
SLAC-AP-133

October 2000

Variable Current Transient Beam Loading
Compensation�

Z. D. Farkas

Stanford Linear Accelerator Center, Stanford Univesity, Stanford,

CA 94309

Introduction

The energy spread caused by transients during beam turn-on can be re-

duced by suitable timing of the beam turn-on[1]. If the beam is injected

when the no-load voltage reaches the desired loaded voltage, then the energy

spread is about 10%. To eliminate this energy spread, one can amplitude or

phase modulate the section input power for one �ll time, so that when the

beam is turned on, the no-load voltage equals the the desired loaded voltage

and from then on, the change in no-load voltage tracks the beam induced

voltage. It is known that for a constant gradient (CG) structure, and am-

plitude variation of the form E(t) = ao + (1 � ao)tp will reduce the energy

spread to zero for a current that is determined by ao.
When one uses rf modulation for transient beam loading compensation,

the beam is injected a �ll time after the rf has been turned on, and one is

forced to throw away a section's worth of rf energy. In addition, it requires

extra components which use up additional rf energy. This note describes

transient beam loading compensation with variable current. It will show

that it increases the rf energy to beam energy transfer e�ciency.

List of symbols

Structure Parameters

Ls section length

vg0; vgL input and output group velocities

h ratio of output to input group velocity

s0; sL input and output elastance

�Work supported by the Department of Energy, contract DE-AC03-76SF00515.
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hs ratio of output to input elastance

vga Ls=Tf , average group velocity

vgr ratio of average to input group velocity

Ta, Q=�f , TW time constant

Tf section �ll time

� Tf=Ta, section attenuation in nepers

Operating Parameters - No-load gradient

t0 time in units of �ll time

Ps rf pulse peak power into section

P (t) power into section as a function of time

E(t)
q
P (t)=Ps, rf �eld as a function of time

Ts duration of rf pulse into section

Gg no-load gradient as a function of z

Egt no-load average accelerating gradient as a function of time

Egs steady state no-load average gradient

Operating Parameters - Current induced gradient

Tbi beam injection time

Egi average gradient at beam injection

Egb no-load gradient minus Egi, starting at Tbi as a function of time

Egd maximum no-load gradient minus Egi

E0

gi
Egi=Egs

BL beam loading, 1� E 0

gi

ibt current as a function of time

ib step current as a function of time

Eb step current induced average gradient

Ebs steady state current induced gradient

Ebt current induced gradient as a funtion of time

Tb duration of beam pulse

Operating Parameters - Loaded gradient

Els the steady state loaded gradient

Elt loaded gradient as a function of time
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No-load e�ective gradient as a function of time

Consider a linearly varying group velocity (LVG) structure whose input

power varies arbitrarily with time. The e�ective gradient as a function of

time is obtained as follows [2]. Let the output to input group velocity ratio

vgL=vg0 � h, and let g = h�1. Thus the group velocity varies with normalized
distance z0 = z=L as vg(z

0) = vgo(1+ gz0). The normalized propagation time

from input to position z0 [3]

t0
z
= tz=Tf =

L

Tfvg0

Z
z0

0

dz0

1 + gz0
=

L

Tfvg0

ln(1 + gz0)

g
:

Letting z0 = t0
z
= 1 we obtain

vgr �
L=Tf

vg0
� vga

vg0
=

g

lnh
:

Substitute for vg0 and obtain

t0
z
=

ln(1 + gz0)

lnh
; z0 =

ht
0

z � 1

g
; 1 + gz0 = ht

0

z = elnh t0z :

If the group velocity varies with z0 then the elastance/meter, s (= !r=Q)
also varies. Let sL=s0 � hs, and gs = hs � 1. Then

sa = (s0 + sL)=2; s0 = 2sa=(1 + hs); s = s0(1 + gsz
0); sr � sa=s0 :

