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Abstract

The dual form of the massless Schwinger model on the lattice overcomes the complex action problems
from two sources: a topological term, as well as non-zero chemical potential, making these physically in-
teresting cases accessible to Monte Carlo simulations. The partition function is represented as a sum over
fermion loops, dimers and plaquette-surfaces such that all contributions are real and positive. However,
these new variables constitute a highly constrained system and suitable update strategies have to be de-
veloped. In this exploratory study we present an approach based on locally growing plaquette-surfaces
surrounded by fermion loop segments combined with a worm based strategy for updating chains of dimers,
as well as winding fermion loops. The update strategy is checked with conventional simulations as well as
reference data from exact summation on small volumes and we discuss some physical implications of the
results.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Calculations at finite density are considered to be one of the great challenges for lattice field
theory Monte Carlo simulations. The quest for an ab-initio understanding of non-perturbative
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features of quantum field theories, such as phase diagrams at non-vanishing chemical potentials,
have given rise to a considerable number of innovative approaches to the problem and reviews
at the yearly lattice conferences [ 1] provide an overview about ideas that were pursued in recent
years. At the core of the challenge is the so called “complex action problem” or “sign problem”:
Many theories have a complex action S when a chemical potential, or also a topological term
(theta term, vacuum term) are coupled. In these cases the Boltzmann factor exp(—S) in the
path integral has a complex phase and cannot be interpreted as a probability in a Monte Carlo
simulation.

An elegant approach that entirely overcomes the complex action problem is to rewrite a lattice
field theory in terms of new degrees of freedom, often referred to as “dual variables”. In a suc-
cessful dualization the theory is exactly rewritten in terms of the dual variables such that in the
new representation the partition sum has only real and positive contributions. The dual variables
are world-lines for matter fields and world-sheets for gauge fields. The world-sheets can either
form closed surfaces or surfaces with a boundary formed by a matter loop. For bosonic abelian
theories an impressive body of work based on the dual approach was presented in recent years
(for examples see [2,3]).

For relativistic fermions the situation is complicated further by additional signs from the
Grassmann nature of the fermion fields and the commutators of the Dirac matrices. Thus only
relatively few real and positive dual representations for systems with fermions can be found in
the literature, often in the limit of strong coupling or the sign quenched approximation (for some
examples see, e.g., [4-7]). A case where a real and positive representation is known for arbitrary
couplings is 2-dimensional QED, i.e., the Schwinger model, with chemical potential and a topo-
logical term [8]. Both, the chemical potential, as well as the topological term lead to complex
action problems and the dual representation in terms of world-lines, dimers and world-sheets
given in [8] solves both these problems in principle by providing an exact representation where
all contributions to the partition sum are real and positive.

In this exploratory paper we present strategies for simulating the dual representation [8].
More specifically we consider the following two cases: 1) the one flavor case with a topolog-
ical term (at vanishing chemical potential) and, 2) the case of two oppositely charged flavors
with a non-zero chemical potential (no topological term coupled). In both cases one has to
update the fermion loops together with the world-sheets that are bounded by the world-lines.
In addition one has to sample the dimer contributions from the fermion integral which do not
couple to the gauge degrees of freedom. The fermion loops and dimers constitute a highly con-
strained system and here we propose and test strategies to update them in accordance with
the constraints coming from the gauge symmetries of the conventional representation. We test
our algorithms against exact calculations on small lattices and conventional simulations without
topological term or chemical potential. The results presented here constitute the first simulation
of the Schwinger model at arbitrary, i.e., weak couplings with a finite chemical potential and a
topological term.

We expect that the explorative study of simulation strategies presented here will be useful
for simulating the highly constrained world-line/world-sheet representations of other fermionic
systems. Furthermore, the reference data for the Schwinger model which can be obtained from
the dual approach tested here, will be useful also for assessing other techniques that are explored
for overcoming complex action problems: In particular methods based on complexification (see,
e.g., the reviews [9]) or new strategies for simulating systems at finite vacuum term [10] can be
cross-checked against results from the world-line/world-sheet methods presented here.
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2. The models and their dual representation

As announced in the introduction, in this paper we study two variants of the massless
Schwinger model on the lattice: the one flavor case with a topological term, and the case of
two oppositely charged fermions with chemical potentials. This section serves to present the two
models in their conventional representation and to summarize the dual formulation presented in
[8], which is the basis for the dual simulation discussed here.

2.1. The one flavor model with topological term

For the one flavor case the partition sum is given by
7 - /D[U]D[E, Y] e SoWI=i0 QW= Sy Wyl 0

where U, (n) =exp(iA,(n)), A,(n) € [—m, ] are the U(1)-valued link variables for the gauge
fields. By n = (n1, n2) we denote the sites of a 2-dimensional Ng x N lattice and for a technical
simplification in the dual representation (see [8]) we restrict ourselves to lattices where N7 and
N are multiples of 4. The index v = 1, 2 runs over the Euclidean space (v = 1) and time (v = 2)
directions, and V = NgNr is used to denote the total number of lattice points. For the fermions
we use one-component Grassmann valued variables v/ (n) and ¥ (n). In the conventional repre-
sentation (1) all boundary conditions are periodic, except for the temporal boundary conditions
of the fermions which have to be chosen anti-periodic. The topological charge Q[U] is coupled
with the vacuum angle 6.

In the path integral the gauge links are integrated with the product measures D[U] of U(1)
Haar-measures and the fermions with the Grassmann product measure D[ ¥/, v |,

[dA,
/D[U] = l_[/ 2n(n)

For the gauge action Sg[U] we use the Wilson form,

- [olwl =1 dvmave. @)

S6lUl = —=BY ReU,(n) = —§Z[Up(n) + Upy)*], 3)

where the plaquettes U, (n), labeled by the coordinate n of their lower left corner, are the prod-
ucts Up(n) = Ui(n) Uz(n + i) U(n+ é)* Uy(n)* and B is the inverse gauge coupling. The
topological charge Q[U] is introduced using the field theoretical definition

l *
Q[U] = %;[Up(n) —-U,m*], 4)

which in the continuum limit (8 — 00) goes over into the integer valued topological charge of
the continuum. The massless staggered fermions are described by the action

_ 1 — _
SlUF W1 = 3 n@ [V T ya+0) - Lo Fa+dym].  ©

with the staggered sign function y, (n) given by y1(n) =1, y2(n) = (—1)"'. We can write the
partition function as
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7 = /D[U]D[%tﬂ] N0 Up) T, Up@)* = SyLUT Y1 | ©)
where we have introduced the abbreviations 1 = g — % , = g + %. The conventional repre-

sentation (6) has a complex action problem for non-zero values of the vacuum angle 6, since then
n # 7, such that the Boltzmann factor has a complex phase and cannot be used as a probability
weight in a Monte Carlo update. We remark, that the physically interesting continuum limit is
reached for § — oo where both parameters n and 7 are positive. As we will see below it is suf-
ficient to restrict 8 to values 8 > |0|/2m, which ensures a particularly simple form of the dual
representation.

