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Chapter 1
Introduction

The word “hadron” was introduced in the sixties to name particles that in-
teract strongly. Nowadays it is known that these particles are part of two
different groups: mesons and baryons, which have integer and semi-integer
spin, respectively. In 1961, Murray Gell-Mann [1] and, independently, Yuval
Ne’eman [2] proposed a model to explain the properties of these hadrons.
According to this model, the hadrons were composed by more fundamental
particles called quarks and their antiparticles. This model was very success-
ful in explaining properties as the relations between the masses of different
hadrons as well as to predict the existence of new ones. It also allowed to
group the large amount of discovered hadrons into multiplets of defined spin
and parity. This model was known as the Eightfold-Way or, in more technical
terms, SU(3) flavor symmetry (SU(3)F ). Quarks also need to have an extra
degree of freedom called color charge. This is so because in the quark model
the ∆++ baryon is composed by only one type of quark (the up quark) with
parallel spins, so as to to have total spin equal to 3/2. The quarks need an
additional degree of freedom in order to build from them an antisymmetric
wave function [3]. That additional degree of freedom was proposed via an
additional SU(3) gauge symmetry associated with a conserved charge called
color.♯1 This gauge symmetry associated with color predicts the existence of
an octet of gauge bosons that are known as gluons, which carry the strong
interaction.

Despite the great success of the quark model, the existence of quarks was
a mere hypothesis since they had not been experimentally observed before. It
was not until 1968 that deep inelastic scattering experiments at the Stanford
Linear Accelerator Center (SLAC) showed that the proton contained much

♯1From now on we will refer to this gauge group as SU(3)C .
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1 Introduction

smaller point-like particles that could be identified with the hypothesized
quarks. However, this experiment showed puzzling results since while many
theorists of that time suspected that field theory became infinitely strong
at short distances (Landau pole), the SLAC results showed that the strong
interaction was weaker at high energies. The puzzle was solved in 1973 with
the discovery by Gross, Wilczek and Politzer that non-Abelian gauge theories
like SU(3)C exhibit a property known as asymptotic freedom.♯2 This property
implies that at high energies the quarks behave as free particles, explaining
the deep inelastic scattering results obtained at the SLAC. On the other
hand it also pointed out a possible reason of why quarks were not observed
as isolated states, because the same calculation lead to a stronger interaction
in the low energy regime. This is known as the confinement hypothesis.♯3

A Lagrangian formulation that deals with quarks as the fundamental
degrees of freedom describing their interaction through their SU(Nc)

♯4 gauge
symmetry exist and is known as Quantum Chromodynamics (QCD). The
Lagrangian of QCD can be written in the following compact form:

LQCD =
∑

u,d,...

q̄i
(
i /D −mqi

)
qi −

1

4
Ga

µνG
µν
a (1.1)

Where qi denotes the Nc-multiplet corresponding to the quark u,d,. . . ,
Dµ is the covariant derivative in the colour space, mqi is the mass of the
quark qi (the same in the Nc-multiplet) and Gµν is the gluon field.

In order to study the symmetries of the strong interaction we will take
the following part of the QCD Lagrangian:

L0
QCD =

∑

u,d

iq̄i /Dqi = iū /Du+ id̄ /Dd (1.2)

It was pointed by Heisenberg [4] in the thirties than protons and neutrons
(also called nucleons) have almost the same mass, and the strength of the
strong interaction between them is the same, independently of whether they
are protons or neutrons. Because the quark content of the proton and neutron
was determined to be uud and udd respectively, at the quark level it means
that the u and d quarks are almost identical from the strong interaction
point of view. In the massless limit because of L0

QCD they behave in the
same way. Due to this fact, is a good idea to group them in a doublet, called

♯2This discovery led them to win the Nobel Price in Physics in 2004.
♯3Confinement is an hypothesis since there is no formal proof nowadays.
♯4SU(Nc) is the generalization of the SU(3)C symmetry to an arbitrary number of colors

Nc.
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1 Introduction

in the literature isospin-doublet or isodoublet, and rewrite (1.2) in terms of
this isodoublet:

L0
QCD = iψ̄ /Dψ (1.3)

Where ψ =

(
u
d

)
is the isospin-doublet.♯5 The Lagrangian (1.2) is

invariant under rotations in the space defined by the quarks that constitute
the isodoublet, also called isospin space. Mathematically, the transformation
can be defined by:

(
u
d

)
→ exp

(
iθVi τ

i + iγ5θ
A
i τ

i
)( u

d

)
(1.4)

Where the τ i are the so-called isospin matrices (Pauli matrices divided
by two) and obey the isospin algebra of SU(2) [τi, τj] = iǫijkτk. One can
check easily that (1.3) is invariant under (1.4).

We can take τi and γ5τi ≡ τ̃i as the generators of these transformations,
satisfying the following algebra:

[τi, τj ] = iǫijkτk

[τi, τ̃j ] = iǫijkτ̃k

[τ̃i, τ̃j ] = iǫijkτk (1.5)

This Lie algebra can be decoupled into two commuting SU(2) subalge-
bras that act independently on the left- and right-handed part of the quark
fields.This is the so called chiral symmetry.

The generators of this SU(2)L × SU(2)R algebra are:

τ iL =
1

2
(1 + γ5)τ

i, τ iR =
1

2
(1− γ5)τ

i (1.6)

And satisfy:

[τLi, τLj ] = iǫijkτLk (1.7)

[τRi, τRj ] = iǫijkτRk (1.8)

[τLi, τRj ] = 0 (1.9)

As we argue later, this SU(2)L×SU(2)R symmetry is spontaneously bro-
ken into the isospin SU(2)V subgroup, that remains unbroken, according to

♯5This procedure can be generalized to Nf -multiplet, where Nf is the number of quark
flavours. We would have for (1.2) a sum over the s,c,. . . quarks.
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1 Introduction

the Vafa-Witten theorem [5]. On the other hand, an insertion of a mass term
in (1.2), like the one of Eq.(1.1), explicitly breaks the symmetry generated
by axial transformations associated to the generators τ̃i = γ5τi, but this will
be considered later.

According to Noether’s theorem, we can derive from (1.3) the conserved
currents at the classical level from L0

QCD, Eq.(1.2):

~V µ = iψ̄γµ~τψ, ~Aµ = iψ̄γµ~̃τψ = iψ̄γµγ5~τψ (1.10)

∂µ~V
µ = 0, ∂µ ~A

µ = 0 (1.11)

Where ~τ = (τ1, τ2, τ3), ~̃τ = (τ̃1, τ̃2, τ̃3).
The charges associated to these currents are:

~QV =

∫
d3x~V 0, ~QA =

∫
d3x ~A0 (1.12)

The vector and axial charges, ~QV and ~QA respectively, satisfies the same
commutation relations as the matrices τ and τ̃ :

[QV i, QV j] = iǫijkQV k (1.13)

[QV i, QAj] = iǫijkQAk (1.14)

[QAi, QAj] = iǫijkQV k (1.15)

Acting on the isodoublet of quantum fields ψ, these charges induce the
transformation (1.4) that, at infinitesimal order can be written as:

[
~QV , ψ

]
= −~τψ (1.16)

[
~QA, ψ

]
= −~̃τψ = −γ5~τψ (1.17)

If the symmetry represented by (1.4) were exact, for each hadronic state

|h〉 we would have another hadronic state ~QA|h〉 with the same quantum
numbers except parity, that would be opposite to |h〉.♯6 However, no such
parity doubling is observed in the hadron spectrum (see Fig. 1.1). So, if we
want to use the chiral symmetry SU(2)L × SU(2)R

♯7 as an approximation to

♯6Though ~QA|h〉 is not normalized for |h〉 being a plane wave, it is so for a wave package.
♯7One can extend this idea to SU(Nf)L × SU(Nf )R.
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1 Introduction

hadronic interactions, we must assume that this symmetry is spontaneously
broken into its isospin subgroup SU(2)V [5], that is SU(2)L × SU(2)R →
SU(2)V .

On the other hand, a spontaneously broken chiral symmetry entails the
existence of massless Goldstone bosons [6, 7] with the same quantum numbers

as the broken symmetry generators ~QA. Hence, they must have zero spin,
negative parity, unit isospin, zero baryon number and zero strangeness.♯8
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Figure 1.1: Hadron spectrum up to 1.3 and 1.5 GeV for mesons and baryons
respectively, distinguishing between hadrons with positive parity (P = +1) and
negative parity (P = −1). Blue (red) lines refer to baryons with J = 1/2 (J =
3/2), green (yellow) lines refer to mesons with J = 0 (J = 1), and s refers to their
strangeness content.

Taking a look on Fig. 1.1, one realizes that the lightest of all hadrons is
the pion, which has these quantum numbers precisely. That fact leads us to
consider the pions as the Goldstone bosons associated with the spontaneous
breaking of the chiral symmetry.♯9 The pion has finally a finite, albeit small,

♯8The zero strangeness is a requirement for the case Nf = 2 only.
♯9The Goldstone theorem is explained in the Appendix A.
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1 Introduction

mass because of the explicit chiral symmetry breaking in LQCD due to the
quark masses.

The fact thatQa
A|0〉 6= 0 and the consideration of the pion (π) as the Gold-

stone boson of the broken axial symmetry allow us to deduce 〈0|Qa
A|πa〉 6= 0.

Considering that Qa
A is the spatial integral of the time component of the four-

vector Aµ
a and assuming Lorentz covariance, we can extrapolate this result to

the axial current: 〈0|Aµ
a |πa〉 6= 0. Considering the four-vector transformation

properties of this matrix element, it is usually parameterized in the literature
as:

〈0|Aµ
a |πb(p)〉 = ifπp

µδab (1.18)

Where the constant fπ is the so-called weak decay constant of the pion,
because tell us the strength of the pion weak decay. Taking the divergence
of the axial current, which is equivalent to multiply the right hand side of
Eq.(1.18) times −ipµ, gives:

〈0|∂µAµ
a |πb(p)〉 = fπp

2δab (1.19)

One sees clearly from this relation that the exact spontaneously broken
chiral symmetry leads to a vanishing mass for the pions (Goldstone bosons)
and any difference from zero must come form a non-vanishing mass. Eq.(1.19)
also allow us to parameterize the divergence of the axial current as a term
proportional to the pion mass squared and a single pion operator, what would
lead us to the celebrated partially conserved axial-vector currents (PCAC) [8].
From PCAC is straightforward to deduce the successful Goldberger-Treiman
relation [9]:

gπN =
gAmN

fπ
(1.20)

Which, besides the nucleon massmN , relates strong interaction quantities
as the pion-nucleon coupling gπN with weak interaction quantities as the
nucleon axial coupling gA and the pion weak decay constant fπ.

From the historical point of view, the development of these ideas started
with the Goldberger-Treiman relation in 1957 on the basis of a dynamical
calculation of the pion decay. In order to explain the surprising success
of this approximate calculation, the idea of PCAC was introduced. Later,
Nambu and Jona-Lasinio [10] recognized that the appearance of this massless
or nearly massless pion was a symptom of a broken exact or approximate

14



1 Introduction

symmetry. Subsequently, Goldstone [6] remarked that broken symmetries
always entail massless bosons, and this was proved in 1962 by Goldstone,
Salam and Weinberg [7]. The nature of the broken symmetry group became
important only with the consideration of processes involving more than one
pion, starting with the Adler-Weisberger sum rule in 1965 [11], whose success
showed that the broken symmetry is indeed SU(2)L × SU(2)R.

As we will see in the next chapter, the existence of an spontaneously
broken chiral symmetry in the low energy region of the strong sector provide
us powerful tools to treat systematically and perturbatively low energy process
involving the strong interacting Goldstone bosons. These tools are included
in what is nowadays known as Chiral Perturbation Theory (ChPT). In this
thesis we will use this theory to study the elastic πN scattering and the
S-wave scattering of φ(1020)f0(980) and φ(1020)a0(980).

Studying πN scattering is interesting because is a hadronic reaction that
gives access to some of the most prominent and fundamental questions re-
lated to the strong interactions [12]. At low energies, it allows to test the
dynamical constraints imposed by the chiral symmetry of QCD in one of the
simplest processes involving a nucleon [13]. It is also essential to understand
πN scattering for a first-principle approach to the nuclear structure, as the
long-range part of the NN interactions is given by the exchange of pions [14].
As such, it is also a remarkable process to study the role played by isospin vio-
lation in nuclear phenomena [15]. At higher energies, πN scattering provides
a probe to explore the baryonic spectrum of QCD or to study the proper-
ties of these states [16, 17]. Experimental data on differential cross sections
and polarization observables have been collected in the last 50 years, and
more intensively in the last decade thanks to fully dedicated experiments at
meson factories. The usual way to organize the experimental information is
by means of energy-dependent parameterizations of the scattering amplitude
projected in partial waves (PW), fitted to the data and supplemented with
unitarity and analyticity constraints. These analyses provide an accurate
representation in PWs of the data included in the parameterizations, which
can be used to extract values of scattering parameters and strong coupling
constants or to identify the effect of resonances in the different isospin-angular
momentum channels.♯10

In spite of the very long and sustained effort in studying the πN scattering
amplitude, there are fundamental questions concerning this process that have
not been satisfactorily answered yet. For instance, it is still unclear the exact

♯10See the classical treatise of Höhler [12] for an exhaustive review on the πN scattering
amplitude. For updated descriptions of the current experimental situation and data see
Refs.[17, 18].
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1 Introduction

value of the pion-nucleon coupling constant gπN and, therefore, the amount
of violation of the Goldberger-Treiman (GT) relation [9], though it is known
that it should be smaller than around 4% [19]. Another open question in the
low-energy regime is the extraction of an accurate value of the pion-nucleon
sigma term, σπN . This quantity and the isoscalar scattering amplitude can
be related in the unphysical region of the Mandelstam plane, namely at the
soft (Weinberg) point and at Cheng-Dashen (CD) points [20]. The latter is
specially appropriate for determining σπN since it can be reached by analytic
continuation of the scattering amplitude. However, there still exists a sizable
discrepancy between the values obtained from different PW analyses [21].
Given the importance that the sigma terms have in our understanding of
the origin of the mass of the ordinary matter and in constraining super-
symmetric models from direct searches of dark matter [22, 23], there is an
intensive campaign for obtaining these observables using model-independent
methods [21, 24]. Besides that, it is important to determine accurately the
πN scattering parameters. The scattering lengths ought to be compared with
those obtained from the analysis of the accurately measured 1S level shift in
pionic hydrogen and deuterium [25]. An alternative source of phenomeno-
logical information on the scattering parameters is given by the analyses of
the NN interaction [14].

On the other hand, it remains a challenge for the theory to understand
hadronic processes directly from the parameters and dynamics of the under-
lying QCD. Important progress in the computation of meson-meson, meson-
baryon and baryon-baryon scattering lengths in unquenched lattice QCD
(LQCD) has been reported [26], although those of the πN system are still
computationally prohibitive. Nevertheless, results were obtained in a pio-
neering quenched calculation [27] and, more recently in an unquenched cal-
culation, an S-wave scattering phase shift in the I = 1/2 channel has been
extracted from the negative-parity single nucleon correlation function [28].
The LQCD simulations are often run with quark masses heavier than the
physical ones and their results require a careful chiral extrapolation to the
physical point.

Chiral Perturbation Theory (ChPT), as the effective field theory of QCD
at low energies [29, 30, 31], is a suitable framework to build a model-independent
representation of the πN scattering amplitude and to tackle some of these
problems.♯11 An interesting feature of ChPT is that, regardless of the specific
values of the LECs, it inherits the chiral Ward-Takashi (WT) identities of
QCD among different Green functions [31]. Some of these identities at lead-
ing order in the chiral expansion were obtained using PCAC and Current-

♯11For comprehensive reviews on ChPT see Ref.[32, 33, 34].
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Algebra methods in the fifties and sixties, conforming what has been known
as low-energy theorems since then [35]. Remarkable examples of these theo-
rems in the πN system are the above-mentioned GT relation and the one at
the CD point between σπN and the scattering amplitude. Another interesting
examples are the Weinberg predictions for the scattering lengths [36] or the
Adler condition for the isovector πN scattering amplitude [8]. Then, ChPT
is a suitable framework to investigate up to which extent the low-energy the-
orems apply since it allows to compute systematically the higher-orders in
the chiral expansions of the corresponding WT identities.

However, the one-baryon sector of ChPT has some specific problems that
complicates its treatment respect the mesonic sector. Namely, on the con-
trary to the mesons (identified with the Goldstone bosons), the baryons can-
not be considered as soft particles and introduce a new heavy scale in the
theory. This heavy scale (of the order of the baryon mass mB) breaks the
homogeneity of the chiral amplitude since mB/ΛχSB is not a small quantity.
This becomes a problem if one wants to compute the quantum corrections
to a given process or magnitude. In this case the contribution of the loop
diagrams with baryon loops do not follow the hierarchy of the perturbative
expansion and one finds that loop diagrams including baryonic propagators
can contribute to any order. This is certainly a major problem for any per-
turbative theory since invalidates the reliability of a perturbative calculation
up to a given order. Fortunately, this problem has solution. One possibility
is to integrate out the heavy degrees of freedom of the baryon through a
non-relativistic Foldy-Wouthuysen transformation [37]. In this way one only
has to deal with the soft components, that follow the standard power count-
ing of ChPT. This is the so-called Heavy Baryon Chiral Perturbation Theory
(HBChPT). However, the radius of convergence of the HB expansion is lim-
ited and insufficient in many cases, so it is desirable to retain the good ana-
lytical properties of a relativistic calculation. In this thesis we study deeply
the properties and convergence of two methods that allow us to recover the
standard power counting of BChPT keeping its covariant formulation. These
are the Infrared Regularization scheme (IR), that we present in Chapter 4,
and the Extended-On-Mass-Shell scheme (EOMS), in Chapter 5. The suc-
cess of covariant BChPT could provide answers to the still open questions
regarding πN interaction as well as to give model-independent predictions to
related quantities as the scattering lengths, the pion-nucleon coupling, and
the pion-nucleon sigma term, which are still subject of great controversy,
specially the latter.

A more phenomenological application of ChPT is presented in Chapter 6.
There, we study the scattering φ(1020)f0(980) and φ(1020)a0(980) and the
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1 Introduction

relation of the former with the resonance φ(2170) (or Y (2175), as we will refer
to it from now on). This is a resonance with quantum numbers JPC = 1−−

and mass around 2.15 GeV that was observed by the BABAR Collaboration
for fist time in the reaction e+e− → φ(1020)f0(980) [38]. These experimental
findings have renewed the theoretical interest in the region of the Y (2175).

Several proposals trying to address the nature and properties of this res-
onance have been done. Among them, it was suggested in [39] that the
Y (2175) could be a tetraquark state or, as Ref.[40] proposed, a φ(1020)KK̄
molecular state. Our investigations, reported in [41] and included in Chapter
6, indicates that the Y (2175) has at least a large φ(1020)f0(980) component.

The organization of this thesis is as follows: In Chapter 2 we explain how
to exploit the spontaneously broken chiral symmetry of the strong interac-
tions to construct an effective field theory that allow us to apply perturbation
theory to low energy strong interacting processes that involve the Goldstone
bosons. In order to do so, we follow the seminar papers of Coleman, Wess,
Zumino together with Callan for the second one [42]. In Chapter 3 we intro-
duce the reader to the fascinating world of πN scattering. We present the
importance that the study of this reaction has for different fields in physics
and how it has been studied using different approaches. Apart from ChPT,
we pay special attention to the partial wave analyses because they have been
the main method used to extract information from πN scattering data. In
this chapter we mention the problems that ChPT has when one baryon field
is included in the theory and present the current approaches of ChPT with
baryons (BChPT) to treat them. We also comment the advantages and lim-
itations of every approach and the interesting results obtained in each one.
In Chapter 4 we present our calculation of the πN scattering amplitude us-
ing the Infrared Regularization scheme (IR) [21] where we also, for the first
time in the literature, unitarize the resulting πN partial waves in IR. We
study the phase shifts provided by different partial wave analyses and over-
come the difficulties that [43] encountered to fit them. We prove that the IR
description of the phase shifts is of the same quality as those of HBChPT,
being able to reproduce them up to energies of

√
s ≈ 1.14 GeV. But the

most striking results concerns to the deviation to the Goldberger-Treiman
relation (∆GT ) that IR obtains. In this case, a value of ∆GT ≈ 20–30%
is obtained, what is in clear contradiction to theoretical and experimental
bounds that point to a value of . 4%. This puzzle triggered our calculation
in the other covariant scheme, Extended-On-Mass-Shell (EOMS) [44]. This
calculation is presented in Chapter 5 where first, we compare our IR results
of [21] with our EOMS [44] ones. Later, we introduce the ∆(1232) resonance
as an explicit degree of freedom and achieve an excellent convergence in the
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low energy region that lies below the ∆(1232) region. Thanks to that ex-
cellent convergence, we could extrapolate our chiral amplitude fitted in the
physical region to the subthreshold domain and extract the values of differ-
ent subthreshold quantities. We show that these extracted values are in good
agreement with the values obtained using dispersive methods. We conclude
that, contrary to what is obtained in HBChPT or IR, the EOMS amplitude
with the ∆(1232) as an explicit degree of freedom can connect both the phy-
sical region with the subthreshold one. As we show in the same Chapter, the
good convergence of the EOMS calculation allows us to extract from PWAs
a reliable value of the pion-nucleon sigma term [45]. We also study the be-
havior of the EOMS amplitude under unitarization methods and show that
the unitarized EOMS amplitude achieves a much better description than the
one obtained in IR. In Chapter 6 we study the φ(1020)f0(980) scattering
in S-wave near threshold determining the φKK̄ scattering amplitude from
chiral Lagrangians. Then we construct the f0(980) as a bound state from
the rescattering of two kaons in an I = 0, S-wave state, and determine the
amplitude by resuming the unitary loops or right-hand cut. We find resonant
peaks with mass and width in agreement with those of the Y (2175) and de-
scribe the e+e− → φ(1020)f0(980) scattering data. The results obtained from
our approach show that the Y (2175) has at least a large a φ(1020)f0(980)
component. Later, we extrapolate these results to the I = 1 case to study
the φ(1020)a0(980) S-wave scattering. We show that if the properties of the
a0(980) are taken from the N/D method, a visible peak is clearly observed
around 2.03 GeV, that would imply the presence of a dynamically generated
isovector 1−− resonance [46]. This supports the idea that a study of the
e+e− → φ(1020)a0(980) reaction might provide novel relevant information
about hadronic structure and interactions around the 2 GeV region. Finally,
in Chapter 7 we summarize briefly the subjects studied in this thesis and
present the most relevant conclusions, with the prospects of apply them to
forthcoming researches.
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Chapter 2
Chiral Perturbation Theory

From the previous chapter is clear that the chiral symmetry is spontaneously
broken and according to the Goldstone theorem we have massless, spin zero,
pseudoscalar bosons in the hadron spectrum identified with the pions.♯1 In
this chapter we will deal with the problem of studying the dynamics of these
particles. The aim is to obtain a Lagrangian describing the dynamics of
these Goldstone bosons and its transformation properties, which should be
invariant under a variety of inner symmetry transformation groups and on
the group of Poincaré. One example of such kind of Lagrangians is the SO(4)
invariant σ-model:

L =
1

2
∂µφn∂

µφn −
M2

2
φnφn −

λ

4
(φnφn)

2 (2.1)

Where n is summed over the values 0, 1, 2, 3, and φ0 and ~φ are an isoscalar
and isovector scalar fields, respectively. However, we do not have any reason
to consider λ as a small parameter in order to apply perturbation theory. For
such kind of theories we would need either to include all Feynman diagrams
of all orders of perturbation theory or find a criterion to drop higher-order
diagrams. For this reason is convenient to write the Lagrangian describing the
Goldstone bosons interactions by means of derivative couplings since, due to
the Goldstone boson nature of the pions, the interactions weaken along with
the energy of the process. In that case, we can establish a hierarchy between
all the possible Feynman diagrams and expand the scattering amplitudes by
means of a perturbative expansion in powers of Goldstone bosons energies

♯1Pions are not massless in the real world because of the explicit breaking of chiral
symmetry due to the quark masses.
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2 Chiral Perturbation Theory

If the fields transform linearly under the symmetry group, the classifi-
cation of all possible field-transformations reduces to the standard problem
of representation theory. However, for phenomenological applications the
situation is often more complicated since the fields only transform linearly
under a certain subgroup that leaves the vacuum invariant. Fortunately, it is
possible to classify all possible nonlinear realizations of an internal symmetry
group which become linear when restricted to a given subgroup and cons-
truct in a systematic way nonlinear Lagrange densities which are invariant
under the nonlinear field transformations [42]. In this realization the La-
grangian is suited for perturbative theory since the Goldstone bosons appear
accompained by space-time derivatives. On the other hand, these Goldstone
bosons operators generate higher order divergences from loops corrections,
that need to be absorbed by new higher order operators, that is, the theory
is non-renormalizable.

The range of validity of the perturbative description will be limited within
a range of energies, whose upper limit will be denoted by ΛχSB. The value
of ΛχSB can be established in two ways. First, we can take into account
that a perturbative expansion has no sense in a resonance region, where non-
perturbative effects are crucial. If one looks at the hadron spectrum one
sees that the first resonance is the ρ, that has a mass of Mρ = 700 MeV,
so one could establish ΛχSB = Mρ = 700 MeV. On the other hand, ΛχSB

can be associated with the characteristic scale that fixes the size of the loop
corrections. Under changes of the renormalization scale µ ofO(1) one obtains
that ΛχSB ≃ 4πfπ ≃ 1.2 GeV [47]. So, the perturbative expansion makes
sense only for a range of energies below ΛχSB ∈ 0.7–1.2 ∼ 1 GeV.

In this chapter we will show how to construct an invariant Lagrangian un-
der a symmetry group G which transforms linearly under a certain subgroup
H ⊂ G that leaves invariant the vacuum. In Sec. 2.1 we set a equivalence
criterion between different nonlinear realizations based on a property of local
field theory. Later, in Sec. 2.2 we study the transformation properties under
G and H of the fields used in our phenomenological approach. Section 2.3
is dedicated to classify all the nonlinear realizations based on the transfor-
mation properties obtained in Sec. 2.2. We also present there a theorem
which allow us to write the phenomenological Lagrangians in terms of the
fields that transform linearly, leaving the nonlinearly transforming fields as
the coordinates of the G/H group. In Sec. 2.4 we study the relations between
linear and nonlinear transformations. In Sec. 2.5 we calculate the covariant
derivatives associated with the group G using the transformation properties
of the different fields and from the definition of the standard coordinates.
We specify this calculation to the chiral group in Sec. 2.6 and extend these
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2.1. Properties of nonlinear Lagrangians

ideas to a gauge group in Sec. 2.7. Finally, in Sec. 2.8 we establish a hier-
archy between the different Feynman diagrams of a perturbative calculation
by introducing a power counting, and in Sec. 2.9 we construct effective La-
grangians based in the results of Sec. 2.6 and applying the power counting
of Sec. 2.8. The set of the techniques described in this chapter form what is
called Chiral Perturbation Theory.

2.1 Properties of nonlinear Lagrangians∗

In order to have an equivalence criterion between different nonlinear realiza-
tion, we will consider equivalent the transformations that leave unchanged
the on-shell S-matrix elements.

Suppose we have a Lagrangian written in terms of the field φ:

L[φ] = L0[φ] + L1[φ] (2.2)

Where L0[φ] is the free part of the Lagrangian and L1[φ] is the interacting
part. If we make a local, nonlinear change of variables:

φ = χF [χ] , F [0] = 1 (2.3)

We will have, in terms of χ, the following Lagrangian:

L[χF [χ]] ≡ L0[χ] + L2[χ] (2.4)

With L0[χ] the same as L0[φ] but substituting φ → χ. In this way
we have the new interaction L2[χ]. Because F [0] = 1, both φ and χ cre-
ates/annihilates the same particle, and we can compare:

L[φ] = L0[φ] + L1[φ] with L′[φ] = L0[φ] + L2[φ] (2.5)

Where we have made the replacement χ→ φ in L2[χ].
A theorem of relativistic quantum field theory states that, with weak

restrictions on L and F , the on-shell S-matrix elements coincide in both
cases. The proof is based in the fact that only linear terms in χ contribute
to one-particle state and the higher orders in χ (the different terms) do not
contain one-particle singularities. In other words, it is irrelevant the choice
of a particular set of interpolating fields.

This theorem applies to the exact solution, but it is easy to see that it
can be applied to a loop expansion. From the original Lagrangian L[φ], we
define the new Lagrangian L[φ, a] as:

∗Taken from [42] and several lecture notes delivered by J. A. Oller.
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2.2. Standard form of nonlinear realizations

L[φ, a] = a−2L[aφ] ⇒ L[φ, 1] = L[φ] (2.6)

Since we are expressing the solution in a power series of the parameter a,
that is equivalent to a loop expansion with the relation [42]:

aP → P = E + 2L− 2 (2.7)

aφ = aχF [aχ] (2.8)

L[φ, a] = L[aχF [aχ]] (2.9)

With L the number of loops and E the number of external lines.
From (2.8) we obtain the same expression for counting the powers of a

for χ and φ so, order by order in a (which is the same as in the number
of loops), the on-shell S-matrix elements must be the same. As a result we
consider that two nonlinear realizations are equivalent if they are related by
the fixed nonlinear transformation of Eq.(2.3).

2.2 Standard form of nonlinear realizations∗

Let G a compact, connected, semisimple Lie group of dimension n, and be
H ⊂ G a continuous subgroup ofG. Let Vi (i = 1, . . . , n−d) be the generators
of H and Aℓ (ℓ = 1, . . . , d) the rest of the generators chosen in such a way
that they form a complete subset of generators of G, being orthonormal with
respect the Cartan inner product. In a neighborhood of the identity, every
element of g ∈ G can be uniquely decomposed in the following way:

g = eξ·Aeu·V , ξ · A =
∑

ℓ

ξℓAℓ , u · V =
∑

i

uiVi (2.10)

Because, if H is an invariant subgroup:

g = eξ·A+u·V = lim
N→∞

(
1 +

ξ · A
N

+
u · V
N

)N

= lim
N→∞

(gAhV )
N = lim

N→∞
gAhV . . . gAhV︸ ︷︷ ︸

N

= lim
N→∞

(gAhV g
−1
A )︸ ︷︷ ︸

∈H

(g2AhV g
−2
A )︸ ︷︷ ︸

∈H

. . . (gNA hV g
−N
A )︸ ︷︷ ︸

∈H

gNA

= heξ·A = heξ·Ah−1h = eξ
′·Ah = eξ

′·Aeu·V (2.11)

∗Taken from [42].
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2.2. Standard form of nonlinear realizations

So, for every element g0 ∈ G, we can write:

g0e
ξ·A = eξ

′·Aeu
′·V with ξ′ = ξ′(ξ, g0) , u

′ = u′(ξ, g0) (2.12)

If h : ψ → D(h)ψ is an unitary and linear representation of the subgroup
H ⊂ G, we can assign to every element g0 ∈ G a pair of transformations:

g0 : ξ → ξ′ , ψ → D(eu
′·V )ψ (2.13)

The first one corresponds to the left-coset and the second one is the
linear representation D of H . This application is a nonlinear realization of
G, because:

ξ
g0→ ξ′

g1→ ξ′′ (2.14)

g0e
ξ·A = eξ

′·Aeu
′·V (2.15)

g1e
ξ′·A = eξ

′′·Aeu
′′·V (2.16)

g0g1e
ξ·A = g1e

ξ′·Aeu
′·V = eξ

′′·Aeu
′′·V eu

′·V (2.17)

g0g1e
ξ·A = eξ

′′·Aeu
′′′·V = eξ

′′·Aeu
′′·V eu

′·V (2.18)

⇒ eu
′′′·V = eu

′′·V eu
′·V (2.19)

Because D is a representation, if u′ = u′(ξ, g0) and u
′′ = u′′(ξ′, g1), then:

D(eu
′′′·V ) = D(eu

′′·V )D(eu
′·V ) (2.20)

We take D in (2.13) as an irreducible representation and designate this
equation as our standard form of the realization of G.

It is easy to see that this realization is linear when is restricted to the
subgroup H , because if g0 = h ∈ H :

heξ·A = heξ·Ah−1h = eξ
′·Ah (2.21)

And, therefore, h = eu
′·V . So the transformation of ξ under h ∈ H is the

linear transformation:

ξ′ = D(b)(h)ξ (2.22)

Where D(b)(h) is a linear representation of H determined uniquely by
G.♯2 Moreover, in this particular case where u′ is independent of ξ, the field
ψ transforms also linearly, that is D(eu

′·V ) = D(h). Summarizing:

♯2For the case where G = SU(Nf )L × SU(Nf)R and H = SU(Nf)V , D(b)(h) is the
adjoint representation of SU(Nf )V .
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2.2. Standard form of nonlinear realizations

h ∈ H : ξ → D(b)(h)ξ , ψ → D(eu
′·V )ψ (2.23)

To conclude this section we apply the ideas presented here to the special
case where G has an automorphism R : g → R(g) such that:

Vi → Vi Aℓ → −Aℓ (2.24)

As is the case for the chiral groups, where the parity operator induces an
automorphism that changes the sign of the axial generators Aℓ. Applying
the automorphism to:

g0e
ξ·A = eξ

′·Aeu
′·V → eu

′·V = e−ξ′·Ag0e
ξ·A (2.25)

One obtains:

R(g0)e
−ξ·A = e−ξ′·Aeu

′·V → eu
′·V = eξ

′·AR(g0)e
−ξ·A (2.26)

From Eqs.(2.25) and (2.27), one obtains:

e−ξ′·Ag0e
ξ·A = eξ

′·AR(g0)e
−ξ·A ⇒ e2ξ

′·A = g0e
2ξ·AR(g−1

0 ) (2.27)

For chiral groups, g ∈ G = SU(Nf )L × SU(Nf )R can be decomposed
in g = gLgR with gL ∈ SU(Nf )L and gR ∈ SU(Nf )R and, if R is a parity
transformation:

gL = eθLλL, gR = eθRλR , R(g) = eθLλReθRλL (2.28)

Where λL and λR are the generators of the SU(Nf)L and SU(Nf )R Lie al-
gebra, respectively. If we apply this decomposition to the results of Eq.(2.28)
we obtain:

e2ξ·A = e2ξ·λRe−2ξ·λL (2.29)

e2ξ
′·A = eθLλLeθRλRe2ξ·Ae−θLλRe−θRλL

= eθLλLe−2ξλLe−θRλLeθRλRe2ξλRe−θLλR (2.30)
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2.2. Standard form of nonlinear realizations

Then:

e−2ξ′λL = eθLλLe−2ξλLe−θRλL (2.31)

e2ξ
′λR = eθRλRe2ξλRe−θLλR (2.32)

We also have that, for chiral symmetries, Eq.(2.12) can be recast as [48]:

exp
[
i
∑

a

(θVa λa + θVa λaγ5)
]
exp

(
− iγ5

∑

a

ξa(x)λa
)

= exp
(
− iγ5

∑

a

ξ′a(x)λa
)
exp

(
i
∑

a

θa(x)λa
)

(2.33)

Where the first exponential is just the chiral rotation of Eq.1.4 (Chap-
ter 1) generalized to a the SU(Nf )×SU(Nf ) thorough the generalized Gell-
Mann matrices λa. The decoupling of the left- and right-hand algebras allow
us to write the terms proportional to (1 + γ5) and (1 − γ5) separately, ob-
taining:

exp
[
i
∑

a

θLa λa
]
exp

(
− i
∑

a

ξa(x)λa
)

= exp
(
− i
∑

a

ξ′a(x)λa
)
exp

(
i
∑

a

θa(x)λa
)

(2.34)

exp
[
i
∑

a

θRa λa
]
exp

(
− i
∑

a

ξa(x)λa
)

= exp
(
− i
∑

a

ξ′a(x)λa
)
exp

(
i
∑

a

θa(x)λa
)

(2.35)

Where θLa ≡ θVa + θAa and θRa ≡ θVa − θAa . Multiplying Eq.(2.34) by the
inverse of Eq.(2.35) one can eliminate the right-hand side both equations and
isolate U ′(x) ≡ exp

(
− 2i

∑
a ξ

′
a(x)λa

)
to obtain the transformation law of

U(x) ≡ exp
(
− 2i

∑
a ξa(x)λa

)
:

U ′(x) = exp
[
i
∑

a

θRa λa
]
U(x) exp

[
− i
∑

a

θLa λa
]

(2.36)

Or, equivalently:

U ′(x) = RU(x)L† (2.37)

Where R ∈ SU(Nf )R and L ∈ SU(Nf )L.
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2.3. Classification of all nonlinear realizations

2.3 Classification of all nonlinear realizations∗

In this section we show that Eq.(2.13) gives the standard form form the cla-
ssification of all realizations of nonlinear field transformations under a group.
To study this classification, we consider an n-dimensional real differentiable
manifold M on which G acts, with G a compact, semisimple and connected
Lie group.

g : x→ Tgx, x ∈ M, g ∈ G (2.38)

Let Tgx be an analytic function of g and x.♯3 We can identify the set of
coordinates x ∈ M with the fields used in effective theories. The problem
concerning to all the possible transformation laws of fields under the action
of a group G translates in finding all the possible realizations of the same
group on M that fulfill Eq.(2.3). Let us recall that the latter guarantees
the on-shell equivalence of of the S-matrix elements under field redefinitions.
Then we have an special point, the origin, that should be preserved for all
the sets of coordinates. Because the fields are employed in Taylor series, we
do not need to characterize the group action globally, is enough to consider
a neighborhood around the origin. Regarding to G, we restrict ourselves
to the neighborhood of the identity, due to the properties of the compact,
connected Lie groups.

