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1. Introduction. In the theory of functions of two complex variables

z = x+iy, w = u-\-iv, the transformations of importance are Z = Z(z, w),

W=W(z, w) where Z and W are general analytic functions (power series)

such that the jacobian ZZWW — ZWWZ is not identically zero. Any pair of such

functions may be regarded as a transformation from the points (x, y, u, v)

to the points (X, Y, U, V) of a given real cartesian four-space 54. Poincare

in his fundamental paper in the Palermo Rendiconti (1907) called any such

correspondence a regular transformation. We employ also the term pseudo-

conformal transformation. The totality of these transformations forms an

infinite group G. This is not the conformal group of the four-space Si as is the

case for the infinite group of analytic functions Z = Z(z) of a single complex

variable z = x+iy. As a matter of fact, the theorem of Liouville states that

the conformal group of the four-space 54 is merely the fifteen-parameter

group of inversions.

In this paper, we shall obtain several geometric characterizations of this

group G of regular transformations. Our main theorem is that the group G

of regular (or pseudo-conformal) transformations is characterized by the fact that

it leaves invariant the pseudo-angle between any curve C and any hypersurface H

at their common point of intersection.

The pseudo-angle may be visualized geometrically as follows. Let a lineal

element C and a hypersurface element H intersect in a common point p.

Rotate the lineal element C about the point p into the hypersurface element

H in the unique planar direction (the isoclinal planar direction), which has

the property that the angle between any two lineal elements of the rotation

is equal to the angle between their orthogonal projections onto the z- (and w-)

plane. There is a unique lineal element C\ in the hypersurface element H,

which is the end result of this rotation. Our pseudo-angle is then the actual

angle between the initial lineal element C and the terminal lineal element Ci

of this rotation.

In conclusion we study Picard's sixteen-parameter group, used in the

theory of hyperfuchsian functions. The only pseudo-conformal transforma-

tions actually conformal in Si constitute a nine-parameter subgroup.

Another geometric interpretation of functions of two complex variables

is obtained by using point-pairs (bipoints) in the plane; and this is easily ex-
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tended to n variables by using w-points or polygons. See the Bulletin of the

American Mathematical Society, vol. 15 (1909), p. 159.

2. Isoclinal and reverse isoclinal planes. Before proving these geometric

characterizations of the infinite group G, we shall have to consider some pre-

liminary definitions and theorems. A surface 5 of the four-space Si is given by

the two equations F\(x, y, u, v) =0, F2(x, y, u, v) =0, where Fi and F2 are two

independent functions of (x, y, u, v). Let Ps{x, y, u, v) be any point of the

surface s. Construct the orthogonal projections P2(x, y, 0, 0) and Pw(0, 0, u, v)

(by means of absolutely perpendicular planes) of the point Ps on the z- and

w-planes respectively. Thus the surface 5 induces (1) the correspondence Rzw

between the points Pz and Pw of the z- and w-planes, (2) the correspondence

Rza between the points Pz and Ps of the z-plane and the surface s, and (3)

the correspondence Rws between the points Pw and Ps of the w-plane and the

surface 5. We call Rzw, Rzs, Rws the three correspondences associated with the sur-

face s. The two correspondences Rzs and Rws are the result of orthogonal

projections of the points of the surface 5 onto the z- and w-planes. The corre-

spondence Rzw is given by the equations F\{x, y, u, v)=0, F2(x, y, u, v)=0

of the surface s. It is noted that any one of these three correspondences may

be degenerate.

Since any orthogonal projection of a plane upon a plane in the four-space

Si preserves parallel lines, we find that for a plane it, each of the three associ-

ated correspondences Rzw, Rzr, Rwir is an affine transformation. Conversely

if any one of the three correspondences Rzw, Rzs, RWs associated with a surface

s is an affine transformation, then all three are affine transformations and

the surface s is a plane. Of course, all of these statements are equivalent to the

fact that a plane of the four-space Si is given by two independent linear equa-

tions in the unknowns (x, y, u, v).