To overcome the complex action problem an exact rewriting of the partition function in terms
of new degrees of freedom, so-called dual variables, was presented in [8]. In this dual represen-
tation each term in the partition sum is real and positive, such that one can access finite values
of 6 with Monte Carlo simulations. The transformation is based on an expansion of the Boltz-
mann factors and a subsequent exact integration of the original field variables. The dual form
of the partition sum is given by (compared to the form given in [8] we have dropped an overall
irrelevant factor of 2=V

2= 3 [ (1) 2

{l.d,p} n

The sum Z{l’ dp} in (7) runs over all admissible configurations of the dual variables, non-
intersecting oriented fermion loops /, dimers d and plaquette occupation numbers p(n). A con-
figuration is admissible when each site of the lattice is either run through by a fermion loop or
is the endpoint of a dimer. The fermion loops introduce fluxes along their contour. These fluxes
have to be compensated by filling the fermion loop with plaquette occupation numbers p(n) € Z.
A value p(n) = +k (or —k) with k > 0 gives rise to k units of flux around the plaquette at site n
with mathematically positive (negative) orientation. If two neighboring plaquettes are not sepa-
rated by a segment of fermion loop, then they must have the same plaquette occupation numbers,
such that the flux along the link where they touch is compensated. In the dual representation all
boundary conditions are periodic. An example of an admissible configuration on an 8 x 8 lattice
is shown in Fig. 1. Note that we could also increase or decrease all plaquette occupation numbers
by the same integer and still have an admissible configuration.

Each configuration (,d, p) comes with a weight factor [, 1) (2</n1) (v/1/7)P™ that
depends only on the plaquette occupation numbers p(n) which are restricted by the admissibility
condition of the configuration. By I, we denote the modified Bessel functions, and obviously
the weights are real and positive (assuming that we choose 8 > |0]|/2m such that n and 77 are
positive). Thus the dual representation solves the complex action problem completely.

Note that a non-zero vacuum angle 6 gives different weights to positive and negative plaquette
occupation numbers via the factor (v/7/7)P"™. For 6 > 0 we have n < 77 and thus /7/7 < 1,
which implies that for 6 > 0, negative plaquette occupation numbers p(n) have a larger weight
and thus are favored (and vice versa).

In this study we focus on bulk observables which can be obtained as derivatives of In Z. In
particular we compute the plaquette expectation value (U,) and its susceptibility x, as well as
the topological charge density (g) and the topological susceptibility yx;,

19 1 92

(Up)=——InZ Xp = Vg2

V9B InZ, 8)
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Fig. 1. Example of an admissible configuration of the one flavor model on an 8 x 8 lattice (from [8]). The lattice is filled
with oriented self-avoiding loops (single lines with arrows) and dimers (double lines), such that each site is either run
through by a loop or is the endpoint of a dimer. Flux introduced by loops has to be compensated by placing plaquette
occupation numbers, which are specified by the integers we write inside each plaquette.

-1 1 92
(g)=——mnZ , Xt = lenz. 9)

These derivatives can easily be evaluated also in the dual representation and give rise to weighted
sums of the modified Bessel functions and their moments.

2.2. Two flavor model with chemical potential

The conventional representation of the lattice partition sum for the two flavor model with
chemical potential reads (we omit the topological term here)

Z= / DU DIV, ¥1DIX. x]e~ S0~ Syl v 41= 8, U 7x] (10)

¥, ¥ and y, x are two fermion flavors with opposite charge. Like the measure D[, ¥] given
in (2), also the measure D[, x] for the second flavor x is a product over Grassmann measures
at all sites. The fermionic action now contains chemical potentials ty and ., for both flavors:

SylU, ¥, ¥
= @[ U T YD) — U Tt Y] (1)
Sy[U, X, x]

1
= 3 Y n [ U ) K w) x (14D) — e P20 T D) x| (12)

n,v

Since the second flavor x has negative charge, in S, [U, X, x] the link variables U, (n) are inter-
changed with their complex conjugate U, (n)*. This ensures overall electric neutrality of the two
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flavor system as required by Gauss’ law. The chemical potentials . and ., for the two flavors
give different weights to temporal (v = 2) forward and backward hops.

We remark that for the two flavor case considered here physics will only depend on the sum
of the two chemical potentials py + i, due to Gauss’ law. However, for more than two fla-
vors (keeping overall electric neutrality) physics will depend also on non-trivial combinations of
the individual chemical potentials (see, e.g., [11]). The dualization for more than two flavors is
straightforward [8], and with this possible generalization in mind we find it instructive to explic-
itly show the dependence on the individual chemical potentials.

For the dual representation of the two flavor model we now have a second set of dual variables,
1, d for the fermion loops and the dimers of the second fermion flavor. Together with / and d for
the first flavor and the plaquette occupation numbers p(n) this constitutes the set of dual variables
of the two flavor case. The dual form of the partition function of the two flavor case is then given
as a sum over the configurations of all dual variables (compared to [8] we again drop an irrelevant
overall factor)

z= 3 NV NV O T () - (13)
{l,d,1.d,p} n

In an admissible configuration the fermion constraints have to be obeyed for both flavors, i.e.,
for both, the [, d and the I, d variables each site has to be either the endpoint of a dimer or run
through by a fermion loop. At each link the combined flux of the fermion loops from both flavors
has to be compensated by activated plaquettes. Since the second flavor has negative charge the
flux from the I-loops is counted with a negative sign, i.e., here the flux from the loop / and from
the plaquettes p(n) have to be equal and run in the same direction for cancellation. Also equal
fluxes from / and [ along a link that run in the same direction saturate the gauge constraints on
that link. The rhs. of Fig. 2 shows such a double fermion loop (we use dashed lines for the / loops
and the d dimers).

