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Abstract
Wepropose a trapped ion scheme en route to realize spinHamiltonians on aKagome lattice which, at
low energies, are described by emergent 2 gauge fields, and support a topological quantum spin
liquid ground state. The enabling element in our scheme is the hexagonal plaquette spin–spin
interactions in a two-dimensional ion crystal. For this, the phonon-mode spectrumof the crystal is
engineered by standing-wave optical potentials or by using Rydberg excited ions, thus generating
localized phonon-modes around a hexagon of ions selected out of the entire two-dimensional crystal.
These tailoredmodes canmediate spin–spin interactions between ion-qubits on a hexagonal plaquette
when subject to state-dependent optical dipole forces.We discuss how these interactions can be
employed to emulate a generalized Balents–Fisher–Girvinmodel inminimal instances of one and two
plaquettes. Thismodel is an archetypical Hamiltonian inwhich gauge fields are the emergent degrees
of freedomon top of the classical ground statemanifold. Under realistic situations, we show the
emergence of a discrete Gauss’s law aswell as the dynamics of a deconfined charge excitation on a
gauge-invariant background using the two-plaquettes trapped ions spin-system. The proposed
scheme in principle allows further scaling in a future trapped ion quantum simulator, andwe conclude
that ourworkwill pave theway towards the simulation of emergent gauge theories and quantum spin
liquids in trapped ion systems.

1. Introduction

Topological quantum spin liquids are fascinating states ofmatter supporting topological order and exotic
excitations with fractional statistics [1]. Recently, there has been intense theoretical activity aimed at
underpinning their properties, and identifyingmicroscopicHamiltonians which could support such states. This
activity ismostly focused on theweak and strong insulator scenarios [1]: in the first case, the focus is on SU(2)
invariant spinHamiltonian on frustrated geometries [2], which could potentially be relevant for a series of solid
statematerials. In the strong insulator scenario, one is instead interested inHamiltonians displaying exotic
constrained dynamics [1, 3, 4]. This second route has been particularly fruitful at the theory level, as the
correspondingmodelHamiltonians are amenable to powerful analytical techniques and,most importantly,
provide a very clean interpretation of quantum spin liquids in a gauge theory framework [1, 5].However, due to
the exotic formof the basic constraints necessary to realize a strong insulator dynamics,many paradigmatic
Hamiltonians in this class are still thought of as idealized dynamics without any direct physical counterpart.

Here, we showhow aminimal instance of an archetypical example of spinHamiltonian supporting a
topological quantum spin liquid ground state, the Balents–Fisher–Girvin (BFG)model [6], can be realized in
two-dimensional (2D) laboratory trapped ion systems. The key element is to engineer constrained dynamics in a
controlled fashion, and in particular, to realize exotic ‘plaquette’ constraints typical of spinHamiltonians in the
strong insulator scenario. The BFGmodel is defined on aKagome lattice, where each site hosts a spin-1/2 degree
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Here, αS j (α = + − z, , ) are spin operators acting on the site j, thefirst termwith >J ( 0)z represents Ising
interactions around each hexagonal-plaquette, and the second term (with ⊥J ) describes the nearest-neighbour
spin exchange interaction (we consider here the variant of the BFGdiscussed in [7, 8], where only nearest-
neighbour exchange is included). The underlying source of frustration in thismodel is the emergence of a
macroscopic classical ground-state degeneracy due to the local hexagonal plaquette constraints imposed by the
first term in theHamiltonian, i.e.,∑ =∈⬡ S 0

i z
i . Hence, the ground state configurations are such that each

hexagon in aKagome lattice consists of three up spins and three down spins. This is reminiscent of the ice rule in
spin-icemodels [3, 4] inwhich, close to each vertex of a square lattice, two spins point inwards, and two spins
outward.Once quantum fluctuations are turned on, ≪⊥J Jz , the system is effectively described by a quantum
dimermodel on the dual (triangular) lattice [5, 9]. Thus, in contrast to the 2D version of spin Ice, whose
dynamics is described by a compactU(1) gauge theory, the low-energy physics of the BFGmodel is different, as
the underlying lattice on top ofwhich the quantumdimermodel is defined is not bipartite. In those cases, the
emergent degrees of freedomare 2 dynamical gaugefields [1], which undergo deconfinement and stabilize a
topological quantum spin liquid state [6, 8, 10].

Our proposal to implement the BFGmodel is based on the remarkable achievements in trapped ion
technology in the last decades [11, 12]. These highly controllable quantum systems have led to a variety of
proposals and realizations of quantum simulators, such as the topological hexagonal Kitaevmodel [13],
fermionic lattices [14], Isingmodels [15–19]—including frustratedmagnetism [20–22] and, very recently, to
the observation of entanglement dynamics in spin chains [23, 24]. Besides these studies, which are implemented
in linear-(1D) ion crystals, quantum simulation of various spinmodels has also been proposed in 2D ion-
crystals [25–27] and various experimental approaches are studied, such as 2DPaul traps [28–31], Penning traps
[32, 33],micro- [34] andmulti zone- [35, 36] trap arrays. Recent work in a Penning trap has demonstrated
controllable spin–spin interactions between a fewhundred ionic spins [19], whereas studies in Paul traps show
excellent prospects for implementing such interactions as well [30].

Here, we showhow to generate hexagonal-plaquette spin–spin interactions by (anti) pinning appropriate
ions in a 2D ion crystal by external potentials whichwe describe below. The spin–spin interactions aremediated
by a spin dependent optical dipole force interactingwith a localized phononmode that appears as a result of this
pinning. This localized phononmode involves all ions in the plaquette but rapidly decays outside it. The
resulting spin–spin interactions on the hexagonal-plaquette represent a key building block for quantum
simulators aimed at studying the fundamental nature of frustrated quantummagnetismwith emergent gauge
fields [2, 4, 37] andmay open up newdirections in ion-based quantum simulators. By pinningmultiple ions,
more individual plaquette interactions can be engineered thus allowing for scaling up the quantum simulator. In
the present paper, we discuss theminimal instance of a two-plaquette implementation, which should lie within
current experimental reach. Note that our current studies alsofit well into the recent trends of cold atom-
investigations on synthetic gaugefields [38], in particular on dynamical gauge fields [39–45].

The ion pinning can be accomplished by a standingwave lightfield focused onto the ion to be pinned. Such
optical potentials can reach curvatures corresponding to trap-frequencies in theMHz range. The proposed setup
resembles those encountered in recent studies involving ions interactingwith strong light-fields, such as in
anomalous diffusion of an ion [46], preparing nonclassicalmotional states [47], and, in particular,modifying
the trapping potential locally in a rf-trapped ion crystal for quantum simulations [48, 49]. Additionally, optical
trapping of an ion has been shown experimentally using either a single beamdipole trap [50–52] or an optical
lattice [53–56]. An interesting alternative optionwould be to dress the ion of interest with a Rydberg state, such
that the dipolemoment induced by the ionic trapping field causes a change in local trapping frequency for the
ion [57, 58].Here, no spatial variation of the pinning laserwould be required and additionalmicrowave fields
could be employed forfine-tuning [59, 60].

