have to be evenly distributed.

In specific cases this factor can be chosen otherwise (see section 3.9.3), for example to
achieve a better detection of narrow structures.
The number of the nearest neighbors should be chosen such that a good representation of
the data is ensured. This means that enough nearest neighbors have to be chosen in order
to obtain a proper fit result and few enough that the phase space cell is small enough.
The statistical uncertainty for the Q-factor itself increases with a decreasing number of
nearest neighbors, but the systematic uncertainty decreases. As we want the uncertainty
to be as low as possible we tend to increase the number of nearest neighbors, but this
increases our correlation errors as well. If the number of nearest neighbors becomes large
compared to the number of events in our data sample we start averaging over a wide
range of phase space. The phase space cell has to be small enough so that the signal to
background ratio stays constant, which is not given for a wide range.
Additional to the non-reference coordinates the reference coordinate has to be selected
which has to be uncorrelated with the non-reference coordinates. The distribution of the
reference coordinate of these NNN events is fitted with a signal and background function.
It has to be required that the functions to describe the chosen reference coordinate are
known, eg. a Breit-Wigner mass shape to describe a mass distribution.

f(x) = N [fsS(X) + (1− fs)B(x)] (3.9.2)
f(x) = N [s(X) + b(X)] (3.9.3)

N is a normalization factor when using an unbinned maximum likelihood fit, fS is

43



3.9 Event Based Background Rejection

the signal fraction, S(X) is the function for the signal and B(X) is the function for the
background. The signal fraction has a value between 0 and 1 and is the relative amplitude
of signal and background functions. The unbinned maximum likelihood method is used
to obtain the fit parameters. Using these fit parameters, s(X) and b(X) can be calculated
at X the mass of the seed-event. With these numbers Q can be computed according to
equation (3.9.4)

Q = s(X)
s(X) + b(X) (3.9.4)

3.9.2 Error Estimation

The error of the Q-factor can be deduced by the errors of the fit parameters. Those
errors can be propagated to the measured quantities. The error for each Q-factor can be
calculated in consideration of the covariance matrix, (Cη)ij associated with each fit, as
well as the partial differentiation of Q with respect to the fit parameters.

σ2
Q =
?

ij

∂Q

∂ηi
(Cη)ij

∂Q

∂ηj
. (3.9.5)

To extract any observable the data set has to be subdivided into subranges of an observ-
able. This binning leads to an error for each bin called statistical error. This statistical
error for each bin is approximately the square root of the number of entries in each bin
for Possion statistics if N is not too, small.

σstat =
?

NSignal (3.9.6)

NSignal =
?

i

Qi (3.9.7)

For weighted Poisson statistics the error of each bin is

σstat =
??

i

Q2
i (3.9.8)

If all weights are one then we get the error σstat stated in equation (3.9.6). To explain
how and why the error of the Q-factor has to be taken into consideration as well, we will
take out one bin containing N events.
Each event is highly correlated with most of the other events due to the Q-factor procedure.
Every Q-factor value is correlated to the chosen nearest neighbors. It depends on how
many neighbors are chosen and how big the available phase space is. If a smaller phase
space is considered and thus a lower number of events, then most of the events share most
of their nearest neighbors with other events. This leads to a high correlation between
each event and its nearest neighbors. Hence a 100% correlation between the events is
chosen in order not to underestimate the error.

σsignal =
N?

i

σQi (3.9.9)
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3 Event Selection

This leads to an overestimation of the error. To take the real correlation between the
events into account one can calculate the number of shared nearest neighbors from each
event to all other events and divide this by the number of chosen nearest neighbors.

σ2
Signal =

?

ij

σQiρijσQj , (3.9.10)

where σ is the error of the Q-values for event i and j and

ρlk =
Ncommon

NNN
, (3.9.11)

with Ncommon the number of the shared nearest neighbors and NNN the number of nearest
neighbors. As the number of shared nearest neighbors has to be looked up for each event
one can assume a large expenditure of time to do this. Therefore, the first method with
the overestimation of errors has been chosen according to equation (3.9.9) and the bin
wise error results in

σ2
N = σ2

stat + σ2
Signal. (3.9.12)

3.9.3 Background Rejection for Mx(pπ+π−)
The CLAS detector is not able to detect photons, and therefore the η can not be detected.
Nevertheless the missing mass of the pπ+π− system shows an enhancement at the mass
of the η, which can be seen in figure 3.9.
As one can see the peak is afflicted with a huge background contribution. On the left
side of the peak at the η mass a small structure is visible caused by a contribution of
neutral kaons as a part of the background.
The non-reference coordinates used to get the positions in phase space for each event are
listed in table 3.2. These coordinates are chosen as a base to describe the phase space
for the reaction γp→ pπ+π=η as detailed as possible.
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Figure 3.9: Missing mass of pπ+π−.
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3.9 Event Based Background Rejection

Quantity Non-Reference-Coordinates
Beam Energy Eγ

η? production angle cos(θc.m.η? )
Angular Distributions cos(θ)π+

π−π+ ,cos(θ)π+
MM π+ , cos(θ)π+π−

MM π+π− , Φπ
+
π+MM ,Φπ+π−

MM π+π−

Invariant Squared Mass m2(π π MM )

Table 3.2: Kinematic variables used in the background Rejection with Mx(pπ+π−) as
reference-coordinate. MM stands for the missing mass of pπ+π−.

To obtain the Q-factor for a certain event one has to identify the nearest neighbors. This
can be realized by simply calculating the distances between two events among each other.
This procedure can be parallelized, using subsets of the data for the seed-events, but
using the whole sample for choosing nearest neighbors. This improves the run time a lot,
but is still not enough to gain results in a reasonable amount of time.
To avoid this time-consuming procedure another assumption was made. The nearest
neighbors and the seed-events occupy the smallest cell in phase space possible. Therefore,
all distances in all non-reference coordinates have to be as small as possible. Consequential
it is possible to realize a preselection of events in dependence of the corresponding beam
energy. A simple binning would cause sharp edges in phase space and can lead to non-
optimal results. The non-optimal results can happen if the seed-event is near the bin
edge, but the nearest neighbors can only be chosen from inside the bin, but some events
in the next bin would have been more suitable. Another problem can happen due to the
bremsstrahlung distribution of the beam energies which leads to varying event numbers
per bin. In the low energy regime it can happen that the fraction between NNN and the
event number is not good enough to account for correlation effects and the phase space
cells are getting unreasonable big.
To avoid the before mentioned sharp edge effects an overlapping binning is used. An
explanatory drawing is presented in figure 3.10.
In addition to each seed-events-bin two slices left and right of this bin are chosen containing

Step 1: Step 2:

. . .
Figure 3.10: Schematic drawing of the overlapping bins. The red dotted bin depicts the

seed-events-bin and the blue lines indicate the slices next to it.
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Figure 3.11: Invariant mass of π+π−η in different bins of Eγ , each 100MeV wide.

an additional event set. The number of events per slice is calculated to contain 5% of the
number of entries in the seed-events-bin. For every event in the seed-events-bin its nearest
neighbors are selected. The nearest neighbors can get selected inside the seed-events-bin
and the slices next to it. The next bin, step 2, has its left border exactly at the same
energy as the right border of the former seed-events-bin. Accordingly its left slice contains
events of the former seed-events-bin. And in this way the whole data set is ”binned”.
Several values for the fraction of the number of the events of the slices were tested and
5% was good enough to avoid edge effects and a larger value did not improve the results
further.
In figure 3.11 the invariant mass of π+π−η is shown for different ranges of beam energies.
One can clearly see that the size of the covered phase space becomes larger with increasing
beam energy. Since the squared invariant mass of π+π−η is a part of the metric the
normalization of this property has to be dynamically according to the beam energy.
Therefore, the mass range covered by the invariant π+π−η mass is calculated according
to

α =
?
2mpEγ + m2

p −mp − 2mπ,PDG + 2mη,PDG,

where α is the normalization factor and m is the invariant mass. Eγ is the beam energy
at the end of the given bin or the highest possible energy for this bin.

?
2mpEγ + m2

p is
the center of mass energy of the Eγp system.
It is visible that the structure representing the η? is rather narrow compared to the
complete covered mass range of the π+π−η mass at higher beam energies. In order to
resolve such narrow structures an additional factor is used, which has been empirical
determined and is multiplied to α. Thus, different values of the multiplicative factor have
been tested for each energy range afterwards the factor has been chosen which ensured the
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Figure 3.12: Examples of a fits to 200 nearest neighbors. The black points represent the
mass shape of the nearest neighbors, the blue line indicates the combined
PDF of signal function and background function, the green line stands for
the signal function and the red line for the background function. The vertical
green and red lines represent the values of both functions at the mass of the
seed-event and represent s(X) and b(X).

best background subtraction. These factors were plotted against the corresponding beam
energy of the certain energy range. The factors were found to perform an exponential
distribution. This distribution was fitted with an exponential function, which allows a
continuous and dynamic calculation of the needed value. The parametrization was found
to be:

e2.65−1.65Eγ .

In this case Eγ is the value between the lowest possible energy of the bin and the highest
possible one.
Another huge leverage effect on the quality of the background subtraction is related to
the chosen number of chosen nearest neighbors. Several different number for NNN were
tested, like 50, 100, 150, 200, 250, 300, 400 ,500.
It turned out that 200 nearest neighbors are the optimal choice, because this number
guarantees the best trade-off between the statistical and systematical error. Examples
of fits to 200 nearest neighbors can be seen in figure 3.12 including the fitted functions.
The left example has a huge signal fraction compared to the background. For samples of
the nearest neighbors where the signal-to-background ratio is less good, cf. figure 3.12
b), the statistical uncertainties of the Q-factor rises..
The fit is performed by making use of an unbinned maximum likelihood fit. The function
chosen for the fit are the sum of:

• First order Chebychev polynomial for the background

• Gaussian for the signal
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Figure 3.13: Missing mass of pπ+π−. Blue: Unweighted, Green: Q weighted and Red: 1-Q
weighted.

A simple Gaussian is preferred over a Voigtian function because of the large width of the
peak representing the η. The η has a natural width of 1.3 keV, and therefore the width
of the signal is dominated by the detector resolution.
The parameters of the Gaussian

s(x) = e−
(x−µ)2

2σ2

can vary; the mean (µ) between ±3MeV around the PDG mass of the η and the width
(σ) between 4MeV/c2 and 26MeV/c2. The amplitude of the signal has no boundaries
during the fit.
The probabilistic event weight can then be calculated according to equation (3.9.4). A
background subtracted spectrum of an observable can be obtained by weighting each
event’s contribution to the distribution of the observable with the obtained Q-factor.
The good background rejection power can be seen in in the spectrum of the missing mass
of pπ+π− (figure 3.13).
As one can see the Q-weighted distribution contains nearly no background any more. The
red points show the spectrum weighted with 1-Q and represent the subtracted background.
The smooth background distribution and the clear peak for the signal are a reliable result
for the event-based background subtraction.
As mentioned before the Q-factor method enables us to reduce the background in any
distribution of observables, and consequently also in the π+π−η mass spectrum.
Figure 3.14 shows the former π+π−η mass spectrum in blue. The errors are the squared
sum of the statistical error and the errors of the Q-factors, c.f. equation (3.9.12). The
background below the η? signal has been reduced to a negligible amount, which is very
convenient for the comparison to previous measurements of the η? differential cross
sections. It is visible that the massive background contribution, visible in red, is reduced
by factor of two in the f1(1285)/η(1295) region. The signal-to-background ratio has been
improved from approximately 1:3 to 1:1.2. The rise at a mass of 1400MeV/c2 is clearly
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Figure 3.14: Invariant mass of π+π−η weighted with Q-factors. Blue: Unweighted, Green:
Q weighted and Red: 1-Q weighted.

identified as signal structure, as it is visible only in the Q-weighted spectrum while the
1-q weighted distribution shows no structure in this region. The enhancements are more
emphasized and refined. The 1-Q weighted distribution shows a smooth behavior, which
is an indication that most of the non-resonant background has been identified.
This is also visible if one applies a cut on the η mass in the range from 0.53GeV/c2

to 0.57GeV/c2 to select events which are in the signal region. Secondly two cuts are
applied right and left from the η mass to select events from sidebands: 0.48GeV/c2 –
0.5GeV/c2 and 0.6GeV/c2 – 0.62GeV/c2. The events from the signalband get weighted
with Q as well as 1-Q while the events from the sidebands stay unweighted. The resulting
distributions for a chosen energy range are shown in figure 3.15, where it is visible that
the cyan and brown distributions show nearly the same behavior.
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Figure 3.15: Signalband weighted with Q-factors. Magenta: Q weighted and Brown: 1-Q
weighted. Cyan: unweighted sideband.
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4 Background Contribution