For a general plane it, each of the associated correspondences Rzw, RZT, RWT

is an affine transformation. If the associated correspondence Rzw is a direct

(or reverse) similitude, then it is termed an isoclinal plane (or a reverse iso-

clinal plane). For an isoclinal plane, the correspondences Rir and RmT are

both direct or reverse similitudes according to the choice of the positive sense

of rotation of the angle in 7r. Similarly for a reverse isoclinal plane it, the

correspondences RZT and Rwr are respectively direct and reverse or reverse

and direct similitudes according to the choice of the positive sense of rotation

of the angle in it. Thus for an isoclinal or a reverse isoclinal plane, it is found

that under each of the three associated correspondences Rzw, Rz*, RWT the

angle between any two lines is preserved.

An isoclinal plane may be given by the single complex equation w = lz-\-m,

where I and m are arbitrary complex constants; whereas a reverse isoclinal

plane may be given by the single complex equation w = lz-\-m, where z=x — iy

is the conjugate of z = x+ty. Thus in the totality of <x>6 planes of the four-

space Si, there are <x>4 isoclinal (or reverse isoclinal) planes. These »4 iso-

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



52 EDWARD KASNER [July

clinal (or reverse isoclinal) planes form a linear system of planes. Through

any given point (or in any hyperplane) of the four-space 54, there are a>2

isoclinal (or reverse isoclinal) planes. There is one and only one isoclinal (or

reverse isoclinal) plane which passes through a given line of the four-space Si.

We obtain the following three characterizations of the set of 2 =o4 isoclinal

and reverse isoclinal planes among the totality of °o6 planes of the four-space

Si. (1) A plane it is an isoclinal or a reverse isoclinal plane if and only if at

least one of the associated affine transformations Rzw, Rzr, RWT is a similitude.

(2) The necessary and sufficient condition that a plane it be an isoclinal or a

reverse isoclinal plane is that the angle between any line L of it and its or-

thogonal projection Lz (or Lw) onto the z- (or w-) plane is constant. This

result gives the reason for the term isocline. Let </> (or \p) be the constant angle

between any line L of the isoclinal or reverse isoclinal plane it and its orthogo-

nal projection Lz (or Lw) onto the z- (or w-) plane. Then <p and \p are comple-

mentary angles. (3) A plane it is an isoclinal or a reverse isoclinal plane if

and only if the maximum and minimum angles between the plane tt and

the 2- (or w-) plane are equal. The common value of the maximum and

minimum angles between the isoclinal or reverse isoclinal plane ir and the

z- (or w-) plane is <p (or \p). Thus an isoclinal or a reverse isoclinal plane

makes complementary angles with the z- and w-planes. Also any area in any

isoclinal or reverse isoclinal plane is equal to the sum or difference of its

orthogonal projections on the z- and w-planes. Finally we note that for the

isoclinal plane w = lz+m or the reverse isocline plane w=lz-\-m, the angle <j>

is arc tan 1l\, where 11\ denotes the absolute value of /.

3. Conformal and reverse conformal surfaces. The envelope of <=°2 iso-

clinal (or reverse isoclinal) planes is called a conformal surface (or a reverse

conformal surface). Upon finding the envelope of the =°2 isoclinal planes

w = l{r, t)z-\-m(r, t) (or of the reverse isoclinal planes w = l(r,t)z-\-m(r,t)) where

I and m are complex functions of the real variables r and t, we find that any

conformal (or reverse conformal) surface may be given by the single complex

equation w=/(z) (or w =/(§)), where/ is an analytic function of z (or z).

From this, it follows that a conformal (or reverse conformal) surface may be

given by the two real equations u = u(x, y), v=v(x, y), where u and v are arbi-

trary real functions of (x, y) which satisfy the Cauchy-Riemann equations

Ux = vy, uy = — vx (or the reverse Cauchy-Riemann equations ux = —vy, uv=vx).

