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Abstract

In this thesis we study basic properties and applications of String Theory on AdS5 back-
grounds. We do this in the framework of the AdS/CFT Correspondence and use our results
to learn about four dimensional Conformal Field Theories.

The first part of this work deals fundamentally with the problem of solving the exact
spectrum of anomalous dimensions of planar N = 4 Super Yang Mills theory for all values
of the 't Hooft coupling A\. We study the problem for operators of large SO(6) charge J and
identify the string configurations dual to magnons in the spin chain picture of the gauge
theory. We name these states Giant Magnons. Furthermore we study their interactions
and discuss the implications of the spectrum of states on the analytic structure of the exact
scattering matrix of the theory. It is found that BPS states account for all the poles present
in the full S-matrix. We also study the spectrum of Giant Magnons attached to D3-branes
(Giant Gravitons). The dual operators in N' = 4 SYM are long strings of SO(6) scalars
connected to baryonic operators constructed of order N fields. The problem turns out to
be mapped to solving the mulitparticle spectrum of a spin chain with non trivial boundary
conditions. We study the properties of the boundary reflection matrix in detail and write
equations that determine the associated phase factor.

The second part of this work deals with applications of this type of string theories to the
collider physics of conformal theories. We study infrared safe observables in the CFT given
by energy correlation functions. We discuss the short distance behavior of these objects and
explain that this physics is controlled by non local light ray operators. We find the dual
String Theory description of these observables and use these results to study the strong
coupling physics of conformal theories. We also describe the precise string states dual to
the light ray operators. We argue that the energy operators that account for the energy
measured at a calorimeter in a collider experiment should always be positive in any UV
complete Quantum Field Theory. This fact has consequences in the higher derivative terms
in the gravity action of the dual description. Finally, we discuss a proposed bound for the

central charges of CFTs that is a consequence of the energy positivity condition.
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Chapter 1

Introduction

In this Chapter we provide a short introduction to the topic under consideration in
this thesis. We discuss why it is of physical relevance to study String Theory and give
a very short introduction to the the general area and the specific frame in which this
work is contained: the AdS/CFT Correspondence. Finally we present the lines of
research pursued in what follows. We first argue on the importance of understanding
(and maybe solving completely) the simplest examples of the Correspondence. Then,
we discuss the possible applications of gauge/gravity duality in different areas of
physics and why these application can help us understand Quantum Gravity in a

more profound way.

1.1 Why String Theory?

Before going into a detailed explanation of the topics that we will develop in the course
of this work, it makes sense to pause for a minute and ask what is the motivation to
do research in this area.

The 20th century was a very prolific one in terms of advancements in fundamental
physics. Most notably, there were two major revolutions in the way we understand

our universe.



The first of these revolutions is a conceptual framework known as Quantum Me-
chanics. The main lesson of Quantum Mechanics is that the microscopic world works
in quite a different way from what we experience macroscopically. Even though the
rules of Quantum Mechanics might seem strange, they have passed experimental tests
with flying colors and are at the core of the most predictive physical theories available
to man (the calculation of the gyromagnetic factor in Q E'D being the most common
example). The fundamental constant that determines the onset of quantum behavior
is Planck’s constant A. When the action associated with a mechanical system is of
order h we can’t approximate dynamics by the classical equations of motion and we
are driven into the quantum realm.

The other fundamental development of the 20th century, we know by the name of
General Relativity. In simple terms, this is our current theory of gravity at macro-
scopic distances. Although this is a very successful theory, it is now understood that
this can’t be a complete theory of gravity at arbitrarily high energy scales. Einstein’s
theory as it stands has resisted attempts to quantize it following similar rules as
the ones used with other fundamental interactions. We know, of course, that a full
quantum theory of Gravity is needed if we are to understand phenomena at energy
scales beyond the Planck mass Mpigper = \/% ~ 10YGeV (or distances smaller
than £pgnee = hf—?,N ~ 1073m). In this regime the gravitational action becomes
of the order of A and we can’t understand the system without a quantum theory of
gravity.

String Theory is our current paradigm in which, we believe, Quantum Gravity
can be understood. It is important to stress, at this point, that String Theory was
really born in the 1960’s as a theory of the strong interactions responsible for holding
the atomic nucleus together. One of the main reasons why it made sense to consider
String Theory as a theory of the strong force is that the meson spectrum is organized

in Regge trajectories in the same way as the free spectrum of String Theory, namely



m? = a+b.J, where J is the angular momentum of the state and a and b were exper-
imentally measured constants. The way we now understand the strong interaction
through Quantum Chromodynamics (QCD) allows us to understand the matching of
the spectrum: we can think of a meson as a bound state of two quarks connected by a
flux tube of SU(3) glue which can be modeled as a relativistic string. After the success
of QCD it was found that closed string theories always possessed a spin 2 massless
state with the properties of the graviton, the quantum of the gravitational theory.
It was then understood that String Theory was an ideal candidate for a complete
theory of gravity. The main idea being that the softer interaction between string-like
objects would tame the divergences found in previous attempts to quantize point-like
gravitons.

It seemed interesting then, as it is now, that the same theory could be understood
both as a theory of gravity and strong nuclear interactions. Several positive results
in the last 20 years have led researchers in the field to take the theory seriously, not
only as a framework for gravity but, also, for the whole of fundamental interactions.
In these developments it was fundamental to understand that String Theory not only
possessed stringy degrees of freedom, but that higher dimensional solitonic objects
(D-branes) were also available [1]. It was then possible to embed gauge theories of
the type of QCD living in these D-branes inside of the full of String Theory. But the
real surprise came about at the end of 1997.

In December of 1997 Maldacena published results [2] that made the relation be-
tween gauge theory and gravity precise and allowed for an understanding of the
curiosities discussed in the previous paragraphs. This work, together with the con-
struction of a precise dictionary between these seemingly unrelated theories in [3]
and [4] laid the foundations of what came to be known as the AdS/CFT correspon-
dence. In short, the basic statement of AdS/CFT is that gravitational theories on a

particular space-time (Anti de Sitter) are dual to Conformal Field Theories (CFT).



In many cases, these theories turn out to be gauge theories, of a similar type to QCD.
Duality means that these are just two different descriptions of the same physics. One
of the nicer aspects of this duality is that calculations in String Theory are easy (see
1.2) when the gauge theory becomes strongly coupled. This regime is particularly
hard when studied by the conventional methods of Quantum Field Theory.

These results have changed the way in which we understand Quantum Gravity and
Gauge Theories in a fundamental way. More than 10 years after the discovery of the
AdS/CFT Correspondence its implications have not been completely explored and its
applications to real world physics have just surfaced recently. It is the purpose of the
work presented in this thesis to add to this knowledge by both exploring fundamental

aspects of the duality as well as its possible applications.

1.2 The AdS/CFT Correspondence

As it is impossible to give a full review of String Theory (or even a very comprehensive
one of the AdS/CFT Correspondence) in a few pages, we will restrict the discussion
to a few arguments that motivate the AdS/CFT correspondence and also some basic
remarks on the dictionary that connects calculations in the gravitational theory to
equivalent ones in the field theory. Good references on the basics of String Theory
are [5-9]. As far as the AdS/CFT Correspondence goes, there are many good reviews.
Great examples are [10-12].

Although the idea of finding a string theory dual to field theories goes back to
't Hooft [13] and Polyakov [14,15], the concrete ideas we will discuss shortly were
realized in [2-4].

One way to motivate the Correspondence is to think of the low energy dynam-
ics of the degrees of freedom living on a D3-brane. We choose D3-branes as our

starting point as it will generate the most popular and well understood version of



gauge/gravity duality. The main idea is that we can describe low energy degrees
of freedom in two equivalent ways: either by considering the massless open string
(gauge) modes living on the brane or by considering the closed string (gravitational)
modes living in the near horizon geometry generated by the back reaction of the brane
on the flat space background.

Let us start by looking at the D-brane. A D-brane is an object where open strings
can end. As such it is possible to define a low energy theory of massless modes
living on it, given by the least excited open string states. Because String Theory
is really a quantum theory of gravity, this brane must be allowed to fluctuate and
become fully dynamical. It makes sense then, that some of the massless modes in
the brane must describe the space time fluctuations of this object. A D3-brane is a
3+1 dimensional object embedded in 9+1 dimensional type IIB Superstring Theory.
Therefore, there must be 6 scalar modes living on the brane that account for (local)
translations in the transverse directions. Translational symmetry guarantees these
are massless excitations. Also, we know that D-branes are 1/2 BPS objects. That
means we need to complete the six scalars with the other fields in the supermultiplet
of N = 4 Super Yang Mills. If we consider N D-3 branes on top of each other (we will
see why this is a good idea shortly), our low energy theory is given by U(N) N = 4
SYM.

We can now consider the background given by the back reaction of N D3-branes
on the geometry. The solution is very similar to a black hole solution when the horizon

is scaled down to zero size (extremal solution):

N

ay 2
(—dt* + da'da’) + (1 + %) (dr® 4 r*d) (1.2.1)

AN -
d52:(1+L—4)
-

where i = 1,2,3 and L is related to the tension of a single D3-brane T3 by L* ~



NGNT; with Gy being the 10 dimensional Newton constant. If we are only interested
in the low energy dynamics on the brane we only have to look at the near horizon

limit of (1.2.1), r — O:

L2 S
ds? = - (—dt* + da'da’ + dz*) + L*dSs (1.2.2)
z
where z = L72 This is just AdSs x S® spacetime. In this case, the dynamics of

the system are encoded in the gravity modes that live in this near horizon space.
We are led, then, to identify these two theories: N' =4 SYM in four dimensions is
dual to (quantum) gravity in AdSs x S° background. Notice that the gravitational
theory lives in one more (non-compact) dimension than our field theory. This is
a generic feature of the duality and explains why strings in four dimension were
not an exact description of the strong force. In general dimensions we will have an
AdS441/CFT, Correspondence. It is very interesting to keep track of the symmetries
of these theories. The conformal group in d dimensions translates exactly to the
isometry group of AdSy,1. This leads to the fact the we are geometrizing the energy
scale of our theory.

Let us try to understand how the parameters of these two theories are related
and what were the specific limits considered in the naive description above. From the
point of view of the gravity theory, the only parameter is the length scale L which
gives the radius of AdS and the sphere. Because the metric is sourced by N D3-branes

we argued that (we neglect order 1 multiplicative factors in the following discussion):

L* ~ NGNT; (1.2.3)

In String Theory the (ten dimensional) Newton constant is given by Gy ~ g%a’.

1
It is easy to explain this equality. G, is just the coupling associated with a 3 gravi-

ton tree level graph. On the other hand the genus zero (tree level) diagram in String



Theory contributes g;;> for the Riemann surface and g for every graviton vertex.
Matching these results implies Gy ~ g%. Dimensional analysis implies the o/ depen-
dence as that is the only scale available. What about 737

The string tension of a single D-brane is given by its coupling to gravity. That is
given by disc diagram in String Theory. In this case the topology is different from the
sphere and the Riemann surface contributes g,'. Once again, dimensional analysis

fixes the o/ dependence. The final result is

Tz~ gy, o/ (1.2.4)

Using (1.2.3) we obtain

L* ~ Ngga' (1.2.5)

We also know that the open string coupling constant gy, is related to the closed

1
string coupling gs by gyn = g2 [7]. Therefore our final expression is

L* ~ Xa?  where A= Ngy,, (1.2.6)

From this result we can consider what are the important limits that we have
considered. In our discussion we have neglected the excited stringy modes. For
this approximation to be valid we need to consider theories with small curvatures

compared with the string scale. Therefore, we need

L>Va = A>1 (1.2.7)

This requirement means that only field theory modes are important. Equation
(1.2.7) is actually great news. It means we can trust our gravity description when

field theoretic methods fail at large 't Hooft coupling (A > 1). A useful picture is



to imagine one theory with a coupling A that we can dial. At small A we have a
field theory description while at strong coupling we have a string theory description.
Notice that at large, but finite, A we can have string theory degrees of freedom besides
the massless modes. In this general form it is hard to keep the theory under control
as there will be quantum corrections in the string theory that come as powers of gg.
It is therefore of great interest to consider the large N limit where we keep A fixed.
In that case g4 — 0 and tuning A we explore a parameter space where on the one
hand (A < 1) we have a planar field theory (only graphs that can be drawn in a plane
contribute) and on the other (A > 1) we have classical String Theory. At A — oo
we are left with classical gravity, no string degrees of freedom and no loops. In this
regime our D3-brane solution (1.2.1) is perfectly valid (notice that we have used that
the tension of a D-brane goes as g;;' (1.2.4) which is the correct expression at large
N, gs — 0). Although this is the regime in which the duality is best understood, it
is believed to be correct for all values of (IV, \).

Once we have understood this case, we can try to repeat the story for other
solitonic objects similar to the D3-brane and obtain other versions of the AdS/CFT
Correspondence. It turns out that this is possible for the M2 and M5 theories where
the dilaton decouples and we can obtain a smooth geometry as in the case of the D3-
brane. Other D-branes do not have this smooth limit and more complicated systems
of branes are necessary to derive other versions of the duality (AdS; needs a system
that contains both D1-branes and D5-branes) where we find a CF'T. Nonetheless it is
proposed that the AdS/CFT Correspondence is valid for all dimensions, regardless of
the brane construction that help us figure out the specific dynamics. The simplicity
of the D3-brane solution is at the core of our particularly advanced understanding of
this example.

Let us now study the specific dictionary that allows us to compare computations

on both theories. We will develop this machinery in the large N limit, where we



have a classical gravity theory. The main observable that is available in a field theory
is the set of vacuum correlation functions. It would be of use, then, to be able to
calculate these observables in our gravity dual. In order to arrive at the dictionary
it is important to stress that AdS spaces posses a boundary. The meaning of this is
that while there is an infinite distance to the boundary, signals can bounce back from
it and be back in the bulk in finite coordinate time. In the coordinates presented
in (1.2.2) the boundary is located at z = 0. It is convenient to think that our field
theory (its UV degrees of freedom, really) lives at the boundary of AdS spacetime
while the gravity dual lives in the bulk. In this setup is very natural to understand
that deformations of our theory correspond to changing the boundary conditions on
our gravity fields. In that case, turning on an operator in the boundary fixes boundary
conditions for the specific field that couples to such operator.

The concrete proposed dictionary is [3] and [4]:

Zyuirlo(2', 2 = 0) = ¢o(a)] = <6fd4x¢°(x)o(x)> (1.2.8)

where Zy,1 is the partition function of our gravity theory. ¢ is the dual gravity mode
to the operator O in the CFT. ¢y just sets the boundary condition for our gravity
mode. Notice that by taking derivatives with respect to ¢y we can obtain the n point
function in the field theory. How do we calculate Zy,;7 Although this is difficult for
a generic quantum theory of gravity, in the large N limit at large enough \ we will
have classical general relativity (coupled to local fields) and the partition function

will be dominated by a saddle point approximation. Therefore,

67N2Sclassical[¢'0] — <€f d4a:¢0(x)(9(:1:)> (129)

Of course, there will be subleading corrections in A to this expression. The recipe,

in this limit, is very simple then. We solve classical equations of motion for our field



living in curved space and we calculate their action evaluated in this saddle point.
From this we can calculate n point functions.

This prescription relates the conformal weight of the operator O to the mass of
our field living in AdS. This can be obtained purely from the asymptotic behavior
of our bulk fields. For example, a scalar field of mass m in AdS5 presents asymptotic
solutions that decay as z2+ for z — 0, with Ay = 24+ V4 + m2. TIf we renormalize
the source ¢q in such a way that the boundary condition remains finite at z — 0 it is
possible to see that this implies the dual operator has conformal weight! A = A, [12].

It is not hard to argue, from the relation of m? and A, that computing the spec-
trum of string excitations (for finite but large A) is the dual problem to solving for

the spectrum of dimensions of operators in the C'F'T.

1.3 Can we solve String Theory / Gauge Theory?

In the present work we will focus mainly on the 5 dimensional example discussed
above. There are two main reasons to do this. The first one is that, as a consequence
of the previous discussion, the AdSs x S° String Theory / N' = 4 Super Yang Mills
Gauge Theory duality is the most studied and better understood. Even more than
that, this case turns out to be simple enough (but still very rich!) that it is thought
to be completely solvable in the large N limit (more about this below). This is the
statement that the theory is integrable. Giving a short explanation of what this
means is the purpose of this section. The work contained in chapters 2, 3 and 4
contains research that focus on this feature of the theory.

The second reason to study String Theory on AdSj is that its dual conformal
theory lives in 3 + 1 dimensions. Since this is the dimensionality of our physical

spacetime it is a great tool to study real world physics. There are many phenomena

L Actually, for the scalar case it is possible to consider dual operators with both A = A4 as long
as the satisfy the unitarity bound.
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that can be studied in this way and we will review this line of research in the next
section. Chapters 5 and 6 focus on this aspect.

So, what is integrability? Let’s consider a system with a finite number of degrees
of freedom. For example, the classical mechanics of a finite number of particles. A
system as such is said to be integrable if we have as many independently conserved
quantities as degrees of freedom. If that is the case, then we can integrate the equa-
tions of motion and solve the system explicitly. The same type of definition is valid
for quantum mechanical systems where we require n commuting conserved operators
for a system with n degrees of freedom. This definition can be generalized to field
theories where we have an infinite number of degrees of freedom. Most examples of
solvable theories that we know are integrable: harmonic oscillators, central force prob-
lems, Sine-Gordon Model, etc. Integrable systems are rare but provide great lamp
posts to understand more complicated theories. The fact that we can understand the
harmonic oscillator problem exactly helps us understand other theories that are some
type of perturbation of this simpler one. If we are to understand field theory beyond
perturbation theory (that is, for finite coupling A) it would help to have such a non
trivial lamp post. It turns out that planar (N — oo) N =4 SU(N) SYM is believed
to be integrable for all values of the 't Hoof coupling A. This has been proved for
several subsectors of the theory perturbatively up to three loops [16-19] and at strong
coupling by studying the dual classical string theory [20]. It seems, therefore, that
N =4 SYM might be the harmonic oscillator of four dimensional field theories.

In practice, for our purposes, the property of integrability means that the theory
might be exactly solvable and that we should spend our time working on it as this
could be an example in which we can understand and test the AdS/CFT Correspon-
dence exhaustively. What do we mean by solving the theory? From the point of
view of N' = 4 SYM, this means obtaining all the correlation functions of all op-

erators in the theory. This is certainly a complicated task that is out of reach at
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this point. A subset of this problem is finding the complete spectrum of anomalous
dimensions of the theory. From the AdS/CFT dictionary presented in the previous
section, this amounts to solving the spectrum of string states on AdS® x S°. This is
a very interesting and yet non trivial problem.

In fact, the problem of solving the spectrum of planar N/ = 4 SYM at strong
coupling is very hard and very little progress had been made outside of computations
that involved operators protected by supersymmetry until a new idea was proposed.
The key insight was presented in [21], where it was realized that the problem might
be tractable for operators of very large charges under the internal symmertry group
of N =4 SYM, SO(6). In that case, the dual string theory could be quantized
exactly in certain scaling limit: the BMN limit. In this limit, excitations of the
string worldsheet have momentum that scale as p = % with n fixed (and representing
the Fourier mode excited in the string) and J the large SO(6) charge, J — oo. It
was also understood here that the dual gauge theory operators are long single trace
operators with large J charge.

On the gauge theory side, systematic perturbative calculations became available
after the remarkable work in [16] (see [22] for a review) where it was realized that
the problem could be mapped to the diagonalization of an integrable spin chain
hamiltonian. In this setup the fundamental quasi particles in the spectrum were
equivalent to magnons in the spin chain picture. Later, it was understood in [23]
that the exact spectrum of one particle excitations could be calculated. The exact

expression in [23] is

A LD
A—J= \/14—;811125 (1.3.10)

where A is the dimension of the operator and J its charge. The problem at weak
coupling could be understood at finite p from the work in [16] and its higher loop

generalizations. For example, at one loop A —J =1+ # sin? £, in accordance with
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(1.3.10). On the other hand the result at strong coupling was available in the BM N
limit and read A — J = /1 + %, with n = pJ. As can be seen, at this point it
was not identified what the dual degrees of freedom to magnons were in the string
theory at finite p. The identification of these objects is the topic that is discussed in
Chapter 2.

Since the theory is integrable, it is possible (in principle) to obtain the full spec-
trum of the theory, at least at large J, by a technique called the Bethe Ansatz (see [22]
and references therein) from the one particle spectrum and the S-matrix of two such
objects. If one solves for the S-matrix exactly, one can claim to have solved the the-
ory completely at large J. At present there is a proposal for the exact form of the
S-matrix [24,25]. The study of the analytic properties of this matrix by studying the
dynamics of magnons is the main topic that is discussed in Chapter 3.

Once single trace operators are better understood, it is of interest to study bary-
onic operators as well. These are written as determinants of a large number (J of
order N) of fields and are dual to giant graviton configurations in the bulk [26]. The
excitations of these operators can be understood, once again, as a spin chain problem
where there is a non trivial boundary condition and we need to compute a reflection
matrix to solve the problem. In String Theory, this corresponds to attaching open
strings to a giant graviton. These systems were studied at low momentum in the
String Theory and perturbatively in the Gauge Theory [27,28]. A complete analysis,
including equations that determine the full reflection matrix, following the lessons
of [23] and Chapters 2 and 3, is conducted in Chapter 4.

It is important to stress that while String Theory on AdSs x S° is very special and
many of the things we might learn from this example can’t be easily extended to other
cases?, it is still a setup in which we might understand the AdS/CFT Correspondence

fully. Furthermore, it is a unique opportunity for us to attempt to solve a four

20ne case that seems to be similar and also integrable is given by String Theory on AdSy x C'P3,
[29,30].
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dimensional gauge theory completely at all values of the coupling constant. If we
are to understand more complicated theories, it seems only reasonable to first fully
understand the harmonic oscillator of Quantum Field Theories in detail. The work

presented in Chapters 2, 3 and 4 corresponds to research in this direction.

1.4 Where do we go from here?

Even if we understand String Theory on AdSs x S® exactly, what do we do with it?

As we mentioned in the last section, there are phenomenological reasons to study
String Theory on AdSs. When it comes to the specific example dual to N' =4 SYM,
it makes sense that, since this is, in some way, the simplest possible 4 dimensional
theory, we can find many situations in which we can approximate more complicated
behavior by this better understood theory. One such example in which String The-
ory computations have resulted particularly accurate and useful is in the context
of physics of the Quark Gluon Plasma, studied experimentally at the Relativistic
Heavy Ion Collider (RHIC). By studying the theory at finite temperature we break
conformality and supersymmetry explicitly and N' = 4 SYM becomes a reasonable
approximation to QCD.

Of great importance in this direction has been the study of the universal behavior
of the viscosity to entropy density ratio () in theories with a gravity dual [31,32]. The
study of this quantity, of phenomenological character, had some interesting feedback
into the fundamental properties of field theories and gravity theories. It was first
proposed that all field theories might satisfy 2 > %. Although further work confirmed
that this is not the case [33], it was understood that fundamental questions related
to causality and positivity of energy were related to this problem. This problem is
addressed, as a consequence of a different sort of application of AdS/CFT that we

will discuss shortly, in Chapter 5 and, in depth, in Chapter 6.
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Another application of importance, with the era of the Large Hadron Collider
(LHC) just around the cornenr, is to the area of collider physics. The importance of
understanding CFTs , asymptotically free theories and QCD, in particular, has been
made manifest in the last few years as the largest particle collider ever built is about
to be turned on in Geneva, Switzerland. Hopefully, new physics will be discovered
in this experiment. The conformal field theories that are dual to String Theory on
AdS5 spacetimes have been proposed as candidates for the new type of physics that
might be found at the LHC [34]. With this motivation the study of such type of
applications is discussed in Chapter 5. By describing natural observables in a CFT
from the point of view of collider physics it is also possible to gain insight into the
structure of the quantum theory of gravity and the basic properties of the field theory,
as it was commented on above.

Lastly, although this topic won’t be discussed in this thesis, we should stress that
a lot of interest has been developing in the last few years on possible applications of
the AdS/CFT Correspondence to Condensed Matter systems [35,36]. This is another
clear example of the great spectrum of applications of gauge/gravity duality. It is
fair to say that, after more than 10 years, all the implications of this great advance

in theoretical physics have not been fully worked out yet.

1.5 Road map to this thesis

Here we give a short summary of what is contained in each Chapter of this thesis.
Chapters 2, 3 and 4 deal with fundamental aspects of the spectrum of String
Theory on AdS5 x S°.
In Chapter 2 we identify the fundamental states in the String Theory on AdSs x S°
dual to the magnon excitations in the spin chain picture of the Gauge Theory. We call

these classical string configurations Giant Magnons. It is found that their spectrum
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matches the prediction coming from symmetry arguments [23]. Furthermore, the S-
matrix of these objects is discussed and found in agreement with a previous proposal
coming from indirect methods [37].

In Chapter 3 we study the analytic structure of the magnon s-matrix. In particu-
lar, we account for the poles present in the S-matrix by a precise matching to physical
states corresponding to (and only) BPS magnons. It is shown that all classical string
solutions found at strong coupling fit nicely in this picture where only BPS states are
present. Finally we check that the exact proposal in [24,25] is consistent with our
results.

In Chapter 4 we discuss the inclusion of boundary conditions in the spin chain
picture of N' = 4 SYM. This situation is dual to the study of excitations of giant
gravitons in the dual String Theory. The reflection matrix of this system is studied
and found to be consistent with integrability. Furthermore, boundary degrees of
freedom are identified and their spectrum is computed. Equations for the scalar
factor of the reflection matrix are also proposed.

Chapters 5 and 6 deal with applications of the AdS/CFT Correspondence and
their implications for the basic properties of the underlying field theories.

In Chapter 5 we study applications of the Ads/CFT Correspondence to the collider
physics of CFTs. Energy correlation functions are studied and defined at strong
coupling. Their short distance behavior is also studied and related to the presence
of non local operators in the operator product expansion of energy operators. The
dual states to these non local operators are identified in the String Theory. Also, it
is found that positivity of the energy measured in calorimeters in an ideal collider
experiment implies bounds on the central charges a and c¢ in supersymmetric CFTs.
Finally, the jet structure of CFTs is discussed. It is found that the jet patterns found
at weak coupling tends to disappear at strong coupling.

In Chapter 6 we study the restrictions imposed on higher derivative theories of
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gravity by causality of their dual CFTs. It is shown that bounds on the couplings of
the gravity action found in this way are directly related to the positivity of energy
condition discussed in Chapter 5. Bounds on the central charges of the theory are
understood this way. Finally, we present a field theoretic argument why the energy
operators defined in Chapter 5 should have a positive spectrum in any UV complete
Quantum Field Theory.