In the previous section it has been shown that the selected data sample is afflicted by
a massive background contribution. As mentioned before the main goal of the event
selection is to select as much as possible events of the desired decay mode and reject
as many events as possible of the background. Nevertheless, it is not possible to reject
all background events, and therefore the data sample has been studied for potential
background sources and their amount in the selected data set.
The background visible in figure 3.13 is a mixture of events where the wrong PID is
assigned to the tracks as well as particles assigned to the wanted reaction, but coming
from another one. Another source of background are particles of a competing reaction
that are mistaken for participating in the wanted reaction. Background accepted as signal
can take place if the kinematic observables match the requirements for a signal event. The
reconstructed channel is prone to this, because the η is not reconstructed, but derived
from the missing mass. It may happen that neutral particles in other reactions have the
same kinematics as the wanted η meson.
In figure 4.1 the missing mass of the proton is plotted against the missing mass of pπ+π−.
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Table 4.1:
Final State prob > events passing Branching Fraction Total Cross Section

[%] Γi/Γ [%] σ [%]
pπ+π−γ 0.1 0.0075 10−3 29.3 2.19 · 10−6

0.01 0.015 10−3 4.39 · 10−6

0.001 0.0225 10−3 6.59 · 10−6

0 0.0775 10−3 22.5 · 10−6

pπ+π−3γ 0.1 0.021 2.75 5.775 · 10−7

0.01 0.033 9.075 · 10−7

0.001 0.045 12 · 10−7

0 0.14 39 · 10−7

pπ+π−5γ 0.1 0.193 21.6 (η?)· 4.6 (η) 0.000019
0.01 0.303 0.00003
0.001 0.392 0.000039
0 1.35 0.00013

pπ+π−6γ 0.1 0.44 21.6 (η?)· 22.74 (η) 0.0002
0.01 0.675 0.0003
0.001 0.86 0.0004
0 2.57 0.0013

pπ+π−η 0.1 0.7 43.4 0.003
0.01 1.07 0.0046
0.001 1.3 0.0056
0 2.98 0.013

A prominent peak can be seen at the crossing of the η and the η?, but there is also a
horizontal band crossing through this peak.
This horizontal band is caused by background events and causes background directly
beneath the η? as well. A similar band is crossing through the peak at the η mass and
a mass of 1280MeV/c2 for the missing mass of the proton. Another enhancement is
visible at 1020MeV/c2 in the missing mass of the proton. This structure is positioned
at a missing mass of pπ+π− of ≈ 500MeV/c2 which leads to the assumption that this
structure is attributed to φ(1020)→ KSKL. To estimate the background contribution of
several other decay channels to the data set, Monte Carlo studies have been performed
including the decay modes:

γp→pη? → pρ0γ → pπ+π−γ

γp→pη? → pωγ → pπ+π−π0γ → pπ+π−3γ

γp→pη? → pπ0π0η → pπ0π0π+π−γ → pπ+π−5γ

γp→pη? → pπ0π0η → pπ0π0π+π−π0 → pπ+π−6γ

The η? has been chosen as reference channel. For every channel 400k events were generated
and then smeared and propagated through the simulation of the detector. After this the
events were selected with the same selection procedures and corrections as applied to
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Figure 4.2: Invariant π+π−η mass. The blue line indicates the unweighted distribution, the
red line indicates the 1-Q weighted spectrum and the green line shows the Q
weighted spectrum.

real data and a 1C kinematic fit (section 3.7) was conducted with the requirement of an
η appearing in a sub-range of the missing mass of pπ+π−. In table 4.1 the fraction of
the passing events are presented after different cuts on the kinematic fit probability.
It is clearly visible from the number reported in the table 4.1 that it is possible to select
events where the η? has decayed into π0π0η with an efficiency about a magnitude lower
than that for the signal decayη? → π+π−η mode, but one should not underestimate
the contributions of this channel. In this case the η decays to π+π−π0, adding two
charged pions to the final state. If the neutral pions of the η? decay have nearly the same
kinematics as the charged pions of the η decay, they can be interchanged. The decays
including a ρ or ω are rather unlikely to contribute to the peaking background.
In figure 4.2 the invariant π+π−η mass is shown. The green and red lines are the spectrum
weighted with Q and 1-Q and the red distribution features a peak directly in the η? mass
region.
This might be a hint on events from competing channels which have been rejected by
using the probabilistic event weight background rejection on the η. The yield of the η?

in the green distribution as well as the signal yield of the red distribution have been
estimated by fitting a Gaussian function plus a third order polynomial in order to exclude
non-resonant background. The signal yield of the Q weighted distribution was found to
be ≈ 50000 η? events and the signal yield of the η? in the background distribution was
found to be ≈ 4000 events after a probability cut of prob > 0.1. The ratio of simulated
signal events to wrongly chosen Monte Carlo events after the same selection criteria is
≈ 13.6. The ratio of the signal yield of the 1-Q weighted π+π−η mass distribution to the
signal yield of the Q-weighted distribution is ≈ 12.5.
In order to verify if the Q-factor background subtraction is able to filter those kinematic
permutations one can compare, from a mass window selected, signal events weighted with
Q and 1-Q with events that are possible background and got selected from a sideband.
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Figure 4.3: Invariant mass of π+π−η versus η. The lines are indicating the cuts applied
for selecting events in a signal band and sidebands half the width of the signal
band.

For this test two cuts were applied on the missing mass of pπ+π− which are depicted in
figure 4.3.
The black lines contain events from the signal band while the events between each of the
two the black, dashed lines contain events of the sidebands and each sideband has half
of the width of the signal band width. The events between the black lines are weighted
with Q and 1-Q and the events between the black, dashed lines remain unweighted. In
figure 4.4 those events are filled in one-dimensional histograms with the missing mass of
the p on the x-axis. The events are sorted in bins of the beam energy of 100MeV each.
To demonstrate how well the Q-factor method is able to subtract background one has to
compare the 1-Q weighted events from the signalband and the unweighted events from the
sideband. It is clearly visible that both distributions show nearly identical behavior. The
enhancement at a mass of 1.020GeV/c2 is only visible in the distribution of the sideband.
As one can see in figure 4.1 these are events with φ → KSKL and it is positioned to
the left of the η, because it decays to neutral kaons, and therefore cannot be seen in the
signal band. The conclusion is that the horizontal bands crossing the resonances can be
rejected well by using the Q-factor method on the η.
But nevertheless, one can see much possible non-resonant background at higher masses.
As a conclusion there are contributions from wrongly assigned identities of particles, but
most of it can be subtracted by using the Q-factor method on the η.
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Figure 4.4: Invariant π+π−η mass. Each plot covers 100MeV intervals of the beam photon
energy. The green magenta depicts events of the signal band weighted with
Q and the brown line those with 1-Q weighted. The cyan line presents the
unweighted events of the sideband. In the upper part the mean beam energy
for the corresponding bin is displayed.
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5 Contribution of Baryon Resonances
In photon-proton reactions a high possibility exists to produce baryon resonances beside
the discussed meson resonances. Baryons are mainly produced via the s-channel produc-
tion process. In this case the intermediate resonance is a baryon, for example a N∗ which
decays to a proton and a meson.
To get a clue if and in what strength baryon resonances might contribute one can take a
look at invariant mass spectra including the proton in combination with the three mesons
of the final state.
In figure 5.1 one can see two similar spectra. The left one shows the invariant mass of
pηπ+ on the y-axis and pπ+ on the x-axis. Perpendicular to the x-axis at a mass of
≈ 1230MeV/c2 one can see a band with a structure at a mass of ≈ 1900MeV/c2 on the
y-axis. The bulge has a width of about 120MeV/c2 on the x-axis projection. For the
projection on the y-axis one could not make a clear statement about the width, because
the enhancement lies at the border of phase space. But the position of the peak indicates
a ∆(1910) resonance which decays with a branching fraction of about 9% to ∆++(1232)η
which appears in the peak of the enhancement in the x-axis projection. The right plot
in figure 5.1 shows the same, but the π+ is replaced by the π−. In this case no structure
affiliated with a certain resonance is visible.
In consideration of the Clebsch-Gordan coefficients one can calculate that the production
of a ∆0(1232) is suppressed with respect to the ∆++(1232), which might explain the
absence of structures in figure 5.1b.
To gain further insight of how these baryon resonances might effect the yields of the
enhancements in the invariant π+π−η spectrum the figures 5.2 are presented.
All three histograms display the invariant mass of π+π−η on the y-axis and on the
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Figure 5.1: (a) The x-axis shows m(pπ+) and the y-axis m(pπ+η).
(b) In this case the π+ is exchanged for a π−.
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Figure 5.2: Both histograms have the invariant π+π−η mass on the y-axis and on the x-axis
(a) m(pπ+), (b) m(pπ−) and (c) m(pη).

x-axis the invariant mass of the proton plus one of the other three final state mesons.
If baryon resonances contribute to the yields of the enhancements the spectra should
show vertical bands or enhancements crossing the masses of the seen resonances. In the
histogram including the π+ one can see a vertical band passing below both enhancements
at a π+π−η mass of 1280MeV/c2 and 1415MeV/c2. This broad vertical band can be
assigned to the before mentioned baryon ∆++(1232) and seems to contribute to the
background beneath the X(1280) and X(1400). No such vertical band is visible in the
similar spectrum for the π−, because of the reasons mentioned before.
For the histogram with the invariant mass of pη on the x-axis there is no vertical band
visible either which might hint on a baryon contribution.

58



6 Study of the η(1295)/f1(1285) and
η(1405)

The study of the η(1295)/f1(1285) and η(1405) includes several steps.
For the two resonances at higher masses a cross section will be extracted. The cross
section is an effective area proportional to the likelihood of an interaction between
particles. In particle physics, especially photoproduction experiments, the likelihood of the
production of a particle per unit of solid angle and per beam photon energy is measured.
The extraction of the cross section involves the estimation of the number of measured
events per resonance and its normalization to all produced particles (equation (7.2)).
The number of events is determined by fitting a model to the π+π−η mass shape and is
described in section 6.1.4.
This fit grants the possibility to release parameters like the mass and intrinsic width of
the fitted function, to acquire knowledge about the possible identity of the fitted mass
shape representing a resonance. This comes handy to gain further clarification if the seen
first enhancement might be a η(1295) or f1(1285).

6.1 Normalization
The values of a differential cross section are influenced by detector properties as well
as branching fractions and binning effects. To extract a correct cross section one has
to account for all these influences. The differential cross section can then be calculated
according to

dσ

dΩ = Y

2π Nγ ρ l ACLAS ∆cosθCM B
,

where Y is the yield of the desired particle (cf. section 6.1.4), Nγ is the number of photons
hitting the target (cf. section 6.1.1), ρ and l are the density and length of the CLAS g12
target (cf. section 6.1.2), ACLAS is the acceptance and efficiency of the CLAS detector (cf.
section 6.1.3) and ∆cosθcm is the bin width of the distribution in cosine of the production
angle in the center-of-mass frame.
The yield of the particle is corrected by the appropriate branching fractions B of the
produced resonance. For X(1280) and X(1400) it is not possible to include the branch-
ing fraction of X(1280) and X(1400) decaying to π+π−η since there is no confirmed
knowledge about the identity of the resonances. But it is possible to take the branching
fractions of η decaying to further states into account. The second level branching frac-
tions, the decay possibilities of the final state η, are not taken into the normalization by
an exact number because they are accounted for by simulating all strong contributing
decay modes according to their branching fractions.



6.1 Normalization

6.1.1 Photon Flux

An accurate knowledge of the total number of photons that hit the target is mandatory for
the accurate determination of the cross section. The procedure to calculate the incident
photon flux measured by the CLAS tagger has been established in the gflux package.
Further information can be found in [31] and [32].
The method calculates the number of photons by reconstructing the number of electrons
striking a given T-counter from the rate of electrons in a given time window and compares
them to the number of photons measured at the target by a total absorption counter.
These numbers are further corrected for the livetime as well as photon loss in the tagger
radiator foil and the target. The livetime is the time during the DAQ was ready to record
events from the CLAS detectors. This measurements are conducted during normalization
runs. For this analysis the flux was binned in 10MeV energy ranges and was later
rebinned and integrated for the energy interval shown in the differential cross sections.
Problems arose from dead photomultipliers at the paddles responsible for beam energies
of 3.025± 0.025GeV, 3.075± 0.025GeV, 3.125± 0.025GeV and 3.525± 0.025GeV. The
flux distribution is shown in figure 6.1.
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Figure 6.1: g12 flux in 10MeV bins.