The section attenuation is e�2� , where � = Tf=Ta and Ta = 2Q=! is the

TW time constant. The attenuation to point z, �(z) = tz=Ta = t0
z
� . The

accelerating gradient as a function z0, the local gradient, is

Gg(z
0) =

vuutPs0(1 + gsz0)e�2�(z0)

vgo(1 + gz0)
= Gg(0)�

e��t0z(1 + gsz
0)0:5

(1 + gz0)0:5

Using e��t0z = (1 + gz0)��= lnh we obtain

Gg(z
0) = Gg(0)� (1 + gz0)x1(1 + gsz

0)0:5; x1 = �:5�
�

lnh
:

The ratio of output to input gradient Gg(1)=Gg(0) =
q
e�2�hs=h. If the

group velocity varies with position along the section, the elastance will also
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vary. Thus, for a section that we de�ne as a constant gradient, i.e. h =

e�2� ; x1 = 0, the elastance increases with z0 and the electric �eld increases

as well. As vg decreases, s increases. hs depends on h, if h = 1 then hs = 1.

A criteria that guaranties that the gradient at the end of the section is the

same as at the beginning of the section is h = e�2�hs.

The no-load average accelerating gradient, the e�ective gradient, Eg, is

the no-load voltage aquired by a charged particle passing thru the accelerator

section divided by the section length L,

Eg =
1

L

Z
L

0

Gg(z)dz =
Z

1

0

Gg(z
0)dz0 :

Let Eai �
q
saTfP=L; and let Fz(z

0) =

Z
z

0

0

(1 + gz0)x1(1 + gsz
0)0:5 dz0 :

If P is constant the we obtain the steady state e�ective gradient

Egs = Eai

q
vgr=sr �

Z
1

0

(1 + gz0)x1(1 + gsz
0)0:5 dz0 = Eai

q
vgr=sr � Fz(1)

E 0

gs
� Egs=Eai =

q
vgr=sr � Fz(1)

De�ne the section e�ciency �s = E 02

gs
; so that Egs =

q
�ssaTfPs=L :

For a step rf starting at t0 = 0, using z0 = (ht
0

z � 1)=g, we obtain the

no-load average gradient as a function of time,

Egt =

Z
z0

0

G(z0)dz0 = Eai

q
vgr=sr � Fz(z

0) :

If s is constant, sr = 1, then

Fz(z
0) =

(1 + gz0)x11 � 1

x11g
=

hx11t
0

z � 1

x11g
; x11 = x1 + 1 = :5� �

lnh

Fz(1) =
hx11 � 1

x11g

If the section is also constant gradient, i.e. h = e�2� , then

x11 = 1; Fz(z
0) =

ht
0

z � 1

g
; Fz(1) = 1; E 0

gs
=
p
vgr; �s =

1� e�2�

2�
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So far we considered a step rf. But even for constant rf, P varies with

time during turn-on due to the rf rise time. The e�ective gradient when the

rf input varies with time is obtained as follows. Let E(t0) =
q
P (t0)=P , where

P is the steady state rf. (In case of SLED it is the section input power with

the cavities completely detuned.) Let the normalized e�ective gradient as a

function of time E 0

gt
= Egt=Egs. Then at time t0

E 0

gt
=

Z
t
0
�t

0

z

t0
E(t0)(1 + gz0)x1(1 + gsz

0)0:5dz0

For some time functions, such as linear or exponential, we can separate

t0 from z0 and obtain a closed form solution for the integral as was done in

Ref [3], where expressions for E 0

gt
were obtained for a CG structure. Here,

we use numerical integration to obtain E 0

gt
.

Assume an LVG structure having the following NLC like parameters:

L vg0=c h Tf � s0 hs
1.8m 0.114 0.24 0.106� s 0.486 664.7M
=�s/m 1.5

The normalized gradient along the section G0

g
(z0) = Gg(z

0)=Egs, is plotted

in Fig. 1 and E 0

gt
is plotted in Fig. 2, for two cases. One, using a constant

average elastance and two, using a linear variation in elastance. In both cases

Gg(z
0) = Egs � G0

g
(z0), and Egt = Egs � E 0

gt
. Note that Gg(z

0) changes but

�s and E 0

gt
remain about the same.

Current induced e�ective gradient as a function of
time.