The two fermion flavors interact with each other only on those plaquettes which are connected
to fermion loops of both flavors, such that the weight 1| ,(,)(8) has a different p(n) from what
it would have for only a fermion loop of one flavor. We remark that also in the two flavor model
one can add the topological term, simply be replacing ;x| (8) With 1|, (2 /177 (v/n/7)P™
(see [8]). However, in (13) we use the simpler dual form for # = 0, since this is the case we
actually simulate.

In the dual representation the chemical potentials 1ty and u, couple to the total temporal
winding numbers W (/) and W (1) of the loops ! and [ that correspond to the flavors ¥ and x. In
Fig. 2 the double fermion loop on the rhs. of the plot couples to the chemical potential with the
factor ey 1) NT_Tt is obvious, that the weights in the partition sum (13) are real and positive
also for arbitrary values of the chemical potentials w1y and . Thus in the dual formulation the
sign problem is gone completely also for the case of finite chemical potential.

In addition to the plaquette expectation number and its susceptibility defined in (8), in the two
flavor model with chemical potential we can also study the particle number densities ny, n, and
the corresponding susceptibilities xy, x,. They are defined as

1 9ln(2) 1 9%In(2)

= T = s (14)
Ns 8(sy/x NT) VI N 9y Ni )2

(ny/x)

Again we can apply the derivatives also to the dual form of the model to obtain the dual repre-
sentation of these observables. Their dual form is particularly simple,
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Fig. 2. Example of an admissible configuration for the two flavor model on an 8 x 8 lattice. Again we use double lines
to represent dimers and single lines with arrows for fermion loops. However, here we have fermion loops and dimers for
both flavors and in order to distinguish them in the figure we use dashed lines for the loops and dimers of the second
flavor. Fermion loops have to be filled with activated plaquettes (again represented by circular arrows with the occupation
number written inside) such that along the loop the flux is saturated and the gauge constraints are obeyed. Note that for
the second flavor (dashed lines) which is negatively charged, the gauge flux and the loop must run in the same direction
for saturation. This is the reason why also loops from different flavors that run parallel to each other satisfy the gauge
constraints. Finally we remark, that the vertical double loop on the rhs. of the plot is an example of a loop that couples to
the chemical potential (both flavors have temporal winding number W (/) = W () = +1 in that configuration).

1 1 5 5
)= W) v = 5 [ — ]
1 7 1 N2 W4
)= WD) = N—S[<W(l> )= W2 (15)

i.e., the particle densities and susceptibilities are the first and second (connected) moments of
the corresponding temporal winding numbers W (/) and W (). These expressions illustrate an
elegant feature of the dual representation: the net particle number can be identified as an inte-
ger on every single configuration. This is not the case for the conventional formulation, where
the particle number cannot be defined as an integer on a single configuration. The fact that the
particle number can be uniquely identified in the dual representation opens the door to canoni-
cal simulations, i.e., simulations at fixed particle number, which we briefly discuss at the end of
Section 4 where we consider the two flavor case.

3. Update strategies and results for the one flavor model

We begin the discussion of the dual update strategies with the one flavor model with a topo-
logical term, since the one flavor case is simpler and the two flavor updates build on the steps
developed here.
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3.1. Steps of the update

The partition sum (7) is a sum over configurations of oriented loops and dimers. These have
to obey the fermion constraints, i.e., every site of the lattice is either the endpoint of a dimer or
is run through by a loop. The weight of each configuration, [, |, (2v/77) (Vn/1)P™, is
computed from the plaquette occupation numbers p(n), which have to be such that the gauge
constraints for the links along the fermion loops are obeyed (compare the example in Fig. 1).

Let us begin with the update of the dimers in a given fixed configuration of fermion loops.
It is easy to see from the example shown in Fig. 1 that different configurations of the dimers
are compatible with a given configuration of loops. For example the two vertical dimers inside
the loop at the top of the configuration can be replaced by a pair of horizontal dimers. Another
possible modification is to shift the vertical line of dimers on the rhs. of the configuration upwards
by one link (note that the lattice closes periodically). More generally one can identify closed
contours where dimers alternate with empty links and shift all dimers along that contour by one
link. This is a move that modifies only the dimers and leaves all fermion constraints intact without
altering the fermion loops. Furthermore these moves of the dimers do not change the weights,
since all plaquette occupation numbers p(n) remain the same and no Metropolis decision is
needed for accepting a pure dimer change. It has to be pointed out that some dimers are frozen
by the fermion loops surrounding them, e.g., the horizontal dimer in the top fermion loop, or the
dimer inside the 2 x 3 fermion loop at the bottom.

The idea of identifying closed contours where dimers and empty links alternate naturally leads
to a worm update. We start the worm from a randomly chosen lattice point which is not part of
a fermion loop. At every site the worm makes a random decision along which link to continue
next. These choices are restricted by the condition that the worm is not allowed to hit a fermion
loop or itself (except when it reaches its starting point). For this bookkeeping the worm blocks
the sites and links it already contains. The worm also may end up at a site where the only possible
move would be to retrace the previous step. An example is the right end of the frozen horizontal
dimer inside the top fermion loop in Fig. 1. In such a case the worm is deleted and no update is
performed. Once the worm reaches its starting point it stops and the worm has identified a closed
contour where links with dimers alternate with empty links. The update is completed by deleting
all dimers along the contour and filling all previously empty links with a dimer. We remark
that the dimer worm also includes the simple case of, e.g., rotating a pair of two neighboring
horizontal dimers into a vertical pair.

Most important, however, is the fact that the worm can also update winding contours of al-
ternating dimers and empty links, which is not possible with the local pair rotations alone. Only
including the dimer worm makes the algorithm ergodic. The fact that the dimers give rise to con-
figurations with topological properties can already be seen from the problem of filling an empty
lattice with dimers: It is known (see, e.g., [12]) that in two dimensions the dimer configurations
come in four different topological sectors which are not connected by local transformations. Thus
it is necessary to include a global update such as the worm strategy discussed here.