6.1.2 Target Density

As described in section 2.3 the target for the g12 run was a 40 cm±0.2 cm in length and
4 cm in diameter tapered cylinder filled with liquid hydrogen. The density of liquid hydro-
gen is dependent on temperature and pressure inside the target volume. Fluctuations for
example in temperature would lead to fluctuations in the density which would influence
the reaction rate. Therefore, values of pressure and temperature were recorded (shown
in figure 6.2) and the average density calculated for each run separately.
The procedure for calculating the density of the target has been established in [33]. The
formula is
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6 Study of the η(1295)/f1(1285) and η(1405)

ρ = −2.89 · 10−5
?

g

cm3K2

?
T 2 + 1.0 · 10−7

?
g

cm3mbar

?
P + 8.249 · 10−2

?
g

cm3

?
,

where T and P represent the temperature and pressure and the coefficients are taken
from [34]. An average density and its variance were calculated for each run and then
an average density for all g12 runs was determined. The total target density and it’s
variance was determined to

ρtot = 1
Nrun

?Nrun
i = ρrun = 0.07114± 1.74 · 10−5 [ g

cm3 ]
σ2
tot = 1

Nrun−1
?Nrun
i (ρrun − ρtot)2 = 0.00024. [ g

cm3 ]

The uncertainty of the target density is much lower than the uncertainty of the physi-
cal dimensions of the target, and therefore do not have to be considered for the total
systematic errors.

Figure 6.2: Target density for g12. [35]

6.1.3 Acceptance Calculation
In a first step Monte Carlo events have been generated, which consist of the four-vectors of
the resonances participating in the reaction. These four-vectors are then further processed
through a full simulation of the CLAS detector including detector inefficiencies and gaps
in the acceptance. In the last step the Monte Carlo data is treated the same way as the
raw data have been and is analyzed with the same software.
In this acceptance the detector inefficiencies are included as well as the signal loss from
the cuts applied to the data sample. It is assumed that the acceptance is mostly affected
by the energy and the production angle

ACLAS(W, cosθCM ) = Nacc
NMC

,
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6.1 Normalization

where Nacc is the number of reconstructed and accepted Monte Carlo events and NMC
is the number of generated events per certain energy and production angle.

6.1.4 Yield Extraction

For the determination of a differential cross section it is crucial to extract the number
of events of the desired particle as precise as possible. Therefore, the following sections
explain how the yield is extracted for the enhancement at a mass of 1.28GeV/c2 in
combination with the enhancement at a mass of 1.4GeV/c2 visible in the π+π−η mass
spectrum.

Yield of X(1280) and X(1400)

The extraction of the yield of the X(1280) and X(1400) is challenging. In figure 6.3 it is
visible that the weighted π+π−η mass spectrum has still much background left at higher
masses.
Two major enhancements are visible in the π+π−η mass shape at masses higher than
1GeV/c2, the first at a mass of ≈ 1280MeV/c2, referred to as X(1280), and the second
peak at a mass of ≈ 1400MeV/c2, referred to as X(1400). For the first enhancement
two explanations are possible. First, this heightening might be caused by the f1(1285)
decaying to π+π−η and the second includes the existence of the η(1295) which also decays
to π+π−η. The second structure might be identified by an excited η state, the η(1405).
To calculate a differential cross section for the two enhancements at higher masses it is
necessary to know the exact yield of both. The yield is extracted by fitting the signals
as well as the non-resonant π+π−η contribution.
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Figure 6.3: Invariant mass of π+π−η weighted with Q.
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6 Study of the η(1295)/f1(1285) and η(1405)

The signal is fitted with a Voigt function which is a convolution of a Breit-Wigner (L(x; Γ))
function and a Gaussian (G(x;σ)) function.

V (m;σΓ) =
? ∞

−∞
G(m?;σ)L(m−m?; Γ)dm? (6.1.1)

G(m;σ) = e−m
2/(2σ2)

σ
√
2π

(6.1.2)

L(m; Γ) = Γ
π(m2 + Γ2) (6.1.3)

Where m is the mass of the particle, Γ is the natural width of the particle and the σ of
the Gaussian distribution is the detector resolution.
The data resolution is obtained from Monte Carlo simulations. For each of the assumptions
of possible particles Monte Carlo events are generated with the width and mass given in
the PDG. For all the reconstructed Monte Carlo events the difference between the mass
of the corresponding raw Monte Carlo event and the mass of its reconstructed event is
calculated. These events are further binned in bins of the center of mass energy using
the same intervals as are used for the extraction of the events yields in section 6.1.5. The
resolution is determined in dependence of the energy as it might change with increasing
beam energy as well as the mass of the produced resonance.
Figure 6.4 shows the resolution for the f1(1285), η(1295) and η(1405) at three different
energies. The energies are chosen to be at the threshold were the production of the
particle starts, an energy in the middle and one at the highest possible energy.
The black dots represent the data, the blue line shows the fit. The binned data are fitted
with a Crystal-Ball function whose width is then taken as sigma for the Gaussian part
of the Voigt function. The distribution could not be described by a Gaussian or Voigtian
function. Therefore, the Crystal-Ball function was chosen, which has the advantage of
an asymmetric shape. The asymmetric shape is caused by the power low-end tail, which
is assumed to be negligible as its contribution is small in contrast to the Gaussian core.
The minimal resolution was found to be 4.12MeV/c2±0.12MeV/c2 and the maximal
4.67MeV/c2±0.44MeV/c2, which is equivalent within the errors. The averaged resolution
is 4.3MeV/c2 for each particle and energy. Despite this constant behavior the resolution
was determined for each energy bin of the cross section and used in the yield extraction
as a fit parameter on a bin by bin basis.
The method used to describe the data and extract the yield of the enhancements is
described in the following subsections along with different model selection criteria.

6.1.5 Strategy of the Yield Extraction

For a proper estimation of the yield of the two enhancements visible in figure 3.14 one
has to choose the hypothesis with the best fit quality for the description of the data.
The mass shapes of the two individual resonances will be described by a Voigtian profile.
This function includes the mass and natural width of the assumed resonance as well as
the detector resolution. The mass of the fit hypothesis can be chosen from the PDG as
fixed parameter or be released in the fit procedure.
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Figure 6.4: Resolution from Monte Carlo simulation for f1(1285), η(1295) and η(1405).
(a) f1(1285), (b) η(1295) and (c) η(1405). The middle of the corresponding
center-of-mass energy range is shown in the upper left corner of each plot. The
box below the mass distribution shows the residuals between the fit and the
data points in terms of σ.

The first raise can be explained by either the f1(1285) or the η(1295), while the second
enhancement can be originated by with the η(1405). The following table summarizes the
mass and width listed in the PDG for the relevant resonances.

particle mPDG [MeV] ΓPDG [MeV]
f1(1285) 1281.9±0.5 24.2±1.1
η(1295) 1294±4 55±5
η(1405) 1406.2±2.3 54±4

Table 6.1: Resonance parameters of f1(1285), η(1295) and η(1405) taken from PDG [3].

The non-resonant part in the mass spectrum can not only be described by a pure phase
space distribution and thus a second order polynomial or a third order polynomial is
added to the fit function.
Another complication is the strong dependence of the yield on the beam energy and the
production angle of the meson. To take this behavior into account a proper parametriza-

64
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tion depending on these properties would be needed. Due to the fact that this can be
achieved only by employing a full partial wave analysis the whole data set has been
binned. The data have been divided in sub-samples by applying a 2-dimensional binning
in energy and the meson production angle. For each of the ranges a fit has been con-
ducted, which yields the possibility to extract a yield in dependence of the cosine of the
meson production angle as well as the center-of-mass energy. Hence it is feasible to show
a differential cross section.
Two different values have been chosen for the bin width of the energy binning. The first
has a bin width of 200MeV. Due to the fact that the X(1280) has enough statistic per
sub-range the energy bins can be divided further by half. The binning in the production
angle is chosen to a bin width of 0.2 of the cos(θ) value over the whole range.
For every sub-range of the data both resonances have been fitted except the ones near
their production threshold. The fit range in the π+π−η mass expanded from 1.1MeV/c2

to 1.5MeV/c2.
In a first step it will be tested which resonances may contribute to the reaction (sec-
tion 6.1.9), these hypotheses include either the f1(1285) or the η(1295) together with the
possible production of the η(1405). In this step all masses and widths of the particles
are fixed to the PDG values.
Once the best fit hypothesis has been chosen it will be systematically tested if several
fit parameters of the chosen hypothesis can be released within limited borders or if they
have to be left fixed to guarantee a good fit result (section 6.1.10). For all fit hypotheses
the resulting invariant π+π−η mass spectrum, integrated over all energies and angles, is
shown.

6.1.6 Maximum Likelihood Method

In order to determine the values of the free fit parameters of the fit mode the maximum
likelihood method was used. Every event has its own well defined position in phase
space. Generally, if the probability is p to find a certain event at a certain point in phase
space xi then the probability P for an ensemble of events is the product of the single
probabilities multiplied with n!. n is the number of events, with the assumption that the
events are independent of each other and of the order of events. The probability for a
certain point xi in space is proportional to the intensity distribution |f(xi; ?φ)|2, where f
is the probability density function. In order to describe the data with f(x; ?φ) a likelihood
function is defined in the following way

L = n!
n?

i=1

|f(xi; ?φ)|2?(xi)? |f(xi; ?φ)|2?(xi)dx
. (6.1.4)

The detector acceptance as well as the reconstruction efficiency is considered by the term
?(xi) and the parameters needed to describe the weighting function is ?φ. The integral in
the denominator includes the integration over the whole phase space and is needed for
normalization. The integral can not be determined analytically, but it can be described
by the sum of weights of n Monte Carlo events. As the Monte Carlo events are subject to
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the same acceptance and reconstruction inefficiencies as the data events, the acceptance
correction ?(xi) is considered implicitly and the integral becomes,

ndata
nMC

nMC?

j=1
|fMC(xj ; ?φ)|2, (6.1.5)

where each Monte Carlo event gets the weight 1. The product of many probabilities is a
small number and causes instabilities in numerical calculations. Therefore, the negative
log likelihood is defined

NLL = −lnL = −
ndata?

i=1
ln|f(data(xi; ?φ)|2 + ndataln

nMC?

j=1
|fMC(xj ; ?φ)|2 (6.1.6)

and its minimum sought. Formula 6.1.6 is the likelihood neglecting the constant terms,
because they do not affect the minimum. In order to extract the released fit parameters
optimal the final formula minimized is

f = ndata
2



?nMC
j=1 |fMC(xj ; ?φ)|2

nMC
− 1




2

−
ndata?

i=1
ln|f(data(xi; ?φ)|2+ndataln

nMC?

j=1
|fMC(xj ; ?φ)|2

(6.1.7)
In the case of convergence the first addend vanishes, because then the number of Monte
Carlo events is exactly as large as the integral over the phase space of the phase space
distributed Monte Carlo events.
The adjustment of the degrees of freedom is achieved by using MINUIT2 [36], which uses
deterministic algorithms.
For this analysis a 1-dimensional fit has been conducted, to describe the invariant π+π−η
mass.

f(xi; ?φ) = f(mπ+π−η; ?φ) (6.1.8)

Other phase space parameters, except the meson production angle and the beam energy
(taken into account by binning), have not been considered and thus the fit is not sensitive
to these.

