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ABSTRACT 

A systematic study of a gravitational action possessing local conformal in- 

variance is undertaken. The spontaneous breaking of the conformal symmetry 

induces general relativity as an effective long distance limit through the vacuum 

expectation value of an unphysical scalar field. The Ward identities of the br+ 

ken theory guarantee the stability of Minkowski spacetime or, equivalently, the 

vanishing of the cosmological constant to all orders in any consistent perturba- 

tion expansion. This result persists when the theory is coupled to the standard 

U( 1) x su(2) x s-U(3) model with its electroweak symmetry broken by radiative 

corrections. A particularly natural small parameter is the ratio of the gravita- 

tion-al degrees of freedom to the matter ones, l/N. In this perturbation expansion 

the theory is asymptotically free and renormalizable in a simple way. We show 

that this expansion predicts the spontaneous breaking of local conformal symme- 

try. Furthermore, all ghost degrees of freedom acquire gauge fixing dependent 

masses. 
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I 

1. Motivation 

There is no experimental evidence for the quantization of-the gravitational 

field but one expects quantization should apply to all the fundamental fields of 

physics. They all interact with one another, and it is difficult to see how some 

could be quantized while others not. Of the four fundamental forces determin- 

ing low energy physics, three have been adequately described as quantum field 

theories. All experimental results indicate these quantum theories possess gauge 

symmetries based on the group U(1) X sum X SU(3)c. The remaining force, 

gravity, has a similar gauge symmetry, the coordinate invariance in a spacetime 

manifold, but resists quantization. This prevents us from constructing a quan- 

tum theory of all known interactions based on the gauge principle. 

Classically, the gravitational force at large distances is very well explained 

by Einstein’s general theory of relativity which relates it to the curvature of 

spacetime. The underlying spacetime manifold is Riemannian and the associated 

curvature tensor can be obtained by noting that under parallel transport around 

a closed loop the final direction of a vector differs from its initial direction. 

Weyl, in his attempt to unify the gravitational and electromagnetic forces [I], 

generalized the Riema.nnian space by allowing the final vector to have a different 

. length as well as a different direction, which is a very natural generalization of 

the manifold’s gauge invariance. 

Although there exists a range of classical distances in which Einstein’s theory 

has-no experimental confirmation, there is no overwhelming reason to modify it 

on the classical level. It is quantum physics which reveals the serious problems 

of general relativity. The experimental upper bound on the value of the cosmo 

logical constant is [2] approximately 1O-48 (GeV)4, a very small number indeed. 

However, the presence of a single fundamental particle in the Einstein universe 

induces an infinite contribution to the vacuum expectation value of the energy 

momentum tensor or, equivalently, to the cosmological constant. Unless severe 

unnatural fine tuning is employed, general relativity contradicts the observed 

- world. 
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There are two equivalent ways to quantize a classical theory; the first involves 
the canonical formalism while the second the functional integral formalism. Us- 

ing generalized canonical methods, Einstein’s theory can be put-into Hamiltonian 

form [3] whose consistency cannot be established on the quantum level due to 

the presence of singular order ambiguous operator products (41. This problem is 

intrinsic to the canonical formulation of any coordinate invariant metric theory 

(51. Nevertheless, the naive expression for quantum inner products as a func- 

tional integral weighted by the classical action does define some quantum theory 

of gravity. It is this definition of quantum gravity which is employed to analyze 

its properties. The same methods developed for the renormalization of non- 

abelian gauge theories can be applied to Einstein’s gravity and demonstrate its 

perturbative nonrenormalizability [6]. This phenomenon, which becomes more 

transparent when general relativity is coupled to renormalizable matter theo- 

ries [7], can be traced to the dimensionful coupling constant entering Einstein’s 

Lagrangian and defining the perturbation series. Consequently, the perturba- 

tion series of quantum general relativity leads to uncontrollable ultraviolet di- 

vergences. It could be that by solving exactly the quantum theory sensible finite 

results emerge. However, the intricate nonlinearity of gravity makes such hopes 

infinitesimal. Another possibility, within perturbation theory, is to reorganize 

_ the terms of the perturbation series consistently and hope to obtain answers that 

are finite or renormalizable order by order. One such effort considers expectation 

values of invariant Green’s functions which correspond to physically meaningful 

experiments in curved spacetime but calculational difficulties prevent definitive 

conclusions [8]. 

It is reasonable to assume that quantum gravity is not derived by quantizing 

general relativity but some other renormalizable gravitational Lagrangian which 

leads to Einstein’s theory at large distances in the same way that the Glashow- 

Weinberg-Salam U(1) x sum gauge model leads to Fermi’s four-fermion La- 

grangian. Although this analogy is not exact since gravitation, unlike weak 

interactions, is a long-range force, it provides physical insight. 
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Consider the four-fermion interaction Lagrangian: 

- 

which in terms of an auxiliary field A, takes the form: 

This Lagrangian is not renromalizable since it has one-loop higher derivative 

counterterms of the form aF$ + p(apAp)* which give kinetic energy to A,. By 

adding kinetic terms to the classical Lagrangian, one obtains a new theory which 

at low energies reproduces the four-fermion interaction and is renormalizable but 

not unitary. The introduction of gauge invariance restores unitarity but, at the 

same time, eliminates the A, mass term and, therefore, the desired low energy 

limit is lost. This limit is recovered by supplying a mass to A, through the 

vacuum expectation value of a scalar field which spontaneously breaks the gauge 

invariance. 

Starting from the Einstein Lagrangian and calculating quantum corrections, 

we obtain higher derivative coordinate invariant counterterms [6]. By analogy, we 

.are led to consider theories containing additional terms quadratic in the curvature 

tensor. Dimensional analysis concludes that the linear Einstein term dominates 

the long distance behavior of the theory while the quadratic terms dominate 

at short distances. Furthermore, it can be shown that such Lagrangians define 

perturbatively renormalizable quantum theories [9]. Nevertheless, these theories -. 
are not unitary in the ordinary loop expansion although nonperturbative tech- 

niques seem to suggest that no ghosts are present [lO-121. Independent of their 

unitarity properties, higher derivative gravitational actions still suffer from the 

cosmological constant problem. 

A new gauge symmetry is needed. It is an old idea in particle physics that, 

in some sense, at sufficiently high energies the masses of the elementary particles 

should become unimportant. On the other hand, Weyl’s generalized Riemannian 

- space naturally incorporates this idea by possessing local conformal invariance. 

- 
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In the resulting Lagrangian, which is quadratic in the Weyl curvature tensor, a 

cosmological constant term is forbidden by the extra symmetry. At the same 

time, in analogy with the previous example of the weak interactions, Einstein’s 

theory at large distances is not reproduced as long as the symmetry remains un- 

broken. By analogy with the Higgs mechanism, general relativity can be induced 

[I3,14] if a scalar field acquires a vacuum expectation value which spontaneously 

breaks the conformal invariance [15]. 

In this work, we construct a spontaneously broken conformally invariant 

quantum theory, Weyl’s gravity, and study its general properties. There are 

two problems which have to be faced immediately. On one hand, the unresolved 

question of unitarity can be powerfully attacked using an expansion in a naturally 

small parameter, l/N, where N is the number of fundamental matter fields 

[lo]. In this expansion higher derivative gravity theories are unitary to leading 

order but require the Lee-Wick prescription [16] from there on. On the other 

hand, one expects that conformal invariance is explicitly broken through the 

renormalization scale [17]. However, we directly connect this scale with the 

vacuum expectation value of the scalar field which induces the Einstein term. 

At the same time, the scalar is the dilaton which in turn is the Goldstone boson 

of the spontaneously broken dilatation invariance, the global counterpart of the 

conformal gauge symmetry. 

In the context of Weyl’s gravity [zo]: 

(a) We review the classical Weyl theory and present the properties of its 

l/N expansion. The theory has one coupling constant, in the simplest 

case, and is asymptotically free [lo] (section 2). 

(b) Independent of the expansion parameter, we demonstrate that the 

Ward identities of any spontaneously broken conformally invariant 

theory imply a zero cosmological constant to all orders in a pertur- 

bation series around flat spacetime and an extremum of the dilaton 

potential (section 3). 
- 
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(c) There exists an extension of dimensional regularization using the dila- 

ton field which preserves the Ward identities of the spontaneously bra- 

ken conformal invariance without anomalies [15]-(s&ion 4). 

(d) The theory is renormalizable in a simple way (section 5). 

(4 To realize the spontaneous breakdown of the conformal symmetry, 

the vacuum expectation value vg of the dilaton field has to be deter- 

mined in terms of the renormalization group invariant scale A where 

the gravitational coupling constant becomes strong. We achieve this 

by using the equations of motion of the dilaton to determine the ratio 

vu/A. Thus, the t,heory has a single scale parameter of the order of 

the Planck mass and the dilaton becomes the Goldstone mode of the 

spontaneously broken dilatation invariance (section 6). 

(f) Any matter theory can be extended to a spontaneously broken confor- 

mally invariant theory coupled to Weyl’s quantum gravity such that 

the cosmological constant vanishes. As a simple example, we demon- 

strate this explicitly in scalar quantum electrodynamics, the general- 

ization to the standard U( 1) X 5’U(2)~ x SU(3)c model being straight- 

forward (section 7). 

(g) We show that all ghost degrees of freedom receive a gauge dependent 

mass suggesting that the theory may be unitary in the l/N expansion 

without using the Lee-Wick prescription (section 8). 

2. Weyl’s Gravity and the l/N Expansion 

We wish to study Weyl’s gravity coupled to N matter fields. The classical 

action of the theory consists of two parts: 

SGSG-I-SM (2.1) - 

and possesses coordinate and conformal invariance, the two elements of Weyl’s 

local symmetry. The fundamental classical gravitational field variable is the real, 

6 



symmetric tensor g&z) with signature (+ - --) and z a point in some four- 

dimensional spacetime manifold (greek suffixes take on spacetime values). Under 

local coordinate transformations with infinitesimal parameter-up(z), the metric 

changes by: 

while the result of a local conformal transformation parametrized by O(Z) is: 

The curvature tensor Ra 876( ) z can be expressed in terms of the connection 
I’“g,(~) which is a well known function of g&x) and its first derivatives: 

Weyl’s tensor CaBT6( ) 2 can be constructed out of the curvature tensor and its 

contractions. It vanishes for all contractions of its indices, is conformally invari- 

ant since: 

6 C”,,,(z) = 0 (2.4 

and its square, which equals: 

= RaB7&) R”B7a(z) - 2Ra7(r) Rar(z) + 5 R2(z) 
(2.5) 

provides the simplest Weyl invariant action term depending only on g&z): 

(2.6) 

where G is some dimensionless coupling constant while g(z) is the determinant 

- of gpv(4. 



However, Weyl’s theory needs a scalar field #u(r) as part of the gravitational 

piece of the action. The transformation properties: 
_ - 

A#otd = -44 80 40(z) (2.7~) 

and 

wot4 = -f-w 4ot4 (2.76) 

of the scalar field imply that, up to an overall sign, after normalizing its kinetic 

energy term to have the standard coefficient, only one combination containing 

derivat’ives of 40(r) is invariant under both symmetries: 

The requirement on our theory to induce the Einstein action, after $0(z) acquires 

a vacuum expectation value (VEV), fixes the overall sign of (2.8) and we infer: 

(2.9) 

Thus, as a direct consequence of the conformal part of the full invariance, the 

‘gravitational action cont,ains only one coupling constant. The addition of the 

Weyl invariant self-interaction term: 

(2.10) 

would introduce another coupling constant but, for simplicity, we do not consider 

it now as our conclusions are not affected (the most general case is treated in 

sections 4 and 6). Furthermore, the scalar &J(Z) has to enter with a nega.tive 

kinetic energy term; the correct Einstein term forces it to become a ghost. For 

spacetime manifolds topologically equivalent to Minkowski spacetime, the Gauss- 

Bonnett theorem relates the various quadratic terms in the curvature: 

_ 

- / d4z 4%) [Rap7&)Ra87a(z) - U&~(Z) R@(z) + R+)] = o . (2.11) 
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The equations of motion following from (2.9) are: 

+ 2Rpa"B(4;8a - 2R&(z) RvaB7(z) - 2gp” R@(z);,~ - 2RC’+)& 

+ 2R7~);~, + 2RVQ(~);Ca + 4RVa(z) R”,(z) 

+; gpV(z)R(r);*a-; R(z);“+ R(z)R”(z)] 

+ P+) #;(x);“, - 02 2 ,p” = 0 40. ] (2.12) 

= 0 (2.13) 

. where the semicolon denotes covariant differentiation. The scalar field variational 

equation contains no additional dynamics being the trace of the gravitational 

equation: 

(2.14) 

This result is due ;o the conformal invariance present and is most clearly 

exhibited by redefining [18]: 

g:ut4 = fJo2 4%) !I&) ; VI # 0 

in the gravitational action (2.9). The latter becomes: 

(2.15) 

S& = / d4z ,/Tj [-$ C’2(+$ R’(z)] (2.16) 
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and the scalar field is entirely removed; it is a “gauge” degree of freedom. Weyl’s 

gravity, based on SC, needs conformal gauge fixing and, provided 40(z) has a 

nontrivial VEV, the action S& is the form the-theory takes in the gauge do(z) = _ - 
~0 which can be thought as the “unitarity gauge” -for the conformal symme- 

try. Notice that the general theory of relativity is induced by defining t$ E 

3(47rGN)--l, where GN is Newton’s constant. 