From the above facts, it easily follows that the correspondence Rzw for a

conformal (or reverse conformal) surface 5 is direct conformal (or reverse con-

formal). For a conformal surface s, the correspondences Rzs and Rws are both

direct or reverse conformal transformations according to the choice of the

positive sense of rotation of the angle in 5. Similarly for a reverse conformal

surface s, the correspondences Rzs and Rws are respectively direct and reverse

or reverse and direct conformal according to the choice of the positive sense

of rotation of the angle in s. Thus for a conformal (or reverse conformal) sur-
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face s, each of the associated correspondences Rzw, Rzs, Rws preserves the angle

between two intersecting curves. Conversely if at least one of the associated

correspondences Rzw, Rzs, Rws of a surface 5 is conformal (direct or reverse),

then all three are conformal (direct or reverse), and 5 is either a conformal

or a reverse conformal surface.

4. Statements of our results. Under the group G of regular transforma-

tions, every conformal surface is carried into a conformal surface. On the

other hand, every reverse conformal surface is not carried into a reverse con-

formal surface. A transformation T of the four-space Sa is regular if and only

if it converts every conformal surface into a conformal surface. The group G of

regular transformations preserves the angle and also the sense of rotation be-

tween any two intersecting curves contained in a conformal surface. Thus

this group G induces the group of direct conformal transformations between

the conformal surfaces of the four-space 54.

If two intersecting curves Ci and Ci are tangent to a conformal surface

at their common point (or two hypersurfaces Hi and Hz intersect in a con-

formal surface), then under the group G of regular transformations, the two

curves Ci and C2 (or the two hypersurfaces Hi and Hz) possess the angle

between them as the fundamental differential invariant of the first order.

On the other hand, two intersecting curves Ci and C2 not both tangent to a

conformal surface (or two hypersurfaces Hi and Hs not intersecting in a con-

formal surface) at their common point do not possess any differential invari-

ants of the first order under the infinite group G of regular transformations.

This means that under the group G of regular transformations, any two con-

current lineal elements not both contained in an isoclinal surface element (or

two concurrent hypersurface elements not intersecting in an isoclinal surface

element) can be converted into any other two concurrent lineal elements not

both contained in an isoclinal surface element (or any other concurrent two

hypersurface elements not intersecting in an isoclinal surface element).

The simplest characterization of the group G of regular transformations is

connected with the intersection of a curve and a three-dimensional variety.

Let a curve C and a hypersurface H intersect in a point p. There is a unique

isoclinal plane which passes through the point p and tangent to the curve C.

Let Ci be any curve through the point p which is tangent to this isoclinal

plane and to the hypersurface H. All such curves Ci are tangent to each other

at the point p. The angle between the curve C and the curve Ci is the funda-

mental differential invariant of the first order between the curve C and the

hypersurface H. This angle is called the pseudo-angle between the curve C

and the hypersurface H. A transformation T of the four-space S4 is regular if

and only if it preserves the pseudo-angle between any curve C and any hypersur-

face H. Thus the infinite group G of regular transformations is characterized

by the fact that it leaves invariant the pseudo-angle between every curve C

and every hypersurface H.
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In the final part of our paper, we shall give a brief discussion of the Picard

sixteen-parameter group Gi6 of linear fractional transformations in w and z.

If a regular transformation T converts 4 oo 2 isoclinal planes into isoclinal planes,

then T carries every isoclinal plane into an isoclinal plane, and therefore T is a

linear fractional transformation of the group Gu. For any other regular trans-

formation T, at most 3 oo 2 isoclinal planes become isoclinal planes.

To prove our theorems, we shall have to consider the lineal elements of

the four-space 54 which pass through a given point. Any lineal element

through a fixed point may be defined by (px', py', pu', pv'), where x', y', u', v'

denote the differentials dx, dy, du, dv respectively, and p is any real nonzero

factor of proportionality. However, to prove our results we shall find it more

convenient to define any real lineal element through a given point by the com-

plex coordinates (pz', pw'), where z' = x' + iy', w' = u' + iv', and p is any

real nonzero factor of proportionality.