The e�ective gradient as a function of time, Ebt that is induced by a

current, ibt that varies with time is obtained as follows. The current ibt(n) is
given at points n = 1; 2; : : :N , with ibt(N) = 0. We expand the current into

N step currents, ib(n), injected at times tbn = (n� 1)�t.

ib(1) = ibt(1)

ib(n) = ibt(n+ 1)� ibt(n); n = 2; 3 : : :N � 1

ib(N) = �ibt(N � 1)

We know the average gradient due to a step current, hence we can obtain

the average gradient due to ibt, which is the sum of the gradients induced by

the step currents.
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A step current, ib through an accelerator section, induces an e�ective

gradient as a function of time Eb(t
0

b
) = (ibsTf=4)E

0

b
(t0

b
) . The function E 0

b
(t0

b
)

for an LVG section, derived by P.B. Wilson, is [4], using � � � lnh

2�
,

E 0

b
=

2

g�

"
1� e�t

0

b
(1+�)�

1 + �
� e�2�� (1� e�t

0

b
(1��)� )

1� �

#
0 � t0

b
� 1

= �b =
2

g�

"
1� e�(1+�)�

1 + �
� e�2�� (1� e�(1��)� )

1� �

#
t0
b
� 1

For a CG section,

E 0

b
=

1� e�2�t0
b � t0

b
2�e�2�

�(1� e�2� )
0 � t0

b
� 1

= �b =
1� e�2� � 2�e�2�

�(1� e�2� )
t0
b
� 1

De�ne rb = (sTf=4)E
0

b
. Then the gradient due to the nth step current is

Eb(n) = ib(n)rb(t
0

b
� (n� 1)�t) 0 < t0

b
� (n� 1)�t � 1

= ib(n)rb(1) t0
b
� (n� 1)�t � 1

t0
b
is time starting at beam injection divided by �ll time. The actual gradient

is the sum of all the gradients,

Ebt =
NX
n=1

Eb(n)

The current starts at time Tbi when the no-load gradient is Egi. For zero

energy spread, Ebt should track Egb, the no-load gradient starting at point

Tbi,Egi. Egb(t
0

b
) � Egt(t

0 � T 0

bi
) � Egi is plotted in Fig. 3. We assumed that

the no-load gradient reaches Egs, the steady state no-load gradient, hence

Egb also reaches steady state. Let Egd = Egs � Egi. We equate Egi to the

steady state loaded gradient, Els, so that

BL � (Egs � Els)=Egs = 1� Egi=Egs; Egd = BLEgs :

The steady state current

Ibs =
BLEgs

�bsTf=4
:
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The normalized instantaneous current ibt=Ibs, and the step currents that it is

expanded into, are plotted in Figure 4. The step current induced gradients

divided by Egd and the gradient induced by the actual current, Ebt divided by

Egd, are plotted in Fig. 5. Ebt, divided by Egd is also plotted in Fig. 3. The

current ibt was chosen such that its induced gradients at points n equal the

no-load gradient minus the no-load gradient when the beam is injected, i.e.

Ebt(n) = Egb(n). How this current is obtained is given in the next section.

The loaded gradient Elt = Egb�Ebt, in units of Egd, is also plotted in Fig. 3.

Required varying current for zero energy spread

We, now, calculate the current variation that yields a self induced beam

voltage identical to a speci�ed change in no-load beam voltage, Egb(t). Let
n = 1; 2; 3 : : :Ni, where Ni is the number of step currents. The interval

between current injections is �t = Tb=(Ni � 1). Let the time when the nth

current is injected tn = (n� 1)��t. The beam induced voltage at time tn+1

is the voltage due to the current injected at time tn plus the voltage due to

the n�1 previously step currents. Using Eb(tn) = Egb(tn) we obtain the step
currents at each point n:

Egb(1) = 0

Egb(2) = ib1rb(�t)

ib(1) = Egb(2)=rb(�t)

Egb(3) = i2rb(�t) + i1rb(2�t)

ib(2) =
Egb(3)� i1rb(2�t)

rb(�t)

Egb(4) = i3rb(�t) + i1rb(3�t) + i2rb(2�t)

ib(3) =
Egb(4)� [i1rb(3�t) + i2rb(2�t)]

rb(�t)

For n = 2; 3 : : :N � 1

Egb(n+ 1) = inrb(�t) + Ep(n + 1) ;

Ep(n+ 1) =
n�1X
p=1

ip rb([n + 1� p]�t) :

in =
Egb(n+ 1)� Ep(n+ 1)

rb(�t)
:
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The actual current at point n

ibt(n) =
nX

j=1

ij :

To turn o� the beam at point N we have ib(N) = �ibt(N � 1) . The step

currents are either positive or negative, the the total current is positive as

long as Egb does not decrease precipitously.