The equations of motion (2.12) and (2.13) have a one-parameter family of 

solutions given by: 

!I&) = rlpu , $0(4 = uo (2.17) 

which classically spontaneously break the conformal invariance; qcrv denotes the 

Minkowski spacetime metric. 

The matter part SM of the action will in general contain Ns scalars 4, NF 

Dirac-fermions $J and NV vector bosons A, all of which, in a realistic theory, 

are associated with a Lie group H. There are many such fundamental matter 

field in nature and consequently a small expansion parameter is the ratio of the 

gravitational degrees of freedom to the matter ones. Thus, the perturbation 

theory of the action: 

+ SM 14, $9 A,1 (2.18) 

will be organized in powers of l/N, where N s Ns +SNF + l2Nv [see below eq. 

(2.27)], such that the product G2N is fixed. The background fields corresponding 

to the vacuum of (2.18) determine the expansion points of our perturbation: 

gwt~) = v/w + Gh,,(x) (2.19a) 

40(4 = uo+a(x) . (2.19b) 

The matter fields, with the possible exception of some scalars, have trivial back- 

_ grounds. Finally, a simple set of gauge fixing conditions for all local invariances 
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is: 

ap h”(x) = 0 , h;(x) = 0 ; t3, A+) F Q_ . (2.20) 

The first two conditions correspond to the coordinate and conformal symmetries 

respectively while the third to the gauge symmetry which SM[~, $, A,] may have. 

In the l/N expansion, the quantities vi/N and g:N, where 9; denote the 

matter coupling constants, are fixed as well. As a result, the free graviton prop- 

agator is given by (see Appendix A): 

&xj3,7&4 = i 
-p4+gp 02 2 

P$,,6(P) (2.21) 

and can be decomposed into two terms: 

P$17&P) (2.22) 

the first of which represents the massless spin-two graviton state while the second 

a massive spin-two state appearing in (2.22) with a negative sign. Since all 

physical states of a quantum theory must have positive-definite norm and energy, 

an appropriate causal prescription for shifting the poles of the propagator is 

needed. The massless part of D,~,~s(p) when replaced by: 

i 

p2 
(2.23) 

leads to a good quantum state. However, when the massive part is changed to: 

- 
p2-!$-;( 

(2.24~) 

or 

i - 

P2 - g$+ ic 
(2.243) 
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the corresponding physical state has either negative energy (2.24a), resulting in 

a perturbatively unstable theory, or negative norm (2.24b), resulting in a pertur- 

batively nonunitary theory. Unless the massive pole is shown-to be unphysical, 

~-- Weyl’s gravity will be perturbatively meaningless. 

Our perturbation expansion is in powers of l/N and, therefore, matter loop 

corrections to the free graviton propagator should be included as part of the 

leading order graviton propagator. Consider the renormalized contribution of 

Ns scalars to the one loop graviton self energy (fig. 2.1): 

~I$,,&I~) = - & $ p4 en (- $) P$,7&P) (2.25) 

where dimensional regularization has been used with p2 as the subtraction point; 

the nonlogarithmic p4-terms have been absorbed in the definition of p2. Anal* 

gous diagrams for fermions and vectors bosons are simple multiples of (2.25): 

ll$!7s(p2) = 214$~,&2) = 121J$,7&P2) (2.26) 

and the total contribution: 

G2 
240 (4n)2 (NS + 6NF + 12NV) P4 en 4y7&P) (2.27) 

-is gauge invariant and, moreover, justifies the choice N = Ns + SNF + l2Nv 

as the overall expansion parameter. The complete leading order l/N graviton 

propagator Da~,76 (p) is given by the sum of all graviton diagrams with an arbi- 

trary number of one loop matter corrections (fig. 2.2). The sum of the resulting 

geometric series is: 

&9,7s (P) = 
qg7s(p) 

p-q--1+g$)‘1- & gq-1 &$,-l h(-5) t2*28) 

and simplifies to: 

&9,76 (P) = 
4y,s(P) 

p2 -p2+~-&fipze” 
1 ( I -5 

(2.29) 
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Furthermore, the beta-function of the coupling constant G can be calculated 

to leading order in I/N: - 

p(G) 1 N G3 ~-- - - 
=-240(4x)2 (2.30) 

and the theory is asymptotically free [lo]. Each matter field gives a negative 

contribution to the beta-function in contrast to gauge theories where the opposite 

happens. Therefore, there exists a “QCD-like” renormalization group invariant 

scale A at which the coupling constant becomes strong: 

*=p exp (-‘:ri”} . 

In term of A, the propagator takes the form: 

&9,-$ (PI = 
4y,s(P) 

at,, -P2 ( )I 7P 

(2.31) 

(2.32) 

The benefits of the I/N ex p ansion are apparent. Weyl’s theory, due to its 

asymptotic freedom, defines a well behaved nontrivial continuum quantum the- 

ory. This theory is studied by using a completely invariant expansion parameter 

so that the resulting perturbation series is insensitive to the strength of the 

coupling constant at all scales. The graviton propagator (2.32) possesses better 

ultraviolet convergence properties due to the presence of the logarithm. More 

importantly, the troublesome massive propagator pole may be avoided, again due 

to the logarithm. In Euclidean space, with signature (++++), the condition for 

the existence of such a pole is: 

160n2u,2 
A2N 

+xenx=o (2.33) 

where the variable z = Ae2p2 is always positive. Equation (2.33) has no real 

solutions provided (fig. 2.3): 

160~~~; 1 
A2N ‘ii * 

(2.34) 
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However, as Tomboulis showed [lo], in the Minkowski complex p2 plane a pair 

of complex conjugate poles exists on the physical sheet. Thus, these poles do 

not contribute to the absorptive part of the graviton-propagator (2.32) and the 

theory is unitary to this order. In higher orders of the l/N expansion unitarity 

violations may be avoided by using the Lee-Wick prescription [lS] which is a 

well-defined but potentially problematic diagrammatic procedure [19]. 

Finally, we note that the presence of a scale A breaks the conformal sym- 

metry. A true conformally invariant quantum theory would have a zero beta- 

function for its dimensionless coupling constant. Upon quantization of Weyl’s 

gravity, however, infinities are encountered and a momentum subtraction is 

needed to absorb them. As a result, the theory acquires a scale A and a nonzero 

beta-function; conformal invariance has been broken explicitly. Suppose we could 

break the symmetry spontaneously and not explicitly by directly associating the 

scale A with the VEV of some scalar field. Then, the existence of a conformally 

invariant regularization scheme would imply that all the information extracted 

from the spontaneously broken theory can be preserved order by order in the 

perturbation. 

3. Ward Identities and the Vanishing of the Cosmological Constant 

Let us assume that a well-defined spontaneously broken Weyl invariant quan- 

tum theory exists. Then, the regularization and renormalization scheme will pre- 

serve its Ward identities (W-I’s) a subset of which implies the vanishing of the 

ind-tied cosmological constant term to all orders in the perturbation expansion. 

There is such a scheme [15] ( see section 4) based on writing the theory in a Weyl 

invariant way in n dimensions where the conformal transformations on our fields 

take the form: 

(3.14 

(3.lb) 
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(3.h) 

6A, = 0 (3.14 

for the graviton and any spin 0, l/2, 1 field. Moreover, assume that the presence 

of a nonzero scalar field VEV ub drives the spontaneous breaking of the conformal 

invariance. 

Consider the n-dimensional Weyl invariant Lagrangian: 

with general linear gauge conditions (q, 0,) for the coordinate symmetry, ([, a) 

for the conformal and (Q, +A) for any gauge symmetry of the matter Lagrangian. 

The effective Lagrangian L consists of two parts: 

L=LI~+LGF 

_ and possesses the following Becchi-Rouet-Stora (BRS) [20] symmetry: 

sh pu = - ppcv + a ucp + G (hppdvcP + hy&d’ + cP$,h,,)] 

+ 2~ (v/w + Gh,u) 

4 = - G&,$ - F 2 Gctq + $1 + %4’# 

s$ = - GcQp$ - 9 G4 + sA$ 

SAP = - G (Ap8pcP + cPapAp) + SAAB 

SEp =- 1 +P, 
c 

scp = - GcPc~~c,, 
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(3.4c.z) 

(34 

(3.4c) 

(3.4d) 

(3.4e) 
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SC = - GcQpc ~._ - - (3.4h) 

1 
SEA=, @ ‘A (3.49 

SCA = - Gc~~~cA + SACA (34) 

where ( cP, c, CA) represent the coordinate, conformal and gauge ghosts respec- 

tively, sA is the internal gauge piece of the BRS invariance and all indices are 

raised and lowered with the Minkowski metric. Elementary inspection of (3.4) 

shows the BRS transformation acting on h,,, 4, +, A, as the sum of a coor- 

dinat.e, conformal and internal transformation with infinitesimal parameter the 

respective ghost fields (cP, c, CA). Furthermore, BRS tranformations leave the 
functional integral measure invariant, have unit functional Jacobian [9] and are 

nilpotent (s2 = 0 except when acting on antighost fields). The part LGF of the 

effective Lagrangian containing the gauge fixing and ghost interaction terms is 

given by: 

in the presence of fermions, the vierbein must be introduced as the fundamental 

gravitational field since it transforms spinor into coordinate indices. Conse- 

quently, local Lorentz gauge fixing and ghost terms must be added leading to a 

straightforward generalization with no effect on our conclusions. 

The generating functional W  [JF, Jk] for connected Green’s functions has a 

functional integral representation: 

where JF, Jj- are the sources associated with the field F and its BRS trans- 

- formation SF respectively. A  Legendre transformation leads to the generating 
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functional I [fi, Jfi] f o one particle irreducible (l-PI) Green’s functions: 

where the classical field p is defined by: 

w[JF, J;] (3.8’ 

and the subscript “a” is a generic index for all gauge fixing conditions. The 

equa.tions of motion are: 

bw 6r -=- 
iTJ; 6J; 

JF 
6r 1 si, c-7-e 7 
6F Sa 6F 

+a ; F#Ea,ca 

Jca = E 
a 

Jz, = ff ^ . 
a 

(3.90) 

(3.9b) 

(3.9c) 

(3.9d) 

The Ward identities of a theory express its invariance under the BRS tran- 

formations; only the source terms break the BRS invariance in the functional 

integral (3.6) and as a result the W-I’s emerge: 

(C JF-SF) =0 
F 

(3.10) 

where 

(O)=/ [i dF] 0 exp(i/ d’z(L+F JF-F+~~@ J$-SF)} (3.11) 

for any operator 0. Combining (3.10) with (3.9) and the antighost equation: 

17 

(3.12) 



the familiar form of the W-I’s is reached: 

c 6r 6r -o 
F#za fi q-- _ - 

c 
F#%Fb 

(3.13a) 

(3.13b) 

Finally, we note the existence of a conserved quantity, the ghost number NC: 

Nc[ta] = 1 , Nc[ia] = -1 , N,IJ:f] = -2 (3.14a) 

N#] = 0 , Nc(Jk] = -1 for F # Ea,Ca . (3. Mb) 

Implications /or the Cosmological Constant 

Let us functionally differentiate (3.13a) with respect to the classical ghost 

field t of the conformal symmetry and then set all p and Ji equal to zero. By 

using ghost and fermion number conservation together with Lorentz invariance, 

we obt,ain: 

(3.15) 

evaluated at zero momentum. Furthermore, the BRS transformations (3.4a) and 

(3.4b) imply: 

-_ 
b2r 

SJ;,S e = ~(VPV + XPY) , with XPy = ‘I,,~X (3.16~) 

b2r -=-v G(u$+Y) 
6J;6? 