5. The necessity of our results. Let T be the regular transformation

Z = Z{z, w), W=W(z, w). Let p(x, y, u, v) be a fixed point of the four-space Si

and let P(X, Y, U, V) be the transformed point under the regular transforma-

tion T. Then the special protective transformation between the two bundles

of lineal elements through the points p and P, which is induced by the regular

transformation T is given by the equations

(1) pZ' = az' + ßw',      pW = yz' + Sw',

where a, ß, y, 8 are

dZ      1 (d        d\ 1 i
* = — = -(--i-)(X+iY)=-(Xx+Yy)+-(-Xv+ Yx)

dz       2 \dx      dy/ 2 2

=   XX ^Xy ,

dZ       1 /d d\ 1 I

(2)

ß = — - -f — - i-1 (X + i¥) = - (JT. + F.) + - (- Xv + F„)
dw      2 \du       dv/ 2 2

—     XU iXVy

dw    l / a     a\ l i
{U  +   iV)   =-(Ux+   Vy)   +-(-Uy+ Vx)

dz       2 \dx      dy/ 2 2

U x — iUv,

\dx dy/
r

V;

dW     1 (d d\
8 = — = -(- - i-) (V + iV) = - (t/M + V,) + - (- Uv + F.)

dio      2 \du       dv/ 2 2

= Uu — iUv

Any hypersurface is defined by the equation H(x, y, u, v) =0, where H is

any arbitrary real function of (x, y, u, v). Thus any hypersurface element

through the fixed point p{x, y, u, v) is given by
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(3) az' + bw' + OS! + bw' = 0,

where a and b are

1 /d        d\ 1

1/3        d\ 1
-(-i— )H = —(#„- iHv).
2 \du       dv/ 2

From (3) and (4), we see that any real hypersurface element through the fixed

point p is defined by the complex coordinates (era, ab) where a is a real non-

zero factor of proportionality.

From (1) and (3), we find that the special projective transformation be-

tween the two bundles of hypersurface elements through the fixed points p

and P, which is induced by the regular transformation T, is given by

(5) <ra = aA+yB,      <rb = ßA+8B.

Since the equation of any conformal surface is of the form w=f(z) where/

is an analytic function of z, there follows from the equations of any regular

tranformation T

Theorem 1. Under the group G of regular transformations, every conformal

surface is converted into a conformal surface.

Since every conformal surface becomes a conformal surface, it follows that

under the group G of regular transformations, every isoclinal surface element

is carried into an isoclinal surface element. This is also a consequence of equa-

tions (1) upon observing that the equation of any isoclinal surface element

through the fixed point p is w' =lz', where I is an arbitrary complex constant.

Two lineal elements are said to be an isoclinal pair if they are contained in

an isoclinal surface element. The condition for an isoclinal pair of lineal elements

is

Zj       wi .})?;:< i
(6) — =-= complex constant (not real).

%t w(

Two hypersurface elements are said to form an isoclinal pair if they intersect

in an isoclinal surface element. The condition for an isoclinal pair of hyper-

surface elements is

at bi
(7) — = — = complex constant (not real).

a\ bi

From equations (1) and (6), we obtain

a =

(4)

b =
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Theorem 2. Two intersecting curves C\ and C2 which are tangent to a con-

formal surface at their common point possess the fundamental differential invari-

ant of first order

z2 wi
(8) amp — = amp ■— •

z{ w{

This is the angle between the two curves C\ and C2. It can be written in the real

form

dxidy2 — dxidyi duidv2 — du2dvi
(9) arc tan- = arc tan-•

dxidx2 + dyidy2 du\du2 + dv\dv2

By equations (5) and (7), we obtain the following dual result:

Theorem 3. Two hyper surf aces Hi and H2 which intersect in a conformal

surface possess the fundamental differential invariant of first order

a2 b2
(10) amp — = amp — •

a\ bi

This is the angle between the two hypersurfaces Hi and H2. It can be written in

the real form

H\xH2y — IIiyU2x HiuHiv — H\vIl2u
(11) arc tan- = arc tan

UlXH2x + IIlyHly H\uH2u + HivH2v

Let us now consider the case where two intersecting curves Ci and C2 are

not both tangent to a conformal surface at their common point. In that case,

we can convert any non-isoclinal pair of lineal elements {ßiZ{, piW{) and

[p2Z2 , p2W2 ) into the lineal elements (1, 0) and (0, 1), which of course are a

non-isoclinal pair of lineal elements. The most general transformation of form

(1) that will do this is

(12) PZ' = PlZ{ z' + P2Zi w',      pW = piW{ z' + p2Wl w'.