The paper is organized as follows: in section 2we discuss the physical setup of the ion-laser system and the
governing atom–light interactionHamiltonian. The spinmodels are derived from the interactionHamiltonians,
we showhow to generate spin–spin hexagonal interactions in a single plaquette usingN=7 and two plaquettes
usingN=19 ion crystals. In section 3we discuss the ground state properties andmagnetization dynamics for the
single and double plaquettes spin-systems, and the results are comparedwith that of the original BFGmodel.
Realistic numbers for the laser parameters for a calcium ion implementation are given in section 4. Finally, we
summarize the paperwith an outlook in section 5.
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2. TheBalents–Fisher–Girvinmodel in a trapped ion quantum simulator: building blocks

2.1. Spin–spin interactions in a 2D ion crystal
A sketch of our proposed experiment is shown infigure 1. The system consists of a self-assembled 2D ion crystal
confined in the xy plane bywhat we, for simplicity, assume to be a radially symmetric trapwith trap-frequencies:
ω ω≪x y z, . The internal level structure of the ions consists of three long-lived low-lying atomic states, these can
be either three Zeeman states in the ground-statemanifold or a combination ofmetastable and ground states.
The states ∣ 〉 ≡ ∣↓〉2 and ∣ 〉 ≡ ∣↑〉3 encode the spin-half states of the BFGmodel. The ion crystal supports
quantized phononmodes that are used to transmit spin–spin interactions between the ions via a Raman pair of
counter-propagating laser fields as shown infigure 1(b). Ions sitting in themiddle of an hexagonal sublattice
(see, e.g., ions 1 and 2 infigure 1) are prepared in the state ∣ 〉1 and strongly pinned by a standingwave laser field
that is far detuned from any excited states ∣ 〉e{ } to locallymodify the phonon spectrum.

The details of lasermediated spin–spin interactions in trapped ion systems have been extensively described
elsewhere [11] and are briefly discussed in appendix A. Two counter propagating laser fields are far detuned
from the transitions ∣ ↓ 〉 ↔ ∣ 〉e and ∣ ↑ 〉 ↔ ∣ 〉e .When theRabi frequencies of these lasers aremuch smaller than
the detunings, the excited state ∣ 〉e can be adiabatically eliminated. To engineer spin–spin interactions of the
form ⊗S Sz z , the frequency difference of the laser beams ωI is tuned close to the phonon frequencies ωm,
wherem denotes the particular phononmode and δ ω ω= −m I m. Throughout the paper we assume to be in the

Lamb–Dicke regime, η 〈 + 〉 ≪n 1 1m
i

m , where η = q b km
i

m m
i

I0 are the Lamb–Dicke parameters, nm the number

of phonons inmodem,  ω=q M2m m0 withM themass of an ion and = bb { }m m
i are the (normalized)

phonon eigenvectors. As long as η Ω δ≪n( )m I m, with the two photonRabi frequency Ω Ω Ω Δ=n n n( ) ( ) ( )I 1 2

for each laser and state = ↑ ↓n , and Δ Δ Ω≈ ≫ n( )1 2 1,2 the detuning for each laser, the Raman laser only
transiently excites phonons andwe can integrate out the phonon degrees of freedom altogether to obtain
effective spin–spin interactions between ion i and j of the form ∑= ⊗H J S Sˆ

ZZ i j z
ij

z
i

z
j
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with Ω Ω Ω= ↓ − ↑( ) ( )I
i
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i

I
i . The strength and range of Jz

ij are determined by the Rabi frequencies ΩI
i, the

detuning δm and the amplitude of oscillation of each ion in the mth mode through the Lamb–Dicke parameters

ηm
i . Note that we only assumed to be in the Lamb–Dicke regime in deriving the spin–spin interaction

Hamiltonian, so ground state cooling is not necessary [61].

Figure 1. (a) The schematic picture of the ion-laser system for generating hexagonal-plaquette interactions. A pair of counter-
propagating Ramanfieldswithwave vectors (frequencies) k ẑ1 (ω1) and k ẑ2 (ω2) are used for inducing spin–spin couplings. OL1 and
OL2 (yellow in colour) are two optical lattices focused on ions 1 and 2 tomodify their transversal (along the z axis) trapping
frequencies locally. (b) The level scheme: the internal level structure consists of three long-lived low-lying states and amanifold of
excited states. The Raman lasers (blue and red arrows), detuned by δm with respect to the frequency of amotionalmode, generate state
dependent optical shifts in the spin states ∣ 〉 ≡ ∣↓〉2 and ∣ 〉 ≡ ∣↑〉3 with an energy separation of ω↓↑, which simulate the spin–spin

interactions of the type ⊗S Sz
i

z
j between different ions i and j. The ions 1 and 2 prepared in state ∣ 〉1 experience an additional optical

lattice that is created by very far detuned laserfields (yellow arrow) from the excited state ∣ 〉e with a detuning ΔOL. The latticesmodify
their local trapping frequencies along the z axis. Additional laserfields, used for generating quantumdynamics in the spin system, are
not shown in thefigure for the sake of clarity.
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Wecan also obtain effective spin–spin interactions in equation (2) for the case when η Ω δ≪m I m does not
hold, but in this scenario, the phonons in eachmodem only return to their initial state at particular times δ1 m. A
favourable situation occurs when η Ω δ≪m I m for ≠m n, that is for all phononmodes except one. In this case,
the spin–spin interaction takes the formof equation (2) at times δ=t k ngate with k an integer. This situation is
usually employedwhen considering quantumgate operations [61].Note that any remaining spin-motion
entanglement causes decoherence in the spin state and appears as an error in the quantum simulator.

Using additional sets (two) of Raman fields we can also generate spin–spin couplings ⊥J
ij of the form

+ ∼ ⊗ + ⊗H H S S S Sˆ ˆ
XX YY x x y y [16, 62]. For thatwe assume ωI is tuned close to ω ω±↑↓ m, a situation in

whichwe have spin flip aswell as the creation of phonons. The expression for ⊥J
ij is still given by equation (2), but

with a re-defined detuning δ ω ω ω= − ±↑↓( )m I m . Note that the different spin–spin couplings, J ijz and ⊥J
ij, can

be independently controlled by the laser parameters of the corresponding Raman fields. The corrections to the
totalHamiltonian,

∑ ∑= ⊗ + ⊗ + ⊗
< <

⊥ ( )H J S S J S S S Sˆ , (3)
i j

z
ij

z
i

z
j

i j

ij
x
i

x
j

y
i

y
j

arising from the non-commutativity of the different couplingHamiltonians are oscillatory and can be neglected
[25, 63, 64]. As experimental complexity increases when consideringmore laser beams, in appendixDwe also
discuss a reducedHamiltonian of the form = +H H Hˆ ˆ ˆ

XZ XX ZZ , inwhich the couplings ĤYY are not included.
Notice that, within the perturbation theory on the gauge-invariantmanifold, the strong couplingHamiltonians
of the two different cases are very similar at lowest orders.We found that, in the ĤXZ case, the underlying physics
is almost unaffectedwhen compared to the full setup. Alternatively, the simulationmay be implemented by a
stroboscopic sequence of ‘Trotter steps’ inwhich each term in theHamiltonian is switched on for a short time
Δt consequetively [18]. In this concatenated form, errors due to non-commutativity between the terms in the
Hamiltonian scale with the discretized stepsize squared: ΔO t( )2 . This approach also has the advantage that less
independent laser beams are necessary.