(3.16b) 

where XcrV and Y are the one ghost matrix elements (l-PI) of the operators 

Gch,, and c+ respectively (see fig. 3.1). Thus, eq. (3.15) becomes: 

=y Gx(q+Y) f . 
4 

(3.17) 

18 



The action principle implies that, for all 4, the constant background ud 

should take the value minimizing the effective potential V(4) of the theory. At 

this value, the scalar tadpoles 6I’/6 4 vanish and (3.17).automatically guarantees 

the simultaneous elimination of the graviton tadpoles 6I’/6 ill”. Therefore, the 

cosmological constant is zero or, equivalently, Minkowski spacetime is stable 

to all orders in the perturbation expansion around the minimum of the scalar 

potential. 

Any coordinate invariant metric theory coupled to matter contains graviton 

tadpoles K/6 A,, which in general will diverge. As a result, a cosmological 

constant term A, J d4x ,/-g has to be introduced to eliminate these infinities 

and Minkowski spacetime will not be a solution of the equations of motion any 

more. To retain flat space as a solution, the bare cosmological constant must be 

fine tuned order by order to make its renormalized value equal to zero. One would 

expect the spontaneous breaking of the conformal invariance to induce both the 

Einstein and the undesirable cosmological term. However, the W-I (3.17) of the 

broken theory relates the graviton to the scalar tadpoles. The latter vanish at an 

extremum of the scalar effective potential order by order. Then, the W-I implies 

a zero cosmological constant without fine tuning. 

In the Landau type gauges (2.20) the W-I (3.17) assumes a particularly simple 

form (see fig. 3.2): 

(3.18) 

since the graviton propagator becomes transverse and traceless so that the rel- 

evant (see fig. 3.3) ghost-ghost-graviton vertex vanishes when contracted with 

propagators leading to X = Y = 0. 

We conclude by noting the validity of the above results for both perturbative 

expansions: ordinary loop and l/N. The corresponding effective actions are 

- related to each other by a proportionality factor N [lo]. 
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4. Regularization of the Theory Without Anomalies 

Any renormalizable classically Weyl invariant local quantum field theory 

needs a renormalization scale which explicitly breaks the-scale invariance and 

is the source of the conformal, or trace, anomalies [21]. In the context of dimen- 

sional regularization this scale p is naturally introduced once any dimensionless 

coupling constant e acquires dimensions as the theory is continued to n < 4 

spacetime dimensions: 

where eu is dimensionless. By replacing the scale p with the unphysical dilaton 

scalar field $0 raised to an appropriate number of dimensions, a conformally 

invariant theory in n dimensions can be written when [15]: 

e --, e. (#&w/W) . (4.2) 

However, the theory at the background solution 40 = 0 is not analytic and a 

perturbation expansion exists only around 40 = vu # 0 or, equivalently, when 

the conformal invariance is spontaneously broken [see eq. (2.19b)l: 

e + eo(vo+a) (4-7dl(n-2) . (4.3) 

As a result, the spontaneously broken theory appears to have two scales, vu and 

the subtraction point p. This is clearly exhibited by substituting (4.3) with: 

= e. $4~n)/2 (4-n)‘(n-2) 
(4.4 

which we use from here on.]l] Nevertheless, the requirement of a stable per- 

turbation expansion around u = 0 will determine the ratio VO/~ and prove the 

existence of a single scale parameter for the theory directly associated with the 

VEV vu of the scalar field 40 (see section 6). 

I1)Since the Lagrangian (2.9) has a reflection symmetry 40 --) -40, we can always 
choose 40 and, therefore, ~0 to be positive. Then, 1 + G 2 0. 
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The general rule for constructing n-dimensional Lagrangian terms in a spon- 

taneously broken Weyl invariant theory is quite simple. Start with any coordinate 

invariant theory of gravitons and matter fields. Introduce an anphysical scalar 

field cr, the dilaton, and perform conformal transformations [see eqs. (3.1)] with 

a a-dependent parameter to all the dynamical variables: 

u 4/b-2) 
g&v - s/w ‘+G ( > (4.5a) 

cp+#l+z ( 1 -1 

VO 

u -b-Wb-2) 
?I-v+---& 

( 1 

(4.56) 

(4.5c) 

A,, - A,, . (4.5d) 

The parameter has been chosen such that the transformed fields are conformally 

invariant when the transformation properties of the dilaton itself are taken into 

account. When the replacements (4.5) are effected in the coordinate invariant 

terms of the theory, they trivially become conformally invariant as well. Then, 

by making the dilaton a dynamical field we obtain a Weyl invariant theory of 

‘the metric, dilaton and matter fields. The “unitarity gauge” u = 0 of the 

conformal symmetry naively reproduces the original coordinate invariant theory. 

This corresponds to performing the inverse transformations (4.5) to the fields as 

we have already seen in section 2 [see eq. (2.15)]. A list of all Weyl invariant 

Lagrangian terms containing up to four derivatives of the metric is the following: 

(i) Pure gravity terms, 

g 2s 
rfiR2 -+q(J-9R2)‘=yfi l+G 

( > 

’ R- n-2 ~ { 
4(n - 1) apt7 

I( > 
;IJ 2 

vg+a 

(4.6~) 

(4.6b) 
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_ ̂  
( 1 

-2 n-4 - - 
b/--s -ho\/-g 1,; n--3 (vo+u)4 --; A()+ . 

(ii) Scalar field terms, 

1 -- 24J-S02 - -;A~~(l+~)-2s (vo+u)$P ; 

“Z A’=7 . 
vO 

(iii) Fermion terms, 

(iv) Gauge boson terms, 

(4.6k) 

e -- 
4e2 ’ 

‘vgxpTrFpxF~p + --$ ,/++;= g’vgxpTrF/,xFvp . 

(4.61) 

(4.6~) 

(4.6d) 

(4.6e) 

(4-W 

(4.6h) 

(4.6i) 
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In eq. (4.6i), Vi(z) is the vierbein field with coordinate index p, Lorentz index 
a and determinant V(z), while VP is the covariant derivative formed out of the 

spin. connection. Furthermore, FJz) is the nonabelian field strength with the 

trace acting on the gauge Lie algebra and G, 7 > 0, ,8, A, /, e are the various 

coupling constants. Finally, the n-dimensional conformally invariant Weyl tensor 

Cpa,(z) is given by: 

(4.7a) 
1 

-(n - l)(n - 2) R(b’, Sap - q gay) 

while its square: 

C2 =RpvXpRpvAp 
(n-lin-2) R2 . 

(4.7b) 

The passage from coordinate invariance to Weyl invariance is not equivalent 

to the inverse process. In a Weyl symmetric theory, the spontaneous breakdown 

of the conformal component provides a relation between the parameters of the 

theory and enables us to naturally achieve a zero cosmological constant. Thus, 

‘the “conformal unitarity gauge” of the Weyl theory is a coordinate invariant 

action containing one less parameter, namely no cosmological constant term. We 

shall see how this happens in section 6. 

It is easy to verify the invariance of (4.6) under the set of the spontaneously 

broken conformal transformations (3.1). Therefore, the Ward identities of the 

regularized theory are preserved and no anomalies appear in the regularized quan- 

tities.12) The renormalization should be done with a similar spirit. In contrast 

12)Since in two dimensions any scalar field becomes dimensionless it looks as if - 
the theory could develop a singularity at n = 2 from the regularization factors 
[see eq. (4.6)]. However, by normalizing the coefficient of the Rc# term to 
unity, the kinetic energy term for 40 is multiplied by 4(n - l)/(n - 2) resulting 

- in a dilaton propagator which vanishes at n = 2. Therefore, a smooth n = 2 
limit exists for the dimensional continuation of the theory. 
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with gauge theories whose n-dimensional continuation has no explicit n depen- 

dence in the Lagrangian, Weyl invariant theories need such dependence. Thus, 

the naive minimal subtraction, which provides gauge- invariant finite answers, 

does not give traceless finite results for the conformal symmetry. The correct 

algorithm consists of subtracting n-dimensional conformally invariant countert- 

erms as an elementary example shows. 

Consider the result of a regularized diagram in the theory: 

which is traceless in n dimensions; the function /(c) has a power series expansion 

f(c) = f(0) + c!‘(O) + . . . , where c s (4 - n)/2. If minimal subtraction is used, 

the pole part: 

f f(O) (npvP2 - 4PpPv) (4.9) 
is traceless in 4 dimensions but the resulting finite part is not: 

f’(O) (npv P2 - 4w-d + WV PpPv - (4.10) 

On the other hand, by subtracting the n-dimensional traceless counterterm: 

f f(O) (no P2 - vppv) (4.11) 

the renormalized diagram: 

(4.12) 

is traceless in 4 dimensions. 

The above method of regularization and renormalization preserves the W-I’s 

of the spontaneously broken Weyl invariant theory and trace anomalies do not 

arise as they cancel against the new vertices the regularization introduces. This 

has been shown in explicit examples in ref. [15]. In this context, it is interesting 

to study the relation between internal conformal transformations and dilatations, 

- since the latter are the ultimate source of the anomalies. 

- 
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In a Weyl invariant theory, a dilatation D with infinitesimal constant param- 

eter w is the sum of a coordinate transformation A with infinitesimal parameter 

wqxt) = wzp (Killing vector) and a conformaltransformation-6 with infinitesi- 

mal parameter n(z) = w : I31 

Dh,, = -w xf’ ap h,, (4.13a) 

)I u (4.13b) 

(4.13c) 

DA,, = -w (1 + xp a,) A, (4.13d) 

and is spontaneously broken since ~0 # 0. For simplicity, we assume that only 

40 develops a W. 

Under a dilatation, the effective Lagrangaian (3.3) is invariant up to a total 

derivative: 

DL=(n+zPap) f.=i3,(zPL) (4.14) 

provided the gauge fixing terms Cp, have dimensionality two. The W-I’s obtained 

from dilatations take the form: 

c 
F 

(4.15u) 

or 

where dF is the canonical dimension of the field F and equals y, 9, 1, 0 

for spin 0, l/2, 1, 2 fields respectively. When eq. (4.15b) is applied to a l-PI 

Green’s function I’(m) * h wit m external legs we get in momentum space: 

m-l 
c 

a 

i= 1 
Piapi- F n + C rnp dF 1 I’tm)(pj) + do Vo I’(om+‘)(pj) = 0 (4.16) - 

[‘IWe thank S. Coleman for pointing this out. 
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(m+l) where mJ7 is the number of external F fields (m = CF ??aF) and ra is the 

same Green’s function with I’(m) except for the extra zero momentum external 

u field it contains. _ - 

(4 The renormalized Green’s functions rR (pi) in four dimensions satisfy: 

m-l 
c 

a 
-? + p I’km)(pj) = dm I’g)(pj) (4.17) 

i= 1 
pi api + Q 8% & 

where dm is the dimension of rR (m). Combining (4.16) with (4.17) we find: 

( 
a 

p 6 + u” 
-!t $/I 
&j-J > 

= ug rfrnR+l) 
0, . (4.18) 

Recall that the scale parameters p and vo are not independent (see section 6); 

eq. (4.18) becomes (see fig. 4.1): 

(4.18’) 

and corresponds to the low energy theorem for the dilaton field u which is the 

Goldstone boson of the spontaneously broken dilatation invariance. Equation 

-(4.18) does not contradict the renormalization group equation: 

(4.19) 

where pi is the beta function of the coupling constant gi and 7~ the anomalous 

dimension of the field F. Let us verify the above claim with a simple example. 

Ezamplc 

Consider a non-abelian gauge field A,(z) interacting with fermions. We will 

check the validity of (4.18) for the self-energy lYV of the gauge boson up to one 

loop. The relevant Lagrangian terms for the calculation are: 
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where D,, is the gauge covariant derivative. There are five diagrams contributing 

to IF (see fig. 4.2) and the sum of the first four is given, in the Landau gauge, 

by: _ - 

(4.21) 

where tW E qpLv - 
% 

py and 

fk) = l r(i+~)~(k,~-c) 26-33e++4c2 4(1- c) 
02-’ 4(3-2c) cA- 3-2c TdJ (4-22) 1 

with CA and T$ the group Casimirs for the gauge bosons and fermions. The 

fifth diagram (4.le) is the one loop counterterm: 

“2’” = - 2 l --te - ~ f(C) p2 P” (4.23) 

where 

ZA = 1 + e2 f z(c) 

such that z(O) = f(0). Therefore, the renormalized self-energy IIr is: 

(4.24) 

=ip2Pv [-1+e2(-fo(n(-$)+f’(0)--1’(0J)] . 
(4.25) 

There are three diagrams contributing to II.$” (see fig. 4.3). The two new 

vertices are: 

I 01 . 
= -2 -!- n--4 ZAPQW 

ug n-2 (4.260) 
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and 

(4.266) 

It is easy to check, up to order e2, the identities: 

4 n-4 =-- - 
vo n-2 

(4.27~) 

4 n-4 =-- 
ug n-2 

(4.27b) 

so that the sum of the last two contributions to e is zero. Thus, the first 

diagram gives the full answer: 

I-p * 
u,R = t p2 BP” e2 z(0) (4.28) 

and(4.18) is trivially verified when we use f(0) = r(O) = & (g CA - 8 T+). 