6.1.7 Model Selection Criteria
The yield extraction is prone to systematic effects caused by the model fitted to the
mass shape. In order to extract the yield as precise as possible the π+π−η mass shape
has been fitted with different models to describe the data under different hypotheses. In
this case the model is the actual function and the hypothesis the assumption of what
particles contribute. At this point one needs a measure to assess which fit has the highest
significance.
The most used and widely known parameter to measure the model quality is to have a
look on the χ2 in relation to the number of degrees of freedom (reduced χ2). The χ2 is
calculated the following way

χ2 =
nbins?

i=0

(yi,data − yi,fit)2

σ2
i,data + σ2

i,fit

, (6.1.9)
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for binned observables. Basically the χ2 value is just the squared sum over the difference
of each bin content between the data and the obtained fit value normalized by the sum
of the squared errors for each bin.
As mentioned in section 3.9.2 it is possible to propagate the errors of the Q-factors to the
distributions under consideration of the correlation between the events (equation (3.9.10)).
It has also been mentioned that a huge extent of time and computing power is needed
to calculate the correlation per bin. Hence, a 100% correlation is assumed. In addition
to the statistical error of each bin the sum of the errors of the Q-factors is taken into
account (equation (3.9.12)). This might lead to an overestimation of the errors per bin.
If one calculates the χ2/NDF one gets values which are systematically too low.
Another well known test is the likelihood ratio test. The likelihood ratio test can be used
only for the comparison of nested hypotheses. This means that only less complex models
can be tested against the full model if the less complex models are a subset of the full
model. Thus a test for the fit quality is needed which does not dependent on the errors
of the events or does not need nested hypotheses. Two of these tests will be described in
the following text.

Akaike Information Criterion

The Akaike information criterion (AIC) offers a solution to choose between different
models. It estimates the quality of each model relative to other models. In doing so it
does not provide a measure on how good a fit is. If all models fit poorly you are only
able to choose the one better than the others, which means you are not able to conduct
a test of a null hypotheses. But it provides a good measure using the trade-off between
the quality of the model and the complexity of the model.
The basic AIC value is calculated like this

AIC = 2k − 2lnL = 2k + 2NLL, (6.1.10)

where k is number of estimated parameters, L the Likelihood and NLL the negative
logarithmic likelihood respectively. Hence the model with the smallest AIC value is
stated to be the best fitting model. AIC discourages over-fitting, because it includes a
penalty for an increasing number of fit parameters.
Additional to this the criterion should take the sample size into account. AIC is assumed
to be used for infinite sample sizes. In this case our event number is not infinite. Therefore,
the AICc value is used for testing these models. AICc is useful for finite data samples
and is defined as

AICc = AIC + 2k(k + 1)
n− k − 1 . (6.1.11)

In this equation k and n denote the number of fit parameters and the number of events
to be fitted. If n gets large AICc becomes AIC, but AICc has the advantage of a greater
penalty for a greater number of fit parameters.

Bayesian Information Criterion

The Bayesian information criterion (BIC) or Schwarz criterion was developed as a
measure to choose between a finite set of models. Analogous to AIC the model with the
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most negative BIC value is the most preferable. As AIC, BIC includes a penalty on
the number of fit parameters, as the raise of fit parameters increases the likelihood, but
may result in over-fitting.
BIC is defined as

BIC = −2lnL+ k · ln(n) = 2NLL + k · ln(n) (6.1.12)

In contrast to AICc this method has two disadvantages. The first is that it can be used
only if the sample size is much larger than the number of fit parameters. The second is
that it can not handle complex collections of models.

6.1.8 Order of Polynomial for Background Description
For the decision what polynomial is suited better to describe the background two scenarios
have been executed. Both scenarios use the values listed in the PDG for the f1(1285)
and η(1405) as fixed parameters for the two Voigtian functions. Additionally the first
fit uses a second order polynomial while the latter one uses a third degree polynomial.
Polynomials of higher orders are problematic as the probability increases that not only
the background is described by the polynomial, but the enhancements, too. As mentioned
before the χ2 is not suitable to choose the best fit method in this case due to too large
errors.
Consequently the AICc values have been calculated for each bin and for both fits. In
the next step the difference between the AICc values for the fit using the second order
polynomial and the AICc values for the fit using a third order polynomial has been
calculated. The two dimensional histogram (figure 6.5) shows this difference on the
z-axis, while x-axis depicts the energy bins and the cosine bin is displayed on the y-axis.
Once more one has to emphasize that these tools do offer a relative comparison between
the quality of several fits, but do not deliver an estimation if the model is suited to describe
the data well. Even so the likelihood decreases more with increasing fit parameters the
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Figure 6.5: Difference of AICc values for second order polynomial minus third order poly-
nomial, while all fit parameters fixed except the yield.

68



6 Study of the η(1295)/f1(1285) and η(1405)

information criteria punish an increasing number of fit parameters and BIC does this
more than AICc.
Since the AICc value of the second order polynomial is taken minus the AICc value of
the third order polynomial per fit, the second order polynomial is favored if the difference
values tend to be negative and the third order polynomial is favored if the difference
values are positive.
It is visible that the third order polynomial delivers a better fit quality than the lower order
polynomial in most of the bins. It is mostly preferred in bins with high statistics, which
means the combination of a lower center of mass energy as well as a high positive cos(θ)
value. In some bins the second order polynomial is favored, but the difference between
the two AICc values is not as high as for the bins where the third order polynomial is
favored.
Due to the fact that most bins which show a significant deviation in AICc values fit
better with the third order polynomial all following results that are shown are fitted with
a with this polynomial for background estimation.

6.1.9 Contributing Resonances
A systematic check has been performed to test which resonances possibly contribute to
the invariant π+π−η mass spectrum in the region from 1.1GeV/c2 to 1.5GeV/c2. For
this purpose all fit parameters of the Voigtians are fixed except the yields. As mentioned
before three possible scenarios have been tested:

• Hypothesis 1: η(1295) and η(1405), all fit parameters fixed except yields

• Hypothesis 2: f1(1285) and η(1405), all fit parameters fixed except yields

• Hypothesis 3: f1(1285), all fit parameters fixed except yields, but no η(1405)

The first hypothesis includes the production of the η(1295) and exposes in the π+π−η
spectrum as the enhancement at 1.28GeV/c2. This hypothesis also includes the η(1405)
which would then explain the second enhancement.
The second hypothesis assumes that the f1(1285) is responsible for the first enhancement
and includes the production of the η(1405) as well.
Figure 6.6 shows a comparison of the invariant π+π−η mass spectrum between the
selected data and the fit, corresponding to hypothesis 1. The black points depict the data,
while the green, magenta and blue line show the whole fit, the contribution of f1(1285)
and η(1405) respectively. The histogram is the sum of all single fits in each bin. Beneath
the mass spectrum the residuals are shown. The horizontal red and green line depict the
values for zero and plus/minus three σ.
The η(1295) has a mass of about 1294MeV/c2 and a width that has a value of 55MeV/c2,
which makes it much broader than the f1(1285).
The fit as well as the residuals show a huge systematic deviation in the mass region from
1.25GeV/c2 to 1.35GeV/c2. This deviation is an indication for a systematic shift of the
obtained mass compared to the reported PDG value. Additional to this the natural width
of the η(1295) is too broad to be agreeable with the width of the first enhancement. This
is also visible in the residuals as the values leave the 3σ band in the region of the first
enhancement, while staying within for the rest of the range.
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Figure 6.6: Hypothesis 1. Integrated over all energy ranges and production angles. The
black points show the data. The weighted events obtained from the fit are
illustrated with a green line, the magenta line depict the contribution of the
η(1295) while the blue line indicates the η(1405) contribution.

As a preliminary result one might say that the assumption that the data are containing
an η(1295) based on the properties listed in the PDG is not confirmed.
The comparison between the mass shape of the selected data and of the fit corresponding
to hypothesis 3 is illustrated in Figure 6.7.
The region of the second enhancement is described reasonable well by the fit.
Additional to this the residuals show a small systematic behavior in the region from 1.1–
1.2GeV/c2, where the residuals lie systematically below zero. This might be due to the fact
that a third degree polynomial does not satisfy a perfect data description, but describes it
well enough so that the residuals lie well within 2σ. The only systematic deviation is visible
in the range around the X(1280), which is fitted under the hypothesis being the f1(1285).
While all points of the residuals are above zero from 1260MeV/c2 to 1280MeV/c2 they
fall below zero from 1280MeV/c2 to 1300MeV/c2. This is an indication that the obtained
mass for the X(1280) is systematically shifted by approximately 2MeV/c2 with respect
to the PDG value for the mass of the f1(1285).
This is also visible in the invariant mass spectrum where the green line is shifted to the
right of the mean of the data distribution. The mean of the fit coincides with the mean
of the first enhancement, with a slight deviation to a higher mass. All parameters of the
Voigtian describing the f1(1285) are fixed except the yield. The data shows the mean
at a mass approximately 2MeV/c2 beneath the PDG value. It has to be added that the
PDG mass is only an average over many measurements.
The width of the Voigtian is a combined width from the detector resolution, which is
accounted for in the σ of the Gaussian part, and the natural width of the particle, which
is accounted for in the Γ in the Breit-Wigner part. Even with fixed parameters the width
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Figure 6.7: Hypothesis 2. Integrated over all energy ranges and production angles. The
black points show the data. The weighted events obtained from the fit are
illustrated with a green line, the magenta line depicts the contribution of the
f1(1285) and the blue line indicates the contribution of the η(1405).

of the peak in the data seems to be matched well by the width of the f1(1285) taken
from PDG.
Therefore, we can state that the f1(1285) contributes to the mass shape with a higher
possibility than the η(1295) does.
In a last step the data distribution has been fitted under the assumption that the η(1405)
is not produced (hypothesis 3), and therefore has not to be taken into account to describe
the mass shape in a proper way. Accordingly, the data have been fitted only with a
Voigtian shaped by the f1(1285) parameters and a polynomial function, cf. figure 6.8.
The following dip between the two enhancements is overestimated this time which is also
present in the residuals. This might indicate that the enhancement is not only caused
by fluctuations, but a resonance is needed to describe this and the dip between the two
enhancements is described better by considering the second resonance at 1400MeV/c2.
The mean of the second peak is approximately 1400MeV/c2 which corresponds to the
assumption of it being an η(1405). Since the excited η states are relatively broad compared
to the f1(1285) and η?, this might explain why it is not as prominent as the aforementioned
states. To get a further confirmation if the η(1405) has to be taken into account one can
compare the AICc and BIC values of both fits.
Figure 6.9 shows the difference of the AICc/BIC values for the fit with the assumption
of an η(1405) taken into account to describe the data distribution and the fit with no
η(1405) included. The difference is calculated using the obtained AICc and BIC values
for both fits. The difference of the BIC values is displayed too, because BIC features a
higher penalty for an increase in the number of fit parameters.
It is evident that most of the bins have a gray color which indicates that for these
kinematic regions it does not matter whether the η(1405) is included or not. Several bins
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Figure 6.8: Hypothesis 3. Integrated over all energy ranges and production angles. The
black points show the data. The weighted events obtained from the fit are
illustrated with a green line, the magenta line depicts the contribution of the
f1(1285).

are colored brown, which is an evidence that the η(1405) has to be considered with respect
to the calculated AICc and BIC values. A vertical line of brown colored bins shows
at a center-of-mass energy of 2.5GeV. This energy bin covers the production threshold
of the η(1405) and an enhanced production is expected at energies near and above the
production threshold.
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Figure 6.9: Difference of AICc and BIC values for fit with fixed parameters and assump-
tion of f1(1285) and η(1405) and fit with fixed parameters and assumption of
f1(1285), but without η(1405).
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A horizontal strip of brown colored bins appears for the cosine of the meson production
angle of 0.7. This strip indicates a clear preference to include the η(1405) into the
description of the data. This circumstance has to be emphasized as those bins are bins
with a high event statistic. In contrast to this the fit where only the f1(1285) is taken
into account is favored for the most forward angular bins. This behavior can be explained
by taking the geometry of CLAS into account, as the statistic is significantly decreased
due to the forward hole of CLAS. Therefore, a fit with less fit parameters is preferred in
comparison to the fit including the η(1405).
Nevertheless, the outcome shows that the η(1405) has clearly to be considered.
As temporarily conclusion one might say that the η(1405) is needed in the energy region
near its production threshold as well as in the forward direction where a high event
statistic is present. This has to be rechecked with a fit where the mass and resolution of
the f1(1285) are released.