2.2. Single hexagonal plaquette in anN=7 ion crystal
From equation (2) it is clear that phonon-mode spectrum is of central importance to the spatial formof the
spin–spin interactions, as it determine the Lamb–Dicke parameters ηm

j aswell as themode detuning δm. In single
species ion crystals, inwhich all ions experience the same trapping frequency, the phononmodes are highly
collective, which results in long range spin–spin interactions. Here, we discuss how to generate anti-
ferromagnetic spin–spin interactions displaying a hexagonal-plaquette pattern in a 2D ion crystal. By plaquette
patternwe imply that each of the six spins occupying the corners of a hexagon interact with every other spin in
the same hexagonwith the same strength irrespective of their inter-spin separation. First, we discuss how to
generate it in aminimal setup—a crystal consisting of seven ions—and then extend to a larger crystalmade of
19 ions.

The equilibrium configuration of an ion-crystal with seven ions in a radially symmetric trap is shown in the
inset offigure 2(a). Although they form a triangular lattice, we picture it as a hexagonal structure with an ion in
its centre. The central ion is prepared in the atomic state ∣ 〉1 , (see figure 1), which is immune to the Ramanfields
used for spin operations, but experiences an additional one-dimensional pinning optical lattice applied normal
to the plane of the crystal, i.e. along the z-axis. The rest of the ions occupying the spin states form a hexagon

shape. The pinning lasermodifies the transversal trapping frequency of the central ion to ω ω ω= −˜z z
2

OL
2

compared to the other ions, when themaximumof the lattice potential is focused at its equilibriumposition,
where ωOL is the harmonic-frequency of the local potential at the ion position due to the optical lattice. For a red
detuned lattice laser and the ion trapped in an antinode, the pinning lattice relaxes the confinement of the central
ion along the transversal direction andwe see belowhow it affects the phonon spectrum. In the following, we
restrict ourselves to pinning-lattice parameters such that the equilibriumpositions of the ions are not altered
once it is switched on.

The normal-mode spectrum consists of 14 xy (in-plane) and 7 z-(transversal) phononmodes, see
figures 3(a) and (b). Due to the 2D character of the crystal, the in-plane (PM) and the transversemodes (TM) are
completely de-coupled. The TMs account for the oscillation of ions along the tightly confined direction, and lie
on top of the energy spectrum, see figure 3(a). The pinning affectsmostly the TMs in twoways: (i) it shifts the
eigen values and (ii)modifies themode-structure bm

i . In particular, the frequency ν1of the lowest TM (see
figure 2(a)), which accountsmostly for the oscillation of the central ion,moves down to lower values as ω̃z

decreases, see figure 3(c).
The eigen vector of the lowest TM in the presence of pinning field is shown infigure 2(a). Note that it

exhibits a hexagonal character inwhich all the ions in the hexagonal ring oscillate with the same amplitude and
in phase.When the Raman beat frequency is tuned close to thismode, the resulting spin–spin couplings Jz

ij

exhibit a hexagonal-plaquette pattern as shown infigure 2(b). There are slight imperfections from the ideal
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hexagonal pattern discussed in the BFGmodel (equation (1)) due to the off-resonant couplings between the
Ramanfields and other TMs. These imperfections can be reduced by providing a sufficient gap between thefirst
TMand the rest. As shown infigure 3(c), this can be done by tuning the frequency of the local harmonic
potential due to the pinning optical lattice at the central ion position.

If one considers a Paul trap, the anharmonic coupling between the in-planemicro-motion and the TMs has
to be taken into account, which, as recently shown [65], only introduces an overall renormalization in the ion
positionswithout effecting the normalmode structure.While an overall shift in the transversalmode
frequencies should also to be taken into account, but it has no effect on our underlying scheme for generating
spin–spin interactions. Hence, we can safely neglect those effects in our calculations. In the spectrum, there
exists a zero-energy in-planemode due to the rotational symmetry of the ion crystal, corresponding to the free

Figure 2. (a) The inset shows the equilibirumposition of seven ions in a radially symmetric trapwith trapping frequencies:
ω π= ×2 1x y, MHz and ω π= ×2 3z MHz. Since the central ion experiences an additional pinning lattice, the effective trapping
frequency of it along the z axis is reduced to ω π= ×˜ 2 2.7z MHz. The eigenvector (b1

i ) of the lowest transversalmode of the ion crystal
is shown in figure 2(a). It accountsmostly the oscillation of the central ion, and the ions in the outer hexagonal ring oscillates with
same amplitude and are in-phase. (b) The dimensionless spin–spin couplings ωJ /ij 0, where ω ω Ω= k M( /8 ) ( / ,)I x I0

2 2, with
δ π= ×2 101 kHz, the detuning from the lowest TM. The slight imperfections from the BFGplaquette interactions arise from the off-
resonant coupling to higher TMs. For sufficiently small value of ω̃z , the lowest TMmode of the 2D crystal become energetically
unstable, i.e. ν = 01 and leads to a structural phase transition inwhich the 2D character of thewhole crystal has been lost [31]. For the
set of parameters in figure 2 it happenswhen ω ω π< ∼ ×˜ 2 2 1.5z z MHz,which restricts the frequency due to the optical lattice
potential to values ω ω < 3 4zOL .

Figure 3. (a) The normalmode spectrumof a trapped 2D ion crystalmade of seven ions, in a radially symmetric trap of frequencies
ω π= ×2 1x y, MHz and ω π= ×2 3z MHz. The orange-filled bubbles are the in-planemodes (PM) and the blue-filled ones are the
transversalmodes (TM). (b) The same in the presence of the pinning optical lattice. The optical lattice reduced the trapping frequency
of the central ion along the z axis to a frequency ω π= ×˜ 2 2.7z MHz. The red-filled bubble indicates the lowest TMand the frequency
of it is shifted to a lower value due to the presence of pinning field (shownby a black arrow). (c) The lowest transversalmode ν1 (filled
squares) and the energy difference between the lowest two transversalmodes δν ν ν= −2 1 (filled circles) as a function of ω̃z are
shown. For ω ω<˜ 2z z themode ν1 gets energetically unstable and the 2Dnature of the crystal is lost.
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rotation of ion crystal in the xy plane. In real experiments, anyweak stray fields will break this symmtery and the
crystal will be trapped in a stable configuration.