Finally we present our conclusions and outlook in Chapter 7.
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Chapter 2

The Spectrum of String Theory on
AdSs x S°: Giant Magnons

Studies of A/ = 4 super Yang Mills operators with large R-charge have shown that, in the
planar limit, the problem of computing their dimensions can be viewed as a certain spin
chain. These spin chains have fundamental “magnon” excitations which obey a dispersion
relation that is periodic in the momentum of the magnons. This result for the dispersion
relation was also shown to hold at arbitrary 't Hooft coupling. Here we identify these
magnons on the string theory side and we show how to reconcile a periodic dispersion
relation with the continuum worldsheet description. The crucial idea is that the momentum
is interpreted in the string theory side as a certain geometrical angle. We use these results to
compute the energy of a spinning string. We also show that the symmetries that determine
the dispersion relation and that constrain the S-matrix are the same in the gauge theory
and the string theory. We compute the overall S-matrix at large 't Hooft coupling using
the string description and we find that it agrees with an earlier conjecture.

The work in this chapter is contained in [38]. This article was coauthored with Juan

Maldacena.
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2.1 Preliminaries

String theory in AdSs x S° should be dual to N' = 4 Yang Mills [2-4]. The spectrum
of string states should be the same as the spectrum of operators in the Yang Mills
theory. One interesting class of operators are those that have very large charges [21].
In particular, we consider operators where one of the SO(6) charges, J, is taken
to infinity. We study states which have finite £ — J. The state with £ — J = 0
corresponds to a long chain (or string) of Zs, namely to the operator Tr[Z”]. We can
also consider a finite number of other fields W that propagate along this chain of Zs.

In other words we consider operators of the form

Oy~ > eW(--Z2ZZWZZZ---) (2.1.1)
l

where the field W is inserted at position [ along the chain. On the gauge theory
side the problem of diagonalizing the planar Hamiltonian reduces to a type of spin
chain [16, 39, 40], see [41-43] for reviews and further references. In this context the
impurities, W, are “magnons” that move along the chain.
Using supersymmetry, it was shown that these excitations have a dispersion rela-
tion of the form [23]
A

E—J= 1—|—Fsin2§ (2.1.2)

Note that the periodicity in p comes from the discreteness of the spin chain. The

large 't Hooft coupling limit of this result is

E—Jzﬂ

™

sing’ (2.1.3)

Since this is a strong coupling result, it should be possible to reproduce it on the
string theory side. At first sight it would seem that such a dispersion relation would

require the string worldsheet to be discrete. In fact, this is not the case. We will
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show how to recover (2.1.3) on the string theory side with the usual strings moving in
AdSs5 x S°. The key element is that p becomes a geometrical angle which will explain
the periodic result. Thus we are able to identify the elementary excitations of the
spin chain on the string theory side in an explicit fashion. The identification of these
magnons allows us to explain, from the gauge theory side, the energy spectrum of the
string spinning on S° which was considered in [44].

We will discuss the presence of extra central charges in the supersymmetry algebra
which match the gauge theory analysis in [23]. Having shown that the two algebras
match, then the full result (2.1.2) follows. Moreover, as shown in [23] the symmetry
algebra constrains the 2 — 2 .S matrix for these excitations up to an overall phase.
This S matrix is the asymptotic S-matrix discussed in [45]. It should be emphasized
that these magnons are the fundamental degrees of freedom in terms of which we
can construct all other states of the system. Integrability [20,46,47] implies that the
scattering of these excitations is dispersionless. We check that this is indeed the case
classically and we compute the classical time delay for the scattering process. This
determines the large 't Hooft coupling limit of the scattering phase. The final result
agrees with the large A limit of [37]. This is done by exploiting a connection with the

sine Gordon model [48-50].

2.2 Elementary excitations on an infinite string

2.2.1 A large J limit

Let us start by specifying the limit that we are going to consider. We will first take
the ordinary 't Hooft limit. Thus we will consider free strings in AdSs x S® and planar
diagrams in the gauge theory. We then pick a generator J = Js6 C so(6) and consider
the limit when J is very large. We will consider states with energies £ (or operators

with conformal dimension A = E) which are such that E — J stays finite in the limit.
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We keep the 't Hooft coupling A = ¢2N fixed. This limit can be considered both on
the gauge theory and the string theory sides and we can interpolate between them by
varying the 't Hooft coupling after having taken the large J limit. In addition, when
we consider an excitation we will keep its momentum p fixed. In summary, the limit

that we are considering is

J — oo, A = ¢*>N = fixed (2.2.4)

p = fixed, FE —J=fixed (2.2.5)

This differs from the plane wave limit [21] in two ways. First, here we are keeping
A fixed, while in [21] it was taken to infinity. Secondly, here we are keeping p fixed,
while in [21] n = pJ was kept fixed.
One nice feature of this limit is that it decouples quantum effects, which are char-
acterized by A, from finite .J effects, or finite volume effects on the string worldsheet?.
Also, in this limit, we can forget about the momentum constraint and think about
single particle excitations with non-zero momentum. Of course, when we take J large

but finite, we will need to reintroduce the momentum constraint.

2.2.2 Review of gauge theory results

In this subsection we will review the derivation of the formula (2.1.2). This formula
could probably have been obtained in [53] had they not made a small momentum
approximation at the end. This formula also emerged via perturbative computations
[41-43]. A heuristic explanation was given in [54], which is very close to the string
picture that we will find below. Here we will follow the treatment in [23] which
exploits some interesting features of the symmetries of the problem.

The ground state of the system, the state with £ —.J = 0, preserves 16 supersym-

!The importance of decoupling these two effects was emphasized in [51,52].
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metries?. These supercharges, which have E — J = 0, act linearly on the impurities
or magnons. They transform as (2,1,2,1)4(1,2,1,2) under SU(2)gs 1, X SU(2)g5 r X
SU(2) aass.r. X SU(2)aas,.r Where the various SU(2) groups corresponds to the ro-
tations in AdSs and S® which leave Z invariant. These supercharges are the odd
generators of two SU(2|2) groups®. The energy ¢ = E — J is the (non-compact) U(1)
generator in each of the two SU(2|2) supergroups. In other words, the two U(1)s of
the two SU(2|2) groups are identified. A single impurity with p = 0 transforms in
the smallest BPS representation of these two supergroups. In total, the representa-
tion has 8 bosons plus 8 fermions. This representation is BPS because its energy is
¢ = E—J = 1 which follows from the BPS bound that links the energy to the SU(2)*
charges of the excitations. Let us now consider excitations with small momentum p.
At small p we can view the dispersion relation as that of a relativistic theory. Note
that as we add a small momentum, the energy becomes higher but we still expect to
have 8 bosons plus 8 fermions and not more, as it would be the case for representa-
tions of SU(2|2)? with € > 1. What happens is that the momentum appears in the
right hand side of the supersymmetry algebra. This ensures that the representation
is still BPS. In fact, for finite p there are two central charges [23]. These extra gener-
ators add or remove Zs to the left or right of the excitation and they originate from
the commutator terms in the supersymmetry transformation laws, namely terms like
W ~ b+ [Z,x], see [23]. These extra central charges are zero for physical states
with finite J since we will impose the momentum constraint.

The full final algebra has thus three “central” generators in the right hand side,
they are the energy e and two extra charges which we call k!, k2. Together with the
energy these charges can be viewed as the three momenta k* of a 24+1 dimensional

Poincare superalgebra. This is the same as the 241 dimensional Poincare superal-

2More precisely it is annihilated by 16 + 8, but the last 8 act non-linearly on the excitations,
they correspond to fermionic impurity annihilation operators with zero momentum.
3Note that they are not PSU(2|2) groups.
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gebra recently studied in [55,56], we will see below that this is not a coincidence.
Notice that the Lorentz generators are an outer automorphism of this algebra but
they are not a symmetry of the problem we are considering. See appendix A for a
more detailed discussion of the algebra.

As explained in [23] the expression for the “momenta” is k' + ik? = h(\)(e®” — 1)

and similarly for the complex conjugate. This then implies that we have the formula

E—J:koz\/1+|k1+z'k2|2:\/1+f(A)sin2§ (2.2.6)

The function f(\) is not determined by this symmetry argument. We know that
fA) = % up to three loops in the gauge theory [16-18,57, 58] and that it is also
the same at strong coupling (where it was checked at small momenta in [21]). [53]
claims to show it is exactly f = % for all values of the coupling, but we do not fully
understand the argument?.

In the plane wave matrix model [21,59] one can also use the symmetry algebra
to determine a dispersion relation as in (2.2.6) and the function f(\) is nontrivial.
More precisely, large J states in the plane wave matrix model have an SU(2|2) group
(extended by the central charges to a 2+1 Poincare superalgebra) that acts on the
impurities.

The conclusion is that elementary excitations moving along the string are BPS
under the 16 supersymmetries that are linearly realized. Supersymmetry then ensures
that we can compute the precise mass formula once we know the expression for the

central charges.

41t is not clear to us why in equation (10) in [53] we could not have a function of X in the right
hand side.
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2.2.3 String theory description at large A

We will now give the description of the elementary impurities or elementary magnons
at large A from the string theory side. In this regime we can trust the classical
approximation to the string sigma model in AdSs x S°.

In order to understand the solutions that we are going to study, it is convenient
to consider first a string in flat space. We choose light cone gauge, with X+ = 7, and
consider a string with large P_. The solution with P, = 0 corresponds to a lightlike
trajectory with X~ =constant, see figure 2.1(a,c). Now suppose that we put two
localized excitations carrying worldsheet momentum p and —p respectively. Let us
suppose that at some instant of time these are on opposite points of the worldsheet
spatial circle, see figure 2.1(b). We want to understand the spacetime description of
such states. It is clear that the region to the left of the excitations and the region
to the right will be mapped to the same lightlike trajectories with X~ =constant
that we considered before. The important point is that these two trajectories sit at

different values of X ~. This can be seen by writing the Virasoro constraint as
0, X =27d'T,, , AX™ =2md / doT,., = 2ma'p (2.2.7)

where T, is the worldsheet stress tensor of the transverse excitations and we have
integrated across the region where the excitation with momentum p is localized. Thus
the final spacetime picture is that we have two particles that move along lightlike
trajectories that are joined by a string. At a given time ¢ the two particles move at
the speed of light separated by AX'|; = AX ™ |x+ = 27a’p and joined by a string,
see figure 2.1(d). Of course, the string takes momentum from the leading particle
and transfers it to the trailing one. On the worldsheet this corresponds to the two
localized excitations moving toward each other. As the worldsheet excitations pass

through each other the trailing particle becomes the leading one, see figure 2.1(c).
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For a closed string X~ should be periodic, which leads to the momentum constraint
Ptotal = 0.

In the limit of an infinite string, or infinite P_, we can consider a single excitation
with momentum p along an infinite string. Then the spacetime picture will be that of
figure 2.2 where we have two lightlike trajectories, each carrying infinite P_, separated
by AX~ ~ p which are joined by a string. There is some P_ being transferred from
the first to the second. But since P_ was infinite this can continue happening for ever®.

The precise shape of the string that joins the two points depends on the precise set

of transverse excitations that are carrying momentum p.

—= . /
S

(b) (©) X

N

N

Xy

(d)

Figure 2.1: Localized excitations propagating along the flat space string worldsheet in light cone
gauge. (a) Worldsheet picture of the light cone ground state, with P, = 0. (b) Worldsheet picture
of two localized excitations with opposite momenta propagating along the string. (c) Spacetime
description of the configurations in (a) and (b). The configuration in (a) gives a straight line at a
constant X . The configuration in (b) gives two straight lines at constant X~ when the localized
excitations are separated on the worldsheet. When the two excitations in (b) cross each other the
lines move in X . (d) Snapshot of the spacetime configuration in (b), (c) at a given time t.

Armed with the intuition from the flat space case, we can now go back to the

5As a side remark, notice that these lightlike trajectories look a bit like light-like D-branes, which
could be viewed as small giant gravitons in the AdSs x S® case. In this study we take the 't Hooft
limit before the large J limit so we can ignore giant gravitons. But it might be worth exploring this
further. Strings ending in giant gravitons were recently studied in [28]

25



(b) X

(c)

Figure 2.2: Localized excitations propagating on an infinite string. (a) Worldsheet picture of a
localized excitation propagating along the string. (b) Spacetime behavior of the state in lightcone
coordinates. We have two lightlike lines with a string stretching between them. (c) Snapshot of the
state at a given time. The configuration moves to the right at the speed of light.

AdS5 x 8% case. We write the metric of S° as

ds* = sin® 0dp® + db* + cos® 0dS2; (2.2.8)

where ¢ is the coordinate that is shifted by J. The string ground state, with E—J = 0,
corresponds to a lightlike trajectory that moves along ¢, with ¢ — t=constant, that
sits at @ = 7/2 and at the origin of the spatial directions of AdSs.

We can find the solution we are looking for in various ways. We are interested
in finding the configuration which carries momentum p with least amount of energy
e = F — J. For the moment let us find a solution with the expected properties and
we will later show that it has the minimum amount of energy for fixed p. We first
pick a pair of antipodal points on S? so that, together with the coordinate # and ¢
they form an S?. After we include time, the motion takes place in R x S%2. We can

now write the Nambu action choosing the parametrization

t=r1, o—t=1¢ (2.2.9)
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and we consider a configuration where 6 is independent of 7. We then find that the

action reduces to

A
S = \2/—— /dtdcp’\/cos2 00"* + sin” 0 (2.2.10)
m

It is easy to integrate the equations of motion and we get
_@_&Q§¢§g—% (2.2.11)

where 0 < 0y < 7/2 is an integration constant. See figure 2.3. In these variables the
string has finite worldsheet extent, but the regions near the end points are carrying
an infinite amount of J. We see that for this solution the difference in angle between
the two endpoints of the string at a given time ¢ is

A¢:A¢:%g—%) (2.2.12)

It is also easy to compute the energy

A AL A
E—J= £cos Oy = £Sin7¢ (2.2.13)
T T

We now propose the following identification for the momentum p
Ap=p (2.2.14)

We will later see more evidence for this relation. Once we use this relation (2.2.13)

becomes
E—J= VA

™

sm% (2.2.15)

in perfect agreement with the large A limit (2.1.3) of the gauge theory result (2.1.2).
The sign of p is related to the orientation of the string. In other words, Ay is the

angular position of the endpoint of the string minus that of the starting point and it
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can be negative.

Figure 2.3: Giant magnon solution to the classical equations. The momentum of the state is
given by the angular distance between the endpoints of the string. We depicted a configuration
with 0 < p < 7. A configuration with negative momentum would look the same except that the
orientation of the string would be reversed. The string endpoints are on the equator and the move
at the speed of light.

In order to make a more direct comparison with the gauge theory it is useful to
pick a gauge on the worldsheet in such a way that, for the string ground state (with
E — J = 0), the density of J is constant®. There are various ways of doing this.
One specific choice would be the light cone gauge introduced in [60]. We will now do
something a bit different which can be done easily for strings on R x S? and which will
turn out useful for our later purposes. This consists in choosing conformal gauge and
setting t = 7. x labels the worldsheet spatial coordinate. In this gauge the previous

solution takes the form

cos 6 sin &
cosf = L= Sy (2.2.16)
cosh [—wzir‘ezot] cosh |:—sin gQ }
— sin 6yt x — cos £t
tan(p —t) = cotfy tanh TTAMO _ tan L tanh | T 20
cos by 2 sin &

where we used (2.2.14). In this case we see that the range of x is infinite. These
coordinates have the property that the density of J away from the excitation is
constant. This property allows us a to make an identification between the coordinate

x and the position [ (see (2.1.1)) along the chain in the gauge theory. More precisely,

6Note that we only require J to be constant away from the excitations, it could or could not be
constant in the regions where £ — J > 0.
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we compute the density of J per unit x in order to relate [ and x

dJ vV VoY
dJ _ _ VA 2.1
= o or dl o dx (2.2.17)

This relation allows us to check the identification of the momentum (2.2.14) since the
relation between energy and momentum (2.1.3) determines the velocity in the gauge

theory through the usual formula

o dl_ de(p)
999 gt dp

cos = , for p>0 (2.2.18)

YIS

N3

On the other hand we see from (2.2.16) that the velocity is

d
Ustring = d—? = sin 6y = cos T(P (2.2.19)

We see that after taking into account (2.2.17) the two velocities become identical if
we make the identification (2.2.14).

The solution becomes simpler if expressed in terms of the coordinates introduced
in [61]. Those coordinates were specially adapted to describe 1/2 BPS states which
carry charge J. So it is not surprising that they are also useful for describing small
excitations around such states. The AdSs; x S® metric in those coordinates is a
fibration of R, characterizing the time direction, and two S3s (coming form AdSs and
S5) over a three dimensional space characterized by coordinates z, zo,y. The plane
y = 0 is special because one of the two 3-spheres shrinks to zero size in a smooth way.
Thus the plane y = 0 is divided into regions (or “droplets”) where one or the other
S3 shrinks to zero size. The AdSs x S® solution contains a single circular droplet of
radius R where the S® coming from AdSs shrinks, see figure 2.4. Particles carrying
E — J =0 live on the boundary of the two regions. In fact the circle constituting the

boundary of the two regions sits at ¢ = 7/2 and it is parameterized by ¢’ = ¢ — t in
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previous coordinates. We will be only interested in the metric on this special plane

at y = 0 which takes the form, for r < 1,

2

2 9 | 27 2
ds® = R? {—(1 —1?) {dt— ui—r,z)dgp'] + % b (1= r?)d2 + - }
(2.2.20)
where 72 = sin?f = 2? + 22 and the dots remind us that we are ignoring the y
coordinate and the second sphere, which has zero size at y = 0 for r < 1.
In these coordinates the solution is simply a straight line that joins two points
of the circle as shown in figure 2.4(a). This can be seen from (2.2.11), which can be

rewritten as

rcos ¢ = x; = const (2.2.21)

The energy is simply the length of the string measured with the flat metric on the
plane parameterized by x1,s; ds},, = R*(dx? + dx3). In fact, the picture we are
finding here is almost identical to the one discussed from the gauge theory point
of view in [54]". If we restrict the arguments in [54] to 1/2 BPS states and their
excitations we can see how this picture emerges from the gauge theory point of view.
Namely, we first diagonalize the matrix Z in terms of eigenvalues. Then the impurity
is an off diagonal element of a second matrix W which joins two eigenvalues that are
at different points along the circle. The energy formula follows from the commutator
term ¢r|[Z, W]|? in the gauge theory, see [54] for more details.

These coordinates are very useful for analyzing the symmetries. In particular,
we will now explain the appearance of extra central charges and we will match the
superalgebra to the one found on the gauge theory side in [23]. Under general consid-
erations we know that the anticommutator of two supersymmetries in 10 dimensional

supergravity contains gauge transformations for the NS-Bj field [62]. These act non-

"The difference is that [54] considered an S® in RS and a string stretching between two points on
S5 through RS.
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Figure 2.4: Giant magnons in LLM coordinates (2.2.20). (a) A giant magnon solution looks like
a straight stretched string. It’s momentum p is the angle subtended on the circle. k; and k, are the
projections of the string along the directions 1 and 2. The direction of the string gives the phase
of k1 + iko, while its length gives the absolute value of the same quantity. (b) A closed string state
built of magnons that are well separated on the worldsheet. Notice that the total central charges
k1, ko vanish. Similarly the total angle subtended by the string, which is the total momentum p;ora;
also vanishes modulo 2.

trivially on stretched strings. In flat space this leads to the fact that straight strings
are BPS. In fact, inserting the explicit expression of the Killing spinors in [61] into the
general formula for the anticommutator of two supercharges [62] it is possible to see
that the relevant NS gauge transformations are those with a constant gauge parame-
ter A1, Ay, 6B = dA 8. Strings that are stretched along the 1 or 2 directions acquire
a phase under such gauge transformations. Thus these are the central charges that
we are after. Note that in order to activate these central charges it is not necessary
to have a compact circle in the geometry. In fact, the string stretched between two
separated D-branes in flat space is BPS for the same reason®.

Actually, the supersymmetry algebra is identical to a supersymmetry algebra in

2+1 dimensions, where the string winding charges, k', k2, play the role of the spa-

tial momenta!?. See appendix A for more details on the algebra. From the 241

8The requisite spinor bilinear is closely related to the one in eqn. (A.45) of [61]. Namely, the
expression in [62] involves terms of the form €fy*e;, which becomes €/T'?T'*e in the notation of [61].

91f we think of the string with J = oo as a lightlike D-brane, the analogy becomes closer.

10A]1l these statements are independent of the shape of the droplets in [61]. This particular
statement is easiest to see if we consider droplets on a torus and we perform a T-duality which takes
us to a 241 dimensional Poincare invariant theory (in the limit the original torus is very small).
This is a theory studied in [56,61]. This also explains why the supersymmetry algebra is the same
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dimensional point of view it is a peculiar Poincare super algebra since it has SO(4)?
charges in the right hand side of supersymmetry anti-commutators. Of course, this is
the same supersymmetry algebra that appeared in the gauge theory discussion [23].
In conclusion, the symmetry algebra is exactly the same on both sides. The extra
central charges are related to string winding charges. We can think of the vector given
by the stretched string as the two spatial momenta k', k% appearing in the Poincare
superalgebra. In other words, we can literally think of the stretched string in figure

2.4 as specifying a vector k!, k? of size

2
B w1y = YA sing (2.2.22)

k' +ik? =
o 2ma! T

Then the usual relativistic formula for the energy implies (2.2.6), as in the gauge
theory. Note that the problem we are considering does not have lorentz invariance in
2+1 dimensions. Lorentz invariance is an outer automorphism of the algebra, that is
useful for analyzing representations of the algebra, but it is not an actual symmetry
of the theory. In particular, in our problem the formula (2.2.6) is not a consequence
of boost invariance, since boosts are not a symmetry!!. It is a consequence of super-
symmetry, it is a BPS formula. Note that rotations of k', k? are indeed a symmetry
of the problem and they correspond to rotations of the circle in figure 2.4. This is
the symmetry generated by J. Note also that a physical state with large but finite
J will consist of several magnons but the configurations should be such that we end
up with a closed string, see figure 2.4(b) . Thus, for ordinary closed strings the total
value of the central charges is zero, since there is no net string winding. This implies,
in particular, that for a closed finite J string there are no new BPS states other than

the usual ones corresponding to operators Tr[Z7].

in the two problems.

10One might wonder whether boosts are a hidden symmetry of the string sigma model. This is
not the case because we can increase |k| without bound by performing a boost, while physically we
know that |k| is bounded as in (2.2.22).
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Notice that the classical string formula (2.2.13) is missing a 1 in the square root
as compared to (2.1.2). This is no contradiction since we were taking p fixed and A
large when we did the classical computation. This 1 should appear after we quantize
the system. In fact, for small p and A large, we can make a plane wave approximation
and, after quantization, we recover the 1 [21,63]. But if we did not quantize we
would not get the 1, even in the plane wave limit. So we see that in the regime
that the 1 is important we indeed recover it by doing the semiclassical quantization.
This 1 is also implied by the supersymmetry algebra. The argument is identical to
the one in [23] once we realize that the central charges are present and we know the
relation between the central charges and the momentum p, as in (2.2.22). Notice
that the classical solutions we discussed above break the SO(4) symmetry since they
involve picking a point on S® C S® where the straight string in figure 2.4(a) is sitting.
Upon collective coordinate quantization we expect that the string wavefunction will
be constant on this S3. In addition, we expect to have fermion zero modes. They
originate from the fact that the magnon breaks half of the 16 supersymmetries that
are left unbroken by the string ground state. Thus we expect 8 fermion zero modes,
which, after quantization, will give rise to 2* = 16 states, 8 fermions + 8 bosons. This
argument is correct for fixed p and large . In fact, all these arguments are essentially
the same as the ones we would make for a string stretching between two D-branes.
Notice that all magnons look like stretched strings in the S° directions, as in figure
2.4(a), including magnons corresponding to insertions of 9,7 which parameterize
elementary excitations along the AdSs directions. Of course, here we are considering
a single magnon. Configurations with many magnons can have large excursions into
the AdS directions.

Since the stretched string solution in figure 2.4(a) is BPS, it is the minimum energy
state for a given p.

In fact, we can consider large J string states around other 1/2 BPS geometries,
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given by different droplet shapes as in [61]. In those cases, we will have BPS config-
urations corresponding to strings ending at different points on the boundary of the
droplets and we have strings stretching between these points. It would be nice to see
if the resulting worldsheet model is integrable.

Note that the fact that the magnons have a large size (are “giant”) at strong
coupling is also present in the Hubbard model description in [64] 2.

Finally, let us point out that our discussion of the classical string solutions focussed
on an R x S? subspace of the geometry. Therefore, the same solutions will describe
giant magnons in the plane wave matrix model [21,59] and other related theories [55].
Similar solutions also exist in AdSs3 x S*? with RR fluxes (NS-fluxes would change

the equations already at the classical level).

2.2.4  Spinning folded string

In this subsection we apply the ideas discussed above to compute the energy of a
spinning folded string considered in [44]. This is a string that rotates in an S? inside
S5. For small angular momentum .J this is a string rotating around the north pole.
Here we are interested in the limit of large J where the ends of the rotating string

approach the equator, see figure 2.5. In this limit the energy of the string becomes [44]

B y—o¥? (2.2.23)
T

This string corresponds to a superposition of two “magnons” each with maximum
momentum, p = 7. Notice that the dispersion relation implies that such magnons are
at rest, see (2.2.18). They are equally spaced on the worldsheet. At large J we can
ignore the interaction between the “magnons” and compute the energy of the state

as a superposition of two magnons. We see that the energy (2.2.23) agrees precisely

12We thank M. Staudacher for pointing this out to us.
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with the energy of two magnons with p = 7.

Figure 2.5: Spinning string configuration that corresponds to two magnons with p = 7.

Since the A dependence of the strings spinning in AdS in [44] is somewhat similar,
one might find an argument for that case too. In fact, the solutions we are considering
here, such as the one in figure 2.4(b) is the sphere analog of the solutions with spikes

considered in [65].

2.3 Semiclassical S-matrix

2.3.1 General constraints on the S-matrix

In this section we consider the S-matrix for scattering of two magnons. On the gauge
theory side this is the so called “asymptotic S-matrix” discussed in [45]. In the
string theory side it is defined in a similar way: we take two magnons and scatter
them. Then, we define the S matrix for asymptotic states as we normally do in 1+1
dimensional field theories. Since the sigma model is integrable [20,46], we expect to
have factorized scattering. It was shown in [47] that integrability still persists in the
lightcone gauge (this was shown ignoring the fermions). In fact we will later check
explicitly that our magnons undergo classical dispersionless scattering.