This is an admissible transformation since the jacobian J =pip2{Z{ W2

— Z2W{) is not zero. Hence we have proved that two intersecting curves

Ci and C2 not tangent to a conformal surface at their common point have no

differential invariants of the first order. The dual results for hypersurfaces are

also valid. Thus we have

Theorem 4. Two intersecting curves Ci and C2 not both tangent to a con-

formal surface at their common point (or two hypersurfaces Hi and H2 which do

not intersect in a conformal surface) possess no differential invariants of the

first order.

Let C(z', w') be a given lineal element and H(a, b) a given hypersurface
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element. There is a unique isoclinal surface element which contains the curve

C(z', w'). It is given by

Z' W
(13) - = — = X,

z w

where X is a complex constant (not real). Upon substituting this into the

equation aZ' -\-b~W -\-äZ' -\-bW = 0 of the hypersurface element H(a, b), we

find that the lineal element G of intersection between the isoclinal surface

element (13) and the hypersurface element H(a, b) is given by the equation

Z' W
(14) — =-= i(dz' + bw').

z' w

Since, according to Theorem 2, the angle between the curves C and Ci is in-

variant, we obtain

Theorem 5. A curve C and a hypersurface H which intersect in a common

point possess the fundamental differential invariant of first order

(15) \-k — amp (as' -f- bw'),

evaluated at the common point. This is called the pseudo-angle between the curve C

and the hypersurface H. The pseudo-angle represents the angle between the curve

C and any curve C\ through the point p such that C and Ci are tangent to a con-

formal surface at the point p, and C\ is tangent to the hypersurface H at the point

p. Dually, we find that the pseudo-angle represents the angle between the hyper-

surface H and any hypersurface Hi through the point p such that H and Hi inter-

sect in a conformal surface and Hx is tangent to the curve C at the point p. This

pseudo-angle can be written in the real form

Hxdx + Hydy + Hudu + Hvdv
(16) arc tan-•

— Hydx + H xdy — Hvdu + Hudv

The fact that this is the only differential invariant of the first order be-

tween a curve C and a hypersurface H which pass through a given point p

is an immediate consequence of equations (1) and (5).

6. The sufficiency of our results. Let a general transformation T,

(17) X = (x, y, u, v), Y = Y(x, y, u, v), U = U(x, y, u, v), V = V(x, y, u, v),

be given. T is not necessarily a regular transformation. Let p(x, y, u, v) be

a fixed point of the four-space Si and let P(X, Y, U, V) be the transformed

point under the transformation T. Then T induces the following general pro-

tective transformation between the two bundles of lineal elements through

the points p and P:
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pX' = Xxx' + Xyy' + Xuu' + Xvv',

. PY' = Y xx' + Y,y + Yuu' + Yvv',
(18)

pU' = Uxx' + Uvy' + Uuu' + uy,

pV' = Vxx' + Vyy' + Vutt' + Vvv'.

Changing (18) from the real notation (x't y', u', v') to the complex nota-

tion by means of the equations

Z' = X' + iY',      *' = *(*' + *'),        y' = — (z'-z'),

(19) .

W = U' + iV',      u' = \{w' + w'),      v' = y (w' - w'),

we find that equations (18) may be written in the compact complex form

(20) PZ' = az' + ßw' + cbz' + tyw',    pW = 72' + Sw' + xz' + w',

where a, ß, 7, 5, <p, \p, x, w are given:

1 /d        d\ 1 i
a = —(—-i—)(X+i¥) = - (Xx+ Yy) +-(- Xy + Yx),

2 \dx      dy/ 2 2

1 / d        d \ 1 i
-i—)(X+iY) = —(Xu + Yv) + — (- Xv + Yu),
2 \du dv/2 \du      dv/ 2 2

2 \dx ay/

(21)

1 /d        d\ 1 i
0 = —-i—)(U+ iV) = — (Uu + Vv) + —(- Uv+ Vu),

2 \du      dv/ 2 2

1(d        d\ 1 i
<t> = -(— +* — )(X+iY) = —(Xx- Yy) +~(Xy+ Yx),

2 \ox      dy/ 2 2

1(d d\ 1 j
* = — — + * — )(X+ iY) = — (Xu - YV)+ — (XV + Yu),

2 \du      dv/ 2 2

1 /a     d\ 1 %
x = — (- + *'—)W + iV) = -(Ux- Vy) + -(Uy + Vx),

2 \dx      dy/ 2 2

1 (d        d\ 1 i
= — (— + i— ){V + iV) = —{Uu - Vv) + — (UV + Vu).