We have elements of G that leave invariant the origin, and those elements
constitute a subgroup H ⊂ G♯4 called stability group of the origin. So, to
construct the most general Lagrangian compatible with the symmetry group
G, with a subgroup H which leaves invariant the ground state, we have to
find the most general way to realize G and H on a manifold M . As we
shall see immediately, this problem is equivalent to find all the nonlinear
realizations of G that become linear when are restricted to H .

Theorem 1. (Theorem of linearization): Let H ⊂ G be a subset of G
(compact, connected, semisimple Lie group) formed by all the elements of G
that leave invariant the origin in such a way that, for this coordinate system:

Th0 = 0 , ∀h ∈ H (2.39)

Then, there exists a set of coordinates in a neighborhood of the origin that,
in this new coordinate system, we have:

∗Taken from [42].
♯3This assumption is necessary for the Taylor series used in field theories.
♯4This subgroup is formed, at least, by the identity.
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2.3. Classification of all nonlinear realizations

Thy = D(h)y , ∀h ∈ H. (2.40)

Being D(h) a linear representation of H.

Proof: Since Tgx is continuous in x and Th0 = 0, it follows that around
the origin it must exist a neighborhood that stays invariant under the action
of the group H , because H is continuous, bounded and compact. Expanding
Thx in a Taylor series:

Thx = D(h)x+O(x2) , ∀h ∈ H (2.41)

Being D(h) a linear realization of H .
We can define a new set of coordinates in the following way:

y =

∫

H

dhD−1(h)Thx (2.42)

Where dh is the invariant measure and the group integral is normalized
in such a way that

∫
H
dh = 1. The new coordinates y are analytical functions

of x. Actually, the Taylor series of y as a function of x is:

y = x+O(x2) (2.43)

So, the determinant of the Jacobian matrix is equal to one in the origin,
and we can use the new coordinates y as a new coordinate system. Under
the action of an element h0 ∈ H we have:

h0 : y →
∫

H

dhD−1(h)ThTh0x =

∫

H

dhD−1(h)Thh0x =

=

∫

H

d(hh0)D−1(hh0h
−1
0 )Thh0x = D(h0)y (2.44)

As we wanted to prove. �
This theorem is useful by itself. On the one hand, Eq.(2.42) is a simple

test for linearizability. On the other hand, if a transformation law can be
linearized, the formula (2.42) gives an explicit formula for the new fields that
transform linearly.

Now we continue with the problem of finding the most general way for
the nonlinear realizations of a symmetry group G, that become linear when
are restricted to a subgroup H ⊂ G. As before, let Vi the generator of H and
Aℓ the rest of the generators of G. In the following we will use gx instead of
Tgx for shortening.
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2.3. Classification of all nonlinear realizations

Let us define the submanifold N ⊂ M consisting in all the points ob-
tained by the application of g ∈ G on the origin, that is g0. The points
in N will have the form eξ·A0, because every transformation can be writ-
ten in a neighborhood around the identity as g = eξ·Aeu·V , Eq.(2.3), and
g0 = eξ·Aeu·V 0 = eξ·A0, because eu·V 0 = 0. So, in this neighborhood, the ξℓ
characterize the point g0 and works like the coordinates of this point. If we
had two sets of coordinates satisfying eξ1·A0 = eξ2·A0 then e−ξ2·Aeξ1·A0 = 0 ⇒
e−ξ2·Aeξ1·A = eu·V . But the generators V can only be obtained as a product
of at least two Aℓ’s so, at fist order, ξ1 = ξ2 and the jacobian of the function
ξ2(ξ1) will be distinct to zero, and we will have a one-to-one correspondence
between ξ1 and ξ2. Since ξ1 = ξ2 is a solution, this is the only solution. So,
the transformation properties of every point in N are entirely determined
because:

g(eξ·A0) = eξ
′·Aeu

′·V 0 = eξ
′·A0 (2.45)

Where we have taken into account Eq.(2.12). We introduce the n − d
remaining coordinates to describe any point in M and group it in the real
vector ψ, so that any point in M will have, in a neighborhood of the origin,
the coordinates (ξ, ψ), and any point in N will have the form (ξ, 0) and will
transform as:

g(ξ, 0) = (ξ′(ξ, g), 0) (2.46)

From the theorem of linearization we know we can choose the coordinates
(ξ, ψ) in such a way that the subgroup H (the stability group of the origin)
acts linearly. According to (2.46) the representation is reducible and since H
is a compact group and the representation can be made orthogonal choosing a
convenient set of coordinates ψ, it can always be written in the fully reduced
form.

eu·V (ξ, ψ) = (D(b)(eu·V )ξ,D(eu·V )ψ) (2.47)

Here, D is a linear (orthogonal) representation of H of dimension n − d
and D(b) is the representation induced on ξ by:

eξ
′·A = eu·V eξ·Ae−u·V (2.48)

We introduce a new set of coordinates that we will call standard coordi-
nates defined by:

(ξ, ψ)∗ = eξ·A(0, ψ) (2.49)
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2.4. Relations between linear and nonlinear transformations

Which results in:

(ξ, 0)∗ = (ξ, 0) (2.50)

(0, ψ)∗ = (0, ψ) (2.51)

This definition is a map of the pair (ξ, ψ)∗ into M whose Jacobian deter-
minant does not vanish at he origin, so its an allowed set of coordinates near
the origin.

But now, taking into account Eq.(2.12) we know everything about the
action of g ∈ G in a neighborhood of the origin, because:

g(ξ, ψ)∗ = geξ·A(0, ψ)∗ = eξ
′·Aeu

′·V (0, ψ)∗

= eξ
′·A(0,D(eu

′·V )ψ)∗ = (ξ′,D(eu
′·V )ψ)∗ (2.52)

Where ξ′ and u′ are given by Eq.(2.12). So, the new coordinates trans-
form as the standard representation,♯5 Eq.(2.23). We see then that the most
general nonlinear realization of a group G with a subgroup H that leaves un-
changed the origin, reduces to the standard form after a convenient change
of coordinates in a neighborhood of the origin.♯6

2.4 Relations between linear and nonlinear

transformations∗

We consider the differential manifold (ξ,Ξ) with the fields Ξα transforming
according an irreducible and unitary representation of the group G, and ξ
according to (2.13):

g0 : ξ → ξ′ and Ξα → Ξ′
α =

∑

β

Dαβ(g)Ξβ (2.53)

Now, let us see how to generate fields that transform under g ∈ G ac-
cording to the standard form. First, we define:

♯5That is the reason of calling them standard coordinates.
♯6In the practice, we usually require an unitary representation of the subgroup H . In

that case is necessary to combine the real fields (coordinates) in a complex field.
∗Taken from [42].
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2.4. Relations between linear and nonlinear transformations

Ψα =
∑

β

Dαβ(e
−ξ·A)Ξβ (2.54)

This definition is an allowed change of fields in the sense of Eq.(2.3). The
field Ψα, under the action of g ∈ G, transforms into:

Ψ′
α =

∑

β

Dαβ(e
−ξ′·A)Ξ′

β =
∑

β

Dαβ(e
−ξ′·Ag)Ξβ =

=
∑

β

Dαβ(e
−ξ′·Ageξ·A)Ψβ =

∑

β

Dαβ(e
u·V )Ψβ (2.55)

And, if it is restricted to H , D(g) = D(h). Notice that the previous
equation corresponds to the standard form given in Eq.(2.23). On the other
hand, D(h) can be reducible but, in that case, Ψα can be decomposed in a

set of fields ψ
(a)
α with a lower number of components:

(ξ,Ψ) ∼ (ξ,
∑

a

⊕ψ(a)) (2.56)

In that case, the apparent additional physical information due to the
connection between a higher number of coordinates is illusory since, as seen
in Sec. 2.1, a theory with ξ and Ξ has the same physical consequences than a
theory with ξ and ψ(a). In any case, the dimension of the multiplets is the one
of the irreducible linear representation of the subgroup H and not the one of
the irreducible linear representation of G. One should also emphasize that in
a Lagrangian theory one could use the fields Ξ but this more constraint theory
is not the most general one according to group-theoretic considerations.

The previous construction can be inverted to give rise to fields that trans-
form linearly like Ξα as function of the fields ξl and the fields ψ

(a)
α . Our task

translates now in finding a function fα of ξ and ψ which transform according
to a linear representation of the group G:

g0 : fα(ξ, ψ) → fα(ξ
′, ψ′) =

∑

β

Dαβ(g0)fβ(ξ, ψ) (2.57)

If we assume we can expand fα(ξ, ψ) in a Taylor series on the variable ψ,
is enough to consider the linear term in ψ:
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2.4. Relations between linear and nonlinear transformations

fα(ξ, ψ) =
∑

r

Fαr(ξ)ψr (2.58)

This is so because the general problem can be reduced to this one by solv-
ing the Clebsch-Gordan problem for the subgroup H and the tensor products
of the ψ’s. We have then:

g0 :
∑

r

Fαr(ξ
′)ψ′

r =
∑

β,s

Dαβ(g0)Fβs(ξ)ψs (2.59)

The representation D is not arbitrary, because when its reduced to the
subgroup H , D must be reducible and contain, as one of its components, the
representation R(h) under which ψ transforms linearly under the action of
the subgroup H . To see this, for g0 = h one has the result:

h :
∑

r

Fαr(ξ
′)ψ′

r =
∑

r,s

Fαr(ξ
′)Rrs(h)ψs =

∑

β,s

Dαβ(h)Fβs(ξ)ψs (2.60)

Taking ξ = 0,♯7 we have:

∑

r,s

Fαr(0)Rrs(h)ψs =
∑

β,s

Dαβ(h)Fβs(0)ψs (2.61)

From the Schur’s lemma, it follows that either Fαr = 0 or D(h) contains
the irreducible representation R(h). But we cannot have Fαr(0) = 0 because
this would invalidate Eq.(2.57) as a proper change of fields according to Sec.
2.1. Vice versa, if D is reducible and contains the irreducible representation
R(h), when is restricted to the subgroup H , then there exist a set of functions
Fαr(ξ) such that fα(ξ, ψ) =

∑
r Fαr(ξ)ψr transforms linearly according to the

representation D. We can see this if we decompose g ∈ G in the unique form:

g = eξ·Aeu·V (2.62)

That we can write, in a convenient basis:

D(g) = D(eξ·A)D(eu·V ) = D(eξ·A)

(
R(eu·V ) 0

0 D̃(eu·V )

)
(2.63)

♯7That means ξ′ = 0 according to the transformation laws of ξ under h ∈ H .
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2.4. Relations between linear and nonlinear transformations

And, under composition:

D(g0)D(g) = D(g0g) = D(g0e
ξ·Aeu·V )

= D(eξ
′·Aeu

′·V eu·V ) = D(eξ
′·A)D(eu

′·V eu·V )

= D(eξ
′·A)

(
R(eu

′·V eu·V ) 0

0 D̃(eu
′·V eu·V )

)
(2.64)

From these equations we have:

∑

β

Dαβ(g0)Dβr(e
ξ·A) =

∑

s

Dαs(e
ξ′·A)Rsr(e

u′·V ) (2.65)

And we can identify:

Fαs(ξ) = Dαs(e
ξ·A) (2.66)

Because they have the desired property:

∑

s

Dαs(e
ξ′·A)ψ′

s =
∑

s,r

Dαs(e
ξ′·A)Rsr(e

u′·V )ψr

=
∑

β,r

Dαβ(g0)Dβr(e
ξ·A)ψr (2.67)

As special case, we consider R(h) to be the trivial representation and re-
place ψ by a constant. Then, the previous theorem gives us a way to find rep-
resentations of G for which we can find functions of ξ that transform accord-
ing to that representation. We can use these results on SU(N)L × SU(N)R.
These representations containing the identity when are restricted to SU(N)V
are of the form (v, v̄), where v refers to an irreducible representation of
SU(N)V . Functions of ξℓ only cannot transform linearly by any other repre-
sentation of SU(N)L × SU(N)R.

We saw how we can build up fields that transform linearly by taking linear
combinations of field that transform nonlinearly.♯8 This means that, by using
a similar construction, we can obtain a field that transforms according to a
linear representation form another field that transforms according to another
different linear representation. Specifically, we suppose that Ξα transforms
under g ∈ G in the following way:

g : Ξα → Ξ′
α = R

(1)
αβ (g)Ξβ (2.68)

♯8These linear combinations have ξ-dependent coefficients.
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2.4. Relations between linear and nonlinear transformations

We seek necessary and sufficient conditions for the existence of functions
Fµβ(ξ) such that the field:

Xµ = Fµβ(ξ)Ξβ (2.69)

Transforms according to:

g : Xµ → X ′
µ = R(2)

µν (g)Xν (2.70)

Being R(1) and R(2) two linear and irreducible representations of G. As
we show, this problem has solution only when the reduction of R̄(1) × R(2)

contains one of the representations that can be realized as a function of the
fields ξ, in the way that we already characterized them.

First, we see that it is a necessary condition:

R(2)
µν (g)Xν = R(2)

µν (g)Fνβ(ξ)Ξβ = Fµα(ξ
′)R

(1)
αβ(g)Ξβ (2.71)

⇒ Fµα(ξ
′) = R(2)

µν (g)Fνβ

[
R(1)(g)

]−1

βα
= R(2)

µν (g)R̄
(1)
αβ(g)Fνβ(ξ) (2.72)

And also sufficient, because if we reduce the product R̄(1) ×R(2) as:

〈α, 1̄|〈ν, 2| =
∑

σ,r

〈α, 1̄; ν, 2|σ, r〉〈σ, r| (2.73)

By assumption, for at least one value r0 of r, there exist a set of functions
fσ(ξ) such that:

fσ(ξ
′) = R(r0)

σρ fρ(ξ) (2.74)

Due to the completeness of the Clebsch-Gordan coefficients, we have:

R̄
(1)
αβR

(2)
µν 〈β, 1̄; ν, 2|ρ, r〉 = 〈α, 1̄;µ, 2|σ, r〉R(r)

σρ (2.75)

If we define:

Fµα(ξ) = 〈α, 1̄;µ, 2|σ, r〉fσ(ξ) (2.76)

we see that

Fµα(ξ
′) = 〈α, 1̄;µ, 2|σ, r0〉R(r0)

σρ fρ(ξ) = R̄
(1)
αβR

(2)
µν 〈β, 1̄; ν, 2|ρ, r0〉fρ(ξ) =

= R̄
(1)
αβR

(2)
µν Fνβ(ξ) = R(2)

µν Fνβ(ξ)
[
R(1)

]−1

βα
(2.77)

So, equation (2.70) follows form equations (2.68) and (2.69).
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2.5. Covariant derivatives and invariant Lagrangians

2.5 Covariant derivatives and invariant La-

grangians∗

The main results of the previous sections is that by using an appropriate
redefinition of the coordinates, every nonlinear realization of G that becomes
linear when is restricted to the subgroup H ⊂ G can be written in the
standard form, Eq.(2.13), by means of the following procedure:

• First we introduce the coordinates (ξ,Ψ) that transforms linearly under
the subgroup H .

• The standard coordinates of the point (ξ,Ψ) are defined as (ξ, ψ), where
ψ is defined by the relation e−ξ·A(ξ,Ψ) = (0, ψ).

The Lagrangian density is a function of the fields and gradients, where
the transformation properties of the gradients are determined by the trans-
formation properties of the fields. Therefore the group is realized through the
transformation of the differentiable manifold (ξ, ψ, ∂µξ, ∂µψ) (see Sec. 2.4).
These transformations are not in the standard form, but can be also written
in this form because the gradients transform linearly under H . We extend
the definition of the standard coordinates to include the gradients:

(0, ψ,Dµψ,Dµξ) = e−ξ·A(ξ, ψ, ∂µψ, ∂µξ) (2.78)

Where Dµψ and Dµξ are the covariant derivatives in the sense that they
are constructed so that they have the same transformation properties as the
fields:

Dµψ → D(eu·V )Dµψ (2.79)

Dµξ → D(b)(eu·V )Dµξ (2.80)

Now we proceed to obtain explicit expressions for the covariant deriva-
tives. Under infinitesimal space-time displacement we have form (2.12):

g(deξ·A) = (deξ
′·A)eu

′·V + eξ·A(deu
′·V ) (2.81)

According to (2.23), if Ti are the matrices that represent the generators
Vi:

∗Taken from [42].
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2.5. Covariant derivatives and invariant Lagrangians

dψ′ = eu
′·Tdψ + (deu

′·T )ψ (2.82)

These equations can be used to obtain the transformation laws of the
gradients. If we take g = e−ξ·A, that corresponds to the “standardization” of
the coordinates, Eq.(2.78), and recall the transformation laws of Eq.(2.12),
one deduces easily that ξ′ = 0 and u′ = 0 and, form Eq.(2.13) ψ′ = ψ. At
this point:

deξ
′·A ≡ e(ξ

′+dξ′)·A − eξ
′·A = edξ

′·A − 1 = dξ′ · A (2.83)

deu
′·V ≡ e(u

′+du′)·V − eu
′·V = edu

′·V − 1 = du′ · V (2.84)

For this particular point (or choice of coordinates) Eq.(2.81) takes the
form:

e−ξ·Adeξ·A = du′ · V + dξ′ · A (2.85)

Equation (2.85) can be used to calculate du′ and dξ′. On the other hand
using (2.84) on (2.82) we obtain:

dψ′ = dψ + du′ · T ψ (2.86)

And the covariant derivatives are then:

Dµξ = pµ (2.87)

Dµψ = ∂µψ + vµ · T ψ (2.88)

Where pµ and vµ are defined from:

e−ξ·A∂µe
ξ·A = vµ · V + pµ ·A (2.89)

It is easy to see that (2.87) and (2.88) transform as covariant derivatives
(Eqs.(2.79) and (2.80)) if we use (2.12) and its derivative to obtain:

e−ξ′·A∂µe
ξ′·A

︸ ︷︷ ︸
v′µ·V+p′µ·A

= eu
′·V e−ξ·A(∂µe

ξ·A)︸ ︷︷ ︸
vµ·V+pµ·A

e−u′·V + eu
′·V (∂µe

−u′·V ) (2.90)
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2.6. Application to the chiral group

Therefore:

p′µ · A = eu
′·V pµ · Ae−u′·V ⇒ p′µ = D(b)(eu

′·V )pµ (2.91)

v′µ · V = eu
′·V vµ · V e−u′·V − e−u′·V (∂µe

u′·V ) ⇒ Dµψ
′ = eu

′·TDµψ (2.92)

As we wanted to prove.

The crucial result of this section is that by constructing a Lagrangian
using ψ, Dµψ and Dµξ, which is superficially invariant under the subgroup
H we have have, as a result, that this Lagrangian is also invariant under G.♯9

A far reach result is that once an invariant Lagrangian L(ξ, ψ, ∂µξ, ∂µψ) is
written, then:

L(ξ, ψ, ∂µξ, ∂µψ) = L
(
eξ·A(0, ψ,Dµξ,Dµψ)

)
= L(0, ψ,Dµξ,Dµψ) (2.93)

And the fields ξ only appear through the covariant derivatives. This is
why the interactions of the Goldstone bosons vanish when their momentum
is zero.

2.6 Application to the chiral group∗

For some groups, as the chiral group, the commutator of two generators of
type Aℓ is proportional to a generator of type Vi. Whenever this happens,
one can compute vµ and pµ from Eq.(2.89) easily because one can separate
the odd from even multiple commutators. For example, using the formula:

e−ξ·A∂µe
ξ·A =

1− e−∆ξ·A

∆ξ·A
∂µξ · A (2.94)

Where the operator ∆ξ·A is defined as,

∆ξ·AX = [ξ · A,X ] (2.95)

One obtains, from Eq.(2.85):

♯9The same statement is also true in the opposite direction.
∗Taken from [42].
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vµ · V =
1− cosh∆ξ·A

∆ξ·A
∂µξ · A (2.96)

pµ · A =
sinh∆ξ·A
∆ξ·A

∂µξ · A (2.97)

If we consider the chiral group G = SU(Nf )L×SU(Nf )R and identify Aℓ

with the Nf -axial generators and Vi with the Nf -vector generators, the above
inequality may be further transformed. Let fijk be the totally antisymmetric
structure constants for SU(Nf )V in a canonical basis where the Cartan inner
product is given by gij = −c δij , with c > 0. The matrices (ti)jk = −fijk
furnish the adjoint representation:

[ti, tj ] = fijktk (2.98)

Treating ξ, ∂µξ, vµ and pµ as Nf -component vectors, we deduce:

vµ =
1− cosh(ξ · t)

ξ · t ∂µξ (2.99)

Dµξ = pµ =
sinh ξ · t
ξ · t ∂µξ (2.100)

Dµψ = ∂µψ + T ·
(
1− cosh(ξ · t)

ξ · t ∂µξ

)
ψ (2.101)

For Nf = 2 (T = −1
2
iτ), we have from (2.99)-(2.101):

Dµξ = ∂µξ +
1

3!
(∂µξ × ξ)× ξ +

1

5!
. . . (2.102)

DµN = ∂µN − 1

2
iτ · ( 1

2!
∂µξ × ξ +

1

4!
[(∂µξ × ξ)× ξ]× ξ + . . . )N (2.103)

Where N is the nucleon doublet. For Nf = 3, denoting with B the
traceless baryon octet and with λi the Gell-Mann matrices:

ξ =
1

2

8∑

i=1

ξiλi, pµ =
1

2

8∑

i=1

pµiλi, vµ =
1

2

8∑

i=1

vµiλi. (2.104)

In this notation, Eqs.(2.87)-(2.89) take the form:
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2.6. Application to the chiral group

Dµξ = pµ = ∂µξ + . . . (2.105)

DµB = ∂µB − i[vµ, B] (2.106)

eiγ5ξ∂µe
−iγ5ξ = −ivµ − iγ5pµ (2.107)

Where, in this case:

vµ =
i

2
[ξ, ∂µξ] + . . . (2.108)

As pointed out in the previous section, we can obtain a G = SU(Nf )R ×
SU(Nf )L invariant Lagrangian if we build it up fromH = SU(Nf )V invariant
terms. ForNf = 3 we can take the building blocks of Eqs.(2.104) and (2.105)-
(2.107), and construct the simple SU(3)V invariant Lagrangian:

L = Tr{−a−2DµξD
µξ + iB̄γµDµB + iB̄MB + b1B̄γ

µγ5pµB + b2B̄γ
µγ5Bpµ} =

= Tr{−a−2pµp
µ + iB̄(γµ∂µ +M)B + B̄γµ[vµ, B] + B̄γµγ5(b1pµB + b2Bpµ)}

(2.109)

That describe the interaction between the pseudoscalar and baryon octets
ruled by the broken symmetry group G = SU(Nf )L × SU(Nf )R → H =
SU(Nf )V . The term −a−2pµp

µ indicates that the normalized pseudoscalar
matrix (Φ) is:

Φ =
ξ

a
(2.110)

If we express Eq.(2.109) in terms of the matrix Φ, and neglect higher
nonlinearities, we find a pseudovector meson-baryon interaction with inde-
pendent coefficients (F and D):

aTr{B̄γµγ5(b1(∂µΦ)B + b2B∂µΦ)}
∝ F Tr

(
B̄γµγ5[∂µΦ, B]

)
+DTr

(
B̄γµγ5{∂µΦ, B}

)
(2.111)

As well as a current-current coupling:

i

2
a2Tr{Bγµ[[Φ, ∂µΦ], B]} (2.112)
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In a meson-baryon scattering calculation one must include the second-
order effect of the trilinear pseudovector interaction as well as the first-order
effect of the quadrilinear current-current interaction. Only this total contri-
bution has an invariant dynamical meaning, i.e., independent of the particu-
lar choice of fields.

2.7 Gauge Fields∗

The construction of a Lagrangian invariant under coordinate-dependent group
transformations requires (in order to keep the invariance) the introduction of
a set of gauge fields ρµ i and aµ ℓ, associated with the generators Vi and Aℓ,
respectively. Let their transformation law be given by:

ρ′µ · V + a′µ · A = g(ρµ · V + aµ ·A)g−1 − f−1(∂µg)g
−1 (2.113)

Where f is a constant that gives the strength of the universal coupling
of the gauge fields to all other fields. Instead of defining vµ i and pµ ℓ by
Eq.(2.89), we now define them by:

e−ξ·A[∂µ + f(ρµ · V + aµ ·A)]eξ·A = vµ · V + pµ · A (2.114)

As we did in the previous section, we can use the Eq.(2.114) to compute
vµ and pµ as functions of ξ, ∂µξ, ρµ, and aµ. With this new definition, pµ and
aµ satisfies the new space-time transformation, since the additional terms
which arise from the differentiation of g are compensated by corresponding
terms in the transformation law of the gauge fields. The covariant derivative
can therefore be defined, as before, by:

Dµξ = pµ and Dµψ = ∂µψ + vµ · Tψ (2.115)

And, from Eq.(2.114), we obtain: Dµξ = ∂µξ + faµ + . . . .
The most general Lagrangian invariant under coordinate-dependent group

transformations can be obtained by adding to the generalized Yang-Mills
Lagrangian for the fields ρµ and aµ any local function of ψ, ξ, vµ and their
derivatives which is superficially invariant under the coordinate-dependent
subgroup H . If we add to this Lagrangian a mass term for the gauge fields:

∗Taken from [42].
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2.7. Gauge Fields

Lmass = −1

2
m2[
∑

i

ρµ iρ
µ
i +

∑

l

aµ la
µ
l ] (2.116)

The invariance is restricted to coordinate-independent group transfor-
mations.♯10 With the mass term, the gauge field satisfy the conservation
equations:♯11

∂µρ
µ
i = 0, ∂µa

µ
i = 0 (2.117)

Observe that, while the fields ρµ i have bare mass m, the mass of the fields
aµ ℓ differs from m. This is because the invariant kinetic term for the field ξ
has the form:

Lkin
ξ = −1

2
η2
∑

ℓ

DµξℓD
µξℓ = −1

2
η2
∑

ℓ

(∂µξℓ + faµ ℓ + . . . )2 (2.118)

Where η is a normalization parameter. This introduces in the Lagrangian
an additional term proportional to

∑
ℓ(aµ ℓ)

2 as well as a term proportional to∑
ℓ ∂µξℓa

µ
ℓ . When this bilinear coupling is transformed away by introducing

the field:

âµ ℓ = aµ ℓ +
η2f

η2f 2 +m2
∂µξℓ (2.119)

The associated mass is seen to be given by

m̂2 = m2 + η2f 2 (2.120)

♯10Observe that, without this mass term, the field ξ, that appears in Eq.(2.114) as a
gauge parameter, could be completely eliminated from the Lagrangian.
♯11Or corresponding partial conservation equations if a term which break the coordinate-

independent group invariance is added to the Lagrangian.
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2.8 The Power Counting

In the previous sections, we saw how to construct a Lagrangian invariant
under a group G spontaneously broken into a a subgroup H where the Gold-
stone bosons appear as the coordinates (ξ) of the broken symmetry gener-
ators. Despite the apparent complexity of this nonlinear realization, this
form will allow us to establish a hierarchy between the infinite possible terms
that we can construct through the method described above and, therefore,
apply perturbation theory. More concretely, since the Lagrangian is invari-
ant under space-time independent symmetry transformations, it cannot have
any dependence on the new Goldstone boson fields when they are constant,
so every term in the Lagrangian that contains these new Goldstone bosons
fields must contain at least a spacetime derivative of the Goldstone boson
fields. These derivatives introduce kinematic factors, which are of the size
of the Goldstone boson energy, when we calculate a process for Goldstone
bosons reactions. This means that for low energies, the main contribution
of a process involving the Goldstone bosons will be given by terms involving
the lower number of derivatives. Taking into account that the number of
derivatives is bounded from below, one can deduce that as the number of
derivatives increases for a term in the Lagrangian, its contribution at low
energies will be less important. For a pseudo-Goldstone♯12 boson, the ap-
proximate symmetry is still a good one if the mass of the Goldstone particle
is much smaller than the typical scale associated with the higher energy de-
grees of freedom that have been integrated out. This means that, in this case,
we can treat the Goldstone boson masses as a small quantity, along with the
derivatives of the Goldstone bosons fields, and apply perturbation theory.
The hierarchy of each Feynman diagram that followed from the expansion
over the Goldstone bosons momenta and masses was studied systematically
by Weinberg [49, 48]. He deduced that the order (importance) ν of a diagram
involving pseudo-Goldstone bosons in a low energy process was given by:

ν =
∑

i

Vi(di +Mi − 2) + 2L+ 2 (2.121)

Where Vi is the number of interaction vertices of type i in the diagram, di
and Mi are the number of derivatives and the number of factors of pseudo-
Goldstone masses, respectively, in the interaction of type i, and L is the
number of loops in the diagram.

♯12The name pseudo-Goldstone boson is used in the literature for a Goldstone boson
which finally acquires mass due to small explicit symmetry breaking terms in the La-
grangian.
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When one wants to incorporate nucleons in the process, one has to take
into account that the nucleon is not a “soft” particle. This is so because its
mass (and hence, the temporal component of the derivative) is not a small
quantity that increases the order of a given diagram. However, if one nucleon
with momentum p interacts with a soft pion of momentum q, the nucleon
propagator scales as 1/q, as we see form expanding the quadratic term in the
nucleon propagator:

−i(/p + /q) +mN

(p+ q)2 −m2
N

−→
q→0

−i/p +mN

2(p · q) (2.122)

Lowering a diagram order one unit per internal nucleon line (propagator).
The internal nucleon lines, along with the internal pionic lines, can be written
in terms of the external nucleon lines (EN ) and the number of loops, giving
as a final result:

ν =
∑

i

Vi(di +Mi − 2 +
ni

2
) + 2L− EN

2
+ 2 (2.123)

Where ni is the number of nucleon fields in the interaction of type i. The
point here is that the coefficient (di + Mi − 2 + ni

2
) is always positive or

zero and EN is a fixed number for a given process. So Eq.(2.123) establishes
a hierarchy between the infinite number of Feynman diagrams allowed by
the symmetry and allow us to calculate systematically, from a finite number
thereof, a given process ruled by that symmetry.

2.9 Construction of Effective Lagrangians

In order to construct effective Lagrangians where the symmetry is realized
in a nonlinear manner, we list below the building blocks that have well de-
fined transformation properties under the chiral group as well as well defined
properties under charge conjugation (C), parity transformation (P) and time
reversal transformation (T). From Sec. 2.6 we know that the elements that
we have for construction the chiral invariant Lagrangians are the baryon field
ψ, its covariant derivative Dµψ and the covariant derivatives of the coordi-
nates ξ (the Goldstone bosons).

In order to take into account the mass of the Goldstone bosons, we have
to include a mass term which breaks explicitly the chiral symmetry of the
Lagrangian. Such type of terms is usually called in the literature symmetry
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breakers. One can construct this mass term from the quark mass term of
QCD:

LMass
QCD = −q̄RMqL − q̄LM

†qR, M = diag(mu, md, ms, . . . ) (2.124)

Where qL,R = 1
2
(1∓γ5)q, which transforms under SU(Nf )L×SU(Nf )R as

qL → LqL and qR → RqR, with L ∈ SU(Nf )L and R ∈ SU(Nf)R. Following
the ideas of Ref.[50], although M is a constant matrix, LMass

QCD would be
invariant if M were to be transformed as M → RML† where, as before,
L ∈ SU(Nf )L and R ∈ SU(Nf )R. One can then construct the mass term
from the matrices U and M keeping “invariant”♯13 the Lagrangian. Then, at
lowest order one obtains:

LMass ∝ Tr{MU † + UM †} (2.125)

The combination Tr{MU †+UM †} is the only invariant combination since
Tr{MU † − UM †} is not invariant under parity.♯14 The term LMass can ac-
count for the masses because contains only even terms in the Goldstone
bosons fields.♯15 The chiral limit is defined as the point where we recover
the chiral symmetry at the Lagrangian level, that is, mq → 0, which implies
M → 0.

Following the reasoning of Sec. 2.8, the building blocks ψ, Dµψ, U , uµ
♯16

and M scale with the Goldstone boson momenta q as:

ψ ∼ O(1), Dµψ ∼ O(1), U ∼ O(1), uµ ∼ O(q), M ∼ O(q2)

Where the last relation follows from the fact that the boson mass term is
quadratic in the boson mass, not linear as in the fermionc case. That is the
reason for the scaling relations mq ∼M2

φ ∼ O(q2), where Mφ corresponds to
the masses of the Goldstone bosons.

Now we apply these ideas to construct the lowest order Lagrangians that
describe the interaction between pions (Lππ), identifying them as Goldstone

♯13As pointed before, this term is finally not invariant because, at the end, the mass ma-
trix is not transformed. But in following this procedure one keeps track of the underlying
QCD explicit way of breaking chiral symmetry.
♯14The transformation properties of U under the chiral group were deduced in Sec. 2.2,

Eq.(2.37).
♯15This is because M = M †.
♯16From now on, we use uµ instead of pµ of Eq.(2.100) in order to avoid possible misun-

derstanding with the particles momenta.
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bosons, and between pions and a nucleon (LπN). In this case Nf = 2 and
the baryon field is the isodoublet:

ψ =

(
p
n

)

We choose to parameterize the pion fields through the so-called exponen-
tial parameterization:

U = exp(iΦ/f), Φ =

(
π0
√
2

π+

π− − π0
√
2

)
(2.126)

Where f is the pion weak decay constant in the chiral limit.♯17 For Lππ

the building block uµ is the only one that involves pion field derivatives,
and can enter only through the Lorentz invariant combination uµu

µ. This
monomial, together with the mass term, Eq.(2.125), forms the lowest order
pionic Lagrangian, which is of order q2:

L(2)
ππ = α1〈uµuµ〉+ α2〈MU † + UM †〉 (2.127)

Where the superscript (2) refers to the (chiral) order of the vertices that
this Lagrangian generates and 〈. . . 〉 symbolizes the trace over the flavour
space. Other monomials constructed with these building blocks are either
not invariant over the desired symmetries or generate contributions of higher
order. The unknown coefficients can be determined by requiring that this
Lagrangian reproduce the kinetic term of a spin-0 particle and the result of
Eq.(1.18).

For the leading πN interaction we only have to add to the spin-1
2
La-

grangian (using the covariant derivative), a piece that couple the fermionic
currents to the pions. The fermionic currents can be vectorial (ψ̄γµψ) or
axial vectorial (ψ̄γµγ5ψ). Taking into account that the lowest order pionic
building block uµ transforms as an axial vector, the only coupling allowed
by symmetry that preserves Lorentz invariance is the coupling to the axial
vector fermionic current. Then, the lowest order πN Lagrangian reads:

L(1)
πN = ψ̄(i /Dµ −m)ψ + βψ̄γµγ5ψuµ (2.128)

♯17The reason of this name can be directly deduced from Eq.(1.18).
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Again, the superscript (1) refers to the chiral order. It is interesting to
point out that, although ψ and Dµψ are both O(1), the operator (i /Dµ −m)
generates terms of O(q) because the heavy scale generated by the nucleon
mass is eliminated. In this case β can be deduced from the coupling of the
nucleon to axial currents.

For completeness we write the leading order Lagrangians with their coef-
ficients deduced:

L(2)
ππ =

f 2

4
〈uµuµ〉+

f 2B0

2
〈MU † + UM †〉 (2.129)

L(1)
πN = ψ̄(i /Dµ −m)ψ +

g

2
ψ̄/uγ5ψ (2.130)

Where B0 is related to the pion mass through the relation M2
π = (mu +

md)B0 [33] and g is the so-called axial coupling in the chiral limit. Notice that

L(1)
πN gives the right leading one-pion matrix elements between two nucleons.

This could have been deduced uniquely from the fact that the global chiral
symmetry is spontaneously broken, see Chapter 19.2 of Ref.[48] or Ref.[51].
E. g., there is no need to know the symmetry group to obtain this matrix
element. For further details we refer the reader to Refs.[32, 33]. Other fields
with scalar, pseudoscalar, vector and pseudovector transformation properties
can be introduced within this formalism through the sources s, p, vµ and aµ
[30]. For higher order contributions one has to construct new higher order
monomials with undetermined coefficients not fixed by the symmetry. These
coefficients, that can be determined by comparison with the experiment, sum
rules or lattice QCD, are the so-called low-energy constants (LECs).
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Chapter 3
πN Scattering

As commented in Chapter 1, the pion-nucleon (πN) scattering is an impor-
tant hadronic process that allows for precise tests of the chiral QCD dynamics
and contains experimental information on the internal structure of the nu-
cleon. Historically, the study of this reaction has been performed by means of
partial wave analyses (PWAs), which are based on unitarity and Mandelstam
analyticity (see Ref.[12]). As we show in this chapter, these use the differ-
ential cross section and polarization data to reconstruct the different partial
waves. However, Chiral Perturbation Theory, presented in Chapter 2, is an
excellent tool to study this process in the low-energy region, and provides a
model-independent approach to contrast the PWAs results. Moreover, ChPT
also supplies a sensible way to estimate the theoretical errors committed in
the perturbative treatment. This contrasts with the PWAs, where the mag-
nitude of the resulting uncertainties are often estimated by repeating the
analysis with reasonable modifications of the energy-dependent parametriza-
ton of the amplitudes. On the other hand, one has to take into account
possible effects due to the violation of the isospin symmetry due to electro-
magnetic interactions and the quark masses difference. This is important
because PWAs make use of isospin symmetry to resolve some ambiguities
encountered within this method (see Sec. 3.1) and large violations could
lead to sizeable effects.