As we mentioned above the supersymmetry algebra is the same in the gauge theory
and the string theory. We have only shown here that the algebra is the same at the
classical level on the string theory side. But it is very natural to think that after

quantization we will still have the same algebra. Thus, any constraint coming from
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(©) (d) (e)

Figure 2.6: Scattering of 2 — 2 magnons. (a) Worldsheet picture of asymptotic initial state. (b)
Worldsheet picture of asymptotic final state. (c) Initial state in LLM coordinates. (d) Final state

in LLM coordinates. (¢) Initial and final configuration for the momenta k that are relevant for the
2+1 dimensional kinematics of the process.

this algebra is the same. An important constraint for the S matrix was derived by
Beisert in [23]. Each of the magnons can be in one of 16 states (8 bosons plus 8
fermions). So the scattering matrix is a 16 x 16* matrix. Beisert showed that this
matrix is completely fixed by the symmetry up to an overall phase (and some phases
that can be absorbed in field redefinitions). Schematically S = S'ijSo where S’ij is a
known matrix and Sy is an unknown phase. The same result holds then for the string
theory magnons. In fact, it was conjectured in [37,45,66] that the two S-matrices
differ by a phase. Here we are pointing out that this structure is a consequence of
the symmetries on the two sides. The fact that the whole S matrix is determined
up to a single function is analogous to the statement that the four particle scattering
amplitude in N/ = 4 SYM is fixed up to a scalar function of the kinematic invariants.
The reason is that two massless particles with 16 states each give a single massive,
non-BPS, representation with 28 = 162 states.

A two magnon scattering process has a kinematics that is shown in figure 2.6.
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Notice that we can literally think of the straight strings as determining the initial and
final momentum vectors of the scattering process as in figure 2.6(e). The orientation
of these vectors is important. The constraints on the matrix structure of the S matrix
are exactly the same as the constraints that a four particle scattering amplitude in
a relativistic 2+1 dimensional field theory with the same superalgebra would have.
These constraints are easy to derive in the center of mass frame. And we could then
boost to a general frame. Notice that from the 2+1 dimensional point of view fermions
have spin, and thus their states acquire extra phases under rotation. In other words,
when we label a state by saying what its momentum p is, we are just giving the
magnitude of l;, but not its orientation. The orientation of k depends on the other
magnons. For example, in the scattering process of figure 2.6(a,b) the initial and
final states have the same momenta p, p’, but the initial vectors /%-, /22’ have different
orientation than the final vectors Ef, lg} When we consider a sequence of scattering
processes, one after the other, it is important to keep track of the orientation of k.
In other words, under an overall rotation the S matrix is not invariant, it picks up
some phases due to the fermion spins. In [23] these phases are taken into account by
extra insertions of the field Z which makes the chain “dynamic”.

Note that the constraints on the matrix structure of the scattering amplitude
are applicable in a more general context to any droplet configuration of [61]. For
example, it constrains the scattering amplitude for elementary excitations in other
theories with the same superalgebra. Examples are the massive M2 brane theory [67]
or the theories considered in [55, 56].

Note that the existence of closed subsectors is a property of factorized scattering
(integrability) and the matrix structure of the S matrix, but does not depend on the
precise nature of the overall phase. Thus closed subsectors exist on both sides. This

argument shows this only in the large J limit where the magnons are well separated

37



and we can use the asymptotic S matrix!?.

We expect that the overall phase, Sy, will interpolate between the weak and strong
coupling results. The full interpolating function has not yet been determined!*.

In this section we will compute in a direct, and rather straightforward way, the
semiclassical S-matrix for the scattering of string theory magnons. It turns out that
the result will agree with the one derived in [37] through more indirect methods.

Notice that at large 't Hooft coupling and fixed momentum, the approximate ex-
pression (2.1.3) amounts to a relativistic approximation to the non-relativistic formula
(2.1.2). Similarly, in this limit, the matrix prefactor S becomes that of a relativistic
theory and it is a bit simpler.

Notice that the theory in light cone gauge is essentially massive so that we can
define scattering processes in a rather sharp fashion, in contrast with the full covari-
ant sigma model which is conformal, a fact that complicates the scattering picture.
Nevertheless, starting from the conformal sigma model can be a useful way to pro-

ceed [51,52].

2.3.2 Scattering phase at large A\ and the sine-Gordon con-

nection

In the semiclassical limit where A is large and p is kept fixed the leading contribution
to the S matrix comes from the phase ¢ in Sy = €, which goes as § ~ \/Xf(p,p’).
For fixed momenta, this phase dominates over the terms that come from the matrix
structure S in the scattering matrix. In this section, we compute this phase, ignoring
the matrix prefactor S in the S-matrix.

In the semiclassical approximation the phase shift can be computed by calculating

13Note that this is not obviously in contradiction with the arguments against closed subsectors on
the string theory side that were made in [68], which considered finite J configurations.

“There is of course (the very unlikely possibility) that the two phases are different and that
AdS/CFT is wrong.

38



the time delay that is accumulated when two magnons scatter. The computation is
very similar to the computation of the semiclassical phase for the scattering of two
sine Gordon solitons, as computed in [69]. In fact, the computation is almost iden-
tical because the magnons we discuss are in direct correspondence with sine Gordon
solitons. This uses the relation between classical sine Gordon theory and classical
string theory on R x S? [48-50]'°. Tt is probably also possible to obtain these results
from [71,72], but we found it easier to do it using the correspondence to the sine
Gordon theory. The map between a classical string theory on R x S? and the sine
Gordon model goes as follows. We consider the string action in conformal gauge and

we set ¢ = 7. Then the Virasoro constraints become

1=0’+n", nn =0 (2.3.24)

2

where n? = 1 parameterizes the S2. The equations of motion follow from these

constraints. The sine Gordon field is defined via
cos2p = n? —n'? (2.3.25)
For the “magnon” solution we had above we find that ¢ is the sine Gordon soliton

o cosbt —x N D —2 2
tan§:exp W = ¢ @) v=cosy v e =1—v" (2.3.26)

Notice that the energy of the sine Gordon soliton is inversely proportional to the

string theory energy of the excitation (2.2.13)

. Va1

Es.g. =7 = cosh ¢ ’ €magnon =

(2.3.27)

T oy’ sin 2

15As explained in [70] the two theories have different poisson structures so that their quantum
versions are different.
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where we measure the sine Gordon energy relative to the energy of a soliton at rest
and we introduced the sine Gordon rapidity 6. Note that a boost on the sine Gordon
side translates into a non-obvious classical symmetry on the R x S? side. Do not
confuse this approximate boost symmetry of the sine Gordon theory with the boosts
that appeared in our discussion of the supersymmetry algebra. Neither of them is a
true symmetry of the problem, but they are not the same!.

We now consider a soliton anti-soliton pair and we compute the time delay for
their scattering as in [69]. (If we use a soliton-soliton pair we obtain the same classical
answer!®). Since the x and ¢ coordinates are the same in the two theories, this time
delay is precisely the same for the string theory magnons and for the sine Gordon

solitons. The Sine Gordon scattering solution in the center of mass frame is

¢  1sinh~ovt
tan - = ———— 2.3.2
M9 = Y cosh yx (2:3.28)

The fact that the sine Gordon scattering is dispersionless implies that the scattering
of magnons is also dispersionless in the classical limit (of course we also expect it to
be dispersionless in the quantum theory).
The time delay is
ATcy = % log v (2.3.29)

We now boost the configuration (2.3.28) to a frame where we have a soliton moving
with velocity v; and an anti-soliton with velocity ve, with v;1 > vy. Then the time

delay that particle 1 experiences as it goes through particle 2 is

2
AT12 = — lOg Vem (2330)
7101

16In fact, for a given p we have a family of magnons given by a choice of a point on S® which is
telling us how the string is embedded in S®. In the quantum problem this zero mode is quantized
and the wavefunction will be spread on S2. In the classical theory we expect to find the same time
delay for scattering of two magnons associated to two arbitrary points on S2.
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where v is the velocity in the center of mass frame

~ ~

01 — 0, =5

1 — cos BL5P2
= log [—2] , for p1, p2 >0 (2.3.31)

2

2log vem = 21og tanh [

We can now compute the phase shift from the formula

8512(61, 62)

Do = AT (2.3.32)

We obtain

1 — pP1—p2
)= ﬂ { [— cos 2+ cos ]2] log {L} } - Plg sin % (2.3.33)

T 2 2 1—005@

Note that, even though the time delay is identical to the sine Gordon one, the phase
shift is different, due to the different expression for the energy (2.3.27). This implies,
in particular, that the phase shift is not invariant under sine Gordon boosts. The first
term in this expression agrees precisely with the large A limit of the phase in [37]'".
The second term in (2.3.33) looks a bit funny. However, we need to recall that the
definition of this S-matrix is a bit ambiguous. This ambiguity is easy to see in the
string theory side and was noticed before. For example [73-76] and [77] obtained
different S-matrices for the scattering of magnons at low momentum (near plane
wave limit). The difference is due to a different choice of gauge which translates into
a different choice of worldsheet x variable. In [73-76] the = variable was defined in
such a way that the density of J is constant. In [77] it was defined so that the density
of £ + J is constant. In our case we have defined it in such a way that the density
of E is constant, since we have set £ = 1 in conformal gauge. All these choices give
the same definition for the x variable when we consider the string ground state. The

difference lies in the different length in x that is assigned to the magnons, which have

"The phase in [37] contains further terms in a 1/v/A expansion which we are not checking here.
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E—J # 0. Thus the S matrix computed in different gauges will differ simply by terms
of the form e®/(P2) where f(p;) is the difference in the length of the magnon on the
two gauges. Of course the Bethe equations are the same in both cases since the total
length of the chain is also different and this cancels the extra terms in the S matrix.
The position variable that is usually chosen on the gauge theory side assigns a length
1 to the impurity. At large A we can ignore 1 relative to A and say that the length of
the impurity is essentially zero. Thus we can say that the gauge theory computation
is using coordinates where the density of J is constant. Using the relation between
the gauge theory spatial coordinate [ and our worldsheet coordinate x (2.2.17) (which
is valid in the region where E —.J = 0) we get that the interval between of two points

separated by a magnon are related by

dJ dE dE dJ 2

where Al is the interval in the conventions of [37] and Az is the interval in our
conventions. So we see that in our gauge the magnon will have an extra length of
order €(p). Thus Sgring—Bethe = Sours€P*?, Where Sgiring—Betne 18 the S matrix in the
conventions used in [37]. This cancels the last term in (2.3.33). In summary, after
expressing the result in conventions adapted to the gauge theory computation we find

that for sign(sin ) > 0 and sign(sin &) > 0 we get
A pi—p2
d(p1,p2) = —i(cos?ﬂ — COoS 12) log {—4} (2.3.35)
T

The cases where p < 0 can be recovered by shifting p by a period so that sin 2”# > 0.
The function (2.3.35) should be trusted when sin £* > 0 and it should be defined to
be periodic with period 27 outside this range. Note that this function goes to zero
when p; — 0 with p, fixed. When p is small we need to quantize the system. We can

check that, after quantization, the .S matrix is still trivial for small p; and fixed ps.
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This can be done by expanding in small fluctuations around our soliton background.
We find that the small excitations propagate freely through the soliton.

The leading answer (2.3.35) vanishes at small p. In fact, at small p it is important
to properly quantize the system and the result depends on the polarizations of the

states, see [73-76]. For example, in the SU(1|1) sector [73-76] found (see also [77])

1 / A A

Corrections to the leading phase (2.3.35) were computed in [78] and some checks
were made in [79,80].

On the gauge theory side the phase is known up to three loop orders in A [17,18,
57,58]. Of course, finding the full interpolating function is an outstanding challenge!®.

Finally, to complete the discussion of scattering states, we comment on the space-
time picture of the scattering process. In the classical theory, besides specifying p, we
can also specify a point on S for each of the two magnons that are scattering off each
other. We do not know the general solution. The sine Gordon analysis we did above
applies only if the point on S? is the same for the two magnons or are antipodal for the
two magnons. In the first case we have a soliton-soliton scattering in the sine-Gordon
model and in the second we have a soliton-anti-soliton scattering. Both give the same
classical time delay. The soliton anti-soliton scattering with p; = —py looks initially
like loop of string made of two magnons. One of the endpoints has infinite J and the
other has finite J. The point in the front, which initially carries a finite amount of
J, looses all its J and it moves to the left. The loop becomes a point and then the
loops get formed again but with the finite J point to the left, behind the point that
carries infinite .JJ. See figure 2.7. The soliton soliton scattering is represented by a

doubly folded string that looks initially like a two magnon state. As time evolves the

18An all loop guess was made in [81] (see also [64]), but this guess appears to be in conflict with
the strong coupling results obtained via AdS/CFT.
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point in the front, which carries finite J, detaches from the equator and moves back
of the other endpoint which carries infinite J. The final picture is, again, equivalent
to the original one with front and back points exchanged. We see that in both cases

asymptotic states are well defined and look like individual magnons.

SRSCESESES

Figure 2.7: Evolution of the soliton anti-soliton scattering state. Time increases to the right. We
have chosen a rotating frame on the sphere where the point with infinite J is stationary. At ¢ = 0 the
string is all concentrated at a point, the point that carries infinite J. The state looks asymptotically
as two free magnons on opposite hemispheres and with the same endpoints.

2.4 Discussion

In this chapter we have introduced a limit which allows us to isolate quantum effects
from finite volume effects in the gauge theory/spin chain/string duality. In this limit,
the symmetry algebra is larger than what is naively expected. This algebra is a
curious type of 241 superpoincare algebra, without the lorentz generators, which are
not a symmetry. The algebra is the same on both sides. In this infinite J limit
the fundamental excitation is the “magnon” which is now identified on both sides.
The basic observable is the scattering amplitude of many magnons. Integrability
should imply that these magnons obey factorized scattering so that all amplitudes are
determined by the scattering matrix of fundamental magnons. The matrix structure
of this S-matrix is determined by the symmetry at all values of the coupling. So
the whole problem boils down to computing the scattering phase [23]. This phase
is a function of the two momenta of the magnons and the 't Hooft coupling. At
weak coupling it was determined up to three loops [17,18,57,58]. At strong coupling

we have the leading order result, computed directly here and indirectly in [37] (see
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also [73-76]). The one loop sigma model correction to the S-matrix was computed
using similar methods in [78]. As in other integrable models, a clever use of crossing
symmetry plus a clever choice of variables enables the computation of the phase
at all values of the coupling. A crossing symmetry equation was written by Janik
in [82]. The kinematics of this problem are a bit different than that of ordinary
relativistic 1+1 dimensional theories. In fact, the kinematic configuration has a double

periodicity [82]. This is most clear when we define a new variable 6, as

k> = % SiHQg = sinh*4,, , € = coshd, (2.4.37)
We have a periodicity in 0, — 6, + 2mi and in p — p + 2m. Crossing is related to
the change 0, — 0, 4 im. The full amplitude does not need to be periodic in these
variables since there can be branch cuts. The compiled information in the references
cited here plus the results in this chapter helped the authors of [24,25] to propose
the exact expression for this phase. It has so far passed all consistency checks so far.
In the next chapter we study the pole structure of the whole scattering matrix and
relate it to the physical excitations given by the BPS magnons discussed (at strong
coulpling) in this chapter.

We should finally mention that perhaps it might end up being most convenient to
think of the problem in such a way that the magnon will be composed of some more
elementary excitations, as is the case in [64]'°. On the other hand, we do not expect
these more elementary excitations to independently propagate along the chain. For

this reason it is not obvious how to match to something on the string theory side.

9The equivalence [64] between the Hubbard model and the gauge theory holds only up to 3 loop
orders.
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2.5 Appendix A: The supersymmetry algebra

We start with a single SU(2|2) subgroup first. This algebra has two SU(2) generators

and a non-compact generator k° = ¢ = E — J. The superalgebra, is

{Q'bs, QY = RO 42 g — e b (2.5.38)
{@",Q"} = =0, {Q",Q"}y=0 (2.5.39)
(with et~ = 1) where we denote by a, b the first SU(2) indices and by rs the second
SU(2) indices. We also have a reality condition (Q™)' = eg6,.,Q"**. The central
extensions considered in [23] involve two other central generators k', k% appearing on
the right hand side of (2.5.39), we will arbitrarily choose the normalization of these

generators in order to simplify the algebra. In order to write the resulting algebra it

is convenient to put together the two generators as

g = (Qar’ Qlar) . or q+ar = Qv qg "= Q/ar (2540)

where «, 8 will be SL(2, R) = SO(2,1) indices. We introduce the gamma matrices

() =ic*, (=0 (p)l=0 (W)Y =) (2.541)

The full anti commutators will now have the form
{qaar’ qﬁbs} — iEbGEST(’Y#)aB]{?u o 2€aﬁ[€bajsr o €srjba] (2542)

The smallest representation of this algebra contains a bosonic doublet and a
fermionic doublet transforming as (1,2), + (2,1); under SU(2) x SU(2). If we think
of these as particles in three dimensions, then we also need to specify the 241 spin

of the excitation. It is zero for the bosons and —i—% for the fermions. Let us call them
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¢" and ¥®. Notice that this representation breaks parity in three dimensions. Once
we combine this with a second representation of the second SU(2|2) factor and the
central extensions we obtain the eight transverse bosons and fermions. We then have
excitations qb”érl which are the bosons in the four transverse directions in the sphere.
They have zero spin, which translates into the fact that they have zero J charge. This
is as expected for insertions of impurities of the type X, i = 1,2, 3,4 corresponding
to the SO(6) scalars which have zero charge under J. We can also form the states
qﬁavﬁal. These have spin one from the 2+1 dimensional point of view. These states are
related to impurities of the form 0;Z, which have J = 1. States with a boson and a

. Tal T ! . . . oy .
fermion, such as ¢"9)* or 1)*¢" correspond to fermionic impurities, which have J = 1

[\

Notice that the spectrum is not parity invariant, we lack particles with negative spin.
This is expected since parity in the x;, 25 plane of the coordinates in [61] is not a

symmetry.
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Chapter 3

Magnon Interactions: Poles in the

S-Matrix

Here we investigate the analytic structure of the magnon S-matrix in the spin-chain descrip-
tion of planar ' = 4 SUSY Yang-Mills/AdS5 x S° strings. Semiclassical analysis suggests
that the exact S-matrix must have a large family of poles near the real axis in momentum
space. We show that these are double poles corresponding to the exchange of pairs of BPS
magnons. Their locations in the complex plane are uniquely fixed by the known disper-
sion relation for the BPS particles. The locations precisely agree with the exact proposal
in [24,25]. These poles do not signal the presence of new bound states.

The work in this chapter is contained in [83]. This article was coauthored with Nick

Dorey and Juan Maldacena.

3.1 Preliminaries

In 't Hooft’s large N limit, a gauge theory is reduced to the sum of planar diagrams.
These diagrams give rise to a two dimensional effective theory which is supposed to
be the worldsheet of a string. A great deal of effort has been devoted recently to

studying planar NV = 4 super Yang Mills, culminating in a conjecture for the exact
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A = ¢?N dependence of some quantities [24,25] (see also [84]). This has been done
using the assumption of exact integrability plus other reasonable assumptions. The
quantity that has been conjectured is the exact S matrix describing the scattering
of worldsheet excitations. Let us briefly describe how this quantity is defined in the
gauge theory [45]. In N' = 4 super Yang mills we have an SO(6) R-symmetry. We
pick an SO(2) subgroup generated by J = Js5. We denote by Z the scalar field that
carries charge one under J. We then consider singe trace local operators with very
large charge, J — oo, and conformal dimension, A, close to J, so that A — J is
finite in the limit. In this limit the local operator contains a large number of fields
Z and a finite number of other fundamental fields. These Z fields form a sort of one
dimensional lattice on which the other fields propagate. It turns out that we can
describe all the other fields in terms of a set of 8 bosonic and 8 fermionic fundamental
fields [66] . The 8 bosonic ones are four of the scalar fields that are not charged under
J and the four derivatives of Z, 9,Z. We can view the different fields at each site
as a generalized spin. Therefore, we are dealing with a generalized spin chain. For
this reason the fundamental excitations are often called “magnons”. The symmetry
algebra acting on an infinite chain is enhanced in such a way that the fundamental

excitations (or magnons) are BPS for all values of their momenta [23].

This symmetry also completely constrains the matrix structure of the 2 — 2 scatter-
ing amplitude [23]. Only the overall phase is undetermined. The phase is constrained
by a crossing symmetry equation [80,82]. Recently, an expression for this phase,
sometimes called “dressing factor” [37], was proposed in [24,25]. The proposed phase
is a non-trivial function of the 't Hooft coupling A and is supposed to be valid for
all values of this parameter. The function also depends on the two momenta of the
particles pq, p2 and can be analytically continued to complex values of these variables.

As we do so, we encounter poles and branch points. In this chapter we explore the
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physical meaning of some poles that appear when we perform this analytic continua-
tion. For S matrices in any dimension, simple poles are typically associated to on shell
intermediate states. In fact, such simple poles appear in some of the matrix elements
of the full matrix S and are independent of the dressing factor. They were interpreted
as BPS bound states for single magnon excitations in [85]. It turns out that one can
have BPS bound states of n fundamental magnons for any positive integer n. Further
poles were necessary in order to account for branch cuts in the scattering of magnons
in the classical limit considered in [38]. In the proposal of [24,25] these turn out to
be double poles. Such double poles do not arise from bound states and look a bit
puzzling at first sight. However, similar double poles appear in the S matrix for sine
Gordon theory and their physical origin was elucidated by Coleman and Thun [86]
(see [87] for a recent review on two dimensional S-matrices). In short, they arise from
physical processes where the elementary particles exchange pairs of particles rather
than a single particle. In higher dimensions such processes give rise to branch cuts,
but they give double poles in two dimensions. The precise position of these double
poles depends on the dispersion relation for the exchanged particles. If we assume
that the exchanged particles are the BPS magnon bound states discussed above we
find that the double poles appear precisely where the conjecture of [24,25] predicts
them. Thus, this computation can be viewed a a check of their proposal, since it has

singularities where (with hindsight) one would have expected them.

More generally, the existence of the singularities dictated by the spectrum (and
no others in the physical region) provides extra constraints on the S-matrix beyond
those of unitarity, crossing and factorizability. As in relativistic models [88], these
constraints help to remove ambiguities associated with the homogeneous solutions of
the crossing equations. Optimistically, one can hope that this type of reasoning might

provide a physical basis for selecting the conjectured S-matrix of [25] from the many
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possible solutions to the crossing equation.

In [38] some non-BPS localized classical solutions were found and it was suggested
that they could correspond to non-BPS bound states. If true this would mean that
the S-matrix should have single poles rather than double poles. These solutions move
in an R x S? subspace of the full AdSs x S® theory and within this subspace they
are stable. Here we show that these solutions can decay once they are embedded in
AdSs5 x S°. In fact these solutions can be viewed as a non-BPS superposition of two
coincident BPS magnons with large n and the same momentum. The decay of the
solutions corresponds to these two BPS magnons moving away from each other. Our
results suggest that the only single-particle asymptotic states of the theory are the
tower of BPS boundstates described in [85,89-91].

3.2 S-matrix Singularities

Since the S-matrix is a physical observable, its singularities should have a physical
explanation. In fact, S-matrix singularities arise when we produce on shell particles
that propagate over long distances or long times. Thus the singularities are inter-

preted as an IR phenomenon associated to the propagation of particles.

Let us consider a 2 — 2 scattering process. The simplest and most familiar example
is a single pole. These poles arise when an intermediate on shell particle is produced

in the collision. See Figure 3.1(a).

If we have more than one particle becoming on shell we can have other types of
singularities. The simplest example is a two particle threshold, where we can start
producing a pair of intermediate on-shell particles, see Figure 3.1(b). For our pur-

poses we will need to consider more complicated cases. This problem was studied
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Figure 3.1: Diagrams associated to singularities of the S-matrix.

by Landau [92] who found the general rules for locating the singularities. The sin-
gularities correspond to spacetime graphs where the vertices are points in spacetime,
representing local interaction regions. Lines are on shell particles with particular
momenta p* and the spacetime momenta are conserved at the vertices. In addition,
the four momentum of the line connecting two vertices obeys = — ) = apt, with
a > 0 (there is one « for each internal line). Thus, the singularity is associated to the
physical propagation of these on shell particles. Notice that this condition implies
that if the energy p° is positive, then x5 > 29, so that the particle is going forwards
in time. More details can be found in [93,94]. The type of singularity that we obtain
depends on the dimension, since we generally have integrals over loop momenta. We
typically encounter branch points®. For the box diagram in Figure 3.1(c) we have a D
dimensional loop integral and one mass shell delta function for each line. We expect
a divergence in D < 4 dimensions and branch points for D > 4. In two dimensions,
D = 2, we naively get the square of a delta function at zero. A more careful analysis
reveals that we get a double pole [86,94]. Other graphs, such as the two loop diagram
in Figure (3.1)(d), also give rise to double poles. In two dimensions we get double

poles in diagrams with L loops and N internal lines when N — 2L = 2.

So far, we were assuming that the singularities arise for real values of the external
momenta. On the other hand, it is often the case that the singularities only arise

when we perform an analytic continuation in the external momenta. The spacetime

IThe discontinuity across the branch cut emanating from it can be evaluated using the Cutkosky
rules [93].
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points discussed above now live in a complexified spacetime. If we are interested in
the “first” singularity that appears as we move away from the physical sheet, it is
sufficient to consider momenta which are in “anti-Euclidean” space where p° is real
and p' are purely imaginary [94]. As we go through branch cuts we can encounter
additional singularities which relax some of the rules discussed above. In particular,
we can relax the condition that the o’s for each line are positive. Here we will be
interested in the first singularity that arises and not on the ones that are on other
sheets. In two dimensions, the energy and momentum conservation conditions and
the on shell conditions for all internal lines determine the energies and momenta
up to some discrete options. At any of these values we will have a singularity in
some sheet. If we are interested in the “first” or physical sheet singularities then we
need to impose a the further condition that the «a; discussed a above are positive, or
equivalently, that the graph in “anti-Euclidean” space closes. This selects a subset of

all the discrete solutions to the energy and momentum conservation conditions.