2.3.Double hexagonal plaquette in anN=19 ion crystal
Having established the basic idea of hexagonal plaquette interactions via an ion crystal of seven ions, we expand
our discussion to two plaquettes in a larger crystal. Here, we consider a crystal of 19 ions in a radially symmetric
trap. In order to create two plaquettes, we require two pinning standingwave lasers as shown infigure 1(a) and
focus them such that themaxima of lattice potentials lie at the equilibriumpositions of the two ions populated in
state ∣ 〉1 . These two ions, as in the previous case, experiences a shallower trap along the z axis with respect to the
other ions.

The parameters of the pinning lattices are chosen such that the equilibriumpositions are not altered. The
trapping parameters are taken to be ω ω π= = ×2 1x y MHz and ω π= ×2 3.5z MHz and the effective

harmonic frequency at the pinned ions along the z axis are ω π= ×˜ 2 2.1z
(1) MHz and ω π= ×˜ 2 2.45z

(2) MHz
respectively for ion 1 and ion 2. The reason for the asymmetry in the pinning lattices parameters is discussed
below.With these parameters, the two lowest TMs have the plaquette character and they comprisemostly of the
oscillations of the two pinned ions. If we switch off either one of the pinning lattices, we retrieve the same physics
discussed in the case for one plaquette. As an example, we switch off the pinning lattice on ion 2 and the ion 1
experiences an effective harmonic trapping frequency of ω π= ×˜ 2 2.1z

1 MHz. The resulting lowest TM is shown
infigure 4(a). It accountsmostly the oscillation of ion 1 (not shown in the figure), and is well localized among
the six ions surrounding it, forming a hexagonal oscillation pattern.

The resulting spin–spin interactions, when the Raman fields are detuned close to thismode, exhibit the
hexagonal-plaquette pattern (see figure 4(b)) similar towhat we have discussed in section 2.2 for the case of
seven-ion crystal. This point constitutes one of themain results of our paper: even in a larger crystal, by
engineering phononmodeswe can create localized spin–spin interactions, which in our case exhibit a hexagonal
pattern. Compared to the smaller crystal, here the imperfections are slightly higher. This can be understood
from the structure of the plaquette eigenmode itself: the amplitude of oscillation is not the same for all the six
ions in the hexagon (see figure 4(a)), which is contrary to theN=7 case. This arises due to the asymmetry in the
number of nearest-neighbour ions for each ion in the hexagonal ring. A second reason is that the number of
modes increases linearly with the system size, but in our case the coupling to thosemodes arewell suppressed by
the large detunings δm from the corresponding mth mode.Note that if we pin ion 2 instead of ion 1, we create a
hexagonal plaquette around the second ion.

Similarmode shaping has been experimentally demonstrated using e.g. doubly charged impurity ions in ion
crystals [66], which however do not allow tunability. In our case, the effect arrises by the internal state of the
central plaquette ion interactingwith the pinning laserfield. The change in trap frequency of the central ion also

Figure 4. (a) The eigen vector for the lowest transversalmode in a 19-ion crystal in the presence of a pinning lattice on ion 13. The inset
shows the pinning scheme inwhich the ion in the centre of the hexagon is populated in the state ∣ 〉1 , which experiences an additional
optical lattice. Themode accountsmostly the oscillation of the central ion (not shown in the plot) and the ions in the hexagonal ring.
Note that ions outside the hexagon hardly oscillate. (b) The dimnensionless spin–spin couplings: ωJz

ij
0, where

ω ω Ω= k M( /8 ) ( / )I x I0
2 2, for δ π= ×2 10 kHz the detuning from the lowest transversalmode. The trapping frequencies are

ω ω π= = ×2 1x y MHz and ω π= ×2 3.5z MHz and the pinned ion experiences an effective shallow trap along the z axis with a

frequency of ω π= ×˜ 2 2.1z
1 MHz.Note that the interaction pattern is well localized in the hexagonal ring.
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slightly changes the dynamics of ions in the vicinity owing to the coulomb interaction, but this effect quickly falls
off further away. This allows us to drive the phononmodewith a state dependent dipole force via these nearby
ions, thus creating the localized spin–spin interactions. The geometry of the ion crystal then results in hexagonal
plaquette interactions.

Two plaquettes case: to create two plaquettes, we switch on both pinning lattices. In this case, the two lowest
phononmodes are used to engineer the plaquette interactions. If we have identical pinning lattices, the two
modes become degenerate. Then, dressing themwith a single pair of Raman fieldsmay generate an arbitrary
superposition of phonon states: ±c cb b1 1 2 2, where b1,2 are the eigen vectors of the two lowest TMs and ∣ ∣c1,2

2

provide us the population of the respective phononmodes. The resulting spin–spin interactions do not possess
the plaquette character. Hence, we introduce an asymmetry between the parameters of the pinning lattices such
that the degeneracy is lifted aswell as themodes arewell separated in the spectrum. Then, we use two different
pairs of Ramanfields to induce spin–spin couplings, inwhich one is detuned near themode b1 and the second
one is near themode b2 with the same detuning δ. Locally, we can control the interaction strengths in each
plaquette by tuning the effective coupling strengths due to twoRaman fields, i.e., ΩI

1 and ΩI
2; in the particular

example shown infigure 5(b)we choose Ω Ω = 1.1I I
2 1 to obtain the same interaction strengths in both

plaquettes. The equilibrium configuration of the 2D ion crystal and the eigenvectors of themodes b1 and b2 are
shown infigure 5(a). Infigure 5(a), the ions labelled 13 and 14 are prepared in the atomic state ∣ 〉1 and pinned by
the optical lattices. The resulting spin–spin couplings Jz

ij shown infigure 5(b) arewell localized in each hexagonal
plaquette and crucially inter-plaquette interactions are highly suppressed. This suppression is completely
analogous—but opposite in spirit—to resonant enhancement of coupled oscillators by tuning their frequency
into resonance. Jz

ij constitutes the Ising part of theHamiltonian in equation (1).
The hopping parameter ⊥J is generated by additional Raman fields, againmediated through transversal

modes. The nature of ⊥J is also vital in determining the ground state properties as well as themagnetization
dynamics of the emulating spinHamiltonian. As short-range hopping is preferable, e.g. of nearest-neighbour
type [8], we identify three lowest TMs in the spectrum, labelled as =m 1, 2 and 3, see figure 6(a). They lie just
above the plaquettemodes and are alsowell separated from them, guaranteeing that the Ising part is not
influencedwhen addressingwith theRamanfields. Note that thesemodes are shared among the two corner-
sharing triangles at the centre of the crystal, and hence the resulting hopping dynamicsmay introduce very
interesting inter-plaquette spin dynamics, for example ring exchange among the four ions {1, 5, 15, 19} as
shown schematically infigure 6(d), results in charge hopping between the two plaquettes, (see section 3 for the
consequentmagnetization dynamics). Thefields are detuned by δ π= − ×⊥ 2 60 kHz from them=1mode. The
calculated couplings are shown infigure 6(b) and the different hopping channels are schematically shown in
figure 6(d). This completes ourmodeling of themicroscopicHamiltonian in an ion crystal for emulating the
BFGmodel in equation (1) in a small setup consists of two hexagons. The strategy is scalable to larger systems
owing to its analogue nature.