In this chapter we will focus on two approaches to pion-nucleon scatter-
ing that have been historically the most important ones. First we review in
Sec. 3.1 the methodology of PWAs that, on the other hand, have been used
as input in ChPT studies of pion-nucleon scattering. We will pay special
attention to the PWAs performed by three different groups: the Karlsruhe-
Helsinki group, the George Washington University group and the Matsinos’
group. We explain the methodology used by these PWAs and discuss their
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differences and similarities. We highlight some phenomenological information
extracted by these analyses and compare between them and with indepen-
dent determinations. This information will be very important in Chapters
4 and 5 because provides us a method to check the reliability of the ChPT
analysis performed there. We will also discuss the different data base used
by these analyses and comment on some criticisms done on the experimental
information included in these data and the phenomenology deduced from
there. After introducing the reader to the partial wave analyses, the Sec.
3.2 will be dedicated to Chiral Perturbation Theory. There, we establish the
formalism used in Chapters 4 and 5 to study the πN scattering process with
ChPT, which is the main topic of this thesis. We set up the definitions and
normalization of the different quantities employed in our calculations as well
as the chiral Lagrangians used. We will also elaborate on the problem con-
cerning the power counting that appears once baryons are included in ChPT
and show explicitly that the origin of that problem is the non-vanishing nu-
cleon mass in the chiral limit. The covariant solutions to this problem will
be explained in Chapters 4 and 5. Later, in Sec. 3.3 we analyze the pos-
sible impact of isospin breaking corrections in the isospin symmetric study
performed in Chapters 4 and 5. Finally, in Sec. 3.4 we present a set of
techniques that allow us to resum the right-hand cut associated to unitarity
corrections and extend the range of validity of the perturbative treatment.

3.1 Partial Wave Analyses

A partial wave analysis is an analysis of the available data of π+p and
π−p scattering together with the single charge exchange (SCX) reaction
π−p→ π0n, whose aim is determining the hadronic partial wave amplitudes
from differential cross sections and polarization data. If isospin invariance is
assumed, the elastic and SCX reactions can be described by four invariant
amplitudes, for instance A±(s, t) and B±(s, t). At a given value of (s, t),
one can construct two isospin triangle relations from differential cross sec-
tion data and polarization parameters for the above mentioned reactions.
However, there still remain three types of ambiguities:

• The relative angle between the two triangles.

• A reflection of each triangle at one of its sides.

• A common phase factor to all the amplitudes.
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This lead us to require a theoretical input, in addition to unitarity, in or-
der to determine uniquely the amplitude from experimental data♯1 [12]. Such
theoretical constraints are provided by fixed-t analyticity that, together with
isospin invariance, are strong enough to resolve the ambiguities of PWAs.
Both, the Karlsruhe-Helsinki analysis of Ref.[16] (KA85) and the George
Washington University analysis of Ref.[17], that will be used in Chapters 4
and 5, have in common that use fixed-t analyticity as a constraint. They
use one-dimensional dispersion relations along curves of constant t, which
have the advantages of preserving the crossing symmetry and having enough
experimental data up to very large momentum for 0 ≥ t & −1 GeV2. The
basic input of these analyses are the forward amplitudes derived from total
cross sections by means of the optical theorem. However, still remains the
uncertainties resulting from experimental errors and discrepancies between
different data sets (which are frequently more important). In fact, there are
some criticisms concerning to the experimental data employed by the WI08
solution [52] which uses the data set [53], whereas the KA85 solution includes
in its analysis some data [54] that nowadays is believed to be erroneous [55].
On the other hand, to obtain the pure hadronic amplitude is necessary to
filter from the data the Coulomb and electromagnetic contributions. The
common treatment to filter this contribution is due Tromborg et al. [57]
which use dispersion theory to isolate the electromagnetic and Coulomb con-
tributions of the amplitude. This treatment, used by the Karlsruhe-Helsinki
(KH) and the George Washington (GW) groups, distinguishes between cor-
rections of the phase shifts and of the absorption parameters. The phase
shifts include a mixing term between an I = 1/2 and I = 3/2, and have the
following corrections:

• Corrections due to Coulomb scattering of external particles, which in-
clude the exchange of a photon between a pion and a nucleon in πN
intermediate states.

• Corrections due to the charged and neutral pions and nucleons mass
differences.

• Corrections due to the different π−pn, π0pp and π0nn coupling con-
stants.

• Corrections due to the coupling of the γn channel to π−p scattering.

• Some corrections called in dispersion theory as “short range contribu-
tions”, which include among other things the u-d quark mass difference.

♯1Except near the threshold, where further information is not needed.

51



3.1. Partial Wave Analyses

It is important to point out that in the dispersion theory the only con-
tribution from the t- and u-channel which is taken into account is that from
u-channel nucleon exchange. The rest of the unphysical contributions are
omitted, which cannot even being estimated. As recognized in Ref.[58], this
is a serious drawback of the dispersive method, and prevents it from set any
conclusion about isospin violation.

On the other hand, the analysis of Matsinos’ group of Ref.[18], that will
be used in Chapter 5, uses relativised Schrödinger equations (RSEs) that
contain the sum of an long range electromagnetic potential and short range
effective hadronic potential to estimate the electromagnetic corrections reli-
ably. Though the use of a hadronic potential in a RSE is a weak point of this
method, this potential is only used to calculate the corrections, not hadronic
quantities themselves. According to their authors [59], the main reasons to
use a potential model to calculate the electromagnetic corrections are the
following:

• The results of the previous analyses need to be extended to lower ener-
gies, where is now a large amount of new data obtained at pion factories.

• To control the effects that a change of the hadronic input has on the
electromagnetic corrections. This has not been done in the dispersive
approach of Ref.[57].

• To check the effects of some fine details of the electromagnetic inter-
actions which can become important an the present precision of the
experimental data. This is not contained in [57] either.

• To use energy independent hadronic potentials, instead of the energy
dependent ones used before, to calculate the electromagnetic correc-
tions for

√
s . 1.16 GeV.

The implementation of this electromagnetic potential for π+p and π−p
together with their coupled channels is explained in Ref.[59]. In contrast
with the methodology followed in [16] and [17], the authors analyze the elastic
scattering data (listed in [18]) separately, and only perform the analysis up to
energies of

√
s ≃ 1.16 GeV. However, both EM06 and WI08 have in common

the inclusion of new data of high quality collected along the last 20 years in
meson factories. The inclusion of these three different PWAs will provide us
a mechanism to decouple our results (and therefore our conclusions), from
the methodology employed in the PWAs.
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3.2 Chiral Perturbation Theory

As explained before, Chiral Perturbation Theory is an appropriate tool to
study the pion-nucleon scattering process. The main advantage of this ap-
proach is that it takes into account the relevant degrees of freedom of the
process allowing us to apply perturbation theory thanks to the nonlinear re-
alization of chiral symmetry. This provides us a more transparent (compared
to PWAs) framework where physical observables are directly connected to the
low energy constants of the chiral Lagrangian. This perturbative treatment
also allows us to estimate, with some confidence, theoretical uncertainties
coming from higher order contributions in the chiral expansion. This will
be very important for quantities that require an accurate and reliable deter-
mination, as the pion-nucleon sigma term, studied in Sec. 5.6 of Chapter
5.

A first attempt to apply baryon ChPT (BChPT) to elastic πN scattering
was undertaken by Gasser et al. in [13], where the off-shell amplitude was
obtained up to O(q3) in a manifestly Lorentz covariant formalism.♯2 It was
there where it was shown that the presence of the nucleon mass as a new large
scale in the chiral limit invalidated näıve power counting arguments in the
baryon sector. This problem was partially overcome in the heavy-baryon for-
malism (HBChPT) [62], in which one recovers a neat power-counting scheme
at the cost of manifestly Lorentz covariance. Calculations of the πN scatter-
ing amplitude up toO(q3) [63] and O(q4) [64] accuracies have been performed
in the HB formalism by Fettes et al., showing a good description of the S−
and P−wave phase shifts of different PWs analyses at low energies. It was
latter shown that the HB approach is not well suited for studying some of the
low-energy theorems involving the πN scattering amplitude [19]. The prob-
lem is that the non-relativistic expansion implemented in HBChPT alters the
analytical structure of the baryon propagator such that the chiral expansion
of some Green functions does not converge in certain parts of the low-energy
region [19, 65]. This problem shows up in the analytic continuation of the
πN scattering amplitude onto the unphysical region or in the behavior of the
form factors close to the two-pion threshold, t = 4m2

π [60]. Besides that, it
has been shown that the non-relativistic expansion may have a problematic
convergence in some other cases [66, 67, 68].

Based on the ideas previously discussed in Ref.[69], Becher et al. proposed
the infrared scheme (IRChPT) [19] as a solution to the problems of the HB
formalism. The IR scheme is a manifestly Lorentz covariant approach to
BChPT that preserves the HB power counting at the same time as it resumms

♯2For reviews on BChPT see Refs. [60, 61].
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the kinetic terms of the positive-energy part of the baryon propagators, curing
the analyticity problems of the HB approach. The πN scattering amplitude
has been also calculated at O(q3) [43, 21] and O(q4) [19] accuracies in the
IR scheme. At O(q4) the amplitude rapidly converges in the proximity of
the CD point so one can investigate meticulously the corresponding low-
energy theorems. However, and despite the O(q3) representation describes
the low energy phase-shifts as good as the HB approach (as we will see in
Chapter 4), the convergence at O(q4) comes out to be not rapid enough to
connect the subthreshold and threshold regions. More importantly, the IR
amplitude leads to an unphysically large violation (of about 20%) of the GT
relation [43, 21]. These problems seriously question the range of applicability
of ChPT in the baryon sector.

A serious drawback of the IR method is that, in curing the problems of
the HB expansion, it runs into its own ones with the analytic properties of
the loop integrals [70]. This is related to the fact that the IR resummation
of kinetic terms performed on the HB propagators completely omits the in-
clusion of negative-energy pole or anti-nucleon contribution, violating charge
conjugation symmetry and, therefore, causality [71]. The most striking con-
sequence of this is the appearance of unphysical cuts. Despite lying outside
the range of applicability of ChPT, these cuts can have sizable contribu-
tions to the Green functions at low-energies, disrupting the convergence of
the respective chiral expansions. This has been indeed shown in different
applications of ChPT in the baryon sector such as the chiral extrapolation
of the nucleon magnetic moment [66], the SU(3)F breaking of the baryon
magnetic moments [67] or the unitarized description of the πN scattering
amplitude [21].

However, the Extended-On-Mass-Shell (EOMS) renormalization scheme
[72, 73] allows one to use Lorentz covariant BChPT respecting the standard
power counting of ChPT. The main advantage of EOMS over the HB and
IR schemes is that it respects the analytic structure of the different terms in
the chiral expansion in the sense that they satisfy dispersion relations [70].
With these improvements, we showed in [44] that the chiral representation
of the πN scattering amplitude at O(q3) gives an excellent description of
the PW phase shifts up to the ∆ resonance region at the same time as it
provides stable values for the LECs and the associated observables. We
found that this representation is also suitable to extrapolate, in the center-
of-mass energy, the experimental data onto the the subthreshold region. All
together, we developed a predictive framework that allows to investigate, in
a model-independent fashion, the handful of low-energy theorems related to
the elastic πN scattering. Two remarkable outcomes are the experimental
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determination of σπN [45] and of gπN . A main conclusion is that the large
GT discrepancy found in Refs. [43, 21] can be traced back to the analyticity
issues of the IR method rather than to a breaking of the chiral convergence
in the πN system. All these results will be presented in Chapter 5.

A completely different difficulty in the baryon sector of ChPT is related
to the ∆(1232). Its contributions to the Green functions can be important at
very low energies since this resonance is very close in mass to the nucleon. In
the conventional chiral expansion, these effects are accounted for by the LECs
but the radius of convergence in this case becomes drastically reduced. This
problem is prominent in πN scattering as the threshold for this process is at
a center-of mass energy δW =Mπ away from the soft-point, that is the point
around which the chiral expansion is actually done. An improved convergence
of the chiral series can be obtained including the ∆ resonance as an explicit
degree of freedom [74, 75, 76]. In this case, one introduces a power counting
for the new scale ǫ = m∆−mN and computes the ∆ contributions accordingly.
The ∆ corrections to the πN scattering amplitude has been calculated in the
HB [77] and IR [43] schemes up to O(ǫ3) within the small-scale expansion
(SSE), which considers ǫ ∼ O(q) [75]. In case of the HB calculation, the
inclusion of the ∆ increases the range of energies described as compared with
the ∆-less case at O(q3), although the values of the LECs strongly depended
on the fitted data, blurring the conclusions on the extracted values of some
observables. In the IR case, the ∆ corrections notably worsen the description
of the different PW phase-shifts [43]. However, as we will see in Chapter
5, within EOMS the inclusion of this resonance increases significatively the
convergence of the chiral series, becoming an essential piece to achieve reliable
predictions for important quantities as gπN and σπN .

In this section we discuss to the formalism of ChPT with baryons and
comment some important related issues.

3.2.1 Miscellaneous

We consider the process πa(q)N(p, σ;α) → πa′(q′)N(p′, σ′;α′). Here a and a′

denote the Cartesian coordinates in the isospin space of the initial and final
pions with four-momentum q and q′, respectively. Regarding the nucleons,
σ(σ′) and α(α′) correspond to the third-components of spin and isospin of the
initial (final) states, in order. The usual Mandelstam variables are defined as
s = (p+ q)2 = (p′+ q′)2, t = (q−q′)2 = (p−p′)2 and u = (p−q′)2 = (p′−q)2,
that fulfill s+ t+ u = 2M2

π + 2m2
N for on-shell scattering, with mN and Mπ

the nucleon and pion mass, respectively. Exact isospin symmetry is assumed
in the following, so that it is convenient to consider Lorentz- and isospin-
invariant amplitudes. We then decompose the scattering amplitude as [12]:
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Taa′ = δa′aT
+ +

1

2
[τa, τa′ ]T

− (3.1)

T± = ū(p′, σ′)

[
A± +

1

2
(/q + /q

′)B±
]
u(p, σ) (3.2)

Where the Pauli matrices are indicated by τc and the definitions of the
indices and momenta are shown in the diagram of Fig. 3.1.

Figure 3.1: Diagrammatic representation of the Lorentz- and isospin-invariant
amplitudes. In this figure, s and t correspond to the Mandelstam variables, while P
and P ′ correspond to the momentum incoming and outgoing nucleon, respectively.
On the other hand, q (q′) corresponds to the momentum of an incoming (outgoing)
pion with cartesian isospin index a (a′).

The decomposition (3.2), however, is not transparent from the power
counting point of view, since the leading order contributions of A± and B±

cancel [19]. Therefore, for power counting issues is necessary to write the
scattering amplitude in terms of D ≡ A + νB, where ν = s−u

4mN
, so that the

scattering amplitude takes the form:

T± = ū(p′, σ′)

[
D± − 1

4mN
[/q

′, /q]B
±
]
u(p, σ) (3.3)

On the other hand, the free one-particle states are normalized according
to the Lorentz-invariant normalization:

〈p′, σ′; γ|p, σ; γ〉 = 2Ep(2π)
3δ(p′ − p)δσσ′δγγ′ (3.4)
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Where Ep is the energy of the particle with three-momentum p and γ
indicates any internal quantum number. A free two-particle state is normal-
ized accordingly and it can be decomposed in states with well defined total
spin S and total angular momentum J . In the center-of-mass (CM) frame
one has:

|π(−p; a)N(p, σ;α)〉 =
√
4π
∑

ℓ,m,J

(mσµ|ℓSJ)Y m
ℓ (p̂)∗|Jµℓ; aα〉 (3.5)

With p̂ the unit vector of the CM nucleon three-momentum p, ℓ the
orbital angular momentum, m its third component, µ = m + σ the third-
component of the total angular momentum and S = 1/2 for πN scattering.
The Clebsch-Gordan coefficient is denoted by (m1m2m3|j1j2j3), correspon-
ding to the composition of the spins j1 and j2 (with third-components m1

and m2, in order) to give the third spin j3, with third-component m3. The
state with total angular momentum well-defined, |Jµℓ; aα〉, satisfies the nor-
malization condition:

〈J ′µ′ℓ′; a′α′|Jµℓ; aα〉 = δJJ ′δµ′µδℓℓ′
4π

√
s

|p| δa′aδα′α (3.6)

The partial wave expansion of the πN scattering amplitude can be worked
out straightforwardly from Eq.(3.5) (see Appendix G). By definition, p gives
the positive direction of the z-axis. Inserting the series of Eq.(3.5) one has
for the scattering amplitude:

〈π(−p′; a′)N(p′, σ′;α′)|T |π(−p; a)N(p, σ;α)〉 =

4π
∑

ℓ,m,J

Y 0
ℓ (ẑ)(mσ

′σ|ℓ1
2
J)(0σσ|ℓ1

2
J)Y m

ℓ (p̂′)TJℓ(s) (3.7)

Where T is the T -matrix operator and TJℓ is the partial wave amplitude
with total angular momentum J and orbital angular momentum ℓ. Notice
that in Eq.(3.7) we made use of the fact that Y m

ℓ (ẑ) is non-zero only for m =
0. Recall also that because of parity conservation partial wave amplitudes
with different orbital angular momentum do not mix. From Eq.(3.7) it is
straightforward to isolate TJℓ with the result:

TJℓ(a
′, α′; a, α) =

1√
4π(2ℓ+ 1)(0σσ|ℓ1

2
J)

(3.8)

×
∑

m,σ′

∫
dp̂′ 〈π(−p′; a′)N(p′, σ′;α′)|T |π(−p; a)N(p, σ;α)〉(mσ′σ|ℓ1

2
J)Y m

ℓ (p̂′)∗
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In the previous expression the resulting TJℓ is, of course, independent of
the choice of σ.

The relation between the Cartesian and charge bases is given by:

|π+〉 = 1√
2
(|π1〉+ i|π2〉)

|π−〉 = 1√
2
(|π1〉 − i|π2〉)

|π0〉 = |π3〉 (3.9)

According to the previous definition of states |π+〉 = −|1,+1〉, |π−〉 =
|1,−1〉 and |π0〉 = |π3〉 = |1, 0〉, where the states of the isospin basis are
placed to the right of the equal sign. Notice the minus sign in the relationship
for |π+〉. Then, the amplitudes with well-defined isospin, I = 3/2 or 1/2, are
denoted by TIJℓ and can be obtained employing the appropriate linear com-
binations of TJℓ(a

′, α′; a, α), Eq.(3.8), in terms of standard Clebsch-Gordan
coefficients.

Due to the normalization of the states with well-defined total angular
momentum, Eq.(3.6), the partial waves resulting from Eq.(3.8) with well
defined isospin satisfy the unitarity relation:

ImTIJℓ =
|p|

8π
√
s
|TIJℓ|2 (3.10)

Which holds for |p| > 0 and below the inelastic threshold due the one-
pion production at |p| ≃ 210 MeV. Given the previous equation, the S-matrix
element with well defined I, J and ℓ, denoted by SIJℓ, corresponds to:

SIJℓ = 1 + i
|p|

4π
√
s
TIJℓ (3.11)

Satisfying SIJℓS
∗
IJℓ = 1 in the elastic physical region. In the same region

we can then write:

SIJℓ = e2iδIJℓ (3.12)

With δIJℓ the corresponding phase shifts. And, form Eqs.(3.11) and (3.12)
one has:

58



3.2. Chiral Perturbation Theory

TIJℓ =
8π

√
s

|p| sin δIJℓe
iδIJℓ (3.13)

However, if the calculation is perturbative, the S-matrix does not fulfill
unitarity exactly and one cannot use Eq.(3.13) to calculate the phase shifts.
Instead, is necessary to perform a perturbative expansion of the previous
equation up to the order considered to find the relation between the pertur-
bative amplitude and its corresponding phase shift. Following this procedure,
we find that up to O(q4) the different phase shifts can be obtained from the
perturbative amplitudes by means of the equation:

δIJℓ =
|p|

8π
√
s
ReTIJℓ (3.14)

3.2.2 Chiral Lagrangians

According to the chiral power counting discussed in Sec. 2.8 [49], for anO(q3)
calculation (ν = 3) of the πN scattering amplitude we need to consider the
following ππ and πN Lagrangians:♯3

LChPT = L(2)
ππ + L(4)

ππ + L(1)
πN + L(2)

πN + L(3)
πN (3.15)

Where the superscript indicates the chiral order ν. Here, L(n)
ππ refers to

the purely mesonic Lagrangian (without baryons) and L(n)
πN corresponds to

the one bilinear in the baryon fields. The explicit form for the mesonic
Lagrangians is:

L(2)
ππ =

f 2

4
〈uµuµ + χ+〉

L(4)
ππ =

1

16
ℓ4
(
2〈uµuµ〉〈χ+〉+ 〈χ+〉2

)
+ . . . (3.16)

Where the ellipsis indicate terms that are not needed in the calculations
given here and 〈· · ·〉 denotes the trace of the resulting 2 × 2 matrix in the
flavour space. For the different symbols, f is the pion weak decay constant
in the chiral limit and:

♯3This is for the case in which we do not consider the ∆-isobar contribution.
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3.2. Chiral Perturbation Theory

u2 = U , uµ = iu†∂µU u
† , χ± = u†χu† ± uχ†u (3.17)

The explicit chiral symmetry breaking due to the non-vanishing quark
masses (in the isospin limit mu = md = m̂) is introduced through χ = 2B0m̂.
This is a generalization of Eq.(2.125). The constant B0 is proportional to the
quark condensate in the chiral limit 〈0|q̄jqi|0〉 = −B0f

2δij. In the following
we employ the so-called sigma-parameterization, where:

U(x) =

√
1− ~π(x)2

F 2
+ i

~π(x) · ~τ
F

(3.18)

For the pion-nucleon Lagrangian we have:

L(1)
πN = ψ̄(i 6D −m)ψ +

g

2
ψ̄/uγ5ψ (3.19)

L(2)
πN = c1〈χ+〉ψ̄ψ − c2

4m2
〈uµuν〉(ψ̄DµDνψ + h.c.) +

c3
2
〈uµuµ〉ψ̄ψ

− c4
4
ψ̄γµγν [uµ, uν ]ψ + . . . (3.20)

L(3)
πN = ψ̄

(
−d1 + d2

4m
([uµ, [Dν , u

µ] + [Dµ, uν]]D
ν + h.c.)

+
d3

12m3
([uµ, [Dν , uλ]](D

µDνDλ + sym.) + h.c.) + i
d5
2m

([χ−, uµ]D
µ + h.c.)

+ i
d14 − d15

8m

(
σµν〈[Dλ, uµ]uν − uµ[Dν , uλ]〉Dλ + h.c.

)

+
d16
2
γµγ5〈χ+〉uµ +

id18
2
γµγ5[Dµ, χ−]

)
ψ + . . . (3.21)

In the previous equation m is the nucleon mass in the chiral limit (mu =
md = 0) and the covariant derivative Dµ acting on the baryon fields is given
by ∂µ+Γµ with Γµ = [u†, ∂µu]/2. As pointed before, the low-energy constants
(ci and di) are not fixed by chiral symmetry and, in this case, we extract their
values by fitting them to πN scattering data. Again, only the terms needed
for the present study are shown in Eq.(3.21). For further details on the
definition and derivation of the different monomials we refer the reader to
Refs.[63, 78]. Up to O(q3), these Lagrangians generate the contributions
displayed in Fig. 3.2.

The calculations presented in Chapters 4 and 5 are finally given in terms
of mN , fπ and gA, which implies some reshuffling of pieces once m, f and g
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O(q) :

O(q2) :

O(q3) :

(a) (b) (c)

(d) (e) (f )

O(q3) :

(g) (h)
(i)

(k) (l) (m)

(o)(n) (p)

O(q3) :

(r) (t) (u)

(v)

Figure 3.2: πN scattering diagrams (direct version) up to O(q3). Filled cir-
cles: O(q) vertices. Filled squares: O(q2). Filled diamonds: O(q3) vertices.

are expressed in terms of their physical values making use of their expressions
at O(q3) [19]. In this work we employ the numerical values fπ = 92.4 MeV,
Mπ = 139 MeV, mN = 939 MeV and gA = 1.267.
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3.2. Chiral Perturbation Theory

The ∆(1232) resonance

As pointed out before, the ∆(1232) plays an important role in the πN scat-
tering process. This is a spin-3/2 resonance that can be described by a

Rarita-Schwinger field [79] ψ
(σ)
µ , where µ and σ (which will be omitted in the

following) are the vector and spin indices, respectively. The free Lagrangian
of a massive Rarita-Schwinger field is given by:

L3/2 = ψ̄µ(iγ
µνα∂α −mγµν)ψν (3.22)

Where here m is the mass of the spin-3/2 particle, γµνα = 1
2
{γµν , γα} =

−iǫµναβγβγ5 and γµν = 1
2
[γµ, γν ]. However, the spin-3/2 particle described

by Eq.(3.22) has unphysical spin-1/2 degrees of freedom that lead to some
pathologies as negative-norm states [80] or acausal modes [81]. This spin-1/2
contribution can be eliminated if we impose the following gauge symmetry:

ψµ(x) → ψµ(x) + ∂µǫ(x) (3.23)

Where ǫ(x) is a spinor field. This symmetry is satisfied by the massless
Rarita-Schwinger Lagrangian, Eq.(3.22), but the interesting point is to apply
this symmetry to the Rarita-Schwinger field couplings. This is because the
gauge-invariant couplings have the important property of fulfill the transver-
sality condition:

pµΓ
µ(p, . . . ) = 0 (3.24)

Where p is the momentum of the Rarita-Schwinger field and µ is its vector
index. This property is crucial to filter the spin-1/2 contributions because the
spin-3/2 propagator obtained from the Rarita-Schwinger Lagrangian (3.22)
reads:

Sµν(p) = − 1

/p−m
P (3/2)
µν +

2

3m2
(/p+m)P

(1/2)
22,µν −

1√
3m

(P
(1/2)
12,µν − P

(1/2)
21,µν )

(3.25)

Where P
(3/2)
µν projects onto the pure spin-3/2 state and P

(1/2)
22,µν , P

(1/2)
12,µν and

P
(1/2)
21,µν are projection operators onto the spin-1/2 states. They have the fol-

lowing form:
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3.2. Chiral Perturbation Theory

P (3/2)
µν = gµν −

1

3
γµγν −

1

3p2
(/pγµpν + pµγν/p) (3.26)

P
(1/2)
22,µν =

pµpν
p2

(3.27)

P
(1/2)
12,µν =

pρpνγµρ√
3p2

(3.28)

P
(1/2)
21,µν =

pµp
ργρν√
3p2

(3.29)

It is easy to see that if a coupling satisfies the transversality condition
(3.24), the spin-1/2 contributions decouple from observables, since:

Γµ(p, . . . )Sµν(p)Γ
ν(p, . . . ) = −Γµ(p, . . . )

1

/p−m
P (3/2)
µν Γν(p, . . . ) (3.30)

However, a chiral interaction for the Rarita-Schwinger field ψµ does not
have the gauge symmetry (3.23). In this case, one can make use of the
Euler-Lagrange equations on the Lagrangian (3.22):

iγµνα∂αψν −mγµνψν = (i/∂ −m)ψν = 0 (3.31)

∂µ(iγ
µνα∂α −mγµν)ψν = γµν∂µψν = ∂ · ψ = 0 (3.32)

γµ(iγ
µνα∂α −mγµν)ψν = −(2iγµν∂µ + 3mγν)ψν = γ · ψ = 0 (3.33)

To write an on-shell equivalent chiral Lagrangian with couplings that
satisfy the gauge condition (3.23) up to a given order♯4, see Refs.[82, 76] for
more details.

We use this consistent formulation of chiral Lagrangians, due to Pasca-
lutsa, to filter the unphysical degrees of freedom of the Rarita-Schwinger
spinor ∆µ describing the ∆(1232)-resonance. We obtain then the following
consistent couplings to the nucleons and pions:

L(1)
πN∆ =

i hA
2fπm∆

(
∂ρ∆̄µ

)
T †aγρµνψ∂νπ

a + h.c. (3.34)

♯4The inclusion of various different symmetries in a given interaction is not easy (when-
ever possible). However, the perturbative treatment of effective field theories allow us to
reconcile the gauge symmetry of Eq.(3.23) and chiral symmetry up to a given order in the
EFT expansion [76].
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3.2. Chiral Perturbation Theory

Where the T a are the spin-3/2 −→ spin-1/2 projectors, which verify
T aT †b = δab − τaτ b/3, and hA is the N∆ axial coupling, that is poorly
determined but related with the πN∆ coupling through the off-diagonal
Goldberger-Treiman relation. The latter is fixed by fitting the πN elastic
scattering P33 phase shifts across the ∆ region with a “dressed” Born term.
This leads to hA = 2.90(2) for a Breit-Wigner width of Γ∆ = 118(2) MeV
[76], which value is taken from the PDG [83]. Alternatively we can use hA it
as a fitting parameter and use it to check the reliability of the PWA used to
extract its value.

At O(q2), we have the following N∆ Lagrangians correcting the Born-
term contribution of the ∆ to πN scattering:

L(2)
N∆ =

d∆3
m∆

N̄T aωa
µνγ

µγνρσDρ∆σ −
id∆4
m2

∆

N̄T aωa
µνγ

νρσDµDρ∆σ + h.c.

(3.35)

Where ωa
µν = 〈τa[∂µ, uν ]〉/2. These Lagrangians are consistent and the

on-shell equivalent of them was presented in [84], which are al so equivalent to
the ones of Fettes and Meißner [77]. Of course, before including the ∆(1232)
contributions in the πN amplitude one has to assign a counting to the ∆
interactions. Because the ∆(1232) is quite close to the πN threshold, we
have to distinguish between two low energy regions: the region below the
∆(1232) and the ∆(1232)-resonance region. In this thesis we only study
energy regions up to

√
s = 1.20 GeV which belongs to the first one. Within

this region the ∆(1232) propagator is suppressed with respect to the nucleon

one by a factor p1/2 [76] so, in this counting, we only needed L(1)
πN∆ and L(2)

πN∆

for an O(q3) calculation.

3.2.3 The Power Counting in Covariant Baryon Chiral

Perturbation Theory

While the techniques described in Chapter 2 are valid for both the mesonic
and the baryonic sectors, there are important differences when our calcu-
lations include baryons. In the pure mesonic sector, the amplitudes are
homogeneous functions of the meson energy and contributions from n-loop
diagrams are suppressed in powers of q2n (meson momenta), obtaining there-
fore the desired hierarchy to apply perturbation theory. Concretely, in the
SU(2) sector, the chiral order ν and the number of loops in the chiral expan-
sion of the ππ scattering amplitude is as given in Eq.(2.123), and depicted
in Fig. 3.3.

64



3.2. Chiral Perturbation Theory

ν

Tππ ∼ qν

1
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8

0 1 2 3 number of loops

Figure 3.3: Scaling dependence of the ππ scattering amplitude, Tππ, with the pion
momentum q.

For the case with baryons, one has to deal with a new heavy scale which
does not vanishes in the chiral limit: the nucleon mass. The latter makes
that the nucleon momenta scales as pµ ∼ O(1) [13], spoiling the homogeneity
of the amplitudes and breaking the power counting explained in Sec. 2.8. A
visual description is shown in Fig. 3.4 [13].

ν

number of loops

TπN ∼ qν

1

2
3
4

5

6

7

8

0 1 2 3

Figure 3.4: Scaling dependence of the πN scattering amplitude, TπN , with the
pion momentum q. Red points corresponds to contributions that break the power
counting.
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3.3. Isospin breaking corrections

To illustrate the problem, we consider the one-loop correction to the nu-
cleon mass which corresponds to the Feynman diagram displayed in Fig.3.5.

N

π

N N

Figure 3.5: One-loop self-energy of the nucleon.

According to Eq.(2.123), this diagram should generate contributions of
O(q3) that correct the nucleon mass in the chiral limit. However, an explicit
calculation shows that corrections are given by:

mN = m− 3g2mN

2f 2
(2λ̄(m2

N +M2)) +
3g2mNM

2

32π2f 2
(1− log

(
m2

N

µ2

)
)

− 3g2m3
N

32π2f 2
log

(
m2

N

µ2

)
+O(q3) (3.36)

Where µ is the scale of renormalization and 2λ̄ = [−Γ(2−d/2)+log(µ2/4π)−
1]/(4π)2 with d the space-time dimension of the loop virtual momentum in
the dimensional regularization method. So, as pointed before, it turns out
that the non-vanish nucleon mass generates terms of O(1) and O(q2) that
break the power counting♯5 and, in principle, could spoil the applicability of
perturbation theory. However this complication can be overcome by a suit-
able renormalization procedure. Such kind of procedures will be explained
in Chapters 4 and 5.

3.3 Isospin breaking corrections

Isospin symmetry implies a degenerate mass in the nucleon isospin doublet.
However, the difference between the u and d quarks introduces a difference
of 2.5 MeV in the the neutron mass respect to the proton one. This split-
ting due to the quark masses is compensated by electromagnetic interactions
that rises the proton mass in 1.2 MeV. This leaves an overall correction of
1.3 MeV for the neutron mass over the proton one due to the isospin breaking

♯5Notice that if mN would scale as M ∼ q, all the terms would be O(q3) and we would
not have power counting breaking terms.
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3.3. Isospin breaking corrections

effects of electromagnetism and quark masses difference. This fact rises the
question about the impact of isospin violation in strong interaction process
like the one we are considering here. In fact, πN scattering is an excellent
testground for studying this question, since modern meson factories allow
us to have huge amount of very precise low-energy data. The availability of
these high quality data opened the way to studying the isospin breaking cor-
rections from the experimentally accessible reactions π+p and π−p scattering
and the single charge exchange (SCX) reaction π−p → π0n. A consistent
study of these reactions within the framework of ChPT have been performed
in Ref.[85] calculating the chiral amplitude taking into account the quark
masses difference and including electromagnetic corrections valid for a pion
momentum & 1 MeV.♯6 In this work the authors analyzed the isospin break-
ing corrections by studying the difference between the complete amplitude
and the same amplitude in the isospin limit. This was done for pion mo-
menta from 25 to 100 MeV, which corresponds to

√
s ≈ 1.08 to ≈ 1.11 GeV.

Its main conclusion was that the size of the isospin breaking effects in the
S-wave is of ≈ −0.7%, whereas for the P -waves lies in the range from −4 to
−1.5%.

On the other hand, Matsinos’ group also studied the isospin breaking
corrections within its potential model approach (explained in Sec. 3.1). In
Ref.[18] the authors checked the isospin symmetry in the hadronic interac-
tions by trying to reproduce the SCX reaction from their hadronic phase
shifts extracted from π+p and π−p scattering data and they found an impor-
tant underestimation of the measured SCX cross sections. Namely, a previous
analysis carried by E. Matsinos gives an estimation for the isospin breaking
effects of ≈ 6% [86], although no estimations for these effects are given by
Ref.[18]. This conclusion was reinforced by the results of [87], where the same
authors found a sizeable difference between the value of the S-wave scatter-
ing length for π+p scattering and the value for the same quantity obtained
from the S-wave scattering length for π−p and SCX reactions by means of
isospin invariance. However, there exist some criticism to the potential model
approach as well as to the dispersive one since they can introduce system-
atic errors due to a possible mismatch in the description of both interactions
the strong and the electromagnetic ones. This could become very important
when studying small quantities like isospin symmetry violation [85].

Nevertheless, since we use Chiral Perturbation Theory to calculate our
amplitudes, we consider more consistent to take into account the results of
[85], that uses the same approach and provides a consistent way to study

♯6For lower pion momenta the loop diagrams with virtual photons are not suppressed
compared with the tree level, see Ref.[85] for further details.
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together the strong and the electromagnetic interaction. The relative devi-
ations obtained in that work will be taken into account during the fitting
procedure of our amplitudes to the phase shifts provided by the different
partial waves.