We can increase the number of step currents and, consequently, decrease

�t and obtain a continuous total current waveform where, during the beam

pulse, Ebt e�ectively tracks Egb, resulting in nearly zero energy spread. Know-

ing the steps currents, we can obtain the current induced gradient as shown

in the previous section.

The normalized rf �eld into the section and the resulting normalized no-

load beam voltage, Egt=Egm, are plotted in Fig. 6, top. The normalized

no-load, optimum current and required current induced voltages plus Egi

and the loaded voltage are plotted in Fig. 6, middle. The energy spread is

about 10%. The required current divided by Ibs that reduces this energy

spread to zero, is plotted in Fig. 6, bottom. The required current oscillates

about and approaches Ibs and its average value is slightly larger than Ibs.

The plots are for 15%, left, and for 50%, right, beam loadings. A constant

average elastance was assumed. But the curves are nearly the same if a linear

variation in elastance is assumed.

For a given Egs the steady state current is proportional to BL. In terms

of beam loading and loaded gradient,

Egs =
Els

1�BL

; Ibs =
BLEls

(1� BL)�bsTf=4
:

If the current and loaded gradient are given then the beam loading is deter-

mined. The power into the structure

Ps =
E2

gs
Ls

�ssaTf
=

E2

ls
Ls

(1� BL)2�ssaTf
:

E(t0) and E 0

gt
for the NLCL are plotted in Fig. 7 for two cases. One, with

an rf rise time of 0:1Tf and two, with the rf varying linearly for a �ll time

which results in zero energy spread for a CG section with a step rf input. The

time when the currents start is plotted in the �gure indicating the increase

in beam pulse width due variable current BLC.
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Varying current BLC can be used in addition to other forms of BLC.

Fig. 8, top, shows that for the NLC like structure with linear rf BLC, there

is a small energy spread. This spread can be reduced to zero by varying the

current as shown in Fig. 8, bottom.

Fig. 9a shows the gradient as a function of position, 9b shows the normal-

ized input �eld and average gradient, 9c shows the no-load, current induced

and loaded average gradients, and the required current, for a CERN TDS

structure with the following parameters:[5]

L vg0=c h Tf � s0 hs
0.5m 0.108 0.50 0.021� s 0.511 4204M
=�s/m 1.35

The input power is 229 MW. Fig. 10 illustrate CAB for NLCL structure

when the rf rise time is about half a �ll time. Current amplitude beam

loading compensation (CABL) can be used to compensate for the small droop

or increase in rf power during the pulse. The same curves as in Fig. 6 are

plotted in Fig. 11, except that the left side is for a 10% droop and the right

side is for a 10% raise in rf power.

Variable current BLC parameters.

The current ibt(n) is the product of the charge/bunch qb(n) and the bunch

spacing Tbs(t), ibt(n) = qb(n)Tbs(n). It can be varied by changing either the

charge/bunch or the bunch spacing, or both. The charge per pulse is

qp = �t
N�1X
n=1

ibt(n)

The number of electrons per pulse in units of 1010, ep = qp=1:6, if qp is in nC.

The average pulse current is ipa = qp=Tb and, for �xed bunch spacing, the

average charge/bunch is qba = ipaTbs.