6.1.10 Systematic Checks for Yield Extraction
For a proper extraction of the yield of the two visible resonances it is crucial to describe
the mass shape as perfect as possible. It has been become apparent that the mass of
the first enhancement is slightly systematic lower than the reported PDG value for the
f1(1285). In order to make allowances for this systematic shift it might be feasible to
release certain parameters of the fit.
The first parameter in consideration is the mean of the Voigtian, to allow the fit to adjust
to the mean of the first increase. Additional to this the fit parameter representing the
detector resolution is released.
At first a check has to be made if the η(1405) has still to be taken into account if
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Figure 6.10: Integrated over all energy ranges and production angles, fit parameters fixed
except yields, mass and resolution of f1(1285). The black points show the
data. The weighted events obtained from the fit are illustrated with a green
line, the magenta line depicts the contribution of the f1(1285).
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Figure 6.11: Integrated over all energy ranges and production angles, fit parameters fixed
except yields, mass and resolution of f1(1285). The black points show the
data. The weighted events obtained from the fit are illustrated with a green
line, the magenta line depicts the contribution of the f1(1285) while the blue
line indicates the η(1405) contribution.

parameters of the Voigtian describing the X(1280) resonance are allowed to vary within
the limits. This can lead to a broadened distribution which might enable the fit to describe
the distribution properly without any η(1405) contribution.
Figure 6.10 shows a fit result with the released parameters for the X(1280). The first
enhancement of the mass distribution is described well. The width and mean of the peak
are matched almost perfectly with the ones of the f1(1285), but the description of the
data above 1.3GeV/c2 is very poor.
In order to improve the description of the mass shape further the production of the
η(1405) is added to the scenario, while the parameters of the Voigtian describing this
resonance are still fixed to PDG values. The small contribution of this resonance to the
whole spectrum and the subdivision in energy and angular bins does not allow a release
of these parameters.
Figure 6.11 shows a comparison of the invariant π+π−η mass spectrum for the selected
data and the fit which considers the f1(1285) as well as the η(1405).
It is apparent that the peak position is matched much better than for the corresponding
fit with fixed parameters, as well as the width which matches perfectly, too . This is also
evident in the residuals. The fluctuations of the residuals within the mass range from
1.24GeV/c2 to 1.34GeV/c2 are much smaller than in figure 6.7. In addition to this the
points are evenly distributed around the red line, which means that no major systematic
behavior is recognizable. In order to support the assumption that the distribution is
described better by this fit one can compare the AICc values of the fit from the fit with
fixed parameters to the ones of this fit.
For further confirmation that both resonances are needed for a good description of the
data one can have a look at the difference of AICc values.
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Figure 6.12: Difference of AICc values from fit with mass and resolution of the f1(1285) are
allowed to vary. One fit fits the η(1405) too and the other only the f1(1285).

In figure 6.12 one can see the difference between the AICc values obtained from the fits
with and without the η(1405). It is obvious that for most of the fits the η(1405) has to
be taken into account. This is very significant for the fits near the production threshold
of the η(1405). In comparison to figure 6.9 the significance is more pronounced. Almost
all bins show a tendency to prefer the fit including the η(1405).
At last it is necessary to verify if the fit with released parameters describes the mass
shape better than the fit where the parameters of the Voigtian are fixed.
In figure 6.13 one can see the difference of AICc values for the fit with released parameters
and the fit with fixed parameters. It is remarkable that almost all bins exhibit negative
values. This demonstrates that the fit with released parameters is preferred to the fit
with the fixed parameters even if two more parameters are needed. This is visible for the
energy range from 2.55GeV/c2 to 2.95GeV/c2 and an cos(θ) from -0.6 to 0.4, which is
remarkable because this energy region corresponds to the production threshold of the
η(1405).
As a preliminary result one might state that the η(1405) is needed to describe the data
distribution in an acceptable way and that it is possible to extract a differential cross
section for the η(1405) in photoproduction which is showed in section 6.2.4. Therefore,
all following results are extracted by fitting a polynomial of third order in addition with
two Voigtians describing the mass region at 1.28GeV/c2 with released parameters for
the mass and width and the X(1400) with fixed parameters.
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Figure 6.13: Difference of AICc values from fit with mass and resolution released to the
AICc values of the fit with all parameters fixed except the yields.

6.2 Results
In the preceding chapters a complex method was described to select a very background
free data sample to measure physical observables.
Due to the fact that the η is reconstructed via the missing mass method the data sample
contains lots of events which are not pπ+π−η signal events. This becomes clearly apparent
in the spectrum of the missing mass of pπ+π−. Therefore, the multivariate side-band
subtraction method was applied with the η mass as reference coordinate in order to
reduce the background in the whole π+π−η mass spectrum.
We will show the results for the mass and width of the X(1280). Furthermore, the
obtained differential cross sections for the X(1280) and X(1400) will be presented.

6.2.1 Differential Cross Section for the Reaction γp→ pX(1280)

This section will summarize the results for the contained differential cross section of the
reaction γp→ pX(1280). This has been realized by subdividing the data sample in ranges
of the center-of-mass energy as well as in 10 bins of the cosine of the meson production
angle in the center-of-mass frame of pX(1280). The forward and backward holes of the
CLAS detector are limiting factors. The binning in the center-of-mass energy starts at
2.35GeV and goes up to 3.35GeV. Due to the relatively high production statistic of the
X(1280) signal it was possible to chose the bin width for the following results to 100MeV.
The yield was extracted in ranges of the beam energy and cosine of the production angle
and enables to show a differential cross section. In total 84985±534 X(1280) events have
been determined.
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Figure 6.14: Differential cross section of the γp → pX(1280) → π+π−η. The energy is
divided in 100MeV samples and the mean energy of each bin is shown in each
plot.

As mentioned before the identity of the enhancement at the mass of 1280MeV/c2 is not
fully clarified. Therefore, the presented cross sections include also the unknown decay
fraction of X(1280) → π+π−η. The contribution of the branching fractions of the η
decays is taken into account by simulating all four main contributing decays of the η
according to their reported branching fractions.

Figure 6.14 shows the differential cross section for the reaction γp→ pX(1280)[π+π−η].
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Figure 6.15: Differential cross section of the X(1280)→ π+π−η. The x and y-axis show the
corresponding energy range and the cosine of the production angle respectively
while the z-axis displays dσ/dΩ.

It is to emphasize that the forward-most and backward-most angles have to be treated
with caution, because of lacks in the acceptance of the CLAS detector.
The lowest energy range is close to the production threshold of the f1(1285) at 2.35GeV.
It is clearly visible that the cross section features a relatively flat distribution near the
production threshold of the f1(1285).
At a center-of-mass energy of 2.5GeV the cross section tends to develop a peak in forward
direction. With rising center-of-mass energy the peak in forward direction becomes
more and more prominent. This behavior is likely associated with t-channel production
mechanism which can be described by recent Regge model calculations published by the
CLAS collaboration [37]. The model predicts a rise in forward direction and suggests that
part of the strength of the f1(1285) comes from s-channel baryon production. Additionally
the model predicts a fall down in the forward-most bins of the cross section which might
shows in the first two energy sub-ranges.
The amplitude of the cross section rises to a maximum value of 30 nb/sr. The drop in
cross section at an energy of 2.6GeV is due to non-working PMTs in the tagger and has
no physics cause.
In figure 6.15 the same differential cross section for the reaction γp→ pX(1400)(π+π−η)
is shown as a two-dimensional plot to achieve a better overview of the alteration of the
cross section with energy and angle.
Obviously the highest cross section is around the production threshold and at angles
corresponding to the forward direction.
Further discussion is given in chapter 8. A table of all values can be found in section 8.2.
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6.2.2 X(1280) Mass and Width

One aim of this analysis is to shed light on the origin of the enhancement at a mass
of 1280MeV/c2. As it has been mentioned in section 1.5 it is rather difficult to make a
statement if the η(1295) exists or if it is just an artifact of the partial wave analyses made
by other groups. Performing a partial wave analysis for the reaction γp → pπ+π−η is
very challenging due to a large number of different contributing intermediate resonances
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Figure 6.16: X(1280) mass per cosine of the meson production angle in 100 MeV center-
of-mass energy bins, red line indicates PDG mass of f1(1285) with m =
1281.9± 0.5MeV/c2, dashed line represents the error. Blue line shows PDG
mass of η(1295) and blue dashed line its error with m = 1294± 4MeV/c2.
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Figure 6.17: X(1280) width per cosine of the meson production angle in 100 MeV center-
of-mass energy bins, red line indicates PDG width of f1(1285), dashed line
represents the error: Γ = 24.2 ± 1.1MeV/c2. Blue line shows from the PDG
reported width of η(1295) and blue dotted line its error: Γ = 55 ± 5MeV/c2.

and thus not the scope of this thesis. Apart from the mesons like η?, η(1295), η(1405)
and f1(1285) a lot of other resonances with sequential decays to the final state can be
produced. One option to get a clue is to have a look at the results of the fits where the
mass was allowed to vary during the adaption. In figure 6.16 the fit results of the mass
of the X(1280) are shown for the 100MeV energy binning.
It is visible that near the production threshold of the f1(1285) and for some of the low
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Figure 6.18: Fit for center-of-mass energy of 3.15GeV and cos(θ) = −0.1. The black dots
are the data points, the green line indicates the fit and the magenta line the
X(1280) contribution. The lower histogram shows the residuals, while the
green line indicates zero and the red ones ±3σ. Mass and resolution of the
X(1280) Voigtian are fixed.

energy bins, the mass is fitted systematically to lower values compared to the following
higher energy bins.
For the higher energies the X(1280) yield is much lower due to the bremsstrahlung
spectrum. Additional to this the cross section is lower in bins with a production angle
not forward with respect to the beam direction, which can be seen also in figure 6.14. Due
to the lower event numbers at higher energies the values of the statistical errors rise with
rising center-of-mass energy. But within their errors the masses are better compatible
with the value noted in the PDG for the f1(1285).
The fit results of all fits combined deliver a mass of (1280.1±0.413)MeV/c2, which sup-
ports the hypothesis of the f1(1285) being the X(1280). Thereby one has to mention
that up to now no systematic errors are included.
Additional to the fit with a free mass and a free resolution another fit was conducted were
the mass and resolution were fixed and the intrinsic width was allowed to vary during
the fit. The resolution was fixed, because the fit tends to divide the width of the signal
to the intrinsic width and the Gaussian width of the resolution in equal portions. To get
a clue on the real natural width of the meson it is important to fix those parameters to
the values estimated in figure 6.4 and figure 6.16. The results for the width are shown in
figure 6.17.
For the first six energy bins the values of the width are in a good agreement with the
width of the f1(1285) and well below the width of the η(1295). For an increasing beam
energy the width becomes broader and the errors increase as well. In figure 6.18
an example fit for the last energy range and an angle perpendicular to the beam direction
is shown. The magenta line shows the contribution of the X(1280). It is visible that the
fit has broadened the Voigtian of the X(1280) to a huge width. Therefore, one might
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Figure 6.19: Fit for center-of-mass energy of 3.15GeV and cos(θ) = 0.7. The black dots
are the data points, the green line indicates the fit and the magenta line the
X(1280) contribution. The lower histogram shows the residuals, while the
green line indicates zero and the red ones ±3σ. Mass and resolution of the
X(1280) Voigtian are fixed and the natural width is allowed to vary.

has to treat bins at a high energy and a cos(θ) below zero with care. For the last two
energy bins the width is mostly at the value of the η(1295) width, but this includes a
high statistical error compared to the lower energies. In contrast to this some of the
forward-most angular bins show small error bars and a huge width.
An example fit for those bins is shown in figure 6.19. It is visible that the yield is much
higher than the one for the bin with a cos(θ) below zero. The peak at 1280MeV/c2 is
described reasonably well by the fit, which is also visible in the residuals in the lower
plot, too, as they do not show huge deviations. Additional to this the chosen angular
bin is well before the corresponding bin covering the forward hole of CLAS which might
hint on lower systematical errors. Even with the higher yield the fit needs to broaden the
natural width. As a conclusion one can say that there are hints on a systematic shift of
the width to higher values while the measured mass tends to be near the f1(1285) mass
even at higher energies.

6.2.3 Decay Angle Distribution of X(1280)

Another possibility to gain knowledge about the identity of the X(1280) is to have a look
at the Dalitz plot of the final state particles π+π−η. The resonance can fragmenting via
a three body decay into π+π−η or it can convert via an intermediate resonance via a
two body decay. The intermediate resonance will then decay immediately via a two body
decay as well.
The Dalitz plot is a well established method to investigate the kinematics of a three
body decay. The axes show the squares of the invariant masses of two pairs of the decay
products. Four Dalitz plots are shown in figure 6.20.
Each Dalitz plot is filled with events within a sub-range of the π+π−η mass with a width
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Figure 6.20: Dalitz distributions for different regions in the π+π−η invariant mass each
60MeV wide. The central of the energy region is mentioned in the upper right
corner of each distribution.

of 60MeV/c2 and the mean of each sub-range is shown in the upper right corner. The
x-axis shows the invariant mass squared of π±η and the y-axis the invariant mass squared
of π+π−. In the case of an immediate three body decay of a spin zero resonance into
three spin zero particles the Dalitz plot will not show any bands. One or more bands will
show up in the distribution if an intermediate resonance is present.

