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摘摘摘摘            要要要要    

 

以強作用力,弱作用力,電磁作用力相關的規範群 SU(3)C×SU(2)L×U(1)Y

所描述的標準模型, 解釋了自然界大部分的現象. 然而, 仍然有部

分問題無法以標準模型解釋, 像是 CP 破缺的源頭, 重子數不對稱, 

弱作用尺度與蒲朗克尺度的階級差異, 強作用 CP 破缺, 微中子的輕

質量, 費米子家族代的數目. 在這篇論文我將集中在其中三個問題

中, 如下所列. 

 

1. 有關 CP 破缺來源的主題. 為了解釋 CP 破缺的來源我們引進了具

有自發性 CP 破缺相角的多希格斯模型, 並且使這個相角在大小上等

同於夸克混合矩陣的相角, 作為 CP 破缺的來源. 這個假設將得到比

較簡單的湯川耦合矩陣. 我們也應用這個點子到輕子的部分. 賈斯

科不變量在 PMNS 矩陣可以被預測, 這可以用來區分我們所取的不同

模型. 

 

2. 有關輕微中子質量與在翹翹板模型中希格斯衰變的主題. 與極重

右手馬由拉那微中子相關的翹翹板機制,成功的解釋輕微中子質量. 

但是極重的重微中子與這個重微中子和其他粒子極微小的藕荷, 造



成驗證翹翹板理論的困難. 我們檢視在某些具有大的重輕微中子混

合矩陣的翹翹板模型中的希格斯粒子衰變, 能夠有超過標準模型20%

的增量. 接連的四體衰變也與標準模型的預測不同. 

 

3. 有關四代費米子標準模型中的輕子味破壞的主題. 超過三代費米

子的標準模型, 例如包含四代, 也是一個可能的人選. 我們研究輕

子味破壞的過程, 像是原子中的μ-e 轉換在四代費米子標準模型. 

我們發現目前實驗的上界在金原子中的μ-e 轉換, 能夠最緊迫地限

制相關的藕和常數. 在未來鈦原子中的μ-e 轉換實驗將會得到最緊

迫的限制. 

 

關鍵字: 標準模型, 自發性 CP 破缺, CKM 矩陣, PMNS 矩陣, 翹翹板

機制, 希格斯衰變, 四代的標準模型 

 



Abstract

The standard model (SM), which describes the gauge group SU(3)C×SU(2)L×U(1)Y

related to strong interaction, weak theory and electromagnetic interaction, explains

most of the phenomena in the nature. However, there remain some problems which

can not be explained by the SM, such as the the origin of CP violation, the baryon

asymmetry of the universe, the hierarchy problem related to the weak scale and

Plank scale, the strong CP problem, the light neutrino mass, and the number of

fermion generations. In this thesis I will focus on three of these problems, which are

listed as follows.

1. The topic related to the source of CP violation. In order to explain the source

of CP violation we introduced a multi-Higgs model with nonzero spontaneous

CP violating phase, and regarded the phase, which is assumed to be identical

in magnitude to the phases in quark mixing matrices, as the source of CP vio-

lation. This assumption will lead to some simpler Yukawa coupling matrices.

We also applied the idea to the lepton sector. The Jarlskog invariant in PMNS

matrix can be predicted, which can be used to distinguish different models we

take.

2. The topic related to the light neutrino mass and Higgs decay in seesaw mod-

els. The seesaw mechanism, involving right-handed neutrinos with very large

Majorana mass, explains the light neutrino masses successfully. But the too

huge mass of the heavy neutrino and the too tiny coupling with this heavy

neutrino the other particles cause the difficulty in verifying the seesaw mech-

anism. We investigated the effect on Higgs decay in some seesaw models with

large heavy-light mixing, which can increase more than 20% than that in the

SM. The subsequent four body decays are also different from the prediction in

SM.



3. The topic related to the lepton flavor violation in SM with four fermion gener-

ations. The SM with more than three generations, e.g., with four generations,

is also a possible candidate. We studied the lepton flavor violating process

such as µ− e conversion in atoms in the SM with sequential four generations.

We found that the current experimental bound on µ − e conversion with Au

constrains the relevant coupling constant most stringently. The experiment on

µ− e conversion in Ti will lead to the most stringent constraint in the future.

Keywords: standard model, spontaneous CP violation, CKM matrix, PMNS ma-

trix, seesaw mechanism, Higgs decay, four generation standard model
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Chapter 1

Introduction

The standard model (SM) has been proved and verified in the past forty years.

Glashow, Weinberg and Salam succeeded to unify the electromagnetic interaction

and the nuclear weak interaction together in 1967 [10]. In 1973 Kobayashi and

Maskawa [14] extended the SM to three generations fermions which elegantly ex-

plains the CP violation in several hadronic processes. From the discovery of neutrino

oscillation, it is confirmed that more than one neutrino are massive, which conflicts

with the structure of SM, under which neutrinos should be massless exactly. Besides

the massive neutrinos, there are still several theoretical predictions and experimental

observations which cannot be explained solely by the SM.

The source of CP violation is an interesting research topic. In the SM the CP

violation is arisen from the complex Yukawa couplings. However, the source of

the complex couplings has not been understood yet. A good way to explain the

source of CP violation is by the two Higgs doublet model (2HDM), in which CP

violation is generated from the relative phase of vacuum expectation values (VEVs)

between Higgs doublets. The three Higgs doublet model (3HDM) with appropriate

discrete symmetry can generate a flavor conserved neutral current with the existence

of spontaneous CP violation. We proposed an idea that the CKM matrix phase as

well as the PMNS matrix phase come from and are identified with the spontaneous

CP violating phase in magnitude [1, 2]. To realize this idea with Peccei−Quinn
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symmetry simultaneously three Higgs doublets and one Higgs singlet are imposed

into this model, where Yukawa couplings for quark and lepton sectors are only

functions of fermion masses and mixing angles.

The seesaw mechanism is usually applied by introducing a very heavy fermion

called heavy neutrino to generate very light active neutrinos. The generic feature of

such models is that there is some mixing between the heavy and light neutrinos, and

the scale of the mixing strength is approximately proportional to the inverse of the

square root of heavy neutrino mass. One way to enlarge such heavy-light mixing is

to build it as an approximately rank-1 matrix, which is shown in details in Ref. [85].

Such a model will enhance the Higgs decay rate significantly if the Higgs is heaver

than the heavy neutrino masses [4]. This model is expected to be verified at the

Large Hadronic Collider (LHC) in the future.

The SM with three generations have been shown to possess good agreement with

experiments. However, the existence of the fourth generation is still not precluded,

although there are stringent bounds on corresponding fermion masses and couplings.

One of the possible approaches to search for the existence of the fourth generation

is by the lepton flavor violating processes, such like µ → eγ, µ → eeē and µ − e

conversion with the nucleus in the atoms, which might be affected significantly by

the fourth generation neutrino in the loop diagram. It is worth to compare these

processes in order to find which one could provide the tightest constraint on the

fourth generation coupling constants, with the heavy neutrino mass in different

range [5].

In this thesis, I will describe these topics and their corresponding implications

in details. In Chapter 2, the structure of the SM, especially in electroweak part, the

CKM matrix together with CP violation, and some of the extension by adding the

right-handed neutrinos will be introduced. In Chapter 3, with brief introduction

to spontaneous CP violation, I will describe how to identify the spontaneous CP

violating phase with the phases in quark and lepton mixing matrices [1, 2, 3]. In

Chapter 4, I will describe about some of the seesaw models, and the effect of large

2



heavy-light mixing on Higgs decay and other relevant processes [4]. In Chapter 5, I

will show the comparison between µ→ eγ, µ− e conversion in nucleus and µ→ eeē

in the sequential four generations model [5]. In the last chapter, the Chapter 6, I

will conclude these topics.
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Chapter 2

Standard Model

The standard model (SM) is built on quantum chromodynamics and electroweak

theory. The former is related to the SU(3) gauge symmetry, and the later is the

unification of electrodynamics and weak interaction into the SU(2) × U(1) gauge

group, which is performed by Glashow, Weinberg, and Salam (GWS) [10]. Another

important contribution to SM is the three generations of fermions, which is proposed

by Kobayashi and Maskawa (KM) [14]. The SM has been well verified by electroweak

precision test, and many of the processes such as hadronic and semileptonic decays

of hadrons, flavor changing neutral current processes, and CP violation for meson

mixing and decaying [6]. In this chapter I will briefly introduce the GWS electroweak

theory followed by the KM theory. Neutrino mixing and neutrino mass will also be

introduced in the end of this chapter.

2.1 Electroweak Theory

2.1.1 The Full Lagrangian

The SM is built on the gauge symmetry of the group SU(3)C×SU(2)L×U(1)Y. A

set of numbers are assigned to describe the transformation of a particle under some

gauge group. For example, in the SM gauge group, the first two numbers in the

set are shown the dimensions of representation for SU(3)C and SU(2)L, respectively,
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and the last number is related to the charge for U(1)Y. In the following we list the

SM paricles with the corresponding gauge group representation

QLi =







uLi

dLi






: (3, 2,

1

6
) , URi : (3, 1,

2

3
) , DRi : (3, 1, −

1

3
) ,

LLi =







νLi

lLi






: (1, 2, −1

2
) , lRi : (1, 1, −1) , H : (1, 2,

1

2
) , (2.1)

where i means that there might include several generations for fermions. H is a spin-

0 scalar, which will be discussed later. Under the SM gauge group the covariant

derivative is define as

Dµ = ∂µ + ig1Y Bµ + ig2T
aW a

µ + ig3T
′bGb

µ , (2.2)

with Y the hypercharge operator, T a the SU(2) generators for a = 1, 2, 3, and T ′b

the SU(3) generators for b = 1, 2, ..., 8. The Bµ, Wµ, and Gµ are the spin-1 gauge

bosons with the gauge group representation given by

Bµ : (1, 1, 0) , Wµ : (1, 3, 0) , Gµ : (8, 1, 0) , (2.3)

where the numbers for these gauge bosons indicates the adjoint representation di-

mension of the gauge group. With the information of gauge representation of SM

particles, the full Lagrangian for SM is written as follows

L = −1

4
Gb

µνG
bµν − 1

4
W a

µνW
aµν − 1

4
BµνB

µν + (DµH)†(DµH)− V (H)

+QLii /DQLi + URii /DURi +DRii /DDRi + LLii /DLLi + lRii /DlRi

+(QLiY
ij
u H̃URj +QLiY

ij
d HDRj + LLiY

ij
l HlRj + h.c.) , (2.4)

where Bµν , W
a
µν , and G

b
µν are defined as follows

Bµν = ∂µBν − ∂νBµ ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ − g2ǫ

aklW k
µW

l
ν ,

Gb
µν = ∂µG

b
ν − ∂νG

b
µ − g3f

bmnGm
µ G

n
ν , (2.5)
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with ǫakl and f bmn are the structure constants for SU(2) and SU(3), respectively.

H̃ = iσ2H
∗ is also SU(2) doublet with hypercharge opposite to H . V (H) is the

Higgs potential given by

V (H) = −µ2(H†H) + λ(H†H)2 , (2.6)

with µ2 and λ are real couplings in general.

2.1.2 Spontaneous Symmetry Breaking

In the following we will focus on the GWS theorm, which is, to break electroweak

gauge group SU(2)L × U(1)Y into the electromagnetic gauge group U(1)EM. There

are massless photon A and massive spin-1 bosons W± and Z in our world, governed

by the electromagnetic gauge symmetry U(1)EM. From gauge theory the existence

of massive gauge bosons implies some breaking of a bigger gauge group in the under-

lying theory. The spontaneous symmetry breaking is manifested by minimizing the

Higgs potential V (H). First we take a look at the Higgs potential V (H). Assuming

there is a scale of temperature, below which the parameter µ2 is positive. At this

situation H acquires a vacuum expectation value (VEV) in order to stablize the

ground state and to obtain the physical state of H . That is, 〈H〉 = (0 , v/
√
2)T ,

where v is the VEV, and it make us to expand H as follows

H =







h+

1√
2
(v + h+ ia)






, (2.7)

where h and a are the scalar and pseudoscalar particles, respectively, and h+ is the

charged component, whose hermitian conjugate is h−. By definition, v is chosen

to minimize the Higgs potential with respect to all of the components h+, h and a

vanishing. This minimal condition leads to the relation

v =

√

µ2

λ
. (2.8)

Substituting the above relation into Eq. (2.7) and Eq. (2.6), the Higgs mass can be

obtained from the quadratic terms in Higgs potential, which are given by

m2
h = 2λv2 , m2

a = m2
h+ = m2

h− = 0 . (2.9)
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Only the neutral scalar Higgs component acquires mass, whereas neutral pseu-

doscalar and charged component are massless, which are just the well-known Nambu−Goldstone

bosons [11]. In the following context, we will express µ2 and λ in terms of v and mh.

The gauge boson masses can be extracted from the Higgs kinetic term, which gives

|(g1
2
Bµ +

τa

2
g2W

a
µ )〈H〉|2 = v2

4
g22W

+
µ W

µ− +
v2

8
(g1Bµ − g2W

3
µ )

2, (2.10)

where W± is defined as W± = (W 1∓W 2/
√
2), which are eigenstates of the electric

charge operator. It is straightforward to obtain the mass eigenstates of neutral

component by the rotation







W 3
µ

Bµ






=







cos θW sin θW

− sin θW cos θW













Z0
µ

Aµ






, with sin θ =

g1
√

g21 + g22
. (2.11)

The masses for gauge bosons are given by

m2
W =

1

4
g22v

2 , m2
Z =

1

4
(g21 + g22)v

2 , m2
A = 0. (2.12)

The tree level mW and mZ satisfy the relation (mW/mZ) = cos θW . The W±

and Z0 acquired masses from the Goldstone Boson, which is the famous Higgs

mechanism [12]. The original gauge group SU(2)L × U(1)Y has been broken, which

is easily known from the massive gauge boson W± and Z0. The massless photon

field Aµ corresponds to the unbroken gauge group U(1)EM.

2.1.3 Electroweak Parameters

There are thousands of processes which are governed by the electroweak interac-

tion. Physicist defined some of the parameters which are useful and can be directly

measured by experiments. We will briefly mention some of the important parameters

as follows.

The electromagnetic fine-structure constant αe ≡ (e2/4π) can be obtained pre-

cisely from the electron anomalous magnetic dipole moment at higher order loop

correction, which gives 1/αe = 137.035999084(51) [15]. The Fermi constant GF ≡

(
√
2g22/8m

2
W ) is related to the order of four fermion electroweak interaction. The

8



Figure 2.1: The electroweak test constrainsmh inmW−mt plane. Figure is captured

from Ref. [6].

measurement of muon life time provides GF = 1.16637(1)×10−5GeV−2 [7]. sin θW is

also a sensitive quantity to test the electroweak theory. From Ref. [7], this quantity

is sin θW = 0.23116(13).

The gauge boson Z0 and W± have also been measured precisely. The most

famous process involving W boson exchange is the β decay of neutron. Its mass is

mW = 80.367 ± 0.026GeV [16], from the measurement of W → eν. Z boson mass

is measured very precisely at LEP experiment [18], which give mZ = 91.1876 ±

0.0021GeV. The final SM particle which has still not been found is the Higgs boson,

whose mass has been constrained by theoretical and experimental limits [17]. The

electroweak precision test provides a sensitive search for mh with the results for mW

and mt, shown in Fig. 2.1 from Ref. [6]. Recently LHC result [19, 20] has ruled

out much of the Higgs mass range. In CMS result 110 < mh < 112.5GeV and

127 < mh < 600GeV at 95%C.L., and a excess observed around mh ≃ 125GeV,

with five statistical significant deviation from the background [20]. We will discuss

more about the Higgs decay in Section 4.1.

One part of the SM, the electroweak theory has been measured very precisely.

There is still another important topic that needs to be understood. This topic is the
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number of fermion generations for SM, which can be related to the CP violation of

the particle physics. We will discuss it in next section.

2.2 Quark Mixing Matrix

After the symmetry breaking, quarks and leptons acquired their masses from

the Yukawa coupling. In the SM with n generations of fermions the charged current

interaction and mass matrices for fermions are given by [13, 14]

LCC+mass = − g2√
2
(ULγµDLW

µ+ + ℓLγµνLW
µ−)

−(ULMuUR +DLMdDR + lLMllR + h.c.) . (2.13)

In this formula we omit the index i, j and regard QL, UR,... as n-plet objects which

can be multiplied by matrix such as Mu, Md and Ml. At this stage, the quarks and

leptons in the above formula are the so-called weak eigenstates, under which the

charged current interaction is diagonal. In other words, there is no mixing between

different generations of fermions in the electroweak gauge interaction. By contrast,

the mass matrices are not diagonal in general.

We need to diagonalize the mass matrices Mu, Md, and Ml by transforming QL,

UR, DR, LL and lR field operators

UL → V u†
L UL , UR → V u†

R UR , DL → V d†
L DL , DR → V d†

R DR ,

νL → V ν†
L νL , lL → V l†

L lL , lR → V l†
R lR , (2.14)

where the above V ’s are the corresponding transformation matrices for each types of

fermions. Note that V ν
L can be taken arbitrary since there is no neutrino mass matrix

in SM. After applying the above transformation the charged current interaction and

mass terms are given by

LCC+mass = − g2√
2
[UL(V

u
L V

d†
L )γµDLW

µ+ + lL(V
l
LV

ν†
L )γµνLW

µ−]

−(ULM̂uUR +DLM̂dDR + lLM̂llR + h.c.) . (2.15)

10



In the charged current interaction there is mixing between different generations. For

quark mixing matrix V u
L V

d†
L is usually denoted as the VCKM, the so-called Cabibbo-

Kobayashi-Maskawa mixing matrix [13, 14]. For the lepton sector the mixing matrix

V l
LV

ν†
L is just taken to be identity since we can take V ν

L = V l
L to achieve it. If

the neutrino eigenstates are fixed by other mechanism, then the mixing matrix for

lepton sector would exist, which is named as the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [29, 30].

2.2.1 CP violation and Complex Elements

In this section, we will show briefly how the relation between charged current

weak interaction and CP violation is. First of all, recall that the parity transfor-

mation and charged conjugation for spin-1/2 particle ψ and spin-1 particle Aµ are

given by

ψP = γ0ψ , ψC = Cψ
T
, with C = iγ0γ2 ,

AP
µ = Aµ , AC

µ = −Aµ . (2.16)

The charged current weak interaction for quark is

L(q)
CC = − g2√

2
[ULi(VCKM)ijγµDLjW

µ+ −DLj(V
∗
CKM)ijγµULiW

µ−] . (2.17)

Under the parity transformation, we have

L(q)P
CC = − g2√

2
[URi(VCKM)ijγµDRjW

µ+ +DRj(V
∗
CKM)ijγµURiW

µ−] . (2.18)

Then following by the charge conjugation, we get the CP transformation of the

Lagrangian

L(q)CP

CC = − g2√
2
[ULi(V

∗
CKM)ijγµDLjW

µ+ +DLj(VCKM)ijγµULiW
µ−] . (2.19)

From the above results, it is straightforward to show that the action is invariant

under CP transformation when VCKM is real.