Figure 5. (a) The eigen vectors of the two lowest transversalmodes in a trapped 19-ion crystal with trapping frequencies:
ω ω π= = ×2 1x y MHz and ω π= ×2 3.5z MHz, in the presence of pinning lattices on ions 13 and 14. The pinning lattices reduce
the effective trapping frequencies of ions 13 and 14, along the z axis to ω =˜ 2.1z

1 MHz and ω =˜ 2.45z
2 MHz respectively. The inset

shows the equilibrium configuration of the corresponding ion crystal. The two localizedmodes: b1
i and b2

i accountmostly the

oscillation of ions 13 and 14 respectively (not shown in the plot). (b) The dimensionless spin–spin couplings: ωJz
ij

0 with
ω ω Ω= k M( /8 ) ( / )I x I0

2 1 2
, for Ω Ω = 1.1I I

2 1 and δ π= ×2 20 kHz.Note that ion 6 is shared by both the plaquettes.
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3.Many-body physics and quantummagnetism in a double-plaquette quantum simulator

In this sectionwe discuss themany-body physics associatedwith the abovementioned spin systemswith
hexagonal-plaquette interactions. In particular, we focus on the ground state properties andmagnetization
dynamics. First, we consider the plaquette interactions alone, and address the role of the imperfections on the
interaction patterns at the classical level. Then, we showhow gauge-invariance, embodied by themagnetization
conservation on each plaquette, is affected by the introduction of quantumfluctuations, and compare the
realistic scenario with the ideal BFGmodel. Finally, we showhow interestingmany-body dynamics can be
observed in aminimal system involving two plaquettes, within reach of state-of-the-art experiments with
trapped ion crystals, by exploring the dynamics of a single charge on top of the gauge-invariant background.

3.1. Ground state properties
Single plaquette case: in the classical limit ( =⊥J 0) of theHamiltonian Ĥ (equation (1)) in a single plaquette, the

ground statemanifold is featured by 20-fold degenerate states. Each of themobeys the constraint∑ =∈⬡ S 0
i z

i ,

i.e., the totalmagnetization around the hexagon is zero or, equivalently, three spins are ‘up’ and the other three
spins are ‘down’. All such configurations are shown infigure 7. The constraint is akin to thewell-known ice rule
‘2-in 2-out’ for the orientation of four dipoles arranged at the corners of a tetrahedron in a crystal ice. For the
spin-version of the ice setup, so called the ‘spin-ice’, the ice rule reads as ‘2-up 2-down’ [3, 43] and can be
mapped into a square lattice inwhich around each vertex four spins are arranged according to ice-rule. There are
six such possible spin-configurations. This six-vertex or icemodel required that all the four spins around the
vertex interact with the same strength, similar to the BFGmodel inwhich all the spins around the hexagon have
the same pairwise interaction strength. In our ion-setup, there are imperfections from a perfect plaquette
pattern aswe have discussed above, which lift the 20-fold degeneracy partially. However, as imperfections are

Figure 6. (a) The eigen-vectors of threemodes lying above the plaquettemodes, which are used for designing the hopping dynamics,
in a trappedN=19 ion crystal with trapping frequencies: ω ω π= = ×2 1x y MHz and ω π= ×2 3.5z MHz, in the presence of
pinning lattices on ions 13 and 14. The pinning lattices reduce the effective trapping frequencies of ions 13 and 14, along the z axis to
ω =˜ 2.1z

1 MHz and ω =˜ 2.45z
2 MHz, respectively. (b) The dimensionless (hopping) spin–spin couplings: ⊥J

ij for δ π= − ×⊥ 2 60 kHz
w.r.t. themodem=1 shown in (a). (c) shows the ion crystal and (d) shows the different hopping channels created by the ⊥J

ij in
figure 6(b).
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mostly involving spinswithin or on adjacent plaquettes, the investigation of a two plaquette system is required to
access their effects.

Double plaquette case: the number of degenerate ground states increases with the system size, and the degree
of degeneracy is 200 for two plaquettes with the Ising part of the BFGmodel. In the ion setup, as in the previous
case, the imperfections lift this degeneracy partially, but the energey levels are closely spaced in the energy
spectrum as is evident fromfigure 8(a). In our particular example for the ion setup, the classical ground states are
featured by four degenerate sates and even a very low temperature can lead to a classical order-by-disorder
phenomenon inwhich the system collapse into one of the ground state configuration. To show the contrast, we
compare the above results with a nearest-neighbour Isingmodel in two-plaquettes, with no inter-plaquette
spin–spin interactions, the ground states are doubly degenerate (antiferromagnetic states) and any excited state,
resulting from a single spin flip, leads to an energy cost of Jz, see figure 8(a). This implies that our ion setup for the
implementation of plaquette interactions is indeed a promising candidate for emulating frustrated quantum
magnetism and en route to quantum spin liquid once scaled up to larger systems.

In the presence of quantumdynamics the globalmagnetization, ∑= 〈 〉M Ŝ
i z

i
is preserved, but the

magnetization per palquette is not.We define the following operator to quantify themagnetization per
plaquette,

Figure 7.The 20 different degenerate classical ground state configurationswhich obeys ∑ =∈⬡ S 0
i z

i in a single hexagon plaquette.

Figure 8. (a) The lowest 200 classical energy states in a two-plaquette system for different spinHamiltonians with anti-ferromagnetic
(AF) interactions.Ei is the energy of the ith state andE0 is the ground state energy. The BFGmodel possesses 200 degenerate states
(brown line) obeying the plaquette constraint of 3-in 3-out and in the ion setup this degeneracy is lifted by the imperfections, but the
states are still very closely spaced in the spectrum. For the nearest-neighbour (NN) Isingmodel, there are doubly degenerate AF
ground states and the next excited states are separated by an energy of Jz. (b) The expectation value of Ĝ in the ground state as a
function of the scaled hopping parameter ⊥J Jz . In the trapped-ions quantum simulator, ⊥J is varied bymeans of Rabi frequency Ω⊥
(see text). Due to the imperfections in the interactions for the trapped ion case, the ratio ⊥J Jz is defined between theirmaximum
values. The small values of 〈 〉Ĝ even for a sufficiently large values of ⊥J guarantees us the the stability of gauge-invariant low energy
manifold. The upper axis for the Rabi frequency (corresponding to the ⊥J in the lower axis) is estimated for the particular casewhen
Ω π= ×2 500I kHz, δ π= ×2 20m kHz and δ π= − ×⊥ 2 60 kHz as discussed in section 4. In calculating 〈 〉Ĝ for the BFGmodel, we
restrict the hopping in thefive spins located at the intersection of the two plaquettes, whichmakes sensewhen considering the system
in the thermodynamic limit and also for the hopping pattern shown in figure 6(d) for the real situation.
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∑ ∑=
⬡ ⬡ ∈⬡