3.4 Unitarization Techniques

As pointed in Chapter 2, the S-matrix obtained in Chiral Perturbation The-
ory does not satisfy unitarity. However, there exists various techniques that
allow to resum the Feynman diagrams that give rise to the right hand cut,
Eq.(3.10). These unitarization techniques have proved to be very successful
in the description of non-perturbative phenomena with ChPT [88, 89]. In
this thesis we will follow the methodology of Ref.[90] that deduces, in terms
of the N/D method [91], the most general structure of an elastic partial wave
amplitude that fulfills elastic unitarity, Eq.(3.10). This representation is ac-
complished by means of the analytical properties of the scattering amplitudes
combined with elastic unitarity, that provides an explicit form for the imag-
inary part of the inverse of the scattering amplitude for the different partial
waves. Using the Cauchy’s theorem to perform a dispersion relation for the
inverse of a partial wave, whose discontinuity is known along the right hand
cut, one obtains the following expression [90]:

T (s) =
1

T (s)−1 + g(s)
(3.37)

Where the T (s) amplitude corresponds to those other terms not generated by
the right hand cut, e.g. crossed channel dynamics, and g(s) is the so-called
unitary loop function. The latter is obtained by integration of the phase space
of the scattering process along the unitarity cut. As explained in Ref.[90], the
T (s) amplitude (or interaction kernel) can be obtained from effective field
theory as Chiral Perturbation Theory. In this way the unitarized amplitude
T fulfills unitarity and embodies the underlying chiral symmetry. For the
case of πN scattering, which is the case that we are interested in, the phase
space is |p|/(8π√s), so the unitary loop function reads:
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g(s) = g(s0)−
s− s0
π

∫ ∞

sth

ds′
|p|

8π
√
s′

1

(s′ − s)(s′ − s0)

=
1

(4π)2

{
a(µ) + log

(
m2

N

µ2

)
− m2

N −M2
π + s

2s
log

(
M2

π

m2
N

)
(3.38)

+
|p|√
s

[
log(s−m2

N +M2
π + 2

√
s|p|) + log(s+m2

N −M2
π + 2

√
s|p|)

− log(−s+m2
N −M2

π + 2
√
s|p|)− log(−s−m2

N +M2
π + 2

√
s|p|)

]}

WhereMπ andmN are the pion and nucleon masses, respectively, and µ is
the renormalization scale. On the other hand the subtraction constant a(µ) is
just another way of rewriting g(s0). So, in order to apply this method we only
need to determine T (s), which can be done from lowest order calculations
within ChPT, as in Ref.[90]. However, it is interesting to generalize this
procedure to any order calculation in the chiral expansion. This was achieved
in Ref.[92] by matching order by order the chiral amplitude with the chiral
expansion of Eq.(3.37). Namely, taking into account that g(s) = O(q):

T (1) + T (2) + T (3) = T (1) + T (2) + T (3) − g(s)
(
T (1)

)2
(3.39)

Where the superscript (n) refers to the chiral order of the amplitudes.
Matching order by order we obtain the following relations between the chiral
amplitude (that is, the expanded T (s)) and the expansion of the interaction
kernel T (s):

T (1)(s) = T (1)(s)

T (2)(s) = T (2)(s)

T (3)(s) = T (3)(s) + g(s)
(
T (1)(s)

)2
(3.40)

Where we see that, up to O(q2), the interaction kernel and the chiral
amplitude coincide but, fromO(q3) hereafter the chiral amplitude is corrected
by the unitary loop function. This is easy to understand since the O(q3) is
the leading loop contribution (unitarity corrections) and this, and higher
orders, need to be corrected in such a way that we do not overcount the
the unitarity corrections that are being taken into account by the right hand
cut resummation. It is interesting to point out that this method can be
connected with other unitarization methods used in ChPT. One of these
methods is the K-matrix formalism, which is based in writing the unitarity
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amplitude by means of an interaction kernel K(s) and the phase space factor
ρ(s) = |p|/(8π√s) in the following way:

T (s) =
1

K(s)−1 − iρ(s)
(3.41)

Which is an analogous to Eq.(3.37) if we take K(s)−1 = T (s)−1+Re g(s).
Another interesting method of unitarization is the so-called Inverse Am-

plitude Method (IAM) [93] which also relies in unitarity and the analyti-
city properties of the scattering amplitude. In fact, from an analogous to
Eq.(3.41) with K(s) = Re(1/T ) and expanding up to O(q3) in the chiral
series, the authors of Ref.[94] obtained up to O(q3) within the IAM:

T (s) ≃ (T (1))2

T (1) − T (2) + (T (2))2/T (1) − ReT (3) − i |p|
8π

√
s
(T (1))2

(3.42)

Which can be obtained solely from the chiral amplitudes T (1), T (2) and
T (3) if we use T (3) = ReT (3) + i p

8π
√
s
(T (1))2:

T (s) ≃ 1

1/T (1) − T (2)/(T (1))2 + (T (2))2/(T (1))3 − T (3)/(T (1))2
(3.43)

It is interesting that this technique allow us to obtain the ∆(1232) pole
position and Breit-Wigner parameters, since Eq.(3.42) (or (3.43)) resums the
tree level contributions which, according to Resonance Saturation [95] (RS),
contains the contribution of the resonances that are integrated out. This
was achieved in Ref.[96] by analyzing the ∆(1232) phase shifts with Heavy
Baryon Chiral Perturbation Theory.
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Chapter 4
Infrared Regularization

As explained before, covariant BChPT does not respect the power counting,
Eq.(2.123), if we apply dimensional regularization, breaking, therefore, the
hierarchy that allows us to apply perturbation theory (see Sec. 2.8). This
chapter is dedicated to explain a regularization method that allow us to
recover the power counting keeping manifestly the Lorentz invariance: the
Infrared Regularization scheme (IR). In Sec. 4.1 it is explained how IR
recovers the power counting. Later, in Sec. 4.2, this scheme is applied for
the calculation of the πN scattering amplitude up to O(q3), which involves
one-loop amplitudes. The explicit expressions for the amplitudes are shown
in Appendices C and D. In Sec. 4.3 this amplitude is fitted to the data
of two different partial wave analyses already commented in the Chapter
3, the one of the Karlsruhe group [16] (KA85) and the current solution of
the George Washington University group [17] (WI08), to fix the value of
the O(q2) and O(q3) low energy constants and extract from them relevant
physical information. In Sec. 4.5, the results obtained in Sec. 4.3 are applied
to extract the value of the Goldberger-Treiman relation deviation from PWAs
data. The convergence of the chiral series in IR-ChPT is studied in Sec. 4.4
and, finally, the amplitude is unitarized to extend the range of validity of the
perturbative description. These results were presented in our paper [21].

4.1 Recovering the Power Counting

In this section we explain how Infrared Regularization (IR) recovers the stan-
dard power counting preserving the covariant formulation of the theory. This
method relies on dimensional regularization and, following [97], we will use
a simple example to explain its essence: the self-energy diagram of Fig.3.5.
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The corresponding scalar loop integral reads:

H11 =
1

i

∫
ddk

(2π)d
1

(M2 − k2 − iǫ)(m2 − (P − k)2 − iǫ)
(4.1)

This integral converges for d < 4 and we need to analyze it for momenta
close to the mass shell which means that P 2−m2 = O(q). In the limitM → 0,
the integral develops an infrared singularity generated by small values of the
variable of integration (k ∼ q). In that region, the first denominator is of
O(q2) and the second is of O(q). According to this, the chiral expansion of
H11 contains contributions of O(qd−3) that can be enhanced by considering
small dimensions. For d < 3, the leading term in the chiral expansion of H11

comes from the k = O(q) region, which generates a singular contribution
of O(qd−3), as well as nonleading terms of O(qd−2), O(qd−1), . . . . The rest
of the integration region does not contain infrared singularities and gives a
contribution that can be expanded in an ordinary power series. For suffi-
ciently large negative values of d the infrared region dominates the chiral
expansion to any desired order. In IR we split the original integral H11 in
two integrals: one containing the infrared singular part (I11), that comes
form the k = O(q) region and respect the chiral power counting and an-
other containing the infrared regular part (R11), that comes from the rest
of the integration region and can be expanded in an ordinary power series.
To illustrate this, we will continue with the self-energy example and use the
Feynman parameterization:

1

ab
=

∫ 1

0

dz

{(1− z)a + zb}2
(4.2)

Integrating over k, one obtains:

H11 = κ

∫ 1

0

dz C
d
2
−2, κ = (4π)−

d
2µd−4Γ

(
2− d

2

)
(4.3)

C = z2 − 2αΩz(1 − z) + α2(1− z)2 − iǫ (4.4)

α =
M

m
, Ω =

P 2 −m2 −M2

2mM
(4.5)

In this representation, the infrared singularity arises from the small values
of z, which make that C vanishes if α → 0. One can isolate the divergent
part by scaling the variable of integration, z = αu, and the upper limit in
the u variable becomes large. Extending the integration to infinity, we define
the infrared singular part:
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I11 = κ

∫ ∞

0

dz C
d
2
−2 = καd−3

∫ ∞

0

duD
d
2
−2 (4.6)

D = 1− 2Ωu+ u2 + 2αu(Ωu− 1) + α2u2 − iǫ (4.7)

And the remainder part of H11, R11, is given by:

R11 = −κ
∫ ∞

1

dz C
d
2
−2 (4.8)

With the decomposition:

H11 = I11 +R11 (4.9)

We split the infrared singular part form the regular one. The I11 expan-
sion reads:

I11 = O(qd−3) +O(qd−2) +O(qd−1) + . . . (4.10)

While for R11 reads:

R11 = O(q0) +O(q1) +O(q2) + . . . (4.11)

In Appendix B we explain how this method can be extended to an arbi-
trary number of mesonic and baryonic propagators.

This decomposition has the following advantages:

• The chiral expansion of the infrared regular part of a one loop integral
is a polynomial in the quark masses and the external momenta to any
given order.

• The infrared regular part of the one loop amplitudes is chirally sym-
metric.

• The infrared singular part of the one loop amplitudes respects the stan-
dard power counting of ChPT.

This implies that, in a one loop calculation, one only needs to calculate
the infrared singular part (I11) because the contribution of the infrared reg-
ular part (R11) can be absorbed in the coupling constants of the effective
Lagrangian. We proceed now to apply this regularization procedure to an
O(q3) calculation.
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4.2 Calculation of the Chiral Amplitude

Now we calculate the set of diagrams in Fig. 3.2 regularizing the loop dia-
grams within IR. The result is shown in Appendices C and D. As explained
in the previous section, the IR regularized loops diagrams result from taking
only the infrared singular part (Imn) and dropping the infrared regular part
(Rmn), with m and n the number of mesonic and baryonic propagators, re-
spectively. This is done by taking the following substitutions in the scalar
integrals of Appendix D:♯1

H10 → I10, H01 → 0, H20 → I20, H11 → I11

H02 → 0, H21 → I21, HA → IA, HB → IB

H21 → I21, H03 → 0, H13 → I13

Where the definition for the infrared singular part is the same as in the full
covariant case (Appendix D), except that the integration is performed over
the infrared singular region taking z ∈ [0,+∞), as explained in the previous
section. Comparing our IR-ChPT calculation [21] with the result of Ref.[19],
one sees that we agree with all the one-loop integrals given there except
for the integrals that contain any contribution of the so-called integral I

(2)
B ,

which is the infrared singular part of the integral H(2)
B defined in Appendix D.

We find that the contributions of I
(2)
B in Ref.[19], which appear in diagrams

(c)+(d), (g)+(h) and (i), should be reversed in sign to match our result.
To solve this discrepancy we performed the calculations of the Feynman
loop amplitudes using FeynCalc, and checked that we obtained the same
result. Moreover, we checked that the expressions given in Ref.[19] violate
perturbative unitarity,♯2 while our results satisfies it. Perturbative unitarity
results because unitarity, Eq.(3.10), is a nonlinear relation that mixes up
orders in a power expansion. Denoting with a superscript the chiral order so
that TIJℓ = T

(1)
IJℓ + T

(2)
IJℓ + T

(3)
IJℓ +O(q4) the unitarity relation Eq.(3.10) up to

O(q3) implies:

ImT
(3)
IJℓ =

|p|
8π

√
s

(
T

(1)
IJℓ

)2
(4.12)

♯1The integrals H01, H02 and H03 are dropped in this scheme because they do not
contain mesonic propagators and, therefore, have not infrared singular parts.

♯2The authors of Ref.[19] state in page 30 that the scattering amplitude calculated
obeys perturbative unitarity. It seems then that the difference in the sign referred above
corresponds to a typo in [19].
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4.3 Fits

Now we proceed to compare our perturbative calculation with the experimen-
tal phase shifts for the low-energy data on the πN S- and P -waves (which
are the relevant partial waves for such energies). Since our solution is per-
turbative we have to use Eq.(3.14), as explained in Sec. 3.2 of Chapter 3, to
calculate the resulting phase shifts:

δIJℓ =
|p|

8π
√
s
ReTIJℓ (4.13)

With TIJℓ evaluated in the IR-ChPT series (in our present case up to
O(q3)).

We now consider the reproduction of the πN phase shifts of the partial
wave analyses (PWAs) of the Karlsruhe (KA85) group [16] and the current
one of the GWU (WI08) group [17]. In order to fit the data, we consider two
strategies that will be explained in the following sections.

4.3.1 Strategy-1

The fits are done with the full IR-ChPT calculation to O(q3). Due to the
absence of error in these analyses [16, 17] there is some ambiguity in the
definition of the χ2. Here we follow a similar strategy to that of Ref.[98]
and define an error assigned to every point as the sum in quadrature of a
systematic plus a statistical error:

err(δ) =
√
e2s + e2rδ

2 (4.14)

Where es is the systematic error and er the relative one. In Ref.[63] a
relative error of 3% was taken while in Ref.[98] a 5% error was considered.
In the following we take for es just 0.1 degrees and er = 2%. Regarding these
values for the errors notice that, as commented in the previous chapter,
isospin breaking corrections in πN scattering are estimated to be rather
small (see Sec. 3.3 of Chapter 3). We then consider a 2% value as a safe
estimate for isospin breaking effects not taken into account in our isospin
symmetric study. Notice also that the O(q4) contributions are expected
to be suppressed compared with the leading term by a relative factor ∼
(Mπ/ΛχSB)

3 ∼ (0.14/0.7)3 ∼ 0.01. On the other hand, a finite value for es
helps to stabilize fits. Otherwise, with es = 0, extra weight is given to the
small energy region close to threshold, where PWAs have not experimental
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data to compare with. Tiny differences between the calculation and points
in the input become then exceedingly relevant. We take es = 0.1 degrees
since it is much smaller than typical values of the phase shifts and is also the
typical size for the difference between the phase shifts of Refs.[16, 17] in the
low-energy region for the P11 partial wave. We have also convinced ourselves
that changes in these values for es and er do not affect our conclusions.

Within this strategy, the χ2 function to be minimized is defined in a
standard way as:

χ2 =
∑

i

(δ − δth)
2

err(δ)2
(4.15)

With δth the phase shift calculated theoretically. A data point is included
every 4 MeV in

√
s. We fit directly these data from threshold up to an upper

value denoted by
√
smax, and consider several values for

√
smax, employing

the program MINUIT [99].
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Figure 4.1: Fits to KA85 [16] data with errors calculated by using Eq.(4.14). The
result (solid line) corresponds to KA85-1 of Table 4.1.
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Figure 4.2: Fits to WI08 [17] data with errors calculated by using Eq.(4.14). The
result (solid line) corresponds to WI08-1 of Table 4.1.

One observes that the χ2 per degree of freedom (χ2
d.o.f.) is below 1 for√

smax . 1.13 GeV, and then rises fast with energy so that for
√
smax =

1.14 GeV the χ2
d.o.f. is 2.1 and for

√
smax = 1.15 GeV it becomes 3.6. In

Figs. 4.1 and 4.2 we show by the solid line the result of the fit for
√
smax =

1.13 GeV. At the level of the resulting curves the differences are small when
varying

√
smax within the range indicated above. A good reproduction of the

data is achieved up to around
√
s . 1.14 GeV, a similar range of energies to

that obtained in the O(q3) HBChPT fits of Fettes and Meißner [63]. From
Figs. 4.1 and 4.2 one can readily see the origin of the rise in the χ2 with
increasing

√
smax. It stems from the last points of the partial waves P33, P31

and P11 for which the resulting curves depart from them, getting worse as the
energy increases. The fast rising of the P33 phase shifts is due to the ∆(1232)
resonance. Though the tail of this resonance is mimicked in ChPT by the
LECs, its energy dependence is too steepy to be completely accounted for at
O(q3) due to the closeness of the ∆(1232) to the πN threshold. Indeed, this
deficiency already occurred in the O(q3) HBChPT calculation of Ref.[63].
However, at O(q4) the fit to data improves because of the appearance of new
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higher order LECs [64]. It is also worth emphasizing that our fits to the phase
shifts of the KA85 analysis, as shown in Fig. 4.1, offer a good reproduction
of the data and the worsening for higher energies shows up in a smooth
way as in O(q3) HBChPT [63]. This is certainly an improvement compared
with the previous πN study in IR-ChPT to O(q3) of Ref.[43]. In this latter
reference, data could only be fitted up to around

√
s ≈ 1.12 GeV and large

discrepancies above that energy, rapidly increasing with energy, emerged in
the S31, P13 and P11 partial waves. For the fits to the WI08 phase shifts, the
same situation occurs except for the P11, where IR-ChPT seems not to be
able to fit this partial wave even for very low energies. Whether this is due
to the IR scheme or to the PW data will be answered in the next chapter.

Low Energy Constants

LEC KA85-1 WI08-1
c1 −0.71(49) −0.27(51)
c2 4.32(27) 4.28(27)
c3 −6.53(33) −6.76(27)
c4 3.87(15) 4.08(13)

d1 + d2 2.48(59) 2.53(60)
d3 −2.68(1.02) −3.65(1.01)
d5 2.69(2.20) 5.38(2.40)

d14 − d15 −1.71(73) −1.17(1.00)
d18 −0.26(40) −0.86(43)

χ2
d.o.f. 0.9 . 1

Table 4.1: Values of the low-energy constants for the KA85-1 (column 2) and
WI08-1 (column 3) fits. The ci are given in GeV−1 and the di (or their combina-
tions) in GeV−2. The renormalization scale for di(µ) is µ = 1 GeV.

The resulting values for the strategy-1 LECs are shown in the second
and third column of Table 4.1, denoted by KA85-1 and WI08-1, respectively,
in units of GeV−1 and GeV−2 for the ci and di, respectively. Note that at
O(q3) only the combinations of counterterms d1+d2, d3, d5, d14−d15 and d18
appear in πN scattering. The first four combinations were already explicitly
shown in the expression for L(3)

πN , Eq.(3.21). The counterterm d16 does not
appear because it is re-absorbed in the physical value of the pion-nucleon
axial-vector coupling gA, once the lowest order g constant is fixed in terms of
the former [19]. Under variations of

√
smax most of the counterterms present

a rather stable behavior, with the O(q3) ones being the most sensitive. The
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LEC HBChPT HBChPT HBChPT RS
O(q3) [63] Disp. [100] O(q3) [101] [101]

c1 (−1.71,−1.07) −0.81(12) −1.02(6)
c2 (3.0, 3.5) 8.43(56.9) 3.32(3) 3.9
c3 (−6.3,−5.8) −4.70(1.16) −5.57(5) −5.3
c4 (3.4, 3.6) 3.40(0.04) 3.7

d1 + d2 (3.2, 4.1)
d3 (−4.3,−2.6)
d5 (−1.1, 0.4)

d14 − d15 (−5.1,−4.3)
d18 (−1.6,−0.5)

χ2
d.o.f. (0.83− 1.34)

Table 4.2: In the second column we give the interval of values obtained in [63] by
fitting low-energy πN scattering data with HBChPT at O(q3) . Other determi-
nations are given in columns third [100] and fourth [101]. Resonance saturation
estimates are collected in the last column [101]. The ci are given in GeV−1 and
the di (or their combinations) in GeV−2. The renormalization scale for di(µ) is
µ = 1 GeV.

change in the LECs when varying
√
smax between 1.12 to 1.15 GeV is a

source of uncertainty that is added in quadrature with the statistical error
from the fit with

√
smax = 1.13 GeV, which has a χ2

d.o.f. of 0.9. The central
values shown correspond to the same fit too. We also give in Table 4.2 the
values obtained from other approaches at O(q3) [63, 100, 101, 102], including
the O(q3) HBChPT fit to πN data [63], the dispersive analysis within the
Mandelstam triangle of Ref.[100] and the results at O(q3) from Ref.[101],
that also includes an estimation of theO(q2) LECs from resonance saturation
(RS). Within uncertainties, our values for c1, c3 and c4 are compatible with
these other determinations. Instead, c2 is somewhat larger, which is one of
the main motivations for considering other fits to πN scattering following
the so-called strategy-2, as explained below. Our values are also compatible
with those determined from the πN parameters up to O(q4) in Ref.[103] that
gives the intervals c1 = (−1.2,−0.9), c2 = (2.6, 4.0) and c3 = (−6.1,−4.4).
Regarding the O(q3) counterterms the comparison with HBChPT is not so
clear due to the large uncertainties both from our side as well as from [63].
As discussed in more detail below, the O(q3) contribution is typically the
smallest between the different orders studied so that it is harder to pin down
precise values for these counterterms. Indeed, we observe from the second
column in Table 4.1 that d3, d5 and d14 − d15 have large errors, much larger
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than those of the O(q2) counterterms. Our values for the LECs di, again
within the large uncertainties, are compatible with those of Ref.[63]. Only
d14 − d15 is larger in our case, out of the range given in [63] by around a
factor 2.

Threshold Parameters

To extract the value of the threshold parameters we fit the effective range
expansion in Eq.(4.16) to our ChPT results in the threshold region (

√
s .

1.084 GeV):

|p|2ℓ+1cotδIJℓ =
1

aIJℓ
+

1

2
rIJℓ|p|2 (4.16)

Where aIJℓ is the scattering length/volume and rIJℓ the effective radius.

Partial KA85-1 KA85 WI08-1 WI08
Wave [16] [17]
aS31 −10.0(1) −10.0(4) −8.1(1) −8.4
aS11 17.1(1) 17.5(3) 16.5(2) 17.1
a+0+ −1.0(1) −0.8a 0.1(1) −0.10(12)
a−0+ 9.0(1) 9.2a 8.2(1) 8.83(5)
aP31 −5.2(1) −4.4(2) −4.8(1) −3.8
aP11 −7.8(1) −7.8(2) −7.3(1) −5.8
aP33 25.1(2) 21.4(2) 25.2(2) 19.4
aP13 −3.4(1) −3.0(2) −3.2(1) −2.3

Table 4.3: S-wave scattering lengths and P -wave scattering volumes in units of
10−2M−1

π and 10−2M−3
π , respectively. Our results for the fits following strategy-1

to the KA85 and WI08 data are given in the second and fourth columns, respec-
tively. The third and fifth columns correspond to the values of the KA85 [16] and
WI08 [17], respectively. The errors given in the fifth column, are extracted from
Ref.[104].
a These numbers are given without errors because no errors are provided in Ref.[16].
They are deduced from the KA85 ones for aS31 and aS11 .

The threshold parameters for the fits KA85-1 and WI08-1 are collected in
the second and fourth columns of Table 4.3, respectively. The error given to
our threshold parameters is just statistical. It is so small because the values of
the scattering lengths and volumes are rather stable under changes of

√
smax
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and LECs within their uncertainties (taking into account the correlation
among them). If treated in an uncorrelated way the error would be much
larger. In the third and fifth columns of Table 4.3, we give the values from
the partial wave analyses of Refs.[16, 17]. Notice that the differences between
the central values from the latter two references are larger than one standard
deviation, except for the P33 case. The differences between the S31 scattering
lengths and P13 scattering volumes are specially large. Given this situation
we consider that our calculated scattering lengths and volumes are consistent
with the values obtained in the KA85 and WI08 partial wave analyses, except
for the P33 one for which our result is significantly larger. It is also too large
compared with the values obtained in the O(q3) HBChPT fits to phase-shifts
of Ref.[63].

4.3.2 Strategy-2

The large values for c2 and aP33 obtained within strategy-1 lead us to con-
sider a second strategy (strategy-2). As it was commented above, the rapid
increase in the phase shifts due to the tail of the ∆(1232) is not well re-
produced at O(q3). As a result, instead of fitting the P33 phase shifts as a
function of energy we fit now the function tan δP33/|p|3 for three points with
energy less than 1.09 GeV, where δP33 is the phase shifts for the P33 partial
wave. The form of this function is, of course, dictated by the ERE and at
threshold it directly gives the corresponding scattering volume. Within the
second strategy, we take a 2% of relative error and a systematic error of 0.1
degrees for all the partial waves except for P33. For the latter, in which we
fit the scattering volume, we also take a relative error of 2% since, within
errors, this is the range of values spanned in Table 4.3 by the KA85 and
WI08 results for aP33 .

Low Energy Constants

The resulting values for the LECs within the strategy-2 are given in the
second and third columns of Table 4.4 and their corresponding curves for√
smax = 1.13 GeV are shown in Figs. 4.3 and 4.4 by the solid lines, that have

a χ2
d.o.f. = 0.86. We observe that these curves are quite similar to the ones

previously obtained in the strategy-1 (KA85-1 and WI08-1). Nevertheless,
for the P11 partial wave the description is slightly worse above 1.12 GeV and
it is the main contribution to the final χ2.

For the P33 phase shifts one also observes a clear difference between the
two strategies as the lines corresponding to the strategy-2 run lower than
the lines corresponding to the strategy-1 (displayed in Figs. 4.1 and 4.2).

81



4.3. Fits

-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
 0

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

-2.5
-2

-1.5
-1

-0.5
 0

 0.5

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16

 0

 5

 10

 15

 20

 25

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0
 0.2

 1.08  1.09  1.1  1.11  1.12  1.13  1.14  1.15  1.16√
s (GeV)

√
s (GeV)

√
s (GeV)

√
s (GeV)

√
s (GeV)

√
s (GeV)

S
1
1

S
3
1

P
1
1

P
1
3

P
3
1

P
3
3

Figure 4.3: Fits to KA85 [16] data with errors calculated by using Eq.(4.14)
following strategy-2. The result (solid line) corresponds to KA85-2 of Table 4.4.

LEC KA85-2 WI08-2
c1 −0.79(51) −0.30(48)
c2 3.49(25) 3.55(30)
c3 −5.40(13) −5.77(29)
c4 3.32(13) 3.60(16)

d1 + d2 0.94(56) 1.16(65)
d3 −1.10(1.16) −2.32(1.04)
d5 1.86(2.28) 4.83(2.18)

d14 − d15 1.03(71) 1.27(1.11)
d18 −0.07(44) −0.72(40)

χ2
d.o.f. 0.86 0.86

Table 4.4: Values of the low-energy constants for the KA85-2 (column 2) and
WI08-2 (column 3) fits. The ci are given in GeV−1 and the di (or their combina-
tions) in GeV−2. The renormalization scale for di(µ) is µ = 1 GeV.
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Figure 4.4: Fits to WI08 [17] data with errors calculated by using Eq.(4.14)
following strategy-2. The result (solid line) corresponds to WI08-2 of Table 4.4.

The former reproduces the standard values for the P33 scattering volume, see
column three of Table 4.6, while for the latter it is larger. This is another
confirmation that the description of the rapid rise of the P33 phase shifts
at O(q3) enforces the fit to enlarge the value of the resulting scattering vol-
ume. It is remarkable that now the value of the O(q2) LEC c2 is smaller
and perfectly compatible with the interval of values of [63] (Table 4.2). It
is also interesting to note that c3 is also smaller, which is a welcome feature
especially for two- and few-nucleon systems that are rather sensitive to large
sub-leading two-pion exchange NN potential that is generated by the inclu-
sion of the LECs c1, c3 and c4 [105]. See refs. [106, 107, 108] for a thorough
discussion on this issue for two- and few-nucleon systems. Related to this
point, one has determinations of c3 and c4 by a partial wave analysis of the
pp and np scattering data from Ref.[109] with the results:

c3 = −4.78± 0.10 GeV−1

c4 = +3.96± 0.22 GeV−1 (4.17)
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4.3. Fits

The systematic errors are not properly accounted for yet in these deter-
minations due to the dependence on the matching point that distinguishes
between the long-range part of theNN potential (parameterized from ChPT)
and the short-range one (with a purely phenomenological parameterization).
Namely, the same authors in Ref.[110] considered this issue and when varying
the matching point from 1.8 fm to 1.4 fm the LECs changed significantly:
c3 = −5.08(28) → −4.99(21) and c4 = 4.70(70) → 5.62(69) GeV−1. With
respect to the O(q3) counterterms we see that the central values have shifted
considerably compared with KA85-1 and WI08-1. Within uncertainties d3,
d5 and d18 overlap at the level of one sigma. The LECs d1 + d2 and d14 − d15
require to take into account a variation of 2 sigmas. In view of this situation
we consider that one should be conservative and give ranges of values for
these latter combination of LECs in order to make them compatible:

d1 + d2 = +0.4 . . . + 3 GeV−2 ,

d14 − d15 = −2.4 . . . + 1.75 GeV−2 . (4.18)

These values correspond to the minimum and maximum of those shown in
the second and third columns of Table 4.4 allowing a variation of one standard
deviation. One observes that the resulting LECs at O(q2) are quite similar
between KA85-1 and WI08-1, on the one hand, and KA85-2 and WI08-2, on
the other, so that within uncertainties they are compatible in either of the
two strategies. In the second column of Table 4.5 we present the average
of the LECs from our fits in Tables 4.1 and 4.4. The error given for every
LEC is the sum in quadrature of the largest of the statistical errors shown in
the previous tables and the one resulting from the dispersion in the central
values. This is a conservative procedure which recognizes that both strategies
are acceptable for studying low-energy πN scattering and that takes into
account the dispersion in the LECs that results from changes in the data set.
Within errors, the averaged values of the LECs are compatible with those
from HBChPT at O(q3), except for d14 − d15, which is the only counterterm
that differs by more than one standard deviation from the interval of values
of Ref.[63].
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4.3. Fits

LEC Average HBChPT HBChPT HBChPT RS
O(q3) [63] Disp. [100] O(q3) [101] [101]

c1 −0.52(60) (−1.71,−1.07) −0.81(12) −1.02(6)
c2 3.91(54) (3.0, 3.5) 8.43(56.9) 3.32(3) 3.9
c3 −6.12(72) (−6.3,−5.8) −4.70(1.16) −5.57(5) −5.3
c4 3.72(37) (3.4, 3.6) 3.40(4) 3.7

d1 + d2 1.78(1.10) (3.2, 4.1)
d3 −2.44(1.60) (−4.3,−2.6)
d5 3.69(2.93) (−1.1, 0.4)

d14 − d15 −0.145(1.88) (−5.1,−4.3)
d18 −0.48(58) (−1.6,−0.5)

Table 4.5: Averaged values from Tables 4.1 and 4.4 for the LECs. Columns 3–6
are that same as in Tables 4.1 and 4.4.

Threshold Parameters

Partial KA85-2 KA85 WI08-2 WI08
Wave

aS31 −10.3(1) −10.0(4) −8.2(1) −8.4
aS11 17.2(2) 17.5(3) 16.7(2) 17.1
a+0+ −1.1(1) −0.8a 0, 1(1) −0.10(12)
a−0+ 9.2(1) 9.2a 8.3(1) 8.83(5)
aP31 −5.1(1) −4.4(2) −5.1(1) −3.8
aP11 −8.8(1) −7.8(2) −8.0(1) −5.8
aP33 21.4(2) 21.4(2) 22.2(2) 19.4
aP13 −3.5(1) −3.0(2) −3.5(1) −2.3

Table 4.6: S-wave scattering lengths and P -wave scattering volumes in units of
10−2M−1

π and 10−2M−3
π , respectively. Our results for the fits to the KA85-2 and

WI08-2 are given in the second and fourth columns, respectively. The third column
corresponds to the values of the KA85 analysis [16]. The values for WI08 (column
5) are extracted from Ref.[17] and the errors, when given, from Ref.[104].
a These numbers are given without errors because no errors are provided in Ref.[16].
They are deduced from the KA85 ones for aS31 and aS11 .

The scattering lengths and volumes for KA85-2 and WI08-2 are collected
in the second and fourth columns of Table 4.6. They are calculated from our
results similarly as explained above for the KA85-1 and WI08-1 fits. In gen-
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eral, we see a good agreement between our O(q3) IR-ChPT results and the
scattering lengths/volumes for KA85 and WI08. Only the P11 scattering vol-
ume is slightly different, though the difference between the KA85 and WI08
results is significantly larger for this case too. One also observes differences
beyond the error estimated in KA85 for the P13 scattering volume between
the KA85 and WI08 values. IR-ChPT result is closer to the KA85 one.

Partial Average KA85 WI08
Wave

aS31 −9.2(12) −10.0(4) −8.4
aS11 16.9(4) 17.5(3) 17.1
a+0+ −0.5(7) −0.8a −0.10(12)
a−0+ 8.7(5) 9.2a 8.83(5)
aP31 −5.1(2) −4.4(2) −3.8
aP11 −8.0(6) −7.8(2) −5.8
aP33 23.2(17) 21.4(2) 19.4
aP13 −3.4(2) −3.0(2) −2.3

Table 4.7: S-wave scattering lengths and P -wave scattering volumes in units of
10−2M−1

π and 10−2M−3
π , respectively. Our averaged result is given in the second

column. The third column corresponds to the values of the KA85 analysis [16].
The values for WI08 (column 4) are extracted from Ref.[17] and the errors, when
given, from Ref.[104].
a These numbers are given without errors because no errors are provided in Ref.[16].
They are deduced from the KA85 ones for aS31 and aS11 .

4.4 Convergence of the Chiral Series

Finally, we show in Fig. 4.5 the different chiral order contributions to the
total phase shifts (depicted by the solid lines) for the fit KA85-1♯3 (shown
in Fig. 4.1). The dotted lines correspond to the leading result, the dashed
ones to NLO and the dash-dotted ones to N2LO. A general trend observed
is the partial cancellation between the O(q2) and O(q3) contributions. For
the P -waves, the cancellation is almost exact at low energies while at higher
energies the O(q2) contribution is larger in modulus than the O(q3) one (ex-
cept for the P31 partial wave where the cancellation is almost exact all over
the energy range shown, so that the first order describes well this partial

♯3The same conclusions are obtained for the fit WI08-1.
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4.4. Convergence of the Chiral Series

wave). For the S-waves at low energies (
√
s . 1.11 GeV) the first order con-

tribution dominates, though the second order one tends to increase rapidly
with energy. For these partial waves the second order contribution is much
larger than the third order one and the partial cancellation between these
orders is weak (even both orders add with the same sign for S31 at the high-
est energies shown). The smallness of the third order contribution for the
S-waves together with the fact that it is also clearly smaller than the second
order one for most of the P -waves explain the difficulties to pin down precise
values for the O(q3) LECs (the di’s), as already indicated above.
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Figure 4.5: (Color online.) Different chiral orders contributing to the phase shifts
for the KA85-1 fit. The (black) dotted, (green) dashed and (blue) dash-dotted are
the first, second and third order, respectively. The (red) solid line is the sum of
all of them.
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4.5 The Goldberger-Treiman Relation

The Goldberger-Treiman relation is a pre-PCAC relation that relies on the
conservation of the spontaneously broken chiral symmetry. The non-exact
conservation of this symmetry due to the quark masses leads to a deviation
from this relation (∆GT ) that can be extracted from experimental informa-
tion. This deviation is usually defined as:

gπN =
gAmN

fπ
(1 + ∆GT ) (4.19)

Studies based on πN andNN PWA leads to ∆GT = 2−3% [111, 112, 113].
In ChPT, ∆GT is directly related to the LEC d18 through the relation [19]:

∆GT = −2M2
πd18
gA

+∆loops (4.20)

With ∆loops a contribution due to the loop diagrams which is subdominant
in the standard chiral power counting. Actually, this contribution is O(M4

π)
because the O(M3

π) loop contribution cancels [64, 19].
Inserting our averaged value of d18 in the third column of Table 4.5 into

Eq.(4.19), we then find:

∆GT = 0.015± 0.018 (4.21)

Which is compatible with the values around 2–3% that are nowadays
preferred from πN and NN partial wave analyses [111, 112, 113]. In terms
of the πN coupling constant, from Eq.(4.20) our value for d18 translates in:

gπN = 13.07(23) or f 2 = (gπNMπ/4mN)
2 /π = 0.077(2) (4.22)

Within uncertainties our result at strict O(M3
π) is compatible at the level

of one sigma with the determinations of Refs.[111, 112, 113].
However, IR-ChPT at O(q3) gives rise to a caveat concerning the GT

relation. The point is that the full calculation at this order (IR-ChPT con-
tains higher orders due to the 1/mN relativistic resummation) contributes
to the GT relation violation with ∆loops ≈ 20%, similarly as in Ref.[43]. For
the evaluation of the GT relation discrepancy in our present calculations we
study the π−p → π−p scattering. We select this particular process in the
charge basis of states because the crossed u-channel process, π+p → π+p,

88



4.5. The Goldberger-Treiman Relation

is purely I = 3/2 and thus there is no u-channel nucleon pole, which re-
quires the same quantum numbers as for the nucleon, in the isospin limit.
Otherwise the s- and u-channel nucleon poles overlap for some values of the
scattering angle. When projecting the u-channel nucleon pole in a partial
wave it produces a cut for m2

N − 2M2
π +M4

π/m
2
N < s < m2

N + 2M2
π , with the

branch points very close to the nucleon pole at s = m2
N . As a result, there is

not soft way to calculate the residue at the s-channel nucleon pole unless the
u-channel nucleon pole is removed, as done by considering the π−p → π−p
scattering. The latter is finally projected in the partial wave P11, with the
same quantum numbers as the nucleon. The ratio of the residues at the nu-
cleon pole of the full O(q3) IR-ChPT partial wave and the direct (s-channel)
Born term calculated with gA, Mπ and mN at their physical values, gives us
directly the ratio between the squares of the full pion-nucleon coupling and
the one from the GT relation.♯4

lim
s→m2

N

T
O(q3)
π−p→π−p

T
O(q)

π−p→π−p

=

(
gπN

gAmN/fπ

)2

= (1 + ∆GT )
2 (4.23)

Numerically we find that the full calculation gives rise to a violation of the
GT relation of around ∆GT = 20− 25%, while its strict O(M3

π) restriction is
much smaller, Eq.(4.21). Related to this one has a significant renormalization
scale dependence on the GT violation.♯5 In this way, for the fit KA85-1
(second column of Table 4.1) at µ = 1 GeV one has a ∆GT ≈ 22% while for
µ = 0.5 GeV a ∆GT ≈ 15% stems. On the other hand, Ref.[13] performed a
relativistic calculation of ∆GT directly in dimensional regularization within
the MS − 1 renormalization scheme and obtained a natural (much smaller)
and renormalization scale independent loop contribution to ∆GT . It seems
then that the problem that we find for the calculation of ∆GT with IR,
obtained earlier in Ref.[43], is related to the peculiar way the chiral counting
is restored in the IR approach [67, 114]. We tentatively conclude that a neat
advance in the field would occur once a relativistic regularization method
were available that conserved the chiral counting in the evaluation of loops
while, at least, avoided any residual renormalization scale dependence. As
we will see in the next chapter, this can be achieved by using the so-called
Extended-On-Mass-Shell renormalization scheme.