This simple example shows the kind of inconsistency arising when the above 

regularization scheme is not used: there are no new vertices (4.26) and II$” = 0 

which does not verify the W-I (4.18). 

The ~0 = 0 limit of the theory does not exist in perturbation theory reflecting 

the nonanalyticity at 40 = 0. We shall see in section 6 that this is due to the 

existence of a nonvanishing beta-function which forces vo to be nonzero and the 

- conformal symmetry to be broken spontaneously. The symmetric limit can be 

- 



-. 
approached at extremely high energies only for an asymptotically free theory. 

However, the limit could be reached exactly~ if some unified theory was finite. 

Finally, in our theory the dilatation transformations 5 = A + 6, given by 

(4.13), define a conserved current ./P(Z). The entire contribution to the current 

comes from the coordinate part A and Jp has the form: 

J+) = zy W”(z) (4.29) 

where CY is the energy momentum tensor. The conservation of the dilatation 

current implies that: 

W,(x) = 0 . (4.30) 

In the Minkowski spacetime limit, BpV becomes the improved energy momentum 

tensor [22]. 

5. Renormalization 

The perturbative renormalizability of gravitational actions including terms 

quadratic in the curvature tensor has been demonstrated by Stelle [9]. More 

precisely, it was shown that in a class of linear gauges coordinate invariant as 

-well as coordinate noninvariant divergences appear. The invariant infinities can 

be absorbed by redefining the parameters and fields of the bare action while 

the noninvariant infinities require nonlinear renormalizations of the gravitational 

and ghost fields (and of their BRS transformations). However, in the Landau- 

type-gauge or a class of linear gauges containing more than two derivatives, the 

coordinate variant divergences disappear and the renormalization procedure is 

considerably simplified. 

The above results are not directly applicable to a Weyl invariant theory due 

to the presence of local conformal invariance. The spontaneous breakdown of 

the latter and the particular regularization scheme required present additional 

departures from the analysis of Stelle. Therefore, we carry the renormalization 

program for a Weyl symmetric gravitational action along the same general lines 

- with ref. [9] and prove the renormalizability of the theory. 

- 
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It is adequate to consider a matter Lagrangian with N scalar fields 4; any 

renormalizable Weyl invariant matter coupling gives the same results. The classes _ - 
of coordinate and conformal gauges we use to study the renormalization are: 

cpp c&h=: ai‘h; 
n 

(5.lu) 

with parameter c, and 

cp= l 
2(n - 1) Oh$ - l$ & hpv) (5.lb) 

with parameter {, respectively. These gauge conditions force the ghost propaga- 

tor matrix of the theory to be diagonal to lowest order (see Appendix A). Further 

restrictions on (5.1) lead to a set of gauge fixing conditions in which one expects, 

in analogy with ref. [9], that the renormalization becomes simple. The restric- 

tions consist of taking g = 0 and introducing extra derivatives in the conformal 

gauge fixing term: 

LGF = cP-z%lpp-Es@ (5.2) 

where the dimensionful constant m ensures that c stays dimensionless. Notice 

that when c = 0 as well, we recover the simple covariant gauges (2.20) which 

provide a transverse traceless graviton propagator. 

The effective Lagrangian (3.3) with (5.2) as its gauge fixing part, is still BRS 

invariant provided (3.4g) changes to: 

SEC- p20 . (5.3) 

The coordinate ghost term contributes: 

-Ps~, = 
n-2 q qpv+- h;L$,cP+h,,p8’cP+cP~ph; - 

n 

- ; a,(2h, 8’ cp + cp a p “)] + 2G@ [-8’(h,wc) +; ap(h;c)] h” 

(5.4u) 
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and the conformal: 

1 - CsQ,=-EUc+ 2(n - 1) 2h,“@%“,c’iJ,h; _ _ 

2h” ap cp + cp ap hp” P >I + + z[aBa,(ha”c) - I?(h;c)] . 
n- 

(5.4b) 
Before analyzing the ultraviolet behavior of the various propagators, which are 

derived in Appendix A for the gauges (5.1), we note the presence of a nondiag- 

onal graviton-dilaton free propagator. The &dependent part of all propagators 

behaves like l/k8, as k + co, while the &independent pieces of the graviton and 

dilaton propagators behave like 1/(k4 en k2) and l/k4 respectively. 

The renormalization of the theory is most easily proved by using its BRS 

invariance which is preserved by the regularization scheme (see section 4). Then, 

the Ward identities (3.13) are satisfied by the regularized l-PI Green’s functions. 

We wish to show, by induction, that the renormalized l-PI functions satisfy the 

W-I’s as well with the appropriate redefinitions of the bare parameters and fields 

only. It is obvious that the W-I’s are verified to lowest order in perturbation 

theory. Assume this to be true to kth order and try to prove the assertion for 

the (k + 1) order. Thus, we consider the superficial degree of divergence D of a 

-general l-PI diagram. 

Let EF be the number of external lines of the field F; IF~F~ the number of 

internal propagators FlF2; VF~FZF~ the number of vertices with fields FlF2F3; Vt 

and Vt the number of graviton vertices with four and two derivatives; V,“, Vz 

an&i/a the number of dilaton vertices with four, two and zero derivatives and an 

arbitrary number of gravitons; Vi&,, V&,, Vi44 the number of vertices possessing 

the indicated number of scalar fields and derivatives as well as arbitrary numbers 

of gravitons and dilatons; &7Co the number of insertions of the operator which is 

the nonlinear part of SF [see eqs. (3.4)]; L the number of loops. In terms of the 

above quantities: 
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D =a + (4 + fvo + (2 + e)vl + 4~: + z!v,2 + 2v-$ + 2y&cv + vzphc 

+ 3bhc, + 2bhc - (4 + e)rhh - 8rho - uoo - 2I&$ - 2&, 

+ oc,c, + occ, + Oh+ + o,, + oo,, - E?,, - 2Ez 

(5.5) 

where e represents the extra convergence of the en k2 factor in the l/N graviton 

propagator and the last two t,erms reflect the action of at least one derivative on 

I,, and two on z [see eqs. (5.4)]. The well-known formula: 

L=CIi-CVi-COi+l 
i i i 

implies: 

(5.6) 

D 4 - whh - vj) - (2 - e)V; - 2Vi - 4V, - 2V& - 4V26 _ 4V4ti 

- 2v&h, - 3&,hc - v&c, - 2&h, - 4Ih, + 244 + 2I~,,&, - 30,,, 

- 30,,,, - 3ohc c - 4ohc - 30,p, P - 30acr - 404, - 4oac - Eq, - 2Ez 

(5.7) 
Finally, using the topological relations for the conservation of 0, 4, E,, E + c 

‘field lines: 

2V$ + “V& + 4V& + i& + O,+ = 2&, + E,+ (5.&l) 

V i?,,hq, + b,hc = +, + Ezr (5.86) 

-ibhc + &‘,hc + bhc, + occ, + ohc + 04, + &c = 21~~ + Ez + EC (5.8~) 

the superficial degree of divergence D becomes: 

D 4 - e(rhh - vi) - (2 - e)vt - 2vj - 4vo - 2v2$, - 4rh, - E,$ 

- 3EF, - 3Ez - Ec - 30cpcy - 20ccr - 3ohc, - 20#,= - 30,,, 
(5.9) _ 

. 

The divergent part of any diagram has a t-independent piece, which is given 

- by calculating in the c = 0 gauge, and a <-dependent one. But when the c = 
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[ = 0 gauge conditions are used, inspection of (5.4) shows that at least one 

derivative acts on the ghost fields c= and the degree of divergence (5.9) becomes 

D- Ec,, -EC. Also, the c-dependent part of the propagators; which is responsible 

for the c-dependent divergences, behaves like l/k8 in the ultraviolet and either 

lowers D by four, when at least one graviton or dilaton propagator is used, or in 

(5.9) Ih0 2 1 when at least one graviton-dilaton propagator is used. 

As a result, all divergent diagrams (D 2 0) involving external ghost lines 

are given in fig. 5.1 and have zero degree of divergence. Certain diagrams with 

an odd number of external dilaton lines are excluded since either Vj or Ihb 

is different than zero in (5.9). Moreover, all these diagrams of fig. 5.1 have & 

independent divergences. Adding an arbitrary number of external gravitons and 

dilatons does not change D, leads to an infinity of divergent graphs and causes 

nonlinear renormalizat,ions of the fields and the operators. The conclusions of 

this paragraph are valid in the ordinary loop expansion (e = 0 in (5.9)]. 

In the l/N expansion the <-independent piece of the graviton propagator, 

which is the only relevant part for the divergences of fig. 5.1, has better ultra- 

violet behavior than the ordinary one. Because of (5.4) all divergent diagrams 

involving external ghost lines satisfy Ihh > Vi and become finite using the l/N 

‘graviton propagator when two or more internal graviton lines are present (see 

Appendix C). The absence of ghosts-dilaton couplings forces these diagrams to 

contain at least one graviton propagator except for the diagram of the operator 

0 UCa which has at least two such propagators and hence always converges. Fur- 

thermore, the degree of divergence D in fig. 5.1 remains unchanged by adding 

arbitrary numbers of gravitons but becomes negative when even one dilaton line 

is attached. As a result, nonlinear redefinitions of h,,, cu, shPv, scu, s$ are 

needed to absorb the infinities. The only remaining divergences are those of 

LIP which can be shown [9] to be independent of the gauge parameter. In 

fig. 5.2, the divergent diagrams involving scalar field external lines are shown 

with their degree of divergence which is unaffected by the addition of arbitrary 

numbers of gravitons and dilaton lines. In the l/N expansion, the infinities of 

- the scalar sector come from dilaton, scalar and one graviton internal lines. 

- 
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If the connection with the simple covariant gauges (2.20) and the resulting 

convenience of a transverse traceless graviton propagator is sacrificed, there exists 
a class of gauges where the renormalization program becomes-very simple even 

in the ordinary loop expansion. In LGF, given by (5.2) instead of (5.1) use: 

@C2L06 
n-2 Gv0 

(5.14 

(5.lb)’ 

where the perturbation expansion is in terms of the fluctuating field HP“(z) 

defined by: 

4% gpv(x)= qpv +GHpV(z) . (2.19a)’ 

In these gauges, all graphs involving external ghost lines become convergent 

since, in the c = [ = 0 limit, inspection of (5.2) shows that two derivatives 

always act on cP [9] and one on c modifying the degree of divergence (5.9) to 

D-2E, -EC. Thus, the theory is renormalized by simple &independent redef- 

initions of the parameters and fields of the Weyl invariant part, LIP, of the 

effective Lagrangian L. The renormalized Lagrangian is: 

fR= k+Lvf++GF (5.10a) 

where 

- Zu J-9[; gp”(~,Wv4 + 8;n-;) R(vo + u)“] 

+zx,xo 1+; ( 1 
-2:3 - l/--9 (vo + 4* (5.10b) - 

and f.GF remains unchanged [see eq. (5.2)] while LM acquires its usual coun- 

- terterms. 
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In the “conforms1 unitarity gaugen of (5.10) we obtain the most general 

higher derivative gravitational action with zero cosmological constant. Since the 

latter is renormalizable as well the infinite parts of--the various counterterms 

should be the same in both gauges. Furthermore, the metric field gPV does not 

get renormalized. The fluctuating field Hpv, defined in (2.19a)‘, acquires a 2~ 

such that GHpy stays unrenormalized. However, by using different definitions 

for hp,, for example J-sgPu = VP’ + -& HpV’, the fluctuating field remains 

unrenormalized by itself. 

We conclude by observing that although the conformal gauge fixing term (5.2) 

makes the renormalization program simpler, it introduces t-dependent artificial 

infrared divergences which can be avoided by an appropriate change of the gauge 
1 @  cl2 cp to 1 (-& O+m213 fixing term Z z X L7 a,. The only effect of the modified term 

is to replace the c-dependent part of the propagators (see Appendix A): 

m4 m4 
’ @  + ’ kz(k.2 - rn2)3 . 

(5.11) 

All invariant quantities are [ and m independent. 

6. Realization of the Spontaneous 

Breakdown of Conformal Invariance 

We consider the simplest framework for studying the spontaneous breaking 

of the conformal symmetry; the most general one will be discussed later in this 

section. This is achieved when only the field $0 can potentially receive a VEV. -. 
Thus, the matter Lagrangian should contain no scalar fields since they mix with 

$0 and could develop VEV’s. The only possible remaining 40’matter mixing term 

is the Yukawa coupling 4 &$J which for simplicity, is excluded by using chiral 

invariance; as we shall see its presence does not affect any results. 