G
N

Sˆ 1
, (4)

i

z
i

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where ⬡N is the number of hexagonal plaquettes (=2 in our case). Themagnitude of 〈 〉G , the expectation value
taken in the ground state of the spin-Hamiltonian, gives us themeasure of the admixture from states outside the
classical ground statemanifold obeying the plaquette constraint. In practice, this determines the quality of
gauge-invariance as a function of quantumfluctuations: indeed, Ĝ can be viewed as an effective generator of a
local (gauge) symmetry, which commutes with the effectiveHamiltonian in the strong coupling ≫ ⊥J Jz

limit [10].
With no hopping ( =⊥J 0), =Ĝ 0, and it increases as ⊥J increases as shown infigure 8(b). The small values

of 〈 〉Ĝ even for sufficiently large values of ⊥J shows the stability of the low energymanifoldwith a plaquette
constraint against quantumfluctuations. In both cases, as expected fromperturbation theory arguments,
〈 〉 ∼ ⊥G J Jˆ ( )z

2 close to the classical limit.We note that the only effect of the imperfections is quantitative: some
gauge variant states not satisfying the plaquette constraint pay a smaller energy penalty compare to the ideal BFG
case.However, their effect is relatively small even for intermediate coupling strengths.

3.2. Plaquette-magnetization dynamics: deconfined charge excitation
In this sectionwe examine and compare the dynamics ofmagnetization in each plaquette for an ion setupwith
plaquette interactions with the BFGmodel, for different initially prepared spin configurations. The local
plaquettemagnetizations are defined as ∑= ∈⬡M S

i z
i

1 1 and ∑= ∈⬡M S
i z

i
2 2 , respectively, for plaquettes 1 and

2. To address the stability of gauge constraint against spin hopping, we study the time propagation starting from
one of the classical degenerate ground state, which obeys 3-in 3-out rule. As expected, the hopping dynamics
hardly affected the local plaquettemagnetizations even for large hopping parameter ⊥J . A particular example
with =⊥J J 0.2z is shown infigures 9(a) and (b) for the ion setup and the BFGmodel, respectively, and they are
found to exhibit the same behaviour. The dynamics becomemore interesting whenwe introduce a charge in one
of the plaquttes by flipping a single spin in the respective plaquette. As an example we consider an initial state in
which =M 01 and = −M 12 and the inter-plaquette spin hopping couples this state to = −M 11 and =M 02

and hence the state oscillates between them. This has a clear interpretation in gauge theoretical language: the
‘doped’ plaquette represents a chargemoving on top of a gauge-invariant background. This scenario can be
compared to a case where a pair of quasi-particle and quasi-hole (fractionalized charges or excitations) is created
by a single spin flip in a square lattice, which supports an exact incompressible quantum liquid. The particle–
hole pair does not form a bound pair but is in a deconfined phase [67]. The same is also predicted for a classical
Isingmodel in pyrochlore lattice inwhich themacroscopic ground state degeneracy leads to the deconfinement
ofmonopole excitations [68]. This is one of the intriguing point of this paper from a frustratedmagnetism
picture, arisingwith a question on the stability of this deconfined phase, interestingly, which could be
qualitatively addressedwith a small size ion-crystal quantum simulator aswe showhere. Note that the

Figure 9.The time propagation of plaquettemagnetizationsM1 andM2 for (a) the BFGmodel and (b) the ion setupwith =⊥J J 0.2z

(for the ion setup the ratio is takenwith themaximumvalues of Jz and ⊥J ). The solid lines are for the case inwhich the initial state is
prepared in a state inwhich the = =M M 01 2 and themagnetization is hardly affected by the hopping dynamics as expected. The lines
with bubbles are the case forwhich the initial state is such that one of the plaquette carries a charge (in this particular example a
negative charge in the second plaquette, i.e., = −M 12 ) and the other plaquette has zero charge (or zeromagnetization, =M 01 ). In
time the charge oscillates between the two plaquettes indicating a de-confined phase.
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demonstration of deconfined excitations provides a striking signature of the topological phase in the BFGmodel
which sharply distinguish it fromother confined orders (such as resonating valence bond solid [2]).

Themany-body physics associatedwith the reducedHamiltonianHXZmentioned in section 2.1 is discussed
in appendixD and found to possesses the same properties as that of the fullHamiltonian.

4. Implementationwith a 2D crystal of 40Ca+

As an example, we consider a crystal of 40Ca+ ions. Since this ion does not posses a nuclear spin, we employ the
Zeeman andmetastable electronic states, rather than hyperfine ground states.We encode the spins in electronic
states of the ion, ∣↓〉 = ∣ = 〉S m, 1 2j1 2 and ∣↑〉 = ∣ = 〉D m, 3 2j5 2 [69]. Inititialization can be performed by
optical pumping followed by addressed coherent laser pulses that prepare each ion in a designated spin state. In
this way the ions that will be pinned can also be prepared in the state ∣ 〉 = ∣ = − 〉S m1 , 1 2j1 2 . The pinning can
be done using e.g. a λpin=532 nm retro-reflected laser with a power of∼ 50 mW, focussed to awaist of 2 μm. For
an estimate, inwhichwe are neglecting the polarizabilities of all transitions except the dominant →S P
transition around 397 nm, this results in an anti-trapping potential of trap-frequencies (0.08, 0.08, 1.3) 2πMHz
in a node of the standingwave.With a Paul trap of transverse frequency ω π=⊥ 2 3MHz, this results in a local
reduction of the trap-frequency of∼10% to π2 2.7 MHz as in the example in section 2.2. The trap-frequency in
the other two directions is hardly affected (it is reduced by π∼2 3 kHz).

Errors in the realization of the BFGmodel arise from spontaneous scattering from the pinning laser, wich is
reduced because of the large detuning and because the ion is placed in a node of a wave.We expect a scattering
rate of ⩽ 1 s−1 as an upper bound. The ions are separated by about 5 μm,which ismuch larger than thewaist of
the pinning laser, such that the ions in the plaquette are not affected by it.