Now we focus on the structure of VCKM, which is in general a n × n unitary

matrix for n generations. There are n2 free parameters including rotating angles

11



and complex phases for an n× n unitary matrix. The number of angles is equal to

that of the corresponding orthogonal matrices, which has Cn
2 = n(n − 1)/2 angles.

So the number of complex phase should be n(n + 1)/2, which can be reduced to

a less number by the redefinition of quark fields. We can absorb n phases from

one side, and n − 1 phases from the other side of VCKM. Finally there are only

(n − 1)(n − 2)/2 irreducible phases in VCKM. Therefore, the minimal number of

generations to have CP violation in charge current of quark sector is three. This is

the so-called Kobayashi-Maskawa theory [14].

2.2.2 CKM Matrix Elements and CP Violation

The CKM matrix is related to the mixing between quarks of different generations

in the charged current, which is denoted by

VCKM =













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













, (2.20)

where Vij’s denote the coupling of qi−qj−W interaction. We parametrize the CKM

matrix by the standard parametrization in which the four parameters θ12, θ23, θ13,

and δ13 are involved in the form [21]

VS =













c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13













. (2.21)

where s12 = sin θ12, c12 = cos θ12, ... and so on. The δ13 characterizes the CP

violation of the charged current interaction. It is also useful to write down the

above CKM matrix parametrization in terms of the Wolfenstein parameters λ, A,

ρ, and η as follows [22]

VS =











1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1











+O(λ4) . (2.22)
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In the above formula VS is expressed as the expansion of λ up to third order.

Now we discuss some of the experimental evidence of CP violation. There are

three types of CP violation in the meson system. One of these comes from decay

of meson purely, which is also called the direct CP violation. The source of such

CP violation is the difference in magnitudes between a decay amplitude and its CP

counterpart. Another type of CP violation is originated from the mixing of neutral

meson in which the CP eigenstates do not coincide with the mass eigenstates. We

also name this type of CP violation as the indirect CP violation. The last type of CP

violation is the interference between the meson decay and meson mixing. Obviously

it only occurs on neutral mesons. We take the kaon system as an example to explain

the above three types of CP violation.

The neutral kaon system is usually described by a 2 × 2 matrix with K0 and

K0 as the basis. The CP eigenstates are just the maximal mixing of these kaon

states, K1,2 = (K0 ∓K0)/
√
2, where K1 and K2 are CP even and odd eigenstates,

respectively. The mass eigenstates of neutral kaon system is obtained by solving the

corresponding 2×2 Hamiltonian, which is non-Hermitian since the kaon might decay

into other lighter states. If the mass eigenstates coincide with the CP eigenstates,

then the neutral kaon system is CP conserving. On the other hand, if there are

small deviation between the CP eigenstates and mass eigenstates, for example,

KS =
1

√

1 + |ǫ̃|2
(K1 − ǫ̃K2) ; KL =

1
√

1 + |ǫ̃|2
(K2 + ǫ̃K1) , (2.23)

where ǫ̃ is a small quantity, then CP symmetry is violated. It will leads to the

oscillation between two CP eigenstates K1 and K2. Such effect was first discovered

in 1964 [23], which is also the first evidence of CP violation, from the study of

K0 → ππ. They found that the CP even eigenstate ππ comes not only from KS but

also slightly from KL. It has been verified that there is indeed a small mixing of CP

even component K1 in KL, with |ǫ̃| = (2.44± 0.04)× 10−3 [24].

The CP violation from meson decay comes from the amplitudes of loop cor-

rection. The complex loop function with complex coupling constants leads to the

difference between the amplitudes for a process and those of its CP transformation.
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The dominant contribution toK0 → ππ is from the tree level diagram withW boson

exchange, and the penguin diagrams. We need to extract the direct CP asymmetry

from the total CP asymmetry results. It is convenient to define the quantities ǫ and

ǫ′ as follows

A(KL → π0π0)

A(KS → π0π0)
= ǫ− 2ǫ′ ,

A(KL → π+π−)

A(KS → π+π−)
= ǫ+ ǫ′ , (2.24)

where ǫ and ǫ′ correspond to the indirect and direct CP violation contribution,

respectively. Finally, the imaginary part of ǫ represents the CP violation caused by

interference between meson decay with and without mixing. The present numerical

results are given by [7, 25]

Re(ǫ′) = (2.5± 0.4)× 10−6 ,

{

Re(ǫ) = (1.66± 0.02)× 10−3 ,

Im(ǫ) = (1.57± 0.02)× 10−3 .
(2.25)

From the unitarity condition of CKMmatrix we have one of the relation, VudV
∗
ub+

VcdV
∗
cb + VtdV

∗
tb = 0, which is associated with a triangle in the complex plane, with

three angles defined as follows

β ≡ arg

(

− VcdV
∗
cb

VtdV ∗
tb

)

, α ≡ arg

(

− VtdV
∗
tb

VudV ∗
ub

)

, γ ≡ arg

(

− VudV
∗
ub

VcdV ∗
cb

)

. (2.26)

Note that the area of this triangle is also an important quantity, twice of which is

the Jarlskog invariant J . It is also worthwhile to understand that J , α, β, and γ

are independent of the phase redefinition of quarks.

The three angles can be found by the experiments at B factory. We will follow

the discussion in Ref. [7]. The time dependent asymmetry of the process B → J/ψK

can help to get β. HFAG shows the average as sin 2β = 0.673 ± 0.023 [26]. The α

angle is extracted by the combination of the three process B → ππ, B → ρρ, and

B → πρ, which are related to the quark level process b → dūu. Also note that the

CKM structure makes the tree level and one loop diagrams of the same order. The

result is α = (89.0+4.4
−4.2)

◦ [27]. The γ angle can be obtained from the interference

between B− → D0K− and B− → D0K−, which is the tree level dominated process.

The final result is γ = (73+22
−25)

◦ [27].
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Figure 2.2: The experimental fit for the ρ and η. Figure is captured from Ref. [6].

Combining all kinds of experiments related to CKM element magnitudes and

angles provides the global fitting of CKM matrix parameters. The CKMfitter sum-

marized the result in Fig. 2.2 which is excerpted from Ref. [6], also with the fitting

values of Wolfenstein parameters which are given by [6]

λ = 0.22535± 0.00065 ; A = 0.811+0.022
−0.012 ;

ρ = 0.131+0.026
−0.013 ; η = 0.345+0.013

−0.014 . (2.27)

These fitting values lead to the value of Jarlskog invariant J as J = (2.96+0.20
−0.16) ×

10−5 [6], and other kinds of parameters can also be obtained directly.

The CKM matrix is well consistent with almost every experiments involving

hadronic process. The CP violation in meson decay have been detected and ex-

plained elegantly by the CKM matrix. In the following we will discuss the matrix

in the charged current interaction with leptons, which plays the analogous role as

CKM matrix.
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2.3 Lepton Mixing Matrix

2.3.1 Neutrino Oscillation and Mixing Angles

From Eq. (2.15) we know that the VPMNS = V e
LV

ν†
L is the mixing matrix of mass

eigenstates of charged lepton and that of neutrino, which is also the mixing matrix

between the neutrino flavor eigenstates and the mass eigenstates. The 3× 3 VPMNS

is expressed as [29, 30]

VPMNS =













Ve1 Ve2 Ve3

Vµ1 Vµ2
Vµ3

Vτ1 Vτ2 Vτ3













. (2.28)

The common parametrization of three generations VPMNS is the same as Eq. (2.21).

To distinguish from quark mixing parameters we will add the superscript “ ℓ ” to the

mixing angles and phases. If the active neutrinos are Majorana, the phase of neutrino

fields can not be transformed freely. In this case, the general form of VPMNS should

be matrix in Eq. (2.21) multiplying a phase matrix diag( exp(iα1), exp(iα2), 1 ) to

the right-handed side. The phases α1,2 are called the Majorana phases, which cannot

be absorbed into neutrino fields.

If there is deviation between flavor eigenstates and mass eigenstates, neutrino

oscillation would appear. To measure the oscillation, experimentalist detected the

flavors of the neutrinos both near and far away from the detector. Roughly speaking,

the amplitude of initial state νa propagating to the final state νb is given by [7]

M(νa → νb) =
∑

k

V ∗
akVbk exp[−i(Ekt− |pk|L)]

≃
∑

k

V ∗
akVbk exp(−i

L

2.48m

∆m2
kj

E
) exp(−i(Ejt− |pj |L)) ,(2.29)

where we have use the approximation in the last step, with E and ∆m2
kj = m2

k −

m2
j the numbers for the energy of the propagating neutrinos and the mass square

difference of neutrino eigenstates in MeV and eV2, respectively. L is the length of
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propagation for neutrinos ,and |p| is the momentum of the travelling neutrinos. The

corresponding probability is then given by [7]

P (νa(νa) → νb(νb)) =
∑

j

|Vaj|2|Vbj|2

+2
∑

j>k

|VbjV ∗
ajVakV

∗
bk| cos(

∆m2
jkL

2E
∓ arg (VbjV

∗
ajVakV

∗
bk)) , (2.30)

where the “−” is for neutrino and “+” for antineutrino. From the obtained prob-

ability of νi → νj, the mixing angles and the mass square differences of neutrino

mass eigenstates can be extracted.

Up to now, there are three mixing angles observed in experiments. One is the

solar neutrino angle, which comes from the electron neutrino produced from sun.

SNO collaboration utilized heavy water as the target to detect the ratio of flux

of electron neutrino to that of other types of neutrinos, where the mixing angle is

sin2 2θℓ12 = 0.861+0.026
−0.022 [33], and the corresponding mass square difference is ∆m2

21 =

(7.59+0.20
−0.21)× 10−5eV2 [31]. Another mixing angle is the so-called atmospheric neu-

trino mixing angle, which is related to the disappearance of muon neutrino from

the cosmic ray. The corresponding mixing angle is given by sin2 2θℓ23 > 0.92 [34].

The mass square difference magnitude is |∆m2
32| = (2.43 ± 0.13) × 10−3eV2 [32],

although the sign of it remains unknown. The sign of ∆m2
32 leads to two differ-

ent scenario of neutrino mass spectrum. The normal hierarchy is the spectrum

m1 < m2 < m3; the inverted hierarchy is for m3 < m1 < m2. T2K collabo-

ration proposed the first direct result showing that the θℓ13 is non-zero [35]. Re-

cently Daya Bay collaboration announced a more accurate result for θℓ13, which is

sin2 2θℓ13 = 0.092± 0.016(stat) ± 0.005(sys) [36]. The above data of mixing angles

and phases are obtained from individual experiment results. Fig. 2.3 from Ref. [7, 37]

shows the current experimental results about possible ranges of mixing angles and

mass square difference.

The standard model, including electroweak theory and Kobayashi-Maskawa the-

ory, can explain most of the phenomena in our world. Almost every CP violating

processes known in the present can be explained. However, for the evolution of the
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Figure 2.3: The neutrino oscillation experiment results, shown by the allowed area

in ∆m2 − tan2 θ plane. Figure is captured from Ref. [7, 37].

universe, we can not explain why the number of baryons is so much larger than that

of antibaryons, which is also called the baryon asymmetry. From the observation we

know that the ratio of the baryon number density nB to the photon number density

nγ, is about nB/nγ ≈ 10−8[39]. For theoretical calculation we need the CP violation

to saturate the experimental results. However, the Kobayashi-Maskawa theory can

only provide nB/nγ ≈ 10−20 [38], with very high temperature. This implies that the

phase in CKM matrix might not be the only source of CP violation. It is well known

that the phase of the CKM matrix comes from the complex Yukawa couplings, but it

remains an open question on the explanation of the origin of the complex numbers.

The SM doesn’t tell us the origin of these complex numbers, and it could be solved

in an elegant way in the next chapter.

Another one is the explanation of light neutrino mass. One way to obtain the

massive neutrino is to add one or more right-handed neutrinos to the SM. The

Yukawa couplings with neutrinos should be very tiny, if the Majorana mass terms

are not allowed. But it is necessary to explain why the scale of Yukawa couplings

for charged leptons (. 10−3) and neutrinos (. 10−11) are so different. It turns out
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that seesaw mechanism can solve this problem, and we will focus on some specific

seesaw models which can be tested in the LHC.

It is also worthwhile to study the possibility of existence of the fourth generation,

although many of the corresponding coupling constants are constrained by many

experiments, both in CKM and PMNS matrices.
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Chapter 3

Spontaneous CP Violation and

Fermion Mixing Matrix Phases

In this chapter we will focus on a type of models, in which more than one Higgs

doublet is introduced. Each Higgs can have its own VEV. The main idea is that

there might be a relative phase between the VEVs of Higgs. Such an irreducible

phase can cause the CP violation. We call such a mechanism spontaneous CP

violation (SCPV), since it happens due to the spontaneous symmetry breaking. We

will briefly introduce the background of these models, and then proceed to the most

important topic in this chapter, which is to understand how to connect spontaneous

CP violating phase to CKM and PMNS matrices phases.

3.1 Spontaneous CP Violation

We discuss several models in this section. The simplest extension beyond SM

to include the spontaneous CP violation is the two Higgs doublet model. Another

one is the model built to exclude the flavor change neutral current and keep the

spontaneous CP violation, three Higgs doublet model. The last one is about the

multi-Higgs models with some global symmetry, to solve the strong CP problem.
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3.1.1 Two Higgs Doublet Model

The model with two Higgs doublets (2HDM) was first proposed by T. D. Lee in

1973 [40]. One of the special features of this model is that there could be a phase

different between the two Higgs doublets. Generally, we can write down the two

Higgs doublets with SM gauge group (1, 2,−1/2) as

φi = eiθiHi = eiθi







1√
2
(vi +Ri + iAi)

h−i






, i = 1, 2 , (3.1)

where R1,2 and A1,2 are real scalars. v1,2 and θ1,2 are the magnitudes and phases for

VEVs of φ1,2, respectively. The Higgs potential is then given by

V (H1, H2) = −m2
1H

†
1H1 −m2

2H
†
2H2 + λ1(H

†
1H1)

2 + λ2(H
†
2H2)

2

+λs(H
†
1H1)(H

†
2H2) + λt(H

†
1H2)(H

†
2H1) +

1

2
[λ̃12(H

†
1H2)(H

†
1H2)e

i2δ

+λ̃11(H
†
1H2)(H

†
1H1)e

iδ + λ̃22(H
†
1H2)(H

†
2H2)e

iδ + h.c.] , (3.2)

where δ = θ2 − θ1 is the only phase appear in the Higgs potential. m2
1, m

2
2, λ1,2,s,t

are automatically real, and we assign λ̃12,11,22 to be real, since we hope to construct

this model to be CP conserving at the beginning. Also note that the term H†
1H2e

iδ

and its hermitian conjugate can be eliminated by appropriate rotation between φ1

and φ2. The values of v1,2 and δ should make the ground state achieve the minimal

values in the potential. One of the condition required is to differentiate the potential

with respect to δ at the ground state, which leads to

sin δ(cos δ +
λ̃11v

2
1 + λ̃22v

2
2

4λ̃12v1v2
) = 0 . (3.3)

For general choices of λ’s, the minimal can occur at cos δ 6= ±1, which means that δ

is nonzero. After symmetry breaking δ will appear in the potential, which violates

the CP symmetry. Such mechanism is called the spontaneous CP violation.

The 2HDM is more complicated than SM, since there are five physical Higgs

existing under spontaneous symmetry breaking, with other three components eaten
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by gauge bosons W± and Z0. The general form of Yukawa coupling is given by

L = QL(Yu1φ1 + Yu2φ2)UR +QL(Yd1φ̃1 + Yd2φ̃2)DR

+LL(Yl1φ̃1 + Yl2φ̃2)lR + h.c. , (3.4)

where Yu1,2, Yd1,2, and Yl1,2 are real coupling matrices in the beginning. After sym-

metry breaking, the complex phase δ will appear in the Yukawa coupling, and the

complex CKM matrix can be obtained. Also, the two coupling matrices coupled to

the same chiral fermion can not be diagonalized simultaneously in general. The tree

level flavor changing neutral current (FCNC) would appear for quarks and leptons

sectors, which is difficult to be determined, and also constrained stringently by a lot

of experiments.

The common methods to simplify the Yukawa coupling is to introduce a discrete

symmetry on Higgs and chiral fermions. For example, The model is presumed to

be invariant under the transformation H1 → H1, H2 → −H2. With some choice of

such transformation on fermions, it would prohibit the Yukawa coupling in which two

Higgs doublets are coupled to the same chiral fermion. Therefore, FCNC vanishes

successfully in the model, which is also regarded as the natural flavor conservation.

However, imposing this discrete symmetry will sacrifice the spontaneous CP viola-

tion of this model. The reason is that the discrete symmetry prohibits the terms

proportional to λ̃11 and λ̃22 in Eq. (3.2), and the phases θ1,2 in Yukawa coupling

can be also absorbed by chiral fermions. Then 2δ is the only phase appearing in

the Higgs potential, but the minimal condition in Eq. (3.3) will result in sin 2δ = 0.

Finally the CP is conserved in the model. In summary, if one hope to build a model

with both spontaneous CP violation and natural flavor conservation, a model with

more than two Higgs doublets is required.

3.1.2 Three Higgs Doublet Model

The three Higgs doublet model (3HDM) was first proposed by Weinberg in

1976 [41] in order to generate a natural flavor conserving model with also the sponta-
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neous CP violation. The three Higgs doublets with the gauge group representation

(1, 2,−1/2) are given by

φk = eiθkHk = eiθk







1√
2
(vk +Rk + iAk)

H−
k






, k = 1, 2, 3, (3.5)

where all variables in the above formula are the same as that in 2HDM discussed

previously, except for the three copies of Higgs particles and VEVs. Ref. [42] shows

that for arbitrary numbers of quarks it is possible to build a natural flavor conserved

model by imposing a discrete symmetry, which is given by

D1 : φ1 → φ1; φ2 → −φ2; φ3 → φ3; QL → QL; DR → −DR; UR → UR ,

D2 : φ1 → φ1; φ2 → φ2; φ3 → −φ3; QL → QL; DR → DR; UR → UR . (3.6)

The Higgs potential satisfying the discrete symmetry given above is written as [43]

V = − m2
1H

†
1H1 −m2

2H
†
2H2 −m2

3H
†
3H3 + λ1(H

†
1H1)

2 + λ2(H
†
2H2)

2 + λ3(H
†
3H3)

2

+ λs12(H
†
1H1)(H

†
2H2) + λs23(H

†
2H2)(H

†
3H3) + λs31(H

†
3H3)(H

†
1H1)

+ λt12(H
†
1H2)(H

†
2H1) + λt23(H

†
2H3)(H

†
3H2) + λt31(H

†
3H1)(H

†
1H3)

+
1

2
[λ̃12(H

†
1H2)

2ei2δ12 + λ̃23(H
†
2H3)

2ei2δ23 + λ̃31(H
†
3H1)

2ei2(δ12+δ23) + h.c.] , (3.7)

where all the coupling constants are real in the model. δ12 ≡ θ2−θ1 and δ23 ≡ θ3−θ2
are regarded as the two independent phases in the potential. Differentiating V with

respect to δ12 and δ23, we have [43]

λ̃12
v23

sin 2δ12 =
λ̃23
v21

sin 2δ23 = − λ̃13
v22

sin 2(δ12 + δ23) . (3.8)

Because nonzero δ12 and δ23 are allowed, the spontaneous CP violation exists and

comes from the mixing of neutral and charged Higgs mass matrices [43].