The nontrivial beta function (2.30) of the asymptotically free theory (5.10) 

implies the existence of a renormalization group invariant scale A and signals the 

breakdown of the conformal invariance. By using an appropriate regularization 

- scheme (see section 4) the W-I’s of the theory are preserved and the breakdown 

- 
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is spontaneous and due to the VEX vu of the dilaton field. By perturbing the 

theory around a solution of the equations of motion the ratio vu/A is determined, 

order by order in the perturbation, and the theory has only-one scale as well 

as vanishing cosmological constant. We show this by explicitly calculating the 

effective potential of the dilaton to leading order in l/N. For the calculation we 

will use Landau type gauges (2.20) in f Gj7. 

To leading order in 1/N, where G2N = r/N = XoN = fixed, in the 

Lagrangian (5.10) only the gravitational coupling constant G is renormalized 

and Zr = ZhO = Z, = 1; this is exhibited in Appendix B where the relevant 

Feynman rules are given. Therefore, the calculations presented in section 2 are 

valid to this order. Moreover, to study the breaking of the conformal invariance 

to first order in l/N, it is consistent to assume XoN = r/N = 0. Although the 

effective potential V,JJ[~] is zero to tree order, the leading l/N corrections are 

calculable, finite and demonstrate the spontaneous breakdown of the conformal 

symmetry. 

The diagrams contributing to Ve,j[o] are given in fig. 6.1. Let V, represent 

a vertex with v a-fields at zero momentum and two gravitons. Then, a general 

such diagram rninj with n = nl + . . . + nj + . . . + nu external 0 legs, where nj 

is the number of Vj vertices present, equals: 

r 
/ 

dnk 1 1 ?l;?lj = __ -.. .- 
(2np n1! n,! 

2n-’ (n - l)! (aV#l . . .(a’ lQnv tr D” (6.1) 

where the symmetry factors of the diagram have been included and the trace is 

over the indices of the graviton propagator DPo,xP [see eq. (2.32)]. The effective 

potential is: 

5i = -- 2 / & q-2 E (bjvj)D] 
j=l 

(6.2~) 

(6.26) 
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where: 

i5= 
i 

(6.3~) 

and: 

+ k2(a2 + 2~~~7) 1 . (6.36) 

The logarithmic term in (6.3b) comes from the cancellation of the & pole of ZG 

and the vertices proportional to (n - 4); the Feynman rules and the counterterm 

ZG are given in Appendix B. By substituting (6.3) in (6.2b), we obtain: 

tn 1+2 [ 
k2en( 1+ g, + y (a2 + 2vua) 

1607r2 -vi! - k2 en (- $) I 
. (6.4) 

Define the variables: 

= 160?r2 “8 
cl- N-$ , pr 

and perform the integration in Euclidean space: 

(6.5) 

(6.6) 

where the angular integrations have been done. 

We are interested in finding the value of vu at which the effective potential has 

a minimum for u = 0, since rr is the translated field. The necessary and sufficient 

condition for which l$~~[u] has no imaginary part is Q > k and this inequality, 

which is identical to the unitarity condition (2.34), guarantees a stable minimum, 

provided one exists. It is amusing to observe that had we used a positive kinetic 

energy for $0 in our action, the variable cr in equation (6.6) would have to be 

replaced by -o and the condition for lack of imaginary part would become 

a< -i forcing vu and, consequently, u to be imaginary and us to change its 

- kinetic energy sign. In the region Q > i, where (6.6) is real, the remaining 
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integration can be done using methods of complex analysis and dimensional con- 

tinuation and gives a finite answer (see Appendix C). The latter justifies why, 

except for the radial integration measure, we can use four dimensional quantities 

in calculating the effective potential. 

The final answer is: 

CY= 
6j + 2rj ,-G 

sin dj 

At the minimum for u = 0 the first derivative vanishes (see Appendix C): 

Wff I4 
dfJ (T=o 

=0 =+ crz1.62 

N 2 ?&-A . 
975 (6.8b) 

(6.76) 

(6.84 

Therefore, as claimed, eq. (6.8b) shows that the theory (5.10) has a single scale 

parameter vu such that vu/ @, as required by a consistent l/N expansion, is 

-fixed. In terms of the Planck mass Mpc: 

vo = .49 MH , (6.9~) 

At extremely high energies we have an asymptotically free Weyl invariant theory. 

Using the presently known number of fundamental matter particles, 233/N is 

almost unity so that close to the Planck mass, as eqs. (6.9) reveal, the gravi- 

tational coupling constant G becomes strong, the spontaneous breaking of the 

conformal symmetry is driven by vu and Einstein’s term is induced; Planck’s 

mass is the natural mass scale of the theory. As N increases, however, the mass 

- Mpt becomes larger than the scale A. 
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Having found vu/A, we can check to one loop the vanishing of the cosmolog- 

ical constant as predicted by the W-I (3.18). The graviton tadpole t,, (see fig. 

6.2 and Appendix B for Feynman rules) is given by: ~-. - - 

t,” = -&G~~o11 C 
O” sin 2tJj sin2(9j 

j=O (Oj+ 2rj)2 ‘l’” 

and verifies (3.18): 

1 r,W,, = pOG 

(6.10) 

(6.11) 

For the solution (6.8), t,, vanishes and so does the cosmological constant to this 

order. 

The most general renormalizable Weyl invariant action requires the introduc- 

tion of a four derivative term for the scalar field u [see eq. (4.6b)]. Therefore, 

one expects a doubling of the degrees of freedom and, by inspecting the pole 

structure of the u-propagator [see Appendix A, eq. (A.Qc)], infers the presence 

of a massless ghost, the dilaton, and a physical scalar particle with mass $7. 

Notice that for the solution (6.8) the complete effective potential (6.7) is zero. 

This realizes the field u as the “Goldstone mode” of the spontaneously broken 

dilatation invariance. Now we can interpret the W-I (4.18’) as the low energy 

theorem for the massless Goldstone boson u. The above properties can be shown 

to aJ1 orders with the W-Is. 

Consider the action of the following functional operations on (3.13a): 

(6.12~) 

(6.126) 

- Using vu such that the dilaton (and, therefore, the graviton) tadpole vanishes, 
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one finds: 

62r 62r 62r s2r 
biix,sa 6J;,St + 

--=(). 
b&b& bJ,$Si? 

(6.13~) I 

(6.136) 

When the graviton tadpole is zero, coordinate invariance guarantees the vanishing 

of the zero momentum piece of the graviton self energy. Equations (3.16) show 

that b21’/6J$ t? is not zero and, therefore, at zero momentum: 

(6.14) 

so that to all orders in the perturbation the dilaton field u is massless. By taking 

successive derivatives 616 &,, and 6/6 & on (3.13a) and using the same procedure, 

it is elementary to prove, by induction, the vanishing of an arbitrary l-PI function 

involving only dilaton and graviton external legs at zero momentum. PI 

Moreover, the dilaton field, like a Nambu-Goldstone boson, is unphysical. Its 
most striking property is it.s dual role as a Higgs scalar, acquiring a VEV which 

-breaks a local symmetry, and a massless Goldstone boson, depositing its degree 

of freedom to the metric field and disappearing from the physical sector. 

Besides using the conformal unitarity gauge (see section 2), we can see that 

the dilaton is unphysical by attempting to give it a t-dependent mass. In spon- 

taneously broken gauge theories the t’Hooft class of gauges gives a gauge de- 

pendent mass to the Goldstone bosons and eliminates all Goldstone boson-gauge 

field mixings. The analogous condition for the conformal symmetry is obtained 

by requiring the cancellation of the dilaton-graviton mixing term coming from 

the Lagrangian (5.10). The resulting gauge fixing condition is: 

9’ = 2(n\ 1) (uhf: - a,&, hpy) - t q G(vou + ; c76) (6.15) - 

I41 Th’ 1s is not true if matter fields are added as external legs at zero momentum. 



and becomes & g2 in L GF providing a c-dependent mass to the dilaton: 

I _ - 
- i(n - 2)2G27 

. 
$ + [(n-2)2 

(6.16) I 

As c -+ 00 the u-propagator vanishes and the dilaton decouples. 

In the most general case, we allow all coupling constants of the theory to be 

nonzero. According to the analog of the Coleman-Weinberg 1231 mechanism a 

value vu extremizing the dilaton effective potential exists provided X0 is of the 

order of G4. Since, to leading order in l/N, @A,, = 0 while PG < 0, there is a 

region in which X0 - G4 and a solution vg is always available; it is consistent 

to assume G2N = r/N = XoN2 = fixed. Then, the coupling constant X0 

gets renormalized since the divergent oneloop four-point function constructed 

only out of u-vertices proportional to 7 becomes of order 1/N2. Notice that 

for X0 # 0 the classical background solution about which we should expand 

possesses curvature. However, to leading order in l/N one can expand around 

flat space (using the X0 = 0 classical solution). Indeed, the one-loop corrections 

in general would give terms of the form G4, qm4 as well as terms proportional to 

X0 which are necessarily suppressed [they are o(l/N6) at least]. This algorithm 

-persists for higher orders. 

There are three independent parameters in the general theory and the SCF 

lutions have a more complicated form: ug = pf(G,7, X0). To get an insight, 

consider the extra contributions to the dilaton tadpole to given in fig. 6.3(b): 

(6.17~) 

1 

k2 - $ 
(6.17b) 

where the counterterm XoZhe is given by the pole part of the u field four-point 

function: 
- 

111 XOZ~() = x0 - - 
la-432n2;JZ - 

(6.18) 
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In four dimensions the sum is: 

t3 + t; 
i 

= 4iXo”o3 + -(4n)2 -3 +7&-s 1 (6.19) 

where YE is Euler’s constant. The sum of the corresponding graviton tadpoles 

is: 

en& + YE - 3,]9pv (6.20) 

and the W-I (3.18) is satisfied (see fig. 6.3). To obtain the solution vg extremizing 

the total dilaton effective potential to leading order in l/N, we require: 

tg + t; + ta = 0 (6.21) 

dVc bl where tf z -i * o-o [see eq. (6.7)]. Th en, a consequence of eqs. (6.11), 

(6.19) and (6.20) is the vanishing of the cosmological constant. 

The generalization of the above analysis when the matter Lagrangian contains 

scalar fields which can acquire VEV’s is straightforward. In the simplest case, 

there is the field ~$0 with VEV t’u, such that 40 = vu + u, and a scalar field 41 

with VEV vl < vu (to preserve the sign of the induced Einstein term), such that 

91 = VI+ 41. Then, u - C#J~ mixing terms will appear and we define: 

ChX 

shx 
(6.22) 

where u’ is the dilaton field, 4: is the Higgs field and the Lorentz rotation is 

dictated by the relative sign difference of the kinetic energies of u and ~$1. The 

angle x is: 

shX = & - (6.23) 
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At zero momentum, in the Landan-type gauges (2.20) X = Y = 0 [see eq. (3.16)] 

and the W-I’s analogous to (6.13) give: 

(6.24~) 

(6.246) 

(6.24~) 

and with the same arguments as before: 

(6.25) 

at zero momentum. Thus, all the properties of the u field in the case without 

other scalars are inherited by d which is the new dilaton field. At the same time, 

the Higgs field $‘r is not prevented from getting a mass. In terms of the rotated 

fields, the W-I (3.18) takes the form: 

(6.26) 

and the necessary and sufficient condition for the vanishing of the cosmological 

constant is the vanishing of the tadpole of the dilaton field in the theory. 

In concluding, we note that when physical scalar fields are present there 

is no a priori symmetry preventing them from acquiring masses of order Mpl, 

the natural mass scale of the theory, even if their VEV is zero. This is the 

usual hierarchy problem which can be unnaturally solved by fine tuning without 

affecting the vanishing of the cosmological constant. 
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7. Theories with Zero Cosmological Constant 

As an outcome of all the previous results, the following is true: 
_ - 

Theorem: Any matter theory can be extended to a spontaneously broken confor- 

mally invariant quantum theory coupled to Weyl’s quantum gravity. The Ward 

identities of the total theory imply a zero cosmological constant to all orders in 

a perturbation around an extremum of the dilaton field potential - if one exists 
- and around Minkowski spacetime for the metric field. 