♯4Note that there is no crossed Born term for π−p → π−p and that the LO Born term
expressed in terms of physical parameters satisfies exactly the GT relation.

♯5Eq.(4.21) is renormalization scale independent because the beta function for d18 is
zero [63].
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4.6 Unitarized amplitudes and higher ener-

gies

In order to resum the right-hand cut or unitarity cut we consider the unita-
rization method of Refs.[90, 92, 98], already explained in Sec. 3.4 of Chap-
ter 3. In Ref.[98] this approach was used for unitarizing the O(q3) HBChPT
πN partial waves from Ref.[63]. However, no explicit Lorentz-invariant one-
loop calculation for πN scattering has been unitarized in the literature until
[21]. This is an interesting point since by taking explicitly into account the
presence of the unitarity cut the rest of the amplitude is expected to have a
softer chiral expansion. Recalling Eq.(3.37), we express the unitary ampli-
tude TIJℓ as:

TIJℓ =
1

T −1
IJℓ + g(s)

(4.24)

Where the unitarity pion-nucleon loop function g(s) was given in Sec. 3.4
of Chapter 3. The subtraction constant a1, contained in the loop function
g(s), see Eq.(3.38), is determined by requiring that this function vanishes at
the nucleon mass s = m2

N . In this way the P11 partial-wave has the nucleon
pole at its right position, otherwise it would disappear. This is due to the
fact that for the partial wave T −1

1
2

1
2
1
vanishes at s = m2

N so it is required that

g(m2
N) = 0. Otherwise T 1

2
1
2
1, Eq.(4.24), would be finite at s = m2

N .

Due to the closeness of the ∆(1232) resonance to the πN threshold it
is expedient to implement a method to take into account its presence in
order to provide a higher energy description of πN phase-shifts beyond the
purely perturbative results discussed in Secs. 4.2 and 4.3. As commented in
Ref.[90] we can add a CDD pole [115], in this case in the P33 channel, so as
to reach the region of the ∆(1232) resonance. The addition of the CDD pole
conserves the discontinuities of the partial wave amplitude across the cuts,
and every CDD corresponds to a zero of the partial wave-amplitude along
the real axis and hence to a pole in the inverse of the amplitude. We then
modify Eq.(4.24) by including such a pole in T−1

3
2

3
2
1
,

T 3
2

3
2
1 =

(
T −1

3
2

3
2
1
+

γ

s− sP
+ g(s)

)−1

(4.25)

Where γ and sP are the residue and pole position of the CDD pole,
in order, so that two new free parameters enter. The amplitude TIJℓ is
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determined by matching to our O(q3) IR-ChPT calculation, as commented
before. We also distinguish here between the fits to the KA85 [16] and WI08
[17] phase-shifts. The fits are done up to

√
smax = 1.25 GeV for all the

partial waves. One cannot afford to go to higher energies because of an
intrinsic limitation of IR-ChPT. Additional unphysical cuts and poles are
generated by the infinite order resummation of the sub-leading 1/mN kinetic
energy terms accomplished in IR [67, 114, 116]. In our case the limiting
circumstance is the appearance of a pole when the Mandelstam variable
u = 0.♯6 When projecting in the different partial waves this singularity
gives rise to a strong branch point at s = 2(m2

N + M2
π) ≃ 1.342 GeV2,

which indicates the onset of a non-physical right-hand cut that extends to
infinity and that produces strong violation of unitarity. This translates into
strong rises of the phase-shifts calculated employing Eqs.(4.24) and (4.25)
for energies

√
s & 1.26 GeV. This is why we have taken

√
smax = 1.25 GeV,

because for higher energies these effects are clearly visible in the calculated
phase-shifts. The χ2 to be minimized is the same as already used for the
pure perturbative study (strategy-1), Eq.(4.15), employing also the same
definition for err(δ). The resulting fits are shown in Figs. 4.6 and 4.7, which
correspond to the fits to KA85 and WI08 data, respectively. One can see a
rather good agreement with data in the whole energy range from threshold
up to 1.25 GeV, including the reproduction of the raise in the P33 phase
shifts associated with the ∆(1232) resonance. The improvement is manifest
in the P11 partial wave although some discrepancy with the WI08 data in the
lower energy region remains, being better the agreement with KA85 phase-
shifts. Compared with the perturbative treatment of Secs. 4.3.1 and 4.3.2
one observes a drastic increase in the range of energies for which a globally
acceptable description of the data is achieved.

The values of the resulting LECs are collected in Table 4.8. We consider
that the pure perturbative study of Secs. 4.3.1 and 4.3.2 is the proper way to
determine the chiral LECs. The new values in Table 4.8 do not constitute an
alternative determination to those offered in Tables 4.1 and 4.4 and should
be employed within UChPT studies. Nonetheless, it is remarkable that the
values for the LECs obtained are compatible with the average of values given
in Table 4.5, in particular, for the O(q2) LECs the central values are also
rather close to the fitted values in Table 4.8. Since we have a procedure to
generate the ∆(1232) resonance through the CDD pole in Eq.(4.25), such
agreement is surprising since the contribution of this resonance to the LECs

♯6Many of the tensor integrals involved in the one-loop calculations of πN scattering
develop such a pole. In particular, it arises in the simplest scalar two-point loop function
I11(u).
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Figure 4.6: Fits to KA85 [16] data (blue points) with errors calculated by us-
ing Eq.(4.14). The result (solid line) corresponds to the unitarized amplitude,
Eq.(4.24), fitting the points of KA85.

is very important [101]. The point is that the typical value of γ/(s− sP ) in
the low-energy region studied in Secs. 4.3.1 and 4.3.2 is only around a factor 2
larger in modulus than the subtraction constant a1/(4π)

2 in Eq.(3.38), being
the latter a quantity of first chiral order. As a result, at low energies, the
CDD pole gives a contribution that can be computed as O(q3), since the

lowest order ones comes from −(T
(1)
IJL)

2γ/(s − sP ). This explains why the
values of the second order LECs are preserved, despite having included the
CDD pole.

The values of the resulting threshold parameters with the present uni-
tarized amplitudes are collected in the last two columns of Table 4.8. We
observe that all of them are compatible with the averaged values given in the
second column of Table 4.7. The P33 scattering volume turns out to be too
high in the lines of the values obtained with the perturbative fits following
strategy-1, despite the reproduction of the ∆(1232) resonance. Finally, we
also mention that similarly huge values for the GT violation are also obtained
from the unitarized amplitudes as in the pure perturbative treatment. In-
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Figure 4.7: Fits to WI08 [17] data (blue points) with errors calculated by us-
ing Eq.(4.14). The result (solid line) corresponds to the unitarized amplitude,
Eq.(4.24), fitting the points of WI08.

LEC Fit Fit Partial Fit Fit
KA85 WI08 Wave KA85 WI08

c1 −0.48± 0.51 −0.53± 0.48 aS31 −11.5 −10.4
c2 4.62± 0.27 4.73± 0.30 aS11 15.2 15.0
c3 −6.16± 0.27 −6.41± 0.29 a+0+ −2.6 −2.0
c4 3.68± 0.13 3.81± 0.16 a−0+ 8.9 8.5

d1 + d2 2.55± 0.60 2.70± 0.65 aP31 −5.0 −4.8
d3 −1.61± 1.01 −1.73± 1.04 aP11 −8.0 −7.5
d5 0.93± 2.40 1.13± 2.18 aP33 24.5 25.0

d14 − d15 −0.46± 1.00 −0.61± 1.11 aP13 −4.1 −3.9
d18 0.01± 0.21 −0.03± 0.20

Table 4.8: Fitted LECs in units GeV−1 (ci) and GeV−2 (di) for the fits KA85 and
WI08 employing the unitarized partial waves. We also give the scattering lengths
and volumes in units of 10−2Mπ and 10−2M−3

π , respectively.
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deed, the same value for ∆GT is obtained in the unitarized case for the same
values of the LECs because g(m2

N) = 0 (there is no CDD pole in the P11

partial wave).

4.7 Summary and Conclusions

In this chapter we have studied the elastic pion-nucleon scattering employing
covariant CHPT up-to-and-including O(q3) in Infrared Regularization [97].
We followed two strategies for fitting the phase shifts provided the partial
wave analyses of Refs.[16, 17]. In one of them, instead of fitting the P33

phase-shifts, we considered the reproduction of the function |p|3/ tan δP33

around the threshold region (for
√
s ≤ 1.09 GeV). The rational behind this

is to reduce the impact of the ∆(1232) when performing fits to data, avoiding
the rapid rise of phase-shifts with energy that tends to increase the value of
the resulting scattering volume. An accurate reproduction of pion-nucleon
phase-shifts up to around 1.14 GeV results. The main difference between
both strategies has to do with the values of the O(q2) LECs c2 and c3,
that are smaller in absolute value for strategy-2 fits. As expected, the P33

scattering volume is also smaller for these fits and compatible with previous
determinations. On the other hand, we obtain a much better reproduction
of the P11 phase shifts for the KA85 partial wave analysis, while IR-ChPT
at O(q3) is not able to reproduce the P11 phase shifts of the current solution
of the GWU group even at very low energies. This could be due to the
WI08 PWA or to the IR method.♯7 The averaged values for the LECs and
threshold parameters resulting from the two strategies and all data sets are
given in the second column of Tables 4.5 and 4.7, respectively, and are in
good agreement with other previous determinations. The reproduction of
experimental phase-shifts is similar in quality to that obtained previously
with O(q3) HBChPT [63], showing also a smooth onset of the departure from
experimental data for higher energies. This is an improvement compared with
previous work [43]. In addition, we obtain a small violation of the Goldberger-
Treiman relation at strict O(M3

π), compatible with present determinations.
However, the deviation from the Goldberger-Treiman relation is still a caveat
because when all the terms in the full IR CHPT calculation at O(q3) are
kept the resulting discrepancy is much higher, around 20-30%. We have
also employed the non-perturbative methods of Unitary CHPT [92, 98] to
resum the right-hand cut of the pion-nucleon partial waves. The ∆(1232)
resonance is incorporated in the approach as a Castillejo-Dalitz-Dyson pole
in the inverse of the amplitude. A good reproduction of the phase shifts is

♯7This question will be answered in the next chapter.

94



4.7. Summary and Conclusions

reached for
√
s up to around 1.25 GeV. There is an intrinsic limitation in

IR-ChPT for reaching higher energies due to the presence of a branch cut
at s = 2(m2 +M2

π) ≃ 1.342 GeV2. Above that energy strong violations of
unitarity occurs due to the onset of an unphysical cut associated with the
infinite resummation of relativistic corrections accomplished in IR. This also
originates a strong rise of phase-shifts noticeable already for

√
s & 1.25 GeV.

The values of the LECs at O(q2) is compatible to those obtained with the
pure perturbative study.
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Chapter 5
Extended-On-Mass-Shell

The results obtained in Chapter 4 are unsatisfactory in the sense that the
IR scheme does not provide a covariant amplitude with its full potential.
Namely, the IR-BChPT has some analytical problems in the physical region
(unphysical cuts) and is not able to predict a reliable value for a quantity
so fundamental as the Goldberger-Treiman deviation (∆GT ). Some authors
point to the bad analytical behavior as the reason for the unsatisfactory
results in IR, such as the bad prediction for the magnetic moments [67], ap-
pearance of unphysical cuts [21] or unphysically large (∆GT ) [43, 21]. Fortu-
nately, there is another relativistic approach to BChPT in the literature, the
so-called Extended-On-Mass-Shell (EOMS) renormalization scheme [72, 73].
This approach relies on the realization that the power counting breaking
terms (PCBT) are analytical in the quark masses and external momenta
[72] which means that they can be absorbed in the set of low-energy con-
stants (LECs) and bare couplings of the original Lagrangian. Contrary to
IR, EOMS only subtracts a finite polynomial so it does not modify the ana-
lytical properties of the full covariant amplitude. Thus, inevitably comes out
the question whether a calculation within the EOMS scheme could overcome
the difficulties that appear in IR, improving both the HB and IR approaches.
We show in this chapter that the answer is yes.

5.1 The Extended-On-Mass-Shell renormal-

ization

The calculation of the scattering amplitude is performed in a full covariant
manner so, according to what we explained in Chapter 3, we will have pieces
that break the power counting. However, as shown in Refs.[72, 73], these
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5.1. The Extended-On-Mass-Shell renormalization

pieces are analytical in the quark masses and momenta. To see this explicitly,
we consider the integral H11, defined in Appendix D, and introduce the
quantity ∆ = (P 2 − m2)/m2 = O(q). The standard power counting is
respected if H11 is of order p

d−3. As Refs.[72, 73, 117] show, the result of the
integration is of the form:

H11 ∝ F (d,∆) +∆d−3G(d,∆) (5.1)

Where F and G are hypergeometric functions which are analytic in ∆ for
any d. So, as we see, we have a non-analytical contribution that respects the
power counting (the part with ∆d−3) and an analytical contribution which
can be absorbed by analytical pieces in the Lagrangian.

This property of the PCBT was also exploited by IR to recover the power
counting, since the so-called infrared regular part of the covariant integral,♯1

that is the contribution which is absorbed in the LECs, is analytical in the
quark masses and momenta. But, whereas IR tries to absorb an infinite
series which contains PCBT (and non-PCBT) and has a finite radius of con-
vergence, EOMS only removes a finite polynomial in the quark masses and
momenta that consists entirely in PCBT. This means that in the EOMS
scheme we do not have the analyticity (unphysical cuts) and causality prob-
lems (see Ref.[71]) that IR introduces in the process of recovering the power
counting. On the other hand, in a full covariant calculation the contribution
of the PCBT is directly absorbed in the LECs of the chiral Lagrangians, since
they accompany invariant monomials that generate analytical contributions.
However, if one wants to relate those LECs to physical quantities is necessary
to renormalize them in order to remove the spurious contribution that comes
from such pieces. This is an analogous situation to the MS renormalization,
in which one removes the divergent parts to connect the parameters of the
original Lagrangian to physical quantities. To apply the EOMS scheme is
then necessary, a way to calculate analytically the terms coming from the
loop integrals that can generate PCBT in the full amplitude. The method
that we used to do so is explained in detail in Appendix E, and the renor-
malization of the LECs is shown in Appendix F. There, we show how the
LECs must be renormalized in order to cancel the divergent terms along with
the PCBT. In the following, we explain in detail three simple calculations
where the EOMS renormalization is used: the chiral expansion of the nu-
cleon mass, the axial coupling of the nucleon and the scalar form factor of
the nucleon. They illustrate well the EOMS renormalization procedure and

♯1See Ref.[97] for the definitions.
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5.1. The Extended-On-Mass-Shell renormalization

allow us to explain easily how we can recover the standard power counting
while keeping our amplitudes scale-independent.

5.1.1 Chiral corrections to the nucleon mass

The study of the chiral corrections to the nucleon mass is necessary to write
the unknown nucleon mass in the chiral limit (m) in terms of its physical
value (mN ). It is also interesting because allow us to calculate the nucleon
sigma term from the quark masses dependence of the nucleon mass, via
the Hellmann-Feynman theorem [118]. On the other hand, to study the
chiral corrections to the nucleon mass up to O(q3) we need to consider the

modifications of the nucleon propagator due to the term c1〈χ+〉ψ̄ψ in L(2)
πN

and the self-energy diagram shown in Fig. 5.1.

N

π

N N

Figure 5.1: One-loop self-energy of the nucleon.

The monomial c1〈χ+〉ψ̄ψ contributes with −4c1M
2, while an explicit cal-

culation of the self-energy diagram iΣS.E. gives:

ΣS.E.(P ) =
3g2

4f 2

[
(P 2 −m2)/PH(1)

11 (P
2)− (/P +m)(M2H11(P

2)−H01)
]

(5.2)

Where the loop functionsH11, H(1)
11 andH01 are given in Appendix D. For

the calculation of the chiral corrections to the nucleon mass, ΣS.E. is evaluated
at /P = mN . According to the standard power counting, the self-energy
diagram has terms of O(q3) or higher, but if one introduces the expressions of
Eqs.(D.1), (D.2) and (D.4) one obtains (minding that the difference between
mN and m is of higher order):

99



5.1. The Extended-On-Mass-Shell renormalization

ΣS.E.(P = mN ) =
3g2

4f 2

{
2λ̄mN(2M

2 + 2m2
N )−

mN

8π2
(M2(1− log

(
m2

N

µ2

)
)

︸ ︷︷ ︸
PCBT

−m2
N log

(
m2

N

µ2

)
)

︸ ︷︷ ︸
PCBT

+
1

16π2

[
M4

mN
log

(
M2

m2
N

)
− 4M3

√
1− M2

4m2
N

arccos

(
M

2mN

)]}

(5.3)

Where the PCBT are umbraced.
As pointed out before, the spirit of EOMS lies in realizing that these

PCBT are analytical in the quark masses and external momenta so that
they can be reabsorbed via a redefinition of the LECs and bare parameters
of the chiral Lagrangians. For the case of mN :

mN = m− 4c1M
2 − 3g2mN

2f 2
(2λ̄(m2

N +M2))

+
3g2mNM

2

32π2f 2
(1− log

(
m2

N

µ2

)
)− 3g2m3

N

32π2f 2
log

(
m2

N

µ2

)

︸ ︷︷ ︸
PCBT

− 3g2M3

64π2f 2

[ M
mN

log

(
M2

m2
N

)
− 4

√
1− M2

4m2
N

arccos

(
M

2mN

)]
(5.4)

Here the PCBT can be cancelled, along with the divergences, if we rede-
fine m and c1 in the following as:

m→ m′ +
3g2m3

N

2f 2
(2λ̄) +

3g2m3
N

32π2f 2
log

(
m2

N

µ2

)
(5.5)

c1 → c′1 −
3g2mN

8f 2
(2λ̄) +

3g2mN

128π2f 2
(1− log

(
m2

N

µ2

)
) (5.6)

In this way we recover de standard power counting, and the final expres-
sion for the chiral expansion of the nucleon mass becomes:

mN = m′ − 4c′1M
2 − 3g2M3

64π2f 2

[ M
mN

log

(
M2

m2
N

)
− 4

√
1− M2

4m2
N

arccos

(
M

2mN

)]

(5.7)
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Another quantity needed in this O(q3) calculation is the nucleon wave
function renormalization (ZN). It can be easily determined from the calcu-
lation of the nucleon self energy, Eq.(5.2), by evaluating the derivative with
respect to the momentum at the nucleon pole:

ZN =

[
1 +

∂ΣS.E.

∂ /P

∣∣∣∣
/P=mN

]−1

≈ 1− ∂ΣS.E.

∂ /P

∣∣∣∣
/P=mN

= 1 +
3g2

4f 2

[
2mNM

2 ∂H11(P
2)

∂ /P

∣∣∣∣
/P=mN

−H10

]
(5.8)

Where we have expanded ZN up to O(q2) in order to guarantee the ex-
plicit cancellation of the divergences. The derivatives can be performed di-
rectly from Eqs.(D.1), (D.2) and (D.4), and the result does not contain PCBT
because the ones coming from H11(P

2) are independent of P µ and disappear
in the derivation procedure, while H10 has not.

5.1.2 The Axial Coupling of the Nucleon

Another calculation needed in our covariant study of πN scattering is the
nucleon axial coupling, where the set of diagrams of Fig. 5.2 has to be
considered.

Figure 5.2: Diagrams that contribute to the nucleon axial form factor up to O(q3).
The notation of the vertices is the same as in Fig. 3.2. The wavy line with the
cross at the free end corresponds to an external axial-vector source.

Proceeding with the calculation in a covariant manner, we obtain the
following result:
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5.1. The Extended-On-Mass-Shell renormalization

gA = g
{
1 +

4d16M
2

g
− 2λ̄

(g2 − 2)m2 + (g2 − 1)M2

f 2
− (g2 − 1)M2

16π2f 2
log

(
m2

µ2

)

+−(g2 − 2)m2

16π2f 2
log

(
m2

µ2

)
− g2m2

16π2f 2

︸ ︷︷ ︸
PCBT

−(2 + 3g2)M2

16π2f 2

+
((2 + 3g2)M2 − 2(1 + 2g2)m2)M2

32π2m2f 2
log

(
M2

m2

)

+
(8(1 + g2)m2 − (2 + 3g2)M2)M3

16π2m2f 2
√
4m2 −M2

arccos

(
M

2m

)}
(5.9)

As in Sec. 5.1.1, we have to cancel both the divergences and the PCBT.
From Eq.(5.9) it is easy to see that this is achieved through the following
redefinitions:

g → g′ + 2λ̄
g(g2 − 2)m2

f 2
+
g(g2 − 2)m2

16π2f 2
log

(
m2

µ2

)
+

g3m2

16π2f 2
(5.10)

d16 → d ′
16 + 2λ̄

g(g2 − 1)

4f 2
+
g(g2 − 1)

64π2f 2
log

(
m2

µ2

)
(5.11)

5.1.3 The Scalar Form Factor of the Nucleon

The last but not less important example is the calculation of the scalar form
factor of the nucleon, σ(t). In fact, this magnitude is of great interest be-
cause σ(t = 0) = σπN , which importance was stressed before. The diagrams
contributing to σ(t) up to O(q3) are displayed in Fig. 5.3.

Figure 5.3: Diagrams that contribute to the nucleon scalar form factor up to
O(q3). The vertex with the cross represents the external scalar source and it
counts as O(q2) in the chiral counting.

Since we are only interested in σπN and not in the t dependence of the
form factor, we consider the special case σ(t = 0), where the loop integrals
can be solved analytically. One obtains then the following result:
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σ(0) = −4c1M
2 +

3g2mM2

2f 2
(2λ̄) +

3g2mM2

32π2f 2
log

(
m2

N

µ2

)
− 3g2mM2

32π2f 2

︸ ︷︷ ︸
PCBT

− 3g2M3

16π2f 2m

(
3m2 −M2

√
4m2 −M2

arccos
M

2m
+M log

M

m

)
(5.12)

We see from Eq.(5.12) that the divergences (along with their scale de-
pendence) and PCBT are absorbed by taking the same redefinition of the c1,
Eq.(5.6), as in Sec. 5.1.1. Taking a look to Appendix F, where we show the
O(q2) and O(q3) LECs renormalization for πN scattering, one can check that
the LECs redefinition is the same for all these calculations (chiral corrections
to the nucleon mass, scalar form factor of the nucleon and πN scattering).
This proves explicitly that EOMS is consistent, at least, up to the order
considered here.

5.1.4 Scale Independence

It is well known that in the covariant framework of IR, the renormalized am-
plitudes depend on the scale µ used in the regularization procedure. This is
because the divergences, and therefore the scale-dependent logarithms, were
not included completely in the infrared regular part of the loop integrals as it
would be desirable, since they can be formally considered as power counting
breaking terms. Instead, their contributions were splitted into the infrared
singular and regular part. In a practical calculation, one only calculates
the infrared singular part and drops the divergent term (assuming that it
can be absorbed in the LECs) but, in what concerns to the scale-dependent
logarithms, their contributions are entangled with the full (divergent-free)
infrared singular contribution. Within IR, one typically fixes the renormal-
ization scale µ to the nucleon mass µ = mN to cancel the scale-dependent
terms, since they always appear as log(m2

N/µ
2) (see Appendix F). This fact

means that IR has a spurious and unphysical dependence on the scale in the
physical quantities calculated within this scheme. This is dramatically mani-
fested in the calculation of the Goldberger-Treiman deviation (∆GT ) where,
as showed in [21], the huge value obtained with IR depends strongly on the
value of renormalization scale employed.

On the contrary, the EOMS scheme handles the scale dependence in the
same way as the MS does. This means that the scale dependent logarithms
can be absorbed in the same way as the divergent parts, giving rise to ampli-
tudes that do not depend on the renormalization scale. In order to prove this

103
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explicitly, we performed various fits with different values of µ (by orders of
magnitude) leaving the scale-dependent pieces along with the PCBT. What
we observed is that the χ2 was exactly the same for all the fits and that
the LECs that do not absorb divergences (d3 and d18) kept exactly the same
value.♯2 Once the scale-independence is explicitly checked, one can redefine
scale-independent LECs by introducing the µ-dependent logarithms in their
redefinition, as we show in Appendix F.

5.2 Calculation of the Scattering Amplitude

According to the power counting [49], for the calculation of the chiral am-
plitude up to O(q3) one has to consider the diagrams of Fig. 3.2 plus their
crossed versions. For the calculation of the scattering amplitude, we decide
to write the loop amplitudes by means of the 1-, 2-, 3- and 4-points scalar
loop integrals using the Passarino-Veltman decomposition. This decomposi-
tion has the advantage of leaving all the loop diagrams written in terms of
a few scalar integrals which are the only possible source of power counting
breaking terms. So, if one can identify the terms contained in the differ-
ent scalar loop integrals that can give rise to PCBT in the full covariant
amplitude, those PCBT can be explicitly cancelled via a redefinition of the
relevant LECs. The method used for the identification of those problematic
terms is shown in Appendix E. In the numerical evaluation of the scattering
amplitudes used in the fitting procedure presented below, we employed the
the subroutine LoopTools [119]. On the other hand, up to this order we have
chiral corrections to the axial coupling (gA), pion weak decay constant (fπ),
nucleon mass (mN ) as well as the wave function renormalization constants
of the nucleon (ZN) and pion (Zπ) fields, whereas the pion mass (Mπ) does
not receive chiral corrections yet. We work with the physical value of these
constants, so we write their values in the chiral limit as their physical ones
minus the chiral corrections. These corrections only enter in the expression
for the O(q) πN scattering amplitude and give rise to O(q3) contributions.
In the practical way, we pass from an O(q) amplitude written as a function
of these bare constants to an O(q) plus a correction of O(q3), all written in
terms of these constants at their physical value. On the other hand, the phy-
sical values can be directly used for the O(q2) and O(q3) scattering amplitude

♯2It is important to point out that, in order to keep exactly the same χ2 in this O(q3)
calculation, it was necessary to introduce in the calculations the monomials accompanying
the LECs e8, e9 and e11 of Ref.[19], because some divergences (and hence scale-dependent
pieces) were accompanied by terms of O(q4). Otherwise a small variation in the χ2 was
observed.
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because chiral corrections are of higher order. The explicit calculations of
the chiral expansion of the nucleon mass and ZN are presented in Sec. 5.1.1.
We also calculate the chiral corrections to the nucleon axial coupling, which
is shown in Sec. 5.1.2, whereas chiral corrections to fπ and Zπ (which come
both from the pionic sector) are taken from [19]:

fπ = f

{
1− 2λ̄

M2

f 2
+
M2

f 2

[
ℓ4 −

1

16π2
log

(
M2

µ2

)]}
+O(M4) (5.13)

Zπ = 1− 2λ̄
M2

f 2
− M2

f 2

(
2ℓ4 +

1

16π2
log

(
M2

µ2

))
+O(M3) (5.14)

Both constants appear in the combination Zπ/f
2
π multiplying the O(q)

amplitude. This factor is independent of ℓ4 up to the order considered here,
so ℓ4 does not appear as a free parameter in our chiral amplitude. Explicit
expressions for the tree level up to O(q3) and the one-loop amplitudes are
given in Appendices C and D, respectively.

5.3 Fits

In order to fix the LECs that appear in the Lagrangian and extract the
physical information, we consider the πN phase shifts provided by three dif-
ferent partial wave analyses (PWAs): The PWA of the Karlsruhe-Helsinki
group [16] (KA85), the current solution of the George Washington University
group [17] (WI08), and the low energy phase shift analysis of the Matsinos’
group [18] (EM06). As explained in Chapter 3, both KA85 and WI08 as-
sume fixed-t analyticity, but whereas KA85 uses the data set [54], WI08
employs [53], which contains more points and more recent high quality data.
A very different systematics is followed by EM06 which consists in a low-
energy (

√
s . 1.16 GeV) phase shift analysis employing hadronic potentials

corrected electromagnetically. In contrast with the methodology followed in
[16] and [17], the authors analyze the elastic scattering data (listed in [18])
separately. However, both EM06 and WI08 have in common the inclusion of
new data of high quality collected along the last 20 years in meson factories.
After this brief comment about the PWAs, that will be our input, we proceed
to the explanation of the methodology of our fitting procedure.

Our fits will follow two strategies using, in both cases, Eq.(3.14) for the
calculation of the phase shifts, since our calculation is perturbative. We
also use, for the two strategies, the χ2 defined in Eq.(4.15), with the same
assignment of errors to the data points, if needed.
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5.3.1 Strategy-I

The strategy-I corresponds to the strategy-1 of Sec. 4.3.1, and is used so
as to compare fairly both covariant methods: EOMS and IR. This strategy
consists of fitting phase shifts up to energies of

√
smax = 1.13 GeV taking

only the pion and the nucleon as the relevant degrees of freedom. In this case
we can also compare with the results of HBChPT obtained in [63], where the
∆(1232) was not included. Figs. 5.4, 5.5 and 5.6 show the results of the fits
to KA85, WI08 and EM06, respectively, within this strategy.
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Figure 5.4: Fits to KA85 [16] with strategy-I. The solid lines correspond to the
EOMS result and the dashed ones to IR. Both fits are performed up to

√
smax =

1.13 GeV.

LECs

In Table 5.1 we show the results obtained using the EOMS scheme, columns
2–4. We see that the LECs obtained using the different PWAs for the EOMS
calculation are compatible between each other, with the largest variation tak-
ing place in the value of d5 and d18. We also show in Table 5.2 (columns 2–3)
the previous results that we obtained in Chapter 4 with the IR prescription
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Figure 5.5: Fits to WI08 [17] with strategy-I. The solid line correspond to the
EOMS result and the dashed ones to IR. Both fits are performed up to

√
smax =

1.13 GeV.

[21], and the result of Fettes et al. [63] within the HBChPT formalism, last
column. In Figs. 5.4 and 5.5 we see that the bigger difference respect to
IR comes out in the P11 partial wave for the solution WI08. In this case,
we see that EOMS is able to reproduce satisfactorily the data up to the fit-
ted energy, in contrast to IR, which fails even at very low energies (see Sec.
4.3.2 of Chapter 4, or Ref.[21] for details). Respect to the quality of the
fits (χ2

d.o.f.), it is important to stress that the EOMS and IR can be com-
pared fairly because both results are obtained using the same strategy with
the same assignment of errors, whereas the HBChPT number is taken from
Ref.[63] with different error assignment. With this in mind, we see that for
both KA85 and WI08 PWAs the EOMS representation gives a much lower
χ2
d.o.f. result than the IR ones. It is however striking the huge χ2

d.o.f. obtained
for the EM06 solution. This huge value can be traced back to the saturation
of the ∆(1232)-resonance to the O(q2) LECs needed to reproduce the P33

partial wave (see Sec. 5.3.3). This affects considerably the theoretical pre-
diction of the rest of the partial waves, in particular the P11. Together to the
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Figure 5.6: Fits to EM06 [18] with strategy-I. Fits are performed up to
√
smax =

1.13 GeV.

small errors given in EM06, this is the reason for such a big value of χ2
d.o.f..

This will be seen more clearly in Sec. 5.3.2, where we study the effects of
including the ∆(1232) as an explicit degree of freedom in our calculations.

Threshold parameters

We consider two methods to extract the values of the threshold parameters.
The first one consist in fitting the effective range expansion, Eq.(4.16), to our
ChPT prediction in the threshold region (

√
s . 1.084 GeV), just as we did

in Chapter 4. The second method consist of using the Eq.(3.14) in Eq.(4.16)
to obtain, in the limit s→ (mN +Mπ)

2 (|p| → 0):

aIJℓ =
Re[TIJℓ(s = (mN +Mπ)

2)]

8π(mN +Mπ)
(5.15)

Since TIJℓ cannot be evaluated numerically just on the threshold, we had
to take the values very near this point, where the numerical evaluation of
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LEC KA85-I WI08-I EM06-I
c1 −1.26(7) −1.50(6) −1.47(2)
c2 4.08(9) 3.74(9) 3.63(2)
c3 −6.74(8) −6.63(8) −6.42(1)
c4 3.74(5) 3.68(5) 3.56(1)

d1 + d2 3.25(55) 3.67(54) 3.64(8)
d3 −2.72(51) −2.63(51) −2.21(8)
d5 0.50(13) −0.07(13) −0.56(4)

d14 − d15 −6.10(1.08) −6.80(1.07) −6.49(2)
d18 −2.96(1.44) −0.50(1.43) −1.07(22)

χ2
d.o.f. 0.38 0.23 25.08

Table 5.1: Results for the scale independent LECs obtained from different
PWAs. The O(q2) and O(q3) are given in units of GeV−1 and GeV−2, re-
spectively.

LEC KA85-IR WI08-IR HBChPT
[21] [21] [63]

c1 −0.71(49) −0.27(51) (−1.71,−1.07)
c2 4.32(27) 4.28(27) (3.0, 3.5)
c3 −6.53(33) −6.76(27) (−6.3,−5.8)
c4 3.87(15) 4.08(13) (3.4, 3.6)

d1 + d2 2.48(59) 2.53(60) (3.2, 4.1)
d3 −2.68(1.02) −3.65(1.01) (−4.3,−2.6)
d5 2.69(2.20) 5.38(2.40) (−1.1, 0.4)

d14 − d15 −1.71(73) −1.17(1.00) (−5.1,−4.3)
d18 −0.26(40) −0.86(43) (−1.6,−0.5)

χ2
d.o.f. . 1 . 1 (0.83− 1.34)

Table 5.2: For comparison, we show in this table (columns 2 and 3) the
averaged values for the O(q2) (in units of GeV−1) and O(q3) (in units of
GeV−2) LECs obtained in Chapter 4 using the IR method [21]. The results
obtained by HBChPT [63] is shown in column 4.

the loop diagrams converges well. We checked that both methods gives the
same value for the threshold parameters presented here.

The scattering lengths and volumes for the different partial waves, to-
gether with the scalar-isoscalar and scalar-isovector scattering lengths, are
shown in Table 5.3. There, one can see a good agreement between the values
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extracted from the fits and their corresponding PWA. The only exception
is the P33 scattering volume because of the influence of the ∆(1232) in this
partial wave, as discussed in Chapter 4 as well as in Ref.[21]. When this res-
onance is not included as an explicit degree of freedom in the calculation, the
O(q2) LECs absorb its contribution raising their values considerably. This
makes that, in the extrapolation of the amplitudes to threshold, one has a
large contribution of the ∆(1232) in a region where this resonance is kinemat-
ically suppressed, which gives rise to a larger value of the scattering volume
than the experiment. This is explicitly illustrated in Sec. 5.3.2, where the
∆(1232) is included as a degree of freedom in our theoretical calculation.

Partial KA85-I KA85 WI08-I WI08 EM06-I EM06
Wave [16] [17] [18]

aS31 −9.9(13) −10.0(4) −8.0(12) −8.4 −7.1(6) −7.52(16)
aS11 17.5(21) 17.5(3) 17.2(21) 17.1 15.9(10) 15.71(13)
a+0+ −0.8(8) −0.8 0.4(8) −0.10(12) 0.6(4) 0.22(12)
a−0+ 9.2(10) 9.2 8.4(10) 8.83(5) 7.7(4) 7.742(61)♯3

aP31 −4.0(7) −4.4(2) −3.5(7) −3.8 −3.7(2) −4.176(80)
aP11 −7.7(18) −7.8(2) −6.0(18) −5.8 −7.2(3) −7.99(16)
aP33 25.1(9) 21.4(2) 23.7(9) 19.4 23.6(2) 21.00(20)
aP13 −2.7(7) −3.0(2) −2.3(6) −2.3 −2.7(3) −3.159(67)

Table 5.3: Comparison between the extracted threshold parameters and their
corresponding PWA values. The scattering lengths and volumes are shown
in units of 10−2M−1

π and 10−2M−3
π respectively.

♯3A later work performed by the same authors [87] obtain a−0+ = 8.78(11)10−2M−1
π ,

which reconciles their value for this scattering length with the values obtained by KA85
and WI08. They also obtain in [87] a+0+ = −0.20(11)10−2M−1

π .
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5.3.2 Strategy-II

The strategy-II consists of fitting phase shifts up to energies of
√
s = 1.20 GeV

including explicitly the ∆(1232) resonance, besides the pion and the nucleon
field. The main motivation is to extract more precise and reliable values for
the LECs, free from the important contribution of the ∆(1232). As shown
below, this will allow us to obtain a very good description of the phase shifts
up to

√
s = 1.20 GeV for all the PWAs. Moreover, we also show that with the

extracted LECs one can reproduce independent phenomenology, as well as
connect the physical region with the subthreshold region and extract, from
the PWAs, an accurate and reliable value of the pion-nucleon sigma term
(σπN). We show the results of the fits to KA85, WI08 and EM06 in Figs.
5.7, 5.8 and 5.9, respectively, employing this strategy.
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Figure 5.7: Fits to the KA85 data [16] with strategy-II. The fits are performed
up to

√
smax = 1.20 GeV.