Another important feature of this model is the natural flavor conservation in

Yukawa couplings, which is due to the imposing of the discrete symmetry. The

Yukawa coupling in this model is given by

LY = QLYuφ1UR +QLYdφ̃2DR + LLYlφ̃3ER + h.c. , (3.9)
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where Yu, Yd, and Yl are real matrices. The phases of VEVs can be absorbed into

chiral components of fermions, and so the coupling matrices keep real, which will

lead to a real CKM matrix. The Yukawa coupling is then given as

L = − 1

v1
ULM̂uUR(R

0
1 + iA1)−

1

v2
DLM̂dDR(R

0
2 + iA2)−

1

v2
LLM̂llR(R

0
3 + iA3)

−
√
2

v1
DLV

†
CKMM̂uURH

−
1 +

√
2

v2
ULVCKMM̂dDRH

+
2 +

√
2

v3
LLVCKMM̂llRH

+
3 + h.c. ,

(3.10)

There is no FCNC in the above formula.

As we know the CP violation relevant to CKM matrix has been well confirmed

by the present experiments, as given in Section 2.2.2. The Weinberg model predicts

| sin 2β| < 0.05[44, 45], with sin 2β being the analogous quantity to that in CKM

matrix when discussing B → J/ψK. This quantity has been ruled out by experi-

mental data sin β shown previously. The present experiment result also provides an

upper bound on neutron electric dipole moment (nEDM) |dn| < 0.29 × 10−25e cm

[47]. This result has ruled out the 3HDM as the source of CP violation, which pre-

dicts |dn| ≈ 10−23e cm [46]. Other evidences to rule out this model were proposed

by Ref. [44, 45].

3.1.3 Peccei-Quinn Symmetry

The SM Lagrangian has been shown in Eq. (2.4). Besides these terms, however,

a surface term with the non-abelian gauge bosons involving, (θg23/32π
2)GaµνG̃a

µν ,

with G̃a
µν = 1

2
ǫµνρσG

aρσ and θ as a free parameter, should also be considered. This

term violates P and CP symmetries, thus one often names it as strong CP violating

term. If one apply an axial U(1) transformation to a quark q, the corresponding

axial current is j5µ = q̄γµγ5q, which is not conserved due to ∂µj
5µ = 2mqiq̄γ5q, with

the quark mass mq. The famous Adler-Bell-Jackiw anomaly [54] implies that this

situation still holds even if quarks are massless, which reads

∂µj
5µ =

g23
16π2

Ga
µνG̃

µνa . (3.11)
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This will modify the strong CP violating term in the SM to be

Lstrong = θ̄
g23

16π2
Ga

µνG̃
µνa , with θ̄ = θ − arg(det(Mu))− arg(det(Md)) . (3.12)

Thus the strength of the strong CP interaction is characterized by θ̄. The inter-

action should contribute to neutron electric dipole moment (nEDM). The current

experimental result gives an upper bound which is still larger in several order than

the contribution from complex CKM elements about |dn| . 10−31e cm [50, 51, 52].

It will result in a very stringent constraint on θ̄ with | θ̄| . 10−10 [9], which is a very

tiny and unnatural coupling. This is the strong CP problem. The θ̄ terms can also

be induced at loop diagram related to complex quark mass, in SM the contribution

is very small [53]. However, in multi-Higgs models the mixing between Higgs bosons

would generate a very large correction to θ̄, of order 10−3 [49, 48]. Thus it is required

to impose some other mechanism in order to solve the problem.

There is a elegant way to solve the problem, which is first proposed by Peccei and

Quinn [55]. Take the two Higgs model as an example. By imposing a global axial

symmetry U(1)PQ to the 2HDM, The U(1)PQ transformation is given as follows

QL → e−iαQL , UR → eiαUR , DR → eiαDR ,

H1 → ei2αH1 , H2 → e−i2αH2 , (3.13)

which corresponds to the chiral transformation for quarks. It turns out that a natural

flavor conserving 2HDM satisfies this U(1)PQ symmetry, except for the strong CP

violating term. It means that we can always reduce the strong CP terms with the

form of other terms kept in the Lagrangian. In other words, the change from chiral

transformation of quarks can be absorbed into Higgs sector. Indeed 2HDM is also

the minimal extension of SM to have the U(1)PQ symmetry. After spontaneous

symmetry breaking, U(1)PQ is broken. A Goldstone boson with very light mass

arises, which is the Peccei-Quinn-Weinberg-Wilczek (PQWW) axion a [55, 68]. From

the detection of a→ γγ, a→ e+e− and other detection from the universe, the visible

axion has been ruled out [69]. Ref. [57] proposed that in order to build a model with

invisible axion, the original PQ model needs to be extended.
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3.2 SCPV and CKM matrix

In Section 3.1 we have briefly introduced the spontaneous CP violation in several

multi-Higgs models. But in general these models can not explain the CP violation

and FCNC processes very well, which have been established by experiments. In the

following we will build some models in which the phase of CKM matrix is connected

from spontaneous CP violating phase.

3.2.1 Identifying CKM matrix phase with SCPV matrix

phase

We consider a sort of models in which flavor changing neutral current appears in

Yukawa coupling with UR or DR involving. At least two Higgs doublets are required

in order to construct such Yukawa coupling. We list two type of models as below

Model(a) : LY = QL(Yu1φ1 + Yu2φ2)UR +QLYd3φ̃3DR + h.c. , (3.14)

Model(b) : LY = QLYu3φ3UR +QL(Yd1φ̃1 + Yd2φ̃2)DR + h.c. , (3.15)

where φ’s are Higgs doublets

φk = eiθk







1√
2
(vk +Rk + iAk)

h−k






, for k = 1, 2, .. , (3.16)

and Y ’s are real 3 × 3 coupling matrices. In Model (a), two Higgs are coupled to

UR and the other one is coupled to DR. The situation is opposite for Model (b), in

which two Higgs coupling to DR, and only one couple to UR.

After spontaneous symmetry breaking the quark mass matrices arise, which are

given in the form

Model(a) : Lm = −UL(Mu1e
iθ1 +Mu2e

iθ2)UR −DLMd3e
−iθ3DR + h.c. ,

Model(b) : Lm = −ULMu3e
iθ3UR −DL(Md1e

−iθ1 +Md2e
−iθ2)DR + h.c. (3.17)

where Mui = viYui/
√
2. In Model (a), we can absorb the phase θ1 to UR and −θ3 to

DR. Similarly, in Model (b) the phases −θ1 and θ3 can be absorbed to DR and UR,

27



respectively. Then Eq. (3.17) can be expressed as

Lm = −ULMuUR −DLMdDR + h.c. , where for

Model(a) : Mu =Mu1 +Mu2e
iδ,Md =Md3 ;

Model(b) : Mu =Mu3 ,Md =Md1 +Md2e
−iδ .

The mass matrixMd in Model (a) andMu in Model (b) can be diagonalized directly

by the following transformation

Model(a) : DL → V d†
L DL; DR → V d†

R DR ,

Model(b) : UL → V u†
L UL; UR → V u†

R UR, (3.18)

with also UL → V d†
L UL in Model (a) and DL → V u†

L DL in Model (b). We can regard

this type of quark states as the the flavor eigenstates, with the charged current

weak interaction in quark sector in diagonal form. The mass matrice of the flavor

eigenstates can be diagonalized by the relations

Model (a) : M̂u = (V u
L V

d†
L )M ′

uV
u†
R , with M ′

u = V d
LMu ;

Model (b) : M̂d = (V d
LV

u†
L )M ′

dV
d†
R , with M ′

d = V u
LMd .

We will focus on the special cases that V u
R in Model (a) and V d

R in Model (b) are real.

Also note that V u
L V

d†
L is just the CKM matrix, up to the phases redefinition in both

sides of it. We will substitute V u
L V

d†
L by different CKM matrix parametrizations,

and they will lead to completely different models in the following.

At first we introduce the modified standard parametrization (M-parametrization)

matrix VM, which is given by

VM = diag(e−iδ13 , 1, 1)VS

=













c12c13e
iδ13 s12c13e

iδ13 s13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13

s12s23 − c12c23s13e
iδ13 −c12s23 − s12c23s13e

iδ13 c23c13













, (3.19)

where VS is the standard parametrization shown in Eq. (2.21). The above parametriza-
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tion can be expanded by two real matrices V r
M and V p

M as follows

V r
M =











0 0 s13

−s12c23 c12c23 s23c13

s12s23 −c12s23 c23c13











, V p
M =











c12c13 s12c13 0

−c12s23s13 −s12s23s13 0

−c12c23s13 −s12c23s13 0











;

VM = V r
M + V p

Me
iδ13 , and V r

MV
p†
M = V r†

M V p
M = 0 . (3.20)

If we take V u
L V

d†
L = VM, then we get

Model (a) : M ′
uV

u†
R = V †

MM̂u ; (3.21)

Model (b) : M ′
dV

d†
R = VMM̂d . (3.22)

At this step we will introduce a crucial assumption to connect the identification

of spontaneous CP violating phase δ and CKM matrix phase δ13, which means

δ = −δ13 for both Model(a) and (b), with δ13 = (69 ± 4)◦ from CKM parameters

fitting result [6]. The mass matrices for flavor basis M ′
u(1,2) = V d

LMu(1,2) is then

obtained by

Model(a) : M ′
u1V

u†
R = V r†

M M̂u , M
′
u2V

u†
R = V p†

M M̂u ,

Model(b) : M ′
d1V

d†
R = V r

MM̂d , M
′
d2V

d†
R = V p

MM̂d . (3.23)

The mass matrices under mass basis are given by

Model(a) : M ′′
u1 = VMM

′
u1V

u†
R = V r

MV
r†
M M̂u ,

M ′′
u2e

iδ = VMM
′
u2V

u†
R = V p

MV
p†
M M̂u ,

Model(b) : M ′′
d1 = V †

MM
′
d1V

d†
R = V r†

M V r
MM̂d ,

M ′′
d2e

−iδ = V †
MM

′
d2V

d†
R = V †p

M V p
MM̂d . (3.24)

Also note that the combinations V r
MV

r†
M and V p

MV
p†
M are given by

V p
MV

p†
M =













c213 −c13s23s13 −c13c23s13

−c13s23s13 s223s
2
13 s23c23s

2
13

−c13c23s13 s23c23s
2
13 c223s

2
13













, V r
MV

r†
M = 1− V p

MV
p†
M , (3.25)

V p†
M V p

M =













c212 c12s12 0

c12s12 s212 0

0 0 0













, V r†
M V r

M = 1− V p†
M V p

M , (3.26)
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which depend only on the mixing angles in CKM matrix.

This kind of model is parametrization dependent. Different parametrization of

V u
L V

d†
L will lead to different model. We can also take the original Kobayashi−Maskawa

parametrization as the choice, which is given by [14],

VKM =













c1 −s1c3 −s1s3
s1c2 c1c2c3 − s2s3e

iδKM c1c2s3 + s2c3e
iδKM

s1s2 c1s2c3 + c2s3e
iδKM c1s2s3 − c2c3e

iδKM













, (3.27)

where s1 = sin θ1, c1 = cos θ1, ..., and so on. Following the same steps which we have

done for modified standard parametrization VM, also the identification δ = −δKM,

with δKM = (91 ± 4)◦ [6], the final mass matrices in the mass basis is obtained in

terms of V r
KM and V p

KM, which are the analogy of V r
KM and V p

M in VM parametrization.

The explicit form is given by

V p
KMV

p†
KM =













0 0 0

0 s22 −s2c2
0 −s2c2 c22













, V r
KMV

r†
KM = 1− V p

KMV
p†
KM . (3.28)

V p†
KMV

p
KM =













0 0 0

0 s23 −s3c3

0 −s3c3 c23













, V r†
KMV

r
KM = 1− V p†

KMV
p
KM . (3.29)

We have show that it is possible to make the spontaneous CP violating phase be

identified with CKM matrix phase. In the next section, we will build a specific

model to realize the idea.

3.2.2 Higgs potential and mass matrices

In section 3.1.3 we have understood that the loop correction in multi-Higgs mod-

els will enlarge the θ in general. The model with spontaneous CP violation as the

sole source of CP violation would be ruled out if there is no mechanism to suppress

θ. The supplementing of the PQ symmetry will solve the problem. In two Higgs

doublet model, however, the PQ symmetry will exclude some of the crucial terms
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in Higgs potential, which will lead to the vanishing of spontaneous CP violating

phase. So the model with more than two Higgs doublets is required [56]. To real-

ize our idea in previous section, we need at least three Higgs doublets. Also note

that, the present experimental results only allow the possibility of invisible axion,

corresponding with a singlet with very large VEV [57]. In summary, we will take

the three Higgs doublets and one Higgs singlet to build our model.

In our model, three Higgs doublets φk : (1, 2,−1/2) with k = 1 ∼ 3 and one

Higgs singlet S̃ : (1, 1, 0) are given by

φk = eiθkHk = eiθk







1√
2
(vk +Rk + iAk)

h−k






,

S̃ = eiθsS = eiθs
1√
2
(vs +Rs + iAs) . (3.30)

where the definition for three Higgs doublets is the same as that in Section 3.1.2.

For the Higgs singlet, vs and θs are the magnitude and phase of the VEV, and Rs

and As are real scalars. Note that as mentioned in the Section 3.1.3, to get an

invisible axion a very large vs is required. Since we would like to build a model

with PQ symmetry, assigning the PQ charge for each particle is required. The PQ

charges for the Higgs doublets and singlet are given by

φ1 : +1, φ2 : +1, φ3 : −1, S̃ : +2 . (3.31)

The above assignment ensures that φ1 and φ2 coupling to the same chiral fermions

in the Yukawa coupling. The assignment is different for Model (a) and Model (b),

which is given by

Model (a): QL : 0, UR : −1, DR : −1 , (3.32)

Model (b): QL : 0, UR : +1, DR : +1 . (3.33)
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The Higgs potential under PQ symmetry is then written as

V = − m2
1H

†
1H1 −m2

2H
†
2H2 −m2

3H
†
3H3 −m2

12(H
†
1H2e

iδ + h.c.)

− m2
sS

†S + λ1(H
†
1H1)

2 + λ2(H
†
2H2)

2 + λt(H
†
3H3)

2 + λs(S
†S)2

+ λ3(H
†
1H1)(H

†
2H2) + λ′3(H

†
1H1)(H

†
3H3) + λ′′3(H

†
2H2)(H

†
3H3)

+ λ4(H
†
1H2)(H

†
2H1) + λ′4(H

†
1H3)(H

†
3H1) + λ′′4(H

†
2H3)(H

†
3H2)

+
1

2
λ5((H

†
1H2)

2ei2δ + h.c.) + λ6(H
†
1H1)(H

†
1H2e

iδ + h.c.)

+ λ7(H
†
2H2)(H

†
1H2e

iδ + h.c.) + λ8(H
†
3H3)(H

†
1H2e

iδ + h.c.)

+ d12(H
†
1H2e

iδ + h.c.)S†S + λ′8((H
†
1H3)(H

†
3H2)e

iδ + h.c.)

+ f1(H
†
1H1)S

†S + f2(H
†
2H2)S

†S + f3(H
†
3H3)S

†S

+ f13(H
†
1H3Se

i(δs+δ) + h.c.) + f23(H
†
1H3Se

iδs + h.c.) , (3.34)

where the phases appearing in Higgs potential are δ, which is same as given in

Section 3.2.1, and δs ≡ θ3 + θs − θ2. All of the coupling constants in Higgs potential

are real to reveal the fact that our model is CP conserving before spontaneous CP

violation. We will investigate the allowed values of these phases. By differentiating

with respect to δs for minimization of the potential, we get the relation

f13v1v3vs sin(δs + δ) + f23v2v3vs sin δs = 0 . (3.35)

In the above formula the nonzero δ and δs are allowed, and δ is the only source

to generate CP violation in the model. Note that since a large separation for the

magnitudes of VEVs between Higgs doublets and Higgs singlet, the fine tuning for

parameters of Higgs potential is required in the model and other invisible axion

models.

The next step is to extract the Goldstone boson modes related to gauge boson

W±, Z0and the PQ symmetry breaking. These Goldstone states are given by

h−w =
1

v
(v1h

−
1 + v2h

−
2 + v3h

−
3 ) ,

hz =
1

v
(v1A1 + v2A2 + v3A3) ,

a = (−v1v23A1 − v2v
2
3A2 + v212v3A3 − v2vsAs)/Na , (3.36)
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where v2 = v21 + v22 + v23. hw, hz are the Goldstone bosons eaten by W± and Z0,

respectively. a is the axion, with Na = v
√

v212v
2
3 + v2v2s the normalization factor, in

which v212 = v21+v
2
2. To extract the Goldstone boson modes and to transfer the FCNC

coupling to only one Higgs boson, the transformation matrices for pseudoscalar and

charged components are shown as



















A1

A2

A3

As



















=



















v2/v12 −v1v3vs/NA v1/v −v1v23/Na

−v1/v12 −v2v3vs/NA v2/v −v2v23/Na

0 v212vs/NA v3/v v212v3/Na

0 v212v3/NA 0 −v2vs/Na





































a1

a2

hz

a



















,













h−1

h−2

h−3













=













v2/v12 v1v3/vv12 v1/v

−v1/v12 v2v3/vv12 v2/v

0 −v12/v v3/v

























H−
1

H−
2

h−w













, (3.37)

with NA =
√

v212(v
2
12v

2
3 + v2sv

2) the normalization constant of second column in

pseudoscalar transformation matrix. In the limit vs ≫ v1,2,3 we have a good ap-

proximation Na = v2vs and NA = v12vvs. For the neutral scalar components

(R1, R2, R3, Rs)
T , we simply implement the same transformation as that in pseu-

doscalar transformation matrix to get a simpler form in Yukawa coupling, with the

neutral scalar state (H0
1 , H

0
2 , H

0
3 , H

0
4 )

T taken. Note that we don’t mix the scalar

and pseudoscalar components to get the mass eigenstates, so that when we study

some realistic problem we need to consider the mixing between different neutral

components.

