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We show that the correct way to extract parton distribution functions from the reduced Ioffe-time
distribution, a ratio of the Ioffe-time distribution for a moving hadron and a hadron at rest, is through a
factorization formula. This factorization exists because, at small distances, forming the ratio does not
change the infrared behavior of the numerator, which is factorizable. We illustrate the effect of such a
factorization by applying it to results in the literature.
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I. INTRODUCTION

One of the most important goals of QCD is to understand
the structure of hadrons in terms of their fundamental
constituents—quarks and gluons. This is a profoundly
difficult task because it necessarily requires studies in
the nonperturbative regime. Currently, the most reliable
tool for such nonperturbative studies is lattice QCD, which
has been widely used to study the static property of hadrons
(see e.g. Refs. [1,2]). However, lattice QCD is formulated
in Euclidean spacetime and so cannot be used to calculate
quantities with real-time dependence. For example, parton
distribution functions (PDFs), which characterize the
momentum distributions of quarks and gluons inside the
hadron, are defined in terms of light cone correlations and
therefore have real-time dependence. Traditionally, the
PDFs can only be probed indirectly on the lattice by
calculating their moments [3,4]. Beyond the first few
moments, such calculations become very hard due to
technical difficulties associated with the symmetry of the
lattice regulator, which leads to power-divergent mixing
between different moments.
Recently, a new approach has been proposed to study

parton physics from lattice QCD [5], which allows a direct
computation of the full-x dependence of parton quantities
such as the PDFs. This approach has been formulated as
the large momentum effective theory (LaMET) [6]. The
LaMET is based on the observation that parton physics
defined in terms of light cone correlations can be obtained

from time-independent spatial correlations, now known as
quasidistributions, boosted to the infinite momentum
frame. The quasidistributions can be calculated on the
lattice, since they are time-independent quantities. For
finite but large momenta feasible on the lattice, the
Euclidean quasidistributions can be related to the physical
ones by a factorization formula. The LaMET has been
applied to computing the nucleon unpolarized, helicity, and
transversity PDFs [7–13], as well as the meson distribution
amplitudes (DAs) [14,15] (for related studies, see
Refs. [16–45]), and led to fairly encouraging results.
Alternative, but related, approaches have also been

proposed: using lattice cross sections [46,47] and the
Ioffe-time distribution or pseudodistribution [48] to extract
the x-dependence of PDFs from lattice QCD. In particular,
the pseudodistribution essentially corresponds to a dif-
ferent Fourier transform of the same equal-time Euclidean
correlation function as used in the LaMET. The pseudo-
distribution proposal is therefore equivalent to the quasi-
distribution calculation in the LaMET, in the sense that
similar factorization formulas exist for both approaches and
that large nucleon momentum is required in both cases to
extract the information on the leading-twist PDF [29]. In
Ref. [48], it was claimed that, unlike the quasidistribution,
the pseudodistribution only has a support in the physical x
range (x ¼ ½−1; 1�) as a result of Fourier transform over
Ioffe time. However, that relies on the integration over an
infinite range of Ioffe time. In practical lattice simulations,
the Ioffe time that can be reached is always limited to a
finite range. Therefore, the pseudodistribution may have
residual contributions in unphysical region as well, similar
to the quasidistribution. In addition to the above methods,
there have been a number of proposals to use current-
current correlators at spacelike separation to compute
PDFs, the pion DA, and related quantities [49–55].
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In Refs. [56,57], an exploratory study of extracting quark
PDFs from the Ioffe-time distribution/pseudodistribution
was carried out. The authors used a reduced Ioffe-time
distribution (RITD), formed by taking the ratio of the
equal-time correlator for a moving hadron and a hadron at
rest. The advantage of the RITD is that the renormalization
factors associated with the Ioffe-time distribution [58]
cancel between the numerator and the denominator, since
they have been shown to be independent of the nucleon
momentum [30–32]. Therefore, the uncertainties related to
nonperturbative renormalization effects, such as those seen
in Ref. [11], for example, can be avoided. The authors of
Ref. [56] then determined the PDFs based on an approxi-
mate scaling in z2 observed in the lattice data of the RITD,
where z is the distance between the two quark fields
defining the equal-time quark correlator. They also high-
lighted the remaining z2-dependence of the RITD and
studied its evolution with z2 (see also Ref. [59]).
In this paper, we show that the correct way to take

advantage of the RITD is through a factorization formula
that connects the RITD to the PDFs. Although logarithmic
evolution relates the RITD at different z2, a factorization is
required to convert the RITD to the PDFs. The reason that
such a factorization exists is, as we will show later, that the
RITD has the same IR behavior as its numerator, which is
factorizable, provided that z2 is small.
The paper is organized as follows. In Sec. II, we present

the factorization for the RITD and give the hard kernel
connecting the RITD and the PDFs at one-loop order. As a
demonstration, we then apply the factorization to the data
read from the figures in Ref. [56] in Sec. III. A summary is
given in Sec. IV.