In our case, we do not have a relativistic theory, so we do not know a priory
how much we can analytically continue the amplitudes and expect to find a physical
explanation for all singularities. However, since the origin of the singularities is
an IR phenomenon we expect that the discussion should also hold for spin chains.
Understanding precisely the whole physical region is beyond the scope of this study.
Here we will perform the analytic continuation only within a very small neighborhood
of the real values looking for the “first” singularities. As we explained above, after
we impose the momentum and energy conservation conditions we will be left with
discrete possible solutions. We should select among them to find the singularities that
are on the physical sheet. We are not going to give a general rule, as was given for
relativistic theories. Instead we are going to analyze mainly two cases in this chapter.

In the first case we will be scattering particles in the near plane wave region where
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particles are approximately relativistic and we can apply the relativistic rules in order
to check whether the singularity is on the first sheet or not. The second case is when
the particles we scatter are in the giant magnon region. In this case we can use a
slow motion, non relativistic approximation plus some physical arguments regarding

the interpretation of the solutions in order to select among different solutions.

3.3 Poles from physical processes

As discussed above, the singularities of the S-matrix correspond to different on-
shell intermediate states. In particular, the location and nature of the singularities
are essentially determined once the spectrum of the theory is known. To understand
the poles of the magnon S-matrix we therefore begin by reviewing the spectrum of

the N = 4 spin chain.

The fundamental excitations of the spin chain are the magnons themselves, which
lie in a sixteen-dimensional BPS representation of the unbroken SU(2|2) x SU(2|2)
supersymmetry. The closure of the SUSY algebra on this multiplet uniquely deter-

mines [23] the magnon dispersion relation to be [81] (see also [53,54]),

E=A—J= \/1 + 164 sin? (g) (3.3.1)

where g = \/m /4m. In addition, any number of elementary magnons can form
a stable boundstate. The n-magnon boundstate also lies in a BPS representation of
supersymmetry (of dimension 16n?). The theory therefore contains an infinite tower
of BPS states labelled by a positive integer n. The exact dispersion relation for these

states is again fixed by supersymmetry to be [85,91],

E=A—J= \/n2 + 1642 sin? (g) (3.3.2)
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The existence of these states can be confirmed both in the gauge theory spin-chain
and in the string world-sheet theory for appropriate values of the coupling [85]. It
remains possible that there are additional boundstates in the theory which are not
BPS. However we will see that we have no reason to introduce them, at least if one
believes in the recently conjectured S matrix in [24,25]. In fact, the poles in this
proposed result can be accounted for by thinking about physical processes involving

the set of BPS states described above.

Kinematics

The dispersion relation (3.3.2) for an arbitrary BPS state is conveniently written

in terms of complex spectral parameters,

. o
i (n + \/n2 + 16¢2 sin (g))

Xi
4gsin (g)

(3.3.3)

which obey the constraint,
1 1 in
Xt+— ) - (X" +— | = — 3.3.4
() o) = a4
In terms of these parameters, the particle energy and momentum are given by,

B(XE) = % K}ﬁ - %) - <X‘ - %)} , p(XH) = %log (%5.3.5)

These quantities are real provided X+ = (X 7)*. More generally we will consider an
analytic continuation of the kinematic variables where the reality condition is relaxed

(but the constraint (3.3.4) is maintained).

For magnons belonging to an SU(2) subsector, the integer n appearing in the

constraint (3.3.4) corresponds to a conserved U(1) R-charge. It is convenient to view
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(3.3.4) as giving the charge as a function of the spectral parameters n(X*). The
velocity of the particle in appropriately-normalised® worldsheet coordinates (z,t) is

given as,

de 1dE  XT+X~ 2g sin(p)

== ———= =
dt 2g dp 1+ X+X \/nQ + 1642 gin2 (g)

(3.3.6)

and we also define the rapidity parameter,

u(Xt) = %KX++%>+<X—+XL)}

_ L cot (g) \/n2 + 169 sin” (g) (3.3.7)

In the strong coupling limit g > 1 there are two distinct kinematic regimes which
will be of interest. The first is the Giant Magnon regime where the conserved mo-

mentum p is held fixed as g — oo. We then have

1 .
E =~ 4gsin (g) L X un e QCosg (3.3.8)

These excitations correspond to classical solutions of the worldsheet theory.

The second regime of interest is that of the plane wave limit where we take p — 0
as g — oo with £ = 2gp held fixed. In this case we recover the familiar relativistic

relations

k n+E n++vn2+k2
E~+vn?2+ k2 = — Xt~ X = ~ 3.3.9

These two regimes®, (3.3.8) and (3.3.9), amount to two ways of solving the constraint

(3.3.4) for large g, by setting X+ ~ 1/X~ or X* ~ X ™.

2The normalisation is chosen so that the velocity of light is unity in the plane wave limit discussed
below. With this normalization p generates translations in z/(2g).

3The two regimes in question are connected by a third, studied in [95,96] where X* ~ 1 (or
Xt~ X" ~-1).
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S-matrix definitions and conventions

For simplicity, we will consider scattering of two states in the SU(2) subsector,
since the scattering in the other sectors is determined once we know the result in the
SU(2) subsector [23]. Of course, we will allow intermediate states to be completely
general. We can define the S matrix (just a complex number in this case) by looking

at the wavefunction for two magnons and writing it as
(2, 2) = ePLIEVTP2T2 1 Gy py)ePr¥2 2t ) oy (3.3.10)

And W(xy,29) = (g, x1) for x1 >> x4, since we have two identical bosons. We see
that we can view the first term as the incoming wave and the second as the reflected
way if v; > wvy. We will be interested in analytically continuing in the external

momenta p;. We write then

p1=p+iq, p2=p—iq (3.3.11)

We will see that the part of the wavefunction depending on the relative coordinate
x = x1 — Ty has the form U ~ 7% 4 S(1,2)e?. Thus we see that the first term
diverges as x — —oo if ¢ > 0. We set boundary conditions on the non-normalizable
piece of the wavefunction, by saying that the coefficient of the exponential is one, and
we “measure” the coefficient of the other which is the S matrix. We then see that a
pole of S (with ¢ > 0) can correspond to a bound state.

This S matrix can be written as
S(XF,X5) =072 (X7, X5) Spps (X7, X7) (3.3.12)

where the inverse factors originate from the fact that the conventions for defining the
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Figure 3.2: Three-point vertices.

S matrix in the recent literature are the opposite from ours . The second factor in

(3.3.12) was originally written in [81] and is

» ) —uXF) /g _ (Xp = X0~ 1/ X))
Sebs (0 25) = e —ulX) T ife (%7~ X )1 157 ;)

(3.3.13)

The quantity o(X:, XF) is known as the dressing factor and we will discuss the
explicit proposal in [24,25] in Section 5 below. For the moment we will simply use
the that fact that the proposed dressing factor has no poles or zeros when u; —uy = 44

on the main branch that is closest to physical values.

3.3.1 Simple poles

The singularities of the S-matrix correspond to spacetime diagrams where each
particle is on-shell. In general, we will analytically continue to complex values of
the momenta and energies, and thus each particle corresponds to a line in complexi-
fied Minkowski space. Particle lines can meet at three-point vertices which conserve

charge, energy and momentum. We will now analyze the allowed vertices.

We begin by considering a three point vertex corresponding to the creation of a
BPS particle with spectral parameters Z* from two others with parameters X+ and

Y* as shown in Figure 3.2a. If all particles belong to the same SU(2) subsector, then

40ur o is the same as the o in [24,25] and similarly, our Sppg is the same S-matrix appearing
in [81].
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each carries a conserved U(1)g charge @ = n. In this case, the conservation laws for

energy, momentum and charge read,

E(XH+E(YF) = E(Z%)
p(XE)+p(YE) = p(ZF) mod(2n) (3.3.14)

n(XF) +n(YF) = n(Z%)

The same equations must also hold for the vertex corresponding to the time-reversed
process shown in Figure 3.2b. As the dependence of each conserved quantity on the
spectral parameters is of the form f(X ) — f(X ™) for some function f, it is straight-

forward to solve the conservation equations. There are two inequivalent solutions,

Xt =7" Xt =Y~
o X- =Y+ G X =7 (3.3.15)
Y- =7~ Yt =2F

The two solutions are related by the interchange of X* and Y'*.

Combining vertices of the type described above, we obtain the diagram shown
in Figure 3.3a corresponding to the scattering of two BPS particles with spectral
parameters Xi°, Xi. If both particles belong to an SU(2) subsector they carry
positive conserved charges Q; = n(X7") and Qy = n(X3). The diagram corresponds
to the formation of a BPS boundstate of charge ()1 +@)2 in the s-channel. These charge
assignments are shown in Figure 3.3b. For individual vertices the conservation laws
can be implemented using either solution « or § described above. However, once the
vertices are connected by an internal line, consistency requires the choice of the same
solution at both vertices. If we choose the solution g at both vertices, the spectral

parameters of the internal line are fixed to be Z+ = X5, Z= = X[ and the diagram
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Figure 3.3: Formation of a bound state in the s-channel.

leads to an S-matrix pole when the parameters of the initial (and final) particles obey
X = X, . This pole is present in (3.3.13). In addition, parametrizing the momenta
as in (3.3.11) we find that ¢ > 0 at this pole. This can be seen most easily by noting
that uy —us = —i/g and that dyu(p) < 0 for real momenta. The other possiblity is
to choose the solution « at each vertex which leads to the relation X; = X, . This
possibility implies that ¢ < 0 and would not lead to bound states. The S matrix may
or may not have a pole at this position, but we should not interpret it as a bound
state. For example, in the SL(2) subsector there is a pole at this position, but we do

not have boundstates associated with them.

The three-point vertices shown in Figure 3.2, are the only possible ones if all three
particles belong to the same SU(2) sector. In any SU(2) sector, there is a conserved
U(1) charge @ such that BPS particles of type n carry positive charge @) = n. How-
ever, the theory also contains BPS particles of negative charge () = —n with respect
to the same U(1). The particles of negative charge correspond to a different SU(2)
sector. For each value of n, the two particles belong to the same SU(2|2)? multiplet,
but have opposite charges under the Cartan generator corresponding to the U(1) in
question. The crossing symmetry of the S-matrix suggests that we should also admit
vertices for interactions between BPS particles of positive and negative charge. For

a BPS particle with spectral parameters X+ the crossing transformation is,

Xt o Xt =1/X" X" - X =1/X" (3.3.16)
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Figure 3.4: Crossing transformation of vertex.

This transformation changes the sign of the energy and momentum, F(X*) = —E(X*),
p(X*) = —p(X¥F) but preserves the form of the constraint (3.3.4) with n(X*) =
n(X®). If we apply this transformation to a vertex with an incoming state of spectral
parameters X+ and positive charge Q = n(X¥), we obtain a new vertex with an out-
going particle of spectral parameters X*. For the new vertex to conserve charge, we
must interpret the outgoing particle as one of negative charge Q= —n(X' ) = -Q.
We will indicate a particle of negative charge by reversing direction of the arrow ap-
pearing on its world line. To illustrate the crossing transformation we will apply it
to an incoming leg on the vertex shown in Figure 2a to obtain a new vertex as shown
in Figure 3.4. The solutions o and [ of the conservation laws for the original vertex

yield two solutions for the new vertex,

/Xt =27 /Xt =Y~
& 1X- =Y+ B YX—=2z2" (3.3.17)
Y- =2" Yt =2z%

A feature of these equations that is worth noting is the following. If particle Y* is
in the giant magnon regime, then one of the two other particles has to also be in the

giant magnon regime while the last one is in the plane wave regime.

We can now discuss the pole at X;* = 1/X, . This arises naturally if we take the

s-channel diagram and we cross one of the two particles. We then have a diagram
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Figure 3.5: t-channel contribution.

that looks like the one in Figure 3.5 by using (3.3.17). Note that the intermediate
particle has U(1) charge zero, but this is not a problem since there are such particles
in the full SU(2|2)? multiplet corresponding to a BPS magnon with n = 2. When the
external particles are in the near plane wave regime, it is clear that this is an allowed

process since the theory is nearly relativistic.

If the external particles are both in the giant magnon region, then, as we mentioned
after (3.3.17), the intermediate particle is in the plane wave regime. The two giant
magnons behave as two heavy particles that are moving at slow relative velocities
which are interacting through a potential generated by the exchange of the lighter
particle. Let us now remind the reader how these poles arise when we think about the
non-relativistic approximation for the two heavy particles. We will have a lagrangian
of the form L ~ Mi?+ e™ where ma < 0. When we try to solve the problem in the

Born approximation we are lead to
A~ (U, |V ,) = /dxeqxemxeqz (3.3.18)

which gives a divergence when ¢ = m/2. Note that this divergence arises from long
distance effects in the quantum mechanics problem and does not depend on the details
of the potential at short distances. In addition, this feature is independent of the sign
of M. Indeed, when we expand the giant magnon dispersion relation we will find that

M is negative. The intermediate particle of mass m (m > 0) is carrying momentum
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Figure 3.6: The box diagram. Q > 1.

k ~ —im. In principle, one could have considered a situation where this particle
carries momentum k ~ -+m, but it would have given rise to an unphysical growing
potential. We will use similar criteria in more complicated situations below in order
to isolate the physical singularities from the unphysical ones. As we mentioned in

Section 2, we can have singularities in unphysical sheets from such solutions.

3.3.2 Double poles

Following the discussion in Section 2, we look for diagrams that can give rise to
double poles. Let us start by considering the one loop box diagram shown in Figure
3.6, where the external legs are all elementary magnons in the SU(2) sector and carry
charge 1. The box diagram® represents an s-channel process where the intermediate
states consist of two BPS particles of charges 1 + @) and 1 — ) where () > 1 is a
positive integer. More generally the states going around the loop can correspond
to other members of the corresponding BPS boundstate magnon multiplet which is

labelled by the positive integer n. What will be important for us is the value of n for

®This diagram is different from those considered by Coleman and Thun in the relativistic sine-
Gordon case. In that case this diagram can also be considered and give singularities that coincide
with the ones found in [86] using different diagrams.
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Figure 3.7: Several choices for the SU(2|2)? representations appearing in the internal lines. In
addition we can change the +1 to F1 to find new possibilities.

each of these magnons since it is the parameter appearing in the dispersion relation
of the state. When we assign values of n for each of the internal lines we should
remember that, since the external lines have n = 1, group theory says that at each
vertex the values of n should differ by plus or minus one. In figure 3.7 we have written
several choices. We will first concentrate on the one in figure 3.7a, which is the one
suggested by figure 3.6. The choice in 3.7c gives the same condition as the one we
will consider explicitly. The choices in 3.7b lead to inconsistent equations once we

impose the condition that the pole is on the physical sheet.

To verify this is an allowed process there are two steps,

1 Implement energy and momentum conservation at each vertex.

2 Impose additional conditions to make sure that the singularity arises on the

physical branch.

We will find that after the first step, we will have fixed all the momenta of the
intermediate lines, up to some discrete choices. The second condition will rule out
some of them. In particular, we can perform approximations when we are evaluating
the second condition, since the exact position of the poles is already fixed after the

first step.
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Figure 3.8: Spectral parameters and vertices for the box diagram.

To perform the first step we assign spectral parameters to each line in the diagram
as shown in Figure 3.8. Momentum and energy conservation are implemented by
the vertex rules described above together with further rules obtained by repeated
applications of the crossing transformation. There are two possible choices at each
of the four vertices A, B, C' and D. For each of these choices we will then have to

evaluate the second criterion.

Let us first consider the case where the two particles are in the plane wave regime.
There we can use the approximate relativistic formulas and demand that the graphs
closes in “anti-Euclidean” space. Each of the vertices involves particles of mass 1 (the
external line), @ and @ —1 (with @ > 1). The solution to the energy and momentum
conservation condition tells us that the momentum is approximately zero so that the
energies are given approximately by 1 and @) and @) — 1 respectively. Therefore the
particles () and () — 1 cannot be both be going into the future at this vertex. It is

clear that we cannot obey this condition both at vertices A and B. Thus, none of the
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graphs gives rise to a singularity in the near plane wave region.

We now consider the case where both incoming particles are giant magnons. As
we mentioned above, one of the particles emerging from the vertex has to be giant
and the other a plane wave particle. Moreover, the giant particle has energy and
momentum similar to the incoming particle. Thus, we expect that it continues to
move to the future. Since the particle Z is coming from the past in vertex A or B,
we conclude that particle Z must be of the plane wave type. Thus, we see that we
have the qualitative conditions Xi" ~ Y;* and Z+ ~ Z~ = X, where the last sign
will depend on the type of solution of the momentum conservation conditions (3.3.15)

that we choose. For example, for vertex A we have the two choices

X{ =1y X\ =1/z
A X7 =1/Z7 A X7 =1y} (3.3.19)
Vit = z; v =27

Approximately, these to choices amount to saying whether Z ~ X' (for A) or Z ~
X (for A’). For simplicity, let us analyze this condition around p = 7 (see (3.3.11)).
Since this is a maximum in the dispersion relation we can go to “anti-Euclidean
space” by setting p = 7 + iq. The expansion around this point looks similar to the
non-relativistic expansion of a relativistic theory, except for the sign of the mass.
Moreover, we will have that ¢ < 1 and thus we will approximate X" ~ i, X, ~ —i.
Equating these to Z and parametrizing its momentum as k = ix (see (3.3.9)) we find

that®

n+vn? — k2

ik ’
n 4 vn? — K2
Ve

K

A Xt ~Zy, —in —k~-n  (3.3.20)

A Xy ~Zy, ——ir~ — Kk ~+n (3.3.21)

6The choice of sign in the square root corresponds to the sign for the energy.
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As we mentioned above in our discussion of ¢ channel contributions, we can interpret
the exchange of the Z particle as giving rise to a potential which will go like e™**. In
order to get a sensible potential for x < 0 we must demand that x < 0. This selects
the first condition, A.

This process can be repeated at each vertex and thus we select only one particular

combination which is,

Xy =1/Z; Xy =1/Zf
Zi =Y+ X =Y, (3.3.22)

Vi =1/X7 Yy, =1/Z;

X =1/Z; Zy =1/X5
1/Z5 =Y," Zy =Y (3.3.23)

Yy = X; 1/X; =Yy

or, more simply,
1 1 1
}/1 2 Zl
1 1 1

Xi=Y"=— X, = —=— 3.3.24
2 2 Z;» 2 }/14» Zf» ( )

From these relations as well as the constraints (3.3.4) on each set of spectral param-

eters we derive a condition on the rapidities of the two incoming particles,
?
w(X7E) —u(X5) = ——n, n>1 (3.3.25)
g

for each integer n > 1. In particular, the graph shown in Figure 3.6 gives rise to the
double pole with n = (). In Section 5 we will find that these are indeed the positions
of the poles of the dressing factor o=2. Note that the other ways of solving the energy

and momentum conservation conditions at each vertex, which we have ruled out by
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the arguments given above, would have led to equations similar to (3.3.25) but the

integer in the right hand side would have had a different range.

We should note that when we write the condition of the pole as (3.3.25) we are
losing some information since our analysis leading to (3.3.25) used that we were in the
giant magnon region. Thus the condition (3.3.25) only applies in the giant magnon
region where the real part, r; of u;, satisfies |r;| < 2. On the other hand, we have
already seen that in the plane wave region where |r;| > 2 there are no poles. Indeed,

we will find that this is a feature of the proposed S-matrix in [24, 25].

Other diagrams

In this section we will analyze other possible on-shell diagrams which might con-
tribute. In particular we will consider diagrams of the type originally studied by
Coleman and Thun [86] in the context of the sine-Gordon model. Since we have al-
ready accounted for all the poles in the S matrix, we expect that these diagrams give
the same poles that we have found before. There are distinct graphs corresponding
to s- and t-channel processes. A candidate t-channel diagram is shown in Figure 3.9.
Relative to the process considered in the previous section, the new feature is that the
internal legs cross in the center of the diagram and we must include the appropriate
S-matrix element in our evaluation of the diagram. In the cases considered in [86],
the central scattering process takes place at generic values of the momenta for which
the corresponding S-matrix element is finite (and non-zero). In these cases, the extra
factor is a harmless phase which does not affect the analysis of singularities. This

needs to be reconsidered in the present case.

To verify the consistency of this diagram we will proceed exactly as in the previous
subsection. First we assign spectral parameters to each internal line as shown in

Figure 3.10. Conservation laws at each vertex are solved as follows,
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Figure 3.9: The spacetime graph for t-channel process.

Figure 3.10: Spectral parameters and vertices for the ¢-channel diagram.

69



Xf =1y X = z¢
A X[ =2 B: X;=1/Y, (3.3.26)
1/yy" =2+ 1Yy =27

For the same reasons we discussed above this diagram does not lead to singularities if
the external particles are in the plane wave region. Therefore, let us assume that the
external particles are in the giant magnon region. As before there are other possible
choices for the vertices but only this one is allowed, once we use the condition that the
Y lines are in the plane wave region and that they should lead to reasonable potentials
in the approximate quantum mechanics problem describing the slow motion of the
particles. The relations (3.3.26) lead to the following condition on the rapidities of

the incoming particles,
Uy — Uy = —zn , n>0 (3.3.27)
g

where n = (@ is a positive integer. Unlike the process considered in the previous

subsection the case n = ) = 1 is allowed.

Naively the above analysis predicts double poles at the positions given in equation
(3.3.27). These coincide with the double poles we found earlier from the diagram in
Figure 3.6 except for the case () = 1 which appears to predict a new double pole
at X;7 = 1/X,. However, we still have to consider the contribution of the “blob”
in the centre of the diagram shown in Figures 3.10 and 3.9. In the case ) = 1 this
corresponds to the scattering of two anti-magnons with spectral parameters Y;= and
Y;E. From the vertex conditions (3.3.26) we deduce that these parameters obey the
relation Y;~ = 1/Y,". This is clearly a special value of the momentum. If the magnon
S matrix has a pole of order D when X;" = 1/X, then, by unitarity, the S-matrix for

two anti-magnons (which is the same as that for two magnons by crossing on both
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legs) will have a zero of degree D when the spectral parameters obey Y;” = 1/Y,".

Instead of simply predicting a double pole via the formula’
D=N-2L=6-4=2, (3.3.28)

the Coleman-Thun analysis then yields a self-consistency equation for the degree D
of the pole,
D=N-2L-D=2-0D (3.3.29)

with solution D = 1. This indicates a simple pole at X;* = 1/X,. Thus this
diagram gives also a simple pole. This is in agreement with the simple pole that
we found from the ¢ channel. It is also in agreement with the exact S-matrix where
such a pole arises from the BDS contribution to the SU(2) sector S-matrix. In fact,
similar considerations also hold for higher values of () where the central scattering
corresponds to a zero of the boundstate S-matrix obtained consistently by fusion [90].
In these cases the double zero cancels the double pole and the diagram is finite. Thus,

we only obtain the single pole that is given by the ¢ channel diagram.

3.4 Classical, semiclassical and approximate results

3.4.1 Localized classical solutions and the absence of non-

BPS bound states

In [38], some localized oscillating solutions were found. There, it was proposed
that these solutions could correspond to non-BPS bound states. As we have seen
here, the singularities of the S-matrix are not interpreted as new particles, but come
from physical processes involving the known BPS particles. In this section we discuss

the solutions in [38] and explain why they do not give rise to bound states. What

"As above N is the number of internal lines and L is the number of loops in the diagram.
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happens is that the “breather” solutions in [38] can be split into two BPS magnons
with opposite charges. In order to see this, it is not enough to consider solutions in
R x S? as it was done in [38], but one should consider solutions in a bigger subspace
of AdSs x S®. It turns out that it is enough to consider solutions in R x S®. Solutions
in this subspace were constructed by Spradlin and Volovich in [97] (see also [98] and
appendix 3.8 ). Their solutions are functions of the worldsheet coordinates %! and of
several complex parameters which we will denote® as )\f. If we are to ensure that we
have a proper real solution we generically need” that the complex conjugates of the
set of parameters {\/} matches the set of parameters {)\; }. The simplest solution
corresponds to a BPS magnon of some charge. This solution is characterized by
two parameters A\* which are taken to be complex conjugates of each other. These
parameters can be identified with the kinematic variables for the BPS magnon as
X% = X\* when the conserved U(1) charge @ (denoted J, in [97]) is positive. When

this charge is negative the correct identification is X+ =1/A7, X~ =1/A*

A second, more complicated solution was also considered in [97]. This solution
depends on four complex parameters Ali, )é[. If we identify these parameters as the
parameters of two magnons, XijE = )\Z:-t, the solution describes the scattering of these

two solitons. Also, if we take

AN =10, Ar=1/x,  A)=Xx., A)=Xx (3.4.30)

with a general complex value for A], we recover the “breather” solution of [38] .
Note that the solution depends on just one complex parameter which corresponds to
the following two real variables: the momentum p of the breather and the excitation

number v. This solution can be viewed as coming from the analytic continuation

8They were called \; and )\; in [97]
9With the exception of the degenerate cases where the solution collapses to a single BPS soliton
of charge @ (i.e. A\] = A\J).
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of the scattering of two zero charge magnons with rapidities Xii = )\Zi. With this

identification X;" # (X, )*, so it seems we can’t view 1 and 2 as physical particles.

There is, however, a very interesting property of the solutions in [97]. They are
symmetric under the exchange of the parameters A\| < A, , without exchanging'® the
parameters \]. Thus, we can take the “breather” solution we just mentioned and

identify the rapidities of two magnons, instead, as

M= X = XS

A =Xy Ay = Xy

We now see from (3.4.30) that X;" = (X )*. Therefore, the same solution can be
viewed as arising from two magnons with kinematic variables corresponding to real
physical variables of two BPS solitons with opposite charges, both moving with the
same velocity. In this way we clearly see that the “breather” solution in [38] can be
separated into a superposition of two physical particles!'. Therefore, if we we were to
quantize the solution in [38] we would have a variable corresponding to the relative

position of these two particles and we would not end up with a bound state.

As a side comment, the breather solutions in [38] for very high excitation number
n = 2k+c (where c is a constant associated with the energy localized at the boundaries

of the excitation in (3.4.31) ) look like excitations of the form

o ZZIWZ - TW LT - (3.4.31)

0Equivalently, we can exchange only )\Ir > )\; .
' The sine-Gordon theory also has localized oscillating solutions which do not correspond to new
bound states, but are superpositions of the ordinary solitons and breathers (see [99] for example).
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where W and W are two impurities and there are & Zs. This can split into two BPS
magnon multiplet with charges n/2 and —n/2, one made of n/2 Ws and the other
made of n/2 Ws.