Low energy physics is adequately described by the standard model, a gauge 

theory based on a U( 1) X SU(2)l X SU(3)c local symmetry. Its electroweak part 

can be studied in the ordinary perturbation expansion but, for simplicity, we 

consider scalar QED which is perfectly adequate for demonstrating the validity 

of our theorem with explicit calculations. The complete Lagrangian is given by: 

f sp’“(a,u)(a,u) - n - 2 8(n - 1) 
R(q) + u)2] 

+ eAp ((&qW2 - @$2)(v1+ 41)) + f e2A&.@l + 4d2 + #f -. )I 
+ Zti n-2 

8(n - 1) 
(vl+91)2+& 

+ f GF (Landau-type gauges) + 1 P-1) 



where A,, and e are the photon field and coupling constant and ~$1, 42 are the 

real components of a complex scalar field. The Lagrangian i contains all possible . . 
remaining Weyl invariant terms [see eqs. (4.6)) which we do not use for simplicity. 

The field u’ is used in the regularization factors and the higher derivative scalar 

term (4.6b) since it is the unphysical dilaton [see eq. (6.22)] with VEV v; E 

$m. Moreover, i may contain additional matter fields; we only consider 

their contribution to the effective number N [see eq. (2.27)].i1) 

The minimization of the scalar effective potential to determine ug and vl is 

equivalent to requiring the respective scalar tadpoles to be zero and organizing 

the perturbation theory such that X - e4 [24]. Let t,,, to and tl denote the 

gravitational, dilaton and Higgs tadpoles respectively (the relevant Feynman rules 

are derived in Appendix B). The tree level tadpoles t(O) [see fig. 7.1(a)] contribute: 

tb”‘= i n )J, q --- 
4 n-2 vO 

and verify the W-I (6.26): 

(7.20) 

(7.26) 

(7.2~) 

I’)Th e general validity of the l/N expansion is based on the fact that the graviton 
is the only field which couples universally to all matter. This expansion reduces 
to the ordinary loop expansion when the matter Lagran ‘an is a gauge theory; 

F notice that in (2.27) for a gauge group SU(J), NV = J - 1. For a consistent 
J/N expansion, attention must be given to the dilaton field which through the 
regularization of the theory, could couple to all fields [see eqs. (4.6)]. 
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There are one-loop tadpolesI of similar order [see fig. 7.1(b)] coming from A,,: 

II”’ = -2 n---l 43~0 
n - 2 e ‘1 $ If-41 

where 

(k2 -:%:,2 = r(2-E) . 

The identity (6.26) still holds: 

fy tl”? ~7 Gq@) . 

Finally, the one-loop graviton tadpoles tIh) [see fig. 7.1(c)] give: 

@  = _ 5i 
192(4~)~ Grlpv A4 J(h) 

(7.4b) 

(7.4c) 

(7.5) 

(7.6) 

(7.7u) 

(7.7b) 

where 

t’:’ =o (7.7c) 

I(h) = / 
mdz&t c1-2~ =&Q~ c O” sin 2t9j sin2 f?j 

o cx+ztnz j=O tej + WI2 (7.8) 

with or = w gZ and ej provided by (6.7b); see Appendix C. As expected: 

qc(v tl”? = ! 2 Gv; tr’ . (7-Q) 

1211n dimensional regularization,-tadpoles with-ma&less loops vanish. 



Combining (7.2), (7.4) and (7.7), we find to one-loop: 

. . 

b” = -i Gq,,,, Xv; - & Gqpu e4v: 
e2vT 

en.---- 
5 

4+2 +.7 - 3 1 f t$! (7.10a) 

. 

t0 =-- v’: 3; 
;+- 

V4 
e4J en 

L 

e2vF 5 
0 ii%? VA &$2+7-g 0 1 

+ tfh) 

t1 =s ’ xv; 7+ 
3; 4 3 ‘0 

v() ii%? e v1 g [ 
en e2vf 1 

-+7-s - 1 
(7.lOb) 

(7.lOc) 

The counterterm Zh has been evaluated in the symmetric matter theory (VI = 0) 

and is the pole part of the four-point scalar l-PI Green’s function: 

x+x-12 e4 
n-4 (4R)2+“* . 

The full one-loop results (7.10) satisfy: 

(7.11) 

(7.12) 

and, to achieve a stable perturbation theory, we determine vu and vl such that 

the dilaton and Higgs tadpoles are zero: 

to=t1=0 (7.13a) 

which, through (7.12) implies the vanishing of the cosmological constant to this 

order: 
-. 

t,, = 0 (7.13b) 

Relation (7.10~) does not contain the graviton loop and, thus, the Higgs 

tadpole vanishes for a value VI independent of the presence of gravity; there 

is no hierarchy problem to this order but in principle it will appear in higher 

loops. The dilaton tadpole to, which controls the value of the graviton tadpole 

t,,, vanishes for vi; this value differs from its original value vu given by (6.8) by 

tsms of order vl/uu as eq. (7.10b) indicates. When the ratio vl/vg is very small, 
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as it would be in the standard model, the value of ui is essentially equal to YO 

and, therefore, gravitation supplies the dominant contribution. ~- 
The addition of fermions with Yukawa couplings: -. - - 

iJ @1+ 91) to (7.14) 

and the requirement X - e2f2 for a consistent perturbation expansion, introduces 

three tadpoles t($) to one-loop [see fig. 7.1(d)]: 

&) = l - 2 Grlpy e2f2 v! I(F) n- 
(7.15cz) 

(7.15b) 

where: 

p = 2 n ---ij e2f 2 vf ; I(F) n- 
(7.15c) 

Equations (7.15) verify the W-I (6.26): 

qp” tp =+&tb” . 

. (7.16) 

(7.17) 

-By coordinate invariance, since t,, = 0, an arbitrary l-PI function involving 

only graviton and dilaton external legs at zero momentum vanishes. To gain an 

insight, we show this to first order for the graviton self-energy II,,V,~P, as well as 

the graviton-dilaton mixing IIPV,o and t)he graviton-Higgs mixing lIPV,l, taking 

into a&unt only matter corrections. The relevant tree order diagrams [see fig. 

7.2(a)] are: 

(7.18a) 

(7.186) 

l-I(‘) i AZ, Gvf 9 qpu WJ = 4 . 
vO 

(7.18c) 
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There are one-loop diagrams proportional to e4, which also contribute: 

- 
#4 2 n-3 1. -1 _ - 

PVJP 
=- 

n-2 
G2e4v4 I 1 (4 -x- n(n + 2) 

, Y. 
4n qry flxp 1 

[ 

1 n-l 
+- 

n(n + 2) +- 4n I( VW tlVP + flccp flux 
)I 

l-p) 
(n :2)2 

.4 
Ge4 -& I 

n-3 1 n-l 
pv,o = - qj (4 2+ ;- 2 7 tlPV 

#I ---& Gt?““f $ IfA, n-3 1 n-l 
/w,l = n+2 VW 

[see fig. 7.2(b)] 

(7.194 

(7.19b) 

(7.19~) 

&) 2 
W,XP = n-2 G2e4v;4 I(A) 

n-3 n-2 
- ‘lccv rlxp - 2n 2n t+h vvp + tlpp 5kx )I (7.204 

&) 
pv,o = - (n 42y 

04 
Ge4 1 I n-l n-l 

v($ (4 ---,+2--- n 2 tl,w (7.2Ob) 

I-$!,1 
2 

=-n--2Ge4vpzIp) (7.20~) 

[see fig. 7.2(c)] 

I-&d) 2 1 
W,XP = pj 

G2e4v4 I 
’ tA) n( n + 2) rlpv 9xP 

1 1 
+ -- 

n(n + 2) 2n >( qlx rlvp + rlclp bx )I 
dd) 0 pu,o = 
dd) 0 pv,l = 

(7.21~) 

(7.21b) 

(7.21~) 

[see fig. 7.2(d)]. 
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Summing the one-loop diagrams, we find: 

n(A) 2( n - 1) 
/iv,0 = tn _ 2)2 Ge 

4 uf 
$ I(A) qw’ 

=(A’ n-1(7e4u3u01 
/w,l = -- 

n-2 I$ (A)‘h’ - 

(7.22b) 

(7.22~) 

Combining (7.18) and (7.22) with (7.2) and (7.4), we get: 

and by setting the tadpoles equal to zero, the constant parts of all the self- 

energies vanish as well. The graviton corrections would be included in a similar 

way to both sides of (7.23). 

8. Gauge Invariance and Unitarify 

Einstein’s gravity can be written in Lagrangian form with the metric tensor 

as the dynamical field variable and the curvature scalar, reflecting the coordinate 

invariance of the theory, as the Lagrangian up to a dimensionful constant. The 

metric tensor has ten independent components only two of which are the physical 

degrees of freedom: there exist four constraint equations of motion and four 

coordinate gauge conditions. In the gravitational theory of Brans and Dicke 

113) a scalar field is coupled in a Weyl invariant way to the curvature scalar: in 

addition to the four coordinate gauge conditions we have to impose one conformal 

gauge condition and the metric tensor, which is left with one physical degree of 

freedom, recovers its missing degree of freedom from the scalar field. In Weyl’s 
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gravity (5.10), the addition of the higher derivative terms implies, naively, the 

following spectrum: a massless spin-two graviton, a massive spin-two ghost and 

a massive scalar. The presence of the massive ghost state is .a characteristic of ~_. 
all gravitational actions quadratic in the curvature and is the source of their 

non-unitarity in ordinary perturbation theory [see eqs. (2.21)-(2.24)]. 

However, non-perturbative techniques, like the strong coupling expansion [12) 

and lattice reqularization [ll], seem to suggest that no ghosts are present. The 

latter methods are more relevant to the Weyl theory since, as shown in the l/N 

expansion, it may strongly interact at its natural mass scale (see eq. (S.Q)] and 

the loop expansion breaks down. 

The l/N perturbation theory shifts the massive spin-two pole of the tree 

propagator to the complex plane and makes the theory unitary to leading or- 

der in the expansion [lo]. This becomes transparent by writing the “Lehmann 

representation” of the full graviton propagator bPv,xp on the physical sheet: 

. r+ 
4w~P(P) =$$ ,: + p24f* + p244M*2 { 

f 

longitudinal 
’ P~)JP(p) ’ (and trace terms 

+ (analytic terms) 
I 

(8-l) 

where M, M* and r, f* denote the positions and residues of the complex poles. 

The quantities appearing (8.1) are calculated order by order in the l/N expan- 

sion: 

(8.2~) 

(8.26) 

and to lowest order: 

~(0’ = - 1 
1+ 9% - 

1607r* u&, 

(8-3) 

Due to the presence of complex poles in the propagator, the proper way to 

distribute the contours of integration in a Feynman integral is not obvious. 
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The correct prescription is to place the contour in the complex pu-plane above 

all singularities in the right half-plane and below all singularities in the left half- 

plane [lQ]. _ - 

In this section we argue that our theory may be unitary order by order in 

the l/N expansion without use of the Lee-Wick prescription: all physical quan- 

tities, like S-matrix elements, involving only helicity two massless gravitons and 

physical matter particles as external lines never need ghosts or other unphysical 

degrees of freedom as intermediate states. It is straightforward to extend the 

standard demonstration of the gauge invariance of physical quantities to this 

theory and guarantee the c-independence of the S-matrix. This is proved by 

relating a change of the gauge fixing condition in the functional integral with a 

local invertible change in the sources by nonlinear terms which do not affect the 

S-matrix [25]. Consequently, if a particle has a gauge dependent mass it should 

not contribute to any physical process. 

The decoupling of the dilaton was proved section 6; we now establish the 

[-independence of its VEV ~0 and the c-dependence of the spin-two mass M. 

Notice that in gauge theories exactly the opposite happens: the VEV of the Higgs 

field is gauge dependent while the mass of the vector boson gauge independent. 

But in gravity the physical quantity is the Planck mass, which is associated with 

the VEV of the dilaton, while the spin-two ghost is an unphysical particle. 

The derivation of the Ward identities for the c-dependence of l-PI Green’s 

functions follows that of ref. [Q]. Define a new total Lagrangian L rl: 

where f. is given in (3.3) and q is an anticommuting constant (s2 = 0). Using 

the extra term in (8.4) we can conveniently take derivatives with respect to the 

gauge parameter [. The generating functional of l-PI Green’s functions I? [see 

eq. (3.7)] is defined by: 

(8.5) 
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The equation of motion (3.9b) changes to: 

JF=--;----;- ; F # Ea,ca (8.6a) 
_ - 

while (3.9d) becomes: 

J-b 
m =-- 
%. 

q& . 

Equations (3.9a) and (3.9~) remain the same but there is a new one: 

(8.6b) 

The W-I’s replacing (3.13a) are: 

(8.6c) 

(8.7) 

Notice that for r,r = 0 we recover the old effective action r and W-1’s. Further- 

more, since the counterterms in our theory are &independent (see ref. [Q] and 

section S), there is only explicit c-dependence in the Green’s functions and the 

d/de appearing in (8.7) gives the total gauge parameter dependence of the l-PI 

functions. 