Let us now come to discussing the update of the fermion loops and the plaquette occupation
numbers attached to them. These updates can be done with three types of local steps on single
plaquettes which we illustrate in Fig. 3. In each of these steps the plaquette occupation number
of that plaquette changes as p(n) — p(n) £ 1, which leads to a changed weight in the dual
representation (7). Consequently all the three types of steps have to be accepted in a Metropolis
step with probability min {po4, 1} where
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Fig. 3. (a) Example of an update step where a pair of dimers is converted into an elementary fermion loop around a
plaquette (lhs. plot) and the corresponding inverse move where an elementary fermion loop is converted into a pair
of dimers (rhs.). For both, the insertion of the fermion loop, as well as for the removal of the fermion loop we have
two possibilities which are offered with equal a-priori probability. The corresponding plaquette occupation number p(n)
changes to p(n) £ 1. We remark that in all plots of Fig. 3 the changes of the plaquette occupation number p(n) are always
denoted relative to the empty configuration, e.g., 0 — =£1. In the general case, e.g., when the plaquette is inside another
loop, the change is p(n) — p(n) £ 1. (b) Example of an update step where a fermion loop expands and a dimer is deleted
(lhs.) and the corresponding inverse move where a fermion loop shrinks and a dimer is placed (rhs.). The corresponding
plaquette occupation number p(n) changes to p(n) = 1. (¢c) Example of an update step where we either join two fermion
loops or split a single fermion loop into two separate loops (which of these two situations applies depends on the global
connectivity properties of the fermion loops). The corresponding plaquette occupation number p(n) changes to p(n) =+ 1
in these steps.

0 Lpme)+112/nm) 1 png)—1/(24/11)
Y S o — (16)

11 p(ng) 2N/ 11) L1 p(ngy (2v/11)

and the sign =+ is used according to the change p(n) — p(n) £ 1.

A sweep of our algorithm runs through all plaquettes and attempts a change of the fermion
variables on that plaquette together with the corresponding plaquette occupation number p (7).
Depending on the situation the algorithm finds on the plaquette it works on, the algorithm sug-
gests one of the types of moves illustrated in Fig. 3, and it is easy to see that these three types of
steps together with the dimer worm described above give rise to an ergodic update.

The first type of step (Fig. 3a, lhs. plot) is for the situation when the plaquette is occupied
by a pair of parallel dimers. In this case the algorithm offers to replace the two dimers by an
elementary fermion loop around the plaquette, where both possible orientations are offered with
equal a-priori probability. The plaquette occupation number changes from p(n) to p(n) £ 1 and
the step is accepted with the Metropolis probability min{p4, 1} with p4 givenin (16). The inverse
step is illustrated in the rhs. plot of Fig. 3a: here the algorithm attempts to remove an elementary
fermion loop around a single plaquette and to replace it with a pair of dimers, where again the
horizontal and the vertical possibility are suggested with equal a-priori probability and accepted
with probability min{p+, 1} depending on the orientation of the loop that is replaced by the pair
of dimers.

I |
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The second type of update step for fermion loops and plaquette occupation numbers is il-
lustrated in the lhs. plot of Fig. 3b. Here one adds a detour to a loop by removing a dimer that
sits on the same plaquette as the segment of fermion loop. The plaquette occupation number is
changed, p(n) — p(n) £ 1 according to the orientation of the new path of the fermion loop of
that plaquette (in Fig. 3b we show the situation for an example relative to the empty configura-
tion p(n) = 0). The move is again accepted with probability min{p+, 1}. The rhs. plot of Fig. 3b
shows the inverse process, i.e., a detour around a plaquette is taken out of a loop and the fermion
constraint is satisfied by placing a dimer.

Finally, in Fig. 3c we illustrate the third possible case the algorithm attempts to update at a
plaquette: Two anti-parallel segments of fermion loops on two opposing links of a plaquette. In
this case the algorithm offers to delete the two segments and to insert them on the other two
links of the plaquette. This leads to a configuration where two loops have been joined, or a
loop has been separated into two loops (depending on the connectivity properties of the loop(s)
the two original loop segments belong to). Again the plaquette occupation number changes as
p(n) — p(n) £ 1, giving rise to a Metropolis acceptance probability of min{p, 1}.

In all other cases, e.g., at plaquettes with a piece of loop around only one corner plus the
endpoint of a dimer on the opposite corner, or a plaquette with two pieces of loop running in the
same direction on opposite links of the plaquette, the algorithm does not propose a change.

We stress that the moves for changing the fermion loops together with the plaquette occupa-
tion numbers we discussed here cannot introduce a non-vanishing net-winding number of loops.
The local moves on the plaquettes can only create pairs of fermion loops that wind (spatially or
temporally), where one loop in the pair winds forward and the other one backward (in space or
time). Since forward and backward loops appear in pairs, no net winding number is introduced.
However, this is exactly what the Gauss law enforces: a non-zero winding would correspond to a
system that is not charge neutral. It is easy to see that the dual formulation implements the Gauss
law in a simple geometrical way: a single loop that winds cannot be saturated with occupying
plaquettes. Having understood that winding loops are not compatible with the constraints, it is
trivial to see that the three types of steps shown in Fig. 3 give rise to an ergodic update for the
fermion loops and the gauge fields in the one flavor case. In the case of two flavors of oppo-
site charge discussed in the next section, we can have pairs of winding fermion loops and there
additional strategies (i.e., worms for double fermion loops) will be needed.

For the simulation of the system with the topological term it is advantageous to add another
update: a global shift of all plaquette occupation numbers. In this step we offer the change
p(n) — p(n) £ 1 Vn, where the sign £ is randomly chosen with equal probability. Obviously
such a global shift of the plaquette occupation numbers leaves all constraints intact, since the
additional flux on neighboring plaquettes cancels along the link they share. The step is accepted
with Metropolis probability min{p, +, 1}, where

+v _
n I pey+112/01)
= - | | —_ 17
Pa.x <\/;> L Lo (2v/mn) {an

We stress that this step is not necessary for ergodicity, since such a global shift can also be
generated by a loop growing to the size of the whole lattice, such that it wraps around the periodic
boundaries and closes back onto itself. However, this is a rare event, and the explicit global
change of the plaquette occupation number speeds up the propagation in configuration space.
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3.2. Results and checks

Having developed the dual representation and a corresponding new update strategy it is
paramount to test these. Here we use two types of tests. For the case of 6 = 0, i.e., when no
topological term is coupled, we can use a standard simulation, since the case of 8 =0 is free of
the complex action problem also in the conventional formulation. In the standard simulation the
fermions are integrated out and the corresponding fermion determinant is used as an additional
weight factor (together with e =561Vl for the Monte Carlo sampling of the gauge configura-
tions U. The fermion determinant is real and positive, since the eigenvalues of the staggered
Dirac operator come in complex conjugate pairs. For the 2-dimensional case of the Schwinger
model the discretized Dirac operator is a relatively small matrix, such that for generating the
reference data we could simply compute the fermion determinant with a standard library.