In [97], another solution was considered which was called a “bound state” solution.
It was constructed by performing an analytic continuation of the scattering solution
for charged magnons. This solution also has rapidities related as A = (A\;)* and
Al = (\3)*. We see that under the exchange of the two \;” we recover the kinematic
variables of two physical magnons. Moreover, these two magnons have different ve-
locities which implies that this “bound state” solution is simply an ordinary (non
localized) scattering solution. It turns out, then, that all possible physical choices

for the parameters {\"} yield a non-localized scattering solution'?.

Thus, we have
concluded that there is no solution in the literature that looks like a (non-BPS) bound
state. Therefore, there is no reason, from the classical solutions alone, to think there

are more states in the spectrum than the BPS bound states.

This conclusion agrees with our picture from the analysis of poles in the previous
section that already suggested that we should not be able to construct new non-BPS

bound states, at least from the scattering of elementary magnons.

3.4.2 The semiclassical limit of the quantum theory

The processes considered in Section 3, leading to double poles at positions dic-
tated by (3.3.25), can with be compared directly with the classical analysis. In the
semiclassical limit, g > 1, the incoming particles correspond to Giant Magnons of
charge!® Q = 1 ~ 0. The corresponding classical solution has complex parameters

X = )\ where A\ are related as in (3.4.30). On the other hand the intermediate

)

12\ith the exception, again, of some degenerate cases given by sets that collapse to the one
particle BPS state of charge Q (i.e. A\J = \;).
13By this we mean that the charge Q = 1 carried by these states can be neglected in this limit.
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state in the s-channel box diagram corresponds to two solitons of charges 1 — Q) ~ —@Q)

and @ + 1 ~ ) with complex parameters,

A =1/Y7 A=Yy

A =11 Ay =Yy

which obey the reality conditions A\{” = (A\{)* and \j = (\;)*. As the corresponding
rapidities u(Y;") and u(Y;") vanish and both momenta are equal to 7, both the
constituent solitons are at rest. Note also that the particles of charge —(@), exchanged
between the two massive solitons, have vanishingly small energy in the semiclassical

limit.

The equalities (3.3.24) imply that the classical solutions corresponding to the in-

coming and intermediate states are related by the interchange of parameters,

AN — AT, A5 — A\, AT — A, Ay — AT (3.4.32)

As this interchange is a symmetry of the two-soliton solution, the process corresponds
to a single classical field configuration. This configuration can be interpreted as
consisting of two solitons of opposite charge +¢) which are both at rest or as consisting
of two solitons of zero charge with complex momenta p; = 7+ iq and p, = m —iq. As
already established, there is a space of such solutions with the sine-Gordon breather

as a special case.

3.4.3 Scattering of giant magnons and a non-relativistic limit

If we consider a single magnon classical solution, as in [38], we find that the solution
has fermionic and bosonic zero modes. These are also called “collective coordinates”.

The bosonic zero modes parametrize the space R x S where R denotes the position of
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the magnon and S® parametrizes the orientation of the solution inside S°. In addition
we have fermion zero modes [100]. The quantization of all these zero modes should
give the whole tower of BPS magnons. Suppose that we start with a given magnon
of momentum p and consider other magnons with very similar momentum. We can
describe them by looking at the quantum mechanics of the collective coordinates. In
order to understand what the Hamiltonian is we can expand the expression of the

energy around a reference momentum®, p = p + %. Assuming 0 < p < 27

E = \/n2 + 16g28in2§ = 4gsin%9 + 89811n5n2
= E+vk-— 5 sin‘g|k2 + mnz (3.4.33)
with
v = Cji—f = cos.%3 E = 4g|sin g] (3.4.34)

As we saw above, diagrams giving rise to double poles involve “heavy” giant magnon
particles and “light” plane wave particles. Double poles arise when two heavy particles
exchange a pair of light particles. In this regime, where the relative motion of the
heavy particles is slow, we expect that we should be able to view the problem as non-
relativistic motion of the collective coordinates plus a potential that arises from the
exchange of the light particles. Since the dispersion relation for the light particles is
approximately relativistic the potential will have the usual Yukawa form for particles
of mass m, i.e. V ~ e ™ for mr > 1. However, we should recall that the two
magnons are moving with similar velocities which are large, v; ~ vy ~ v. If we

denote by x the distance between the two magnons, we find that the potential has

14Tn this normalization k is related to translations in the coordinate z introduced in (3.3.6). This
is the normalization where the speed of light in the plane wave region is one.
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the boosted form
VS gfal@, Qo) =10 (3.4.35)

where f, is a function that depends on the angles on both S3s and the fermion
zero modes. We have also indicated how the potential scales with g. This scaling
is determined as follows. We know that the classical solutions are independent of
g. Thus, classical scattering properties, such as time delays are independent of g.
Since the mass is proportional to g (see (3.4.33)), then, the potential should also be

proportional to g such that the classical equations of motion are independent of g.

It is now convenient to rescale 2 — & = vz and k — k = k /7. We can also remove
the linear term in the momentum in (3.4.33) by defining a new energy € which is a
linear combination of the old energy and the momentum, é = € — vk. In these new

variables we have a Hamiltonian

1

H=— _
8g|sin &|

—k} =+ nl 4 nS 4 g (S, Qe (3.4.36)

This is the form for the quantum mechanics of the collective coordinates in the
slow relative velocity regime. We expect that the potential should be determined

completely by the symmetries plus integrability, but we will not work it out here.

It is worth mentioning that, in these variables, the position of the double poles (see

section 3) at u; — uy = —in/g is

~

A 1 A

where k is the relative momentum conjugate to &, — Z».
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3.4.4 A toy model for double poles

Since finding the full potential in (3.4.36) is beyond the scope of this study we will
consider a toy model which we can solve and is such that it also displays the double
poles. Notice that in a non-relativistic quantum mechanics problem with one degree
of freedom the scattering matrix can have only single poles [101]. In fact, in the
quantum mechanical problem the poles can have different origins. We can have poles
corresponding to bound states and we can have poles that arise because we have a

™ and there is a resonance between this exponential decay

potential decaying like e~
and the increase of the wavefunction as we discussed around (3.3.18). It should be
emphasized that the pole originates from the tail of the potential and is independent
of the details of the potential for small . In the full relativistic theory, the bound

states give rise to poles in the s channel and the tails of the potential to poles in the

t channel.

The double poles we are considering also arise from the tails of the potential and
are not related to bound states. In order to see them, we should include at least two
degrees of freedom. We can include an internal angular coordinate ¢ which lives on
a circle. If we have a potential of the form V ~ e#e~"=l*| then we will have double
poles which can be interpreted, in a relativistic context, as coming from the exchange

of a pair of massive particles.

In our toy model, instead of the full space of magnon collective coordinates, we will
have R x S1. We denote by ¢ = ¢ — s the relative angular coordinate. We consider
a theory where we only treat the relative coordinates x and ¢. We now look for an
integrable potential which contains the exchanged particles charged under the U(1)
symmetry that shifts ¢;. We recall that the non-relativistic limit considered here has

a counterpart in the sine-Gordon theory [88]. In that context, integrable potentials of
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the form V' ~ ﬁ arise. With this in mind we can consider a simple generalization

of this case that will fit our purposes. We propose to study the following hamiltonian

v v 1 1.4
— + — v=—-—(m+=-)" (3.4.38
4sinh® (££2) © 4sinh? (35£) gt )

H:%[—l%2+€2]+

where v is a coupling constant (which we have parameterized in terms of another
coupling m), k is the momentum conjugate to the relative coordinate and ¢ is con-
jugate to ¢ = 1 — 9. As advertised, this model is integrable (for reviews on these
Calogero-Sutherland systems see [102-104]), has the right classical limit and coupling
dependence, as long as we make v ~ O(g?). This system is naturally defined on the
cylinder R x S!. Since we are considering the scattering of identical particles the

space is really (R x S')/Zs.

This potential is singular at z = 0 and near the singularity it behaves as cos(26) /r?
where z = re?. Unfortunately, since the coupling constant is large, this means that
the potential is attractive for some angles, and particles might “fall to the center”.
This can be avoided by modifying the potential near the singularities. Since the poles
we are interested in come from long distances, this should have no effect. We do not
know of an easy way to modify the potential while preserving integrability. However,
for particular values of the coupling v there exist explicit solutions of the above
problem where the wavefunction vanishes at the singularities. Thus, a modification
of the potential at the singularities to make the problem well defined should have no

effect on these particular wave functions.

In order to solve this problem we define the following quantities

1 1

z= 5(:6 + i) zZ= §(x —ip) (3.4.39)
_ 2k

P+ =46 with H=¢é= 33 (3.4.40)
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Therefore the Schrodinger equation we need to solve is

2
(7 2 v w =0 , v = 1 — (m -+ 1>2 (3441)

022 sinh? 2

and its barred version. Then, the general form of the solutions to this equation (and
its bared version) are

1 1

where F' is the ordinary hypergeometric function 5F7. The second independent solu-
tion is 1v~?(z). Therefore, the general form of the solutions to our whole problem is
U (2, 2) = 9P (2)¢P(2) with B, 3 satisfying (3.4.40). We can check that in the large

x region the wave function behaves as
UOB (2, 2) ~ P07 o gthetile g5 B=L+ik, B=—L+ik (3.4.43)

where /¢ is integer, since ¢ is periodic. One important condition is that the wave func-
tion remains normalizable in the neighborhood of the singularity located at z = z = 0.
In fact, we see that two independent solutions of (3.4.41) go like 2™ and z'*™. Let
us assume that m in integer . We then see that if we demand that the wavefunction
is antisymmetric'® under z — —z and Z — —Z we need to combine solutions so that
we have combinations such as 27"z and 2™z~ near the origin. We see that
such combinations vanish as we approach z — 0 so that a small modification of the

potential is not expected to affect the solutions in an important way. In terms of the

15Curiously, for integer m, these models naturally arise from matrix quantum mechanics [104]. At
these values of the coupling the potential 1/ cosh® z is also reflectionless. We also see that (3.4.43)
becomes an order m polynomial of wu.

16We actually need wavefunctions that have definite parity. It turns out that symmetric ones have
a singular behavior at the singularity, so we need to consider antisymmetric ones. Actually, there
is a physical interpretation of why only antisymmetric functions survive. As the interaction has a
cos 26 term near the origin, only odd angular momentum states are such that the potential averages
to zero over an orbit. Symmetric states, thus, fall to the center.
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functions (3.4.43) we need to consider the following combination

N L TA+m=pT0+m=05)_ 55 PA+m+BTA+m+0B)__5_;
B (1 (| R VRS Ty TR )

(3.4.44)

The fact that the wavefunction is antisymmetric suggests that it is a natural solution
to the problem of scattering of identical fermions, rather than bosons. Using the
asymptotic expression (3.4.43), we can read off the S-matrix of this problem from the
coefficients in (3.4.44) to be

_ I(1+m— L1 +m—p) (1 + 61+ 3)

S(B,6) =— T'(1— 31 -7 L(1+m+B)(1+m+fF)

If we scatter particles 1 and 2 with equal angular momentum .J5, then the relative
angular momentum vanishes, / = 0 and = 3 = ik. In this situation the S-matrix is

(1 —ik)2(2 — ik)2(3 — ik)%...(m — ik)?

S=- - - - ~
(14ik)2(2 4 ik)2(3 + tk)2...(m + ik)?

(3.4.45)

This expression has double poles at k = in with n = 1,2,3,...,m. We discussed
in the last subsection that, from dynamical arguments, the coupling of the quantum
mechanical model for the collective coordinates needs to be of order O(g?). Therefore
we need m ~ O(g). In the large g regime we obtain the infinite series of double poles
that we expected from the complete theory. However, we also obtain an extra double
pole at k = i. This is not unexpected as our toy model does not forbid J, = 0 states
for the heavy particles!”. Note that there is no single pole related to the fact that,
in the toy model, the exchanged particles change ¢. In the true theory there is a
single pole at k = . One the other hand if we look at the S-matrix for £ # 0 we find
a simple pole at k= i|¢| representing the t-channel exchange of the particle that is

giving rise to the potential in the toy model. In this case, we also retain double poles

I"Note, however, that they are indeed excluded for the intermediate “light” states. This can be
seen by expanding the effective potential at large distances.
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for k = ir with r =14 |¢|,2+ 1/, ...

We conclude that this very simple model presents many of the characteristics as-
sociated with the complete S-matrix of the full string theory. Of course, it would be
nice to find the correct quantum mechanics theory that describes the full problem in

this regime.

3.5 Poles in the Beisert-Eden-Hernandez-Lopez-

Staudacher S-matrix

3.5.1 Integral expression for the dressing factor

In [24,25] a conjecture was made for the exact form of the unknown dressing factor

that appears in the magnon S-matrix. This dressing factor was expressed as

2 Bl o) R (ay, ay)

R2(z1, xy) = e2X(@na2)=iZx(@2,01) (3.5.46)

The function x was given as a series expansion in powers of 1/x;. In order to study
its analytic structure it is more convenient to write it as an integral expression. We
find it convenient to introduce a new function x(1,2), which differs from x(1, 2) in [25]
by terms that are symmetric under 1 < 2. Such symmetric terms cancel in (3.5.46)
and thus y will lead to the same dressing factor if we use it in (3.5.46). In appendix

A we derive the following integral expression for x from the formulae in [25]

29

le dZQ . 1 1
1 2 — loeT'(1 —_——2y— — 54
i 75 74 — <x2_z2>>< g T(1+ig(a1+ -~ =) (3:547)

where the integral is over the contours with |z1| = |22] = 1. With these contours the

integral is well defined and there are no singularities on the integration contour if we
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assume that ||, |z2| > 1, as it is the case for physical particles.

3.5.2 Poles of the dressing factor in the giant magnon region

As we start analytically continuing in z; and x, we might encounter singularities.
Singularities will appear when poles or branch cuts of the integrand pinch the contour.
We will study only a subset of all possible singularities. We will set g to be large
and then we will focus on the giant magnon region with fixed p, there z* are near
the unit circle but away from 2% = 1. We will then analytically continue away from
physical values of ¥ in this region, but we will still stay near the unit circle and
far from 2% = 1. In other words, starting from the original values for p; and p, we

will analytically continue only in a small neighborhood of these values of order 1/g

around the physical values.

In order to find the poles of y in (3.5.47), we view it as a function of three inde-
pendent variables: g, 1 and x5. In order to avoid having to keep track of the branch
of the log in (3.5.47) we take a derivative of xy with respect to g. This will allow us to
isolate the singularities of y that depend on g. In fact, there are no singularities that
are independent of g because we can set ¢ = 0 and we see that y is identically zero.
Thus, taking the derivative and disregarding some terms that do not contribute to

the integral we find

PO = g e¥n
n=1
dz dzy 1 n

X
21 271 (21 — 1) (22 — 29) _i§+zl+i_22_

—(3.5.48)

z2

928g>~(n = -

We now do the integral over z; by deforming the contour, which starts out at |z;| = 1,
towards the origin of the z; plane. The only poles we find come from the last factor in

(3.5.48). The pole is at z; = z,(z2) were the function z,(z) is defined as the solution
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to

1 1
et — =i n>0 (3.5.49)
2 : g

as in [24] . Out of the two roots of this equation we should pick out the root whose
absolute value is less than one. We can select this root unambiguously if |z] = 1. So
from now on we only talk about this root and its analytic continuation as a function

of z. We thus find that the result of the z; integral is

dz 1 n
2 ono_ g
g 0, X" = ZJQ{ 3 =)@ = 2 (2) X [ (3.5.50)

where we have set z = 2z5.

We would like to understand where (3.5.50) has poles when we change z;. Note
that if |;| > 1 (at it is the case for physical values) then the integral is finite. As we
start analytically continuing x; we could have a situation where the pole at z, = x5
moves inside the unit circle. In that case, we might think that all we need to do is
to deform the contour so that |z3| < 1, but this could push z,(22) to larger values in
such a way that it becomes equal to x;. In other words, there is pole only if two poles
of the integrand pinch the integration contour. We discuss below when this happens.
If the contour is indeed pinched then the integral is equal to —27i times the residue

at zo = x5. This gives

1 n
2 ~n
0 = —
9 CgX 1 — Tp(w) 1 — %
X = —ilog(zy — x,(22)) (3.5.51)

We then find that X ~ (z; — x,(72))? has double zeros.
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Figure 3.11: On the left we see plots of z,,(z) and 1/2,(z) for z on the unit circle. The circle gets
mapped to an interval. z, is the one inside the unit circle. We have set n/g = 0.1. In the plot on
the right we have taken |z| = .98 < 1.

3.5.3 When do we pinch the contour?

We need to understand some aspects of the function z, more precisely (see Figure
3.11). The essential feature is the following. If we set z = e¥ then 2, ~ 1/z for
0 <60 <mand z, ~ 2z for = < 6 < 0. Recall also that in the giant magnon region
the physical values of z& ~ e*®/2. Both are close to the unit circle but z* is in the

upper half plane and =~ in the lower half plane.

Suppose that we have 2o = 3. This will be on the upper half plane and for finite
and physical (real) values of ps it will be close to the unit circle, but outside the unit
circle. If we keep z; fixed and we analytically continue in z3 then we see that z, will
be in the lower half plane when z ~ z3, thus we can only pinch the contour if z; is
also in the lower half plane. This happens when z; = 7, but not for z; = z7". Since

+

zn ~ 1/z for z ~ x5 we find that |z,| increases as |z| decreases (see Figure 3.11).

Thus we pinch the contour when zy = x7 and 2, = z7.

Now suppose that zo = 5. If 2 ~ x5 we have z, ~ z so that when we decrease |z|
we will also decrease |z,| and we will not pinch the contour. So the only case where
we pinch the contour is when z3 = z and z; = z,. Of course, we have discussed

poles from x(1,2). When we consider x(2,1) we have the same story with 1 < 2.
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Thus, the final result is that we have poles and zeros of the form

- +1)2
o2 ~ 6721(2(93;@2*)7;2(90;,11*)) -~ H (xz_ - $n<xi))
(27 — zn(3))?

(3.5.52)

n>0

We have only indicated terms that give rise to poles or zeros in the region of interest
(large g , p1 ~ p2 of order one and p; — py ~ O(g)). Of course, the expression for the
location of poles is exact and we will find poles at these locations in the appropriate

branch for any values of p; and g. 8

The double zeros of o2 (or double poles of 072) lie at

3 =za(xf),  n>0 (3.5.53)
This implies that
' 1
Uy — Uy = _in+1) = —i@, m > 1 (3.5.54)
9 g

Thus we see that the poles do not start at one. In fact, we do not get poles in o2 for
m = 1.1 Note that equation (3.5.53) contains more information than (3.5.54) since
we have specified a particular branch of the function x, . In fact, if we only looked
at (3.5.54) we might incorrectly conclude that there are poles in the near plane wave
region with 27 ~ 23 and || 3> 1. On the other hand, we see from (3.5.53) that
in this region ,,(z]) ~ 1/x], whose absolute value is not much larger than one. Of

course, it is obvious from the integral expression (3.5.47) that there are no poles in

the region |z;| > 1 since the integral is explicitly finite there.

In this whole discussion we have assumed that n < ¢. If this were not the case,

we would have to move by a larger amount from the giant magnon region and we

18Note that there are not poles or zeros at #; = x, (x5 ) in the branch describing the neighborhood
of the giant magnon region. Such poles are probably present on another branch.

YNotice, however, that there are poles (or zeros) at that position in the one loop factor answer
in [24] (see also [78]). These poles (or zeros) are cancelled by all the higher order contributions.
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would have to understand better the whole analytic structure of the function. Finally
we note that a related integral representation of the BHL/BES phase has recently
been obtained in [105]. Like Eqn (3.5.48) above, the formula (5.11) appearing in this

reference is also suggestive of a sum over intermediate states involving BPS particles.

3.6 Discussion

We have understood the physical origin of the poles in the S matrix for the scatter-
ing of fundamental magnons. These poles can be cleanly isolated for strong coupling
in the giant magnon region. In this case, the poles are far from other singularities of
the S matrix. These poles can be explained by the interchange of BPS magnons. The
origin of the double poles in the magnon S-matrix is the same as the origin of the
double poles in the sine Gordon S-matrix. The position of the poles is determined
by the spectrum of BPS particles of the model. These poles are accounted for by
considering all the BPS particles that were found to exist on this chain. Therefore
there is no reason to think that the spin chain has any other bound states beyond
the BPS ones we already know about. In fact, the localized non-BPS classical solu-
tions that were found in [38] were shown to be continuously connected to separated
BPS magnon configurations. Thus, those solutions do not correspond to new states.
One thing that we have not explored is the physical origin of the branch cuts in the

dressing factor. It would be very nice to understand these more precisely.
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3.7 Appendix A: Derivation of (3.5.47)

We start from the expression for x(zi,z2) as in equation (A.9) of [25]

N~ T 1 it J,_(2g1).J, 1(2g1)
= 2 Ss—r=1)) s | — 3.7.55
X 2521008(2(8 T ))xq 1905 1/0 + ot — 1 )
1 — 1 > dt Jw 1(29t>J2+21(2gt)
= _9 _1[ bt +
A e e

where s = r+ 1+ 2] and » = w + 2. We then use the following expression for the

Bessel functions

o do 71n9+izsin9
%@_A ” (3.7.56)

We insert these expressions in the above formulas, we perform the sums and after a

simple shift of the integration variables we obtain

1 [?™do, [*"db 1
= 2 2/ / —2e - 2192(1_ o X (3.7.57)
2

123 J(1— 2

© Jt ¢t i(2gt)(— cos 01+4cos 02)
X _
/0 t et —1

We now use that

®dt e
/ =0yt 20, +10sT(1 4+ 2) (3.7.58)
 Tars

where (] and C5 are divergent constants which do not contribute once we do the

integral over #;. We then find

1 [*db, 2”d92 o2 1
] e e ey < (3799

X = 2

x log I'(1 +42g(cos 0y — cos b))

This last term looks a bit messy and with many possible branch cuts.

Let us simplify this expression a bit more. First we note that we can write (3.7.59)
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as

2102 1
X = / (01, 02) (3.7.60)
Tog 1 — —
1 1
= 05 —i0 01,0
/[1— — 1+—emf]f(1 ?

— /j[f(@lﬁz)—f(%,@l)]

€2

1 1
-/ L - ] (61.62)

xr2 x2

where we used that f(6;+7,0:+7) = f(6a,61). We have also relabelled the integration
variables.
By forming the antisymmetric combination x,(1,2) = x(1,2)—x(2, 1) it is possible

to simplify this expression further. One can see that

. d@l dHQ 0y —if (‘7:1 _ x2)(e—i92 _ —i91>
o(1,2) = — e 12 (3-7%1
Xa(1,2) "] om o € (z1 — e~ 1) (zg — e=2)(z; — e=92)(zy — e~ 1\9’) )
log I'(1 + i2g(cos 61 — cos b))
- —z%%@ (21 — 22) (22 — 21) "

2m 2w (.Tl — Zl)(QZQ — ZQ)(LUl — ZQ)(.TQ — Zl)

log I'(1 4 i2g(cos 0; — cos b))

- j{ = j{ o < (z1 — Zl)l(@ —z) (21— 22)1(I2 - Zl)) .

x logI'(1 + i2g(cos 0; — cos 0s))

where we have set z; = e~ . In these expressions, of course, we replace 2cosf; =
21 + i, etc. Note that we can view this last expression as arising from x,(1,2) =

X(1,2) — x(1,2) with x as in (3.5.47), which is the formula we wanted to derive.
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3.8 Appendix B: Classical magnon solutions found
by Spradlin and Volovich

For the reader’s convenience we reproduce the solutions in [97]. We will use complex
target space coordinates Z; = X; +iX, and Zy = X5+ 1X, describing an S? given by
|Z1)?+|Z5|*> = 1. The one magnon solution, written in terms of the A* and worldsheet

o%! variables, is given by

+io?0 At —2iZ+t A\ e 227
Z, = - ¢ FAcT (3.8.62)

/)\+)\, €—QZZ++6—212

e (AT = AF)

2 = VAN e 2ET 422 (3.8.63)
where we defined
A ol A (3.8.64)
2\ M -1 A4 8.

A two magnon (scattering) solution was also presented in [97] and discussed in section

4. The form of this solution is

6wo N1

7z, = N (3.8.65)
2/ ATATAT A, D

Zs ! 2 (3.8.66)

T /AN, D
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with

D = X' AL cosh(up + ug) + Afy A" cosh(uy — ug) +

A A3y cos(vy — vg) (3.8.67)
Ny = M [ATATer e £ AT A e ] 4

A A A Aze™ T AT A e ] 4
AT AT A @70 L AT A AT AL e ) (3.8.68)

Ny = A e™ AL AL A e + A5 A Aje ] +

Mg € ATTAGTAT e + A A ATe ] (3.8.69)
and
= A=A (3.8.70)
u; = i[Z —Z/] (3.8.71)
v, = Zf+Z —o" (3.8.72)

These solutions admit the following generalization: u; — u; +a; and v; — v; +0b;,
with a; and b; real. Two of these four parameter can be reabsorbed by a worldsheet
coordinate redefinition. We are, therefore, left with two parameters corresponding to
a relative distance and a relative phase.

The scattering solution presents the symmetry A\{ <> AJ or, alternatively A\ <

A5 . Also, it collapses to the single magnon solution for )\;“ = A; for j=1or2.
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Chapter 4

Giant Magnons Meet Giant

Gravitons

We study the worldsheet reflection matrix of a string attached to a D-brane in AdSs x S°.
The D-brane corresponds to a maximal giant graviton and it wraps an S2 inside S°. In
the gauge theory, the open string is described by a spin chain with boundaries. We study
an open string with a large SO(6) charge, which allows us to focus on one boundary at
a time and to define an asymptotic boundary reflection matrix. We consider two cases
corresponding to two possible relative orientations for the charges of the giant graviton and
the open string. Using the symmetries of the problem we compute the boundary reflection
matrix up to a phase. These matrices obey the boundary Yang Baxter equation. A crossing
equation is derived for the overall phase. We perform weak coupling computations up to
two loops and obtain results that are consistent with integrability. Finally, we determine
the phase factor at strong coupling using classical solutions.