From an experimental point of view, it is convenient to perform a change of basis to exchange σz and σx, as
spin–spin interactions in the latter require less laser power [70], whereas we are interested in the regime > ⊥J Jz .
spin–spin interaction terms involving σy can be ommitted in afirst implementation and this results in non-

resonant ⊗+ +S S and ⊗− −S S terms that are suppressed by theGauss law, shown in appendixD. The Jz
plaquette spin–spin interaction can nowbe induced by aMølmer–Sørensen scheme [61], operating on the
optical qubit at 729 nm [69, 71]. In particular, a bichromatic lightfieldwith components around
ω ω δ± ±↑↓ m m induces ⊗S Sx x interactions [70]. Rabi frequencies of Ω π= 2I 500 kHz and a detuning
δ π= 2m 20 kHz result in (plaquette) spin–spin interactions of π≂J 2z 18.5 kHz. The pinned ionwould have a
transientmaximal amplitude of oscillation of around 20 nm λ≪ pin, such that the harmonic approximation is
justified for the pinning laser. Thefidelity of the gate for σz is calculated semi-classically and its lower bound is
about 99.7%, limited by remaining spin-motion entanglement in far detuned phononmodes. For details
regarding thefidelity calculation see appendix C. To realize ≂⊥J J 0.2z , we require a Rabi frequency for the
hopping spin–spin interactions of about Ω π≂ 2 20I kHzwith δ π= −⊥ 2 60 kHz as discussed above.

For ionswith a nuclear spin, such as 9Be+or 171Yb+, the three required long-lived states can be encoded in the
hyperfine ground states and the spin–spin interactions can be induced by Raman lasers, which can reach
comparable coupling strengths as for the electronic state encoding descibed above [72]. For Yb+ strong optical
pinning has been shown recently [55].

The readout of the quantum simulation run is performed by detecting state-dependent laser induced
resonance fluorescence, where the state ∣↓〉will appear brightwhile sites with ions in ∣↑〉 remain dark as the state
does not scatter photons. Detection fidelities exceed 99% in ion trap experiments routinely. Note that the
detection can easily resolve individual ions, such that the outcome can be immaged on a ccd chip in one picture,
where populations, and correlationsmay be readily revealed. This allows not only for obtaining the global
magnetization but also to determine correlations of spins such that the gauge-invariant dynamics can be
observed in the plaquettes.

5. Conclusion and outlook

In conclusion, we have shown that using phononmode shaping it is possible to simulate exotic spin–spin
interactions in an ion crystal which have far reaching consequences in the context of strongly correlated systems,
in particular frustratedmagnetic systems inwhich low energymanifold is described by an emergent dynamical
gaugefield. Themode-shaping is accomplished by (anti-) pinning standingwave light fields, whichmodify
locally the ion trap and affect itsmotional dynamics. Alternatively, we can selectively excite ions to a Rydberg
state [57, 58] inwhich those ions experience a different trapping potential compared to the ground state ions due
to state-dependent atomic polarizabilities, see appendix E. Additionalmicrowavefields could be employed for
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fine-tuning [59, 60] the trapping field of the ions occupying the Rydberg state. This leads to a design of the
tranversalmode structure in the planar crystal, similar to that with optical pinning forces.

From a quantummagnetism point of view, we have discussed the ground state andmagnetization dynamics
of the corresponding spinHamiltonian of the proposed trapped ion implementation and the results have been
comparedwith that of the idealized BFGmodel, within a small setup of one and two plaquettes. The results show
the excellent agreement between the physics in an ion based quantum simulator and that of the BFGmodel. The
deconfined dynamics of a single charge excitation in a two plaquette system, arising from the ring exchange, is
akin to the deconfinedmonopole excitations in a 3Dpyrochlore spin-ice, arising from the largemacroscopic
ground state degeneracy. In general, the current studies would open up a completely new aspect of studying
spin-Hamiltonians using ultra cold ion crystals, in particular once scaled up, will be the prime quantum
simulator for emulating topological quantum spin liquids or resonating-valence-bond states.
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AppendixA. Atom–light interactions and σ σ⊗z z interactions

In this sectionwe discuss briefly the interaction of Ramanfields with the spin states ∣↓〉 ∣↑〉{ , } and the resulting
spin–spin interactions between the ions. TheHamiltonian forN harmonically trapped two level ions interacting
with a laser field of frequency ωI is given by

= +H H Hˆ ˆ ˆ , (A.1)I0

where


∑ ∑ω

σ ν= +↓↑

= =

=

H a aˆ
2

ˆ ˆ , (A.2)
i

N

z
i

m

m N

m m m0

1 1

3
†

where σz is the Pauli spin-1/2matrix and the operator âm a( ˆ )m
† annihilates (creates) a phonon in themthmode

with an eigen value νm (see appendix B). In the interaction picture, the atom–light interactionHamiltonian
[11, 73, 74] reads as

∑ Ω κ= +
∑ η ω ϕ+ − +ν ν

=

=
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Ĥ e h.c. ˆ , (A.3)I
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⎤

⎦
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where Ω = − ∈ d 2I
i i is the effective coupling strength for ith ionwith d, the dipolemoment for the

transition and  i is the electric field strength at the ith ion position, η = q b km
i

m m
i

I0 are the Lamb–Dicke

parameters with  ν=q M2m m0 and = bb { }m m
i is the phonon eigen vector, and ϕI ʼs are additional phases in

each ion. The operator κ̂ i, a general 2 × 2matrix, is determined by the polarization of the electric field and the
atomic states. Note that the summation ofm in the exponential term in equation (A.3) is only over theN
transversal z-modes andwe replaced the position operators of the ions in terms of normalmode operators while
writing theHamiltonianHI [11].

In theweak coupling limit: Ω ω≪ ↓↑I , andwhen ω ω≪ ↓↑I (an implementation in this limit is shown in

figure 1(b)) and in the Lamb–Dicke regime: η 〈 + 〉 ≪a a( ˆ ˆ ) 1m
i

m m
† 2 wherewe keep only the terms uptofirst

order in the Lamb–Dicke parameters ηm
i , then taking the rotatingwave approximation inwhich the termswith

ω± ↓↑e ti are neglected, wefinally get the atom–light interactionHamiltonian as

∑ ∑Ω η σ= +δ ϕ

=

− +H aˆ ˆ e h.c ., (A.4)I
z

i

I
i

m

N

m
i

m
t

z
i

1

† i im I

where δ ω ν= −m I m. From the formof equation (A.4) it is clear that there is no spin flip involvedwhich is
justified by the limit ω ω≪ ↓↑I . In general, equation (A.4) describes quantumgates based on an effective laser
field being interacting withmany ions. The electric field from the laser beams gives rise to a Stark shift for each
internal states, and a corresponding electric-dipole force on each ion. These state dependent forces are typically
used in trapped-ion quantum computation [61, 75]. The time evolution of the system is then obtained using the
Magnus expansion [76] for the time evolution operator
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 ∫ ∫ ∫= − ′ ′ − ′ ′ ″
″
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whereH(t) is the time-dependentHamiltonian. In our case, with sufficiently large detuning from themotional
sideband [16] and assuming the same phase for all ions, the long-term time evolution is dominated by a term
linear in time, t and is of the form ∑ σ σ− J texp( i ˆ ˆ 4)

i j z
ij

z
i

z
j

,
[15] with
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This realizes an Ising spin-Hamiltonian of the form ∑= ⊗H J S Sˆ
z i j z

ij
z
i

z
j

,
with spin–spin couplings Jz

ij between

ith and jth ions. Note that the spin-1 2 operators ( αS ) defined in equation (1) are related to the Pauli spin-1 2
matrices (σα) through σ=α αS 2.