Initially, all Green’s functions depend on the various coupling constants gi, 

the subtraction point p, the parameter vu and e as independent variables. By 

requiring the vanishing of the dilaton tadpole we obtain vg as a function of the 

remaining parameters: vu = Vu(gi, JJ, <). T o calculate the e-dependence of vu, 

consider the action of the following functional operation on (8.7): 
-. 

One finds: 

(8.8) 

(8.9) 
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.. By using vu = Vu(gi, p, 5) so that the dilaton (and, therefore, the graviton) 

-.-tadpole is zero and eq. (6.14), the right hand side of (8.9) vanishes: 
_ - 

d sr -- 
I dt 66 vo=vo 

=o * -50 
de 

=o (8.10) 

establishing the gauge independence of ~0 and, consequently, the Planck mass. 

In (8.10) the following identity was employed: 

d 6r -- 
d< 6b yo=vo = I 

The action of the functional operation: 

d6 S 
drl?YgJr- AP j’=J;=,=o; vo=Vo 

on the W-I (8.7) gives: 

(8.11) 

(8.12) 

b3r d 6r s2r d 62r 
--+22---T---- . 

+6h,,6hxp6b drl SJ: ii h,,S& drl 6 hXpiiJ; 
(8.13) 

Since the transverse traceless part of the graviton self-energy contains the com- 

plex poles [see eq. (8. l)], we multiply both sides of (8.13) with PfJxp and set the 9 
external momentum p2 = M2: 

-. 

(8.14) 

where the field lines haa and t? carry zero momentum. The relation: 

d p(2) 62r 5; u,2G2 6) =-- ___ _ dl PJ’P 6 it,, 6 ixp t 24 at 
M2 ; atp2=M2 (8.15) 
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which is obtained from (8.1) when combined with (8.14), the identity: 
.- 

$M~=-&M~+ 
$%& M2)1.D=v, - - 

(8.16) 

and (8.10) shows that $ M2 # 0 unless miraculous cancellations happen in the 

right hand side of (8.14). However, with an explicit calculation to leading non- 

vanishing order in l/N we exhibit this is not the case. 

The three graviton and two graviton-dilaton vertices behave like l/ fl to 

lowest order (see Appendix B): 

p(2) 63r 
dp 6 h,, 6 fixp 6 iiaa 

= 2 NG3 
24 

u;(~, + 

(8.17~) 

p(2) 63r 5i flG2 
p”~xp s ii,, s j2xp 6 t5 

=- 
12 UO(0) 

(8.176) 

where Us and M&, are given by the expansions (8.2) and eqs. (8.17) are eval- 

uated at p2 = M 2. The lowest order contributions of d 6r fiq and && are the 

one-loop vacuum diagrams of the operators forming the nonlinear part of sh,B 

and scr respectively [see eqs. (3.4)]. Th ese diagrams, shown in fig. 8.1, contain 

the additional vertex of the Lagrangian (8.4) once and when the gauge fixing 

and ghost terms (5.1), (5.2) (5.11) are employed, produce results proportional to 

I/ &v: 

-. 

%o)G2 d 6r _ 
dq SJ,$ 32x2 

(8.18a) 

(8.18b) 

where the various propagators used can be found in Appendix A. Substituting 

(8.17) together with (8.18) in (8.14) and using (8.3), (8.15) as well as (8.16), we 

find: 

(8.19) 
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Thus, as c --) 00, the pole M2 goes to infinity along a ray in the complex plane; 

---- both its real and imaginary parts become gauge parameter dependent. Physical 

quantities, being gauge invariant, should not depend on the gauge variant pole M. 

Consequently, the spin-two ghost associated with the pole should be unphysical. 

The same analysis can be applied to gauge theories. In particular consider 

the scalar QED Lagrangian (7.1) without any gravitational interactions. We 

choose covariant gauges (&,@A) and a LGF such that the ultraviolet behavior 

of the a-dependent piece of the photon propagator is sufficient to ensure only 

a-independent counterterms. Similar reasoning gives for the VEV ur of the Higgs 

field $1: 

2a L lir 62r d 6r 
da 6= 

-- 
Sil 6 il drl &J& (8.20) 

at zero external momenta and for ~1 = Vl(e, X, p, Q) so that the Higgs tadpole is 

zero. Using (8.11) we obtain to lowest order: 

d 1 d sr(O) 
--#o ?i?‘=--~ dq 6Jg1 (8.21) 

and, in contrast to (8.10), ul is gauge parameter dependent. 

-However, this is not the case for the physical photon mass. The W-I, corre- 

sponding to (8.14) which provides the a-dependence of the photon propagator 

pole MA is: 

d 
2a dcu e,, 

b2r 
aA, 24, 

at p2 = Mj and ul = VI. To lowest order we infer from (8.22): 

(8.22) 

(8.23) 

Since vr is o-dependent, when the identity (8.16) is applied in this case both 

terms contribute and cancel each other [see eqs. (8.21) and (8.22)]: 

-&Mj=O . (8.24) 

- 56 - 



In Weyl’s theory the gauge invariance of vu eliminated the second term of 

-.-- (8.16) and left a &dependence to the unphysical pole M. The full complex 

pole M-has a c-invariant lowest order term Mto, and the t-dependence starts 

from the Mtl, piece. However, when the position of a propagator pole changes 

order by order in the expansion, perturbation theory breaks down at values of 

the momenta close to M$, and the full propagator should be used in cutting 

diagrams [27,19]. But the pole of the full propagator is c-variant and can be 

made arbitrarily large. 

It is important to note that the question of unitarity in the context of a higher 

derivative quantum theory of gravity is very complex. Thus, the interpretation 

a,nd consequences of the gauge variance of the troublesome pole A4 may not be 

as clear as one would like. We feel that a more careful analysis is needed. 

9. Concluding Remarks 

Weyl’s gravity has a more complicated dynamical structure than general rel- 

ativity and satisfies a very powerful theorem which, under very general assump- 

tions, explains the stability of flat spacetime. The theory contains an unphysical 

degree of freedom, the dilaton field, that expresses the unavoidable spontaneous 

breakdown of the conformal component of the full symmetry. The theorem 

states that the ability to set equal to zero the vacuum expectation value of the 

translated dilaton field of a Weyl invariant physical system, is the necessary and 

sufficient condition for the vanishing of the cosmological constant. The class of 

physicalsystems fullfilling this condition includes gauge theories. Consequently, 

the standard model U(1) X 152/‘(2)~ X SU(3)c of low energy physics when cou- 

pled to Weyl’s gravity provides a theory describing all four known interactions 

with zero cosmological constant. A natural small parameter in this theory is 

the inverse of the effective number of matter degrees of freedom N which equals 

l/292 [see eq. (2.27)] and gives a natural mass scale A, where the gravitational 

coupling constant G becomes strong, practically equal to the Planck mass [A = 

.Q M,!; see eq. (6.9b)]. At th ese high energies the three gauge coupling con- 

s&its gr, 92, g3 have the same value (gr - g2 - _g3 - .5). At low energies, 
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the spontaneous breakdown of the electroweak symmetry, in its simplest form 

---- involving elementary scalars, occurs through radiative corrections as dictated 

by the Weyl invariance. The lack of an appropriate symmetry Will eventually 

drive the electroweak breaking scale up to the Planck energies unless severe fine 

tuning is performed. There exist alternative Weyl invariant methods to break 

UP) x SW)L and avoid the hierarchy problem: technicolor [27] and possibly 

conformal supergravity [28] are good candidates. 

The vacuum expectation value of any physical scalar field should never equal 

or exceed the Planck mass since the highly desirable induced Einstein term would 

vanish or acquire the wrong sign. This is an additional problem scalars create, 

in particular those of various grand unified models. A description of nature in 

terms of Weyl’s gravity and a gauge theory containing only fermions and vector 

bosons seems to be preferred. 

Besides being naturally small, l/N is insensitive to the scale dependence of 

the coupling constant G. Thus, we could penetrate the potentially strong cou- 

pling regime of the theory and extract information demonstrating the sponta- 

neous breakdown of conformal invariance by determining the vacuum expectation 

value of the dilaton field in terms of the intrinsic scale parameter A. However, the 

cosmological constant theorem is valid for any perturbation expansion parame- 

ter. If the dilaton tadpole can be consistently set equal to zero order by order 

in some perturbation expansion, the Ward identity will force the cosmological 

const,ant to vanish to all orders in that expansion. Finally, the strong arguments 

presented for the unitarity of the theory relied heavily on the l/N expansion. -. 

The quantum theory of gravity analyzed in this work: 

(i) Has a stable Minkowski solution and the correct long distance gravitational 

limit. 

(ii) Easily incorporates the standard low energy model. 

(iii) Is renormalizable and probably unitary. 

Therefore, it provides a well-defined quantum theory in which cosmological and 

other gravitational implications can be calculated. 
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APPENDIX A: PROPAGATORS 

The complete set of n-dimensional projectors for symmetric_ rank-two tensors 

is (see ref. [29]): 

p(2) 
W,XP = k P,x 6, + e,, 44 - & e,v fhp 

p(1) 
%e x WAP = 2 P wvp + epp wuh + 0, wctx + evx wpp) (A.lb) 

Pfo-‘) = .J+ ellv exp PV,XP tz- 

pw-4 = 1 
WAP &r-i 

ww 4p 

(A. la) 

(A.lc) 

(A. Id) 

(A.le) 

where the quantities eltV and wPu are the transverse and longitudinal vector 

projection operators: 

PpPv e,, = qcru - - 
P2 

(A.24 

(A.2b) 

In equation (A.l), the projectors (A.la)-(A.ld) select out the spin-two, spin-one 

and two spin-zero parts of a massive tensor field at rest while (A.le) and (A.lf) 
are the two spin-zero transfer operators. The completeness is expressed by: 

I= p(2) + pw + p(O-4 + p(O--w) (A-3) 
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while the orthogonality by: 

pk”) p(j+ = &‘j @f+-a) ; i, j = (),I, 2 and a-, b E 8, W (A.4a) 

p(i-ab) p(j-cd) = bij (56cp(i-a) (A.4b) 

p(i-u) p(j-bc) = 6ij bab p(i-ac) (A.4c) 

p(i-ab) p(j-c) = 6ij ,+xp(i-ac) . (A.4d) 

Some useful relations are: 

fJp(‘) = 0) wp(O-“) = 0) ,p(O-4 = (&J, 

(ASa) &J p(O-4 + pP-4 = 
( > 

l 
&xe 

(A.5b) 

The free propagators for the various fields appearing in the theory can be 

derived from the general formula: 

[ A#) + BP(‘) + cp(O-“1 + D(pP4 + p(o-wJ)) + EP(O--w) -l 1 
=-- l p(2) + $ p(l) - 

A 
D2 “, p(O-4 + D2 “, (p(O-4 + pP4) 

-. 

c - 
D2-CE 

pw4 
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and its simple matrix extension: 

Mt2! + BP(‘) + do-‘) + ,(p(o-8~) + p(o-W3)) + &o-w) -Fo -1 
= 

F8 G 

Ap(“) + @a) + -G~p(“-8)+G~(p(o-8”)+p(~-“~) +I &)+GC/ P6-d 
G(Dz-CE)+(n-!) iF2 

EFV-m DFw 
G(D2-CE)+(n-l)EFZ 

(A.6b) 

Using the gauge fixing conditions (5.1): 

K (9) such that + = 1 
2(n - 1) ah; - a,& h“” (A.7b) 

in the Lagrangian (5.10) with LGF given by (3.5), we obtain: 

A= -P4+L2p2, B= -Ap2 
25 ) 

c = -(n - 2)L2p2 + 1 n-1 
4(n - l)Ep4 -FP 

2 + cn -2)2 ~2~~4 
16(n- 1) ’ 

D <in - 1)3’2 2 

n21 p, E=- b- 1)2p2, 
n2c 

G = -p2+&4 

uo2 
> (A4 

F = _ n-2 voGp2+ n-2 crp4, 
4(n---1) 4(n - 1) q-j 

F2 G(D2 -CE)+(n-l)EF2=sp8(-$p2-1) 
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where L2 = n-2 vj t$G2. Specializing to the < + 0 limit, the propagators take 

--- the form: 

(b hXP) = 4 - p2(p21- L2) 
p(2) + 4th; l,p(o-;~~ - - 

+ 4c y (pP-84 + pw4) + $pw] (A.9a) 

(hpvo) = - i(n - 2)< 9 t,t,,” 
P 

(4 = 4 p2(1;2 _ 1) + 4b - 2)(n - lK$] 
VO 

(A.9b) 

(A.9c) 