The rf and beam pulse energies and the rf to beam energy transfer e�-

ciency, are respectively,

Urf = PsTs; Upb = qpEgiLs; �rb = Upb=Urf :

Table 1 lists the parameters as function of beam loading for varying cur-

rent BLC and for linear rf BLC for comparison, for the NLC like structure,

with Els = 62:3 MV/m .
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BL[%] Ti[Tf ] Ps[MW ] Ibs[A] Im=Ibs ep[10
10e] eb[10

10e] Pbp[MW] �rb[%]

Linear �eld BLC

14.9 1 159.16 0.556 1.00 43.80 0.98 62.5 20.9

25.8 1 209.11 1.101 1.00 86.04 1.93 123.7 31.5

42.1 1 343.15 2.301 1.00 179.80 4.03 258.9 40.1

Varying current BLC

14.9 0.730 156.81 0.550 2.12 58.92 1.09 69.1 28.5

25.6 0.580 204.74 1.081 1.56 121.60 2.04 129.6 45.0

41.1 0.400 330.85 2.209 1.30 263.11 3.98 254.7 60.6

50.2 0.310 460.66 3.179 1.23 389.81 5.63 359.4 64.4

Table 1: Operating Parameters as a function of beam loading. Els = 62:3
MV/m.

We see that �rb and ep increase as BL increases and that changing from

linear �eld BLC to varying current BLC increases �rb by about 50%. The

increase is greater for larger BL. At steady state,

�rb = 4BL(1�BL)�s=�b :

The rf to beam energy transfer e�ciency has a maximum of �s=�b atBL = 0:5.

For a lossless section �s = �b = �s=�b = 1.

For the same power input, increasing beam loading decreases the loaded

gradient. To maintain it we have to increase the power and thus increase the

no-load surface gradient. But it stops incresing after we turn on the required

current.

Beam loading compensation is important when the rf input pulse width,

is not much longer than the �ll time. If it is much longer then the increase

in rf to beam energy transfer e�ciency is negligible. But, there are many

reasons for having a short rf pulse. Among them

� Klystrons can generate higher peak powers with a shorter pulse.

� A shorter pulse is easier to compress. The delay line length for Bi-

nary Pulse Compression and all its variations, is proportional to the

accelerator input pulse.
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� Many components have pulse energy limits. The same loaded gradient

can be achieved with less pulse energy. High peak �elds cause break-

down, but high pulse energies do the damage.

� The re-coherence of the wake�elds is less of a problem with shorter

pulse.

A short rf pulse decreases the e�ciency because, then, the modulator rise

time is a large fraction of modulator pulse. Work is in progress to make it a

smaller fraction.

Variable current BLC can be applied to any variation of no-load gradient

as a function of time, (It can be measured.), as long as the function does not

decrease by much. The no-load gradient generated at SLAC by the SLEDed

rf varies with time because the rf input varies with time, and does reach

steady state. Rather than manipulating the rf amplitude and phase in order

to reach a 
at rf, we can use varying current BLC to obtain zero energy

spread for beam pulses as long as half a �ll time [6][7], and increase �rb.

CONCLUSION

For systems that tolerate varying currents, such as those that produce

x-rays, varying current BLC can be used to increase the rf to beam energy

transfer e�ciency and the charge per pulse. For a constant Ps, the average

gradient decreases as beam loading increases, but it can be kept constant by

increasing Ps.

The disadvantage of current BLC is that the current has to vary. But as

BL increases the ratio peak to average current decreases and �rb increases.

11



12

References

[1] Lapostolle and Septier, "Linear Accelerators" North-Holland, Amster-

dam 1969, pg 147-160

[2] Z. D. Farkas, "Variable Current Beam Loading Compensation" AAS-

Note 83, June 1994.

[3] Z.D. Farkas et. al. , "SLED: A Method of Doubling SLAC's Energy",

Proc. 9th Int. Conf. on High Energy Accelerators, SLAC, Stanford Calif.

May 1974

[4] P.B. Wilson, Private Communication

[5] W. Wuench and I. Wilson "Beam Loading Voltage Pro�le of and Acce-

larating Section with a Linearly Varying Group Velocity", CLIC Note

399, May 1999.

[6] Z. D. Farkas, "Variable Current Beam Loading Compensation" AAS-

Note 92, August 1997.