All four Dalitz plots show such bands in yellow. Each plot shows a horizontal band at
m2(π±η) of approximately 0.96GeV2/c4 and an additional diagonal band. The position of
the horizontal band indicates the mass of the intermediate resonance with 980MeV/c2 and
the particles’ masses plotted on the y-axis are the daughter particles of this intermediate
resonance. A resonance at 980MeV/c2 decaying to πη is the a0(980). The plot in the
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Figure 6.21: Invariant mass of π+π−η vs. πη. Black boxes depict cuts for the signal region
as well as two sidebands including resonant structures and a non-resonant
sideband.

upper right corner shows the Dalitz plot of the mass range of the X(1280) and the a0(980)
bands are clearly visible.
Both the f1(1285) as well as the η(1295) are known to decay via a0(980)π, which therefore
justifies no exclusion for either of the particles. In the Dalitz plot for the mass range
including the η(1405) the a0 bands are visible, too.
For the last two mass ranges another resonance shows up as an vertical band. The
mean of this vertical band lies at m2(π+π−) ≈ 0.6GeV2/c4, which is associated with an
invariant π+π− mass of 770MeV/c2. The corresponding particle to this mass and the
decay products is the ρ(770). This resonance can possibly be explained via t-channel
production process. One conceivable explanation is that the incoming photon changes
into the ρ(770) while the proton changes to an excited baryon resonance, for example a
N∗. A possible candidate is the N (1535) which decays dominantly into pη. Several other
scenarios are γp→ pηρ, γp→ η∆∗ or γp→ ∆∗.
As a conclusion of this brief Dalitz plot discussion one can state that the resonance
visible at an π+π−η mass of 1280MeV/c2 decays predominantly via a two body decay
into a0(980)π.
It is possible to gain information about the spin or parity of the decaying particle by
examining the decay angle distribution. The first step to extract the decay angular
distribution is to select a subset of suitable events. Hence, a cut has been applied on the
π+π−η mass to select events from 1.28±0.015GeV/c2. The second cut has to be applied
on the invariant π±η mass in the range from 960MeV/c2 to 1GeV/c2. The missing mass
of the proton vs. the π±η mass is shown in figure 6.21 to demonstrate where the cuts
have been applied.
The y-axis shows the π+π−η mass and the x-axis the πη mass. The lower right black
box shows which region of events has been selected. As shown before, the X(1280)
enhancement is afflicted with a serious amount of background, therefore, it is advisable
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to perform a two-dimensional sideband subtraction. Figure 6.21 shows that there are
two bands visible, one vertical corresponding to the a0 and one horizontal band for the
X(1280). Two two-dimensional sidebands are marked with black boxes, too. They are
entitled with first and second resonant sideband and cover the same dimensions in range
in the π+π−η and π±η masses each as the signal box. Both regions are subtracted from
the signal region.
Due to the region the sidebands cover, too many background has been subtracted. For
this problem has been accounted for by adding an amount of non-resonant background.
The region where the non-resonant background events have been taken from is shown
with the upper left box. In most cases where this procedure is used sidebands are taken
from the right and down side of the signal band, too. This is not possible in this case
due to the limited phase space.
The decay angle discussed here is the angle between the quantization axis of X(1280)
and the flight direction of the a0 in the helicity frame of the X(1280). The helicity
frame of a particle is dependent as its the rest frame with the quantized axis being the
movement direction. This leads to the case that the decay products fly back to back. The
distribution of its decay angle is related to the spin parity of the mother resonance. The
resulting decay angular distributions can then be calculated for pseudoscalar as well as
vector mesons.

0−+ : dσ

dcos(θXa0)
∝ |d0

0,0|2 = c (6.2.1)

1++ : dσ

dcos(θXa0)
∝ a|d1

0,0|2 + b(|d1
1,0|2 + |d1

−1,0|2) = a · cos(θXa0)
2 + b · sin(θXa0)

2 (6.2.2)

Where the Wigner d functions are defined as dJλJ (λa0−λπ) = dJMJ ,0 with J the spin of
the mother particle, λ is the helicity of the mother particle and the daughter particles
respectively.
Figure 6.22 shows the decay angular distributions for X(1280) decaying to a+

0 π−, a−0 π+

and both together. All angular distributions are sideband subtracted and efficiency cor-
rected.
The functions mentioned above are fitted to the distributions with the free parameters c, a
and b. The blue line depicts the fit for the assumption of a pseudoscalar resonance present
and the red line one for a vector meson. The X(1280) decaying to a+

0 (980)π− shows a
parabolic distribution, which rules out a pseudoscalar resonance as the mother particle.
On the other hand a fully flat distribution does not exclusively favor a pseudoscalar
resonance. If a vector meson is fully ”unaligned”, a = b, the decay angular distribution
in its helicity frame is flat.

Table 6.2: χ2/ndf for fits to the different decay modes of the X(1280).
0−+ 1++

decay mode χ2/NDF prob χ2/NDF prob

a+
0 π− 65.63/13 5.06 · 10−9 17.56/12 1.3 · 10−1

a−0 π+ 43.28/13 4.04 · 10−5 33.84/12 7.15 · 10−4

a0π± 58.59/13 9.38 · 10−8 27.62/12 6.29 · 10−3
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Figure 6.22: Distribution of the decay angle of X(1280) to a0(980)π. (a) a+
0 (980)π−,

(b)a−0 (980)π+ and (c) a0(980)∓π±. Red: 0−+, Blue: 1++.

The table 6.2 shows the χ2/ndf for each decay mode and the two fits respectively. If one
compares the reduced χ2 of the two fits it is visible that the 1++ hypothesis is favored for
the decay to a+

0 π− and the combination of both decays. The 1++ hypothesis is, moreover,
favored for the decay to a−0 π+, but the probability is less good which may be because of
background contributions.
At last it is to mention that the X(1280) is afflicted with a high background contribution
and the sideband subtraction leads to systematic errors unattended in this analysis. In
general one can say that the 1++ hypothesis describes the distribution better.

6.2.4 Cross Section for the Reaction γp→ pX(1400)
Due to the fact that the contribution from the X(1400) is smaller in comparison to the
X(1280) yield energy ranges of 200MeV are chosen here for the determination of the
differential cross section. In total 18438 ± 665 X(1400) events have been determined.
The first histogram covers the energy interval close to the production threshold at the
η(1405) mass. One can see a steep rise towards the backward-most bin which is significant
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Figure 6.23: Differential cross section of the X(1400) → π+π−η. The associated energy
bin is written in the top of each plot. The x-axis shows the cosine of the
production angle and the y-axis dσ/dΩ.

within its errors, but it is to mark that the most forward and backward angles contain
acceptance gaps of the CLAS detector. Nevertheless, the distribution at this center-of-
mass energy is relatively flat. A flat distributed cross section is a hint for a s-channel
production mechanism.
With increasing center of mass energy a rise in forward direction becomes more and
more prominent. It becomes apparent that a significant drop down in the forward most
angular bin appears within all energy ranges except the highest one. This drop down
has to be treated with caution due to limitations in the detector acceptance. A drop in
the cross section for the forward most bins has been predicted by Regge model using
theories fro the photoproduction of η, f1(1285) and η(1295), which might applicable here,
too, although no calculations have been made for the photoproduction of the η(1405)
[37, 38]. At the highest energy the differential cross section features a flat distribution in
backward direction and a peak in forward direction.
The behavior of the differential cross section of the X(1400) is very similar to the one
extracted for the X(1280). Both start with a flat distribution at the production threshold
of the regarded resonance and continues with a steep rise in forward direction with
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Figure 6.24: Differential cross section of the X(1400)→ π+π−η. The x and y-axis show the
corresponding energy range and the cosine of the production angle respectively
while the z-axis displays dσ/dΩ.

increasing energy. Generally the amplitude of the X(1400) cross section is a factor of
two to three lower than for the X(1280).
In figure 6.24 the same differential cross section for the reaction γp→ pX(1400)(π+π−η)
is shown as a two-dimensional plot to achieve a better overview of the alteration of the
cross section with energy and angle.
Again it becomes evident that the highest cross section is around the production threshold
and at angles around 0.7. This rise in statistic can be seen in the AICc histograms showed
in the foregoing sections at the same energies and angles, which can now be associated
with the rise in the production of the considered resonances.
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7 Measurement of the Differential Cross
Section of the Reaction γp→ pη?

In order to ensure that an analysis is performed properly it is helpful to compare the
results to former published results, if possible. Therefore, the differential cross section
for the η? is extracted and compared to a published result by the CLAS collaboration on
the g11 data set ([39]).
In the first step the remaining background below the η? has to be subtracted using the
aforementioned method. To improve the level of comparability between the published
results and this work the background is subtracted with the η?as reference coordinate
instead of the η. The steps taken will be described in the following section.
In the next step the extracted cross section will be showed weighted with the Q-factor
derived from the η? as well as weighted with the Q-factors derived from the η.

7.1 Event Based Background Rejection
In order to improve the resolution of the η? visible in the π+π−η mass a cut has been
applied in the region from 0.5MeV/c2 to 0.6MeV/c2 on the missing mass of the pπ+π−.
Additionally to this the kinematically fitted four-vectors have been used in combination
with a cut on the probability of p > 0.01. In figure 7.1 the invariant mass of π+π−η is
shown in the region of the η? mass. The Q-factors derived in the former chapters are not
applied here. As one can see there is some background left below the signal. To extract
a cross section it is necessary to know the exact number of events of the desired particle.
The Q-factor method enables one to remove the background and obtain the number of
η? events in this data sample.
For the application a certain set of non-reference coordinates has to be chosen. The ones
used for the background reduction with the mass of η? as reference coordinate are shown
in table 7.1. In contrast to the foregoing method the set of non-reference coordinates is
reduced from eight to only two coordinates.

Table 7.1: Kinematic variables used in the background rejection with m(η?) as reference
coordinate.

Quantity Non-Reference-Coordinates
Beam Energy Eγ

η? production angle cos(θc.m.η? )

These non-reference coordinates are used to calculate the distances of every event to
every other event in phase space. After this calculation the 200 nearest events are selected.
The number of nearest neighbors was derived by performing systematic studies of the



7.2 Normalization
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Figure 7.1: Invariant π+π−η mass in the region of the η?.

fit quality with different numbers of events to be fitted. The number of 200 was chosen
because it guaranteed a sufficiently small cell of phase space and an overall good fit
quality of the fit to the reference coordinate.
The width of the η? is dominated by the detector resolution, because its natural width
is only Γ = 199 keV/c2. Therefore, a Voigtian distribution is not necessary and a simple
Gaussian was chosen as signal function and a first order Chebychev polynomial for
background.

b(x) = C0 + C1x,

s(x) = e
(x−µ)2

2σ2 .

The mean of the Gaussian is allowed to vary between ±1MeV/c2 and the widthσ between
200 keV/c2 and 20MeV/c2.
In order to show how well the background below the η? is subtracted it is best to look at
the separation of background and signal in the invariant mass distribution of π+π−η in
figure 7.2a.
The Q weighted distribution has no background contribution any more and the smooth
behavior of the background indicates a good identification of background and a proper
assignment of the weights to the events respectively. This makes it possible to weight
the differential cross section of γp→ pη? as well and normalize for the η? yield that way.
More information about the extraction of the differential cross section can be found in
section 6.1.