3.2.3 Some Implication

Since the mass matrices for Higgs sector in our model is already known in the

rotated basis given in last section, The Yukawa interaction can be derived directly,
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which is given by

L(a)
Y = UL[

v1
v12v2

− V rV r† v12
v1v2

]M̂uUR(H
0
1 + ia1)

+ULM̂uUR[
v3
v12v

(H0
2 + ia2)−

1

v
H0

3 +
v23
v2vs

(H0
4 + ia)]

−DLM̂uDR[
v12
v3v

(H0
2 − ia2) +

1

v
H0

3 +
v212
v2vs

(H0
4 − ia)]

+
√
2DLV

†
CKM[

v1
v2v12

− V rV r† v12
v1v2

]M̂uURH
−
1

−
√
2
v3
v12v

DLV
†
CKMM̂uURH

−
2 −

√
2
v12
vv3

ULVCKMM̂dDRH
+
2 + h.c. ,

L(b)
Y = DL[

v1
v12v2

− V r†V r v12
v1v2

]M̂dDR(H
0
1 − ia1)

+DLM̂dDR[
v3
v12v

(H0
2 − ia2)−

1

v
H0

3 +
v23
v2vs

(H0
4 − ia)]

−ULM̂uUR[
v12
v3v

(H0
2 + ia2) +

1

v
H0

3 +
v212
v2vs

(H0
4 + ia)]

−
√
2ULVCKM[

v1
v2v12

− V r†V r v12
v1v2

]M̂dDRH
+
1

+
√
2
v3
v12v

ULVCKMM̂dDRH
+
2 +

√
2
v12
vv3

DLV
†
CKMM̂uURH

−
2 + h.c. , (3.38)

where V r can be V r
M or V r

KM, depends on which parametrization of CKM matrix we

take. The couplings of H0
4 and a are suppressed by 1/vs. In both model only H0

1

and a1 have tree level FCNC coupling due to our choice of Higgs states. The FCNC

couplings are associated with V rV r† in Model (a) and V r†V r in Model (b).

Neutral meson mixing has been observed in K0 − K̄0, B0
d,s − B̄0

d,s, and D
0 − D̄0

system [7]. In the SM the neutral meson mixing is generated by box diagrams with

W boson exchange. In this model tree level FCNC with H0
1 exchange, a1 exchange,

and the mixing of H0
1 and a1 in the propagator should be also taken into account.

The Yukawa coupling with H0
1 and a1 related to the neutral meson mixing is given

in the form

L = −q̄i(aij + bijγ5)qjH
0
1 + iq̄i(bij + aijγ5)qja1 , (3.39)

where the tree level FCNC couplings aij and bij are related to what we show in

Eq. (3.38). With the equation of motion q̄iγ5qj = (pi − pj)
µq̄iγµγ5qj/(mi +mj), the
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mixing element of mass matrix of neutral meson system is given by

M12 =
1

m2
H0

1

[(b2ij −
1

12
(a2ij + b2ij))

f 2
Pm

3
P

(mi +mj)2
+

1

12
(b2ij − a2ij)f

2
PmP ]

− 1

m2
a1

[(a2ij −
1

12
(a2ij + b2ij))

f 2
Pm

3
P

(mi +mj)2
+

1

12
(a2ij − b2ij)f

2
PmP ]

+
i2m2

H0
1
a1

m2
H0

1

m2
a1

5aijbij
6

f 2
Pm

3
P

(mi +mj)2
, (3.40)

where fP is the meson decay constant defined from 〈0|q̄iγµγ5qj |P 〉 = ifPp
µ
P . The

vacuum saturation approximation is also applied to Eq. (3.40) . The meson decay

can provide some information about the mass of H0
1 . For the numerical analysis,

we use the CKM mixing angles s12 = 0.2254, s23 = 0.041, s13 = 0.0035, sin δ13 =

0.94 in M-parametrization (equivalently s1 = 0.2254, s2 = 0.039, s3 = 0.0156,

sin δKM = 0.9999 in KM-parametrization), which are obtained from central values of

Wolfenstein parameters given in Eq. (2.27). We take the values of decay constants

fK = 156MeV, fD = 201MeV, and fBs
= 260MeV from Ref. [59]. The light quark

masses mu(1GeV) = 3.1MeV, md(1GeV) = 6.5MeV, ms(1GeV) = 129MeV and

the heavy quark masses mc(mc) = 1.275GeV, mb(mb) = 4.18GeV, mt = 173.5GeV

are given in Ref. [6].

The structure of flavor changing coupling for different CKM matrix parametriza-

tion are very different. For example, in Model (a-M), the modified standard parametriza-

tion in Model (a), there is tree level D0 − D̄0 mixing, but no contribution to K0,

B0
d, and B

0
s mixing. We will discuss the numerical analysis of neutral meson mixing

for M- and KM- parametrization in Model (a) and Model (b) as follows.

Model (a-M): It can contribute to D0−D0 mixing. The experiments by BaBar

and Belle [60] provide that x = ∆mD/ΓD = (5.5 ± 2.2) × 10−3 at 68% C.L. [61],

which can be used to compare with the new contribution

x = 5.7× 10−5 f 2
Dm

3
D

(sin 2β)2v212ΓD

(
1

m2
H0

1

− 1

m2
a1

) , (3.41)

with tanβ ≡ (v1/v2). New physics may contribute significantly [61]. If one hope

the Higgs mass of order hundred GeV, with the assumption that one of v1 and v2 is

large, around 240 GeV, then sin β ∼ 0.05, which indicates that the magnitudes of
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v1 and v2 are different by forty times. In contrast, the tree level contribution with

all VEVs of the same order of magnitudes does not produce enough x to saturate

the measured value.

Model (b-M) The only nonzero flavor change neutral current comes from s−

d − H0
1 (a1) interaction, which contributes to the neutral K meson mixing. The

related mass difference from tree level interaction is given by

∆mK

mK

= 4.4× 10−12 1

sin2 2βv212

(

1

m2
H0

1

− 1

m2
a1

)

(100GeV)4 . (3.42)

The current experimental result gives ∆mK/mK = 7.000 × 10−15 [7]. It constrains

the mass of Higgs stringently. The scale of lightest Higgs mass between H0
1 or a1

should be larger than TeV scale.

Model (b-KM) In this model the FCNC only occurs in b− s−H0
1 (a1) interac-

tion. It leads to the Bs − Bs mixing which is shown as

∆mBs

mBs

= 7.4× 10−12 1

sin2 2βv212

(

1

m2
H0

1

− 1

m2
a1

)

(100GeV)4 . (3.43)

Comparing with the experimental result ∆mBs
/mBs

= 2.2 × 10−12 for ∆mBs
=

17.77ps−1 [62], with the knowledge that only 10% of the experimental result can

comes from contribution beyond the SM [63], the lightest one between H0
1 and a1

should be larger than 300GeV if we take v1 = v2 = v3.

In the next step we study the neutron EDM (nEDM) in our model after imposing

the constraints from meson and anti-meson mixing discussed in the above. It has

been known that the prediction of nEDM in the SM is very small when comparing

with presented experimental upper bound. The one loop contribution for quark

EDM is usually proportional to light quarks masses to the third power for a diagram

in which the internal quark is the same as the external quark. For heavy quark in

the loop, its coupling is too small in the model. In our model the related operators

for quark EDM are given by [64, 65]

Oγ
q = −dq

2
iq̄σµνγ5F

µνq , OC
q = −fq

2
igsq̄σµνγ5G

µνq ,

OC
g = −1

6
CfabcG

a
µνG

b
µαG̃

c
να , (3.44)
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where dq, fq and C come from two loop contribution dominantly in most of the

multi-Higgs models [64, 65]. They are usually given [64, 65]

dq =
eαemQq

24π3
mqG(q) , fq =

αs

64π3
mqG(q) , C =

1

8π
H(g) , (3.45)

where the function G(q) and H(q) are given by

G(q) =

[(

f
( m2

t

m2
H0

l

)

− f
( m2

t

m2
ak

)

)

ImZ lk
tq +

(

g
( m2

t

m2
H0

l

)

− g
( m2

t

m2
ak

)

)

ImZ lk
qt

]

;

H(g) =

(

h
( m2

t

m2
H0

l

)

− h
( m2

t

m2
ak

)

)

ImZ lk
tt , (3.46)

where ImZ lk
ij = 2aliia

k
jjλlk/mimj, and λlk = m2

H0
l
ak
/(m2

H0
l

−m2
a0
k

) is the mixing factor

in the loop. The functions f , g, and h defined as

f(z) =
z

2

∫ 1

0

dx
1− 2x(1− x)

x(1− x)− z
ln
x(1− x)

z
,

g(z) =
z

2

∫ 1

0

dx
1

x(1− x)− z
ln
x(1 − x)

z
,

h(z) =
z2

2

∫ 1

0

dx

∫ 1

0

du
u3x3(1− x)

[zx(1− ux) + (1− u)(1− x)]2
. (3.47)

The valence quark model is usually used to associate the neutron EDM with quark

EDM. It provides that [50, 51, 52]

dγn = ηd

[

4

3
dd −

1

3
du

]

Λ

, dCn = eηf

[

4

9
fd +

2

9
fu

]

Λ

, dn ≈ eM

4π
ξC , (3.48)

where Λ is the scale for the hadrons; dn contributed from gluon color EDM is esti-

mated by naive dimensional analysis (NDA). M = 1190MeV is the chiral breaking

scale and ηd, ηf , and ξ are the factor coming from the renormalization group evolu-

tion [66, 67]

ηd =

(

αs(mZ)

αs(mb)

)16/23(αs(mb)

αs(mc)

)16/25(αs(mc)

αs(Λ)

)16/27

≈ 0.167 ,

ηf =

(

αs(mZ)

αs(mb)

)14/23(αs(mb)

αs(mc)

)14/25(αs(mc)

αs(Λ)

)14/27αs(mZ)

αs(Λ)
≈ 0.0118 ,

ξ =

(

g(Λ)

4π

)3(αs(mb)

αs(mt)

)−54/23(αs(mc)

αs(mb)

)−54/25( αs(Λ)

αs(mc)

)−54/27

≈ 1.3× 10−4 .

(3.49)

Model (a-M): the two loop contribution to nEDM due to the Higgs bosons ex-

change in the loop are proportional to the mixing factor λlk(f, g, h). These factor

37



will be taken to be approximately equal to estimate the contribution from different

Higgs exchanges.

In this model we will take the parameters tan β = 40, v12 = 240GeV, which

has been used in D0 − D0 mixing previously. Then the dominant contribution to

neutron EDM comes from the mixing of H0
3 and a1, which is given by

dn ≈ −2× 10−25
m2

H0
3
a1

m2
H0

3

−m2
a1

e cm . (3.50)

For another case with v1 = v2 = v3, and ma1 ≈ 100GeV. If H0
3 − a1 mixing is larger

than other mixing, then we have

dn ≈ 9× 10−26
m2

H0
3
a1

m2
H0

3

−m2
a1

e cm . (3.51)

For both cases the dn can be close to the current upper bound.

Model (b-M): in this case H0
1 and a1 do not couple to t̄t, so the two loop contri-

bution to the quark EDM and the quark and gluon color EDM from the H0
1 and a1

are small. The contributions to the neutron EDM are about the same from the H0
1 ,

a2, and H
0
2,3, a1 exchange, with different mixing factors. Explicitly as an example,

for the case H0
1 and a2 exchange, we take the Higgs mass mH0

1
to be around 1TeV,

which is obtained from K0 −K0 mixing terms. It leads to

dn ≈ −8× 10−27
m2

H0
1
a2

m2
H0

1

−m2
a2

e cm . (3.52)

If m2
H0

1
,a2

is not too much smaller than m2
H0

2
,a1

and m2
H0

3
,a1
, the neutron EDM can be

close to the experimental upper bound.

Model (a-KM): We just take v1 = v2 = v3 in this model, and for Higgs mass it

can be around 100GeV since there is no constraint on it from meson mixing. The

nEDM contribution coming from H0
1 − a2 mixing is given by

dn ≈ 7× 10−26
m2

H0
1
a2

m2
H0

1

−m2
a2

e cm . (3.53)

Model (b-KM): As in the M-parametrization case, the contributions from the H0
1

and a1 exchange are small. With the parameters v1 = v2 = v3 and mH0
1
≈ 100GeV
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from Bs −Bs mixing, the nEDM contribution coming from H0
1 − a2 mixing is given

by

dn ≈ 6× 10−26
m2

H0
1
a2

m2
H0

1

−m2
a2

e cm . (3.54)

All the results for neutron EDM given in the above are close to the experimental

upper bound in the present.

In summary, with the fixed Yukawa couplings in our model, we can constrain the

Higgs mass mH0
1
or ma1 from different type of neutral meson mixing. The neutron

EDM in our model can also be close to the current experiment upper bounds, with

the Higgs mass constrained from the neutral meson mixing.

We have proposed a model that the CP violating phase in the CKM mixing

matrix be the same as that causing spontaneous CP violation in the Higgs potential.

Specific multi-Higgs doublet models have been constructed to realize this idea. In

our previous discussions, we have not considered Yukawa coupling for the lepton

sector. An analogous study will be carried out in the next section.

3.3 SCPV and PMNS matrix

In this section, we will apply the idea in the previous section for quark sector

to the lepton sector. Also in order to have non-zero neutrino masses in the model,

we need to introduce the right-handed neutrinos. The main different feature for

the lepton sector is that the Majorana mass term of the right-handed neutrino is

allowed. It will make the progress more difficult since we need to apply the seesaw

mechanism to relate the Dirac mass with heavy and light neutrino masses. We will

take the models built for quark sector in the last section, and extend them to the

lepton sector, for both Model (a) and Model (b).
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3.3.1 Identifying PMNS matrix phase with SCPV phase

First of all, we assign the PQ charges of leptons in two types of model for quarks

discussed previously as follows

Model (a): LL(0), lR(−1), NR(−1) ,

Model (b): LL(0), lR(+1), NR(+1) . (3.55)

The Yukawa couplings satisfying the above PQ symmetry are given by

Model(a) : L = LL(Y1H1 + Y2H2e
iδ)NR + LLY3H̃3lR + (NR)cYsSNR + h.c. ;

Model(b) : L = LLY3H̃3NR + LL(Y1H̃1 + Y2H̃2e
−iδ)lR + (NR)cYsS

†NR + h.c. ,

(3.56)

where Y1,2,3 are 3× 3 real matrices, and Ys can be chosen to be real in general. For

the lepton sector the Higgs singlet S is also coupled to the right-handed neutrinos.

After spontaneous symmetry breaking, the relevant lepton mass terms are shown as

L = −l̄LMllR − ν̄LMDNR − 1

2
(NR)cMRNR + h.c. ; (3.57)

with Ml, MD, and MR defined by

Model (a): Ml = − 1√
2
Y3v3, MD = − 1√

2
(Y1v1 + Y2v2e

iδ), MR = −
√
2Ysvs ;

Model (b): Ml = − 1√
2
(Y1v1 + Y2v2e

−iδ), MD = − 1√
2
Y3v3, MR = −

√
2Ysvs .

(3.58)

To get neutrino masses, we express the neutrino mass terms in the usual mass matrix

for seesaw mechanism, and it is convenient to define the 6× 6 mass matrix

Mseesaw =







0 M∗
D

M †
D MR






. (3.59)

Note that since vs ≫ v1, v2, the MR should also be larger than MD. We can apply

the seesaw mechanism (discussed in Sec. 4.1 and Appendix B) to our model. Then

we obtain the familiar relation

MDM̂
−1
N MT

D = −V ν†
L M̂νV

ν∗
L = (iV ν†

L )M̂ν(iV
ν∗
L ) , (3.60)
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where M̂N is the 3×3 diagonal matrix with three heavy eigenvalues ofMseesaw as its

diagonal elements, and M̂ν is the three light neutrino diagonal mass matrix. V ν
L is

the transformation matrix to transform the weak eigenstate νL into mass eigenstate.

The general solution for MD of Eq. (3.60) is given by [70]

MD = (iV ν†
L )M̂1/2

ν OM̂
1/2
N , (3.61)

where O is a arbitrary complex matrix satisfying OOT = 1. It is difficult to deter-

mine the explicit form of O, so we will take it identity in the following.

In Model(a), in the mass basis of charged leptons, the Dirac mass matrix for

neutrinos are given by

MD =MD1 +MD2e
iδ = VPMNSM̂

1/2
ν OM̂

1/2
N . (3.62)

The right-handed side of the above equation is more complicated than its analogue,

Eq. (3.21) for quark sector, since there are more than one complex phases which

are required to be considered there. In general VPMNS has a Dirac phase and two

Majorana phases. It is also not easy to decompose and parametrize the complex

orthogonal matrix O into the addition of two matrix with a uniform related phase.

Here we will just consider the PMNS matrix with the Dirac phase existing in the

model. As a first example we express the PMNS matrix in the modified standard

parametrization

V M
PMNS =













cℓ12c
ℓ
13e

iδℓ
13 sℓ12c

ℓ
13e

iδ13 sℓ13

−sℓ12cℓ23 − cℓ12s
ℓ
23s

ℓ
13e

iδℓ13 cℓ12c
ℓ
23 − sℓ12s

ℓ
23s

ℓ
13e

iδℓ13 sℓ23c
ℓ
13

sℓ12s
ℓ
23 − cℓ12c

ℓ
23s

ℓ
13e

iδℓ13 −cℓ12sℓ23 − sℓ12c
ℓ
23s

ℓ
13e

iδℓ13 cℓ23c
ℓ
13













, (3.63)

where the angles and phases belong to the lepton mixing matrix. Make the crucial

assumption δℓ13 = δ, and then we have δℓ13 = −δ13 = −(69± 4)◦, where the last step

comes from the assumption in quark sector. The magnitudes of the phase in CKM

and PMNS matrices are then identical. The mass matrices MD1 and MD2 can be
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obtained as follows

MM
D1 =













0 0 sℓ13

−sℓ12cℓ23 cℓ12c
ℓ
23 sℓ23c

ℓ
13

sℓ12s
ℓ
23 −cℓ12sℓ23 cℓ23c

ℓ
13













M̂1/2
ν OM̂

1/2
N , (3.64)

MM
D2 =













cℓ12c
ℓ
13 sℓ12c

ℓ
13 0

−cℓ12sℓ23sℓ13 −sℓ12sℓ23sℓ13 0

−cℓ12cℓ23sℓ13 −sℓ12cℓ23sℓ13 0













M̂1/2
ν OM̂

1/2
N . (3.65)

Since in this model we can determine the PMNS matrix phase, which is identical

to CKM matrix phase up to a minus sign, the Jarlskog, the rephaseing invariant of

PMNS matrix can also be predicted. By using the fitting angles and mass square

differences with 1σ in Ref. [6]

sin2 θℓ12 = 0.312+0.018
−0.015 , sin

2 θℓ23 = 0.42+0.08
−0.03 , sin

2 θℓ13 = 0.0251± 0.0034 ,

∆m2
21 =

(

7.58+0.22
−0.26

)

× 10−5eV2 , |∆m2
32| =

(

2.35+0.12
−0.09

)

× 10−3eV2 , (3.66)

we obtain directly J ℓ(M) = −(0.033± 0.002).