[7] F.-J. Decker et. al. , "High Current Long Beam Pulse with SLED"

IEEE Particle Accelerator Conference, PAC99, SLAC-PUB-8113, April,

1999



13

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

z′

 G
g/E

gs

h
s
=1   s

0
=830

τ=0.487  A
s
=0.378  h=0.24  T

f
=106 ns   s

a
=830 Mohm/us/m 

h
s
=1   s

0
=830

h
s
=1.5   s

0
=664

−0.5 0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

                                                      t′ 

A
m

pl
itu

de

E′
t
 

h
s
=1  η

s
= 0.6352

E′
at

 
h

s
=1.5  η

s
= 0.6362

Fig. 1. Gradients G
g
/E

gs
 vs position z′ for h

s
=1 and h

s
=1.50

Fig. 2. Normalized rf E′
t
 and normalized effective gradient E

gt
/E

gs
 for h

s
=1 and h

s
=1.50



14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

E
gi

/E
gs

=0.505  B
L
=0.495  T

s
/T

f
=2.35 T

b
/T

f
=0.849 T

ad
/T

f
=0.742  h

s
=1.5

                                                     time [T
f
]

gr
ad

ie
nt

s/
E

gd

E
gb

E
bt

E
lt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

                                                     time [T
f
]

i b/I bs
 a

nd
 i bt

/I bs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

                                                     time [T
f
]

G
ra

di
en

t/E
gd

Fig. 5. Gradients induced by step currents (dash) and total gradient E
bt

 vs time

Fig. 4. Normalized step currents (dash), i
b
/I

bs
 and total current, i

bt
/I

bs
, vs time

Fig. 3. No−load E
gt

, current induced, E
bt

 and loaded, 10×E
lt
 average gradients

in units of E
gd

 vs time in units of fill time



15

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

                                                  t′

A
m

pl
itu

de

E′
t
 

E′
gt

 

a
2
/a

1
=1

E′
gs

=0.797
E

ls
=62.3 MV

E
gs

=73.18 MV

1 1.5 2 2.5 3

0.8

0.85

0.9

0.95

1

G
ra

di
en

ts
/E

gs

B
l
=0.149  E′

gi
=0.851 T

i
′=0.783  T

b
′=2.22

E′
gt

←E′
bt

+E′
gi

E′
lt

E
L

I
cc

=0.6 amp

 ∆E/E=8.02 %

1 1.5 2 2.5 3
0.6

0.8

1

1.2

1.4

1.6

1.8

2

                                               t′

I/I
bs

 , 
  G

ra
di

en
ts

/E
gs

I
ave

/I
bs

=1.08,   I
max

/I
bs

=2.12
I
bs

=0.6 amp  P
s
=172 MW

←i
bt

/I
bs

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

                                                  t′

A
m

pl
itu

de

E′
t
 

E′
gt

 

a
2
/a

1
=1

E′
gs

=0.797
E

ls
=62.3 MV

E
gs

=125 MV

0.5 1 1.5 2 2.5 3

0.5

0.6

0.7

0.8

0.9

1

G
ra

di
en

ts
/E

gs
B

l
=0.502  E′

gi
=0.498 T

i
′=0.387  T

b
′=2.61

E′
gt

←E′
bt

+E′
gi

E′
lt

E
L

I
cc

=3.46 amp

 ∆E/E=10.2 %

0.5 1 1.5 2 2.5 3
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

                                               t′

I/I
bs

 , 
  G

ra
di

en
ts

/E
gs

I
ave

/I
bs

=1.01,   I
max

/I
bs

=1.23
I
bs

=3.46 amp  P
s
=503 MW

←i
bt

/I
bs

Fig. 6. Top:  Normalized rf E′
t
 and normalized avarage gradient E
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gs
 as a function of time.

Middle: No−load, current induced and loaded gradients vs time
Bottom: The current required to reduce the energy  to zero.
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Fig. 8. Top: No−load, current induced and loaded gradients with ramp, vs time
Bottom: Same as top, but with variable current BLC.
Also plotted the current required to reduce the energy  to zero.
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c) No−load, current induced and loaded gradients. Top: constant current; bottom: required current
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Fig. 11. Top:  Normalized rf E′
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 as a function of time.

Middle: No−load, current induced and loaded gradients vs time
Bottom: The current required to reduce the energy  to zero.
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