LECs

Within this strategy, we are able to reproduce the S- and P -wave phase shifts
up to energies of

√
s = 1.20 GeV with good accuracy keeping χ2

d.o.f. < 1.
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Figure 5.8: Fits to the WI08 data [17] with strategy-II. The fits are performed
up to

√
smax = 1.20 GeV.

These fits up to higher energy also allow us to extract more reliable values
for the LECs. As shown in Table 5.4, with this strategy the O(q2) and O(q3)
LECs relax their values, and that is because now the ∆(1232) is included
as an explicit degree of freedom. Comparing the results for the three PWAs
used, we see that the LECs are compatible between them, with the largest
spread in the values for c1, that is directly connected to σπN . It is remarkable
that the inclusion of the ∆(1232) reduces drastically the χ2

d.o.f. for EM06
from ≈ 25 (strategy-I) to ≈ 0.1 (strategy-II). This shows that the ∆(1232)
resonance is a key ingredient in πN scattering, even in the low energy region.♯4

For KA85 the χ2
d.o.f. increases considerably but this is understandable if we

consider that we increase the range of our fit from
√
smax = 1.13 GeV to√

smax = 1.20 GeV. It is more remarkable that for WI08 the χ2
d.o.f. remains

practically the same, which means that EOMS-BChPT with the ∆(1232)
describes better the WI08 solution than the KA85 one. On the other hand,

♯4In this latter cases, the large reduction in magnitude of the cis greatly improves
the convergence in the calculation of the NN potential [120]. Moreover, the ∆(1232) is
important even below the πN threshold, as we show in Sec. 5.5.
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Figure 5.9: Fits to the EM06 data [18] with strategy-II. The fits are performed
up to

√
smax = 1.16 GeV.

the WI08 solution provides a value for hA that is perfectly compatible with
the value extracted directly from the ∆(1232) Breit-Wigner width (Γ∆ =
118(2) MeV [83]), hA = 2.90(2) [121, 76], while for KA85, EOMS-BChPT
obtains a value of hA that is compatible with the overestimation for the width
that this solution provides [16]. The EM06 solution, on the other hand, is a
low energy phase shift analysis performed below the ∆(1232) region and has
no estimation for its width. As one can see in Table 5.4, with our analysis
we have found that the EM06 solution leads to a hA higher than the one
extracted form the ∆(1232) width. However this value is slightly lower that
the one extracted from the KA85 solution. Thus, we conclude that the WI08
solution is the only one that gives a ∆(1232) width compatible with the value
listed in the PDG.

By taking the difference between the values of the cis in Tables 5.1 and
5.4 one can estimate the influence of the ∆(1232) in the O(q2) and O(q3)
LECs. This is given in Table 5.5 where we also compare with the estimation
of Ref.[101] from resonance saturation (RS) [95]. A good agreement between
our results and the estimates from RS [101] results. On the other hand, we
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LEC KA85-II WI08-II EM06-II

c1 −0.75 ± 0.03 −0.94± 0.03 −1.00± 0.01
c2 0.97± 0.10 1.08± 0.09 0.58± 0.03
c3 −2.72 ± 0.13 −3.03± 0.12 −2.51± 0.04
c4 1.90± 0.06 2.04± 0.06 1.77± 0.02

d1 + d2 −0.27 ± 0.10 0.06± 0.09 −0.36± 0.06
d3 −0.05 ± 0.06 −0.15± 0.05 0.30± 0.04
d5 0.72± 0.04 0.43± 0.04 0.20± 0.02

d14 − d15 0.14± 0.15 −0.32± 0.15 0.40± 0.10
d18 −1.62 ± 0.27 −0.69± 0.26 −0.61± 0.12
hA 3.02± 0.04 2.87± 0.04 2.99± 0.02

χ2
d.o.f. 0.77 0.24 0.11

Table 5.4: Results for the LECs within the strategy-II. In columns 2–4 we show
the results for the fits to the KA85, WI08 and EOM06 PWAs, respectively.

observe a shift in c1 by an amount of ≈ 0.5–0.6 GeV−1, while RS gives a
negligible result for the contribution of the ∆(1232) to this LEC. This can
be interpreted as a clear indication that the LECs are stabilized once the
tree-level ∆(1232) exchange contributions are taken into account [122, 120]
(see also Sec. 5.3.3).

c∆2 c∆3 c∆4
KA85 3.11 −4.02 1.82
WI08 2.66 −3.60 1.64
EM06 3.05 −3.91 1.79
RS[101] 1.9 . . . 3.8 −3.8 . . .− 3.0 1.4 . . . 2.0

Table 5.5: Estimation of the ∆(1232) contribution to c2, c3 and c4 in units of
GeV−1 , from the difference between the results obtained with (Table 5.4) and
without (Table 5.1) the inclusion of this resonance as an explicit degree of freedom.
In the last row we show the results of Ref.[101] employing RS.

Threshold parameters

For this second strategy we consider the same methods to extract the values
of the scattering lengths and volumes, Eqs.(4.16) and (5.15). In the present
case, where the ∆(1232) is explicitly included in our calculations, we observe

114



5.3. Fits

an improvement in the P33 partial wave. It is also remarkable that such
higher energy fits can describe the threshold region in a way that leads to
such a good agreement as we observe in Table 5.6.

Partial KA85-II KA85 WI08-II WI08 EM06-II EM06
Wave [16] [17] [18]
aS31 −9.9(8) −10.0(4) −8.6(7) −8.4 −7.5(3) −7.52(16)
aS11 16.0(8) 17.5(3) 16.1(8) 17.1 15.6(3) 15.71(13)
a+0+ −1.2(8) −0.8 −0.3(7) −0.10(12) 0.2(3) 0.22(12)
a−0+ 8.7(2) 9.2 8.2(2) 8.83(5) 7.7(1) 7.742(61)♯5

aP31 −4.3(2) −4.4(2) −4.0(2) −3.8 −4.1(1) −4.176(80)
aP11 −9.0(4) −7.8(2) −7.9(4) −5.8 −8.5(2) −7.99(16)
aP33 22.2(3) 21.4(2) 21.6(2) 19.4 20.8(1) 21.00(20)
aP13 −3.2(2) −3.0(2) −3.0(2) −2.3 −3.1(1) −3.159(67)

Table 5.6: Comparison between the extracted threshold parameters and their
corresponding PWA values for the strategy-II fits. The scattering lengths and
volumes are shown in units of 10−2M−1

π and 10−2M−3
π , respectively.

5.3.3 Convergence of the Chiral series

It is interesting to study the convergence pattern of the chiral series in this
novel calculation that uses the EOMS scheme both with and without the
∆(1232) resonance. In Figs. 5.10 and 5.11 the contributions of the different
orders to the total result (solid red line) are shown for the fits WI08-I and
WI08-II, respectively.♯6 The comparison of Fig. 5.10 with Fig. 7 of Ref.[63]
and Fig. 4.5 of Chapter 4 shows the same hierarchy for the three orders.

Once we include the ∆(1232) as an explicit degree of freedom, the O(q2)
LECs reduce in absolute values and the fits of Fig. 5.8 result. With the O(q2)
free from the ∆(1232) contribution, now it can absorb the contribution of
the rest of the partial waves up to higher energies. This improves the the
convergence of the series (as shown in Sec. 5.3.2) which results in a more
natural value for c2, c3 and c4 and in a shift in c1 of ≈ 0.5 GeV. As one could
expect, the ∆(1232) is the main responsible of the raise in the P33 phase
shifts, though it gives also a small contribution to the rest of the P -waves.
For the S-waves its contribution is even much smaller, as it is evident by
comparing the dashed (green) lines in Figs. 5.10 and 5.11. Moreover, the

♯5See footnote ♯3.
♯6The conclusions of this study are the same for the KA85 and EM06 solutions.
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Figure 5.10: Convergence of the chiral series for the fit WI08-I. The short dashed
(blue), dashed (green), dashed (pink) and solid (red) lines correspond to the con-
tributions of the O(q), O(q2), O(q3) and the total sum, respectively.

inclusion of the ∆(1232) does not affect the hierarchy of the different orders
contributing to the S-wave whereas for the P31, P11 and P13 partial waves
one observes a smaller contribution of the O(q3) compared with the case
without that resonance. This was reflected in the values of the O(q3) LECs
of Table 5.4, which show a more natural value. This, together with the better
fits of Figs. 5.7–5.9, lead us to conclude that the inclusion of the ∆(1232)
improves significatively the convergence of the chiral series. And, as we will
show below, this conclusion can be also extended to the subthreshold region.

5.4 The Goldberger-Treiman relation

One of the most striking results obtained in Chapter 4, where we used IR, is
the unphysically large value obtained for the Goldberger-Treiman deviation
(∆GT ≈ 20 − 30%), with the main contribution coming from the IR regu-
larized loop diagrams. This result, that is in clear contradiction with both
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Figure 5.11: Convergence of the chiral series for the fit WI08-II. The short dashed
(blue), dashed (green), dotted (pink), dash-double-dotted (orange) and solid (red)
lines correspond to the contributions of the O(q), O(q2), O(q3), ∆(1232) and the
total sum, respectively.

PWAs and chiral power counting, jeopardized the applicability of covariant
BChPT to the πN system. It also raised the question whether this problem
is due just to the IR prescription or, more generally, to the covariant formu-
lation of BChPT once the chiral power counting is restored. Therefore, one
of the main interests of this novel calculation is to show whether one can
extract from experimental data or PWAs a ∆GT value within experimental
bounds.

To extract the value of ∆GT we follow three different methods. The first
one is the same one used in Sec. 4.5 of Chapter 4. The second method is more
direct, and consists of comparing the pseudoscalar and axial couplings, both
given above. Finally, the third method consists of writing the amplitude by
means ofD± and B± (see Eq.(3.3)) to write the pole term in the pseudovector
form as (see Ref.[97] for definitions):
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5.4. The Goldberger-Treiman relation

D+(ν, t) =
g2πN
mN

ν2B
ν2B − ν2

+ D̄+(ν, t) (5.16)

Where νB = (t− 2M2
π)/4mN and D̄+ is the Born-subtracted part of D+,

which is analytical in ν and t. Taking profit of the analyticity of D̄+ we
approach to the point (ν = 0, t = 2M2

π) in two different ways:

lim
t→2M2

π

lim
ν→0

D+(ν, t) =
g2πN
mN

+ D̄+(ν = 0, t = 2M2
π) (5.17)

lim
ν→0

lim
t→2M2

π

D+(ν, t) = D̄+(ν = 0, t = 2M2
π) (5.18)

The difference of Eq.(5.17) and Eq.(5.18) gives directly g2πN/mN , from
where we can extract the value of gπN and, therefore, ∆GT . From the three
methods we obtain values of gπN and ∆GT compatible with their correspon-
ding PWA determinations (see Tables 5.7 and 5.8), although larger errors
attached to ∆GT of strategy-I are due to the bigger uncertainties in d18 for
that case.

KA85-I WI08-I EM06-I KA85-II WI08-II EM06-II
∆GT 9(4)% 2(4)% 3.6(7)% 4.9(8)% 2.1(8)% 1.9(4)%
gπN 14.03(52) 13.13(52) 13.34(10) 13.51(10) 13.15(10) 13.12(5)

Table 5.7: Second and third rows show the values for ∆GT and gπN for the
strategies I and II, respectively.

KA85 WI08 EM06 NN scattering Pionic atoms
[16] [17] [18] [113] [25]

∆GT 4.5(7)% 2.1(1)% 0.2(10)% 1% 1.9(7)%
gπN 13.46(9) 13.15(1) 12.90(12) ≃ 13.0 13.12(9)

Table 5.8: Values for ∆GT and gπN obtained by different analyses.

From the three methods referred above we also conclude that EOMS-
BChPT gives the loop contribution to the GT deviation ∆loops ≈ 0.002.
This result has the expected size of an O(q4) correction due to explicit chi-
ral symmetry breaking and is compatible with the relativistic calculation
of Gasser et al. [13]. As a result, EOMS-BChPT solves the long-standing
problem concerning the Goldberger-Treiman deviation and tell us that this
problem was an artifact of IR, not due to a convergence problem of BChPT.
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5.5. Subthreshold region

5.5 Subthreshold region

The subthreshold region, despite not having experimental information, is
of great interest in ChPT because within this region lie special points that
are connected with important low energies theorems; these are: the soft
point, the Adler point [8] and the Cheng-Dashen point [20]. The latter is
the subject of a intense study, since the Born-subtracted isospin even πN
scattering amplitude at this point is directly related to the pion-nucleon
sigma term (σπN ). In fact, the IR scheme was proposed in order to achieve
a good convergence in the subthreshold region [97], where HBChPT fails
in part of it [60]. Unfortunately, despite the apparent good convergence
of IR in this region, it fails to connect the physical region (where one has
experimental data) with the subthreshold one [19]. For all these reasons it is
interesting to check the convergence of our novel calculation within EOMS in
the subthreshold region. In order to do so, we calculate the values of different
interesting subthreshold quantities that have been studied both in dispersive
and BChPT approaches. The first two quantities are d00 and d01 which are
two coefficients of a power expansion of the Born-subtracted isospin even πN
scattering amplitude D̄+(ν, t) around the point ν = 0 and t = 0.♯7

D̄+(ν, t) = d00 + d01t + d10ν
2 + . . . (5.19)

The third important quantity is the so-called Σ-term:

Σ = f 2
πD̄

+(ν = 0, t = 2M2
π), (5.20)

Which is given by D̄+ at the Cheng-Dashen point (ν = 0, t = 2M2
π).

In order to see the length of this extrapolation, we show in Fig. 5.12 the
physical region studied in this chapter in the Mandelstam plane (blue vertical
lines) and the location, in the same plane, of the Cheng-Dashed point (blue
cross).

Table 5.9 gathers the results of these three quantities for the different
fits obtained in Secs. 5.3.1 and 5.3.2. As a general trend, one observes an
overestimation of these three quantities when the ∆(1232) resonance is not
included in the formalism. This is easy to understand because, according
to Secs. 5.3.2 and 5.3.3 the LECs suffer a tension in their values when the

♯7Due to its crossing symmetry, the pion nucleon-scattering amplitude is usually defined
as a function of the variables ν = s−u

4mN

and t, where s, t and u are the usual Mandelstam
variables.
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5.5. Subthreshold region

Figure 5.12: The Mandelstam plane. The physical region of πN scattering cor-
responds to the hatched zone. The vertical lines (blue) shows the region from
threshold to

√
s ≈ 1.20 GeV. On the other hand, the shaded region correspond to

the values s < (mN + Mπ)
2, u < (mN + Mπ)

2 and t < (mN + Mπ)
2, where the

amplitude is analytical (and real) once the nucleon poles in the s and u channels
are removed. Inside there lies the Cheng-Dashen point (ν = 0, t = 2M2

π) (blue
cross). The dotted, dashed and dot-dashed lines correspond to the nucleon poles,
∆-resonance and ρ-resonance, respectively.

∆(1232) is not incorporated that raises artificially the value of these sub-
threshold quantities. By comparing the results in Table 5.9 for strategy-II
with their values from the corresponding PWA, we deduce that once the
contribution of the ∆(1232) is included explicitly, the EOMS-BChPT ampli-
tude achieves an excellent convergence also in the subthreshold region. This
result answer a long standing question opened in Ref.[19], which questioned
the converge of the chiral series once the threshold is crossed. As we proved
here, the convergence is achieved once the ∆(1232) is considered as an ex-
plicit degree of freedom in a theory with the right analytical properties as
EOMS-BChPT.
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5.5. Subthreshold region

KA85-I WI08-I EM06-I KA85-II WI08-II EM06-II

d00 (M−1
π ) −2.02(4) −1.65(3) −1.56(3) −1.44(5) −1.27(5) −0.97(2)

d01 (M−3
π ) 1.73(3) 1.70(3) 1.64(3) 1.16(4) 1.19(4) 1.08(2)

Σ (MeV)♯8 84(5) 103(5) 103(2) 45(2) 60(2) 64(1)

Table 5.9: Results for d00, d01 and Σ for the fits following the strategies I and II.

KA85 WI08
[16] [17]

d00 (M−1
π ) −1.46 −1.30

d01 (M−3
π ) 1.14 1.19

Σ (MeV) 64(8) 79(7)

Table 5.10: Results for d00, d01 and Σ obtained by KA85 [16] and WI08 [17].

Another important subject is to check the Adler condition of our EOMS-
BChPT amplitudes. According to Adler [8], the isospin even amplitude sat-
isfies:

D+(ν = 0, t =M2
π) ≃

g2πN
mN

(5.21)

Or, equivalently, D̄+(ν = 0, t =M2
π) ≃ 0. Table 5.11 shows the result for

the different fits performed in this work, which can be compared (Table 5.12)
with values obtained by the George-Washington group [124] and by Ref.[100]
for the Karlsruhe-Helsinki analysis. As shown, there is no much difference
between strategy-I and strategy-II. On the other hand, Ref.[100] show a
deviation of only 1%, what is in perfect agreement with the value obtained
here within the EOMS scheme. Nonetheless, the fits to the more modern
PWAs of WI08 and EM06 fulfill much better the Adler condition, although
all these fits are within the theoretical bounds established by Adler [8]. It is
important to point out that with the inclusion of the ∆(1232) we are able
to reproduce the value provided by their corresponding PWA,as happened
with the subthreshold coefficients, the Σ-term and the Goldberger-Treiman
relation.

♯8It is important to point out that the values of Σ obtained a ChPT O(q3) calculation
differs from the exact result in an amount of ≈ 10 MeV [123].
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5.6. The pion-nucleon sigma term

KA85-I WI08-I EM06-I KA85-II WI08-II EM06-II

f2
πD̄

+(0,M2
π) −16 MeV 4 MeV 6 MeV −17 MeV −4 MeV 7 MeV

% 1 0.3 0.4 1 0.3 0.5

Table 5.11: Check of the Adler condition to our results following strategies I
and II. The second and third row show the deviation from this condition and the
relative value for this deviation, respectively.

KA85 [100] WI08 [124]

f2
πD̄

+(0,M2
π) – −4 MeV

% 1 0.3

Table 5.12: Check of the Adler condition to the KA85 [16] and WI08 [17] per-
formed in Refs.[100] and [124]. As in Table 5.12, the second and third row show the
deviation from this condition and the relative value for this deviation, respectively.

5.6 The pion-nucleon sigma term

The pion-nucleon sigma term (σπN ) is an observable of fundamental impor-
tance that embodies the internal scalar structure of the nucleon, becoming
an essential piece to understand the origin of the mass of ordinary matter.
It has been studied for more than 30 years using dispersion relations, par-
tial wave analyses, ChPT or, more recently LQCD [24]. It is also a key
ingredient in investigations of the QCD phase diagram and neutronic sys-
tems [125, 126], and appears as a necessary hadronic matrix element of the
neutralino-nucleon elastic scattering cross section [22, 23, 127]. The usual
method to extract this quantity from PWAs was extrapolating the Born-
subtracted isospin even amplitude D̄+ to the Cheng-Dashen point and relate
the Σ-term to σπN by means of the relation [128]:

Σ = σ(2M2
π) + ∆R = σπN +∆σ +∆R (5.22)

Where ∆R is a remainder due to non-vanishing quark masses with an esti-
mated upper limit of ≃ 2 MeV [129], and the quantity ∆σ ≈ σ(2M2

π)−σπN =
15.2 MeV was calculated by Gasser et al. by means of dispersion relations
[123]. The main difficulty of this method relies in the assignment of errors
that propagate in the extrapolation to the Cheng-Dashen point form the sys-
tematic uncertainties associated to a particular parameterization of the data.
This becomes more dramatic once we compare the values for σπN from the
different PWAs. On one hand, Gasser et. al. obtained σπN ≃ 45 MeV [130]
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5.6. The pion-nucleon sigma term

using the old analysis of the Karlsruhe-Helsinki group, whereas the analysis
of the George Washington University group, which includes modern meson
factory data, leads to σπN = 64(7) MeV. On the other hand, the analysis
of Matsinos et al., which is based in a partial wave parameterization of the
modern data at very low energies without imposing dispersive constraints
form the high energy region, gives σπN = 56(9) MeV according to the Ols-
son sum rule [131]. These different results started a longstanding dispute
whether this difference [132] was due to the method of extraction or due to
the data base used or both.

An advantage of ChPT over dispersive methods is that one can estimate
the magnitude of the uncertainties of each quantity calculated, order by
order. This advantage associated to the well convergent kernel of EOMS-
BChPT can answer this longstanding question and extract a reliable value
of σπN associated to each PWA. Another interesting point of ChPT is that
chiral symmetry allows to relate σπN to the LEC c1, which is obtained from
a region where data actually exist (the physical region). This is in contrast
with the large extrapolations across the subthreshold region (where there are
no data to compare with) that the dispersive methods use.

The definition of the pion-nucleon sigma term is by means of the commu-
tators of the axial charge with the symmetry breaking part of the Hamiltonian
[133]:

σπN =
1

3

3∑

a=1

〈N(p)|[Qa
A, [Q

a
A, HSB]]|N(p)〉 (5.23)

With Qa
A the axial charge and HSB is the symmetry breaking part of the

Hamiltonian. The HSB dependence of the sigma term means that this quan-
tity is related to the explicit breaking of the chiral symmetry and, therefore,
should be small compared with ΛχSB. From Eq.(5.23) is straightforward to
obtain from HSB in QCD:

σπN = 〈N(p)|m̂(ūu+ d̄d)|N(p)〉 (5.24)

Where m̂ = (mu +md)/2. So, the sigma term is the nucleon scalar form
factor σ(t) = 〈N(p′)|m̂(ūu + d̄d)|N(p)〉 evaluated at t = 0. However, there
is another possibility for computing σ(t = 0) and is based in the Hellmann-
Feynman theorem (HF theorem) [118]. By applying this theorem to the
chiral expansion of the nucleon mass calculated in Sec. 5.1.1, one can obtain
the matrix element 〈N |m̂(ūu + d̄d)|N〉 that appears in Eq.(5.24) from the
expression:
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5.6. The pion-nucleon sigma term

σπN =M2
π

∂mN

∂M2
π

(5.25)

In this work we compute the explicit expression for σπN up toO(q3) in two
ways. First, we calculate the scalar form factor of the nucleon up to O(q3),
as shown in Sec. 5.1.3 and evaluate it at t = 0. And second, we apply the HF
theorem, Eq.(5.25), to the chiral expansion of the nucleon mass, Eq.(5.7).
One can check that both results give the same expression which, as already
shown in [45], is:

σπN = −4c1M
2
π − 3g2AM

3
π

16π2f 2
πmN

(
3m2

N −M2
π√

4m2
N −M2

π

arccos
Mπ

2mN
+Mπ log

Mπ

mN

)

(5.26)

For the values of the LEC c1 in Tables 5.1 and 5.4 we obtain the numbers
for σπN in the second and fourth rows of Table 5.13, respectively. In the last
row, we give the results from the corresponding dispersive analyses. First, one
sees that the strategy-II achieves a quite remarkable agreement within errors
with the corresponding PWA result based on dispersion relations. Second,
considering the values for Σ in Table 5.9, one recovers the O(q3) ChPT
result Σ − σπN ≈ 5–6 MeV, whereas the remaining 10 MeV, lost in the
underestimation of Σ by an O(q3) ChPT calculation, can be recovered in the
O(q4) calculation [19].

KA85-I WI08-I EM06-I
σπN (MeV) 78(5) 97(5) 95(2)

KA85-II WI08-II EM06-II
σπN (MeV) 39(2) 54(2) 59(1)

KA85 [16] WI08[17] EM06[18]
σπN (MeV) 45(8) 64(7) 56(9)

Table 5.13: Results for σπN for the fits following the strategies I and II in Tables
5.1 and 5.4. We also give in the last row the values obtained in the dispersive
studies referred.

In order to take into account the spread in c1 due to the range of val-
ues for

√
smax, we perform various fits with the ∆(1232) included explicitly

varying
√
smax from 1.14 to 1.20 GeV in intervals of 10 MeV. This implies

the following spreads in σπN for the different PWAs: 39–48 MeV for KA85,

124



5.6. The pion-nucleon sigma term

54–65 MeV for WI08 and 58–59 MeV for EM06. From these results we
calculate the mean value and the standard deviation corresponding to each
PWA fitted. The results are shown in Table 5.14, and confirm form ChPT
the discrepancy between the values of σπN obtained from dispersion relations
employing the KA85 and WI08 solutions.

Mean value Mean value Mean value KA85 WI08 EM06
KA85 WI08 EM06 [16] [17] [18]

c1 (GeV−1) −0.80(6) −1.00(4) −1.00(1) – – –

c2 (GeV−1) 1.12(13) 1.01(4) 0.58(3) – – –

c3 (GeV−1) −2.96(15) −3.04(2) −2.51(4) – – –

c4 (GeV−1) 2.00(7) 2.02(1) 1.77(2) – – –

σπN (MeV) 43(5) 59(4) 59(2) 45(8) 64(7) 56(9)

Table 5.14: Mean values for σπN for the different PWA taking into account the
spread in

√
smax.

Besides the error due to the spread in c1, Eq.(5.25) carries a theoretical
uncertainty coming form higher order contributions. We estimate them by
computing the next subleading correction, atO(q7/2) in the δ-counting, which
is given by a loop diagram with an insertion of a ∆ propagator [134], see
Fig. 5.13. This amounts to a contribution of −6 MeV to be compared
with the one at O(q3) of −19 MeV. It is important to stress that we take
this correction as an irreducible uncertainty of our determination. In order
to explicitly add this contribution to our present calculation, one should to
include the same type of terms, arising from loops with one insertion of a
∆, into the πN scattering amplitude and take into account the changes in
the LECs. Furthermore, we have evaluated the O(q4) corrections given by
the loop diagram of Fig. 5.14 using the result of [19]♯9 with insertion of
the mean values for the O(q2) LECs given in Table 5.14, and obtained an
O(q4) contribution which varies from −4 to −2 MeV. The contribution of
the O(q4) LECs, on the other hand, is estimated to be of approximately
1 MeV.♯10 These results suggest a clear convergence pattern for the chiral
expansion of σπN , as is shown in Table 5.15. They also confirm the hierarchy
at low energies between the nucleon and ∆ contributions that is implemented

♯9Although in Ref.[19] the IR prescription is used, for the diagram of Fig.5.14 both
the IR and EOMS methods must give the same result because this loop does not include
nucleonic propagators.
♯10Namely, only the LEC e1 from L(4)

πN (see Ref.[19] for definitions) contributes to σπN ,
and it is multiplied times a factor 2M4

π (see Ref.[97]). Assigning a natural size of (∼
1 GeV−3), we obtain 2e1M

4
π ≈ 1 MeV.
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5.6. The pion-nucleon sigma term

in the δ-counting [134, 135].

LO NLO N2LO N3LO
σπN (MeV) 78–62 −19 −6 −3(2)

Table 5.15: Convergence pattern of σπN . The LO results corresponds to the
different values obtained from the c1s displayed in Table 5.14.

∆

π

N N

Figure 5.13: Diagram corresponding to the insertion of the ∆ propagator (double
line) in the nucleon self-energy. The dashed line is the pion propagator.

c1 . . . c3

π

N N

Figure 5.14: Diagram corresponding to the insertion of theO(q2) vertices (square)
in the nucleon self-energy.

We also want to stress the consistency between the results derived for the
WI08 and EM06 PWAs, as shown in Table 5.14. This is very remarkable
since, as pointed out before, these are quite different PW parameterizations
that have in common the inclusion of the wealth of low-energy data collected
along the last 20 years in meson and pion factories [17, 18], with many points
not included in KA85 [16]. It is also remarkable that our mean value for σπN
from WI08 PWA also agrees with σπN = 57(2) MeV that can be deduced
from the Σ-term obtained in [136]. There, more sophisticated and reliable
dispersive techniques were used on the earlier solution GWU06 of the George
Washington University.
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5.6. The pion-nucleon sigma term

Another important and independent source of information comes from
the pionic-atom data on a+0+. It has been noted before, in dispersive studies
[130, 124, 131], that the sign of this observable is strongly correlated with the
value of σπN . While the KA85 result of Table 5.14 is only compatible with
the old negative results, it is not anymore with the recent positive values
extracted from modern pionic-atom data and using improved approaches
[25]. These are, on the other hand, compatible with the scattering data
determinations obtained from the WI08 and the EM06 PWAs. However, one
should take into account that the sign of a+0+ depends critically on the isospin
breaking corrections which definitely require a systematic treatment that
nowadays can only be given by effective field theory. In this regard, Ref.[25]
obtains a+0+ = (7.6 ± 3.1)10−3M−1

π including isospin breaking corrections.
Nevertheless, since the result of the different PWA rely on π+p and π−p
scattering data, it is more more reasonable to compare our a+0+ extracted
from PWA with a scalar isoscalar scattering length computed from π+p and
π−p scattering, that we call a+π+p and a

+
π−p, respectively, including its isospin

breaking corrections. Taking the values of a+π+p and a+π−p from Ref.[25], we

obtain a+0+ = (a+π−p + a+π+p)/2 = (−1.0 ± 0.9)10−3M−1
π . Notice that this

value is compatible with the modern analyses of WI08 and EM06, while the
older solution of KA85 gives a value much smaller for that quantity (see
Tables 5.3 and 5.6). The effect that a non-negative value of a+0+ has on
σπN was quantitatively studied by the George Washington University group
concluding that a value of a+0+ & 0 produces a raise on the sigma term of,
at least, 7 MeV [124], which explains the correlation we observe between
a+0+ & 0 and a larger σπN .

Finally, we want to emphasize that only our results based in the WI08
PWA are perfectly compatible with all the phenomenology that can be ex-
tracted from independent experimental sources, while EM06 only fails in the
reproduction of the ∆(1232) BW width. On the other hand we remind here
that, besides the isoscalar scattering length just discussed above, the KA85
PWA gives rise to a value for hA that is not compatible with the value ob-
tained from the Breit-Wigner width (see Table 5.4). In addition, its result
for gπN leads to a sizable violation of the GT relation, which is nowadays the-
oretically implausible [19]. Therefore, our results suggest that the modern
πN scattering data studied within Lorentz covariant BChPT in the EOMS
scheme up to O(q3) in the δ-counting leads to:

σπN = 59(7) MeV (5.27)

The error includes the higher-order uncertainty estimated above added in
quadrature with the one given by the dispersion of the values in the average
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of the WI08 and EM06 mean values displayed in Table 5.14. Had we included
the KA85 mean value in this estimation, the result would be slightly reduced
by 2–3 MeV.

Another source of information on σπN comes from ReD+(ν, t = 0), that
can be extracted from π+p and π−p experimental cross sections [137, 138].
We have checked that the inclusion in our fits of the electromagnetically
corrected data of [138] provided by [139] tends to lower the value of σπN
around 5–10 MeV. However, the inclusion of these new data in fits together
with the PWA phase shifts already considered, push the values of a+0+ to
the negative side, which are then in disagreement with the modern result
of pionic-atom a+0+ & 0 [25]. If one fits only the data of Ref.[139], a value
of a+0+ = (−1.7 ± 1.9)10−2M−1

π results. Although this value is compatible
with the results of the three PWAs, its large error prevent us to make any
conclusion. However, it is clear from both methods (with and without PWA
data), that the data of Ref.[139] point towards a negative a+0+.

It is important to stress the fact that this relatively large value for σπN
is not necessary in contradiction with some phenomenology related to the
strangeness content of the nucleon or chiral approaches to nuclear matter
[45]. For the first one, is known that ChPT provides a SU(3)F breaking of
the baryon-octet masses that allows to relate σπN to the strangeness content
of the nucleon y [140, 141]. If one calculates this relation using HBChPT up
to O(q4) without the inclusion of the decuplet resonances, a relatively large
σπN ≃ 60 MeV implies a strange quark contribution to the nucleon mass
of several hundreds of MeV, which is a scenario very hard to understand.
However, it has been observed that the effect of the decuplet resonances
largely cancel those of the octet [116, 142], being able to reconcile a relatively
large σπN with a negligible strangeness in the nucleon.

In what concerns to the chiral approaches of nuclear matter, we remind
here that ρ σπN controls the leading contribution in density (ρ) of the quark
in-medium condensate. At this order, a value of σπN ≃ 60 MeV would imply a
vanishing in-medium quark condensate already at ≃ 2ρ0 (with ρ0 the nuclear
saturation density), while this occurs at a density of ≃ 3ρ0 using σπN ≃
45 MeV. However, to have a spontaneous breaking of chiral symmetry it is
mandatory a non-vanishing temporal component of the pion axial coupling
ft [143]. On the other hand, the leading contribution to ft is controlled
by c2 + c3, which is a combination not related to σπN at this order. Using
the results of Table 5.14, we have a difference of only a 10% between the
set of KA85 and WI08, which means that the running with density for ft
as obtained in [143] (which also includes NN interactions), differs also on
a 10%. This figure is much smaller than the difference of around a 30% in
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density dependence of the quark condensate due to the different values of σπN
[143]. As a result, the vanishing of ft, as calculated within in-medium ChPT
[143], occurs at around 3.5ρ0 for both PWAs. A more thorough analysis is
necessary to put in agreement the simultaneous vanishing of ft and the quark
condensate with density in order to properly discuss about chiral symmetry
restoration in nuclear matter.

5.7 Unitarized amplitudes

Another important comparison between the covariant schemes EOMS and IR
comprises their behavior under unitarization techniques. These techniques
take care of the analyticity properties associated with the right-hand cut
and have proved to be very successful in the description of non-perturbative
phenomena with ChPT [88, 89]. It was shown in Ref.[21] that the unphysical
cut introduced by IR spoils the description of the phase shifts for energies√
s & 1.26 GeV.
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Figure 5.16: Unitarized fits performed up to
√
smax = 1.3 GeV to the WI08

solution. Solid line: EOMS. Dashed line: IR [21] (or Chapter 4).

Since the EOMS scheme has the right analytical properties, it is inter-
esting to see the potential of the unitarization techniques applied on a well
behaved kernel. As in [21], and in order to compare with IR, we use the uni-
tarization method of Refs.[90, 98, 92] and introduce a Castillejo-Dalitz-Dyson
pole (CDD) to take into account of the contribution of the ∆(1232) in the
P33 partial wave. This corresponds to unitarize the amplitude of strategy-
I, supplemented by the CDD in the P33 channel to take into account the
contribution of the ∆(1232)-resonance.

TIJℓ(s) =
1

TIJℓ(s)−1 + g(s)
for I 6= 3/2 and J 6= 3/2

TIJℓ(s) =

(
TIJℓ(s)

−1 +
γ

s− sP
+ g(s)

)−1

for I = 3/2 and J = 3/2

Where TIJℓ is the unitarized amplitude, TIJℓ the interaction kernel, g(s)
the unitary pion-nucleon loop function and γ and sP are the residue and pole
position of the CDD pole, respectively. We refer the reader to Sec. 4.6 of
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5.8. Summary and Conclusions

Chapter 4 or Ref.[21] for further details on the definitions. We show in Figs.
5.15 and 5.16 the fits of the unitarized amplitudes to KA85 and WI08 PWAs
(solid line), and the previous result obtained within the IR scheme (dashed
line). We do not consider the points of EM06 because this is a low energy
analysis that only reach to

√
s ≈ 1.16 GeV.

The EOMS fits are performed up to energies of
√
s = 1.3 GeV and achieve

a very good description of data up to energies of
√
s = 1.35 GeV, being better

the description of the WI08 phase shifts. Moreover, thanks to the CDD pole,
the P33 partial wave is described almost perfectly up to 1.35 GeV for both
PWAs. From Figs. 5.15 and 5.16 it is also easy to see how the unphysical
cut of IR affects the description of the phase shifts giving rise to sharp rises
at around

√
s ≈ 1.26 GeV. This is clearly absent in the results obtained by

the present calculation because the EOMS kernel has the right analytical
properties. A much better description of data is then achieved.