The second test we implemented was an exact summation over all possible fermion configura-
tions on a small lattice, i.e., fillings of the lattice with dimers and fermion loops, and a numerical
sum over all plaquette occupation numbers compatible with a given configuration of the fermion
loops. The details for obtaining this exact result on small volumes are described in the appendix.
The exact summation is possible also for 6 # 0 and allows us to test the dual simulation also in
the case where the complex action problem is present.

Before we come to presenting the tests and the numerical results, let us briefly discuss the
parameters used in our simulations. We approach the continuum limit as in [3] by simultaneously
sending to infinity the inverse gauge coupling 8 and the lattice volume NgN at a fixed ratio

__#h
Ns Nt

= const . (18)

For the tests shown here a typical value of the constant would be R = 0.1 and we considered
lattice sizes up to Ng = Ny = 24. The values of 6 were chosen in a range between —37 and
+3m. Note that the geometrical definition of the topological charge gives an integer charge Q[U]
only in the continuum limit, such that also the 2 -periodicity in 6 emerges only in that limit and
it is useful to monitor a larger interval of #-values than just the principal branch of [—m, 7]
(actually since observables are either even or odd in 6, already the interval [0, 7] is sufficient
in the continuum limit). The dual simulation of the one flavor model typically uses between 10°
and 107 measurements which are decorrelated by a mix of 20 sweeps of local updates for loops
and plaquettes, 10 dimer worms and 10 global updates for the gauge plaquettes. At each point in
parameter space we use 5 x 10* cycles of these mixed updates for equilibration. The errors we
show are statistical errors determined with single elimination jackknife.

We begin the discussion of our tests with a comparison of all three approaches possible at
0 =0, i.e., conventional simulation, exact summation and dual simulation. In Fig. 4 we show the
results of the three calculations as a function of 8 for lattice size 4 x 4 (larger lattices are too big
for the exact summation). It is obvious that the dual simulation (circles), the conventional sim-
ulation (squares) and the results of the exact summation (full curve) agree perfectly, supporting
the correctness of the dual representation at 6 = 0 and the numerical implementation of the dual
simulation.

For non-zero vacuum angle 6 we can no longer use the conventional approach, but tested
our dual simulation program against the results of the exact summation on a small lattice at
finite 6 the results of this test are presented in Fig. 5 where we show the plaquette expectation
value (U)p) (top plot) and the topological charge density {(¢g) as a function of 6. The data from
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Fig. 4. The plaquette expectation value in the one flavor model at & = 0 as a function of 8. We compare the results
from the dual simulation (circles) with the data from a conventional simulation (squares) and the results from an exact
summation (full curve) on a 4 x 4 lattice. We find perfect agreement of the three results thus confirming the correctness
of the dual representation and the update strategy.
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Fig. 5. Plaquette expectation value and topological charge density in the one flavor model as a function of 6 at fixed
B = 1.6 and lattice size 4 x 4. We compare the data of the dual simulation (circles) with the results of the exact summation
(full curve) on a 4 x 4 lattice. We find perfect agreement of the results thus confirming the correctness of the dual
representation and the update.

the dual simulation (circles) and the results of the exact summation (full curve) agree perfectly,
confirming our update strategy for the dual representation also at non-zero 6.

We remark at this point that the fact that the comparison to the exact summation is possible
only for small volume is not necessarily a disadvantage: on a small lattice configurations that
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Fig. 6. Plaquette expectation value (lhs. plot) and topological charge density (rhs.) towards the continuum limit. We show
the quantities as a function of 6 for three different values § = 1.6, 6.4 and 14.4 (top to bottom) and increase the volume
such that R = 8/NgN7 remains constant at R = 0.1. We observe the emergence of the 27 -periodicity expected in the
continuum limit.

wind in some way around the periodic boundary conditions play a larger role and if not taken
into account correctly by the update algorithm would lead to stronger deviations between the
Monte Carlo data and the results from exact summation. In our case these configurations are
fermion loops that wind around the compactified directions (in the one flavor case these can
only be pairs of forward and backward winding loops), as well as sheets of plaquette occupation
numbers that cover the entire torus (simply changing all plaquette occupation numbers from
p(n) to p(n) £ 1 in a admissible configuration creates such a sheet which again gives rise to
an admissible configuration). Furthermore, as already mentioned, also dimer configurations are
known [12] to come in topologically distinct sectors that necessarily imply a global strategy such
as our dimer worm for an ergodic update. The fact that we find perfect agreement on the 4 x 4
lattice indicates that also configurations winding around the periodic boundaries are taken into
account correctly by the fermion/gauge algorithm and the worm for the dimers.

Having checked the correctness of the algorithm and the dual representation let us briefly
analyze the physics of the vacuum angle that emerges from the formulation of the model with
massless staggered fermions and the field theoretical definition of the topological charge. The
study of the 6-dependence in scalar QED; [3] suggests that also here a 2w -periodicity of the
dependence of observables on the vacuum angle 6 should emerge only in the continuum limit.
This is indeed manifest in Fig. 6 where we show the plaquette expectation value (U)) (lhs. plots)
and the topological charge density (g) (rhs.) as a function of 6. From top to bottom we approach
the continuum limit by increasing 8 and the volume. It is obvious that both observables start to
develop the expected 2 -periodicity, as can, e.g., be seen by observing that the distance between
two maxima (or minima) approaches the value 2.
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However, there is an important difference between scalar QED, and the massless Schwinger
model. In the latter case one can use a chiral rotation and the anomaly of the fermion determinant
to show that if one of the fermion masses vanishes (note that for staggered fermions we have to
compare to the two-flavor continuum results), the physics of the continuum model is independent
of 6. Thus it is interesting to analyze whether, and in which form this independence of 8 emerges
when approaching the continuum limit with the formulation with massless staggered fermions
and the field theoretical definition of the topological charge.! When inspecting the results for
(Up) (bs. plots in Fig. 6) one finds that they resemble a parabola overlaid with oscillations,
while the results for (g) resemble an inclined straight line overlaid with oscillations. We first
note that in both cases the non-oscillating part becomes more flat towards the continuum limit:
for (Up) the curvature of the parabola decreases when increasing 8 and the same holds for the
slope of the data for (g). Furthermore one clearly sees that also the amplitudes of the oscillations
decrease quickly toward the continuum limit: the amplitude of the oscillation of (U ) (lhs. plots)
between the minimum at 6 = 0 and the first maximum roughly has the values 6 x 1072, 3 x 10~#
and 2 x 1073 for B =1.6,6.4 and 14.4, and the amplitude of the oscillation of (g) (rhs. plots)
between the two extrema near = 0 roughly decreases as 1.7 x 1072, 4.4 x 10~* and 7 x 1073,
This qualitative analysis illustrates how the 6 dependence disappears towards the continuum
limit, as expected for the continuum model with one or more massless fermions. This supports the
results about the correct implementation of the anomaly by the lattice formulation with massless
staggered fermions [ 14] (although other observables might be sensitive to the order of continuum-
and chiral limit).