II. FACTORIZATION OF REDUCED
IOFFE-TIME DISTRIBUTION

The RITD introduced in Ref. [48] is defined as

Mðν ¼ z · p; z2; μÞ ¼ Mðν; z2; μÞ
Mð0; z2; μÞ ; ð1Þ

where

Mðν; z2; μÞ ¼ hpjψ̄ðzÞΓLðz; 0Þψð0Þjpi ð2Þ

with Γ a Dirac matrix and Lðz; 0Þ the straight line gauge
link connecting the two quark fields. μ denotes the
renormalization scale. The matrix element Mðν; z2; μÞ is
the same as used in the LaMET to calculate quasidistri-
butions and can be interpreted as a covariant Ioffe-time
distribution with a given Ioffe-time ν ¼ −z · p at a space-
like separation z2 < 0. For the unpolarized quark distribu-
tion, in order that the denominator of Eq. (1) does not
vanish at leading power, Γ can chosen as Γ ¼ γ0.
The quasi- and the pseudodistributions are defined as

two different Fourier transforms of the Ioffe-time distribu-
tion Mðν; z2; μÞ, the former with respect to z and the latter
with respect to ν. The authors of Ref. [29] demonstrated
that there exists a similar factorization formula for the
pseudodistribution as for the quasidistribution, but at small
distance instead of large momentum. For a more explicit
demonstration of the equivalence between the small dis-
tance factorization in the pseudodistribution and the large
momentum factorization in the quasidistribution, see
Ref. [60]. In fact, both factorizations originate from the
same factorization of Ioffe-time distribution, which can be
easily obtained from the momentum space factorization of
the pseudodistribution [29]

Pðy; z2;μÞ ¼
Z

dx
jxjZ

�
y
x
; z2μ2

�
qðx;μÞ þOðz2Þ: ð3Þ

Here,

Pðy; z2; μÞ ¼ 1

2π

Z
dνe−iyνMðν; z2; μÞ ð4Þ

is the pseudodistribution, qðx; μÞ is the PDF, μ denotes a
renormalization scale in the MS scheme, and Z is the
perturbative hard matching kernel. For simplicity, we have
chosen the same renormalization scale in Pðy; z2; μÞ and
qðx; μÞ. Taking the Fourier transform with respect to the
Ioffe time, ν, leads to

Mðν; z2; μÞ ¼
Z

dyeiyνPðy; z2; μÞ ¼
Z

dyeiyν
Z

dx
jxjZ

�
y
x
; z2μ2

�
qðx; μÞ þOðz2Þ

¼
Z

dyeiyν
Z

dx
jxjZ

�
y
x
; z2μ2

�Z
dν0

2π
e−ixν

0
Mðν0; 0; μÞ þOðz2Þ

¼
Z

duδ

�
y
x
− u

�Z
dyeiyν

Z
dx
jxjZ

�
y
x
; z2μ2

�Z
dν0

2π
e−ixν

0
Mðν0; 0; μÞ þOðz2Þ

¼
Z

duZðu; z2μ2ÞMðuν; 0; μÞ þOðz2Þ: ð5Þ
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Up to OðαsÞ, we can read off the form of Z from Ref. [29] as

Zðu; z2μ2Þ ¼ δð1 − uÞ
�
1þ αsCF

2π

�
3

2
lnð−z2μ2e2γE=4Þ þ 3

2

��

þ αsCF

2π

�
−
�
1þ u2

1 − u

�
þ
ðlnð−z2μ2e2γE=4Þ þ 1Þ −

�
4 lnð1 − uÞ

1 − u

�
þ
þ 2ð1 − uÞ

�
θðuÞθð1 − uÞ: ð6Þ

So far, we have considered the Ioffe-time distribution only.
Now, let us turn to the reduced distribution. The matrix
element Mðν; z2; μÞ has been shown to renormalize multi-
plicatively as [30–32] (see also Refs. [25,26,28,61–64])