7.2 Normalization
As mentioned before the differential cross section can be calculated according to

dσ

dΩ = Y

2π Nγ ρ l ACLAS ∆cosθCM B
,
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7 Measurement of the Differential Cross Section of the Reaction γp→ pη?

where Y is the yield of the desired particle (cf. section 7.3), Nγ is the number of photons
hitting the target (cf. section 6.1.1), ρ and l are the density and length of the CLAS g12
target (cf. section 6.1.2), ACLAS is the acceptance of the CLAS detector (cf. section 7.4)
and ∆cosθcm is the bin width of the distribution in cosine of the production angle in the
center-of-mass frame.
The yield of the particle is corrected by the appropriate branching fractions B. For η?

this involves the branching fraction of η? decaying to π+π−η and the branching fractions
of η decaying into further states. The η branching fractions are not taken into the
normalization because they are accounted for by simulating all strong contributing decay
modes according to their branching fractions.
The η? fraction has to be taken into the normalization for the yield extraction with the
Q-factor method with the η? as reference coordinate (section 7.1), because for this option
the background below the η? seems to be properly removed, but it can happen that for
example wrongly chosen η candidates form peaking background under the η? which can
not be found by this yield extraction. More information can be found in section 4.
The yield extraction with method two, using the Q-factor method with the η as reference
coordinate yields this advantage, for this see section 3.9.3 and section 4. Therefore, the
branching fraction for η? decaying to π+π−η has not be taken into the differential cross
section normalization.

7.3 Yield Extraction η?

The background below the η? has been subtracted in two different ways, as explained
in sections 7.1 and 3.9.3. For both ways of the Q-factor method the η? background is
removed to a level of less than 5% of the signal. Therefore, the events weighted with Q
yield more than 95% signal events. In this case one can simply take the sum of weights
as yield for the calculation of the cross section

Y
?√

s, θη
?
CM

?
=

N?

i

Qi,

where Qi are the probabilistic event weights and N is the number of all events.
In figure 7.2 the obtained distributions after the application of the different weights are
shown. The left one illustrates the π+π−η mass in the region of the η? weighted with the
Q-factors derived by using this method to subtract the background while the η acted as
reference coordinate. The right one shows the same distribution, but with the background
subtraction where the η acted as reference coordinate.
The Q weighted distribution in both histograms depicts the signal yield, each events
contribution weighted with its probabilistic event weight. In the left one there is nearly

Table 7.2: Reconstructed event number for η?.
Particle Y ± σstat

Q-values η? Q-values η
η? 51494± 226 48864± 161
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Figure 7.2: (a) Invariant mass of π+π−η weighted with weights from Q-factor method with
η? as reference (b) Same distribution, but Q-factor method with η as reference
coordinate. Blue: unweighted spectrum, Green: Q weighted spectrum and Red:
1-Q weighted spectrum.

no background remaining while in the right there is a small number still present, but
relative to the signal it is less than 5%. In table 7.3 the extracted number of η? events
for both methods is presented.
For both methods a cross section can be extracted and is shown in section 7.5.

7.4 Acceptance Correction
To correct the η? cross section for the aforementioned efficiencies (section 6.1.3) we
use Monte Carlo events generated for γp → pη?[π+π−η] with the η decaying into the
particles with the major branching fractions. For the η? channel 14 million events have
been generated. Generated Monte Carlo events and accepted Monte Carlo events are
treated with the same analysis procedure as the data except the probabilistic event weight
method. They are divided in the same energy bins as the cross section and the production
angle of η? is filled in histograms with the same binning as the data. In the next step
the histograms of the accepted Monte Carlo data are divided by the raw Monte Carlo
events.
These distributions are fitted with a third order polynomial to get an acceptance function
for each energy bin dependent on the production angle. This enables us to derive an
efficiency depending on the beam energy and production angle, ?(Eγ , cos(θ)). Each events
contribution to a distribution gets weighted with 1/?.
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Figure 7.3: Acceptance for γp → pη?. The x-axis shows cos(θc.m.η? ) and the y-axis the
efficiency binned for a subrange in Eγ .

7.5 γp→ pη? Cross Section
This section will show the cross section of the reaction γp→ pη?.
In this section the cross sections for the reaction γp → pη? is shown. It is displayed
weighted with the Q-factors obtained in this chapter as the former published results are
weighted with Q-factors where the η? is the reference coordinate, too. Additionally the
cross section is shown weighted with the Q-factors obtained in section 3.9.3 as this is the
method chosen for the results of this work.
The differential cross section is divided in ranges of the cosine of the production angle
of the meson with the bin width of 0.1. Additional to this the data are subdivided in
bins of the center-of-mass energy W . Those bins are not equidistant in order to achieve
a better comparability to the former results.
A result for the cross section γp → pη? was published in [39] in 2009 by the CLAS
collaboration. The former analysis was based on the g11 data set and used the Q-factor
method to reduce background below the η? as well as partial wave analysis methods to
achieve a good acceptance correction. Therefore, the same Q-factor method has been
conducted to have a good base for a comparison.
The Q-factor method with the η as reference coordinated was used, because we are
interested in the higher mass states mostly.
The vertical bars on the points show the statistical uncertainty only. As mentioned above
the cross section weighted with the two different sets of Q-factors should yield nearly
the same result as the cross section is not dependent on the final state particles. It is to
mention that the efficiency correction in [39] was made using a partial wave analysis.
In figure 7.4 the differential cross section with Q-factors obtained by using the η? as
reference is shown.
Both results show a prominent peak in forward direction. For the most forward angles the
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7.5 γp→ pη? Cross Section

Figure 7.4: Differential cross section for the reaction γp → pη? with Q-factors obtained
from η?. The x-axis shows the cosine of the production angle. The y-axis shows
the differential cross section in µb/sr for the first 16 bins and for the last four
in nb/sr. The black points are the result of this work and the magenta ones
show the published results from the CLAS collaboration [39]. The black shaded
histogram shows half the difference between the two cross sections.

data are missing because the forward region is not covered by the CLAS detector. The
strong increase in cross section towards the forward angles might be due to a t-channel
meson exchange. The cross section does show a smaller, but significant rise towards the
backward angles, too, which is an indication for u-channel production processes. This
leads to the assumption that there are baryon u-channel exchanges contributing. Around
an energy of 2.46GeV a hump in the transverse direction starts to rise which might be
an evidence for the combination of baryon resonance production and t-channel meson
exchange.

In comparison to the differential cross section of the X(1280) both cross sections have
a steep rise in forward direction in common, as well as the drop in the forward-most
angular bin. The next thing they have in common is the drop down to nearly zero in
the region perpendicular to the beam direction. In difference to the η? cross section the
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Figure 7.5: Difference between results of differential cross sections for γp → pη? with Q-
factors obtained from η?. The x-axis shows the cosine of the production angle.
The y-axis shows the deviation in sigma. The dark blue line depicts a σ of zero
whereas the light blue lines depict a σ of 3.

X(1280) cross section does not show the rise towards the backward angles hinting on an
u-channel process.
In figure 7.5 the deviation from the former results is shown, when the Q-factors are
obtained from η as reference coordinate. The dark blue line is a guide for the eye to
show where a σ of zero would be. The light blue lines show a σ of three. σ values of zero
in the first two bins or the last bin are equal to empty bins and can be ignored. The
deviation is calculated bin wise by taking the difference of the cross section in each bin
and normalize it with the quadratic addition of the bin errors. It is visible that most
of the bins are well within a three sigma deviation. Most of the deviations bigger than
three sigma are in the most backward and forward directions.
The two cross sections are mostly consistent with each other. It is visible that for the
lower energies a greater discrepancy from the former published cross section shows than
for the high energy bins. The huge decrease in the range with a mean center-of-mass
energy of 2.58GeV is due to broken PMTs in the tagging system. This leads to the
reduction of the event rate in the order of a magnitude for these energies. Nevertheless
our cross section is in a good agreement with the former published one in all other bins.
The main deviations are in the forward-most and backward-most angles and might be
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7.5 γp→ pη? Cross Section

Figure 7.6: Differential cross section for the reaction γp → pη? with Q-factors obtained
from η. The x-axis shows the cosine of the production angle. The y-axis shows
the differential cross section in µb/sr for the first 16 bins and for the last four
in nb/sr. The black points are the result of this work and the magenta ones
show the published results from the CLAS collaboration based of g11 data [39].
The black shaded histogram shows half the difference between the two cross
sections.

due to an insufficient efficiency correction. Overall it is made plain that the analysis
procedure used for this results works well to confirm and match the published results.
In a second step it is important to prove that we can reproduce the former results also if
the background is subtracted with the η as reference coordinate. The η? decays into two
charged particles, which momenta and energies can be reconstructed precisely, and the
η which can be reconstructed as missing particle only. This leads to the assumption that
the main background contribution in the π+π−η mass is caused by this reconstruction
method.
Figure 7.6 shows the differential cross section for η?, but with Q-factors obtained from the
η. There are discrepancies for the low energy bins. The cross section tends to bend down
in forward direction in contrast to the former results. The backward region is adequately
good described. There are huge discrepancies for angles around cos(θ) of zero. This can
be explained in two ways. The first is that there is still background from events which
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Figure 7.7: Difference between results of differential cross sections for γp → pη with Q-
factors obtained from η. The x-axis shows the cosine of the production angle.
The y-axis shows the deviation in sigma.The dark blue line depicts a σ of zero
whereas the light blue lines depict a σ of 3.

are no η?, and therefore underlie a different production mechanism. This assumptions
is contradictory to the results shown in figure 4.4, where it is shown that the peaking
background is well described. Another explanation is that the background below the η?,
which is still there if one conducts the Q-factor method on the η?, distorts the differential
cross section. Possible background channels have been listed in section 4.
The main contribution was found in the decay η? → π0πoη(π+π−π0). It is possible to
interchange the neutral pions with the charged pions if the kinematic characteristics of
the four particles are similar. Then the charged pions are mistaken as pions coming from
the η? decay. The neutral pions are reconstructed as η which leads to a broadening of the
signal and produces the horizontal band below the η?. This effect vanishes with higher
beam energies. All distributions with a center-of-mass energy higher than 2.35GeV show
a fairly good consistency. This can be explained with a broadening of the available phase
space, which leads to less background directly at the η? mass . For a last comparison we
will show the deviation in each bin in center-of mass-energy and bins of cos(θ) in σ in
Figure 7.7, which depicts the same behavior as discussed before. Besides the systematic
deviation the overall deviation does not exceeds three σ in most cases.
The differential cross section depends on the production mechanism of a meson only and
is independent of the final state of this meson. Nevertheless the cross section shows a
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different behavior if the Q-factors are derived if the η or η? is used as reference coordinate.
This difference could be explained with the possibility to transpose the neutral pions
from the η? decay with the charged pions from the η decay, which has been proved
by Monte Carlo studies. This is only one explanation and it might be possible that
other competing reaction do form background below the η? as well. In any case the
probabilistic event weight method with the η as reference coordinate seems to be capable
to differentiate those events from events with the wanted decay chain. It can be assumed
that the permutation is not possible for all kinematic situations and it might be energy
dependent as well as dependent on the production angle. This is confirmed by the shape
of the deviations. Those appear for certain angular regions as well as low energies. With
rising energies the deviation decreases.
As a outcome one can state that the differential cross section has been reproduced to a
good extent and matches best for the higher beam energies where the production of the
states of interest starts.
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8 Summary and Conclusion

The photoproduction of excited η resonances off protons is studied using data recorded
with the CLAS detector at Jefferson Lab (Newport News, Virginia).
The main goal of this analysis is to shed further light on the nature of excited η mesons
and their classification regarding the pseudoscalar meson nonet. The g12 data set made
it possible to extend the energy range for the measurement of a differential cross section
of γp→ pX(1280) up to 5.5GeV of beam photon energy.
Neither f1(1285) nor η(1295) have been measured in photoproduction that far above
their production threshold. In addition to the measurement of the X(1280) it is possible
to extract the yield and differential cross section of another enhancement at a mass of
1400MeV/c2 whose resonance parameters (m, Γ) are found to be consistent with the
η(1405).
The differential cross section of the reaction γp→ pη? is measured. A comparison with
previous measurements reveals a good congruence and strengthens the liability of the
applied methods used in this analysis.