Finally we address a related question in our exploratory study, namely the possibility of a
phase transition at & = 7w when approaching the thermodynamical limit at fixed inverse cou-
pling B. For pure U(1) gauge theory in 2 dimensions, as well as for scalar QED> a first order
phase transition emerges at & = 7, which can, e.g., be seen in a jump in (g) and a diverging
topological susceptibility. These findings were established also with the geometrical definition
of the topological charge (see, e.g., [3] and the two plots on the rhs. of Fig. 7): a first order jump
emergences in (g) at 6 = 7, and the maximum in the topological susceptibility grows propor-
tional to the volume.

In the lhs. plots of Fig. 7 we show our results for the topological charge density (g) (top plot)
and the topological susceptibility x; (bottom) as a function of 6 for the Schwinger model. We
work at a fixed 8 = 10.0 and increase the volume from 8 x 8 up to 24 x 24. It is obvious that
both observables saturate as the volume increases and do not develop a phase transition, different
from the results for the same observables in scalar QED; [3]. Also this result for the absence of
a transition supports the correct approach of a 6-independent continuum limit.

4. Update strategies and results for the two flavor model with chemical potential

Having established the validity of our algorithmic approach in the somewhat simpler one
flavor case with topological charge, and having discussed some of the observables, we now come
to the two flavor case. Here the focus is on finite density, i.e., finite chemical potential, and
thus we now set the vacuum angle to 6 = 0 (although its inclusion in the two flavor model is
straightforward). The algorithmic challenge in the two flavor case is to efficiently update the
winding fermion loops that carry the dependence on the chemical potentials w1y and py.

1 For studies of the 6 dependence for the massive lattice Schwinger model see, e.g., [13].
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Fig. 7. Topological charge density (g) (lhs., top plot) and the corresponding susceptibility x4 (lhs., bottom) as a func-
tion of the vacuum angle 6. At fixed B = 10.0 we compare the results for different lattice sizes to study the volume
dependence. For comparison the rhs. plots show the same quantities for scalar QED,, where indeed a first order behavior
emerges at 0 = 7 (plots from [3]).

4.1. Steps of the update

The update of the two flavor model builds on the steps already developed for the one flavor
model, since the set of configurations in the dual two flavor partition sum (13) contains products
of admissible fermion configurations of the one flavor partition sum (7) for each of the two fla-
vors. Thus as the first part of our algorithm for both flavors we reuse the sweeps of the single
flavor updates as discussed in the previous section. We alternately perform the local loop defor-
mations illustrated in Fig. 3 and the dimer worms for each of the flavors, combined with offering
a global shift of all plaquette occupation numbers. These updates access all configurations that
have zero net winding number of fermion loops around both, spatial as well as temporal direction
for each of the flavors.

However, as the example in Fig. 2 shows, in the two flavor case also configurations are ad-
missible where the net winding number around space and time has the same non-zero value for
fermion loops of both flavors. In the example of Fig. 2 this is the temporal (= vertical) fermion
double loop on the right hand side of the configuration. We will now present a worm algorithm
that is capable of inserting and removing such fermion double loops. We stress at this point,
that the fermion double loop in Fig. 2 is a very special configuration with non-zero net winding
number, but it is easy to see that the local loop deformations of the previous section generate all
possible instances of configurations in the same winding class. In particular, the two strands of
the double loop can become split when, e.g., the update steps shown in Fig. 3b are applied to one
of the two flavors.

The main challenge of inserting a winding loop is to find a path where the loop can be placed
such that the fermion constraints are obeyed. To achieve such an insertion we first run a worm
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Fig. 8. Worm algorithm for fermion double loops. The worm identifies a closed chain where dimers of both flavors
alternate and replaces the chain by a fermion loop (lhs. plot). The inverse step is a worm that identifies a closed double
fermion loop and replaces it by a chain of alternating dimers of both flavors.

|‘0I% 0 0 %l‘ol
(@)
1]

(b)

Fig. 9. (a) Inserting a detour in a double fermion loop after removing a dimer pair (lhs. plot) and the corresponding
inverse step (rhs.). (b) Joining (splitting) of a double fermion loop.

that identifies a closed contour where dimers of both colors alternate.” Once such a loop is iden-
tified, we replace it by a fermion double loop, where both possible orientations are chosen with
equal probability. If the fermion double loop has zero temporal winding the change is always ac-
cepted. Otherwise we accept it with probability min {1, ¢ (*¢T0NT) where W is the temporal
winding number of the double loop. This step is illustrated in the lhs. plot of Fig. 8, together with
the inverse step, where a fermion double loop (again identified with a worm) is replaced by a
closed contour of dimers (rhs.). Together with the single flavor updates of Section 3 this already
constitutes an ergodic algorithm for the two flavor model.