(“cc 4 = - ; [G, + 2(,” 1) %] 
P 

(A.9d) 

(zc) =; 
P 

(A.9e) 

(F, c) = (E cv) = 0 . Wf 1 

When explicit calculations are done with equations (5.2) and (5.11) as LGF, in 

the propagators (A-9) the substitution: 

c m4 - 
P4 -4 2 2 P (P - m2)3 

should bk carried. 
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APPENDIX B: FEYNMAN RULES 

The definition of the gravitational fluctuating field hPy: 
_ - 

G” = q/w + Gh,, (B.1) 

results in the following expansions of useful quantities to cubic order in hP,,: 

gP” =r)P” - GhpV + G2hEhav - G3h;h;h@ (B-2) 

- 
,/-g =l + ;Gh; + ;G2(hzh; - 2h;ht) 

+ $G3(hzh;h; -6h;h;h;+8h;hthz) (B.3) 

J-s gp” =r)p” + G(;t)““hg - h”“) 

+ G2 
[ 
hghaV - ;hpYhg + ;q”“(hzh; - 2h;hg)] (B-4) 

J-s if” SAP =)lclvqxp + G 
( 

+“,$Ph; - ,,,t+h’ _ @hp” 
1 

+ G2 
I 
;e”“r+‘(h~h; - 2h;hg) + rf”h;h”P 

+ +‘h”hQ” + hl.l”hb ff _ f rl’““hbh; _ f &,p”h; 1 VW 
d-&g76 = ;G2P@7h,6 + aa$ihg7 - +$$a, - a,a,ha6)2 

+ G3P&ha~ + aa%hp7 - a,&$,, - aaarhg6) 

x -hr($a7hXs + aXa6hh _ aBashA - aharh@) 

+ f hk(#a7ha6 + p&B7 _ afla6hW - pa7hN) 

+ ;(a”h& + ashha - aXh’a)(aph;[ + a7h,B - axhar) (B 6) . 
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+ ti(i?X13phXp --Oh;) ;h@g&hp, -Oha8) [ 

- 2hq(2dad’hz - aa$h; -ohor) + i(Bah&)(a”hh) 

-(aah,)(@h"')- 2(aah;)(aTh”) 

+ 2(aahF)(a’hT) - i(aah;)(a”hq)] (B-8) 
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+ a[a(a,hp7)(aaha-‘) - 2(aahp7)(8’ha’) - 4(8ahF)(a’h{) 

+ 4(dahF)(a’hq) - (aah;)(a”hl)]} 

- q h;)(3h;h; - 2h;h;) 

+ ~h~[3(8,hp7)(8ahs7) - 2(6’ah,)(aaha7) -4(aah$)(a7hD7) 

+ 4(a,h;)(@h;) - (8,h;)(8nh;)] 

+ ha7hp6(aaa6h” - aa87hgs) + habh;(2dadph$ - a”a7h; - q ha7) 

- ih,6[2(aahi)(ash6a) + 2(aah$)(aah6’) 

-4(aahi)(a’h”‘) + (arh2)(abht) - 4(aah’a)(aph”) 

-- + 4(&h’“)(@h;) - (a7hz)(a6h;)] 

&7 -- -2(a,h;)(a6hrR7) + 2&h;)(t3’ha7) 

+ (aah;)(a7hf) - 4(aah;)(@hf) + 2(aah;)(c?h;) 

+ 2(Wa7)($hp6) - ($ha7) (i.?h$]} 

(B.9) 
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The Feynman rules presented below use the following definitions: 

(4 Graviton line (hcrv): rvvvL _- 

Dilaton line (a): ---- 

Scalar line (41): 

Goldstone boson line (42): -o-o- (B.10) 

Vector boson line (A,): 

Fermion line : 

Ghost line : •*~**~~~ 

The indices of diagram lines which will be contracted with transverse 

traceless projectors are encircled: - PL” or w tL 0 0 
Note that most of the calculations are performed in Landau-type 

gauges (2.20). 

l/N corrected graviton propagator: 

(b) 

(4 

(4 

(B.11) 

l/N corrected graviton vertex: 

Pair symmetrization in (o, a), (+y,6), (cc, Y), (X,p) is indicated with 

parentheses around the indices. 

In Lagrangian (5.10), the one-loop matter contribution to the graviton self- 

energy and three point vertex is: 

- 67 - 



where the counterterm ZG used is: 

&=I+ 
G2N 1 

- + finite parts 
240(4@ E 

(B.126) 

(B.12~) 

withnE4-2candN= Ns + SNF + 12Nv for Ns scalars, NJP Dirac-fermions 

and NV vector bosons. The relevant Feynman rules in Landau-type gauges to 

leading order in l/N are: 

iPt2) 
WJP 

L2 - rG2Np2h (-$) 
(B.13) 

- rG2Np2en 
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I 
10 

A 
P 

@ @ 

o\\ A 

G 0 3% 
XP 

/ \ 

‘22 ; P [ L + 7 G2Np2 I ‘I(~xQ~~) (B.15) 

. 

$ P2 L2 - TG2NP2 [ 1 tl(Q?vp) 

-& (-y-‘(m - I)! 7 G2N p4 QX rlvp) 

4i 
-a ip4 

4 
8-G 

( -i rla/3P2 + Pap@ > 

1 
+ i 

G-i 
3 ( 2 rla@P4 - 2PaPaP2 1 

(8.16) 

(B.17) 

(B.18) 

(B.19) 

?$G2 where L2 EE - 
1 

24 
and 7~ 

240(4# ’ 
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Additional Feynman rules for the scalar QED Lagrangian (7.1): 

i _ - 
P u 

-P2 - e2,f 4, (B.20) 

P . 
-0 je- * 

3 
(B.21) 

P 

. 
P A - f G( rlpv’lajl - tl(paflv@) > (P2 - e2$ 

0 IJ 0 v + iG t7pv PaPp (B.22) 

i(ap97VPpP6) 1 
(B.23) 

P 
4% 

- f eGu1 rlapPp + rl&Pa 

7 
( ) 

(B.24) - 
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10 
A P 

0 0 u 

0 

A P 

0 P 0 u QP / 
0 ‘0 

2% P 

0 P Y 0 
a@ 

. 0 x 0 

P 

0 P 0 u -. 
A 

I I 

-A 

2; 
( 

n-4 

&i 
-a P2 + e2vF > qpv (B.25) 

(B-26) 

U2 
+ iGe2 + 

uO 
tlpvrlaa - rl(ap’l@) (B.27) 

=o 

= (B.15) (B-W 

(B.28) 

(B.29) 
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In the case of fermions [see eqs. (4.6j) and (7.14)]: 

. , / 
P 

. 

i 

f G [qap( r/e fU1) - f r(apD) I 

2i Ul -- f n-2 i$ 

if? 
uO 

(B.31) 

(B.32) 

(B.34) 
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APPENDIX C: INTEGRALS 
.- 

At zero momentum, a general one-loop diagram contribution can be reduced _ - 
to the following Euclidean space integral: 

where Q and z are given in (6.5) and as shown in section 6, Q > i. Changing 

variables 2 = eU: 

efv+lb 
raa) = I_mmdu (& + ueu)m 

(C-2) 

There are pairs of complex conjugate solutions (uj, uit, of the equation cr+ue” = 

0, with: 

u-i = pj ei(71-*j) ; 0 5 6j _< R 

where: 

6j + 2?rj 
pi = sin ip and a=/3jf? 

-pi COSdj . 
j 

(C.3a) 

(C.3b) 

Thus, the integration can be performed using the residue theorem when 

v+l<m: 
-. 

I;(&) = -2rIm E Res 
Jv+lb 

(& + ueu)m > fLj 1 ; m = 2939 4, * * - * 
j=O 

(C-4) 

Notice that: 

(C.Sa) 

and: 

lim IUjl = lim pj N i . 
i-m j-cm 
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Then, the series (C.4) converges at least like Cie2. If a Feynman graph in 4 

dimensions is divergent, u+ 1 is an integer bigger than m. But using dimensional 

continuation v is replaced by u - 6, where e s -9, and the integral can be 

made convergent. Furthermore, in the final answer (C.4) no pole is recovered 

in the limit 6 = 0 [see eqs. (C.S)]; when m 2 2 the integral (C.l) contains 

no logarithmic infinities and dimensional regularization is insensitive to higher 

divergences: J dz 2” (tn r)-” = 0. 

Equation (C.4) is valid for m = 1 as well, although the integrand does not 

satisfy the asymptotic condition needed to apply directly the residue theorem. 

Consider the integral: 

Gw = - / da 1,” dx (& + :“, 42 

e(w-l)uj 1 
= 27r ImJgo/ da (uj + I)2 (u-- Uj + 1 > - 

= -2~ Im 2 eV3 
j=O”j+l 

and the result agrees with the m = 1 value of (C.4). The final answer for I:(a): 

00 

I;(a) = -27r (-)v av C Im 
1 

-. j=O UT(Uj + 1) 

can be evaluated using the formulae: 

Im L=~, inU19j 

uy . 

W-7) 

(c.8~) 

Im I=- Pj sin6j 
* Uj + 1 1+q - 2pj COS l9j 

(C.8b) 

Using eqs. (C.5) we observe that the series (C.7) converges for Y > 0 but 

di?erges like Ci-’ when Y = 0; the integral Ii’(a) has ultraviolet logarithmic 
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divergences, since J dz z-l (en z)-’ - J(dCn x)(.&z z)-‘, and acquires an l/c 

--- pole in dimensional regularization. The diagrams of fig. 5.1 have degree of 

divergence D = 0 and when only one graviton propagator- is pres&t correspond 
to IJcr) which diverges. However, if these diagrams contain two or more internal 

gravitons they are convergent since they behave like J dz z-l (en a~)-~, m > 2. 

The effective potential integration (6.6) is proportional to [If-‘(cr)-or,‘-‘(o)]: 

O” dx .1-E @2-’ 
0 

(C-9) 

where we integrated by parts and ignored integrals of the form Jo” dx z”-~ which 

vanish in dimensional regularization. Using (C.7) and (C.8) we find: 

%t/ = Q2- O” 1 l)a21m C z . 
j=O 'j 

Therefore [see (C.3)]: 

Ivc/, = T(p2 
O” sin 229j sin2 t9j 

-1)*2 c 
j=O ("j + WI2 

(C.10) 

(C.1h.l) 

= 7(p2 - 1) g 
6 -+2rrj 

sin 2t9j e -23&y (C.llb) 
j=O 

- 

and by substituting (C-11) in (6.6) we recover (6.7). The series (C.ll) can be 

evaluated numerically and converges very fast. In fact, the contribution of the 

first pair of complex conjugate poles (j = 0) almost provides the full answer. At 

the minimum of V,f/[ ~7 ] f or Q = 0 (see section 6) the infinite sum in (C.ll) has 

to vanish. The resulting numerical solution is LY N 1.62 and all the poles lie very 

close to the imaginary axis. Notice that the solution coming from the j = 0 

approximation is cy = 5 N 1.57. 
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FIGURE CAPTIONS 

The.correspondence between fields and diagram lines is given m Appendix B, 
eq. (B.lO). 

Figure 2.1. 
Figure 2.2. 
Figure 2.3. 
Figure 3.1. 

Figure 3.2. 
Figure 3.3. 
Figure 4.1. 
Figure 4.2. 
Figure 4.3. 
Figure 5.1. 

Figure 5.2. 

Figure 6.1. 
Figure 6.2. 
Figure 6.3. 

Figure 7.1. 
Figure 7.2. 

Figure 8.1. 

Matter corrections to the one-loop graviton self-energy. 
Leading l/N graviton propagator. 
Graph of zen z versus z. 
One ghost matrix elements of the operator Gc& (a) and cd (b) at 
zero momentum. 
Ward identity for the cosmological constant in Landau-type gauges. 
Ghost-ghost-graviton vertex. 
Low energy dilaton theorem. 
Vector boson self-energy diagrams up to one-loop. 
Zero momentum dilaton-vector boson vertex diagrams up to one-loop. 
Divergent diagrams involving external ghost lines with their degree 
of divergence D. 

Divergent diagrams involving external scalar and dilaton lines with 
their degree of divergence D. 

Dilaton effective potential to leading order in l/N. 
Leading l/N graviton tadpole. 
Corrections to the graviton tadpole (a) and the first derivative of 
the a-potential coming from X and 7 contributions. 
Graviton, dilaton, Higgs tadpoles up to one-loop in scalar QED. 
Matter contributions to graviton-graviton, graviton-dilaton, 
graviton-Higgs self-energies up to one-loop. 
One-loop vacuum diagrams of the operators forming the nonlinear 
part S h,,, of sh Pv (a) and S u of su (b). 
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