2\dudv/ 2 2

The transformation (20) is thus the general projective transformation (18)

between the two bundles of lineal elements through the two points p and P.

Let the transformation T carry every conformal surface into a conformal
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surface. Then T must convert every isoclinal surface element into an iso-

clinal surface element. Hence (20) must carry every equation of the form

w' =lz' into an equation of the same form. For this to be so, we must have

(22) 0 = ^ = x = a) = O.

These are the double Cauchy-Riemann equations for the two complex func-

tions X-\-iY and U-\-iV. Hence these functions must be analytic functions

of 3 and w. Thus

Theorem 6. Any transformation T of the four-space Si which converts every

conformal surface into a conformal surface is a regular transformation. Thus the

infinite group G of regular transformations is characterized by the fact that it pre-

serves conformal surfaces.

Next we shall prove that the pseudo-angle (the differential invariant (15)

or (16)) of Theorem 5 characterizes the infinite group G of regular transforma-

tions. Let the transformation T preserve the differential invariant (15) be-

tween every lineal element c(z', w') and every hypersurface element h(a, b)

which passes through the common point p. Then under T we must have

az' + bw'     AZ' + BW
(23) - —--—,

az' + bw'     AZ'+ BW

where the capital letters denote the transformed lineal element CiZ', W) and

the transformed hypersurface element H(A, B).

First we shall show that any isoclinal pair of lineal elements C\(z{, w{)

and c2{z2 , wl) is converted into an isoclinal pair of lineal elements C\(Zi , W{)

and Ci{Z{ , W{ ). Since C\{z{ , w{) and Ci(zi', wi) are contained in an isoclinal

surface element, we must have

zl Wi
(24) _ = _ = X,

z{ w{

where X is a fixed non-real complex number. Let us pass any one of the °o 2

hypersurface elements h(a, b) through the lineal element Ci{z{ ,Wi). Then un-

der T the transformed hypersurface element H(A, B) must contain the trans-

formed lineal element C\{Z{, W{). Hence we must have

(25) az! + bw{ + äzl + bw! = 0,      AZ( + BW{ + 121 + BW[ =0.

Under the transformation T, the pseudo-angle between the lineal element

£2(22', wi) and any one of the =0 2 hypersurface elements h(a, b) through the

lineal element Ci(z{, w{) must be equal to the pseudo-angle between the

transformed lineal element C2{Z{, W{) and the corresponding transformed

hypersurface element H(A, B). This means that the equation (23) must be

valid for these lineal and hypersurface elements. Then because of (24) and
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(25), the equation (23) becomes

X     AZl + BWl
(26)

X     AZl + BWl

This equation must be true for all the <=o2 hypersurface elements H(A, B)

which pass through the lineal element C\{Z{, Wl).

From this equation, and from the fact that A Z{ +BWi =- (AZl + BWl ),

(27) AZl + BWl = ipiX,      AZl + BWl = m,

where pi and p2 are arbitrary real numbers. Let us suppose that Z{ /Zl

5^ Wl /Wl . From these two equations, we can solve for A and B in terms of

the arbitrary real numbers pi and p2. Thence A and B are linear homogeneous

functions of pi and p2. This proves that the equation (26) can hold for only °o 1

hypersurface elements passing through the lineal element C\(Z{, Wl). This

contradicts the fact that the equation (26) must hold for all the hypersurface

elements H(A, B) through the lineal element Ci(Zl, Wl). Hence we must

have

Zl Wl
(28)

Zl Wl

This shows that the transformed lineal elements C\(Zl, Wl) and C2(Z2', W{ )

must be contained in an isoclinal surface element. Therefore every isoclinal

pair of lineal elements is converted by T into an isoclinal pair of lineal ele-

ments.