However, one may increase the efficiency of the update by also including steps that locally
deform double fermion loops (see the steps in Fig. 9). In principle these steps lead to changes
that are possible also via two other mechanisms: A complete removal of the double loop and
a subsequent reinsertion after a dimer change, or as a sequence of two (or more) single flavor
steps with a change of plaquette occupation numbers. The former possibility often (depending
on the loop) has a low probability and the second one becomes strongly suppressed at small .
Thus we include steps for the fermion double loops that are similar to the local steps in the single
flavor update, but do not require a worm search or the activation of plaquettes in an intermediate
step. In Fig. 9a we show the step where a double dimer is replaced by a detour of the fermion

2 A second possibility would be to find a loop where we have dimers of both colors on the same links alternating with
empty links, but since the single flavor dimer loops which we run switch between these two cases, the second possibility
needs not be included explicitly.
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Fig. 10. The particle number density (n) as a function of the chemical potential, for different values of B. For lattice
volume 4 x 4 (lhs. plot) we compare the data from the dual simulation (symbols) with the results of the exact summation
(full curves) and find excellent agreement. For the 8 x 8 lattice (rhs.) we connect the data from the simulation with dashed
lines to guide the eye.

double loop (lhs.) and the corresponding inverse step (rhs.). Fig. 9b shows a step where we join
two double loops or split them (depending on the overall connectivity properties of the double
fermion loop).

4.2. Results and checks

For the actual simulation of the two flavor model we use the following combined sweeps: One
combined update sweep consists of one sweep of the local updates for each of the two flavors,
as well as worm update sweeps for dimers of both flavors as discussed in Section 3.1. This is
combined with one global plaquette shift (compare Eq. (17)), one sweep of local neutral loop
updates as described in Fig. 9, as well as one winding loop update sweep as shown in Fig. 8.
For each parameter set we equilibrate the system by performing 10° to 10° of these combined
sweeps and for the evaluation of observables we use between 10 and 4 x 107 configurations
separated by 6 to 20 combined sweeps for decorrelation.

As for the case of the one flavor model with topological term we begin the discussion of our
simulation results with a comparison to the results of an exact summation of the partition sum on
a small lattice (see the appendix for details of the summation). In the lhs. plot of Fig. 10 we show
the particle number density (n) as a function of the chemical potential 1y =, = u fora4 x 4
lattice. The symbols represent the results of our dual simulation for 8§ =0, 1, 2 and 4, and the full
curves are the corresponding reference data from the exact summation. Obviously, for all values
of B the dual simulation results agree very well with the curves from the exact summation, which
indicates that the dualization and the dual simulation were implemented correctly. The curves for
(n) saturate at 1 as expected for fermions.

In the rhs. plot of Fig. 10 we show our results for the particle number density () as a function
of u for lattice size 8 x 8, again comparing the results for 8 =0, 1, 2 and 4. Here we do not have
reference data from an exact summation and we simply connect the data points that represent
the results from the dual simulation to guide the eye. Comparison of the two figures shows that,
as expected, the curves for (n) become steeper near the inflection point when increasing the
volume. The limit of infinite lattice size corresponds to the limit of infinite spatial volume at zero
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Fig. 11. Time series for the particle number density (n) on a 8 x 8 lattice at 8 = 0 (i.e., the particle number density n is
plotted as a function of Monte Carlo time ;¢ in units of 10 combined sweeps). We compare three different values of
the chemical potential « = 0.5, 1.0 and 1.3 (top to bottom) and for each of them show the time series for different runs.
In particular for small © we observe oscillations with low frequency corresponding to long autocorrelation times. These
are due to topologically stabilized double fermion loops (see the discussion in the text).

temperature, where one expects that (n) behaves like a step function and our numerical results
show that trend.

Having established the correctness of the dual simulation and thus the fact that the complex
action problem is overcome in principle by the simulation in terms of worldlines/worldsheets, we
also need to address efficiency issues of the approach. During the explorative studies presented
here we partly encountered very long autocorrelations in our simulations, in particular for 8 > 2
at medium to large values of the chemical potential (i > 0.5). The reason is the topological na-
ture of the particle number in the dual representation. Increasing the chemical potential increases
the particle number and thus the net winding number of the fermionic loops around the compact
time direction. At sufficiently high w this can lead to loops that wind several times around time
and then close around the spatial direction. Note that the net winding number has to be the same
for both flavors, and in such a configuration the winding loops can already occupy a sizable frac-
tion of the lattice, and for large u when (n) approaches 1 each site of the lattice belongs to a
winding loop. Clearly such configurations are stabilized by topology and despite the fact that we
use a worm strategy for updating the double loops we found that it is very hard to break up such
high-winding configurations.

This topologically stabilized autocorrelation is clearly visible in the time series of the particle
number density which we show in Fig. 11. The particle number density () is plotted as a function
of the Monte Carlo time f3;¢c measured in units of 10 combined sweeps. The three plots of
Fig. 11 are for u = 0.5, 1.0 and 1.3 (top to bottom) and in each plot we show the time series
for several different runs. The long correlations are obvious, in particular for the smaller two
values of . The plots illustrate that although the complex action problem is solved by mapping
the system to a representation with only real and positive contributions, the fermionic nature of
the system together with the topological representation of the particle number in terms of the
winding number make the Monte Carlo simulation of the system very stiff. In dimensions D > 3
this problem is expected to be much milder, since then the 1-dimensional winding loops do not
separate the lattice into domains that cannot be intersected with another loop.
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We close this section with remarking that the dual formulation also allows for simulations of
the canonical ensemble. Having seen that the system is highly constrained and that changing the
particle number is very hard in some parameter regions, canonical simulations, i.e., simulations
at fixed particle number, which in the dual representation corresponds to fixed temporal winding
number, might be a powerful alternative approach. In order to implement a fixed winding number
W one starts the simulation with an initial configuration that has this winding number, e.g., by
placing W double fermion loops that wind once. In the subsequent update steps one implements
a rejection step for the double fermion line worm whenever it tries to cross the last time-slice
of the lattice, such that the worm cannot change the total winding number. Together with the
local steps this updates all configurations with fixed winding number W and thus gives rise to
a simulation of the canonical ensemble with particle number W for both flavors. First tests in a
bosonic model [15] show that in some situations a dual canonical simulation clearly outperforms
a grand canonical simulation and canonical simulations in the dual formulation might solve the
problem with the long autocorrelations.