MRðν; z2; μÞ ¼ Z−1
j̄ Z−1

j e−δmjzjMBðν; z2Þ; ð7Þ

where δm is an effective mass counterterm removing power
divergences in the Wilson line and Zj, Zj̄ are the renorm-
alization factors associated with the end point of the Wilson
line and independent of z,p. Thus, the entire renormalization
is independent of the external momentum p. By forming
the RITD, the renormalization factors completely cancel
between the numerator and the denominator. Therefore, the
RITD has the potential to significantly reduce uncertainties
related to renormalization effects, such as those seen in
Ref. [11], for example.
From Eq. (5), we have

Mð0; z2; μÞ ¼
Z

duZðu; z2μ2ÞMð0; 0Þ þOðz2Þ

¼
Z

duZðu; z2μ2Þ þOðz2Þ; ð8Þ

since Mð0; 0Þ ¼ R
dxqðxÞ ¼ 1, which expresses the con-

servation of the quark number. In other words, for a small
z2, where higher-twist contributions can be neglected,
Mð0; z2; μÞ depends on the perturbative matching kernel
only and thus does not introduce any IR divergences. This
can be easily checked from the one-loop result in Ref. [29].
After renormalization, we have

Mð0; z2;μÞ ¼ 1þ αsCF

2π

�
3

2
lnð−z2μ2e2γE=4Þ þ 5

2

�
þOðz2Þ

ð9Þ

for a small z2, which can also be obtained from Eqs. (6)
and (8). Although the UV divergences have been removed
from Eqs. (6) and (9), in fact, one can directly use the
unrenormalized results and explicitly show that the UV
poles cancel in the RITD. Equation (9) tells us that at small
z2, Mð0; z2; μÞ only changes the UV behavior and not the
IR behavior.
These results suggest the correct way to relate the PDF

and the RITD. That is, we can form a factorization not for
the Ioffe-time distribution but for the reduced distribution.
This is possible because the RITD is constructed from a
ratio of two matrix elements, Mðν; z2; μÞ and Mð0; z2; μÞ,
where the latter does not introduces IR divergence; there-
fore, the ratio will have the same IR behavior as
Mðν; z2; μÞ, which we know is factorizable [see Eq. (5)
for its factorization]. The factorization of the RITD can be
written as

Mðν; z2;μÞ ¼
Z

duZ̄ðu; z2μ2ÞMðuν;0;μÞ þOðz2Þ

¼
Z

dν0δðuν− ν0Þ
Z

duZ̄ðu; z2μ2ÞMðuν;0;μÞ

þOðz2Þ

¼
Z

dν0

jνj Z̄
�
ν0

ν
; z2μ2

�
Mðν0;0;μÞ þOðz2Þ;

ð10Þ
where on the rhs we can use either Mðν0; 0; μÞ or
Mðν0; 0; μÞ since they are equal. In contrast to the factori-
zation of Mðν; z2; μÞ, we only need to include the extra
perturbative corrections from Mð0; z2; μÞ to the matching
kernel. Note that the renormalization effects cancel
between the numerator and the denominator in the
RITD, and we can therefore use the above results in any
convenient scheme, e.g. the MS scheme in the continuum.
The one-loop result Z̄ is then given by

Z̄ðu; z2μ2Þ ¼ δð1 − uÞ þ Z̄ð1Þðu; z2μ2Þ ¼ δð1 − uÞ
�
1 −

αsCF

2π

�

þ αsCF

2π

�
−
�
1þ u2

1 − u

�
þ
ðlnð−z2μ2e2γE=4Þ þ 1Þ −

�
4 lnð1 − uÞ

1 − u

�
þ
þ 2ð1 − uÞ

�
θðuÞθð1 − uÞ; ð11Þ
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where the extra term − αsCF
2π in the first row can also be

combined with αsCF
2π ½2ð1 − uÞ� in the second row to form a

complete plus function.
By taking the Fourier transform of Eq. (10) with respect

to ν or z, we obtain two momentum space representations.

One is the pseudodistribution, and the other is related to the
quasidistribution. In the first case, we have (for simplicity,
we ignore the higher-twist contributions of Oðz2Þ below,
and a detailed investigation of the structure of higher-twist
contributions will be given elsewhere [65])

Pðx; z2; μÞ
Mð0; z2; μÞ ¼

Z
dν
2π

e−ixν
Z

dν0

jνj Z̄
�
ν0

ν
; z2μ2

�Z
dyeiyν

0
qðy; μÞ

¼
Z

dy
jyj Z̄

�
x
y
; z2μ2

�
qðy; μÞ: ð12Þ

In the second case, we have

Z
dz
2π

pze−ixνMðν; z2; μÞ ¼
Z

dz
2π

pze−ixp
zz

Z
dyeiyp

zzq̃ðy; μÞ
Z

dy0eiy0pzzFðy0; μÞ

¼
Z

dyq̃ðy; μÞFðx − y; μÞ

¼
Z

dyZ̃ðx; y; μÞqðy; μÞ ð13Þ

with

Fðy; μÞ ¼
Z

dz
2π

pze−iyp
zz 1

Mð0; z2; μÞ ;