The KM-parametrization for PMNS matrix can also be taken as another example

V KM
PMNS =













cℓ1 −sℓ1cℓ3 −sℓ1sℓ3
sℓ1c

ℓ
2 cℓ1c

ℓ
2c

ℓ
3 − sℓ2s

ℓ
3e

iδℓ cℓ1c
ℓ
2s

ℓ
3 + sℓ2c

ℓ
3e

iδℓ

sℓ1s
ℓ
2 cℓ1s

ℓ
2c

ℓ
3 + cℓ2s

ℓ
3e

iδℓ cℓ1s
ℓ
2s

ℓ
3 − cℓ2c

ℓ
3e

iδℓ













. (3.67)

With the assumption parallel to the modified standard parametrization case, δℓ =

δ = −(91± 4)◦, the mass matrices MD1,2 are obtained directly and given by

MKM
D1 =













cℓ1 −sℓ1cℓ3 −sℓ1sℓ3
sℓ1c

ℓ
2 cℓ1c

ℓ
2c

ℓ
3 cℓ1c

ℓ
2s

ℓ
3

sℓ1s
ℓ
2 cℓ1s

ℓ
2c

ℓ
3 cℓ1s

ℓ
2s

ℓ
3













M̂1/2
ν OM̂

1/2
N , (3.68)

MKM
D2 =













0 0 0

0 −sℓ2sℓ3 sℓ2c
ℓ
3

0 cℓ2s
ℓ
3 −cℓ2cℓ3













M̂1/2
ν OM̂

1/2
N . (3.69)
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In order to obtain the Jarskog J ℓ
KM it is necessary to know the three mixing

angles in KM parametrization. The corresponding angles can be obtained from the

magnitudes |Ve1|, |Ve2|, and |Ve3| with the input parameters from Eq. (3.66). We get

sin θℓ1 = 0.57± 0.02 , sin θℓ3 = 0.28± 0.02 . (3.70)

The derived phase δℓ given from the assumption with the above two angles can help

to determine the last angle from the magnitudes |Vµ3| and |Vτ3|. The result is given

by

sin θℓ2 = 0.64± 0.07 , (3.71)

The rephaseing invariant of PMNS matrix then is obtained as J ℓ(KM) = −(0.035±

0.003) by using the above derived values for mixing angles and phase. We emphasize

that the above two ways of parametrizing the mixing matrices are two different ways.

In principle measurement of J can be used to distinguish different models, but the

difference is small making it practically difficult.

The probe of neutrinoless double beta decay is one of the useful processes to ob-

serve the exist of Majorana neutrinos. With the central values of PMNS parameters

for M- and KM-parametrization and the central value of mass square differences in

Eq. (3.66), We plot the effective Majorana mass 〈mββ〉 = |
∑

imνiV
2
ei| as a function

of the light neutrino mass mν1 for the normal hierarchy in Fig. 3.1. The range ofmν1

is taken from 0 to 0.088, which satisfies one of the stringent cosmological constraints

∑

imνi < 0.28eV for the model ΛCDM+mν [72]. Here we emphasize that the two

different PMNS matrix parametrization lead to different models. It explains why

there is some deviation between two parametrization for 〈mββ〉. However, the tiny

deviation results in the difficulty to distinguish them by the future experiments.

Another quantity related to neutrino mass is 〈mνe〉 = (
∑

im
2
νi
|Vei|2)1/2, which

can be measured in tritium decay. This quantity is the same for the two models we

considered above. With the central values for mixing angles, it is given by 0.089 eV

for a normal hierarchy, with mν1 = 0.089 eV taken to approach the upper bound on

the sum of light neutrino masses, for example. For an inverted hierarchy with the
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Figure 3.1: Comparison of Model (a-M) and Model (a-KM) by 〈mββ〉 as a function

of light neutrino mass mν1 .

same mν1, we get almost the same results as we have in a normal hierarchy. This

quantity is again not useful in distinguishing different models considered above.

For Model (b), the charged leptons are coupled by two Higgs doublets. The

form of Dirac mass matrix for neutrinos in this model is simpler than that in Model

(a). The lepton sector of Model (b) can completely parallel the quark sector of this

model. For simplicity we will work in a basis with V ν
L = i. The Dirac mass term is

given by

MD = M̂1/2
ν OM̂

1/2
N . (3.72)

Again, O is arbitrary matrix satisfying OO† = 1. The charged lepton mass matrix

is given by

Ml =Ml1 +Ml2e
−iδ = V †

PMNSM̂l . (3.73)

Taking the M-parametrization in the basis VPMNS = −iV l
L, we apply the same idea

in Model (a) that the Dirac phase δℓ13 is identified with δ, and the mass matrices are

obtained directly as

MM
l1 =













0 −sℓ12cℓ23 sℓ12s
ℓ
23

0 cℓ12c
ℓ
23 −cℓ12sℓ23

sℓ13 sℓ23c
ℓ
13 cℓ23c

ℓ
13













M̂l ; (3.74)

44



MM
l2 =













cℓ12c
ℓ
13 −cℓ12sℓ23sℓ13 −cℓ12cℓ23sℓ13

sℓ12c
ℓ
13 −sℓ12sℓ23sℓ13 −sℓ12cℓ23sℓ13

0 0 0













M̂l . (3.75)

Similarly, the KM-parametriztion with δℓ = δ will lead to

MKM
l1 =













cℓ1 sℓ1c
ℓ
2 sℓ1s

ℓ
2

−sℓ1cℓ3 cℓ1c
ℓ
2c

ℓ
3 cℓ1s

ℓ
2c

ℓ
3

−sℓ1sℓ3 cℓ1c
ℓ
2s

ℓ
3 cℓ1s

ℓ
2s

ℓ
3













M̂l, (3.76)

MKM
l2 =













0 0 0

0 −sℓ2sℓ3 cℓ2s
ℓ
3

0 sℓ2c
ℓ
3 −cℓ2cℓ3













M̂l. (3.77)

The mass matrices only depend on charged lepton masses and mixing angles. The

Jarlskog invariant in Model (b) is identical to that in Model (a).

The choices of O = I and VR = i in Model (b) are by assumptions. it would be

interesting to see if models with some symmetries can naturally give such options.

We have not been able to find a model to achieve this. Our choices should only be

taken as some particular working ansatz.

3.3.2 Effect on Charged Lepton Flavor Violating Processes

The different ways to identify the CP violating phase from the lepton mixing

matrix with that from the the spontaneous symmetry breaking sector also restrict

the forms of the Yukawa couplings in the model differently. New interactions due to

Higgs exchange can generate some interesting phenomena. The Yukawa couplings

for Model (a) and Model (b) are given by

Model (a): Lllh0 = −l̄LM̂llR

[

v212vs
NAv3

(H0
2 − ia2) +

1

v
H0

3 + v212/Na(H4 − ia)

]

+ h.c. ,

Model (b): Lllh0 = −l̄L
(

− v1
v2v12

M̂l +
v12
v1v2

VPMNSMl1

)

lR(H
0
1 − ia1)

+lLM̂llR

[

v3vs
NA

(H0
2 − ia2)−

1

v
H0

3 +
v23
Na

(H4 − ia)

]

+ h.c. .

(3.78)
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There is no FCNC process for charged leptons in Model (a). In contrast, there exists

tree level FCNC interaction for charged leptons when coupling with H0
1 and a1 in

the Model (b), which can be expressed by only mixing angles and charged lepton

masses

V M
PMNSM

M
l1 =













(sℓ13)
2 sℓ23s

ℓ
13c

ℓ
13 cℓ23s

ℓ
13c

ℓ
13

sℓ23s
ℓ
13c

ℓ
13 (cℓ23)

2 + (sℓ23)
2(cℓ13)

2 −sℓ23cℓ23s213
cℓ23c

ℓ
13s

ℓ
13 −sℓ23cℓ23(sℓ13)2 (sℓ23)

2 + (cℓ23)
2(cℓ13)

2













M̂l,

V KM
PMNSM

KM
l1 =













1 0 0

0 (cℓ2)
2 cℓ2s

ℓ
2

0 cℓ2s
ℓ
2 (sℓ2)

2













M̂l. (3.79)

For Model (b-M), Yukawa coupling constants for τ −e interaction and τ −µ interac-

tioin are larger than e−µ interaction, while in Model (b-KM), only τ−e interaction

exists, with other two coupling constants vanish at tree level. Present experiments

provide tight constraints on li → l1l̄2l3, which are listed as follows

Br(τ → eēe)exp < 3.6× 10−8 [73] ,Br(τ → µµ̄µ)exp < 3.2× 10−8 [73] ,

Br(τ → µēe)exp < 2.7× 10−8 [73] ,Br(τ → eµ̄µ)exp < 3.7× 10−8[74] ,

Br(τ → µēµ)exp < 2.3× 10−8 [73] ,Br(τ → eµ̄e)exp < 2.0× 10−8 [73] ,

Br(µ→ eēe)exp < 1.0× 10−12 [75] . (3.80)

In the following we study these decay modes in more detail to see if it is also

possible to distinguish Model (b-M) and Model (b-KM). If H1 is the lightest higgs

boson, then the tree level contribution with H0
1 exchanged should dominate the

above processes. As an illustration, take v1,2 ≪ v3, with v1,2 are of order a few GeV,

and H0
1 = 100GeV, with flavor mixing angles chosen to the central values given

previously for each kind of parametrization, we plot in Fig 3.2 to show the allowed

regions in v1-v2 plane constrained by the above lepton flavor violating processes. For

Model (b-M), all li → l1 l̄2l3 processes can constrain v1 and v2. The most stringent

constraints come from the τ → eµ̄µ and µ → eēe current experimental upper

bounds, for which v1 > 10GeV and v2 > 3GeV. For Model (b-KM), only τ → µµ̄µ
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Figure 3.2: The allowed range in v1,2 plane constrained by µ → eēe and τ →

l1l̄2l3, where M- and KM- indicate the modified standard parametrization and KM

parametrization, respectively.

and τ → µēe can constrain v1,2, and the present τ → µµ̄µ upper bound leads to

the most severe limit. The future experimental signals for any of the processes, for

example, µ→ eēe at MUSIC [115], may help to fix the v1,2 or rule out these models

if no intersection allowed among these curves.
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Chapter 4

Higgs Decay in Large Heavy-Light

Mixing Seesaw Model

The observation of neutrino oscillation forces the SM to be extended in order

to have the massive active neutrinos. The simplest way to extend the SM is to

add the right-handed gauge singlet fermions. The seesaw mechanism can be applied

if the Majorana mass term of the gauge singlet fermions is allowed. The seesaw

mechanism explains the light neutrino mass successfully by taking the very huge

Majorana mass for the right-handed neutrinos, but these heavy neutrinos are too

heavy to be detected at LHC, and the related heavy-light mixing is also too small. A

specific type of seesaw mechanism with large heavy-light mixing might be possibly

verified in the future experiments. The search of Higgs decay is a good way to prove

such kind of seesaw models. In this chapter we will introduce briefly the Higgs decay

channels in the SM, and then discuss the type-I and type-III seesaw with the large

heavy-light mixing and the corresponding effect on Higgs decay.

4.1 Higgs Decay

The probing of Higgs decay is a direct way to search the existence of Higgs. The

study of the Higgs decay in the SM and in many other models have been performed in

detailed in many years. We will follows the discussion of Higgs decay from Ref. [76]
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in this section. In the SM the related Lagrangian is shown as

Lh =
1

2
(∂µh)(∂

µh)− 1

2
m2

hh
2 − 3m2

h

v

h3

3!
− 3m2

h

v2
h4

4!
+

1

2
(
2m2

Z

v
h+

m2
Z

v2
h2)Z0

µZ
0µ

+(
2m2

W

v
h+

m2
W

v2
h2)W+

µ W
µ− − h

v

∑

f

mf f̄ f , (4.1)

where the couplings h−f−f̄ are proportional to fermion mass; h−V −V and h−h−

V −V are proportional to m2
V . The two body decay channels and the corresponding

subsequent channels are dominant Higgs decay processes. In theoretical point of

view, all possible Higgs decay channels can be predicted for different choice of mh.

The main channel of Higgs decay are the two body decays h → f f̄ and h → V V ,

with V can be on-shell or off-shell massive gauge boson.

One of Higgs decay channels is of the type h → f f̄ , the Higgs decay into two

fermions. Tree level diagrams dominate these type of processes. Since the relevant

Yukawa coupling is proportional to the the fermion mass mf , h → bb̄ should be

dominant mode among these type of decay rates if mh . 130GeV. The tree level

formula related to this type of processes is given by [76]

Γ(h→ f f̄) =
3GF

4
√
2π
mhm

2
f(1− 4m2

f/m
2
h)

3/2 . (4.2)

The h → V V channels, with V to be the gauge boson W or Z are important

and dominated for mh & 150GeV. In the SM the decay channels h → WW and

h → ZZ occur at tree level. If the Higgs mass is less than 2mW or 2mZ , then the

corresponding channel h → V V will become off-shell and it will lead to a three or

four body decay. The two body decay is given by [76]

Γ(h→ V V ) =
GFm

3
h

16
√
2π
δV

√
1− 4x(1− 4x+ 12x2) , x =

m2
V

m2
h

, (4.3)

where for W boson δW = 2 and for Z boson δZ = 1.

The h→ γγ can provide cleaner signal to probe physics beyond the SM, although

its leading order contribution from one loop processes is small. h→ gg is the process

which could be found from analysis of jets including hadronic final states at LHC.

We can summarize this section by Fig. 4.1, in which the plots of the Higgs branching
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Figure 4.1: The left panel is the mainly branching ratios of the Higgs decay channels

as a function of mh , and the right panel is the total decay rate of Higgs as a function

of mh. The numerical results is calculated by the package HDECAY [81].

ratios and total decay rate versus mh are given, with numerical results calculated

by HDECAY [81]. Note that h → W+W− and h → ZZ have already included the

subsequent three body decays and four body decays. From the right panel of the

figure, for 100GeV < mh < 130GeV the total decay rate is about 0.02 ∼ 0.04GeV,

with the channel h → bb̄ dominated; for 130GeV < mh < 160GeV, the two body

decay h→ W+W− channel are almost open and dominates over other channels. For

160 < mh < 180GeV, Γh is around 0.08GeV ∼ 0.6GeV with the open of the decay

channel h→ Z0Z0. Finally, h→ tt̄ channel will be open at mh & 300GeV.

4.2 Type-I Seesaw

4.2.1 Introduction

Type-I seesaw is the original and simplest seesaw model, in which one or more

gauge singlet fermions are introduced into the SM [77]. It will induce not only the

Dirac neutrino mass term but also a Majorana mass term which will violate the

lepton number conservation. In the following and later we will focus on models with

three such fermions included. In type-I seesaw the new interaction beyond the SM
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is shown as

Lnew = NRi /DNR − [LLYRH̃NR − 1

2
N c

RM̂RNR + h.c.] , (4.4)

where M̂R is the Majorana mass matrix, which can be transformed by a unitary

matrix into real diagonal form in general. After spontaneous symmetry breaking,

the relevant neutrino mass terms is given by

Lmass = −LLMDNR − 1

2
N c

RM̂RNR + h.c. , (4.5)

where MD = (v/
√
2)YR are 3 × 3 Dirac mass matrices. By re-arranging the above

formula, we obtain

Lmass = −1

2

(

νL, N c
R

)

M †
seesaw







νcL

NR






+ h.c. , (4.6)

where Mseesaw is defined as a 6× 6 matices

Mseesaw =







0 M∗
D

M †
D M̂R






=







0 mT
D

mD M̂R






, with mD =M †

D. (4.7)

In order to diagonalize Mseesaw, we define the transformation matrix U by the left-

handed fermions redefinition






M̂ν 0

0 M̂N






= UTMseesawU , with U is defined as







νL

(NR)
c






= U







νmL

NmL






=







Uνν UνN

UNν UNN













νmL

NmL






, (4.8)

where Uνν ≡ V ν†
L is approximately unitary, and M̂ν,N are diagonalized mass matrices

for light and heavy neutrino mass eigenstates, respectively. From the above equation

we directly obtain the following relation

UννM̂νU
T
νν = −UνNM̂NU

T
νN . (4.9)

The above formula provides us an important information, that is, if Uνν is of order

O(1), then UνN should be of the order (mµ/mN)
1/2. According to the procedure in

Appendix B we get the following relation

−MDM̂
−1
N MT

D ≃ UννM̂νU
T
νν . (4.10)
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This is the famous seesaw relation. The heavy neutrino mass can generate a very

light neutrino mass, like a “ seesaw ”. In the other hand, the scale of the light neu-

trino also sets the lower bound for the heavy neutrino mass to be around hundreds

GeV to TeV scale, even if MD is set to be 1MeV. The next section will provide

a interesting and special way to circumvent the constraints from Eq. (4.10), or in

equivalence from Eq. (4.9).

4.2.2 Heavy-Light Large Mixing

Type-I seesaw has solved the problem about the origin of the very light active

neutrino mass. The observation of light neutrino masses also provides the lower

bounds of heavy neutrino masses. By looking at Eq. (4.9), we find that the order of

magnitude of elements in UνN should be about (mν/mN)
1/2, which is too small to be

proved in the experiment such like LHC. In the presence of more than one generation

of light and heavy neutrinos, there are circumstances in which the mixing can be

much larger [82, 83, 84], offering greater hope of observing its effects on various

processes. The combination of such large mixing, with mN ∼ 100 GeV, and the

tiny light-neutrino masses can occur naturally if the underlying theory has some

symmetry that is slightly broken [84]. Ref. [85] provides a special type of UνN ,

which can be large and evade the limitation from Eq. (4.9). We will show how to

achieve it in the following. Consider the heavy-light mixing UνN which is expressed

in the sum of a dominant part U0 and a small perturbation Uδ, which is given by [85]

UνN = U0 + Uδ . (4.11)

It is also assumed that U0 satisfying the equation [85]

U0M̂NU
T
0 = (U0M̂

1/2
N )(U0M̂

1/2
N )T = 0 , (4.12)

in which U0 can be of arbitrary unlimited size. The next step is to find the general

solution for such a U0. It is convenient to consider the rank of the matrix K =

U0M̂
1/2
N . From mathematical analysis we know that K can not be of rank three

because there is no such a nonzero vector whose hermitian products with all elements
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of a basis are all vanished. If K is of rank two, then the corresponding orthogonal

space should be of only dimension 1, but this conflicts with the fact that the rank of

K should be equal to that of KT . So the only possible choice is a rank-1 one matrix

for K. This means that U0 should be also of rank one if M̂N is of rank-3.

Since K satisfying KKT = 0, with the understanding that K is a rank-1 matrix,

in general K can be expressed in the form

K ∝













a vT

b vT

c vT













,where a,b,c ∈ C , (4.13)

with v a 3× 1 complex column vector satisfying vTv = 0 . This form of K helps us

to get the form of U0 as follows [85]

U0 =













a vT

b vT

c vT













· R with R = diag(
√

mN

M1
,
√

mN

M2
,
√

mN

M3
), (4.14)

where M1,2,3 are the masses of heavy neutrinos, and we can take mN to be the

smallest of M1,2,3. The parameters a,b, and c and the perturbation term Uδ are

constrained by the experimental results of neutrino mass square differences ∆m2
ij .

the detail is given in Appendix C. We will use the scenario of large UνN to investigate

the Higgs decay in the following.