Appendix B. Ion crystal: equilibriumpositions and vibrational spectrum

In a 3D setup, the potential experienced by the ions is

∑ ∑ω ω ω
πϵ

= + + +
−= = ≠

( )V M x y z
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1
, (B.1)
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where ∣ − ∣ = − + − + −x x y y z zr r ( ) ( ) ( )i j i j i j i j
2 2 2 . Thefirst term is the harmonic confinement due to

externalfields and the second term accounts for theCoulomb interaction between the positively charged ions.
We choose the length scale as πϵ ω=l Z e M( ) (4 )x x

3 2 2
0

2 and in the dimensionless form the potential reads as
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where λ ω ω=z z x, λ ω ω=y y x . In the followingwe absorb
−lx

1 in the position co-ordinates such that xi, yi and
zi are dimensionless. The equilibriumpositions are calculated by solving the equations
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for each ions. This leads to solving the coupled algebraic equations of the form
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where α = x y z{ , , } and = − + − + −R i j x x y y z z( , ) ( ) ( ) ( )i j i j i j0
2 2 2. Once the equilibriumpositions are

obtained, we can calculate the eigen vectors bm and eigen values νm of the phononmodes by the exact
diagonalization of theHessianmatrix constructed out of the following second order derivatives:
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with α β ∈ x y z, { , , } and α β≠ .
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AppendixC. Semi-classical estimation of population in themotional states and gate
fidelity

The phonon spectrum

 ∑ν=H a aˆ ˆ (C.1)m m

m

m m
†

is described as a collection of harmonic oscillators with frequencies νm. As described in the text, the quantum
emulation of the BFGHamiltonian relies on the phonon-mode shaping by optically anti-pinning few ions in the
crystal. Our focuswill be on low lying TMs, which gives us a hexagonal plaquette patternwhen coupled dressed
byRaman laser fields. Any discrepancy from the exact BFGmodel in the emulation results from the population
of othermodes which is not of our prime interest.We semi-classically investigate the population of these higher
modes, and provide an estimation for the fidelity of the corresponding gate operations. The problem is
equivalent to an undamped, driven harmonic oscillator inwhich the driving force is a sinusoidal onewith
frequency ωI , that of the laserfield. The governing equation is


ν

Ω
ω+ =z

t
z

k

M
t

d

d
cos( ), (C.2)m

I
I

2

2
2 0

where η=k qm m0 0 with
=

ν
qm M0 2 m

. For the initial conditions =z (0) 0 and ′ =z (0) 0, we get the solution

Ω
ν ω

ω ν=
−

−
( )

z t
k

M
t t( ) cos cos . (C.3)I

m I

I m
0

2 2
⎡⎣ ⎤⎦

The classical, (maximum) amplitude of oscillation,
≃ Ω

ν ω−( )
A

k

M

2 I

m I

0

2 2
can be related to the quantum

mechanical spectrumofHarmonical oscillator by equating the classical and quantum energies, andwe get

=n
A

q

1

4
, (C.4)m

m0

2⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

after we left out the zero point oscillation energy. This relationwould provide us a rough estimation for the
number of phonons in the system for a particularmodem. In addition, the overlap between the initial phonon
state and themaximally displaced statewould give us the fidelity loss arising from this particularmode.We
require this loss would bewell below 1%.Taking theGaussian ground state solution of the harmonic oscillator,
we get the overlap as a function of the displacement z0 as

= − ( )z qexp 8 . (C.5)m m0
2

0
2

Thefidelity loss = − 1m m due to a givenmodem, as a function of the amplitude of oscillation is shown in
figureC1 , and one can see that the larger the displacements, the lesser the fidelity is. In order to keep thefidelity
loss with in 1%, the displacement z qm0 required to be ⩽ 0.30. The netfidelity loss is then obtained by the
summing over that of allmodes.

FigureC1.The percentage offidelity loss as a function of the displacement z qm0. To keep thefidelity loss with in 1%, the
displacement z qm0 required to be roughly ⩽ 0.25.
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AppendixD.Gauss’s law andplaquettemagnetization dynamics for the reduced
Hamiltonian,HXZ

In this sectionwe consider a reducedHamiltonian of the form

∑ ∑= ⊗ + ⊗
< <

⊥H J S S J S S . (D.1)XZ

i j

z
ij

z
i

z
j

i j

ij
x
i

x
j

Experimentally, it is advantageous to have the reducedHamiltonian over the full one since less number of
independent lasers are involved. The coupling parameters Jz

ij and ⊥J
ij are still the samewhichwe discussed in the

main part of the text. Contrary to the full Hamiltonian, here it involves not only flip–flop terms but also flip–flip
and flop–flop, as seen from the expansion, = + + ++ − − + − − + +S S S S S S S S S S( ) 4x x . The results are shown in

figureD1 and the resultingGauss’s law is comparedwith that of the fullHamiltonian Ĥ . The hopping of charge
excitation is also demonstrated, revealing the highflexibility of trapped-ion quantum simulators.

Appendix E. Rydberg excitations in an ion crystal: atomic polarizibility andmodified trap
frequency

Instead of using the pinning lattices on ions in state ∣ 〉1 (seemain text), we can aswell excite orweakly dress those
ions to a Rydberg state. Due to the state dependent atomic polarizabilities, the Rydberg excited ions experience
different trapping frequencies compared to those occupying the low-lying atomic states. Thismodifies the
phonon spectrumof the ion crystal, identical to the situation inwhich the pinning lattices are present. Recently,
it has been shown [59, 60] that ions excited to the nP-Rydberg state experience an additional radial potential,

α≈ − V e rr( )a nP
2 2 2, where the polarisability ≈ − × n0.25nP

7 atomic units, with n, the principal quantum
number of the Rydberg state. Effectively, an ion in this Rydberg state experiences a tighter confinement
compared to an ion occupying a low-lying state, butwith additionalmicrowave fields, by coupling to a nearby
Rydberg state, say ′n S, we can freely tune the trapping frequency of the Rydberg excited ion. It can be increased,
decreased or evenmade equal to that of ions occupying the qubit states ∣↑〉 and ∣↓〉. The dressed states
∣±〉 = ∣ 〉 + ∣ ′ 〉± ±N C nP n S( )polarizabilities read as

= +± ± ± ′  ( )N C (E.1)np n S
2 2

with >′ 0n S , the parameter ±C depends on themicrowave parameters such as detunings andRabi frequencies
and ±N are the normalization constants.More details on themicrowave-Rydberg approach can be found in
[60]. ± are easily controlled viamicrowave field paremeters, and hence the local trapping of Rydberg ions. The
only limit in this approach is set by the life time of Rydberg states for gate operations and it can be augmented by
going either to a higher Rydberg level or byweakly dressing to the Rydberg state.
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