The work in this chapter is contained in [106]. This article was coauthored with Juan

Maldacena.
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4.1 Preliminaries

Recently there has been a great deal of progress in understanding planar N = 4
super Yang Mills, see [23-25,37,66, 78, 80, 82| and references therein. Planar Yang
Mills theories give rise to a two dimensional theory which can be viewed as the
worldsheet of a string. From the gauge theory point of view, single trace operators
give rise to a closed spin chain, which in turn is related to a two dimensional field
theory on a circle. When the charges of the state under consideration are very large
one can view the gauge fixed closed string theory [107,108] as living on a large
circle. The limit where the string is infinite is particularly simple [21,45] and one
can solve exactly this problem [23-25,53,82]. By “solving” we mean finding the
fundamental excitations, their dispersion relation, and their scattering amplitudes on
the infinite string for all values of the 't Hooft coupling. It is very useful to consider
the symmetries of the problem, which are larger than naively expected [23]. These
symmetries determine completely the matrix structure of the two particle scattering
matrix [23,109]. The remaining phase can then be determined by using a crossing
symmetry equation [24,25, 82].

In integrable field theories it is often possible to define the system on a half line,
with suitable boundary conditions such that the system remains integrable. A nice
example is the boundary Sine-Gordon theory studied in [110]. In this chapter we
study some physical problems in N = 4 super Yang Mills that lead to a system with a
boundary. From the string theory point of view we expect to have boundaries when we
have D-branes. Then the open string excitations are described by a two dimensional

field theory with a boundary. Such D-branes can arise in several situations:

e Gauge theories with additional flavors. Open strings correspond to strings with

a quark and an anti-quark at the ends.

e Theories with lower dimensional defects, which in some cases can be realized as
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D-branes in the bulk [111].

e Certain large charge operators in N' = 4 super Yang mills. For example, op-
erators of charge N of the form det(Z), where Z is one of the complex scalar
fields in the theory. We will focus on such operators and their excitations in

this chapter [26,112].

Another case where integrable systems with boundaries arise is when we consider
operator insertions along a Wilson loop [113]. This is a situation where, despite the
absence of explicit D-branes in the bulk, we end up with a system with a boundary.
Of course, we could say that a Wilson line is a an open string which ends on the
boundary of AdSs.

Previous work analyzing open spin chains in N/ = 4 super Yang Mills or the
corresponding open strings with various boundary conditions includes [27, 28, 111,
113-129]. We focus, mainly, on two intimately related cases which consist of giant
graviton operators with two possible orientations relative to the open string ground
state. We show that in one case we have boundary degrees of freedom, while in the
other case we do not.

The central idea in this chapter is a generalization of the analysis by Beisert
[23,109] to the case where we have boundaries. Namely, we will use the symmetries
of the system to determine the matrix structure of the boundary scattering matrix.
We then proceed to write a crossing equation for the phase factor. Although we have
not solved the crossing equation, we have computed the phase factor at weak and
strong coupling.

We have also checked that the boundary Yang Baxter equation is obeyed. This
follows by an argument similar to the one used in [109]. Furthermore, we performed
calculations at two loops in the weak coupling expansion and obtained results compat-
ible with integrability. At strong coupling, this system leads to a classically integrable

boundary condition for the string sigma model [124].
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When studying the action of the symmetries, it has proven to be useful to have
in mind the physical picture for the extra central charges suggested by the classical
string theory analysis in [38] (see also [54,109] for a related picture). Although we
explicitly discuss the specific case of giant gravitons, our methods can be extended

without too much work to the various cases listed above.

4.2 Giant gravitons, determinants and boundaries

We study open strings attached to maximal giant gravitons [26] in AdSs x S®. These
were previously studied at weak coupling at one loop in [27] and at two loops in [126],
while a strong coupling classical analysis was carried out recently in [124]. Problems
with the integrability of the theory at two loops were pointed out in [126]. We will
see, however, that a non trivial extra term coming from a subtle interaction with the

boundary will render the theory integrable.

4.2.1 Giant magnons meet giant gravitons
Giant gravitons

Giant gravitons are D3 branes in AdSs x S° [26]. These D3 branes wrap topologically
trivial cycles, but are prevented from collapsing by their coupling to the background
fields. We will concentrate on the so called “maximal giant gravitons” which are
D3 branes wrapping a maximum size S® inside S°. We can introduce coordinates
for the S® in terms of W = ®! 4+ i®% YV = ®3 4 i®* and Z = ®° + i®6, with
|Z)> + [W|? + |Y|? = 1. Maximal giant gravitons are given by a pair of independent
linear equations a’/®’ = b'®’ = (), and are all equivalent up to an SO(6) rotation of
the sphere. These configurations preserve half of the supercharges. The particular

half that they preserve depends on their orientation inside the S°.
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We are interested in studying open string excitations on the giant gravitons. Our
methods work best when the open string carries a large amount of charge. Thus,
we also want to single out a special generator, J = Jsg, of SO(6) which generates
rotations in the 56 plane. We consider open strings with large charge J. In the field
theory such states will involve a large number of insertions of the field Z. Since we
are breaking the SO(6) symmetry by selecting a particular generator, .J, we find that
the explicit open string description depends on the orientation of the giant graviton
inside S°.

We will consider two cases where the D3 brane wraps the following three spheres

e The three sphere given by Z = 0. We will call this the Z = 0 giant graviton
brane. We choose its orientation so that it preserves the same supersymmetries

as the field Z in the field theory.

e The three sphere given by Y = 0, which we call the Y = 0 giant graviton brane.
This brane preserves half of the supersymmetries preserved by the field Z in

the field theory.

Giant magnons hitting giant gravitons

In what follows we will study open strings with a large amount of charge J. The
centrifugal force pushes most of this string to the circle at |Z| = 1. We choose a
light cone gauge so that a pointlike string moving along this great circle corresponds
to the BMN vacuum [21]. In light-cone gauge the string has length J. The ground
state of this string preserves half of the spacetime supersymmetries. In particular, it
preserves those supercharges with A — J = 0, where A is the conformal dimension.
Furthermore, we can have excitations with momentum p that move along the string.
The lowest energy excitation with a given momentum is BPS. It corresponds to an

elementary magnon on the corresponding gauge theory spin chain. The state manages
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Figure 4.1: Z = 0 brane in the Z plane.

Figure 4.2: Y = 0 brane in the Z plane.

to be BPS due to the existence of additional central charges [23]. A convenient picture
for the origin of these central charges is the following [38]. We draw the projection of
the configuration on the Z plane. This plane is embedded in AdSs x S° as explained
in detail in [61]. The string ground state corresponds to a point on the rim of the
circle. An elementary excitation corresponds to a segment that joins two points on
the rim. The two central charges correspond to string winding charges along this 7
plane [38]. It is now convenient to think about the two branes mentioned above in
these coordinates. The Z = 0 giant graviton brane is simply a point at Z = 0, and
it wraps an S® inside the S°, see figure 4.1. The Y = 0 giant graviton brane, on the
other hand, covers the whole disk, see figure 4.2. At each point of the disk it also
wraps an S! inside the S® that sits at that point. This circle shrinks at the rim of
the disk so that we end up with a brane with the S topology.

In the large J limit the string worldsheet is a very long segment, so that when
we analyze the effects near one of the boundaries we can forget about the existence

of the other boundary and consider the system on a half infinite line. Therefore, we
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consider first the problem of a giant magnon coming from infinity and bouncing off
the boundary back to infinity. In particular, this means that our states interpolate
between the usual vacuum of BMN states [21] and the boundary. Furthermore, this
implies that one of the ends of the string looks like a “heavy” particle - i.e., there
is an infinite amount of J charge at this point - moving at the speed of light in a
maximum circle of S®; see figure 4.3 and [38].

Let us now look at the shape of the corresponding strings on the Z plane. The
shape of this string could be complicated at a random point in worldsheet time, but in
the asymptotic region (worldsheet time t — 400) they must look like giant magnons.
This means they connect two points on the rim of the disk. This yields no surprise
for the Y = 0 brane: the asymptotic scattering states for the Y = 0 brane are just
strings stretched between points on the rim. This might give the impression that the
strings are contained within the D-brane. This is not necessarily true; there is an
additional S® C S° at each point on the disk and the brane and the string could be
separated within this S2.

The Z = 0 brane presents an interesting characteristic. In order for the string
to interpolate between the correct states we are led to the following picture of the
asymptotic scattering configuration, see figure 4.3 (b). We need to have a string that
connects the rim of the disk to the center where the Z = 0 giant graviton brane sits.

This, in turn, suggests that the Z = 0 brane carries a boundary degree of freedom.
Even when there is not asymptotic excitation we should have the piece of string
connecting the rim of the disk to Z = 0, see figure 4.3 (c).

A string lying along a segment in the Z plane carries non vanishing central charges
of the worldsheet algebra, since we argued that those central charges correspond to
string winding charges on the Z plane.

An important comment at this point is that strings with finite J charge never

reach the asymptotic vacuum described above and consequently cannot reach the rim
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MEVAOIO

(a) (b) () (d)
Figure 4.3: (a) Large J open string attached to a Z = 0 giant graviton brane. (b) Asymptotic
form of the initial condition for the worldsheet scattering of a magnon off the right boundary. The
dot on the boundary represents an infinite string in the lightcone ground state. (c¢) The boundary

degree of freedom corresponds to a string going from the brane to the rim of the circle. (d) A string
configuration for sufficiently small J does not get close to the boundary of the circle.

of the Z plane. These strings are localized around the brane at the center of the
circle.

From the picture presented so far, we are lead to a simple guess for the energy of
the boundary state, once we understand the representation of SU(2|2)? to which it
belongs. Let us assume that it belongs to the smallest BPS representation. We will
later substantiate this statement by a weak coupling computation where we check
that this is indeed the case. Once this is shown for weak coupling, it will be true at
all values of the coupling. This implies that the energy is € = \/TU{:P where k are
the two the central charges. We then notice that the central charge is precisely half
the central charge of a magnon with momentum p = 7, which corresponds to a string

joining antipodal points on the rim. Therefore,

A
e =\ 1+ 492, g (4.2.1)

~ 1672

where A is the 't Hooft coupling. Moreover, since the string in figure 4.3 (c) is sitting
at a point in the S C S® we have collective coordinates and their quantization is
expected to lead to BPS boundary bound states with higher SU(2|2)? charges, as we

have in the bulk [85,91]. These states have energy eg(n) = /n? + 4¢2.

These statements do not rely on integrability, only on the symmetries of the
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theory. Our exact and perturbative calculations presented in the following sections

agree precisely with the results discussed above.

4.2.2 Determinants in the gauge theory: the weak coupling

description

The coordinates chosen in the previous section make it easy to translate this analysis
to the gauge theory side of the story. Here we think of W)Y, Z as the three com-
plex scalars of N = 4 super Yang Mills (and of course we also have their complex
conjugates).

Then the Z = 0 giant graviton brane, which is the maximal giant graviton given by
the equation Z = 0, corresponds to the gauge theory operator det(Z) [112,130-132].
This is a gauge invariant operator with J = N. Of course, the Y = 0 giant graviton
brane is then obtained by an SO(6) rotation as the operator det(Y’). Both of these
operators correspond to the maximal giant gravitons on their ground state. We
now want to consider giant gravitons with open strings attached. These are given
by replacing one of the entries of the determinant by a chain similar to the one
appearing in single trace operators [27,120,131,133-136]. For example, for the Y =0
giant graviton brane we can write

Oy = Pivillyhyn YN (727...222)" (4.2.2)

i1t2...iy—1B " J1 "TIN-1

where one can make impurities propagate inside the chain of Zs. Thus we consider

operators of the form

Oy(x) = ezvyiyle yN1 (L zz22yZ22Z ... (4.2.3)

i1i2...iN—1B 7 J1 * T IN-1

where x denotes a generic impurity. For the Z = 0 giant graviton brane, an operator
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of the form (4.2.2) with Y replaced by Z would factorize into a determinant and a
single trace [120]. This would not describe an open string but a D-brane plus a closed
string. Instead we consider excitations of the form

Oz, X X") = eIzl | ZNV(ZZ .. ZZZXZZZ ... ZZX"); (4.2.4)

i192...iN 1B CYIN-1

where the impurities xy and x” are stuck at the ends of the Z-string. The impurities
will reflect when they get to the ends of the string of Zs. Of course, in the large J
limit, we only have to worry about one of the ends at a time.

As we mentioned above the two kinds of giant gravitons are related by an SO(6)
transformation. Thus, if we start with the Z = 0 brane and we add Y impurities so
as to completely “fill” the chain we would end up with a state of the form

O =PIy g N (YYY L YYY), (4.2.5)

i1t2...iN—1B “j1j2 JN

which is simply an SO(6) transform of the state O in (4.2.2).

4.3 Exact Results for the boundary reflection ma-
trix

Following the work of Beisert [23,109], it is possible to calculate, up to an overall
phase, the reflection matrix associated with the scattering of impurities from the
boundaries discussed in the previous section. All we need are the symmetries of the
theory and the representations of the states involved. In order to carry out this
analysis it is important to understand well the symmetries of the system. Let us first
discuss the symmetries of the bulk, before we add the boundaries. As explained in
23,109] we have a centrally extended SU(2|2)? algebra. We can consider one of these

factors at a time. Fach factor has eight supercharges Q% and &%, which transform
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under SU(2) x SU(2) C SU(2|2). We denote the generators of SU(2) x SU(2) as RY,,
L respectively. We follow the notation of [23]. The algebra contains a generator

¢ = where € is the energy of an excitation around the vacuum built with Zs,

5
e = A — Jss. In addition we have two extra bosonic generators k and k which are the

extra central charges which appear in the anti-commutators!

(6% (0% k a a k*
{Q a’ﬂﬁb} = €ab€ 65 ’ {G ar Gb/@} =€ be@ﬂ? (436)
These imply that the BPS condition reads €2 = 1 + kk*. For the fundamental bulk

excitation we also have a relation between k and the momentum

k|2 = 1642 sin2§ (4.3.7)
The phase of £ is a bit more subtle and we will discuss it later.

The fundamental of SU(2|2) can be split in the following way 1 = 2 0 @ 'O,
under SU(2) x SU(2), where we specified that one doublet is bosonic while the other
one is fermionic, i.e. 0 = (¢7,¢~) and FO = (¢, 4~). We have added a dot to the
bosonic SU(2) indices to remind us that they transform under a different SU(2) than
the fermions. It is useful to write down the transformation rules for the fundamental

multiplet as

Q%[¢") = adv*) Q7 |¢7) = beeald’)

&%l¢") = ceape”|v") | &°,[07%) = diz]o") (4.3.8)

where ad — cb = 1. We find that g = ab, % = cd and the energy is € = 2¢€ = ad + bc.

'In the notation of [23] £ =P and & = &.
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We will pick the following parametrization for (a, b, ¢, d):

a = /g
b= gf (1—?) (4.3.9)

V9
frt

The momentum of the particle is given by i—f = €. The ad — bc = 1 condition

translates into the mass shell condition
(4.3.10)

The unitarity of the representation demands that
n=VirT —ixt (4.3.11)

up to a phase, which we set to one. Unitarity also requires that f is a phase, which
contributes to the phase of the central charge as k = —2¢gf(e®” — 1). We can think
about the central charges in terms of the segment that the magnon describes in the

Z plane, by stretching from z; to 2o,

, k
29 — 21 — f(e’p — 1) = —% (4312)

Then the phase f represents the orientation of that segment, see figure 4.4. This
orientation depends on the sum of the momenta of the magnons that are to the left

of the magnon under consideration?. Thus f is given by the angle that the magnon is

2This corresponds to the non-local parametrization of the problem, as described in [109]. This
can also be described by forgetting about f and adding markers Z*, see [109] for details.
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(a) (b) (c)

Figure 4.4: (a) We depict a configuration of well separated magnons living on a long string. We
choose the point 1 as a reference point and we want to describe the magnon with momentum p. (b)
f is the point on the unit circle where the magnon starts and gives the angle required to rotate it
to the reference point 1, as in (c).

making in a given state, relative to the magnon with the same momentum that starts
at z; = 1 and goes to z = €, see figure 4.4. In the case that we have a semi-infinite
string it is convenient to take the reference point to coincide with the point where
this infinite string is located on the circle.

When we return to the full problem we need to consider two extended SU(2|2)
factors and the representation is the product of the fundamental for each, giving a

total of 16 states. For example we get
Y=¢"x¢ , W=¢"x¢, W=¢ xé", Y=06"x¢t (43.13)

where the fields ¢ and ¢F transform under two different SU(2|2) groups. When we
consider two extended SU(2|2) factors we get six central charges. However, in this
physical problem we require that the central charges for the two factors are equal (we
set to zero the difference).

When we consider the Z = 0 giant graviton brane we preserve the full symmetry
group. Physical states with finite J correspond to strings that start and end on the

D-brane that sits at Z = 0 and they thus carry zero total central charges k = £* = 0.
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On the other hand when we consider the Y = 0 giant graviton brane we only
preserve the subgroup which is also preserved by the field Y. Let us consider the

anticommutator

{Q°,,6°;} = 0205 + 05R°, + 00L% (4.3.14)

and concentrate on the supercharges with a + index, Q% = Q% and 6, = GJFa. These
supercharges annihilate an object with J = € + %i = 0, which is a singlet under the
second SU(2), such as a gauge invariant operator made purely with the field Y (notice
that an upper — index carries 9%2 = —%) These supercharges, together with J and
the second SU(2) generators form an SU(1]2) subgroup. The (noncompact) U(1)
generator?, J, in SU(1]2), which appears in the right hand side of the supersymmetry
algebra, is given by 2J = ¢ + th = A — Js6 — J34 — J12 for one SU(1]2) factor and
itis 23 = ¢+ 25%1 = A — Js6 — J34 + Jyo for the other.

Let us now study each case in detail.

4.3.1 The Y = 0 giant graviton brane or SU(1]|2)? theory

As we mentioned above, the symmetries that commute with the field Y lead to an
SU(1|2)? subgroup. In order to study the problem we first focus on one SU(1|2)
subgroup and compute the reflection matrix in this case.

The SU(1]2) algebra arises by restricting all the generators of the SU(2|2) algebra

to the ones carrying only + indices. As we mentioned above the (non-compact) U(1)

3This factor is really non-compact in our problem, hopefully we can continue to call it a U(1)
without causing confusion.
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generator is J = € + iRiL and the non-vanishing commutators are

B = g (43.15)
[3,6a] = %Ga (4.3.16)
.57 = §T = 5T (1317
(Q%,65) = L£%+653 (4.3.18)

where J¢ is any generator with upper index a. Notice that this algebra is not
centrally extended. All central extensions that appeared in the SU(2|2) algebra do not
contribute tot he anticommutators of the surviving supercharges have disappeared.
In this case a finite J physical open string does not necessarily have zero central
charges, but the central charges, k, k* are not preserved by the boundary.

We can find the action of this algebra on the states of the fundamental represen-

tation of SU(2|2) from (4.3.8). For completeness we give the action of all generators

£o,l6t) =0, Bl = 631 — 205)

A6y =wels), AT =adlot), AW = lad+bo) )
Qo) =0, Q%|6%) = aly*) . Q|7) = be*’|o7)

Sald™) = ceaplt’) , Sal¢™) =10, Salt)?) = diglo")

with o, 3,7 = +, —.

Since the SU(1|2) algebra does not have a central extension, we find that for
general momentum we have a non-BPS representation since the charge J = 5 + 9‘{1
can vary continuously. Thus we expect that the fundamental representation of the
extended SU(2|2) transforms irreducibly. In fact, it transforms as the representation
of SU(1|2) with the supertableaux 4. This has the right dimensions as 4 =
B1

@ Bl?r% @ F[I%, where we have broken the representation in U(1) x SU(2)

e_1
272
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multiplets and we have indicated whether we have bosons or fermions. In terms of
the degrees of freedom of the SU(1]|2) fundamental representation @ = (i, x*) we
can represent the corresponding states as (x™x~ — x"x T, v, ox= + xTp). We now
would like to match these states to the fundamental of the extended SU(2|2) algebra.

Matching their bosonic charges we see that

X' —x xt ¢~
o ¢

= - (4.3.19)
X X (ol
oxt+xte (Uxs

In the special case of zero momentum p = 0, the representation splits into two,
one is the identity, given just by ¢~, and the other three states form the fundamental,
BPS representation of SU(1|2) with one bosonic, ¢, and two fermionic states. Recall
that the field Y is given by Y = gb; X g5;, so it is reasonable that for zero momentum
it is a singlet under SU(1|2) since the SU(1]2) subalgebra was found by demanding
that all generators annihilate Y. In this chapter we are interested in the case with

non-zero momentum where we have a single SU(1]2) non-BPS representation.

The reflection matrix

The SU(1]2) reflection matrix* R can now be calculated by demanding that [R, J] =
0 for all generators J. The vanishing of the commutators of R and the bosonic oper-

ators imply that R must be diagonal with equal entries for the fermionic components.

4The full reflection matrix of the theory is just the product of two SU(1|2) reflection matrices.
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Namely,

= 0 00
0 rt 0 0
R = (4.3.20)
0 0 r 0
0 0 0 r

The commutators with the fermionic operators yield the following conditions:

ar —art = 0 )
rT=2Sr= %T
br——br = 0
. (4.3.21)
cr—cr= =0 /
rt=4r="%r
drt —dr = 0

where the primed variables are the quantum numbers of the state after the reflection.

These are obtained from the original ones by

ot -t = a7 (4.3.22)

This follows from conservation of energy, p — —p and holding x* + z% —r - m% = g.
Note that 7, (4.3.11), is invariant under (4.3.22), so y’ = 1. The phase f might change
as well. f represents the point where the magnon starts in the Z circle, see figure 4.4.
When we have a boundary scattering process the values for f for the incoming and
the outgoing magnon are related by the geometry of the scattering process in the 7
plane. In other words, it is determined by the conservation laws. We represent the
relevant conservation laws in figure 4.5 for the scattering from a right boundary and
a left boundary.

We see that in the case that we scatter from a boundary on the right, then f
does not change, f' = f. If the orientation is opposite (boundary on the left), f
changes to f' = f <£>2, see figure 4.5(c,d). Incidentally, (4.3.21) requires bc = b'c

T
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Right
boundary f
(a)
f
Left
boundary
)

: ; f’
(b)
il
(c (d
Figure 4.5: We depict several scattering configurations in a situation where we have a semi-infinite
string. We choose the infinite region (“heavy” particle / BMN vacuum) to lie at the reference point
1 in the complex plane. We can read off the values of the phase f for the initial and final states
from these figures. In (a) and (b) we depict the initial and final configuration for the scattering off
a boundary on the right. We can see that in this case f = f' = 1. In (c¢) and (d) we have the initial
and final configurations for scattering from a boundary on the left. f = e~ # f' = ¢t in this
setup. In all cases we located the point that sets the phase for the incoming state, f, and for the
final state, f’. The arrow goes from left to right on the string worldsheet.
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and ad = a'd’. This follows trivially from conservation of energy € = ad + bc and the

mass shell condition ad — bc = 1. Plugging in the values for the quantum numbers

yields
—™™ 0 0 0
0 1 00
Rr = Ror(p) , for a right boundary (4.3.23)
0 010
0 0 0 1
and
—? 0 0 0
0 1 00
Rr = Ror(p) , for a left boundary. (4.3.24)
0 010
0 0 0 1

In these expressions i—f = e and Ror(p), Ror(p) are arbitrary phases. We see that
the two results are consistent with the reflection symmetry that we have in the prob-
lem. In fact, if we assume reflection symmetry we can also relate Ror(p) = Ror(—p)-
In addition, unitarity requires Ror(—p) = 1/Ror(p), Ror(—p) = 1/Ror(p)-

The magnons in the full theory are the product of two fundamental magnons of
each extended SU(2|2) algebra. Similarly, they are the product of representations for
each SU(1|2) subalgebra.

From this result we can predict a ratio of reflection amplitudes. For example the
ratio of the amplitudes of scattering a Y = ¢~ x ¢ and a W = ¢+ x ¢~ is —eFP for
R, L boundaries respectively. Remember that in our conventions p is the incoming
momentum. If the boundary is placed on the left this momentum is negative. So left

and right results are consistent. We will compare this result with explicit calculations
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Figure 4.6: The content of the Yang Baxter equation is that these two processes give the same
answer.

in the following sections.

Another interesting comment is that this matrix does not contain poles or zeros,
unless they are included explicitly in Ro(p). This means that if there is a bound state
in one channel, all channels must have one. In the next section we will check that
there is no bound state at weak coupling. We will also compute Ry(p) perturbatively

to two loops at weak coupling and to leading order at strong coupling.

The Yang Baxter equation

We now check that this reflection matrix satisfies the boundary Yang Baxter equa-
tion. This equation is represented graphically in figure 4.6 and it states that one can
compute the reflection of a pair of particles in two ways. As in the case of the bulk
Yang Baxter equation one can check the equation in a simple way using the symme-
tries [109]. The idea is to look at the Hilbert space of two particles and decompose
it in representations of SU(1|2) and then check the equation in each representation.
This can be done in a simple way if each representation contains a state that scatters
diagonally, so that all scattering amplitudes are simply phases. The intermediate

representations of the 2 particle incoming states are:

VA Mvavamvavavaranvi (4.3.25)
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The first representation on the right hand side of (4.3.25) contains the state ¢7 @3,
the second contains the states ¥ 15 and 14, and the third one contains gbfgb; ,
which are all states that scatter diagonally.

Let us now check the boundary Yang Baxter equation for two excitations that
scatter diagonally. Let us denote by S(1,2) their bulk scattering. S(1,2) is simply
a phase by assumption. Similarly, we have the reflection r(1) and r(2) from the

boundary which is also a phase. Thus we have
S(1,2)r(1)S(=2,1)r(2) =r(2)S(—1,2)r(1)S(—2,—1) (4.3.26)

Since we only have phases we see that (1) and 7(2) drop out from the equation and
we are only left with a requirement involving the bulk S matrix. This requirement
is obeyed if the bulk S matrix is parity invariant, S(1,2) = S(—2,—1). This is an
invariance of the bulk S matrix, thus we see that the boundary Yang Baxter equation

is satisfied. We have also checked explicitly that the equation is indeed satisfied.

The crossing equation

In order to derive the crossing equation we need to form a singlet state according to

the derivation in [109]. This identity state is

Lop = [ (0505 — ¢y 5) + Cagthot)y (4.3.27)

where the subindex p denotes the momentum and energy €(p) of the first particle
and the index p denotes the momentum p = —p and energy € = —e(p) of the second,
crossed, particle. If we think in terms of the fermionic part of the state we can view
the state as a hole, 1, (p), and negative energy electron ¢)_(p). In this case, we clearly

see that we get back the original vacuum of the theory. Thus adding this state should
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Figure 4.7: We scatter the singlet state pp from the right boundary and then from the left boundary
in order to come back to the original situation. We demand that this double scattering gives one.

have no effect on the theory. By scattering this two particle state from a third and
demanding that the result is invariant one can obtain the crossing equation [82,109].