Since any isoclinal pair of lineal elements is carried by T into an isoclinal

pair of lineal elements, it follows that T carries every isoclinal surface ele-

ment into an isoclinal surface element. Hence every conformal surface be-

comes a conformal surface and the transformation T must therefore be a

regular transformation. Thus we have proved

Theorem 7. Any transformation T of the four-space 54 which preserves the

pseudo-angle {the differential expression of the first order (15) or (16)) between

every curve and every hypersurface evaluated at their common point must be a

regular transformation. Thus the infinite group G of regular transformations is

characterized by the fact that it leaves invariant the pseudo-angle between every

curve and every hypersurface.

7. The Picard sixteen-parameter group Gu of linear fractional transfor-

mations. In this section, we shall give a characterization of the group Gu of

the linear fractional transformations in z and w

a\Z + b\W + Ci a2z + biw + c2
(29) Z =-1        W =-

az + bw + c az + bw + c
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Any transformation of the form (29) is a quadric Cremona transformation.

It may be considered to be a direct generalization of the Moebius group of

circular transformations. Of course, it is not the inversion group of the four-

space Si. As a matter of fact, any hypersphere (or any hyperplane) is con-

verted by (29) into a special type of quadric hypersurface.

Under any regular transformation T, let us find what isoclinal planes be-

come isoclinal planes. For this to be so, the differential equation d2w/dz2 = 0

must be carried into the differential equation d2W/dZ2 = 0. Hence those iso-

clinal planes which become isoclinal equations under the regular transforma-

tion T must satisfy the equation

(30)

/        dw     \r dw / dw\2
\ZZ + — Zw j I Wzz + 2 — Wzw + l—j Www\

(dw       \r            dw          /dw\2 1
W, + -        Ww ) Zzz+ 2-Zzw + (-) Zwa   = 0.

dz       / L           dz          \dz / J

First, if this equation is an identity in dw/dz, we find that Z and W must

be given by the equations (29). That is, the group Gi6 of linear fractional

transformations as given by the equations (29) convert every isoclinal plane

into an isoclinal plane.

Next if the above equation is not identically zero, we can solve (30) for

dw/dz and obtain at most three differential equations of the form

dw
(31) — = /(*,«>),

dz

where/is an analytic function of z and w. Any such differential equation con-

tains oo2 solutions. Thus we have proved

Theorem 8. If a regular transformation T converts 4 =o2 isoclinal planes into

isoclinal planes, then every isoclinal plane is converted into an isoclinal plane,

and therefore T is a transformation of the group Gu of the linear fractional trans-

formations as given by equations (29). Any other regular transformation T con-

verts at most 3 oo2 isoclinal planes into isoclinal planes.

It is found that, under the group Gn of fractional linear transformations

as given by (29), the family of quadric hypersurfaces

(32) azz + bww -\- yzw + yzw + Bz + ew + dz + lw + / = 0,

where a, b, f are arbitrary real constants and y, 8, e are arbitrary complex

constants, is converted into itself. The real form of this family of quadric

hypersurfaces is

a(x2 + y2) + b(u2 + v2) + 2ci(ux + vy) + 2c2(— uy + vx)
\oo)

+ 2dix + 2d2y + 2exu + 2e2» + f = 0.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



62 EDWARD KASNER

There are oo8 hypersurfaces in this family. Every hypersphere (or every hy-

perplane) of the four-space Si becomes a special quadric hypersurface of the

form (32) or (33). Also the intersection of any isoclinal plane with this special

quadric hypersurface is a circle. Thus any transformation of the form (29)

induces a Moebius circular transformation between the isoclinal planes of the

four-space Si. In this respect, the group Gi6 of linear fractional transforma-

tions in 2 and w may be regarded as a generalization of the Moebius group of

circular transformations to four-space. Also the family of special quadric hy-

persurfaces (32) or (33) can be considered to be a generalization of the family

of circles.

In conclusion I wish to express my thanks to Dr. J. De Cicco for his valu-

able assistance in writing this paper.

Columbia University,

New York, N. Y.
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