8.1 Interpretation of Differential Cross Sections
The differential cross section of the reaction γp→ pη? is measured both in depending on
the cosine of the polar production angle of the meson in the center-of-mass frame and
on the center-of-mass energy.
Furthermore a probabilistic event weight method is applied to remove all of the back-
ground.
The shape of those distributions gives us a hint on the underlying processes contributing
to the final state. The steep rise in the cross section at forward angles suggests a strong
meson exchange t-channel process contributing. Also visible is a smaller rise in backward
direction, which can be indicative for a u-channel process. The strength of the u-channel
contribution is about an order of magnitude lower than the t-channel contribution. These
results are compatible to a large extent to the results published by the CLAS collaboration
based on the g11 run data.
The differential cross sections of the X(1280) and the η? are quite similar in shape, but
not in absolute values. Near the production threshold the cross section is almost flat,
which hints on X(1280) produced in an s-channel process. With higher energies the t-
channel production mechanism increases which is reflected in a steep rise towards forward
angles. Unlike the η? cross section the X(1280) distributions show no rise in the backward
direction. Due to the lower statistics for the X(1280) in comparison to the η?, no final
conclusion concerning this behavior can be made.
For the identity of the X(1280) two resonances are possible candidates: either the f1(1285)
or the η(1295). The masses of both resonances are close together compared to their
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intrinsic width, which makes a differentiation difficult. The quantum numbers of the
resonance cannot be determined with this analysis due to large background contributions.
The enhancement at an π+π−η mass of about 1400MeV/c2 might be identified with the
η(1405). The η(1405) has never been measured before in photoproduction experiments or
via γγ fusion. Based on several predictions the η(1405) is discussed as a possible glueball
candidate or as a state with gluonic degrees of freedom. It has been measured in so-called
”gluon rich” environments only. No strong coupling of glueballs to photons is expected
because they are electrically neutral. But glueballs can still be produced in second order
processes. Unlike glueballs, states with gluonic degrees of freedom, like hybrids, are
allowed to couple to photons as there are quarks present as well. The observation of an
enhancement in the π+π−η mass, which can be associated with the η(1405), might be
a hint that the η(1405) is no pure glueball. In order to further clarify the nature of the
η(1405), one has to confirm the existence or non-existence of the η(1295) and determine
the gluonic content of the η(1405).
The differential cross section of the X(1400) is measured and it shows the same struc-
ture as the cross section of X(1280). Near the production threshold, a flat distribution
appears similar to the η? and X(1280) differential cross sections, referencing an s-channel
production mechanism. With increasing energy, an increase in forward direction becomes
more and more evident, showing the increasing contribution of t-channel production.

8.2 f1(1285) or η(1295)
The enhancement with a mean mass of 1280MeV/c2 can be observed in the π+π−η mass
spectrum. There are two candidate particles which can be associated with this resonance.
The first is the pseudoscalar η(1295) with m = 1294 ± 4MeV/c2 and Γ = 55 ± 5MeV
reported by the PDG. The vector meson f1(1285) lies with a mass of 1281.9±0.5MeV/c2

in the same mass region and features a width of 24.2± 1.1MeV reported by the PDG.
It is not possible to make an unambiguous statement about the nature of the resonance,
but the mass and width of the enhancement can be interpreted in favor of the f1(1285)
which is supported further by the decay angular distribution.
Mass and width of the enhancement at 1280MeV/c2 are found to be m = 1280.1 ±
0.4MeV/c2 and Γ = 36.1± 4.8MeV. The errors are purely statistical and derived from
the fit.
The mass of the X(1280) is in good agreement with the reported mass of the f1(1285).
One has to take into account that the η(1295) mass has been averaged from the different
values determined by the contributing experiments with an accuracy of only 4MeV/c2.
Therefore, the mass of f1(1285) is only 3σ away from the η(1295) mass, which makes it
extremely difficult to differentiate the two states by mass only.
The intrinsic width of the f1(1285) has been reported in the range from 19±5MeV/c2 to
55±18MeV/c2 with varying accuracy, while the width of the η(1295) has been measured
in the range from 53±6MeV/c2 to 66±13MeV/c2 with only three data points. Therefore,
we can state that the width of the X(1280) is above the averaged width for the f1(1285)
but well within the range of all measured values. It also is well below the lowest measured
width of the η(1295).
As another attempt to gain knowledge about the identity of the X(1280), the decay
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angular distribution of the X(1280) is extracted and fitted with two hypotheses for either
the decay of a pseudoscalar resonance or a vector resonance respectively. The hypothesis
of an axial-vector meson decaying to a0(980)π is preferred, although the decay of a
pseudoscalar meson cannot be ruled out.
Depending on the measured masses and widths, it is not possible to rule out either the
f1(1285) or the η(1295). But with regard to the fitted mass and width the f1(1285) is
more likely. We can state the same for the fits on the decay angle distributions. Due to
the high level of background with respect to the signal yield, it is difficult to extract a
clean set of events. Nevertheless, the decay angular distributions favor the vector meson
hypothesis.
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Table Differential Cross Section X(1280)→ π+π−η

W [MeV] cos(θcm) dσ
dΩ

?
nb
sr

?
σstat
?
nb
sr

?

2400 -0.9 11.6032 5.77756
2400 -0.7 5.82411 0.764506
2400 -0.5 7.69778 0.739502
2400 -0.3 3.84189 0.324283
2400 -0.1 6.50077 0.285962
2400 0.1 7.92182 0.32214
2400 0.3 8.94779 0.337109
2400 0.5 10.4855 0.499599
2400 0.7 10.7255 0.716845
2400 0.9 2.69316 1.46687
2500 -0.9 12.3433 1.55182
2500 -0.7 3.85166 0.357195
2500 -0.5 3.66638 0.280661
2500 -0.3 3.88427 0.215924
2500 -0.1 4.76609 0.221989
2500 0.1 6.46397 0.244082
2500 0.3 6.46309 0.226336
2500 0.5 10.9062 0.343777
2500 0.7 13.8811 0.58232
2500 0.9 5.27345 1.12837
2600 -0.9 0.787543 0.290701
2600 -0.7 0.974461 0.111874
2600 -0.5 1.09161 0.101888
2600 -0.3 1.14118 0.111811
2600 -0.1 1.56758 0.108151
2600 0.1 1.43385 0.109337
2600 0.3 2.22412 0.16492
2600 0.5 3.50395 0.155163
2600 0.7 3.22021 0.197978
2600 0.9 7.94601 0.889171
2700 -0.9 0.702442 0.225571
2700 -0.7 0.97634 0.135633
2700 -0.5 1.43444 0.113729
2700 -0.3 1.34331 0.103537
2700 -0.1 1.35502 0.106854
2700 0.1 1.69577 0.142514
2700 0.3 2.89295 0.147411
2700 0.5 5.02346 0.182492
2700 0.7 7.08608 0.225723
2700 0.9 11.18 0.703533
2800 -0.9 0.807047 0.180468
2800 -0.7 1.2097 0.141875
2800 -0.5 1.04604 0.106405
2800 -0.3 1.3827 0.108693
2800 -0.1 1.41855 0.107439
2800 0.1 1.91672 0.126223
2800 0.3 4.1983 0.175864
2800 0.5 5.24363 0.225429
2800 0.7 12.1565 0.344888
2800 0.9 18.3367 0.675208

W [MeV] cos(θcm) dσ
dΩ

?
nb
sr

?
σstat
?
nb
sr

?

2900 -0.9 0.789461 0.200199
2900 -0.7 1.0053 0.119574
2900 -0.5 0.925828 0.125317
2900 -0.3 0.703341 0.0943373
2900 -0.1 0.841342 0.0978813
2900 0.1 1.67243 0.1042
2900 0.3 2.89158 0.148294
2900 0.5 4.49196 0.170357
2900 0.7 10.8427 0.321401
2900 0.9 21.7024 0.625035
3000 -0.9 1.31686 0.358764
3000 -0.7 1.33089 0.217272
3000 -0.5 0.889764 0.180966
3000 -0.3 0.786674 0.130427
3000 -0.1 0.883713 0.11818
3000 0.1 1.71402 0.152432
3000 0.3 3.43223 0.249251
3000 0.5 5.5355 0.243449
3000 0.7 15.3237 0.454772
3000 0.9 30.0921 1.29538
3100 -0.9 0.800551 0.353131
3100 -0.7 0.976442 0.203601
3100 -0.5 0.771537 0.128944
3100 -0.3 0.559393 0.128793
3100 -0.1 0.411599 0.0966924
3100 0.1 1.302 0.126333
3100 0.3 2.1764 0.17742
3100 0.5 5.08951 0.228295
3100 0.7 14.0114 0.41628
3100 0.9 31.1235 1.00358
3200 -0.9 0.842126 0.311381
3200 -0.7 0.815588 0.159151
3200 -0.5 0.38363 0.120531
3200 -0.3 0.409728 0.0889874
3200 -0.1 0.3136 0.0785704
3200 0.1 0.387869 0.0787731
3200 0.3 1.22489 0.122199
3200 0.5 2.59436 0.183345
3200 0.7 10.2474 0.400631
3200 0.9 26.1498 0.779023
3300 -0.9 0.759249 0.272877
3300 -0.7 0.550878 0.124821
3300 -0.5 0.202837 0.0796903
3300 -0.3 0.2054 0.0712405
3300 -0.1 0.184588 0.0470849
3300 0.1 0.225642 0.0564891
3300 0.3 0.508355 0.0786247
3300 0.5 1.6763 0.15831
3300 0.7 6.32835 0.373938
3300 0.9 21.7837 0.705718
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Table Differential Cross Sections X(1400)→ π+π−η

W [MeV] cos(θcm) dσ
dΩ

?
nb
sr

?
σstat
?
nb
sr

?

2450 -0.9 132.756 18.2598
2450 -0.7 8.62431 6.00243
2450 -0.5 29.6865 4.61511
2450 -0.3 14.6714 4.01102
2450 -0.1 27.6934 3.99416
2450 0.1 29.7307 4.45242
2450 0.3 38.0883 5.1153
2450 0.5 47.5137 5.25954
2450 0.7 14.9775 6.94371
2450 0.9 1.38796 8.48623
2650 -0.9 0.000327653 0.794476
2650 -0.7 1.69765e-05 0.247296
2650 -0.5 9.40595 2.24216
2650 -0.3 18.6794 2.20805
2650 -0.1 14.782 2.24614
2650 0.1 16.4614 2.55811
2650 0.3 3.83776e-06 0.0578239
2650 0.5 60.9051 4.29896
2650 0.7 66.143 4.63536
2650 0.9 40.8119 5.20097
2850 -0.9 9.51278e-05 0.0526525
2850 -0.7 5.52222 3.04211
2850 -0.5 2.93576 2.41306
2850 -0.3 5.31791 2.1336
2850 -0.1 5.45118 2.13719
2850 0.1 10.9563 3.0269
2850 0.3 5.19344 3.51599
2850 0.5 41.368 3.82206
2850 0.7 53.8679 6.2439
2850 0.9 21.227 5.35478
3050 -0.9 6.25382e-06 0.374761
3050 -0.7 4.16943 2.24882
3050 -0.5 5.06668 2.00423
3050 -0.3 3.72529e-06 0.0128944
3050 -0.1 3.00149 1.19957
3050 0.1 2.55447 1.39967
3050 0.3 3.99215 2.25688
3050 0.5 10.8857 2.61194
3050 0.7 43.684 4.11109
3050 0.9 9.47447 4.34086
3250 -0.9 0.758758 5.38537
3250 -0.7 1.11895 2.46355
3250 -0.5 0.280689 1.70177
3250 -0.3 2.96728 1.20778
3250 -0.1 2.26766e-06 0.0111123
3250 0.1 1.1355 1.14923
3250 0.3 0.849316 2.05583
3250 0.5 1.77074 2.53812
3250 0.7 51.9445 4.55549
3250 0.9 74.0293 7.15577
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Bertram Kopf who supported and helped me with so many professional suggestions and
advice during the development of this analysis.
I would also like to thank Prof. Dr. Ulrich Wiedner who made it possible for me to
accomplish my thesis at his department and allowed me to conduct two research stays
in Beĳing and Tallahassee. Due to his involvement in many projects I gained insight
into three different experiments. During my Bachelor and Master theses I worked for
the PANDA collaboration and learned a lot about the development of particle detectors,
especially electromagnetic calorimeters. Even during my PhD thesis I worked for this
experiment by building sensors and readout channels. As I received my founding by a
Sonderforschungsbereich of the universities of Bochum, Gießen and Bonn I gained insight
into the analyses of the CB-ELSA collaboration and their detector setup as well. Finally
I started my analysis of the g12 data set taken at the CLAS detector at JLAB, Newport
News, Virginia.
During my research stay in Tallahassee I met great people and made tremendous progress
with my analysis work. Therefore I would like to thank Prof. Volker Credé as well as
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Städtisches Gymnasium Kamen
Abschluss: Allgemeine Hochschulreife (Abitur)
1998–2000
Heisenberg Gymnasium Dortmund

1996–1998
Dietrich-Boenhoeffer-Schule Dortmund
1994–1996
Harkort-Grundschule Dortmund
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