If we start with this state and we scatter it from the right boundary we obtain the
state r(p)1(_p—p), Where r(p) is some reflection phase. We see that we do not get the
same state because the particle and antiparticle are in a different order. However, if
we have a left boundary and we now scatter the resulting state we get back to the
original state (4.3.27), see figure 4.7. We now use that parity invariance implies that
the scattering phase we get from the second scattering is the same as the one we got
from the first boundary. Thus we find that the total scattering phase is 7(p)?. Now
it makes sense to demand that the total scattering phase is one, r(p)? = 1.

So, we get r(p) = £1. By considering different boundaries on the two sides we see
that the signs should be all plus or all minus, for all boundaries in the theory. We
take this sign to be plus. We'll show this in a moment, by looking at the plane wave
limit.

When we scatter this state from the boundary we will need the boundary reflection

matrix (4.3.23) and the bulk S matrix written in [109].
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At the end of the day we obtain

Lo = hSo(p, —P)Ror(p)Ror(D) [f (@500, — 02507,) + anfﬁwgp] =

= hpSo(p, —ﬁ)ROR(p)ROR(ﬁ)l(—@—p)
Lo

hy
1
- tat

(4.3.28)

where S is the phase factor as defined by Beisert in [109] and R is the phase factor
which multiplies the boundary reflection matrix that we had above. Thus the crossing
equation has the form

11 L +at 1

Ror(p)Ror(P) = T Solp—p) e Sp. D) (4.3.29)

This would be the equation in the case that we had only one SU(2|2) factor. In
the full theory, where we have the two SU(2|2) factors we define the full reflection
factor to be simply R2,(p), and the bulk phase factor is usually written in terms of

a dressing factor o2 through the equation [37]

1
(wf —a) U 5er) 1
So(pr,pa2)? = —= L= 4.3.30
0( 1 2) (% _ x2+) (1 _ ;17_1"11'2_) 02(]91,]?2) ( )
Then the equation for the full theory becomes
B 1 ot + L B
R3r(P)R3R(P) = -0 (p, —p) (4.3.31)

TRSp.p)

Notice that in the plane wave limit [21] the right hand side of this equation is just 1.
In this limit our theory is non interacting and we know that, in the SU(2) subsector,
R%(p) = R%(p) = —1, as this is just a relativistic theory with Dirichlet boundary
conditions. From equation (4.3.23) we see that this implies R35(p) = R2z(p) = —1.

This means that the plus sign is the correct one for the right hand side of equation
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(4.3.31).

Finally, we should also mention that unitarity implies

Ror(p)Ror(—p) =1 (4.3.32)

4.3.2 The Z = 0 giant graviton brane or SU(2/2)? theory

We now study the case of a Z = 0 giant graviton brane, which preserves the full
SU(2|2) symmetry, see figures 4.1, 4.3. The new feature of this case is the existence
of a boundary degree of freedom. We assume that the boundary degree of freedom
transforms in the fundamental representation of extended SU(2|2)%. It seems clear
that this is the case at weak coupling where we have an impurity stuck between the
Z-determinant and the string of Z’s producing the large J open string. Then we
expect that this should continue to be the case at all values of the coupling. Since
the supersymmetry algebra has been extended by the addition of two central charges
we need to understand the values of the central charges for the impurity. Here, we
will be guided by the string pictures we discussed above, where the central charges
are associated to the winding number of the string in the z plane. Thus the central
charge vector is simply the vector given by a string going from the brane at z = 0 to
the rim of the disk, see figure 4.3 (¢). We can also view the central charge vector as

a complex number. This fixes the absolute value of the central charge vector
|k|? = 44° (4.3.33)

The phase of the central charge depends on the momenta of the other magnons
that are in the problem and changes when a magnon scatters from the boundary.
Below we will explain how it changes. The conclusion is that the representation of

the boundary impurity is again the fundamental of the extended symmetry algebra.
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The only difference between the impurity representation and the magnon one is in
the relation between the central charges and the momentum (the impurity does not
have a momentum quantum number), and in the precise dynamics of the phase of
the central charge. It turns out that the problem completely factorizes into each
extended SU(2|2) factor. Thus we consider first the case where we have only one
SU(2|2) factor.

Let us start by being more specific about the representation properties of the
boundary degree of freedom. The transformation properties are as in the bulk case,

(4.3.8), but with the following values of a, b, ¢, d.

ap — \/ET]B (4334)
b, — V9B (4.3.35)
B
V9ins
b rBfB ( )
dp = @ (4.3.37)
B

where we have added the subindex B to distinguish these from the bulk case. Uni-
tarity of the representation requires |ng|?> = —izp and that fp is just a phase. The

shortening/mass shell condition implies

1 . .
ad—bc=1 — :L’B+—:£, l‘B:L(l 1—1—492) (4.3.38)
rp g 29

where we picked the solution for xp which leads to positive energy

1
e:ad—i-bc:% (xB——) = 1+4¢? (4.3.39)

TB

The phase fp depends on the other magnons in the problem and can be understood

most simply by looking at figure 4.8. For a right boundary, fg is the position of the
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(@) (b) (c)

(d) (e)

Figure 4.8: In (a) we see a generic open string configuration in the regime that J is very large and
the magnons are very well separated. We have denoted by fp, and fp, the corresponding parameters
of left and right boundaries, respectively. In (b) we isolate the piece of string corresponding to the
left boundary impurity. Its phase — fp is the end point of this string. fp is also the phase by which
the configuration was rotated with respect to the reference configuration in (¢). In (d) we isolated
the piece of string corresponding to the right boundary. fp is the starting point of the string on
the circle. This phase is also the one by which the configuration was rotated with respect to the
reference configuration in (e). These figures can be viewed as the central charge vectors (except for
a —2g factor) for the states involved and also as the projections of the physical string configurations
to the z plane in the AdS5 x S® geometry.

endpoint of the last magnon on the Z circle. Equivalently it is given by the sum of
the momenta of all magnons to the left of the boundary. Since the system ends at the
right boundary, this means that fp = [] i e'i f; for all the magnons in the system,
where f; is the starting point of the first magnon.

We now derive the boundary S matrix for this system. We must first understand
how f and fp change under scattering, see figure 4.9. Let us consider the case of
right boundary scattering. In the initial state we have fp = e f. In the final state
the magnon phase does not change, f' = f and fp = e ?f = ¢ 2P fp = (%)2 fa,
see figure 4.9 a, b. On the other hand, for a left boundary fg = —f, see figure 4.9 c,
d. In this case f' = —f = e*Pf, or fp = (%)2]”3. xp does not change in either
case.

Let us now analyze the case with a left boundary in detail. The following equations
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Right
boundary
(@)
f=—f,
Left
boundary
(©

(d)

Figure 4.9: In (a) we see the initial state for scattering from a right boundary and in (b) we see
the final state. We have indicated the phases of the central charge in both cases. In (¢) we see the
initial state for right boundary scattering and in (d) we see the final state. These figures can be
viewed as the central charge vectors (except for a —2g factor) for the states involved and also as the
projections of the physical string configurations to the z plane in the AdSs x S° geometry.

summarize the quantum numbers of the incoming particle and the boundary and how

they change after scattering:

a = /g7

b = %ﬁf@—g—f)
T

d = Y (gt

n

ap = /9B

_ Vi
bB - nB

_  __ V9B
B = zpf

_  9zB
dp B

—27)

a'p

/
B

/
Cp

dp

/N7 N
8|8
S
N——

N

o

sy

(4.3.40)

(4.3.41)

In order to calculate the reflection matrix, R, we demand that all commutators of

the reflection matrix with the generators of SU(2|2) vanish. In this case the operators
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act on two particle states, so the computation is more involved that in the last case.
In particular, we have to remember that fermionic operators acting on two particle
states are defined as Q = Q; @ 1 + (—)F ® Q, where F is the fermionic number of
particle state 1. The computation is almost identical to the one performed in [23].

Invariance under the bosonic generators implies that the R matrix can be written

as [23] [109]
RIghol) = Alolo’) + Blobol) + SO asluiv?,) (4342
RIvged) = Doy + Elygy?) +%Feaﬁeab\¢%¢"_p> (4.3.43)
Rlopy) = Glgel,) + H|opy2,) (4.3.44)
Rlygdy) = Klge?,) + Liopy?,) (4.3.45)

where a, b represent bosonic indices, 4, and «a, 3 are fermionic indices, . The (anti)
symmetrization symbols are defined with a % normalization factor, i.e. {ab} = %

It is understood that the states on the right hand side of these equations are out
states and, therefore, have primed quantum numbers. In particular, they have primed
phases, f’ and fp. °

Acting with the fermionic generators on both sides we get constraints on A, B, C|

D, E, F,G, H, K, L that determine them completely up to an overall phase. We

®Note that we are working in the so called non-local representation [109]. One can also reintroduce
the markers Z* in a simple way.
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get:

A = RO% (4.3.46)
2ztr"xp + (t —ap)[—2(xt)? + 2(x7) 2 + at 2]

(z7)*(x~ —2p)
2mmp (x= +at)(x"ap —atep —x a™)

f wpr~(z+)*(2” — xp)

B = Ry

D = Ry

2[(x")* — (27 )’|[=a*a” +wp(a” —at + 2 (27)?)] —wp(ata)(zp — 27)

= Ro (x=at)2ap(z— — xp)
Fo— Ry 2f (zF —a7)(xt + 27 )(zprt —axpr +ata)
s (#7)*(@~ — zp)
o - Ron_B(:U+ —z7)(xt +27)
n (x= —xp)z—
oo— W) st
x=(z= — xp)

™ + (7))
x=(z= — xp)
n (a7 +a27)rp
" z~(z~ — )

K = Ry

Notice that the phase f appears explicitly in C' and F. We can eliminate f at the
cost of introducing markers, Z*, as explained in [109].

The boundary Yang Baxter equation is satisfied by the exactly the same argument

used by Beisert in [109], as the symmetries and representations are the same as in the
bulk. As in that case, there are two intermediate representations for 3 particle states
and each one contains a state that scatters diagonally.
Note also that the boundary scattering in the full theory is given by taking the product
of two such reflection matrices, one for each SU(2|2) factor. One could also derive a
crossing equation by scattering the identity state (4.3.27) as we did in the SU(1|2)
case.

Note that % is a prediction for the ratio of amplitudes of YY — Y'Y scattering

in the SU(2) sector to ¥ — 11 in the SU(1|1) sector. In the following section we
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Figure 4.10: Pole at 2~ = zp

A

= and calculate the phase factor at weak coupling.

will test the ratio

Boundary bound states

It is interesting to note that the coefficient A has a pole at = = zg. In the full
problem, once we take the product of the two reflection matrices we expect that
the overall phase factor is such that the scattering in the SU(2) subsector continues
to have a single pole at this position. In fact, this will be explicitly checked at
weak coupling in section 4.4.3. Thus, we expect to have single pole at all values of
the coupling. This pole signals the presence of a bound state, similar to the ones
considered in [85]. Following the same rules as in [83] we see that this pole is a
generated by the Landau diagram in figure 4.10 that yields a normalizable wave
function. Figure 4.10 represents an actual boundary bound state in the s-channel.
The incoming fundamental magnon binds to the boundary degree of freedom to form

a BPS bound state corresponding to a double box representation of SU(2/2)?. As in

the bulk case, we can introduce a new parameter wg) = 2*. Once we set x~ = zp,
we find that
1 .
v+ = =2 (4.3.47)
Ty g
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The energy of the bound state is given by € = g.(xg) — ), as in (4.3.39). We can

i (
Tp

now consider the boundary scattering of another magnon with this new boundary
impurity. This can be computed by scattering this second magnon, parametrized

by z3, off the bound state made out of the original impurity and the first magnon,

parametrized by 9(:592) = ), 7 = xp. This scattering is described a the product of the

scattering amplitudes of the second magnon from the first, the reflection matrix, and

the scattering of the reflected second magnon with the first. This full amplitude has

a pole at x5 = xg). Thus we can have a new bound state characterized by xg’) =1;.

Proceeding in this fashion we obtain a structure of bound states very similar to what

we had in the bulk [85,90]. An n particle bound state is given by x5 = 27, z] = 25,

+ - (n) _ +
T =T, Tp =T, .

; Then using the equations for each of the particles one can

see that

n 1 i 9, 1
by =g = ) ) = Vg (434
Ty LB

These are in the same representation of the extended SU(2|2)? superalgebra as the
bulk magnons [91], except, of course, that the central charges are given by the line

going from the center of the disk to the rim of the disk.

4.4 Results at weak coupling

In this section we present some results obtained from weak coupling calculations in
the gauge theory. We consider the operators Oy and Oy described by expressions
(4.2.3) and (4.2.4). We study the large J limit, where the chain is infinitely long and
we focus on the physics near each of the boundaries. We study ANV = 4 super Yang
Mills at two loops, using the results for the dilatation operator obtained in [18] to
calculate the reflection matrices in the SU(2) subsector. Furthermore, we perform

some non trivial checks, in the SU(3) subsector, of the ratios of the matrix elements
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of the exact matrices discussed in the previous section. Finally, in appendix 4.7 we

discuss the integrability of the resulting Hamiltonian.

4.4.1 The two loop Hamiltonian at weak coupling in the

SU(2) sector

In order to calculate the reflection matrices we first need to calculate the appropriate
Hamiltonian including the boundary contributions. This has been calculated at one
loop in [27] and at two loops in [126]. We review this calculation and discuss an extra
term, relative to [126], that is present at two loops. This term, although subtle, is
crucial to make the spin chain integrable.

Our starting point is the general expression for the one and two loop dilatation

operator [18] in the SU(2) subsector. This is

2 4
g o5 g S 7
D = -2 Y, Z)[V, 2] : —245 : Tl[Y. 2], Z][[Y 2], 2) :
4 4
—2% L TY[[Y, 2], Y[V, 2. Y] : +49N L Te[Y, Z][Y, 7] - (4.4.49)
where X means aiX‘

We can calculate the effective Hamiltonian operating on a SU(2) spin chain from

this operator. The bulk part of this Hamiltonian is [18,126]

Hyuie = Y _(29° = 8¢")(I = Pois1) + 2" Y (I = Piiga) (4.4.50)

i
where P, ; is the permutation operator between sites ¢ and j.
Let us discuss the boundary terms that need to be added when we attach our spin

chain to a giant graviton. As the interaction has a range of two sites we only need to

worry about the first few sites of the chain, assuming a boundary on the left. Let us
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assume our spin chain starts as

engly&éé. - (4.4.51)
0o 1 2
where X are fields that can take the values Y, Z. We have been schematic and have
omitted indices in this expression. The | separates the giant graviton from the rest
of the chain.

From the site 1 onwards we have the bulk Hamiltonian. At site 0, the Hamiltonian
acts differently. To leading order in 1/N, the determinant cannot have a field of the
same flavor next to it [27,120,134]. This means that X is always different from Xp.
We also have to be careful about this when we operate with the Hamiltonian. If X;
or Xy are equal to Xpg then the corresponding permutation operator acting on the
site 0 will vanish. With these rules in mind, if we consider the action of D (4.4.49) on
the chain by applying all derivatives outside the determinant®, we find that H acts

on the first three sites as
Hnaive = (292 - 894)(]f(B + 294Q§(B (4452)

where qZ-X 5 acts as the identity if X; = Xp and as zero if it is not. If this was the whole
story we would reproduce the results of [126]. However, we still need to consider the
possibility of the dilatation operator acting on the determinant and its neighboring
sites. It turns out there is only one term in the dilatation operator (4.4.49) that
contributes to this extra piece. This term is roughly ]‘\’,—tTr (Xv BXoX B)f BXOX B)
with the first derivative acting on the determinant. Naively, this term is suppressed
by a factor of N as can be seen from (4.4.49). However, since there are N — 1 letters

inside the determinant, there are O(N) possible actions of the derivative. All these

6This amounts to truncating Hyux at the end of the chain.
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subleading terms add up cancelling the % suppression. This extra term is’

Hoeo = 49" (4.4.53)
The final form of the two loop boundary Hamiltonian in the SU(2) sector is:

H = Hbulk + Hnaive + Hdet = (4454)

o0

= (2¢°=8¢")) (I = Piin1) +2¢" Y (I — Piara) + (2¢° — 4g")q” +2¢° 3™

i=1 =1

Notice that the chain starts effectively at site 1, as the site 0 is fixed by the bound-
ary®. This Hamiltonian, with the explicit inclusion of Hge (4.4.53), is consistent
with integrability. This is suggested in appendix 4.7 by explicitly constructing the
perturbative asymptotic Bethe ansatz solution for the two magnon problem.

We can now use this result to calculate scattering amplitudes for different bound-

aries in the SU(2) subsector.

4.4.2 The SU(1|2) reflection matrix off a det(Y) boundary

Let us now consider the operators involving an open chain on ending on the operator
det(Y"), corresponding to the Y = 0 giant graviton brane. We focus on the large
J limit, where we have a large number of Zs producing a long open string, and we
focus on one end of the chain at a time. In that case one can compute the boundary
reflection matrix. Let us start considering the operator Oy (4.2.2) that corresponds

to the vacuum. Acting with the Hamiltonian (4.4.54) we find

HOy(Z) =0 (4.4.55)

"This term should also be added to the expressions in [125].
8This situation will change when we move to the SU(3) subsector
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where we plugged in Xp = Y in the expression (4.4.54). This was expected, since
it is a BPS state the vacuum has zero energy. We see that we have no degree of
freedom, as the first excitations will be massive. If we place an impurity moving with
momentum p far away from the boundary, all boundary terms vanish, and we recover

the bulk expression for the energy
HOy(Y,) = (892 sin? g — 32¢*sin’ g) Oy (Y,) (4.4.56)

for a one particle state with momentum p, Oy (Y,); see equation (4.4.58). The formula
for the energy is just the expansion to second order in g? of the anomalous part of

the magnon energy

e—1= \/1 + 1642 sin? g ~ 1~ 82 sian — 324" sin4g (4.4.57)

Let us now compute the reflection matrix. We write a wavefunction of the form

Oy(Y,) = U(x)Oy(Y,) = > (™" + Re™™") Oy (Yy) (4.4.58)

r=1

where Oy (Y,) is an operator of the form given by equation 4.2.3 with the impurity
placed at site . In principle, there can be corrections of order g? near x ~ 0, as was
discussed for the bulk in [45]. This turns out not to be necessary in our case. If we
apply the Hamiltonian we see that this is an eigenstate of the right energy, provided
we set

UO0)=0 U(=1)+T(1)=0 (4.4.59)

where we have analytically continued the expression for the wavefuntion, ¥(x) =
eP® + Re~'P*  to negative values of z. Remarkably both equations can be satisfied
simultaneously without the inclusion of corrections by setting R = —1. In terms of

the reflection matrix for each SU(1|2) factor (4.3.24), and recalling the expression for
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Y, (4.3.13), we see that

_1=R= RgLe%p 7 N R%L — _e 2P (4.4.60)

up to two loops. We see that the two loop correction vanishes. It would be interesting
to see at what loop order we get the first deviation from this result.

Finally, we notice that there are no poles associated with boundary bound states
in this matrix. This confirms, at weak coupling, our assumption that there are no

boundary degrees of freedom in this theory.

One loop test for the SU(1|2)? reflection matrix

In this section we will compare the reflection amplitudes of Y, Y and W (W should be
the same as W) off a boundary that consists of a Y = 0 giant graviton brane. These
calculations were performed at one loop in [27], where they have an expression for
the one loop boundary hamiltonian in the S0(6) sector. In our notation® the results

they obtain for scattering off a boundary (a det(Y’) boundary) on the left are

Ry = e =Ry (4.4.61)
Ry = -1 (4.4.62)
Ry = —e 2P (4.4.63)
Notice the quotients g—VYV = —¢ ? and g—i = e 2% are the ones predicted by our

exact matrix (4.3.24), recalling the expressions (4.3.13) for the impurities. Also, the

overall factors are the same as the ones calculated at two loops in this section.

9 Among other things they define the origin of the chain at site 1 instead of site 0. This introduces
some phases.
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4.4.3 The SU(2|2) spectrum and reflection matrix off a det(7)

boundary

Let us now go through a similar calculation for the SU(2|2) reflection matrix, which
corresponds to the case that we have an open chain ending on a det(Z) operator. In
this case the ground state is non trivial. As we argued before, the letter placed next
to the determinant, det(Z), cannot be a Z. This means that, at the very least, one
field gets trapped in between the vacuum described by a chain of Zs and the D-brane.
Our simplest guess for this operator is Oz (Y, ---), (4.2.4), where the dots represents
the other boundary which we are not discussing now. Direct computation shows that

this is an eigenstate with energy
HOZ(Y, ) = (29> — 29" Ox(Y,---) (4.4.64)

This energy is the contribution from one boundary. In the case of the full chain,
we have a second impurity at the other end and we have to add the corresponding
energy. This energy agrees precisely with the weak coupling expansion of the exact

formula (4.3.39),
eg =/ 1+4g2 ~1+2¢* —2¢* (4.4.65)

This computation tests the boundary term in the Hamiltonian (4.4.54).
Once again, scattering states have the same energy as in the bulk, so the total

energy is
HOL(Y,Y,, ) = |(2¢% — 2¢*) + (8¢ sinzg — 32¢*sin? g) O4(Y,Y,, ) (4.4.66)

In appendix 4.8 we construct explicitly the wavefunction up to two loops, check this

expression for the energy, and compute the reflection amplitude to two loops. We
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find

1 —2e™® se P(e? —1)%(e + 1)(1 — 4e” + ')

R=-—"2"_19 .
—ocw Y (eir — 2)2

(4.4.67)

This fixes the overall phase Roy in (4.3.46) at two loops for weak coupling. We
would like to write this expression as a function of 2%,z such that we can make
a guess that might be correct to a few higher orders as in [81]. Moreover, writing
the expression this way allows for the identification of poles in the reflection matrix
in a straightforward way. Notice that the coefficient A in the matrix R (4.3.46) has
the right limit at 1 loop but disagrees with (4.4.67) at two loops. We propose an

expression that coincides with (4.4.67) up to two loops.

(" +p) <I+ + i) (z” +p) <x_ + ﬁ)

(2= —zp) <gr — A) (zt —xp) <x+ _ L)

B B

R = -

(4.4.68)

In checking this it is useful to remember the weak coupling expansions

vy = 2@_9<1+ /—1+4gz>wg+ig+... (4.4.69)

. . <1+\/1+16g281n2 g) L D
xt = e 2 - ~et'? | ——— 4 2gsin= 4 --- ({.4.70
4gsin & <g2sm§ g5y 94 )
This expression for R’ presents four simple poles. The pole at = = x g is responsible

for the singularities of the weak coupling expansion (4.4.67). This is the pole that is
already visible at one loop. This pole gives rise to a bound state in the s-channel and
corresponds to the BPS boundary bound states that we discussed in section 4.3.2.
We do not know if all the other poles of (4.4.67) survive when we add higher order
corrections. It should be possible to perform an analysis similar to the one in [83], to

determine the presence or absence of the other poles.
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We can now also read off the two loop value of Ry, in (4.3.46)

, R z\* (=~ —zp) (x++$> (z” + xp) (x7+$>
R () Gy ()@ ) ()

B

(4.4.71)

One loop test for the SU(2|2)? reflection matrix

We compare our exact results for the reflection matrix, (4.3.46), with the weak cou-
pling results, as we did for the SU(1|2)? case. Unlike the previous case, this calculation
is not available in the literature. We will need to compute the scattering process of a
W approaching a Z = 0 brane with a Y degree of freedom. At one loop the fermions
do not play a role and we can consider the SU(3) sector to be closed. (This can be
seen from the expression of C' in the exact solution, which is O(g) while A and B are

of order unity). Therefore, our process is
’YBWp> — R{/V‘YBWfp> -+ RI}/|WBY,Z,> (4472)

The Hamiltonian at one loop for the SU(3) sector can be obtained by restricting the

SO(6) result in [27]. In our notation this is

H = 292 <Z([ — Pi,i+1> + P071q1Z> (4473)

1=0

This means that when there is Z in the first (1) site it is the same as in the SU(2)
subsector, but the permutation operator does contribute when Y and W occupy the
0 and 1 site as opposed to the SU(2) case. The reason for this is obvious: both Y and

W can appear next to the determinant of Zs. We use the following trial eigenstate:

U =" (" + Riye ) [YpW,) + Rye ™" |WpY,) (4.4.74)

r=1
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where | X} X?) is a state with an X! at the boundary (the site labelled by zero) and
an X2 at position z. In the bulk (z > 1) the eigenvalue equation yields the necessary

value of the energy for both W and Y states.

E=2¢*(1+2—¢?—¢e") (4.4.75)

Let us see what happens for the first site

" Yy (1) _ 20w (1) — Yw(2) — Yy (1) (4.4.76)

Yy (1) 20y (1) — by (2) — Yw (1)

where ¥y = e + Ri,e”?" and vy = Rje ", Using the bulk equations we get

1 0) — 1
Yw (1) _ Yw (0) — Py (1) (4.4.77)
Uy (1) Uy (0) — Yw (1)
Plugging the ansatz for the wave function we get
2ip __ _ip
, € e +1
Ry, = g (4.4.78)
e?P — 1
Ry = ——5 (4.4.79)

These values satisfy | R} |* + |Rjy,|> = 1 as they should to comply with unitarity. Now

R

and F%With the expected values from the exact

Ry
R/

we can compare the quotients
calculations, (4.3.46). Here R’ is the value encountered in the SU(2) sector at one

loop (4.4.67). Namely,
2e? — 1

R=—
1 — 2e=w

(4.4.80)
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The resulting quotients are:

By +e?=-1 Ry c?—e™ (4.4.81)
R 2ew — 1 R 2ew — 1

From the exact result (4.3.46) we have

Ry 1 B Ry, 1 B
= =3 (1+ A) , = =5 (1 A) (4.4.82)

Expanding A, B, using the first terms in (4.4.69)(4.4.70), we checked that these

equations are true. This is a nontrivial one loop check for the bosonic subsector of

the reflection matrix. A very easy check is that Ry, + R}, = R'.