5.8 Summary and Conclusions

In this chapter we have performed a novel calculation in Lorentz covariant
BChPT within the EOMS scheme up to O(q3) in the chiral expansion. Un-
like IR, this scheme allow us to work with scale-independent renormalized
amplitudes that are free from unphysical cuts and have the right analytical
and causality properties [71]. Our calculations are done first without inclu-
ding the ∆(1232) resonance (this is called strategy-I), and including it as an
explicit degree of freedom later (strategy-II). In order to fix the LECs and
extract physical information we considered the solutions KA85 [16], WI08
[17] and EM06 [18] coming from different partial wave analyses. We showed
that, without the inclusion of the ∆(1232), EOMS shows a better descrip-
tion of the phase shifts than IR [21] (lower χ2

d.o.f.). The former also gives
rise to values of the threshold parameters that are compatible with their co-
rresponding PWAs results. On the other hand, the LECs obtained in this
case are compatible with previous determinations of HBChPT [63] and IR
[21]. The first remarkable result of this chapter concerns to the Goldberger-
Treiman deviation ∆GT . Here we showed that EOMS can extract from data
values for this quantity that are compatible with the present experimental
information. This solves a long standing problem that appeared in earlier
covariant IR renormalized analyses of πN scattering which jeopardized the
applicability of ChPT to this system. On the other hand, the convergence
of the chiral series is considerably improved once the ∆(1232) is included
as an explicit degree of freedom (strategy-II). In this case we are able to
reproduce the S- and P -wave phase shifts up to energies of

√
s = 1.20 GeV
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obtaining more natural values for the LECs. With this extracted values
we could, for first time in ChPT, extrapolate our chiral amplitudes to the
subthreshold region and extract subthreshold quantities that are compati-
ble with their corresponding PWA values. This means that we can connect,
within EOMS-BChPT with the ∆(1232) resonance, the physical information
with subthreshold quantities, which answers a long standing question on the
convergence of the chiral series above threshold [19]. This good convergence
allows us to extract accurately and reliably the value of the pion-nucleon
sigma term σπN by fitting our amplitude to scattering data from three dif-
ferent PWAs. It is remarkable that our covariant BChPT study gives results
for σπN which are in agreement with their corresponding PWA, which use
dispersive methods. Our analysis, that takes into account independent phe-
nomenology, shows that modern data favor a relatively large value of σπN .
We report the value σπN = 59(7) MeV.

All these results show that EOMS-BChPT achieves the best convergence
for the πN system in ChPT, and that this convergence can be considerably
improved once we include the ∆(1232) as an explicit degree of freedom. Fi-
nally, we tested our EOMS-BChPT O(q3) kernel with the same unitarization
techniques used in [21] with IR-BChPT at O(q3). We show that our EOMS
calculation achieves much better description of the phase shifts, being able to
reproduce them up to energies of

√
s = 1.35 GeV, which is 100 MeV higher

than the IR description [21]. This is thanks to the good analytical properties
of this kernel, that follows the standard power counting of ChPT without
changing the analytical properties of a covariant calculation.

132



Chapter 6
φ(1020)f0(980) and φ(1020)a0(980) S-wave

scattering and the Y (2175) resonance

In recent years, the existence of a new resonance, the Y (2175), with quan-
tum numbers JPC = 1−− and mass around 2.15 GeV has been revealed
by several experiments. The Y (2175) was first observed in the reaction
e+e− → φ(1020)f0(980) by the BABAR Collaboration [144, 145]. Its mass
and width were determined to be MY = 2.175 ± 0.010 ± 0.015 GeV and
ΓY = 0.058 ± 0.016 ± 0.020 GeV [144]. It was then observed in e+e− →
φ(1020)η by the same collaboration [146], though with much less statistical
significance, and in J/Ψ → ηφ(1020)f0(980) by BES [147] withMY = 2.186±
0.010(stat)±0.006(syst) GeV and ΓY = 0.065±0.023(stat)±0.017(syst) GeV.
The Belle Collaboration [148] has also identified the Y (2175) in the most
precise study so far of the reactions e+e− → φ(1020)π+π− and e+e− →
φ(1020)f0(980). The resulting resonance parameters areMY = 2.13+0.07

−0.12 GeV
and ΓY = 0.17+0.11

−0.09 GeV. The large errors reflect, among other sources of
systematic error, the uncertainties in the determination of the non-resonant
background and the possible existence of additional resonances in the vici-
nity of the Y (2175). In Ref.[145] an extensive study of the reaction e+e− →
K+K−f0(980), with the f0(980) reconstructed from the π+π− or π0π0 sig-
nals, is also given. It shows an even more prominent Y (2175) signal than the
φ(1020)f0(980) data. The resulting masses then spread in the range 2.12–
2.21 GeV and the width between 0.045–0.13 GeV, taking into account both
central values and the one sigma deviation from them.

These experimental findings have renewed the theoretical interest in the
region of the Y (2175). It has been suggested that this resonance could be a
tetraquark state [149, 150, 151]. A QCD sum rule calculation taking into ac-
count the correlator (ss̄)(ss̄) between the meson-meson currents is performed
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6 φ(1020)f0(980) and φ(1020)a0(980) S-wave scattering
and the Y (2175) resonance

in Ref.[149] obtainingMY = 2.21±0.09 GeV. Both standard and finite energy
QCD sum rules are considered in Ref.[150] with meson-meson and diquark-
antidiquark (ss)(s̄s̄) currents. The mass value obtained is 2.3 ± 0.4 GeV.
Quark models have also been used to address the nature and properties of this
resonance. Ref.[152] studies the decay modes of the lightest hybrid ss̄g reso-
nance, whose mass was predicted to be in the range 2.1-2.2 GeV [153, 154],
consistently with that of the Y (2175). Its width is estimated to be around
100-150 MeV [152]. The identification of the Y (2175) as the quarkonium (ss̄)
states 23D1 and 33S1

♯1, whose masses have also been predicted to be close to
that of the Y (2175) [155], has been considered in Ref.[156]. The 33S1 assign-
ment is disfavored due to its expected large width, Γ ≃ 0.38 GeV [157], while
the width of a 23D1 state is estimated in the range 0.15-0.21 GeV [156]. It is
argued that the clearly different decay patterns could be used to distinguish
between the 23D1 s̄s and the hybrid ss̄g descriptions [152, 156]. Instead,
Ref.[151] concludes that the diquark-antidiquark picture for the Y (2175)
would be characterized by a prominent ΛΛ̄ decay mode. A Faddeev-type cal-
culation for the φ(1020)KK̄ system is presented in Ref.[40] where the inter-
actions between pseudoscalar-pseudoscalar and vector-pseudoscalar mesons
are taken from unitarized Chiral Perturbation Theory (Refs.[158] and [159],
respectively). Remarkably, a peak in the φ(1020)KK̄ strong amplitude is ob-
tained at the mass of the Y (2175), though the width, around 20 MeV, is too
small. This study indicates that the Y (2175) might have large components
corresponding to a resonant φ(1020)KK̄ state.

In Sec. 6.2 we present our study of the S-wave scattering amplitude of
the φ(1020)f0(980) system around its threshold [41]. This is feasible because
both the φ(1020) and the f0(980) are rather narrow resonances. We inves-
tigate this process from the theoretical point of view by first deriving the
interaction kernel for φ(1020)f0(980) and then the scattering amplitude. In
this way, by construction, one can distinguish the φ(1020)f0(980) 1

−− dynam-
ically generated bound states or resonances from others pre-existing states
or due to genuine three body effects in φ(1020)KK̄ scattering. The needed
formalism is elaborated and discussed in Sec. 6.2. We discuss the appearance
of a φ(1020)f0(980) resonance with mass and width compatible with those
reported for the Y (2175) [144, 145, 148] in Sec. 6.2.2. We also reproduce the
data on e+e− → φ(1020)f0(980) from the same set of references.

Later, in Sec. 6.3, we present our investigations concerning to the po-
ssibility of an isovector companion of the isoscalar Y (2175) [46]. Such an
investigation will help constraining theoretical models and their parameters,

♯1The spectroscopic notation n2S+1LJ corresponds to the nth state with spin S, orbital
momentum L and total angular momentum J .
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leading to a better understanding of meson properties in the energy region
around 2 GeV. In particular, the Faddeev-type calculation of Ref.[40] that
obtains the Y (2175) as a dynamically generated state finds no resonance in
the isovector φ(1020)a0(980) S-wave channel. Experimentally, this isovector
resonance could show up in e+e− → φ(1020)a0(980) → φ(1020)π0η, as sug-
gested in a recent theoretical study of this process [160]. It could also be
observed in the e+e− → φ(1020)K+K− reaction because the a0(980) cou-
ples strongly to K+K− [161]. One should stress that the calculations of
Refs.[160, 161] do not take into account φ(1020)a0(980) final state interac-
tions (FSI) which, resonant or not, could be large and have a sizable impact
on the predicted cross sections.

We apply the formalism of Sec. 6.2 to the S-wave φ(1020)a0(980) scatter-
ing and discuss the possible presence of an isovector JPC = 1−− dynamically
generated resonance around the φ(1020)a0(980) threshold for parameters that
satisfactorily describe the isoscalar φ(1020)f0(980) channel. FSI corrections
to the process e+e− → φ(1020)a0(980) → φ(1020)π0η are also studied. The
formalism for φ(1020)a0(980) scattering is developed in Sec. 6.3 followed by
the derivation of the scattering amplitudes. Sec. 6.3.1 contains the results
and discussions thereof. Finally, our concluding remarks are given in Sec. 6.4.

6.1 Formalism

We obtain the different vertices required to determine the φKK̄ scattering
from the lowest order SU(3) chiral Lagrangian [162]:

L2 =
f 2

4
Tr
(
DµU

†DµU + χ†U + χU †) (6.1)

With f the pion weak decay constant in the chiral limit, that we approx-
imate to fπ = 92.4 MeV. The octet of the lightest pseudoscalar fields are
included in U as:

U = exp

(
i

√
2Φ

f

)

Φ =
1√
2

8∑

i=1

φiλi =




π0√
2
+ 1√

6
η8 π+ K+

π− − π0
√
2
+ 1√

6
η8 K0

K− K
0 − 2√

6
η8


 (6.2)

The covariant derivative with external sources, DµU , is given by:
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6.1. Formalism

DµU = ∂µU − irµU + iUℓµ , (6.3)

With rµ and ℓµ external right and left fields related to the vector (vµ)
and axial-vector (aµ) fields by:

rµ = vµ + aµ ,

ℓµ = vµ − aµ , (6.4)

This is a generalization of Eq.(2.105) including couplings to external field
which are invariant under local chiral transformations. The local invari-
ance is important since the chiral Ward identities originating in the global
SU(Nf )L×SU(Nf )R symmetry of QCD are obtained from a generating func-
tional invariant under local transformations of the external fields [30, 33]. It
is easy to see that if ℓµ and rµ transform under SU(3)L × SU(3)R as:

rµ → R rµR
† (6.5)

ℓµ → L ℓµ L
† (6.6)

Then, under a local chiral transformation, Eq.(6.3) transforms as:

DµU → R(x)(DµU)L
†(x) (6.7)

In the following we identify the external vector fields vµ with the lightest
octet of vector resonances, and the vertices are then determined assuming
minimal coupling. This is a generalization of the way in which vector mesons
are introduced in vector meson dominance [163, 164, 165]. Here we are only
interested in the vector fields:

rµ = g vµ , ℓµ = g vµ . (6.8)

Where g is a universal coupling constant. We assume ideal mixing, in

terms of which φ = −
√

2
3
ω8 +

1√
3
ω1 and ω = 1√

3
ω8 +

√
2
3
ω1, with ω8 and ω1

the I = 0 octet and singlet vector states, in that order. Whence:

vµ =




ρ0√
2
+ 1√

2
ω ρ+ K∗+

ρ− − ρ0√
2
+ 1√

2
ω K∗0

K∗− K
∗0

φ




µ

(6.9)
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6.2. φ(1020) f0(980) scattering

As a result, the following couplings involving vector and pseudoscalar
mesons arise:

LV 2Φ2 = g2Tr
(
vµv

µΦ2 − vµΦv
µΦ
)

LV 2Φ4 = − g2

6f 2
Tr
(
vµv

µΦ4 − 4vµΦ
3vµΦ + 3vµΦ

2vµΦ2
)

LV Φ2 = −igTr (vµΦ∂µΦ− vµ∂
µΦΦ)

LΦ4 = − 1

6f 2
Tr

(
∂µΦ∂

µΦΦ2 − ∂µΦΦ∂
µΦΦ− 1

2
MΦ4

)
(6.10)

Where M = diag(m2
π, m

2
π, 2m

2
K−m2

π) and mπ and mK the pion and kaon
masses. In addition there are vertices of three and four vectors fields which
originate from:

Lfree = −1

4
Tr (FµνF

µν) (6.11)

With the strength tensor:

Fµν = ∂µvν − ∂νvµ − ig[vµ, vν ] (6.12)

The resulting couplings involving three and four vector mesons are:

LV 3 = igTr (∂µvν [v
µ, vν ])

LV 4 =
1

2
g2Tr (vµvν [v

µ, vν ]) (6.13)

6.2 φ(1020) f0(980) scattering

We first work out the scattering of the φ(1020) with a KK̄ state of isospin (I)
zero, denoted as |KK̄〉0. Then, we take take advantage of the fact that the
f0(980) scalar meson is successfully described as a |KK̄〉0 bound state [158,
166, 167]. Therefore, the φ(1020)f0(980) scattering can be determined from
the φ(1020)KK̄ one by extracting the residue at the f0(980) double pole
position that arises from the initial and final |KK̄〉0 states.

The diagrams that contribute to φKK̄ → φKK̄ from the Lagrangians
of Eqs.(6.10) and (6.13) are depicted in Fig. 6.1. Both S- and D-waves
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4 5 6

8 9 11 127

14 16 1715

1 2 3

13

10

Figure 6.1: Feynman diagrams for φKK̄ scattering that result from the La-
grangians of Eqs.(6.10) and (6.13). The dashed lines denote kaons and the solid
ones vector mesons (φ or ρ0).

contribute to the φ(1020)f0(980) scattering in the 1−− channel but since
we are interested in the threshold region around 2 GeV, the D-wave terms
can be neglected. They are suppressed by powers of |p|2n, where |p| is the
three momentum in the center of mass (CM) of the φ(1020)f0(980) pair and
n = 1, 2 is the number of possible D-wave φ(1020)f0(980) states in both the
initial and final scattering states. It is also worth stressing that since the
f0(980) is so close to the KK̄ threshold, the three-momentum q of the kaons
in the rest frame of the f0(980) is small compared to the kaon masses. In
this way, a suppression by powers of |q| and |p| can be used to simplify the
calculation of the φKK̄ scattering. On the contrary, the appearance of almost
on-shell intermediate mesons enhances some diagrams with respect to the
rest. Joining both conditions we find that the set of amplitudes represented
by the diagram 2 of Fig. 6.1 are dominant because the contributing vertices do
not involve any small three-momentum and the intermediate kaon is almost
on-shell. In addition, these diagrams involve an extra large numerical factor
because the four-kaon vertex is around M2

f0
/f 2 ≃ 102, with Mf0 the f0(980)

mass. This factor is much larger than the one of a φφKK vertex, which
scales as g2. Such a vertex appears twice in diagram 3 and once in 2. In
spite of the fact that the φ propagator in diagram 3 is close to its mass
shell when one kaon is going in and the other out in each of the vertices,
the resulting amplitude is suppressed by more than one order of magnitude
with respect to the one from diagram 2 because, (M2

f0
/f 2)/g2 is large, and

also because it involves less enhanced configurations than the diagram 2.♯2

♯2An explicit calculation shows that the suppression factor is the inverse of 6M2
f0
/g2f2 ≃

30 for |g| ≃ 5.
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6.2. φ(1020) f0(980) scattering

Following similar steps we show in Appendix H that the rest of diagrams in
Fig. 6.1 are suppressed compared with the second one.
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Figure 6.2: All possible arrangements of kaons in the φ(p1)K
+(k1)K

−(k2) →
φ(p′1)K

+(k′1)K
−(k′2) scattering from the second diagram of Fig. 6.1 are shown.

Let us proceed with the evaluation of the contribution from diagram 2 of
Fig. 6.1 to the φ(p1)K

+(k1), K
−(k2) → φ(p′1)K

+(k′1)K
−(k′2) scattering rep-

resented by the diagrams in Fig. 6.2. We consider first the K+(k)K−(k2) →
K+(k′1)K

−(k′2) amplitude that corresponds to the vertex on the top of
Fig. 6.2(a), with k the momentum of the intermediate kaon. Using LΦ4 it
can be cast as:

T
(a)
K+K−→K+K− = −ua − 2m2

K

f 2
− m2

K − k2

3f 2
(6.14)

With ua = (k′1 − k2)
2. Here the off shell part, which is proportional to

the inverse of the kaon propagator, has been explicitly separated; it leads to
a contact term in the full amplitude of diagram (a). Proceeding analogously
with the other three diagrams in Fig. 6.2 and summing all the contributions
it results:

Tcc =− 8g2ǫ · ǫ′
3f 2

− 2g2ǫ · ǫ′
f 2

(ua − 2m2
K)
[
D(Q+ k1) +D(Q− k′2)

]

− 2g2ǫ · ǫ′
f 2

(ub − 2m2
K)
[
D(Q+ k2) +D(Q− k′1)

]
(6.15)

Where ǫ (ǫ′) is the polarization four-vector of the initial (final) φ meson,
ub = (k′2 − k1)

2 and Q = p− p′. The kaon propagator is given by:

D(k) =
1

m2
K − k2 − iε

(6.16)

With ε → 0+. The subscript cc in Tcc indicates that all the kaons are
charged. The amplitudes for the φ(p1)K

0(k1) K̄
0(k2) → φ(p′1)K

+(k′1)K
−(k′2)
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6.2. φ(1020) f0(980) scattering

and φ(p1)K
0(k1) K̄

0(k2) → φ(p′1)K
0(k′1) K̄

0(k′2) reaction channels correspond
to diagrams analogous to those in Fig. 6.2. Denoting them as Tnc and Tnn,
respectively, they read:

Tnc =
1

2
Tcc, Tnn = Tcc (6.17)

Here we have assumed an exact isospin symmetry and used the same values
for the masses of charged and neutral kaons. Note then that the scatter-
ing amplitude for φ(p1)K

+(k1)K
−(k2) → φ(p′1)K

0(k′1) K̄
0(k′2), Tcn, can be

obtained from Tnc by crossing symmetry and indeed Tcn = Tnc since the u
variables are not altered in the transformation.

To construct the I = 0 amplitude we take into account that |KK̄〉0 is:

|K(q1)K̄(q2)〉0 = − 1√
2
|K+(q1)K

−(q2) +K0(q1)K̄
0(q2)〉 (6.18)

The minus sign appears because we identify |K−〉 = −|I = 1/2, I3 =
−1/2〉 to be consistent with the convention adopted in the chiral Lagrangians,
Eq.(6.2). Therefore, the resulting φ(1020)|KK̄〉0 → φ(1020)|KK̄〉0 scatter-

ing amplitude from diagram 2 of Fig. 6.1, T
(2)
I=0, is:

T
(2)
I=0 =

1

2
{Tcc + Tnn + Tcn + Tnc} =

3

2
Tcc (6.19)

The contact term in Eq.(6.15) cannot be separated from the one arising
from diagram 1 of Fig. 6.1 in a model independent way so we consider this
smaller contribution as well. From L2V Φ4 in Eq.(6.10) one has:

Lφ2(KK̄)2 = −2g2

3f 2
φµφ

µ(K+K− +K0K̄0)2 (6.20)

The resulting contact term, when projected into the I = 0 channel taking
into account Eq.(6.19) gives:

T
(1)
I=0 = −8g2

f 2
ǫ · ǫ′ (6.21)

Therefore, the resulting φ|KK̄〉0 → φ|KK̄〉0 scattering amplitude from
the first two diagrams in Fig. 6.1 is:

TI=0 =
6g2

f 2
ǫ · ǫ′

{
−2 + k2 · k′1

[
D(Q+ k1) +D(Q− k′2)

]

+ k1 · k′2
[
D(Q+ k2) +D(Q− k′1)

]}
(6.22)
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6.2. φ(1020) f0(980) scattering

6.2.1 Extracting the f
0
(980) poles

...
... +

f0(980)

f0(980)

f0(980)

f0(980)

Figure 6.3: The two f0(980) poles originate because of the KK̄ interactions. The
kaons and anti-kaons are indicated by the dashed lines.

The KK̄ pairs re-scatter giving rise to the diagram shown on the left
hand side of Fig. 6.3. The resulting infinite chain of diagrams contains the
poles of the initial and final f0(980) resonances, as depicted on the right side
of the figure. The residue at the f0(980) double pole is the f0(980)φ(1020)
potential Vφf0. Close to threshold, the two kaons, initial or final, interact
predominantly in S-wave. The KK̄ I = 0 S-wave amplitude from LΦ4,
Eq.(6.10), is [158]:

V full
KK̄(sKK̄) =

3sKK̄

4f 2
− 1

4f 2

∑

i

(
r2i −m2

K

)
(6.23)

Where sKK̄ stands for the invariant mass of the two kaons. The sum runs
over all the four kaon states involved in the vertex whose four-momenta are
denoted by ri. The last term is the off-shell part of the amplitude. We use
Eq.(6.23) in the four-pseudoscalar vertices of the diagrams in Fig. 6.4, where
k = k1 + k2 and k′ = k′1 + k′2 are the total four-momenta of the initial and
final |KK̄〉0 states, respectively. At the f0(980) double pole k2 = k′2 =M2

f0
.

A K+ or K0 runs in the loop of the diagrams in Fig. 6.4. Taking into
account that the K+K− → |KK̄〉0 and K0K̄0 → |KK̄〉0 vertices are equal
to −

√
1/2V full

KK̄
one gets the same result for the four amplitudes represented

in Fig. 6.4.

The off-shell parts comprised in the last term of Eq.(6.23), are equal to the
inverse of kaon propagators. In the loops of Fig. 6.4 they cancel with the kaon
propagators giving rise to amplitudes that do not correspond anymore to the
dominant triangular kaon-loop but to other topologies so that we disregard
them. Therefore, we obtain for the sum of the diagrams in Fig. 6.4:
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6.2. φ(1020) f0(980) scattering

ℓ ℓ

ℓ+ k

ℓ+ k′ ℓ− k

ℓ− k′

K+ K+

(K0) (K0)

φφ φφ

Figure 6.4: Triangular kaon-loop graphs with a K+ or a K0 running in the loop.
All the diagrams give the same result.

M = 4ǫ · ǫ′g2VKK̄(k
2)VKK̄(k

′2)

× i

∫
d4ℓ

(2π)4
1

[ℓ2 −m2
K + iε] [(ℓ+ k)2 −m2

K + iε] [(ℓ+ k′)2 −m2
K + iε]

= −ǫ · ǫ
′g2

4π2
VKK̄(k

2)VKK̄(k
′2)

×
∫ 1

0

∫ 1

0

dz1dz2
θ(1− z1 − z2)

k2z1(1− z1) + k′2z2(1− z2)− 2k · k′z1z2 −m2
K + iε

(6.24)

Where VKK̄ is the on-shell part of Eq.(6.23) given by its first term. Next,
we perform the following change of integration variables:

x =
1

2
(z1 + z2)

y =z1 − z2 (6.25)

After performing the integration on y we have:

M =ǫ · ǫ′g2VKK̄(k
2)VKK̄(k

′2)
1

π2Q2

∫ 1/2

0

dx
log (1− 2x/c)− log (1 + 2x/c)

c
(6.26)
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6.2. φ(1020) f0(980) scattering

With:

c =

√
−16k2

Q2

(
1− Q2

4k2

)
[(x− x0)2 + a2]

x0 =
1

4
(
1− Q2

4k2

)

a2 =
1

16
(
1− Q2

4k2

)2
[
4m2

K

k2

(
1− Q2

4k2

)
− 1

]
(6.27)

Inside the integral we take k2 = k′2, which is correct at the f0(980) double
pole. Next, we have to project into the S-wave state of the φ(1020)f0(980)
system, which amounts to integrating over cos ρ ∈ [−1, 1], with ρ the relative
angle between p and p′ in the CM frame. In terms of it Q2 = −2p2(1 −
cos ρ). The leading non-relativistic contribution for ǫ(p, s) · ǫ′(−p, s′) =
−δss′ + O(v2), with v = p/W and W denotes the total CM energy of the
φ(1020)f0(980) pair. Since v is small we just keep the first term and replace
ǫ · ǫ′ → −1 in Eq.(6.26) and in the tree-level contact term of Eq.(6.22) that
we add to the former, obtaining the S-wave amplitude:

MS
I=0 =

12g2

f 2
− VKK̄(s1)VKK̄(s

′
1)
g2

2π2

∫ +1

−1

d cos ρ

Q2

×
∫ 1/2

0

dx
log (1− 2x/c)− log (1 + 2x/c)

c
(6.28)

One should bear in mind that some of the discarded contributions to the
triangle loops from the off-shell parts of (6.23) lead to contact terms that
would just renormalize the first term of the previous equation.

The next step is to resum the re-scattering chain for each of the (KK̄)0
pairs, as represented in the left diagram of Fig. 6.3. This can be done by
multiplying MS by the factor [168]:

1

D(k2)D(k′2)
(6.29)

With:

D(k2) = 1 + VKK̄(k
2)G2(k

2) (6.30)
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6.2. φ(1020) f0(980) scattering

The function G2 represents the unitary loop of two kaons. In Ref.[158]
it was established that the f0(980) is predominantly a |KK̄〉0 S-wave bound
state that slightly modifies its mass and acquires a narrow width due to the
coupling to pions. Then, in order to reproduce the f0(980) pole properties
due to its coupling to kaons, one can consider single channel kaon scattering
and write [158]:

TKK̄(k
2) =

VKK̄(k
2)

1 + VKK̄(k2)G2(k2)
=
VKK̄(k

2)

D(k2)
(6.31)

This equation can be interpreted as the evolution of a |KK̄〉0 pair pro-
duced by the potential VKK̄ that undergoes re-scattering as determined by
the factor [(1 + VKK̄(k

2)G2(k
2)]−1 = 1 − VKK̄G2 + VKK̄G2VKK̄G2 + . . .. For

our present problem on the φ(1020)f0(980) scattering two |KK̄〉0 pairs re-
scatter by initial and final state interactions. Analogously, from Eq.(6.28)
one has:

MS =
MS

D(k2)D(k′2)
=

[
12g2/f 2

VKK̄(k2)VKK̄(k′2)
− g2

2π2

∫ +1

−1

d cos ρ

Q2

×
∫ 1/2

0

dx
log (1− 2x/c)− log (1 + 2x/c)

c

]
TKK̄(k

2)TKK̄(k
′2) (6.32)

It is worth stressing here that this equation can be interpreted as a purely
phenomenological one corresponding to the topology of the diagrams 1 and
2 of Fig. 6.1. It is parameterized in terms of the KK̄ I = 0 S-wave am-
plitude TKK̄ . The first term corresponds to a general contact interaction at
threshold.♯3

The scattering amplitude TKK̄(k
2) has a pole below the KK̄ threshold

due to the f0(980) bound state, which implies that:

lim
k2→M2

f0

(M2
f0 − k2)TKK̄(k

2) = γ2KK̄ (6.33)

♯3In our fits to data (see next subsection) we have allowed two different values of g2,
one for the contact term and another for the kaon pole terms in Eq.(6.32). However, we
have not found any significant difference in our conclusions so that we skip any further
comment on this issue.
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6.2. φ(1020) f0(980) scattering

Then, at k2, k′2 → M2
f0
:

Vφf0 =
1

γ2
KK̄

lim
k2,k′2→M2

f0

(k2 −M2
f0
)(k′2 −M2

f0
)MS =

[
12g2

f 2VKK̄(M
2
f0
)2

− g2

2π2

∫ +1

−1

d cos ρ

Q2

∫ 1/2

0

dx
log (1− 2x/c)− log (1 + 2x/c)

c

]
γ2KK̄

(6.34)

The coupling of the f0(980) to |KK̄〉0, γKK̄, has the value γKK̄ ≃ 4 GeV
[90, 169]. The 1/γ2

KK̄
factor appears because MS contains two extra cou-

plings f0(980) → |KK̄〉0 that should be removed when isolating the f0(980)
resonances. In Ref.[170] extra terms contributing to Vφf0 are pointed out
employing the fixed center approximation.

Finally, the φ(1020)f0(980) S-wave scattering amplitude is obtained by
an expression analogous to Eq. (6.31):

Tφf0 =
Vφf0

1 + Vφf0Gφf0

(6.35)

Here, Gφf0 is the unitary loop function of a φ(1020) and a f0(980) reso-
nances and is given by [88, 90]:

Gφf0(s) =
1

(4π)2

{
a1 + log

M2
f0

µ2
−
M2

φ −M2
f0
+ s

2s
log

M2
f0

M2
φ

+
|p|√
s

[
log(s−∆+ 2

√
s|p|) + log(s+∆+ 2

√
s|p|)

− log(−s+∆+ 2
√
s|p|)− log(−s−∆+ 2

√
s|p|)

]}
(6.36)

With ∆ =M2
φ −M2

f0
. While the renormalization scale µ is fixed to value

of the ρ meson mass, µ = 770 MeV, the subtraction constant a1 has to be
fitted to data [90].

6.2.2 φ(1020) f
0
(980) resonant states

The potential Vφf0 , Eq.(6.34), depends on g2 mainly through the vertex at
the bottom of the diagrams of Fig. 6.2 that corresponds to φ(1020)K scat-
tering. In the present problem on the φ(1020)f0(980) scattering around its
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6.2. φ(1020) f0(980) scattering

threshold we are also close to the φ(1020)K threshold itself. On the other
hand, the K1(1400) resonance is only 100 MeV below it. Therefore, it is
quite reasonable to expect that the φ(1020)K scattering is dominated by
this resonance which implies that g2 < 0 because, for a bare pole:

g2 ∼
γ2K1φK

M2
K1

− (Mφ +mK)2
< 0 (6.37)

In this way, g2 is interpreted as a parameter that mimics the φ(1020)K
scattering amplitude in the energy region of the φ(1020)f0(980) scattering
close to threshold. On the other hand, we restrict g2 to be real so that
Vφf0 is also real above the φ(1020)f0(980) threshold and the resulting S-wave
Tφf0 amplitude, Eq.(6.35), fulfils unitarity.♯4 With g2 < 0, Vφf0 is positive
(attractive) around the φ(1020)f0(980) threshold. In this situation |Tφf0|2
has resonant peaks with mass and width compatible with those measured for
the Y (2175) [145, 147, 148]. The Y (2175) mass and width values extracted
by BABAR [145] and BES [147] are compatible between each other. In the
following we take, as reference values, their average:

MY = 2.180± 0.008 GeV

ΓY = 0.060± 0.014 GeV (6.38)

In Fig. 6.5 we show |Tφf0 |2 for (
√
−g2, a1) = (5,−7.1), (6,−5.2) and

(7,−4.1) with Mf0 = 0.98 GeV in all the curves. The peak is located at

2.18 GeV as in Eq.(6.38) and the width increases with
√

−g2, taking the

values of 48, 72 and 100 MeV for
√

−g2 = 5, 6 and 7, in that order. Although
the width increases, the size at the peak remains constant because the former
is proportional to g2 so that the ratio g2/ΓY , which fixes the amplitude at
the maximum, is roughly independent of the value of g2 used for a fixed peak
position. On the other hand, there have been some criticisms about the value
of |Tφf0|2 [170], since at the resonance position (

√
s = 2.175 GeV) the value of

this modulus is two orders of magnitude bigger than the one that is obtained
if one uses the φK amplitude provided by the Chiral Unitary approach of
Ref.[159].

To sharpen our conclusions we now compare directly with the e+e− →
φ(1020)f0(980) data [144, 145, 148]. The φ(1020)f0(980) strong scattering
amplitude, Eq.(6.35), is employed to correct by final state interactions (FSI)

♯4We have checked that our fits to data are stable if we allow g2 to become complex.
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Figure 6.5: |Tφf0 |2 with the peak at 2.18 GeV as a function of the φf0 invariant

mass. The solid, dashed and dot-dashed lines are for
√

−g2 = 5, 6, 7 and a1 =
−7.1 ,−5.2, −4.1 respectively.

a given production process for e+e− → φ(1020)f0(980). This is achieved
[168] by multiplying the production amplitude by:

1

1 +Gφf0Vφf0
(6.39)

In the same manner as already done in Eq.(6.29) for theKK̄ re-scattering.
We take as the non-resonant production cross section σNR(s) the one fitted
in Fig. 6(b) of Ref.[148]. Therefore, after FSI:

σNR(s) → σR(s) =
σNR(s)

|1 + Vφf0Gφf0|2
(6.40)

In order to take into account the mass distribution of the f0(980) reso-
nance, the previous result is convoluted with the f0(980) mass distribution
P (Wf0):

〈σR(s)〉 = NσNR(s)

∫
dWf0

P (Wf0)

|1 + Vφf0Gφf0(s,Wf0)|2
(6.41)

For practical purposes we take P (Mf0) as a Lorentzian distribution cen-
tered at Mf0 = 0.98 or 0.99 GeV with a width Γf0 =50 MeV [171]:

P (Wf0) =
1

2π

Γf0

(Wf0 −Mf0)
2 +

Γ2
f0

4

(6.42)
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6.2. φ(1020) f0(980) scattering

The normalization constant N is included in Eq. (6.41) to account for
the fact that the σNR(s) of Ref.[148] is extracted assuming an specific shape
and strength for the resonant signal.

√
−g2 a1 N χ2

d.o.f. Mf0

7.33± 0.30 −2.41± 0.14 0.79± 0.06 88/(46− 3) 0.98 GeV (fixed)
3.94± 0.18 −2.84± 0.18 0.52± 0.05 108/(46− 3) 0.99 GeV (fixed)

Table 6.1: Fits to the data from BABAR [145] and Belle [148] on e+e− →
φ(1020)f0(980). The first fit uses Mf0 = 0.98 GeV and the second one
Mf0 = 0.99 GeV.

We have performed fits using the data points around the Y (2175) peak,
for

√
s ∈ [2, 2.6] GeV, taking into account the bin size. The best-fit parame-

ters forMf0 = 0.98 and 0.99 GeV are given in Table 6.1. The results of these
fits are the solid and dot-dashed lines in Fig. 6.6, where the points used to
draw the curves are separated in energy according to the bin size of the expe-
rimental points of Refs.[148, 145] for the data set from the φ(1020)π+π− final
state. The rest of the points (diamonds) are obtained from the φ(1020)π0π0

final state [145]. Notice that the data from Ref.[148] are slightly more precise
than those from Ref.[144, 145]. The fitted parameters do not depend on the
precise value of the upper energy limit. We have used

√
s = 2.6 GeV as a

large enough value to cover the energy region where our approach is valid,
namely, near the φ(1020)f0(980) threshold.

The suppression of our results for
√
s . 2 GeV in Fig. 6.6 is not due to

a negative interference of Tφf0 with the non-resonant contribution. Instead,
it is due to fact that at the φ(1020)f0(980) threshold, the Vφf0 potential of
Eq.(6.34) is large because of the 1/Q2 factor. This threshold effect is very
sensitive to the procedure to disentangle the f0(980) resonant signal. Here,
we have taken for it a precise mass value given by the f0(980) pole position.
However, experimentally it is obtained from the e+e− → φ(1020)ππ data by
integrating the two pion invariant mass distribution within an energy region
around the f0(980) signal, typically for 0.85 GeV≤ √

sππ ≤ 1.1 GeV [144],
with

√
sππ the two pion invariant mass.

In Fig. 6.7, |Vφf0| is shown for the two sets of parameters given in Ta-
ble 6.1. The solid line is for Mf0 = 0.98 GeV and the dot-dashed one for
Mf0 = 0.99 GeV. Both have a similar peak value, though to accomplish this
|g2| is smaller by around a factor 3 for the first fit in Table 6.1 compared to
the second. The reason is again related to the factor 1/Q2 in Vφf0, Eq.(6.34).
Indeed, the integration in x is logarithmically divergent for those Q2 > 0
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Figure 6.6: Cross-section for e+e− → φ(1020)f0(980). The experimental data are
from Ref.[145] (diamonds and crosses) and Ref.[148] (empty boxes). The solid and
dash-dotted lines correspond to the first and second fits of Table 6.1. The dashed
line shows NσNR(s) for the first fit.

values (below the φ(1020)f0(980) threshold) which are large enough [around
M2

f0
(4−M2

f0
/m2

K)] to make a2 in Eq.(6.27) vanish. However, the logarithmic
divergence in x disappears after the integration in cos θ is performed. The
onset of this behavior gives rise to the maximum of Vφf0 below threshold,
as can be seen in Fig. 6.7. There is an exception for which the logarithmic
divergence in x remains; this occurs exactly at the φ(1020)f0(980) threshold
and only for Mf0 = 2mK . In this case a2 = 0 for all cos θ and the final result
after the two integrations is logarithmically divergent at threshold. This is
the reason why, for a fixed value of g2, as Mf0 approaches 2mK the potential
becomes larger with a narrower peak structure. This is the limit that cor-
responds exactly to the suppression mechanisms used to establish that the
diagram 2 of Fig. 6.1 is the dominant one. The appearance of the Y (2175)
peak within our approach is driven by the large value of Vφf0 at threshold and
its rather fast decrease in energy for

√
s somewhat above the φ(1020)f0(980)

threshold.