Z̃ðx; y; μÞ ¼
Z

du
Z

dz
2π

pze−iðx−uyÞpzzZ̄ðu; z2μ2Þ: ð14Þ

We can take advantage of the RITD either by working
directly in coordinate space, converting it toMðν; 0; μÞwith
Eq. (10), and then Fourier transforming to momentum
space to get the PDF or using Eq. (12) or (13) to extract
qðx; μÞ, where in the latter case we will need a Fourier
transform of the matching kernel and an extra convolution
of the quasidistribution.

III. APPLICATION OF THE RITD
FACTORIZATION FORMULA

The authors of Refs. [56,57] performed an exploratory
lattice study to extract the PDF from the RITD, where the
computations were performed in the quenched approxima-
tion. The authors observed an approximate scaling behavior
in z2 of the lattice data for the RITD, then took the RITD
approximately as Mðν; 0; μÞ (they also highlighted the
remaining z2-dependence of the RITD and studied its
evolution with z2) and tried to fit the results with a
functional form of the PDF. They found that the lattice
data of the RITD could be well described by the following
valence quark distribution:

uvðxÞ − dvðxÞ ¼
315

32

ffiffiffi
x

p ð1 − xÞ3: ð15Þ

In the following, we apply the factorization formula in
Eq. (10) with the one-loop matching kernel in Eq. (11) to
the data on the RITD in Ref. [56]. The data points we use
are extracted from the figures of Ref. [56].
From Eq. (10), we have

Mðν; 0; μÞ ≈Mðν; z2; μÞ −
Z

1

0

duZ̄ð1Þðu; z2μ2ÞMðuν; z2; μÞ

ð16Þ

up to errors of Oðα2sÞ. The quark distribution can then be
obtained by taking the Fourier transform of Mðν; 0; μÞ. As
discussed in Ref. [56], the valence quark distribution is
directly related to the real part of Mðν; 0; μÞ. In Fig. 1, we
show a comparison of the results. The solid blue curve is
the CJ15 global fit result [66]. The dashed green curve is
the result of Ref. [56] obtained by a numerical fit to the real
part of the RITD Mðν; z2; μÞ, and the factorization con-
verting Mðν; z2; μÞ to Mðν; 0; μÞ in Eq. (10) was ignored.
The dashed red curve is the result using the factorization
formula with μ ¼ 1 GeV and z ¼ 4a ða ¼ 0.093 fmÞ,
where the latter is the largest z used in Ref. [56] to study
the perturbative evolution of the RITD with z2. In principle,
it is better to use smaller z2 so that higher-twist contribu-
tions are less important. However, for a smaller z2, the Ioffe
time that can be reached also becomes smaller and therefore
will contain less of the information needed to reconstruct
the PDF.
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With the choice z ¼ 4a, the curve generated by applying
the one-loop factorization formula, plotted in Fig. 1, lies to
the right of the fit results in Ref. [56] and is therefore farther
away from the phenomenological fit. This is because, at
this scale, the term involving lnð−z2μ2Þ in the one-loop
matching kernel is negative for z ¼ 4a; the effect of one-
loop matching is to push the quark distribution toward the
right. Since this logarithm depends on the scale, at finer
lattice spacings and larger nucleon momentum, we antici-
pate that one can use data with smaller z, but still with a
reasonable range of Ioffe time, and the matching kernel will
then move the result toward the phenomenological curve.
We note that this preliminary study is in the quenched
approximation and that we use a matching kernel correct to

one-loop in perturbation theory at a relatively low scale and
that therefore quantitative comparison to PDFs extracted
from global fits is still not possible with precision.

IV. CONCLUSION

The reduced Ioffe-time distribution has the advantage
that the nonperturbative renormalization effects associated
with the Ioffe-time distribution itself can be avoided. In this
paper, we have shown that the light-front PDFs are related
to the RITD through a factorization relation. This factori-
zation exists because, at small distances, forming the ratio
in the RITD does not change the IR behavior of the
numerator, which is factorizable. We then illustrate the
effect of such a factorization by applying it to the data used
in Ref. [56].
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Note added.—Recently, a preprint by A. Radyushkin [67]
appeared, in which a formula similar to our Eq. (16), which,
in its latest version, agrees with our result, was presented.
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