4.5 Results at strong coupling

In this section, we discuss results obtained in the strong coupling regime from string
theory. As long as one is interested in the leading terms in g, it is possible to calculate
scattering amplitudes by calculating time delays in classical sine Gordon theory [38].
We make use of this possibility to calculate the overall phase of the reflection matrix
at strong coupling for both the Z = 0 and Y = 0 giant graviton branes. To be more
precise, at strong coupling there are three regimes, depending on how we scale the
momentum. We can keep the momentum fixed and then compute as we mentioned
above; this is the giant magnon regime. We could also scale the momentum as
p ~ 1/g and this corresponds to the near plane wave limit. Finally we can set
p ~ 1/,/g, see [95]. For the case of bulk scattering it is possible to write a formula
which captures the leading order result both in the plane wave and giant magnon
regimes [37]. Here we will focus on the giant magnon region. As we briefly discussed
in section 4.3.1, the result in the plane wave region is trivial. Some results in the near

plane wave region were obtained in [118].
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4.5.1 Boundary conditions in the sine Gordon theory

According to the work of Pohlmeyer [48] it is possible to map the problem of a string
propagating on R x S? into the classical sine Gordon model, see also [49, 50, 70].
This connection was used in [38] to calculate the strong coupling limit of the bulk
scattering phase of string theory on AdSs x S°. We will do the same here.

We use string worldsheet coordinates in which ¢ = 1. Then, the sine Gordon field,

é(x,t), is related to the unit vector n describing the S? as
cos2¢p = n?—n"? (4.5.83)
where
=1, 7*+n*=1, 9q-1=0 (4.5.84)

We can consider simple cases leading to different boundary conditions for the sine

Gordon theory.

1. Scattering off a Z = 0 giant graviton brane

2. Scattering off a Y = 0 giant graviton brane where we chose the S? within brane,

e.g. the S% given by |Z|> + (®;)? =1

3. Scattering off a Y = 0 giant graviton brane where we chose the S? transverse

to the brane, e.g. the S? given by |Z]* + (®3)* =1

Recall that Z = ®° 4+ i®6 Y = ®3 + id4,
In the first case the boundary is fixed at the center of the Z plane. This means

that the S? boundary condition is 7|goundary = 0. Therefore, using equations (4.5.83)
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and (4.5.84), we find the Dirichlet boundary condition ¢|Boundary = 5-

This type of
boundary conditions were discussed for the classical sine Gordon theory in [137] and
the time delay was calculated. Note that ¢ = 7 corresponds to the maximum of the
sine Gordon potential. This implies that the field has to move from the maximum
to the minimum and this leads to some energy that is localized near the boundary.
This corresponds to the boundary degree of freedom, or boundary impurity, that we
discussed above.

The second case represents a string that is entirely contained inside the D-brane
that it is attached to. Therefore, the string end point (the one ending on the D-brane)
can move freely on the S?, thus 17’ = 0 and this leads to another Dirichlet boundary
condition for the sine Gordon field ¢|goundary = 0. In this case the field is at the
minimum of the potential and we have nothing localized at the boundary.

Finally, in the third case the endpoint of the string, which has to lie both on the
D-brane and inside the S?, has to be on the rim of the disk |z| = 1, which is the only
region common to both. One can then show that this leads to ¢'|,oundary = 0.

In this fashion, we see how different physical configurations in AdSs x S° lead to
different boundary problems for the sine Gordon theory. Interestingly enough, all the
boundary conditions that were discussed belong to the special class that make the
boundary field theory integrable [110]. Incidentally, the string theory setup we are
studying was shown to be integrable at large g in [124]. It would be interesting to
see if other integrable boundary conditions in the sine Gordon model map to other
configurations in the string theory.

We should mention that this description that uses the sine Gordon theory is only
an approximation (valid in the classical limit). It is not capturing the fact that there
are collective coordinates characterizing the magnon. These arise because the magnon
has an S® worth of possible orientations inside the S°. (In addition, we have fermion

zero modes [100].) As we quantize these coordinates we get all the BPS bound states
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with various values of the angular momentum charge n [85,91]. In particular, the
fundamental impurities, such as the fields Y, X, etc, have wavefunctions that are
spread over this S®. Thus, when we talked about solutions that were localized within
a given S?, we were making an approximation where we neglected this motion. One
could get a better approximation by considering the solutions in [97,98], which can
be used to describe the classical limit of the scattering of BPS bound states [85]
with angular momentum n ~ O(g) from the boundary. In the case of the Z = 0
brane, where we have a boundary impurity, we construct the solution as follows.
Con consider a soliton of the bulk theory with momentum p = 7 that is at rest at
the origin. This is a solution that obeys the boundary conditions of the boundary
theory. Its energy is simply half of the energy of the original soliton. We can similarly
consider the generalizations with angular momentum discussed in [91,97,98]. In that
case both the angular momentum and energy are half of what they were in the bulk.
However, in the boundary case, we want to quantize the angular momentum so that
it is an integer after dividing by half. Thus we get a formula for the energies that has

the form

1
5= 5\/(2n)2 11697 = \/n2 + 4g? (4.5.85)

where n is an integer. This is in agreement with the exact results (4.3.48).

4.5.2 Time delays and scattering phases

Let us consider first the case where we have a Y = 0 giant graviton brane. It is
convenient to think about the problem by using a “method of images” where the
incoming soliton scatters an antisoliton or a soliton coming from the other side of
the boundary, depending on the boundary conditions. From our experience with
the sine Gordon model and the bulk calculations in [38], we know the result will be

independent of whether the image state is a soliton or an antisoliton. Therefore, we
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don’t need to specify this in our calculations.

When we translate between the sine-Gordon results and the results computed in
the conventions that are more natural at weak coupling we need to be careful about
the fact that these two different conventions differ in the definition of the spatial
coordinate. This was explained in more detail in [38,90,138]. In fact, we can work
in conventions that coincide with the gauge theory conventions and notice that the
classical boundary scattering amplitude has a simple relation to the bulk scattering
amplitude once we note that the boundary scattering amplitude can be computed
by the “method of images”. Let us consider the case where we scatter from a right
boundary!?.

For a Y = 0 brane, we have two solitons, one with momentum p; = p and another

with momentum p, = —p. The bulk scattering phase is related to the time delays
_ dp _ dpa
ATy = ——0p,6(p1,p2) ATy = ——=0,,6(p1, p2) (4.5.86)
d€1 d€2

where 0(py, p2) is the bulk scattering phase computed in [38]

102 P1—P2
D1 D2 S
5(]?1,]92) = —49 (COS E — COS 5) IOg {W} (4587)
4

where sign(sinp;) > 0. For p = —p < 0 we should set ps = 27 — p in this formula,
and this is what we will always mean by —p. In the case that p = p; = —p, we find
that the two time delays are equal to each other and to the time delay for scattering

from the boundary ATy, = ATy = ATg(p). Thus we conclude that the classical

10We can obtain the result for left boundaries by a parity transformation R, (p) = Rr(—p).
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(right) boundary scattering phase, Rz = €5, is the solution to

d 1
d—fapéB,R(p) = ATp(p) = S(AT + ATy) =

= 5 (500 ——=0p,0 4.5.
2 (d€1 apl (p17p2> + d€2 apz (p17p2)) o ( 5 88)
A solution to this equation is then
1
0p.r(p) = 55(19, —p) = —8¢ cos g log cosg (4.5.89)

where ¢§ is (4.5.87). This describes right-boundary scattering. Note that we get the
same answer regardless of the state of the impurity, since the matrix structure of the
reflection matrix (4.3.23) is subleading at large g. This also means that this an actual
calculation of the overall phase factor R25 at strong coupling and to leading order.
We can check that this result obeys the classical limit of the crossing equation

(4.3.31)

0p,r(P) + dp,r(P) = —0(p,—p) + O(1) (4.5.90)

where the O(1) terms are order one in the 1/g expansion. Notice that in order to
get the results for p, we should set p — —p in (4.5.87) (4.5.89) and, as we mentioned
before, to get the results for —p we should set p — 27 — p in (4.5.87) (4.5.89).

This result is valid in the giant magnon regime. We remind the reader that reflec-
tion becomes trivial in the plane wave region, as magnons become noninteracting. In
that case, we get Dirichlet boundary conditions for the fields Y, ¥ and Neumann for
W, W. This implies that RZ, = —1 in the plane wave regime.

In a similar way we can compute the classical limit of the boundary scattering for
the Z = 0 brane. In this case we have a boundary impurity. Using the “method of
images” we can represent the boundary impurity as a third soliton, with momentum

p = m that is sitting at the boundary. This type of solutions was obtained explicitly
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for the sine Gordon model in [137]. In order to compute right boundary scattering we
consider a bulk configuration with three solitons with p; = p, po = —p and p3 = 7.

Then the time delay is
1
AT(p) = ATIQ + ATlg = E(ATH + AT21> + AT13 (4591)

Writing this as in (4.5.88) we find the large coupling expression for the phase in
(4.3.46), R2 , = e?%.x,

1 P p (1 —sink)
Z 2
5ByR(p) = 56(1), —p) + d(p,m) = —4g cos 5 log [cos 5 —(1 n sin%) (4.5.92)
where
5(p. ) = —dg cos L log | L5102 (4.5.93)
p;m) = —4g cos 7 log st 5.

The classical limit of the crossing symmetry equation is expected to be similar
and it would still be obeyed since (4.5.93) is odd under p — —p (which is what we

should to do to cross p — p).

4.6 Discussion

In this chapter we considered some D-brane configurations in AdSs x S° and con-
sidered the worldsheet theory of an open string ending on the D-brane. We focused
on the D-branes that correspond to maximal giant gravitons. In the dual field the-
ory, these D-branes correspond to determinant operators of the form det(Y'), det(Z2),
where Y, Z are two complex combinations of the scalar fields in N' = 4 super Yang
Mills. We considered an open string attached to this operator with a large value of J,
where J is one of the generators of SO(6). In the dual field theory this corresponds
to attaching a long string of Zs to the determinant operator. This can be viewed as a

spin chain defined on an interval. We then considered impurities propagating on this
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chain of Zs. The symmetries of the problem determine completely the single impurity
reflection matrix up to an overall phase. These reflection matrices are asymptotic, as
in the bulk [45]. Namely, we need to go far away from the boundary to measure it.
Thus, the strict mathematical definition of the reflection matrix requires J = oc.

We considered two cases. First the case where the determinant operator was
det(Y). In this case the boundary breaks the bulk symmetry group to an SU(1]2)?
subgroup. Yet, this symmetry is powerful enough to determine the matrix structure
of the reflection matrix. In fact, in a natural basis, the reflection matrix is diagonal.

We then considered the case where we have a det(Z) operator. In this case an
impurity gets trapped between the string of Zs describing the open string ground
state and the determinant operator. This impurity acts as a boundary degree of
freedom. This problem respects the full extended SU(2|2)? symmetry that we have
on the bulk of a chain of Zs, or the bulk of the string in light cone gauge [107,108].
The boundary impurity transforms in the fundamental representation of the extended
SU(2]2)?* algebra and has a (complex) central charge with fixed modulus and a phase
that is determined by the momenta of the other particles. This is very similar to the
structure we have in the bulk of the string. The algebra determines the energy of the
boundary impurity. In this case, the reflection matrix acts on the boundary degree
of freedom. The resulting matrix is rather similar to the one describing the bulk
scattering of two impurities [23]. Also, the bulk particle can form BPS bound states
with the boundary degrees of freedom. Thus, the spectrum of boundary degrees
of freedom includes an index n which characterizes the total number of impurities
forming the bound state.

Both of reflection matrices obey the boundary Yang Baxter equation, which is a
requisite for integrability. In the first case, we derived explicitly the form of the cross-
ing equation by considering the scattering of a particle/hole pair and demanding that

the corresponding reflection amplitude is trivial. This derivation could be extended
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to the second case in a straightforward way.

We then performed computations in the weak coupling regime. Here we checked
the integrability of the system up to two loops. We resolved the problems raised
in [126] by noticing that there is an extra boundary contribution to the spin chain
Hamiltonian. The results we obtain at two loops are consistent with integrability, in
the sense that the asymptotic Bethe ansatz for two particles works properly. Nev-
ertheless, we have not proven the full integrability of the system at two loops. We
also computed the undetermined phase factor in the reflection matrix up to two loops
in the weak coupling expansion. In addition, we checked that the matrix structure
obtained by the symmetry arguments was consistent with the explicit weak coupling
results.

We also computed the strong coupling limit of the reflection phase. At strong
coupling there are two perturbative regimes, the near plane wave regime and the
giant magnon regime, depending on the momentum of the impurity. We computed
the leading order result for the scattering amplitude in the giant magnon regime.
The computation can be carried out in a simple way by using a “method of images”,
where we view the problem with a boundary in terms of a problem on the full line

1 This gives the boundary scattering

with the proper symmetry under reflection
phase in terms of the bulk scattering phase.

Note that our computations of the matrix structure of the reflection matrix are
valid also for other systems where we have SU(2|2) symmetry. One such system
is the plane wave matrix model [21], where one can study configurations analogous

to the ones considered here, even though this particular system appears not to be

integrable [139].

' This method is useful for the classical theory but it is not appropriate for the full quantum
theory.
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4.7 Appendix A: integrability at two loops

It was pointed out in [126] that the Bethe ansatz seems to fail at two loops for the
problem just studied. We will now show that the problems raised disappear once we
consider the correct Hamiltonian (4.4.54). In particular, the problem was found when
one tried to construct a two particle state using the original scattering data.

We will consider a wave function of the form WU(x,y) = WUy(z,y) + ¢** YT (2, y)
where we will only be concerned with corrections of order g2 to the standard Bethe
ansatz wave function Wo(z,y). This is the asymptotic Bethe ansatz discussed in [45].

Our state is
o0

Oy (YpYp,) = Y U(z,y) Or(V2Y)) (4.7.94)

0<z<y

The equations we have to satisfy in the bulk are

(4.7.95)

(4.7.96)

EV(z,y) =

(29° = 8¢") (4¥W(z,y) = W(z — Ly) = U(z + 1,y) — ¥(z,y — 1) = U(z,y + 1))
+2¢" (4¥ (2, y) — VU(z — 2,y)—
U(z+2,y) —VY(r,y—2)—V(x,y+2)) for 2<z<y—2

EV(z,2+2) =
(26> — 8¢") (4V(z, 2 +2) = VU(z — 1,2 +2) — U(z + 1,7 +2)
~U(z,z+1) = U(r,z+3)) +2¢* ¥ (v, 2 +2) — ¥(x — 2,2+ 2)
—VU(zx,x+4)) for 2<ux

EV(x,x+1) =

(29> — 8¢ 2U(z, 2+ 1) = V(z — 1,2+ 1) — ¥(z, 2 + 2))
+2¢* (4U(z, 2+ 1) — U(z — 2,2+ 1)—

U(rx+1l,24+2)—V(r—1,2) —¥(r,z+3)) for 2<uzx
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where F is the sum of the one particle energies. These equations specify Y (z,y) com-
pletely, as well as the bulk scattering matrix [45] [66]. In order to obtain information
about the reflection matrix we need to check the eigenvalue equation for sites close

to the boundary. If we pick sites of the form (2, z) our equations are:

EV(2,2) = (2¢°—8¢") (4V(2,2) — ¥(1,2) —¥(3,2) — ¥(2,x — 1) — U(2,2 + 1))

+2¢* (3W(2, ) — U (4, x)—

V(2,2 —2)—U(2,2+2)+2¢"V(2,z) for 4<uz (4.7.98)
EV(2,4) = (2¢° —8¢") (49(2,4) — U(1,4) — U(3,4) — ¥(2,3) — ¥(2,5))

+2¢" (U(2,4) — U(2,6)) + 29"V (2, 4) (4.7.99)
EV(2,3) = (2¢° —8¢") (2¥(2,3) — ¥(1,3) — ¥(2,4))

+2¢* (30(2,3) — ¥(2,5) — U(3,4) — ¥(1,2)) +2¢*¥(2,3)  (4.7.100)

If we use the original equations, these just imply ¥ (0,z) = ¥y(0,2) = 0 for = >
2. These are the analogous equations to W(0) = 0 in the single particle case and
determine the one particle reflection matrix to be consistent with the Bethe ansatz.

We still have to consider the sites (1,x). These can’t introduce any more con-

straints, as our function is already fully determined. The resulting equations are:

EV(1,7) = (2¢°—8¢*) (3¥(1,2) — ¥(2,2) — ¥U(l,z +1) - ¥(l,z — 1))

+2¢* (3¥(1,2) — ¥ (3,2) — ¥(l,z —2) — U(l,x +2)) +

(29 — 4¢"¥(1,2) for 3 <z (4.7.101)
EV(1,3) = (29> —8¢") (3W(1,3) — W(2,3) — ¥(1,4) — ¥(1,2))

+2¢* (W(1,3) — ¥(1,5)) + (29 — 4¢")¥(1, 3) (4.7.102)
E¥(1,2) = (2¢°—8¢") (¥(1,2) - ¥(1,3)))

+2¢* (2U(1,2) — W(1,4) — ¥(2,3)) + (2¢* — 2¢*)¥(1,2) (4.7.103)
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Making use of the bulk equations the first of these expressions yields ¥(—1,z) +
U(l,z) = Yo(—1,2)+Vy(1,2z) = 0 for z > 3. These are the analog of U(1)+W¥(—1) =
0 and impose no further constraints, as our wave function satisfies this identity. The
second equation gives the same result for x = 3. The last of these equations is the
one that presented a conflict in [126]. In our case this equation can be written (to

order g*) as
2g" (Uo(1,2) + Uo(—1,2)) + (29> — 8¢")¥(0,2) + 2¢*¥((0,1) =0 (4.7.104)

This is satisfied by our Bethe ansatz as Wy(1,2) + Wyo(—1,2) = 0, ¥e(0,2) = 0
and Wo(0,1) = 0. This shows that the two particle problem can be solved by the

asymptotic Bethe ansatz technique, suggesting integrability.

4.8 Appendix B: computation of the SU(2|2) reflec-
tion matrix at two loops

The wave function for a one particle state scattering of the boundary should satisfy:

EV(r) = (2¢° —8¢")(2¥(z) — ¥(z +1)— ¥(x — 1))
+2¢* (20 (z) — V(2 +2) — ¥(x — 2))

+(29* = 2gMU(z) for x>2 (4.8.105)

for the trial wave function ¥(z) = Uy(z) + ¢%6,1T. The g* correction is just an
exponential tail attached to the boundary that accounts for the interactions at two
loops. Further corrections are higher order in g®. Wq(z) is just the reflecting wave
solution Wy(z) = eP® + R'e~* where R’ has, in principle, g? corrections to the 1 loop

result. From this expression we check that the energy of this state is indeed (4.4.66).
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The equation that determines T comes from the coefficient of the Schrodinger

equation for site 2. Namely

EV(2) = (29" —8¢")(29(2) — ¥(3) — Wo(1)) — 29"

+2¢*(U(2) — W(4)) + (2¢° — 4¢g*)¥(2) (4.8.106)

Using the bulk equation (4.8.105) we get

T = (0) — 20(2) (4.8.107)

The equation at site 1 determines the reflection amplitude. This is

EUg(1) +2¢*(3 —e? — e )Y =
(29” — 8g")(Wo(1) — W(2)) + 29" (Yo(1) — ¥(3)) +

29" + 29" Wy (1) (4.8.108)

where 2¢%(3 — ¢ — ) is the one loop energy extracted from (4.4.66). Using the

bulk equation we get

2g*(2 — e — e )Y =

(10g* — 4g*)Wo(1) + (29 — 89*) W (0) + 2¢* ¥o(—1) (4.8.109)

Plugging in for T and the wave function we get

2g4(2 o eip . efip) . 4g4(26i2p - ei3p - eip)
—(10g" — 4¢g*)e” — (2° — 8¢") — 29" * =
_Rl[2g4<2 . eip o e—ip> - 4g4(2—i2p o e—ip o e—i3p)

—(10g* — 4g*)e™ " — (29> — 8g*) — 2g"€™) (4.8.110)
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This in turn implies the weak coupling expansion

1 —2e™® Lo se P(e? —1)%(e + 1)(1 — 4e” + ')
1—2c-w Y (eir — 2)2

R = (4.8.111)

This is the result (4.4.67).
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Chapter 5

Conformal Collider Physics

We study observables in a conformal field theory which are very closely related to the ones
used to describe hadronic events at colliders. We focus on the correlation functions of the
energies deposited on calorimeters placed at a large distance from the collision. We consider
initial states produced by an operator insertion and we study some general properties of
the energy correlation functions for conformal field theories. We argue that the small angle
singularities of energy correlation functions are controlled by the twist of non-local light-ray
operators with a definite spin. For A/ = 1 superconformal theories the one point function for
states created by the R-current or the stress tensor are determined by the two parameters
a and c characterizing the conformal anomaly. Demanding that the measured energies are
positive we get bounds on a/c. We also give a prescription for computing the energy and
charge correlation functions in theories that have a gravity dual. The prescription amounts
to probing the falling string state as it crosses the AdS horizon with gravitational shock
waves. In the gravity approximation the energy is uniformly distributed on the sphere at
infinity, with no fluctuations. We compute the stringy corrections and we show that they
lead to small, non-gaussian, fluctuations in the energy distribution. Corrections to the one
point functions or antenna patterns are related to higher derivative corrections in the bulk.

The work in this chapter is contained in [140]. This article was coauthored with Juan

Maldacena.
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5.1 Preliminaries

In this chapter we consider conformal field theories and we study physical processes
that are closely related to the ones studied at particle colliders. In some sense we will
be studying “conformal collider physics”. We consider an external perturbation that
is localized in space and time near t ~ ¥ ~ 0. This external perturbation couples
to some operator O of the conformal field theory and produces a localized excitation
in the conformal field theory. This excitation then grows in size and propagates
outwards. We want to study the properties of the state that is produced. For this
purpose we consider idealized “calorimeters” that measure the total flux of energy per
unit angle far away from the region where the localized perturbation was concentrated.
As a particular example one could have in mind a real world process ete™ — ~v* —
hadrons !, where we produce hadrons via an intermediate off shell photon. We can
treat the process to lowest order in the electromagnetic coupling constant and to all
orders in the strong coupling constant. The QCD computation reduces to studying
the state created on the QCD vacuum by the electromagnetic current j% . From the
point of view of QCD this current is simply a global symmetry. In this case the theory
is not conformal, but at high enough energies we can approximate the process as a
conformal one to the extent that we can ignore the running of the coupling and the
details of the hadronization process. In this Chapter we analyze similar processes but
in conformal field theories.

Our goal is to describe features of the produced state. For example, at weak
coupling we expect to see a certain number of fairly well defined jets. At strong
coupling we expect to see a more spherically symmetric distribution [141], [142], [143].
We need suitably inclusive variables which are IR finite. In QCD this is commonly

done using inclusive jet observables [144] , see [145] for a review. Here we study

'For early work on the applications of scale invariance to strong interactions and, in particular,
ete™ collisions.
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Figure 5.1: A localized excitation is produced in a conformal field theory and its decay products
are measured by calorimeters sitting far away.

a particularly simple set of inclusive observables which are the energy correlation
functions, originally introduced in [146-148] . They are defined as follows. We place
calorimeters at angles 6#,,--- .6, and we measure the total energy per unit angle
deposited at each of these angles. We multiply all these energies together and compute
the average over all events. These are also inclusive, IR finite observables which one
could use to study properties of the produced state. Energy correlation functions for
hadronic final states have been measured experimentally and they are one of the ways
of making precise determinations of a.

A nice feature of energy correlation functions is that they are defined in terms
of correlation functions of local gauge invariant operators. They are given in terms
of the stress tensor operator [149] . More precisely, consider the expression for the
integrated energy flux per unit angle at a large sphere of radius r

£(6) = Tim 1 /OO dt T (¢, i) (5.1.1)

r—00
—00

where n' is a unit vector in R? and it specifies the point on the S? at infinity where we
have our “calorimeter”. If we integrate this quantity over all angles we get the total
energy flux which is equal to the energy deposited by the operator insertion. Energy

correlation functions are defined as the quantum expectation value of a product of
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energy flux operators on the state produced by the localized operator insertion

(0]OTE(61) - -~ £(60,)00)
(0[010]0)

(E(6))---£(6,)) (5.1.2)

where O is the operator creating the localized perturbation. Note that the operators
are ordered as written, they are not time ordered. Notice, also, that the expectation
values in the left hand side of (5.1.2) are defined on the particular state created by the
operator O and they are not vacuum expectation values. The energy operators are
very far away from each other and they commute with each other. This will become
more clear below when we think of the operators as acting on null outgoing infinity,
sometimes called 7. Of course, we usually think of the energy deposited at various
calorimeters as commuting observables, since we measure them simultaneously. No-
tice that when we compute an n point function we place calorimeters at n points but
we also allow energy to go through the regions where we have not placed calorimeters.

We will assume that we have a conformal field theory. There are several motiva-
tions for doing so. First, the conformal case is simpler because it has more symmetry
and, at the same time, it allows us to consider theories that are strongly coupled.
There are some interesting statements that can be made using conformal symmetry.
Second, we could have a theory for new physics beyond the Standard Model which
is conformal, as in the Randall-Sundrum II [150] or the unparticle [151, 152] scenar-
ios, or approximately conformal, as in the “hidden valley” scenario [34] . One would
like to describe the events in these theories. In order for energy correlations to be
observable to us we need some way to transfer the energy from the new sector back
to the standard model, as in [34] . Depending on the details, this conformal break-
ing and conversion process might or might not destroy the energy correlations one
computes in the conformal theory. We will not discuss this problem here. A similar

issue arises in QCD because of hadronization. The final motivation is a more theo-
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retical one, which is to understand better the AdS/CFT correspondence [2], [3], [4].
Energy correlations are natural observables on the field theory side which one would
like to understand using gravity and string theory in AdS. We will see that on the
gravity side, energy correlations translate into the probing of a string state, created
by the localized perturbation, with a gravitational shock wave as it falls into the AdS

horizon. Thus, the problem becomes a high energy scattering calculation in the bulk.

5.2 Energy correlations in conformal field theories

In this section we study energy correlation functions in general conformal field theo-

ries. The discussion in this section is valid for any value of the coupling.

5.2.1 Energy correlations in various coordinates systems

The goal of this subsection is to think about energy correlations in various coordinate
systems in order to make manifest its various properties and also in order to simplify
later computations.

It is interesting to take a step back and think about the energy density as follows.
For any generator, GG, of the conformal group there is an associated conformal killing
vector (f (x# — z# 4 (). The associated conserved charge can be written as the
integral of a conserved current, constructed by contracting ¢/, with the stress tensor,

over a spatial hypersurface

Qc = / fjc » it =T (5.2.3)
X3

where the normalization of the stress tensor is chosen so that 7T, = —\%63%. This

expression of the charges is covariant under conformal transformations. It is also

invariant under Weyl transformations of the four dimensional metric? g, — Q%g,,,

2We are ignoring the conformal anomaly since it only contributes as a c-number, independent of
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T, — Q_QTW.

It is convenient to understand clearly the symmetries of the problem. W