4.2.3 h→ νN

From the idea of Section 4.2.2, there is a special structure of UνN which can

make the magnitudes of its elements become larger than before. Some of the effect

and implication has been discussed in Ref. [85]. In this chapter, we will focus on

the effect of such a large UνN on Higgs decay, and also the related implications.

In Type-I seesaw, The SM Higgs decay width increases by the channels in which

the final states includes a light neutrino and a heavy neutrino. The amplitude of

such a process is given by

M(h→ νiNj) =
g2Mj

2mW
ūν [(U

T
ννU

∗
νN )ijPL + (U †

ννUνN)ijPR]vN , (4.15)
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where Mj is the mass of heavy neutrino Nj ; vN and uν are the 4-spinors of heavy

and light neutrino, respectively. The projection operators in Dirac space are defined

by PL ≡ (1− γ5)/2 and PR ≡ (1 + γ5)/2. By ignoring all the light neutrino masses

and applying the approximation UννU
†
νν ≃ 1 to the calculation, the total decay rate

of h→ νN is given by

Γ(h→ νN) =
3

∑

i=1

g22mhM
2
i (U

†
νNUνN )ii

32πm2
W

(

1− M2
i

m2
h

)2

. (4.16)

Before obtaining the decay rate of this channel, it requires to choose a appropriate

UνN as our input. UνN can be as large as we hope theoretically, but it is still

constrained by several experiments. From the gauge-boson mass fitting we can

constrain the diagonal elements of the matrix ǫ = UνNU
†
νN as follows [87, 88]

ǫ11 ≤ 3.0× 10−3 , ǫ22 ≤ 3.2× 10−3 , ǫ33 ≤ 6.2× 10−3 . (4.17)

On the other hand, the off-diagonal elements can be constrained by lepton flavor

violating process such as ℓi → ℓjγ [87, 89]

|ǫ12| ≤ 1.0× 10−4 , |ǫ13| ≤ 0.01 , |ǫ23| ≤ 0.01 . (4.18)

The most stringent constraint comes from neutrinoless double beta decay [79]

∣

∣

∣

∣

3
∑

i=1

(UνN )
2
1i/Mi

∣

∣

∣

∣

≤ 5× 10−8GeV . (4.19)

The L3 and DELPHI in LEP [80] for neutrino singlet search from Z → νN also

constrain (UνN)2i and (UνN)3i, which might be more stringent than Eqs. (4.17, 4.18).

Now we turn to take some UνN in Appendix C as our examples, for which we will

ignore the small perturbation terms Uδ. As the first example we take UνN = Ua
0 with

the only free parameter b̄ = 0.006 which is the largest allowed values by experimental

constraints. Also note that this choice of UνN satisfying Eq. (4.19) since we takeMi’s

to be almost degenerate, and from this inequality the deviation between these Mi’s

should be less than 1GeV. This property is similar for other choices in Appendix

C. As the illustration, we plot the ratio of new Higgs decay channel to the SM

total Higgs decay width as a function of mh from 100GeV to 180GeV, with mN
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Figure 4.2: The ratio of decay width of h → νN to total Higgs decay width in SM

as a function of mh, for mN = 70, 80, 90, 100GeV as marked in the figures, with (a)

UνN = Ua
0 , and (b) UνN = Ue

0 . The numerical result of the SM Higgs decay width

is calculated by the package HDECAY [81].

chosen to 70, 80, 90, and 100GeV, as shown in Fig. 4.2(a). In the plot we find that

the largest enhancement of Higgs decay width is around 1% for mN = 70GeV with

mh ≃ 120GeV. If we take UνN = Ud
0 with free parameter ā = 0.0089 allowed in

maximum, the corresponding graph will be similar to that for Ua
0 . We emphasize

that the recently experiments for the detection of µ → eγ by MEG collaboration

with the results B(µ → eγ) < 2.4 × 10−12 [112] should lead to a more stringent

constraint on the allowed magnitudes of Ua
0 and Ud

0 .

It is possible to make a larger enhancement for Higgs decay width if we take the

other kind of UνN . Choosing UνN = Ue
0 with a = 0.02(0.04) for mN = 70GeV(≥

80GeV), or UνN = Uf
0 with a = 0.02(0.039) for mN = 70GeV(≥ 80GeV) can achieve

the goal, with the special case for mN = 70GeV constrained by LEP [80]. The data

of total decay rate and branching ratio of SM we use here and later comes from

the program HDECAY [81]. These choices evade the stringent constraint for |ǫ12| in

Eq. (4.18) because the first or second row of UνN vanishes. The result relevant for

Ue
0 is given in Fig 4.2(b), in which the enhancement can achieve to more than 25%

for mN = 80GeV with mh ≃ 125GeV. The graph for Uf
0 is similar to that for Ue

0 .

The enlarged UνN increases the total Higgs decay rate significantly. However, it

should also increase the decay rate of Z boson, for which the SM prediction ΓSM
Z =

56



2.4954 ± 0.0010GeV [90] is in agreed with experimental results Γexp
Z = 2.4952 ±

0.0023GeV [8]. So it is necessary to check if the decay rate Z → νN becomes so

large that makes such a model be ruled out. The leading order transition amplitude

of Z → νN which comes from tree level interaction, is given by

M(Z → νiNj) =
g2ǫ

µ
Z

2cW
ūνγµ[(U

T
ννU

∗
νN )ijPR − (U †

ννUνN )ijPL]vN . (4.20)

Square and sum over all mass eigenstates to get the total decay rate

Γ(Z → νN) =

3
∑

i=1

g22m
3
Z(U

†
νNUνN)ii

48πm2
W

(

1− 3m2
N

2m2
Z

+
m6

N

2m6
Z

)

, (4.21)

where we have used UννU
†
νν ≃ 1. By the formula, the most influential choices,

UνN = Ue,f
0 will lead to Γ(Z → νN) ≃ 0.12, 0.16, 0.002MeV for mN to be 70, 80,

and 90 GeV, respectively. It is clear that these channels are too small compared

with both the deviation of experimental result and SM prediction.

In type-I seesaw the dominant decay mode of heavy neutrino is the decays into

three light fermions, which will be described in more details later on. The heavy neu-

trino three body decay following the electron-positron annihilation e+e− → Z∗ →

νN will lead to the scattering into four fermions, whereas in the SM such processes

are dominated by that with two W boson mediating. The spin-averaged amplitude

square for e+e− → νN in type-I seesaw is given by

|M(e+e− → νiNj)|2 =
g42(l

2
e + r2e)

4c4W
|(U †

ννUνN )ij |2
(t−m2

N )t+ (u−m2
N )u

(s −m2
Z)

2

+
g42
4
|(U †

νν)i1(UνN )1j |2
[

(u−m2
N )u

(t−m2
W )2

+
(t−m2

N )t

(u−m2
W )2

]

+
g42leRe[(U

†
ννUνN )ij(U

†
νν)1i(UνN )j1]

2c2W (s−m2
Z)

[

(u−m2
N )u

t−m2
W

+
(t−m2

N )t

u−m2
W

]

,

(4.22)

where the Mandelstam variables s = (pe++pe−)
2, t = (pe+−pN)2 and u = m2

N−s−t;

le = s2W − 1/2 and re = s2W , with sW = sin θW . All external fermion masses are

ignored except for mN . The approximate cross section σ(e+e− → νN → νl+1 νl
−
2 )

is approximately equal to σ(e+e− → νN) multiplying by branching ratio Br(N →

νl+1 l
−
2 ) ≃ 0.3, which will be given in details later. LEP2 collaborations [91, 92]

have already obtained the cross section for different lepton flavor final states with
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U e
0 :

√
s

/

mN 70GeV 80GeV 90GeV 100GeV Data [92]

161GeV 0.001 0.005 0.005 0.004 0.28±0.22

183GeV 0.001 0.003 0.003 0.003 1.63±0.21

207GeV 0.001 0.002 0.003 0.002 1.87±0.13

Uf
0 :

√
s

/

mN 70GeV 80GeV 90GeV 100GeV Data [92]

161GeV 0.013 0.047 0.050 0.040 0.28±0.22

183GeV 0.014 0.052 0.057 0.048 1.63±0.21

207GeV 0.014 0.056 0.063 0.055 1.87±0.13

Table 4.1: Cross section for different center-mass energy
√
s with different mN ,

which is compared with experiment result. The values in last column are taken

from Ref. [92]. All cross-section numbers are in pb.

the center-mass-energy 161, 183, and 207GeV The related new contribution to the

cross section for the choices Ue
0 and Uf

0 is given in Table 4.1, where the last column

shows the corresponding experimental results [92]. It is found that the effect on

such process for Uf
0 is larger than that for Ue

0 due to the vanishing of first row in

Ue
0 , but both are smaller than experiment deviations given in Ref. [92].

4.2.4 Three-Body Decays of N and Four-Body Decays of

Higgs

The heavy neutrino N is produced by h → νN . To explore such a process

we need to understand the property of N first. The dominant decay mode of N

is the three body decay, and we write down the related transition amplitudes as

follows. For N → ννν̄, the main contribution is from the processes with Z boson

intermediated, which is given by

M(Ni → νjνkν̄k) =
g22
4c2W

ū′νγ
α[(U †

ννUνN)jiPL − (UT
ννU

∗
νN)jiPR]uN ūνγαPLvν

m2
Z − (pν + pν̄)2 − iΓZmZ

, (4.23)

where the same index k for ν and ν̄ means that we only consider the approximation

UννU
†
νν ≃ 1 in Z boson gauge interaction between ν’s. There are two kinds of
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processes for N → νl−l+. One is related to the different lepton flavor final states.

The amplitude is given by

M(Ni → νjl
−
ml

+
n ) =

g22
2

(UνN )mi(U
†
νν)jnūlγ

αPLuN ūνγαPLvl
m2

W − (pν + p+)2 − iΓWmW

+
g22
2

(U∗
νN)ni(U

T
νν)jmūνγ

αPRuN ūlγαPLvl
m2

W − (pν + p−)2 − iΓWmW
, (4.24)

where m 6= n, and the Z mediated processes are ignored. The other one is for the

processes in which charged lepton pair in the final state is of the same flavor. Such

processes are constituted by three sub-amplitudes

M(Ni → νjl
−
k l

+
k ) =

g22
2

(UνN )ki(U
†
νν)jkūlγ

αPLuN ūνγαPLvl
m2

W − (pν + p+)2 − iΓWmW

+
g22
2

(U∗
νN)ki(U

T
νν)jkūνγ

αPRuN ūlγαPLvl
m2

W − (pν + p−)2 − iΓWmW

− g22
2c2W

ūνγ
α[(U †

ννUνν)jiPL − (UT
ννU

∗
νN)jiPR]uN ūlγα(llPL + rlPR)vl

m2
Z − (p+ + p−)2 − iΓZmZ

.

(4.25)

The amplitudes of the processes N → νqq̄ are given by

M(Ni → νjqq̄) =
g22
2c2W

ūνγ
α[(U †

ννUνN )jiPL− (UT
ννU

∗
νN )jiPR]uN ūqγα(lqPL+ rqPR)vq

m2
Z − (pq + pq̄)2 − iΓZmZ

,

(4.26)

in which only five quarks are involved. The processes N → lud̄ with u and d

denoted to up or down type quarks respectively are dominated by tree level process

with W boson exchange

M(Ni → l−j ud̄) =
g22
2

(UνN )jiVudūlγ
αPLuN ūuγαPLvd

m2
W − (pu + pd)2 − iΓWmW

, (4.27)

where Vud is the related CKM matrix element.

The decay rates of N of the above three body decay processes are shown in

Table 4.2. The decay rates for mN = 90GeV and mN = 100GeV increase sharply

due to the open ofW and Z channels separately. The travelling distance for N born

from Higgs decay is estimated to be less than 10−10m, which is so small that it is

very hard to detect it directly.
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Decay mode 70GeV 80GeV 90GeV 100GeV

N → ννν̄ 0.06 0.6 2 16

N → νl+l′− 0.24 3.4 38 128

N → νl+l− 0.11 1.5 19 71

N → νqq̄ 0.25 2.4 7 63

N → l−ud̄ 0.37 5.1 57 192

N → l+dū 0.37 5.1 57 192

N → 3 fermions 1.40 18.1 180 662

Table 4.2: Decay rates of three body decay modes for different mN .

The effective four-body decays of Higgs following h → νN include H → νννν,

H → ννll̄, H → ννqq̄, and H → ννud. In the SM these channels are dominated

by Higgs decaying into two gauge bosons and then subsequently decaying into two

fermions for each vector bosons. The branching ratios of these processes are eval-

uated approximately by multiplying the branching ratio of gauge boson decaying

into two leptons to that of the Higgs three body decays with one gauge boson. This

means that Br(h → νff ′f ′′) ∼= Br(h → V νf)Br(V → f ′f ′′). The new contribution

to the above four-body decays in this model is h→ νN followed by the three body

decay N → ff ′f ′′. The results is shown in Fig 4.3.

Evidently, for mh less than 140GeV or so, the N-mediated contributions to each

of the four-body modes are comparable to, and can be a few times bigger than,

the corresponding SM contributions. This is clearly the case when it comes to the

νlud and ννll curves for the three values of mN considered. We remark that it

doesn’t include possible interference between the N-mediated and SM contributions

for our analysis here, but it should be taken into account in a more refined analysis.

Nevertheless, this exercise serves to demonstrate the potential importance of the

effect of large light-heavy mixing on Higgs decays. Accordingly, if the Higgs boson

is detected, with mh . 140GeV, and its decay modes can be studied with sufficient

precision, these four-body Higgs decays may offer useful information on the seesaw
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Figure 4.3: (a,b,c) Decay widthes of the channels h → νN → νff ′f ′′ versus mh

with mN = 80, 90, 100GeV, respectively, with heavy-light mixing UνN = Ue
0 . (d)

The branching ratios of four body decay channels in SM. The numerical result of SM

total and partial decay rates in these figures is calculated by package HDECAY [81].

mechanism.

4.3 Type-III Seesaw

4.3.1 Introduction

For this type of seesaw the fermion SU(2)L triplets are introduced into the

SM [86]. The gauge transformation of this type of fermions is NR : (1, 3 , 0),

which can be expressed in symmetric tensor form (NR)ij

(NR)11 = N+
R , (NR)12 =

1√
2
N0

R , (NR)22 = N−
R . (4.28)

Under SU(2) transformation (NR)ij becomes

(NR)ij −→ uii′ujj′(NR)i′j′ , (4.29)
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where u is the transformation matrix in SU(2) fundamental representation. We

can define another matrix form to represent NR, which is usually given by Σij =

−(NR)ikǫkj, where

Σ =







(N0
R/

√
2) E+

R

E−
R −(N0

R/
√
2)






, with E+

R = −N+
R , E

−
R = N−

R , (4.30)

and it transforms under SU(2)L as

ΣR −→ −(uNRu
T ǫ) = −u(NRǫ)u

† = uΣR u
† . (4.31)

where ǫ is the antisymmetric rank-2 tensor with ǫ12 = 1. Also note that the trans-

formation of Σ and (ΣR)
c ≡ CΣR

T
with the 4 × 4 matrix C and the transpose T

acting on only spinors, is shown as

ΣR −→ uΣRu
† , (ΣR)

c −→ u(ΣR)
cu† . (4.32)

Apply the materials given in the above to write down all the possible gauge invariant

renormalizable new interaction terms

Lnew = Tr(ΣRi /DΣR) + [−
√
2LLY

†
ΣΣRH̃ − 1

2
Tr( (ΣR)cM̂ΣΣR) + h.c.] , (4.33)

where M̂Σ is a 3×3 matrix, which should be real and diagonal in general. The form

of mass matrix for neutral fermions is exactly the same as that in type-I seesaw.

Note that for the heavy charged fermions one can define E∓ = E∓
R +(E±

R )
c and then

E+ = (E−)c. The corresponding mass eigenstetes are also the mixing of heavy and

light charged leptons. The Yukawa coupling about heavy-light interaction is given

in the form

LE =
−g2√
2mW

(lmLUνNMΣEmR + EmRMΣU
†
νN lmL)h+ ... , (4.34)

where lmR,L and EmR,L are the heavy and light mass eigenstates, respectively.

4.3.2 h→ νN and h→ ℓE

The effect on Higgs decay in type-III seesaw is more complicated than that in

type-I seesaw, because there are additional Higgs decay channels with heavy and
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light charged leptons included in the final states. The amplitude for h→ νN is the

same as that for type-I seesaw. For h→ ℓE, the corresponding amplitude is written

as

M(h→ l−i E
+
j ) =

g2Mi√
2mW

(UνN)ij ūlPRvE , (4.35)

where vE and ul are the spinors for E+ and l−, respectively. The decay rate by the

summation over all charged leptons is

Γ(h→ l−E+) =
∑

i

g22mhM
2
i (UνN†UνN)ii
32πm2

W

(

1− M2
i

m2
h

)2

. (4.36)

In type-III the experimental constraints for the FCNC factor ǫ are more stringent

than in type-I seesaw, since FCNC can be generated by tree level interaction at this

moment. The FCNC constraints for type-III seesaw are given by [87, 88]

ǫ11 ≤ 3.6× 10−4; ǫ22 ≤ 2.9× 10−4; ǫ33 ≤ 7.3× 10−4 . (4.37)

The off diagonal elements of ǫ are constrained as [93]

|ǫ12| ≤ 1.7× 10−7; |ǫ13| ≤ 4.2× 10−4; |ǫ23| ≤ 4.9× 10−4 . (4.38)

The UνN can be chosen to be U0
e or U0

f given from Ref. [85], in order to evade

the most stringent constraints on ǫ12. For the choice UνN = U0
e with a = b, the

largest allowed value is a = 0.012; it is similar for the choice UνN = U0
f in which

b = (0.0013 + 1.03i)a with a = 0.013 is allowed. These allowed values are smaller

than what we took in type-I case. The new Higgs decay width including h → νN

and h→ l−E+ are plotted as a function of mh, shown in Fig. 4.4. In both figures the

enhancement can only reach to 5% in type-III seesaw. This is due to the stronger

experimental constraints on the elements of the mixing matrix UnuN and also to the

lower-limit on the heavy-lepton masses. As a consequence, the Higgs decays into

four light fermions in this case would be less sensitive for probing the underlying

seesaw mechanism than their type-I counterparts.
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Figure 4.4: The ratios of decay width including the channels h→ νN and h→ l−E+

to total SM Higgs decay width, as the functions of mh, with mN = 100, 110GeV for

(a) UνN = Ue
0 ; for (b) UνN = Uf

0 . The numerical result for the SM Higgs total decay

width is calculated by package HDECAY [81].
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Chapter 5

Lepton Flavor Violation in

Standard Model with Four

Generations

The standard model is built with three fermion generations included, which is

the minimal numbers of generation to generate CP violation. Although most of the

present experimental results are in agreement with three-generation standard model

(SM3), the existence of fourth generation fermions (SM4) is still not be decisively

ruled out by experiments. Considering the SM3 with right-handed neutrinos, the

massive neutrinos lead to the non-identity PMNS matrix appearing in the charged

current interaction, which results in the lepton flavor violation (LFV). The light

neutrinos in the SM can only violate the lepton flavor with very small amount,

which is also consistent with current experimental results. If the fourth generation

fermion exist, their masses should be very heavy, and their loop contribution to

flavor violating processes could be large enough to be verified.