5. Summary and concluding remarks

In this paper we present the first dual simulation of the massless Schwinger model at finite
vacuum angle 6 and non-zero chemical potential. In the dual representation the partition sum has
only real and positive contributions, such that the complex action problem is solved. However,
in terms of the new variables, the system is highly constrained. In particular the new fermionic
variables, the dimers and fermion loops have to obey the Pauli principle, which in the dual for-
mulation requires that each site of the lattice is either run through by a loop or is the endpoint of a
dimer. These constraints require new update strategies and in this paper we explore and evaluate
different steps that combine into a suitable algorithm. We remark that in the massive case one
also has monomers that can be used for filling the lattice, and since they saturate the fermionic
constraints on a single site alone the constraints for the fermions are less rigid in the massive case
(however, negative sign contributions re-appear [8]).

More specifically we here study the one flavor model with a topological term (i.e., 6 > 0) at
zero density and the two flavor model with finite chemical potential at 6 = 0. The update for
the one flavor model combines local loop deformations, a worm strategy for the update of the
dimers and a global shift of the plaquette occupation numbers. The results of the dual simulation
are cross checked against a conventional simulation at § = 0, and against an exact summation on
small lattices. We verify that the algorithm is ergodic and reproduces the reference data with high
precision, thus establishing the correctness of the approach. In a first small physics application
of the new method we analyze how the chosen formulation implements the 6-independence of
physics in the continuum limit and analyze the difference to scalar QED; for the behavior at
0=m/2.

Generalizing the update strategy of the one flavor model, we construct an ergodic algorithm
for the two flavor model, by adding a worm update for the winding double loops that couple to
the chemical potential, as well as additional local steps for deforming double loops. Again we
compare the results from the dual simulation with the outcome of an exact summation on small
lattices and confirm ergodicity and correctness of the dual approach in the two flavor case. When
exploring the parameter space at finite ;© we found that for some parameter sets the system be-
comes quite stiff due to topological stabilization: increasing the chemical potential enforces high
winding numbers for the fermion loops such that a large fraction of lattice sites is run through by
loops that wind around the compact time (and space) directions. Obviously this gives rise to con-
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Fig. 12. Examples of possible fermion loop configurations and all dimer assignments compatible with a given loop con-
figuration (a single fermion loop in the example in the top row, and two separate loops in the second example (bottom)).
The lattice size is 4 x 4 with periodic boundary conditions, and the loops are shown without orientation.
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figurations that are hard to change — even with worm strategies. Improving the sampling of loop
configurations in that parameter regime is a challenging task that goes beyond the exploratory
first study presented here. A possible future strategy for overcoming the stiffness problem of
the grand canonical approach at large p are canonical worldline techniques, which we briefly
discuss.
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Appendix A. Exact summation on a small lattice

In this appendix we briefly describe the exact summation of the dual partition sum on a small
lattice (4 x 4 in our case), starting the discussion with the one flavor case. The first observation
is that the number of admissible configurations of fermion loops and dimers (every site of the
lattice is either run through by a loop or is the endpoint of a dimer) is finite. On a sufficiently small
lattice all admissible configurations can be generated in a computer program which first places
loops on the lattice and then fills the remaining sites with dimers (see the examples in Fig. 12).
Of course loops that are not compatible with any valid dimer configuration have to be excluded,
such as, e.g., a loop around 2 x 2 plaquettes with an isolated single site inside that cannot be
connected to another site with a dimer. Also configurations with a non-zero net winding number
are excluded, since they cannot be saturated with occupied plaquettes (compare the discussion
of Gauss’ law in Section 2).

In most cases a given loop configuration is compatible with several dimer configurations. In
the example in the top row of Fig. 12 there are 4 ways for placing the dimers, in the bottom
example there are three possibilities. Since the dimers do not affect the weights in the dual rep-
resentation (7) the number of dimer configurations compatible with a given set of loops enters as
a degeneracy factor. This factor is 4 in the example in the top row of Fig. 12 and 3 in the bottom.
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The next step is to analyze the plaquette occupation numbers that are compatible with the
given loop configurations. For this the possible orientations of the loops have to be taken into
account. To illustrate the procedure we start with the top row example in Fig. 12 and assume that
the loop is oriented in the mathematically negative sense. A possible configuration of plaquette
occupation numbers then is given be p(n) = 0 for the 13 plaquettes outside the loop and p(n) =
+1 for the 3 plaquettes inside the loop (lattice size is 4 x 4 = 16). However, more generally one
can set p(n) = k for the 13 plaquettes outside the loop and p(n) = k + 1 for the plaquettes inside,
where k is an arbitrary integer. The complete contribution then is obtained by summing over all
possible k € Z. In case the orientation of the loop is chosen in the mathematically positive sense
(both orientations have to be summed), the admissible plaquette configurations are p(n) =k for
the plaquettes outside the loop and p(n) = k — 1 inside. Thus the full contribution of the diagram
in the top row of Fig. 12 to the partition sum (7) is given by

A ()) -| feotem (5))
' <Ik_”<2\/ﬁ> (\/g)lH) ' (19)

The asymptotic behavior Iy (x) = I_;(x) ~ (ex/2k)¥/~/2k of the modified Bessel functions
for k — oo (see, e.g., [16]) guarantees the (fast) convergence of the sum over k.

For the example in the bottom plot of Fig. 12 we have to sum over all four possible combina-
tions of orientations of the two loops. An easy generalization of the first example then gives the
corresponding contribution

S [
+ (hkl(ﬂﬁ) <\/g>k]) + (1,k+1|<2\/ﬁ))2 L1, (2Jﬁ> (\/g)
# (e (2vm)) s (2vm) (\/g)%l} (20)

Similar to the two examples discussed here, one can generate the sums over all possible loop
configurations in a simple computer program, together with the corresponding degeneracy factors
from the number of dimer configurations compatible with a given loop configuration.

The exact summation program can be generalized to the two flavor case in a straightforward
way. The fermion constraints have to hold for both flavors independently, such that one obtains
the set of admissible two flavor fermion configurations as the product of the sets of admissible
fermion configurations for both flavors. The corresponding plaquette occupation numbers can
be determined similarly to the one flavor case, with the small modification that for saturating
the gauge constraints for the second flavor the plaquette flux or the orientation of a loop flux
from the first flavor have to run in the same direction of the flux of the second flavor since it has
opposite charge. For that reason, in the two flavor case also configurations where loops of the
two flavors wind the same number of times around the periodic boundaries are possible. In case
of a temporal winding they contribute to the dependence on the chemical potentials, i.e., their

3

3k+1
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contributions are weighted with ¢N7(“v+#0W ‘wwhere W is the temporal winding number (W
must be the same for both flavors).
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