In order to keep the cancellation of the gauge anomaly, each type of fermions

for the fourth generation should be introduced, which are denoted by t′, b′, l′, and

ν4 for up-type quark, down-type quark, charged lepton, and neutrino of the fourth

generation, respectively. Their quantum numbers of the SM gauge group are the
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same as their counterparts of other three generations. Such model is named as the

sequential four generation SM. The SM4 is constrained by the “oblique” parameters

S, T and U in studying the eletroweak precision. One of the parameter, S, which

is related to the deviation of the self-energy from the scales 0 to m2
Z , changes from

the SM3 when appending a additional generation of fermions to SM. The result is

given by [94, 95]

δS =
2

3π
− 1

3π

[

log
mt′

mb′
− log

mν4

ml′

]

. (5.1)

In order to reduce the deviation δS due to the fourth generation, the condition

mt′ > mb′ and ml′ > mν4 is required [94, 95]. Precisely speaking, it implies that

mt′ −mb′ ≃ 55GeV and ml′ −mν4 ≃ 60GeV [95] as the necessary condition for the

existence of fourth generation. From the study of the perturbative unitarity bound,

critical masses determined by perturbativity for charged leptons and neutrinos are

about 1.2 TeV [96].

There are also some direct bounds on masses of fourth generation fermions from

experiments. The probe of the process pp → t′t̄′ → W+bW−b̄ by CMS at the LHC

with
√
s = 7 TeV gives a lower bound mt′ > 557 GeV [97]. Also from the study

of b′b̄′ → tW−t̄W+ the range mb′ < 611 GeV has been ruled out at 95% C.L. [98].

The bounds on l′ and ν4 from LEPII experiment has been discussed in Ref. [99].

For unstable charged lepton heavier than heavy neutrino, the bound is given by

ml′ > 101.9 GeV at 95%C.L. [99], while a heavy Dirac neutrino with ν4 → eW as

its dominant decay mode the bound is mν4 > 101.3 GeV at 95% C.L. [99]. It means

that the fourth generations, if exists, with a large mass in the range of about 100 GeV

to the unitarity bound are not ruled out. The current experimental bounds can be

used to constrain model parameters, FCNC interaction with SM4 has been studied

for a long time [100] and can also help for solving some of open questions in FCNC

quark interaction [101, 94]. Leptonic FCNC effects, including µ − e conversion, in

SM4 have also been studied extensively [102, 103, 104, 105]. In this chapter we

carry out a more detailed systematic study by taking account of all available µ− e

conversion experimental results, which has been measured in several kinds of nuclei
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as the targets by experiments, and also been studied theoretically [110, 111]. The

experimental upper bounds for different nuclei are given by BAu
µ→e < 7× 10−13 [106],

BS
µ→e < 7 × 10−11 [107], BTi

µ→e < 4.3 × 10−12 [108], and BPb
µ→e < 4.6 × 10−11 [109].

We will also compare constraints obtained from µ−e conversion using experimental

bounds on various nuclei with those from µ→ eγ and µ → eēe.

5.1 Charged Lepton Flavor Changing Processes

We focus on the model with massive neutrinos in order to satisfying the results

from the neutrino oscillation experiments. Depending on the nature of the neutrinos,

there may be right-handed neutrinos, νR : (1, 1, 0) which may pair up with the left-

handed neutrinos to have Dirac or by themselves to have Majorana masses. For a

model without Majorana neutrino mass, the charged lepton and neutrino masses

are generated by the Yukawa interaction

Lℓ
Y = −LLiY

ij
l HlRj − LLiY

ij
ν H̃νRj + h.c. . (5.2)

In four-generation case i, j = 1, ..., 4. After spontaneous symmetry breaking, the

lepton mass terms appear, which are given by

Lℓ
CC+mass = − g2√

2
(lLγµνLW

µ− + νLγµlLW
µ+)

−LLMllR − LLMννR + h.c. . (5.3)

The diagonalization of lepton mass matrices Ml and Mν leads to the mixing in

charged current interaction

Lℓ
CC+mass = − g2√

2
(lLγµVPMNSνLW

µ− + νLγµV
†
PMNSlLW

µ+)

−LLM̂llR − LLM̂ννR + h.c. , (5.4)

where lepton mixing matrix VPMNS of dimension 3×3 has been discussed in Sec. 2.3.1.

In the SM4 the VPMNS becomes a 4× 4 matrix. There are a lot of FCNC processes

for charged leptons, and most of which is induced at one loop level. Due to the

GIM mechanism the terms independent of fermion mass are cancelled with each

67



other. The leading order contribution of these processes should be proportional to

(m2
νi
/m2

W ), which is very tiny for SM3 neutrinos in the loop. The SM4 can enhance

the contribution to these LFV processes with the fourth generation neutrino ν4 in

the loop. What we will focus on in the following are the following processes: µ→ eγ,

µ− e conversion, and µ → eeē. The strength of these processes are governed by the

factor λµe = V ∗
µ4Ve4, the multiplication of the PMNS matrix elements.

The µ → eγ can be described by a dimension 5 dipole operator. In SM4, the

main contribution comes from the fourth generation neutrino ν4 in the loop, and it

is written down explicitly in the leading order as

L(µ→ eγ) = −4GF√
2

e

32π2
λµeG2(x4)ēσ

µν(mµPR +mePL)µFµν , (5.5)

where G2(x) =
x(1 − 5x− 2x2)

4(x− 1)3
+

3x3

2(x− 1)4
ln x , (5.6)

with x4 = (m2
ν4
/m2

W ). Note that the mass inversion for initial and final state

fermions makes the right-handed coupling larger than left-handed one by a factor

(mµ/me).

Another useful process is the µ − e conversion which occurs by the scattering

with the target nuclei. It is convenient to normalize it in the ratio of the µ − e

conversion rate to the rate of capture of muon by the same atom, which is given by

BA
µ→e =

Γ(µ− + A(N,Z) → e− + A(N,Z))

Γ(µ− + A(N,Z) → νµ + A(N + 1, Z − 1))
, (5.7)

where A indicates the type of atom in which the nucleus is taken as the target.

Different types of targets would lead to different conversion-to-capture ratios. In

SM4, the interaction related to µ − e conversion is dominated by penguin and box

diagrams with ν4 exchanging in the loop, which is given by

L(µ→ eqq̄) = −GF√
2

e2

4π2
λµe[Vu(x4)ūγµu+ Vd(x4)d̄γµd

+Au(x4)ūγµγ5u+ Ad(x4)d̄γµγ5d]ēγ
µPLµ , (5.8)
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where σµν = i[γµ, γν ]/2, and

Vq(x) = −QqG1(x) +
1

2s2W
(Iq3 −Qqs2W )GZ(x)−

1

4s2W
Gq

B(x) , (5.9)

Aq(x) = − 1

s2W
Iq3GZ(x) +

1

4s2W
Gq

B(x) , (5.10)

G1(x) =
x(12 + x− 7x2)

12(x− 1)3
− x2(12− 10x+ x2)

6(x− 1)4
lnx , (5.11)

GZ(x) =
x(x2 − 7x+ 6)

4(x− 1)2
+
x(2 + 3x)

4(x− 1)2
lnx , (5.12)

GB(x) =
x

x− 1
− x

(x− 1)2
ln x, Gu

B(x) = 4GB(x) , G
d
B(x) = GB(x) . (5.13)

Iq3 and Qq are the isospin and electric charge of q, respectively.

The effective interaction for µ→ eēe in SM4 is given by

L(µ→ eēe) = −GF√
2

e2

4π2
λµe[G2(x4)ēγµe

qν
q2
ēiσµν(mµPR +mePL)µ

+ēγµ(aL(x4)PL + aR(x4)PR)eēγµPLµ] , (5.14)

which is constituted by the contribution from the penguin diagrams and the box

diagrams, with the corresponding functions given by

aL(x) = G1(x) +
1

s2W

(

− 1

2
+ s2W

)

GZ(x)−
1

2s2W
GB(x) , aR(x) = G1(x) +GZ(x) .

(5.15)

The function G2(x) is related to the dipole operator, which can also contribute to

other LFV processes. G1(x) corresponds to the charge radius contribution, which

contributes to both µ → e+ qq̄ and µ→ eēe. GZ(x) is the Z-penguin contribution,

which increases linearly with large x, as mentioned in Ref. [104]. Finally, GB(x) is

the box diagram contribution.

5.2 µ− e Conversion

To calculate the µ − e conversion in nucleus we need to deal with the related

initial and final hadronic states. Ref. [110, 111] have provided several results. In this

section we will use these consequences as well as the notation of functions relevant

for µ − e conversion at hadronic level in Ref. [111]. The general interaction related
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to µ− e conversion is given by [111]

Leff = −4GF√
2
[mµēσ

µν(ARPR +ALPL)µFµν + h.c.]

−GF√
2
[ē(gLS(q)PR + gRS(q)PL)µq̄q + ē(gLP (q)PR + gRP (q)PL)µq̄γ5q + h.c.]

−GF√
2
[ē(gLV (q)γ

µPL + gRV (q)γ
µPR)µq̄γµq

+ē(gLA(q)γ
µPL + gRA(q)γ

µPR)µq̄γµγ5q + h.c.]

−GF√
2

[

1

2
ē(gLT (q)σ

µνPR + gRT (q)σ
µνPL)µq̄σµνq + h.c.

]

. (5.16)

By comparing with Eq. (5.5) and Eq. (5.8) related to SM4 contribution, it leads to

AR =
e

32π2
λµeG2(x4), AL =

me

mµ
AR, gLV (q) =

e2

4π2
λµeVq . (5.17)

Note that gL,R(S, P, T (q)) vanish in SM4, and the contribution of gL(R)A is sup-

pressed since fraction of the coherent process is larger than incoherent one by ap-

proximately the factor of mass number of target nuclei in general [111]. All of the

related contributions are proportional to λµe. The conversion-to-capture ratio is

given by

BA
µ→e =

2G2
Fm

5
µ

ΓA
capt

|ARD + g̃
(p)
LV V

(p) + g̃
(n)
LV V

(n)|2 , (5.18)

where the overlapped functions D, V (p), and V (n) are defined in Appendix D. It is

also useful to define the ratio of µ− e conversion and µ→ eγ as follows

BA
µ→e

B(µ→ eγ)
= R0

µ→e(A)

∣

∣

∣

∣

1 +
g̃
(p)
LV V

(p)(A)

ARD(A)
+
g̃
(n)
LV V

(n)(A)

ARD(A)

∣

∣

∣

∣

2

,

R0
µ→e(A) =

G2
Fm

5
µ

192π2ΓA
capt

|D(A)|2 . (5.19)

We take the numerical values of D, V (p), and V (n) shown in Table 5.1 given from

method 1 in Ref. [111], with saturating the conversion-to-capture ratio to the ex-

periment bounds [106, 107, 108, 109]. The bound on coupling |λµe| as a function

of x4 is acquired, given in Fig 5.1. It shows that the µ − e conversion in Au pro-

vides the most stringent constraints in the present, mostly due to the tightest upper

bound from experiment. With mν4 & 100GeV, |λµe| is constrained to be less than

1.6× 10−5, which is still allowed by the current neutrino oscillation observation.
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A D(A) V (p)(A) V (n)(A) R0
µ→e(A)

27
13Al 0.0362 0.0161 0.0173 0.0027

32
16S 0.0524 0.0236 0.0236 0.0029

48
22Ti 0.0864 0.0396 0.0468 0.0041

197
79 Au 0.189 0.0974 0.146 0.0039

208
82 Pb 0.161 0.0834 0.128 0.0028

Table 5.1: The overlapped functions D, V (p), and V (n) related to µ − e conversion

on different atomic nuclei [111]. The numbers in last column is the values of R0
µ→e.

5.3 Comparison with µ→ eγ and µ→ 3e

Besides the µ−e conversion with the nuclei of atom, µ → eγ and µ−eēe are also

useful to give the tight bounds on |λµe|. The branching ratio of µ→ eγ is shown as

B(µ→ eγ) =
Γ(µ → eγ)

Γ(µ→ eνν̄)
= 384π2(|AL|2 + |AR|2) . (5.20)

In the above formula me is neglected. If me is kept, one should divide, in the above

expression, a phase factor I(x) = 1 − 8x + 8x3 − x4 − 12x2 ln x with x = m2
e/m

2
µ.

Radiative corrections from QED also modify the above expression by dividing a

factor 1 + δQED with δQED = (αe/2π)(25/4− π2). For µ → eēe, with the functions

G2(x), aR(x), and aL(x) given previously, the related branching ratio reads

B(µ→ eēe) =
α2
e

16π2
|λµe|2

[

a2R(x4) + 2a2L(x4)− 4G2(x4)(aR(x4) + 2aL(x4))

+4G2
2(x4)

(

4 ln
mµ

me
− 11

2

)]

. (5.21)

Recently MEG obtained a tighter upper bound Br(µ → eγ) < 2.4× 10−12 [112],

which is five times smaller than than the older result Br(µ→ eγ) < 1.2×10−11 [113].

The current experimental bound on µ → eēe is Br(µ → eēe) < 10−12 [75]. We also

plot the bounds on |λµe| constrained by experimental bounds on these two processes

in the SM4 in Fig. 5.1, too. The constraint on µ → eēe becomes tighter with

larger x4 due to the property of Z-penguin contribution. However, it shows that

µ → eγ and µ − e conversion can not provide smaller upper bounds on |λµe| than
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Figure 5.1: The upper bounds of the coupling |λµe| from experimental constraints

on µ− e conversion in Au, S, Ti, Pb, µ → eγ, and µ→ 3e, as the functions of mν4 .

that provided by µ− e conversion in Au or Ti.

Fig. 5.2 shows the ratios BA
µ→e/B(µ → eγ) and B(µ → eēe)/B(µ → eγ) as the

functions of mν4. These ratios are independent of |λµe|, and they imply the com-

parison of constraints on coupling among different LFV processes with the situation

that these LFV experimental bounds with the same order. BA
µ→e/B(µ → eγ) is

larger than 1 for most of the range of mν4. B(µ→ eēe)/B(µ→ eγ) is smaller than

1 for lower mν4 , and it becomes larger than 1 when mν4 & 800GeV. Each curve

in the figure increases with x4, since the Z-penguin GZ(x4) increases faster with x4

than G2(x2) for µ→ eγ.

There are several projected experimental sensitive which may be performed in

the future. MEG plans to perform the sensitive for B(µ → eγ) with the order

10−13 [114]; B(µ → eēe) will also be improved to 10−14 [115]; µ − e conversion

in Ti and Al may also be done in the future with the sensitive 10−18 and 10−16,

respectively [116, 117, 118]. We also plot them in Fig. 5.3 to constrain |λµe|. It

shows that the µ− e conversion in Ti can provide better constraint in the future.
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Figure 5.2: The ratios of µ − e conversion in Au, S, Ti, Pb, Al, and µ → 3e to

µ→ eγ, respectively, as the functions of mν4 .
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Figure 5.3: The upper bounds of |λµe|, constrained by projected sensitivities of

future experiments for µ → eγ [114], µ→ 3e [115], and µ− e conversion on Al [117]

and Ti [118], as functions of mν4 .
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Chapter 6

Conclusion

The standard model has been studied for a long period of time. It has been

examined and regarded as a very successful model in electroweak precision test, the

fitting of CKM matrix parameters. However, there remain some problems in the

SM which require further explanation. Three of theses have been discussed through

this thesis. We conclude these as follows.

We have built a model which constructs the CKM matrix by the spontaneous CP

violation, with the assumption that the spontaneous CP violating phase is identical

to the CKM matrix phase, up to a minus sign. In order to evade from the strong CP

problem for general multi-Higgs model, PQ mechanism should be applied into our

model. So we take three Higgs doublets and one Higgs singlet in the model to keep

the spontaneous CP violation and PQ symmetry with invisible axion simultaneously.

We have classified our model into Model (a), with two Higgs coupled to UR and

Model (b), with two Higgs coupled to DR. In each of these models different CKM

matrix parametrizations lead to different sub-models. Yukawa couplings just depend

on CKM mixing angles and quark masses. Then we knew the lightest Higgs mass

allowed by neutral meson mixing in experiments. In Model (a-M), D −D0 mixing

allows the Higgs mass around 100GeV. From K0 −K0 mixing lightest Higgs mass

should be at least TeV level in Model (a-KM). In Model (b-KM) 300GeV Higgs

mass is allowed by B0
s − B0

s mixing. The neutron EDM in our model can also be
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close to the current experimental bound.

We also applied the same idea to the lepton sector. The three gauge singlet

right-handed neutrinos acquire heavy Majorana masses after spontaneous symmetry

breaking. In Model (a) we also couple two Higgs to NR. The situation becomes more

complicated since the neutrino Dirac mass matrix depends on not only light and

heavy neutrino mass matrix but also a complex orthogonal matrix. In Model (b),

the building of Yukawa coupling in the lepton sector is almost the same as that in

quark sector. Two Higgs doublets are coupled to lR. We identified the PMNS matrix

phase with the spontaneous CP violating phase, which has already been identified

with CKM matrix phase. These models depend on PMNS matrix parametrization.

The Jarlskog invariant for modified standard parametrization (M-parametrization)

is −(0.033± 0.002); for KM-parametrization it is −(0.035± 0.003), which could be

probed to distinguish different model in the future.

In the second topic we discussed the Higgs decay in the seesaw models with large

heavy-light mixing UνN . In type-I seesaw, by the previous choices of UνN = U0
e,f , the

decay channel h→ νN can enhance more than 20% of total Higgs decay width from

the SM contribution. The choice of large UνN can satisfy experimental constraints

from total Z0 decay width and the cross sections of e−e+ → l−νl+ν. The dominant

decay channel of heavy neutrino N is the three body decay. Because of the very

short propagation distance of N from where h decays, N decays into three light

fermions before it can be detected. The detection of four body decay h → νff ′f ′′

might be a signal to look for such seesaw models. The Higgs decay can also be

enhanced in type-III by the decay channels h → νN and h → lE. However, the

enhancement can be only about a few percent, not as large as that in type-I seesaw.

In the last topic we studied the lepton flavor violating processes µ → eγ, µ − e

conversion, and µ → eeē in the SM with sequential four generations. The one loop

contribution involved with the fourth generation neutrino is the dominant contribu-

tion to these LFV processes. By comparing with current experimental upper bounds

for these processes, we found that µ−e conversion for Au nucleus provides the most
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stringent constraints on the coupling |λµe|, the couplings relevant for lepton flavor

mixing with fourth generation. For mν4 larger than 100GeV the coupling λµe should

be less than 1.6 × 10−5. We also applied the expected experimental upper bounds

for these LFV processes in the future to constrain λµe. The experiment for µ − e

conversion for Ti nucleus could result in the tightest constraint on fourth generation

coupling.

In this thesis I have completed the work about the phenomenology of relation

between spontaneous CP violation and CKM, PMNS mixing matrices, the Higgs

decay in seesaw model, and the comparison among lepton flavor violating processes

in SM4. These work may be helpful to improve the SM and solve some of its

problems. These models beyond the SM could be tested more precisely and more

accurately by experiments in the future.
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Appendix A

Higgs Mass Matrices

The neutral mass matrix elements will be given in the basis (H0
1 , H

0
2 , H

0
3 , H

0
4 ,

a1, a2, a3, a). We will introduce some of the notation for simplicity. A sequent of

three characters of s or c appearing in the formula indicates sine or cosine applied

to δ, δs, and δ + δs, respectively. The prime on the first of the three characters

corresponds to 2δ instead of δ. For example, ‘scs’ means ‘sin δ cos δs sin(δ+ δs)’ and

‘c′ss’ means ‘cos 2δ sin δs sin(δ + δs)’. The neutral mass matrix elements are shown

as

m2
H0

1
H0

1
=

2v21v
2
2

v212
(λ1 + λ2 − λ3 − λ4)

− 1

2v1v2v
2
12 sin δs sin(δ + δs)

{λ5v1v2[v41s′cs+ 4v21v
2
2c

′ss− v42s
′sc]

+λ6v
2
1[v

4
1(scs− 3css) + 6v21v

2
2css+ v42(−3css− ssc)]

+λ7v
2
2[v

4
1(scs− 3css) + 6v21v

2
2css+ v42(css− ssc)]

+((λ8 + λ′8)v
2
3 + d12v

2
s)[v

4
1(ccs+ scs) + 2v21v

2
2css+ v42(css− ssc)]} ;

(A.1)
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m2
H0

2
H0

2
=

2v23
v2v212

(λ1v
4
1 + λ2v

4
2 + λtv

4
12 + λsv

4
12 + λ3v

2
1v

2
2 − λ′3v

2
1v

2
12 − λ′′3v

2
2v

2
12

+λ4v
2
1v

2
2 − λ′4v

2
1v

2
12 − λ′′4v

2
2v

2
12 − f1v

2
1v

2
12 − f2v

2
2v

2
12 + f3v

4
12)

− v1v2
2v23v

2v212 sin δs sin(δ + δs)
{λ5v1v2[v4(s′cs− s′sc)− 4v43c

′ss]

+λ6v
2
1[v

4(scs− ssc)− 8v43css] + λ7v
2
2[v

4(scs− ssc)− 8v43css]

+(λ8 + λ′8)v
2
3[v

4(scs− ssc) + 8v212v
2
3css] + d12v

2
sv

4(scs− ssc)} ;

(A.2)

m2
H0

3
H0

3
=

2

v2
{λ1v41 + λ2v

4
2 + λtv

4
3 + (λ3 + λ4)v

2
1v

2
2 + (λ′3 + λ′4)v

2
1v

2
3

+(λ′′3 + λ′′4)v
2
2v

2
3} −

2v1v2
v2

{−λ5v1v2 cos 2δ

−2(λ6v
2
1 + λ7v

2
2 + (λ8 + λ′8)v

2
3) cos δ} ; (A.3)

m2
H0

4
H0

4
=

2

v4v2s
{(λ1v41 + λ2v

4
2)v

4
3 + λtv

4
3v

4
12 + λsv

4v4s + (λ3 + λ4)v
2
1v

2
2v

4
3

−v21v43v212(λ′3 + λ′4)− v22v
4
3v

2
12(λ

′′
3 + λ′′4) + v23v

2
sv

2(f1v
2
1 + f2v

2
2 − v212f3)}

− 2v1v2
v4v2s sin δ sin(δ + δs)

{λ5v1v2[v212v2(s′cs− s′sc)− v43c
′ss]

+λ6v
2
1[v

2
12v

2(scs− ssc)− 2v43css] + λ7v
2
2[v

2
12v

2(scs− ssc)− 2v43css]

+(λ8 + λ′8)v
2
3[v

2
12v

2(scs− ssc) + 2v212v
2
3css]

+d12v
2
s [v

2
12v

2(scs− ssc) + 2(v212 − v23)v
2
3css]} ; (A.4)
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m2
H0

1
H0

2
=

v1v2v3
v212v

(−2v21λ1 + 2v22λ2 + λ3(v
2
1 − v22) + λ′3v

2
12 − λ′′3v

2
12

+λ4(v
2
1 − v22) + λ′4v

2
12 − λ′′4v

2
12 + f1v

2
12 − f2v

2
12)

− 1

2v3vv
2
12 sin δs sin(δ + δs)

{λ5v1v2[v41s′cs+ v42s
′sc+ v21v

2
2(s

′cs+ s′sc)

+v22v
2
3(2c

′ss+ s′sc) + v21v
2
3(s

′cs− 2c′ss)]

+λ6v
2
1[v

4
1scs+ v42ssc+ v21v

2
2(scs+ ssc)

+v22v
2
3(6css+ ssc) + v21v

2
3(scs− 2css)]

+λ7v
2
2[v

4
1scs+ v42ssc+ v21v

2
2(scs+ ssc)

+v22v
2
3(2css+ ssc) + v21v

2
3(scs− 6css)]

+(λ8 + λ′8)v
2
3 [v

4
1(2css+ scs) + v42(ssc− 2css) + v21v

2
2(scs+ ssc)

+v22v
2
3ssc+ v21v

2
3scs] + d12v

2
s [v

4
1scs+ v42ssc+ v21v

2
2(scs+ ssc)

+v22v
2
3ssc+ v21v

2
3scs]} ; (A.5)

m2
H0

1
H0

3
=

v1v2
v12v

(2λ1v
2
1 − 2λ2v

2
2 − (λ3 + λ4)(v

2
1 − v22) + (λ′3 − λ′′3 + λ′4 − λ′′4)v

2
3

− 1

vv12
{λ5v1v2(v21 − v22) cos 2δ + λ6v

2
1(v

2
1 − 3v22) cos δ

+λ7v
2
2(3v

2
1 − v22) cos δ + (λ8 + λ′8)v

2
3(v

2
1 − v22) cos δ} ; (A.6)

m2
H0

2
H0

3
=

v3
v12v2

{−2λ1v
4
1 − 2λ2v

4
2 + 2λtv

2
12v

2
3 − 2(λ3 + λ4)v

2
1v

2
2

+(λ′3 + λ′4)v
2
1(v

2
12 − v23) + (λ′′3 + λ′′4)v

2
2(v

2
12 − v23)

+(f1v
2
1 + f2v

2
2 + f3v

2
3)v

2
12}

− 2v1v2
v2v12v3

{(λ5v1v2 cos 2δ + 2λ6v
2
1 cos δ + 2λ7v

2
2 cos δ)v

2
3

−(λ8 + λ′8)v
2
3(v

2
12 − v23) cos δ} −

d12v12v1v2v3(ssc− scs− 2css)

v2 sin δ sin(δ + δs)
;

(A.7)
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m2
H0

1
H0

4
=

v1v2v
2
3

v12v2vs
(−2λ1v

2
1 + 2λ2v

2
2 + (λ3 + λ4)(v

2
1 − v22) + (λ′3 − λ′′3 + λ′4 − λ′′4)v

2
12

−v1v2vs
v12

(f1 − f2)

− 1

v2v12vs
{−λ5v1v2(v21 − v22)v

2
3 cos 2δ − λ6v

2
1(v

2
1 − 3v22)v

2
3 cos δ

−λ7v22(3v21 − v22)v
2
3 cos δ + (λ8 + λ′8)v

2
3(v

4
1 − v42) cos δ − d12v

2
sv

2
12v

2
3 cos δ} ;

(A.8)

m2
H0

2
H0

4
=

2v3
v12v3vs

{λ1v41v23 + λ2v
4
2v

2
3 + λtv

4
12v

2
3 − λsv

2
sv

2
12v

2

+v21v
2
2v

2
3(λ3 + λ4)− (λ′3 + λ′4)v

2
1v

2
12v

2
3 − (λ′′3 + λ′′4)v

2
2v

2
3v

2
12}

+
v3vs
vv12

{f1v21 + f2v
2
2 − f3v

2
12}

− v1v2
v3v3v12vs sin δs sin(δ + δs)

{λ5v1v2[v212v2(s′cs− s′sc)− 2v43c
′ss]

+λ6v
2
1[v

2
12v

2(scs− ssc)− 4v43css] + λ7v
2
2[v

2
12v

2(scs− ssc)− 4v43css]

+(λ8 + λ′8)v
2
3[v

2
12v

2(scs− ssc) + 4v212v
2
3css] + d12v

2
s [v

2
12v

2(scs− ssc)− 2v2v23css]} ;

(A.9)

m2
H0

3
H0

4
=

v23
v3vs

{−2λ1v
4
1 − 2λ2v

4
2 + 2λtv

2
12v

2
3 − 2v21v

2
2(λ3 + λ4)

(λ′3 + λ′4)v
2
1(v

2
12 − v23) + (λ′′3 + λ′′4)v

2
2(v

2
12 − v23)}

−vsv
2

v3
{f1v21 + f2v

2
2 + f3v

2
3}

− v1v2
v3vs sin δ sin(δ + δs)

{λ5v1v2[(s′cs− s′sc)v212 + 2v23c
′ss]

+λ6v
2
1[(scs− ssc)v2 + 4v23css] + λ7v

2
2[(scs− ssc)v2 + 4v23css]

+(λ8 + λ′8)v
2
3[(scs− ssc)v2 − 2(v212 − v23)css] + d12v

2
sv

2(scs− ssc+ 2css)} ;

(A.10)
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m2
H0

1
a1

= −sin δ{λ5(v21 − v22) cos δ − v1v2(λ6 − λ7)} ; (A.11)

m2
H0

2
a1

= −sin δ

2v3v
{2λ5v1v2(v21 + v22 + 3v23) cos δ + λ6v

2
1(v

2
12 + 3v23)

+λ7v
2
2(v

2
12 + 3v23)− (λ8 + λ′8)v

2
3(v

2
12 − v23) + d12v

2
sv

2} ; (A.12)

m2
H0

3
a1

=
v12 sin δ

v
{2λ5v1v2 cos δ + λ6v

2
1 + λ7v

2
2 + (λ8 + λ′8)v

2
3} ; (A.13)

m2
H0

4
a1

= −v12 sin δ
v2vs

{2λ5v1v2v23 cos δ + (λ6v
2
1v

2
3 + λ7v

2
2v

2
3

−(λ8 + λ′8)v
4
12 + d12v

2
sv

2)} ; (A.14)

m2
H0

1
a2

=
v sin δ

2v3
{2λ5v1v2 cos δ + λ6v

2
1 + λ7v

2
2 − (λ8 + λ′8)v

2
3 + d12v

2
s} ;(A.15)

m2
H0

2
a2

= m2
H0

3
a2

= m2
H0

4
a2

= 0 , (A.16)

m2
a1a1 = − 1

2v1v2v212 sin δ sin(δ + δs)
{λ5v1v2(v41s′cs− v42s

′sc+ 2v412c
′ss)

+(λ6v
2
1 + λ7v

2
2 + (λ8 + λ′8)v

2
3 + d12v

2
s)(v

4
1scs− v42ssc+ v412css)} ;

(A.17)

m2
a2a2 = − v1v2v

2

2v212v
2
3 sin δ sin(δ + δs)

{λ5v1v2(s′cs− s′sc)

+(λ6v
2
1 + λ7v

2
2 + (λ8 + λ′8)v

2
3 + d12v

2
s)(scs− ssc)} ; (A.18)

m2
a1a2

= − v

2v212v3 sin δ sin(δ + δs)
{λ5v1v2(v21s′cs+ v22s

′sc)

+(λ6v
2
1 + λ7v

2
2 + (λ8 + λ′8)v

2
3 + d12v

2
s)(v

2
1scs+ v22ssc)} . (A.19)

The charged mass matrix elements are given by

m2
H+

1
H−

1

= − 1

2v212
(λ4v

4
12 + λ′4v

2
2v

2
3 + λ′′4v

2
1v

2
3)

− 1

2v1v2v212 sin δs sin(δ + δs)
{λ5v1v2[v41s′cs− v42s

′sc+ v412c
′ss]

+(λ6v
2
1 + λ7v

2
2 + λ8v

2
3 + d12v

2
s )[v

4
1scs− v42ssc+ v412css]

+λ′8v
2
3 [v

2
1(css+ scs) + v22(css− ssc)]} ; (A.20)
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m2
H+

2
H−

2

= − v2

2v212
(λ′4v

2
1 + λ′′4v

2
2)

− v1v2v
2

2v23v
2
12 sin δs sin(δ + δs)

{λ5v1v2(s′cs− s′sc)

+(λ6v
2
1 + λ7v

2
2 + λ8v

2
3 + d12v

2
s)(scs− ssc)

+λ′8v
2
3(scs− ssc+ 2css)} ; (A.21)

m2
H+

1
H−

2

= −v1v2v3v
2v212

(λ′4 − λ′′4) +
v

2v3v212 sin δs sin(δ + δs)

{λ5v1v2(v21s′cs+ v22s
′sc+ iv212s

′ss)

+(λ6v
2
1 + λ7v

2
2 + λ8v

2
3 + d12v

2
s )(v

2
1scs+ v22ssc+ iv212sss)

+λ′8v
2
3 [v

2
1(css+ scs) + v22(ssc− css)]} . (A.22)
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Appendix B

Light Neutrino Mass in Seesaw

Mechnism

The formalism related to seesaw mechanism with more than one generation heavy

neutrinos have been solved very early [78]. We use the notation in Ref. [85] to obtain

some relations in type-I seesaw. At the beginning the relation between transforma-

tion matrix U and Mseesaw is given by







Uνν UνN

UNν UNN













M̂ν 0

0 M̂N













UT
νν UT

Nν

UT
νN UT

NN






=







0 MD

MT
D M̂R






. (B.1)

The above relation leads to the following formulae

UννM̂νU
T
νν + UνNM̂NU

T
νN = 0 ; (B.2)

UννM̂νU
T
Nν + UνNM̂NU

T
NN = MD ; (B.3)

UNνM̂νU
T
Nν + UNNM̂NU

T
NN = M̂R . (B.4)

Eq. (B.2) is the usual relation to determine the scale of UνN in type-I seesaw. The

unitarity property of U provides that UνN and UNν should be of the same order of

magnitude. Eq. (B.4) with the condition that the magnitude of M̂N is larger than

that of M̂ν gives UNN ≃ 1, which leads to

UνN ≃MDM̂
−1
N (B.5)
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from Eq. (B.3). Finally, the unitary condition UNν = −(U †
NN )

−1U †
νNUνν leads to

UNν ≃ −M̂−1
N M †

DUνν . (B.6)

Combining Eq. (B.2) and Eq. (B.5) provides a useful relation

UννM̂νU
T
νν ≃ −MDM

−1
N MT

D . (B.7)
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Appendix C

Large Mixing Matrix

There are a lot of ways to choose the form of such U0, and only several cases

taken in this thesis are shown below [85]

Ua
0 =













a a i
√
2a

b b i
√
2b

c c i
√
2c













R , Ud
0 =













0 a ia

0 b ib

0 c ic













R ,

Ue
0 =













0 0 0

0 a ia

0 b ib













R , Uf
0 =













0 a ia

0 0 0

0 b ib













R . (C.1)

Note that for different U0 the appropriate choices of a and b are also different. The

parameters we take from Ref. [85] are given by

Ua
0 : a = (0.58− 0.81i)b̄, , b = (0.58 + 0.41i)b̄, , c = (0.58 + 0.41i)b̄ ;

Ud
0 : a = −0.82ā, , b = (0.41 + 0.66i)ā, , c = (0.41− 0.66i)ā ;

Ue
0 : b = a ;

Uf
0 : b = (0.013 + 1.03i)a . (C.2)
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Appendix D

Overlapped functions in Nucleon

The appendix follows the discussion in Ref. [111]. The electron and bounded

muon in a nucleus can be described by wave functions satisfying time independent

Dirac equation with a Coulomb potential V (r)

[−iα · ∇+mβ + V (r)]ψ(r) = Eψ(r) . (D.1)

The general solution of Dirac equation for muon and electron is expressed in the

form

ψ1s
µ =







g−µ (r)χ−(θ, φ)

if−µ (r)χ+(θ, φ)






, ψ−

e =







g−e (r)χ−(θ, φ)

if−e (r)χ+(θ, φ)






, (D.2)

where the symbols + and − correspond to the eigenvalues of K operator in Dirac

space. The 1s muon bound state is given by [119]

g−µ (r) =
(2mZα)3/2√

4π

√

1 + γ

2Γ(1 + 2γ)
(2mZαr)γ−1e−mZαr ,

f−
µ (r) =

(2mZα)3/2√
4π

1− γ

Zα

√

1 + γ

2Γ(1 + 2γ)
(2mZαr)γ−1e−mZαr , (D.3)

where γ =
√
1− Z2α2. The electron wave function with κ = −1 is given by [121]

g−e (r) = (Er)γ−12
γeπαZ/2|Γ(γ + iαZ)|

Γ(1 + 2γ)

Re[(γ + iαZ)eiφe−iErF (1 + γ + iαZ, 1 + 2γ; 2iEr)] ,

f−
e (r) = −(Er)γ−1 2

γeπαZ/2|Γ(γ + iαZ)|
Γ(1 + 2γ)

Im[(γ + iαZ)eiφe−iErF (1 + γ + iαZ, 1 + 2γ; 2iEr)] , (D.4)
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where the approximation me ≈ 0 is taken, and exp(2iφ) = −E/(γ + iαZ), F is

the hypergeometric function. To calculate the µ − e conversion rate, some of the

overlapping functions D, V (p), and V (n) are defined as follows

D =
4√
2
mµ

∫ ∞

0

drr2[−E(r)](g−e f−
µ + g−µ f

−
e ) ;

V (p) =
1

2
√
2

∫ ∞

0

drr2Zρ(p)(g−e f
−
µ + g−µ f

−
e ) ;

V (n) =
1

2
√
2

∫ ∞

0

drr2(A− Z)ρ(n)(g−e f
−
µ + g−µ f

−
e ) . (D.5)

where ρ(p), ρ(n) are the density distribution for proton and neutron, respectively.

E(r) is the electric field with the distance r from the nucleus, which also depends on

the proton distribution function. Experiments have determined the ρ(p) for many of

the atomic nuclei [120]. We only list two types of the functions to fit the ρp [120]

Fourier-Bessel expansion: ρ(p)(r) =

{

∑

v avj0(vπr/R) , r ≤ R ,

0 , r > R ;
(D.6)

Two parameter Fermi model: ρ(p)(r) =
ρ0

1 + exp[(r − cp)/zp]
, (D.7)

where av is the coefficient, j0 is the zeroth order Bessel function, and R is some

radius. cp and zp are two parameters in the Fermi model, and ρ0 is used to normalize

the density distribution. For neutron distribution function, one of the method in

Ref. [111] is to take it simply as the same function as that of proton.
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