It is interesting to mention that while
√
−g2 in Table 6.1 is in the range

of values used in Fig. 6.5, the a1 values in the table are smaller in modulus
by around a factor 2–3 compared to those used in Fig. 6.5, to obtain MY =
2.18 GeV as in Eq.(6.38). This implies that |Tφf0 |2 from the fits to data has
a peak at smaller energies (around 2.09 GeV) and wider, with a width of
around 150 MeV. This is in line with the findings of the Belle Collaboration
[148] discussed in the introduction. In all cases a1 is negative, as it should
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Figure 6.7: |Vφf0 | for the two sets in Table 6.1. The solid and dot-dashed lines
correspond to the first and second fits, respectively.

be for a dynamically generated resonance. In this situation the potential
should be attractive so that 1/Vφf0 can cancel with a1 in Eq.(6.35). On the
other hand, for the a1 values in Table 6.1, the resulting unitary ChPT scale,
Λ = (4πf)/

√
|a1| ≃ 0.75 GeV, preserves a natural size aroundMρ. However,

since the |a1| values in Fig. 6.5 are significantly larger, the interpretation of
these peaks as fully dynamically generated states is more arguable because
in this case the unitarity scale is just around 0.5 GeV. Nonetheless, even in
these cases one can still conclude that these peaks have a large φ(1020)f0(980)
re-scattering component. On the other hand, for a resonance mass MY =
2.09 GeV one has 1/p = 0.65 fm and for MY = 2.18 GeV, 1/p = 0.45 fm.
This indicates that although the Y (2175) had large a φ(1020)f0(980) meson-
meson components, as our results point out, it is a rather compact object.
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

6.3 Derivation of the φ(1020)a0(980) scattering

amplitude

In order to obtain the φ(1020)a0(980) amplitude we follow the methodology
of the previous section with the isovector a0(980) instead of the isoscalar
f0(980). First, the scattering of the φ(1020) resonance with an S-wave neutral
pair of the lightest pseudoscalar mesons in I = 1 is investigated. Two types
of meson pair are then possible, namely, |1〉 ≡ |KK̄〉I=1 and |2〉 ≡ |π0η8〉
(already a pure isospin (I) 1 state). The following channels result:

(1 → 1) : φ(1020) |KK̄〉I=1 → φ(1020) |KK̄〉I=1

(1 → 2) : φ(1020) |KK̄〉I=1 → φ(1020) |π0η8〉
(2 → 1) : φ(1020) |π0η8〉 → φ(1020) |KK̄〉I=1

(2 → 2) : φ(1020) |π0η8〉 → φ(1020) |π0η8〉 (6.43)

Both φ(1020)a0(980) S- and D-waves contribute to the 1−− channel but
since we are interested in the threshold region around 2 GeV, D-wave terms
can be neglected, as we did in Sec. 6.2. Again, as both φ(1020) and a0(980)
are very close to the KK̄ threshold, the amplitude at tree level is dominated
by diagram Fig. 6.8a. The main reason is that the propagator of the kaon
intermediate state is almost on-shell.♯5 As we did before, we also include the
local term of Fig. 6.8b because the off-shell part of the four-pseudoscalar-
meson vertex can cancel the kaon propagator generating local terms. There-
fore one has to consider simultaneously the sum of amplitudes from both
diagrams as any splitting would depend on field parameterization.

a b

Figure 6.8: Dominant tree-level contributions to the scattering of a φ(1020) with
a neutral pair of pseudoscalar mesons close to threshold. The dashed lines denote
the pseudoscalar mesons and the solid line stands for the φ(1020).

♯5In this case, the possible intermediate states are kaon or anti-kaon because of the
absence of φ2π0π0, φ2π0η8 and φ2η8η8 vertices in the V 2Φ2 Lagrangian of Eq.(6.10).
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To construct the (1 → 1) amplitude we cast |KK̄〉I=1 as:

|K(k1)K̄(k2)〉I=1 = − 1√
2
|K+(k1)K

−(k2)−K0(k1)K̄
0(k2)〉 , (6.44)

With k1 and k2 the kaon four-momenta. We denote as Tcc, Tnc, Tcn and
Tnn (in order from top to bottom), the amplitudes for the reaction channels:

φ(p)K+(k1)K
−(k2) → φ(p′)K+(k′1)K

−(k′2)

φ(p)K0(k1) K̄
0(k2) → φ(p′)K+(k′1)K

−(k′2)

φ(p)K+(k1)K
−(k2) → φ(p′)K0(k′1) K̄

0(k′2)

φ(p)K0(k1) K̄
0(k2) → φ(p′)K0(k′1) K̄

0(k′2) (6.45)

The result for diagram Fig. 6.8a is:

T (a)
cc = −2g2

3f 2
ǫ · ǫ′

{
4 + 6(ua − 2m2

K)
[
D(Q+ k1) +D(Q− k′2)

]
(6.46)

+6(ub − 2m2
K)
[
D(Q + k2) +D(Q− k′1)

]}
(6.47)

T (a)
nn = T (a)

cc (6.48)

T (a)
nc =

1

2
T (a)
cc (6.49)

T (a)
cn = T (a)

nc =
1

2
T (a)
cc (6.50)

Where ǫ (ǫ′) is the polarization four-vector of the initial (final) φ(1020)
meson, ua = (k′1−k2)2, ub = (k′2−k1)2 and Q = p−p′. The kaon propagator
D(q) is given by:

D(q) =
1

m2
K − q2 − iε

(6.51)

With ε → 0+. For the contact term (diagram of Fig. 6.8b) the result is:

T (b)
cc = −16g2

3f 2
ǫ · ǫ′

T (b)
nn = T (b)

cc

T (b)
nc = T (b)

cn =
1

2
T (b)
cc (6.52)
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Taking into account Eq. (6.44) one finds for the (1 → 1) channel of
Eq.(6.43):

T I=1
11 =

1

2
{Tcc + Tnn − Tcn − Tnc} =

1

2
Tcc (6.53)

Where Tcc = T
(a)
cc +T

(b)
cc (and analogously for Tnn, Tcn and Tnc). Therefore:

T I=1
11 =

2g2

f 2
ǫ · ǫ′

{
−2 + k2 · k′1

[
D(Q+ k1) +D(Q− k′2)

]

+ k1 · k′2
[
D(Q+ k2) +D(Q− k′1)

]}
(6.54)

Proceeding in the same way, the (1 → 2) and (2 → 1) amplitudes are
found to be:

T I=1
12 = − 2g2√

6f 2
ǫ · ǫ′

[
3k′1 · k′2 +m2

π

]
[D(Q+ k1) +D(Q+ k2)]

T I=1
21 = − 2g2√

6f 2
ǫ · ǫ′

[
3k1 · k2 +m2

π

]
[D(Q− k′1) +D(Q− k′2)] (6.55)

Where k1, k2 (k
′
1, k

′
2) are the four-momenta of the initial (final) pseudoscalars.

Notice that there is no local term due to a cancellation between the contact
term from Fig. 6.8b and the local part from Fig. 6.8a. In Eq. (6.55) we
have made use of the Gell-Mann-Okubo mass relation m2

η = 4m2
K/3−m2

π/3
so as to simplify the final expressions. Finally, the transition (2 → 2) is
absent at tree level because there are no φ2Φ2 or φ2Φ4 vertexes with only
π0 and η mesons. Because of the absence of the contact terms for (1 → 2),
(2 → 1) and (2 → 2) there is no need to further consider these processes in
order to obtain the interaction kernel for φ(1020)a0(980) scattering. It can
be obtained directly from (1 → 1), as it is explicitly worked out below.

...
... +

a0(980)

a0(980)

a0(980)

a0(980)

Figure 6.9: The two a0(980) poles that arise from meson-meson interactions in
I = 1 and S-wave.

Next, we consider initial- and final-state re-scattering of the pseudoscalar
mesons in I = 1 and S-wave from the diagrams in Fig. 6.8, as we show in
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

Fig. 6.9 for the nonlocal part of the interaction. The re-scattering chains,
made of KK̄ and π0η pairs, contain the poles of the initial and final a0(980)
resonances [90, 158, 166, 167, 169]. Below, the residue at the a0(980) double
pole will be identified as the φ(1020)a0(980) interaction kernel Kφa0 . We fol-
low Refs.[90, 158, 169] where the I = 1 S-wave meson-meson scattering was
studied in terms of the KK̄ and π0η coupled channels and the a0(980) res-
onance was dynamically generated from the meson-meson self-interactions.
This is also the case for other approaches like Refs.[166, 167]. The I = 1
S-wave meson-meson amplitudes Tij fulfill the Bethe-Salpeter equation in
coupled channels:

Tij =
∑

m

Kim (δmj −GmTmj) (6.56)

Where the indices i, j, k,m = 1, 2 denote the KK̄ and π0η channels,
respectively. The T -matrix is given in terms of the on-shell part of the I = 1
S-wave meson-meson amplitudes at tree level and the KK̄ and π0η unitary
scalar loop functions, G1 and G2 in this order.♯6 Notice that the Kij factorize
in Eq. (6.56) [158]. The latter were calculated in the same reference from
LΦ4 , Eq.(6.10), with the resulting expressions:

K11 ≡ KKK̄→KK̄ =
k2

4f 2

K12 = K21 ≡ Kπ0η→KK̄ = −
√

3/2

6f 2
(3k2 − 4m2

K)

K22 ≡ Kπ0η→π0η =
m2

π

3f 2
(6.57)

With k2 being the invariant mass squared of the meson pair.

The Vmn part, which contains the φ(1020) interaction with the pseu-

doscalar pair projected into S-wave, consist of two terms, Vmn = V
(c)
mn + V

(t)
mn.

The first is a local term, present only in the (1 → 1) channel as shown above.
From Eq.(6.54):

V (c)
mn =

4g2

f 2
δm1δn1 (6.58)

♯6The expressions given in Eqs.(6.36) and (6.68), obtained from a dispersion relation
and with cut-off regularization, respectively, are also applicable here after the appropriate
replacement of masses.
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

Where only the leading non relativistic contribution to ǫ(p, s) ·ǫ′(p′, s′) ≈
−δss′ has been kept; this approximation is justified for small φ(1020) (and
a0(980)) velocities in the φ(1020)a0(980) CM frame.

The second term is given by the triangular loop diagrams depicted in
Fig. 6.4 with only kaons in the internal lines. For the Φ4 vertices we take
only the on-shell amplitudes of Eq.(6.57). The off-shell parts are proportional
to the inverse of kaon propagators and cancel with them in the calculation
of the loop, giving rise to amplitudes that do not correspond anymore to
the dominant triangular kaon-loop but to other topologies. Nonetheless, one
should bare in mind that some of these sub-leading contributions may alter
the contact term fixed above from the tree level amplitudes.

We obtain:

V (t)
mn = −4g2Km1(k

2)K1n(k
′2)LS (6.59)

Where:

LS =
1

8π2

∫ +1

−1

d cos ρ

Q2

∫ 1/2

0

dx
1

c
[log (1− 2x/c)− log (1 + 2x/c)] (6.60)

c2 =
4

Q2

[
x2Q2 + 2k2x(1− 2x)−m2

K + iǫ
]

(6.61)

With k2 (k′2) the invariant mass squared of the initial (final) pseudoscalar-
meson pair. Inside the integral we take k2 = k′2, which holds at the a0(980)
double pole. We account for the S-wave projection by averaging over cos ρ
with ρ the relative angle between φ(1020) incoming (p) and outgoing (p′)
momenta in the CM frame. In terms of this angle Q2 = −2p2(1− cos ρ). As
for the contact term we approximate ǫ(p, s) · ǫ′(p′, s′) ≈ −δss′ .

Altogether:

Vmn = 4g2
(
δm1δ1n
f 2

−Km1(k
2)K1n(k

′2)LS

)
(6.62)

In presence of re-scattering of the initial and final two-body hadronic
states the Vij amplitudes are corrected giving rise to the final Mij dressed
amplitudes:

Mij =
∑

mn

(δim − TimGm)Vmn(δnj −GnTnj) (6.63)

In this equation the first term between brackets accounts for the initial
state interactions and the second one does so for the final state interactions
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

between the pseudoscalars in I = 1 S-wave pairs. For its derivation and
other applications see Refs.[168, 172]. Substituting in Eq.(6.63) and using
Eq.(6.56) one finds that:

Mij = 4g2
{

1

f 2
[δi1 − Ti1(k

2)G1(k
2)][δ1j −G1(k

′2)T1j(k
′2)]− Ti1(k

2)T1j(k
′2)LS

}

(6.64)
Now we proceed to extract the φ(1020)a0(980) interaction kernel as we

did in the previous section. For this purpose we notice that the scattering
amplitude T11(k

2) contains the a0(980) resonance pole with residue:

lim
k2→M2

a0

(M2
a0
− k2)T11(k

2) = γ2KK̄ (6.65)

Where M2
a0

denotes the a0(980) pole position. Therefore:

Kφa0 =
1

γ2
KK̄

lim
k2,k′2→M2

a0

(k2 −M2
a0
)(k′2 −M2

a0
)M11

= 4g2γ2KK̄

[
1

f 2
G1(M

2
a0)

2 − LS

]
(6.66)

The 1/γ2
KK̄

factor appears because M11 contains two extra a0(980) →
|KK̄〉I=1 couplings that should be removed in order to isolate the a0(980)
resonances.

As in the case with the f0(980), the φ(1020)a0(980) S-wave scattering
amplitude is:

Tφa0 =
Kφa0

1 +Kφa0Ga0f0

(6.67)

With Gφa0(s) the unitary loop function, Eq.(6.36), for a0(980) as inter-
mediate state instead of f0(980). With the renormalization scale µ fixed to
value of the ρ meson mass, µ = 770 MeV. On the other hand, the subtrac-
tion constant a1 has to be fitted to data [90]. The loop-function can also be
regularized with a three-momentum cut-off qmax [158]:

Gφa0(s) =

∫ qmax

0

|k|2d|k|
(2π)2

wφ + wa0

wφwa0(s− (wφ + wa0)
2 + iǫ)

(6.68)
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Figure 6.10: (Color online). The Gφa0 function calculated from a dispersion
relation, Eq. (6.36), left panel, and with a three-momentum cut-off, Eq. (6.68),
right panel. From top to bottom, the subtraction constant a1 is varied from −1.0
to to −3.5 in steps of −0.5 while the three-momentum cut-off, qmax, goes from 0.8
to 1.2 GeV in steps of 0.1 GeV.

With wi =
√
m2

i + |k|2. It is instructive to compare the real part of the
Gφa0 functions that result from the two methods. For this we fix Ma0 =
1.009 GeV, corresponding to the pole mass obtained in Ref.[158]. The com-
parison is presented in Fig. 6.10. On the left panel, Eq.(6.36) is evaluated
varying the subtraction constant a1 from −1.0 to −3.5 in steps of −0.5 start-
ing from the top while on the right one, Eq.(6.68) is plotted for qmax between
0.8 and 1.2 GeV (around the typical hadronic scale ∼ 4πfπ) in steps of
0.1 GeV, from top to bottom. We observe a significant coincidence between
both functions in the threshold region (∼ 2 GeV) for values of a1 between
−3 and −2. This interval contains indeed the a1 values obtained in the
previous section by fitting the e+e− → φ(1020)f0(980) cross section. This
coincidence is interpreted as an indication that the Y (2175) resonance is to a
large extent dynamically generated. Now, we investigate this possibility for
the I = 1 S-wave φ(1020)a0(980) scattering.

6.3.1 Results and discussion

• Possible φ(1020) a0(980) resonances

In this investigation, we consider two possibilities for the a0(980) proper-
ties (pole position and residue), as they depend on the framework followed.
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

In the first one, the Bethe-Salpeter (BS) equation for meson-meson scatter-
ing was solved using cut-off regularization for the loop function [158]. In the
second case, the N/D method was used with the meson-meson loop function
obtained with a dispersion relation [90]. In both studies the KK̄ and π0η
coupled channels were included. The a0(980) properties extracted in these
references are listed in Table. 6.2.

Ma0 [GeV] γ2
KK̄

[GeV2]
BS [158] 1.009 + i 0.056 24.73− i 10.82
N/D [90] 1.055 + i 0.025 17.37− i 24.77

Table 6.2: a0(980) properties, pole position Ma0 and residue γ2
KK̄

, used as
input.

Furthermore, we employ two sets of values for the coupling g and the
φa0 subtraction constant a1 corresponding to the values we obtained in Sec.
6.2 fitting BABAR [145] and Belle [148] data on e+e− → φ(1020) f0(980).
The first of the fits corresponds to the fit on the top of Table 6.1, with mass
and couplings for the f0(980) resonance from Ref.[171], while the second one
is similar to that in the last line of Table 6.1 but obtained with slightly
different values of the f0(980) mass and KK̄ residue (γ2

f0KK̄
), corresponding

to those values of Ref.[90]. The values for the f0(980) properties from refs. [90,
171] and the resulting fit parameters are collected in Table 6.3 from top to
bottom, respectively. Notice that g2 < 0. As remarked before, g2 should be
understood as a parameter characterizing the φ(1020)K scattering around its
threshold, with presumably large influence from the I(JP ) = 1

2
(1+) K1(1400)

resonance [173], which would determine the negative sign for g2.

Mf0 [GeV] (fixed) γ2
f0KK̄

[GeV2] (fixed)
√
−g2 a1

Fit 1 0.980 16 7.33(30) −2.41(14)
Fit 2 0.988 13.2 5.21(12) −2.61(14)

Table 6.3: Fits to BABAR [145] and Belle [148] e+e− → φ(1020) f0(980)
data for two different choices of the f0(980) properties.

We calculate |Tφa0 |2 for the four possible combinations of the parameter

values in Tables 6.2 and 6.3 forMa0 , γ
2
K̄K

,
√

−g2 and a1. As mentioned above,
some of the discarded contributions to the triangle loop could modify the local
term in Eq.(6.66). For this reason, we first exclude the local contribution and
concentrate on the more robust triangular topology. The |Tφa0 |2 dependence
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Figure 6.11: (Color online). |Tφa0 |2 without local term in the kernel Kφa0 as a
function of the φa0 invariant mass for the possible combinations of parameters in
Tables 6.2 and 6.3.

on the φ(1020)a0(980) invariant mass is shown in Fig. 6.11. All the curves
show a prominent enhancement below the φKK̄ threshold, at 2.01 GeV, that
hints at the presence of a dynamically generated resonance located quite close
but above the π0η threshold (1.7 GeV). For Fit 2, the peak is narrower and
has a maximum at a higher

√
s but it is 2.5 times stronger for Fit 1 (notice

the different scales in the plots).
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Figure 6.12: (Color online). Same as Fig. 6.11 but with the local term in the
kernel as in Eq. (6.66).
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Figure 6.13: (Color online). Kφa0 for Fit 2 and both BS and N/D sets.

Let us now take into account the local term in the kernel as given in
Eq.(6.66). For the sake of consistency the KK̄ unitarity scalar loop function,
G1(k

2), is evaluated making use of the same regularization procedure as that
employed in generating the a0(980) resonance from Refs.[158, 90]. Hence,
when the BS set is used, G1(M

2
a0
) is computed using a cut off regularization

with qmax = 1 GeV [158] while, when the N/D parameters are considered,
G1(M

2
a0
) is obtained from a dispersion relation with the renormalization scale

fixed at the ρ mass, µKK̄ = 0.77 GeV, and a subtraction constant of aKK =
−0.81 [90]. The new results are shown in Fig 6.12. In the BS case, for
both fits 1, 2, the enhancements observed before in Fig. 6.11 are flatten
away by the presence of the local term. This fact agrees with the results of
Ref.[40] where no isovector 1−− resonance was generated. Remarkably, when
the N/D set is employed the resonance peak is still clearly seen, and at a
higher invariant mass with respect to Fig. 6.12, but with a |Tφa0 |2 smaller by
almost a factor two. Considerable differences between BS and N/D results
are also observed above

√
s > 2.2 GeV: while the BS curve goes fast to zero,

the N/D one remains nearly flat at least up to
√
s = 2.6 GeV. The main

difference between the two choices has to do with the actual value of the
coupling squared γ2

KK̄
, particularly for its imaginary part. In this way, if the

BS [158] a0(980) pole position in Table 6.2 were used with the couplings of
the N/D [90] pole one would obtain also φ(1020)a0(980) broad peaks similar
to those shown by the dashed lines in Fig. 6.11. In the previous section, it
was found that the fits to BABAR [145] and Belle [148] data in the region of
the Y (2175) resonance were stable against variation of the contact term in
the φ(1020)f0(980) kernel. Now there is more sensitivity because the a0(980)
pole positions taken, collected in Table 6.2, are not so close to the KK̄
threshold, given in Table 6.3. In this way the three loop point function LS,
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6.3. Derivation of the φ(1020)a0(980) scattering amplitude

Eq.(6.60), is smaller than in the f0(980) case so that there is more sensitive
to interferences with smaller contributions. For the N/D [90] a0(980) pole
position the local term contributions amounts at around a 20% of the leading
LS contribution. However, for the B/S [158] pole the corrections from the
local terms increase significantly with energy above typically 2 GeV. One
should notice that G1(M

2
a0
)2 in Eq.(6.66) is larger by around a factor 4 for

the B/S pole than for the N/D one. Due to the uncertainties in the pole
position and couplings of the a0(980) resonance and in the local term in
Kφa0 , Eq.(6.66), we cannot arrive to a definite conclusion on the existence
of an isovector companion to the Y (2175) in the φ(1020)a0(980) system.
Nevertheless, we can state that if the a0(980) properties are close to those
predicted by the N/D study of Ref.[90] the present model predicts a resonance
behavior of dynamical origin in the φ(1020)a0(980) scattering around 1.8-
2 GeV.♯7
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Figure 6.14: (Color online). |Tφa0 |2 as a function of the φa0 invariant mass evalu-
ated at a fixed a0(980) pole position (dashed and solid lines) or with a convolution
according to Eq. (6.69) (dash-dotted and dotted lines). All curves were obtained
with fit 2.

In Fig. 6.13 we show real and imaginary parts of the interaction potential
Kφa0 for fit 2 and both BS and N/D sets. In the region of

√
s = 1.6−2.2 GeV,

where |Tφa0 |2 has a peak in the N/D case, the imaginary parts corresponding
to BS and N/D are quite similar. Instead, the real part for the N/D choice
is positive (attractive) in the hole energy range of interest and larger than
the BS real part, which even turns negative (repulsive) at

√
s < 1.77 GeV.

♯7The N/D study of Ref.[90] is a more elaborated model than that of Ref.[158].
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This explains the large differences observed in |Tφa0 |2. One should stress that
Kφa0 has an imaginary part due to a number of reasons: the finite a0(980)
width, responsible for the imaginary part of the a0(980) pole position, the
fact that γ2

KK̄
is complex, and also the imaginary part of G1(M

2
a0). Actually,

Kφa0 should be interpreted as an optical potential.♯8

The a0(980) pole position has been used as a complex value for the Ma0

mass. It is instructive to calculate the amplitude squared taking instead a
convolution over the a0(980) mass distribution according to its width, so that
a real mass for the a0(980) is always used in Gφa0 , which then has its cut
along the real axis above threshold as required for two-body unitarity with
real masses. Namely, we calculate:

|Tφa0 |2conv(s) =
1

N

∫ Re (Ma0 )+δ

Re (Ma0)−δ

dW
Im (Ma0)

{W − Re (Ma0)}2 + Im (Ma0)
2
|Tφa0(s,Ma0 ,W )|2

(6.69)
With Tφa0(s,Ma0 ,W ) defined as:

Tφa0(s,Ma0 ,W ) =
Kφa0(s,Ma0)

1 +Kφa0(s,Ma0)Ga0f0(s,W )
(6.70)

And the normalization:

N =

∫ Re [Ma0 ]+δ

Re [Ma0 ]−δ

dW
Im [Ma0 ]

(W − Re [Ma0 ])
2 + Im [Ma0 ]

2
(6.71)

In the previous equations Re (Ma0) and Im (Ma0) are the real and imagi-
nary part taken always positive of the a0(980) pole position. The integration
interval around the maximum of the distribution, characterized by δ, should
be enough to cover the region where the a0(980) strength is concentrated. In
Fig. 6.14 we compare the results obtained in this way with those obtained
from Eq.(6.67) at a fixed complex Ma0 . This is done for fit 2, both BS and
N/D parameters and using δ = 5Im (Ma0). Only small differences arise in the
high of the peak so that one can conclude that the two approaches produce
the same qualitative features as one would expect on physical reasons.

♯8To ensure a continuous limit to zero a0(980) width, one has to evaluate Kφa0
at

the a0(980) pole position with positive imaginary part so that k2 → Re [Ma0
]2 + iǫ, in

agreement with Eq.(6.61). Instead, in Gφa0
Ma0

should appear with a negative imaginary
part to guarantee that, in the zero-width limit, the sign of the imaginary part is the same
dictated by the iǫ prescription of Eq.(6.68). Such analytical extrapolations in the masses
of external particles are discussed in Refs.[174, 175, 176].
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Figure 6.15: (Color online). e+e− → φ(1020)π0η cross section in the a0(980)
region (Mπη ∈ [0.85, 1.10] GeV). The dotted line in both plots is the result of
Ref.[160] where final state φ(1020)a0(980) re-scattering was not considered. The
rest of the lines include FSI according to Eq. (6.72) for the sets of parameters given
in Tables 6.2, 6.3.

• φ(1020) a0(980) scattering corrections to e+e− → φ(1020)π0η

The findings described above have direct implications for the e+e− →
φ(1020)π0η reaction with the π0η invariant mass in the a0(980) mass re-
gion.♯9 This process has been investigated in Ref.[160] where the presence
of the a0(980) is properly taken into account by replacing the lowest order
KK̄ → πη tree level vertex from L2, Eq.(6.1), by the unitarized amplitude of
Ref.[158]. However, the corrections due φ(1020)a0(980) re-scattering (FSI)
were not included. Here we consider the impact of these FSI on the total
e+e− → φ(1020)π0η cross section using the previously derived φ(1020)a0(980)
amplitude. Under the assumption that the e+e− → φ(1020)π0η reaction is
dominated by the φ(1020)a0(980) channel, the cross section after FSI can be
cast as [41, 168, 172]:

σFSI = σ0

∣∣∣∣∣
1

1 +Kφa0(s)Gφa0(s)

∣∣∣∣∣

2

(6.72)

♯9Here, for simplicity, we identify the η8 state with the physical η particle, neglecting
η8 − η1 mixing as done in Refs.[158, 90] which have been employed to obtain the meson-
meson scattering amplitudes in the a0(980) channel.
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We take σ0 from Ref.[160] (Fig. 5), which was obtained by integrating the
πη invariant mass Mπη in the a0(980) region (850-1100 MeV) so that our
assumption of φa0 dominance is justified. The results are shown in Fig. 6.15
for the different parameter sets. We find considerable FSI corrections. In
particular, for Fit 1 the reduction of the cross section is large, even a factor
five at some energies. With the BS choice, the cross section does not exhibit
any structure, it just decreases faster after the maximum compared to the
one without FSI. Instead, for the N/D set a peak (quite prominent for fit 2)
is observed at

√
s ∼ 2.03 GeV. These results clearly show the interest of

measuring experimentally the πη invariant mass distribution so as to confirm
the existence of this new isovector JPC = 1−− resonance that would be
observed as a clear peak in data. The existence of this resonance is favored
by our results since it appears when the N/D [90] a0(980) properties are used.

6.4 Summary and conclusions

In this chapter we have studied the φ(1020)f0(980) and φ(1020)a0(980) S-
wave dynamics in the threshold region.

First, the φKK̄ scattering amplitude at tree level has been determined
from the chiral Lagrangians using minimal coupling. The re-scattering of
the two kaons in an I = 0, S-wave state gives rise to the f0(980) as a bound
state. The residue at the f0(980) double pole in the initial and final states is
used to determine the interaction potential between the resonances φ(1020)
and f0(980) without introducing new extra free parameters. Afterwards, the
φ(1020)f0(980) S-wave scattering amplitude is determined by resuming the
unitarity loops or right hand cut. Resonant peaks with mass and width in
agreement with those of the Y (2175) are obtained within the approach. In
addition, we are able to describe the e+e− → φ(1020)f0(980) experimental
data [144, 145, 148] in terms of the resulting φ(1020)f0(980) S-wave ampli-
tude using natural values of the coupling g2 and the subtraction constant a1.
The negative value of g2 is reasonable, viewed as a parameter that accounts
for the φK scattering above the K1(1400) resonance. The negative values
of a1 is characteristic of dynamically generated resonances. Nonetheless, the
a1 values required to obtain the Y (2175) resonance at the nominal mass of
2.18 GeV [145, 147] are larger in modulus than those obtained in our direct
fits to e+e− → φ(1020)f0(980) data. The latter values fit better for interpret-
ing the Y (2175) as mainly a φ(1020)f0(980) dynamically generated resonance
while the former ones tend to indicate some extra (preexisting) contribution.
Taking into account both possibilities, our results suggest that the Y (2185)
is a resonant with at least a large φ(1020)f0(980) component.

164



6.4. Summary and conclusions

Later, we studied the I = 1 S-wave φ(1020)a0(980) dynamics around
threshold paying special attention to the possible dynamical generation of
an isovector JPC = 1−− scalar resonance. Following the approach of Sec.
6.2, where the related isoscalar S-wave φ(1020)f0(980) scattering was in-
vestigated, we first considered the scattering of a φ(1020) resonance with
a pair of light pseudoscalar mesons at tree level using chiral Lagrangians
coupled to vector mesons by minimal coupling. The re-scattering of the
two pseudoscalars in I = 1 and S-wave generates dynamically the a0(980).
We have used the information about this state (pole position and residue
in the KK̄ channel) from two different studies of meson-meson scattering
in coupled channels for determining the φ(1020)a0(980) scattering potential
without introducing new extra free parameters. Afterwards the full ampli-
tude is obtained by resummation of the φ(1020)a0(980) loops. The parameter
g2, characterizing φ(1020)K scattering at threshold, and the φa0 subtraction
constant a1 are obtained from two different fits to e+e− → φ(1020)f0(980)
BABAR [145] and Belle [148] data. We find that if the physical a0(1980)
properties correspond to those extracted with the N/D method in Ref.[90]
(see Table 6.2), the present model predicts a resonance of dynamical origin
around 1.8-2 GeV. A broader resonance is also generated when the a0(980)
pole position and couplings are taken from Ref.[158] if the strength of the
local term in the φ(1020)a0(980) interaction kernel is reduced.

Furthermore, we have determined the φ(1020)a0(980) final state inter-
actions that strongly modify the cross section for the reaction e+e− →
φ(1020)π0η when the π0η invariant mass is in the a0(980) region. If the
a0(980) properties from the N/D method are taken, a strong clearly visible
peak around 2.03 GeV is observed, signaling the presence of the dynami-
cally generated isovector 1−− resonance. For the other a0(980) pole taken
from Ref.[158] no peak is generated but a strong reduction of the cross-
section takes place. These results further support the idea that a study of
the e+e− → φ(1020)a0(980), which should be accessible at present e+e− fac-
tories [144, 147, 148], may provide novel relevant information about hadronic
structure and interaction in the 2 GeV region.
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Chapter 7
Summary and Outlook

In this thesis we deal first with the problem of describing the πN scattering
process in the low-energy domain. This is a fundamental problem which gives
access to many open questions in physics since, at low energies, allows to test
the chiral dynamics of QCD in the one nucleon sector, and is essential for ab
initio calculations of the nuclear structure. Moreover, it also allows to study
the effects of isospin violation in nuclear phenomena. On the other hand, at
higher energies πN provides a way to explore the baryonic spectrum of QCD
and nucleon resonances. However, from the theoretical point of view, there
are open questions not satisfactorily answered yet, as the exact value of the
pion-nucleon coupling constant (gπN) or the value of the pion-nucleon sigma
term (σπN). The latter is specially important for the understanding of the
internal scalar structure of the ordinary matter and has direct applications
in the calculations of QCD phase diagrams, nuclear matter approaches and
direct detection of dark matter.

At low energies, πN scattering can be studied within Chiral Perturbation
Theory, which takes into account the spontaneously broken chiral symmetry
that rules the low energy interaction of the Goldstone boson (identified with
the pions in the SU(2) sector) with the nucleon, including the symmetry
breaking terms due to the non-vanishing mass of the light quarks. But,
despite the numerous efforts made in this direction, we had not a satisfactory
chiral representation of the πN scattering amplitude valid in the low-energy
domain that allow us to extract reliably the relevant information mentioned
above.

In Chapter 4 we present the results of Ref.[21], where we studied the πN
scattering within the IR scheme. In this research we found that, although IR
described the physical region better than a previous work showed [43], this
method gives rise to an unphysically large value for the Goldberger-Treiman
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relation [21], confirming the result of [43] for this quantity. This could have
been a serious problem for ChPT with baryons since a so large deviation from
the exact Goldberger-Treiman relation could indicate a breaking in the con-
vergence pattern. Another important question not studied before in ChPT
is the behavior of the SU(2) kernel of under unitarization techniques. Such
techniques can be of special interest in the SU(3) strangeness −1 sector,
where the existence of the Λ(1405) under the K̄N threshold needs the appli-
cation of nonperturbative techniques. Our result show that unitarized ChPT
allows to extend the range of validity of the IR-BChPT amplitude but, due
to the unphysical cuts introduced by the IR method, the high energy descrip-
tion of the phase shifts is very limited. From these results we conclude that
the IR method is not appropriate to study the SU(3) sector.

However, in Chapter 5 we overcome the previous difficulties found within
the IR method by applying the EOMS scheme. As explained in this chap-
ter, this scheme allows us to solve the power counting problem of BChPT
without altering the analytical properties of a covariant calculation. First,
it is observed that EOMS reproduce the phase shifts better than IR. More
importantly, within this scheme we obtain a value for the GT deviation com-
patible with theoretical and experimental bounds, solving the problem that
IR has with this quantity and leaving clear that it was an intrinsic problem of
IR, not a convergence problem of BChPT. We also included the contribution
of the resonance up to O(q3) in the δ counting and achieved an excellent
description of the phase shifts up to energies of

√
s = 1.20 GeV (just below

the resonance region). By extrapolating our amplitudes to the subthreshold
region we checked that the EOMS-BChPT fitted in the physical low-energy
region including the ∆(1232)-resonance also achieves a good convergence in
the subthreshold region, being able to reproduce subthreshold quantities ob-
tained previously by dispersive approaches. This is a remarkable result since
after the IR analysis of Ref.[19] it was though that BChPT could not connect
both regions. The good convergence also allowed us to extract a reliable and
accurate value of the pion-nucleon sigma term. Based in modern pion-factory
data we obtain σπN = 59(7) MeV. We also discuss the impact of this result on
the estimation of the strangeness content of the nucleon and nuclear matter
approaches, showing that relatively large value of σπN is not at odds with the
established phenomenology. On the other hand, we studied the application
of unitarization techniques on the EOMS kernel and observed a remarkable
improvement compared with the IR results. This is due to the good ana-
lytical properties of a covariant calculation that are preserved by the EOMS
scheme.

The main conclusion of these researches is that only EOMS provides a
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representation of the chiral amplitude consistent with the standard power
counting of ChPT that preserves the good analytical properties of a rela-
tivistic calculation. In addition, with the inclusion of the ∆(1232) as an
explicit degree of freedom, it achieves the best convergence in the low-energy
region (below the ∆(1232) region, including the subthreshold one). This
representation allowed us to extract a reliable value of σπN from PWAs.

However, since our result relies on the PWAs, the next step for this SU(2)
calculation will be the extraction of these information directly from cross
section data. For this task, it will be necessary to include consistently the
isospin breaking effects due to electromagnetism and the quark mass differ-
ences. This would allow us to check our extracted value for σπN and provide
the community with an independent PWA based on a effective field theory
analysis. On the other hand, it will be of special interest the application of
the methodology described in Chapter 5 to the study of pion photoproduction
experiments, currently running at MAMI, JLab and ELSA.

The immediate extension of this work will be to the SU(3) sector, where
the convergence of the chiral series is expected to be worse. First, we will use
the result obtained for σπN to obtain an estimation of the strangeness content
of the nucleon σs including the effects of the decuplet resonances. Second, we
will calculate the SU(3) meson-baryon scattering in EOMS-BChPT. There,
the good analytical properties of this scheme could make a difference respect
to previous ChPT works. Surely this will manifest in the strangeness −1
sector, where unitarization methods become indispensable due to the pres-
ence of bound states below the threshold. The SU(3) kernel obtained could
be directly applied to the study of strangeness photoproduction experiments
running at MAMI, JLab and ELSA, by means of the chiral unitary approach.

On the other hand, the phenomenological approach followed in Chap-
ter 6 allowed us to study the nature of the Y (2175). We showed that the
properties of this resonance can be well described by a φ(1020)f0(980) res-
onant state. In fact, the values obtained for our free parameters indicates
that the Y (2175)-resonance has, at least, a large φ(1020)f0(980) component.
These values allowed us to investigate the possibility of an isovector com-
panion of the Y (2175). This was done by studying the φ(1020)a0(980) final
state interaction that modify the e+e− → φ(1020)π0η when the π0η invari-
ant mass is in the a0(980) region. We concluded that, for some values of the
free parameters, the presence of an isovector companion for the Y (2175) is
revealed. The next step of this research will be the study of the reaction
e+e− → φ(1020)K+K− within unitary chiral perturbation theory.
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Appendix A
The Goldstone Theorem∗

In this section we will show the Goldstone theorem for the relativistic, infinite
degrees of freedom case. The Goldstone theorem states that when a conti-
nuous global symmetry is spontaneously broken♯1 then appear new massless♯2

scalar particles in the spectrum that have the same quantum numbers than
the generators associated to the charges that do not preserve the ground
state. Those particles are called Goldstone bosons.

Consider a Lagrangian which is invariant under the transformation of the
group G and let A an observable not invariant under the broken symmetry
generators. We consider the commutator evaluated in the ground state |0〉:

〈0| [Jµ(y), A(x)] |0〉 =
∑

N

(〈0|Jµ(y)|N〉〈N |A(x)|0〉 − 〈0|A(x)|N〉〈N |Jµ(y)|0〉) =

=
∑

N

(〈0|Jµ(0)|N〉〈N |A(0)|0〉e−ipN(y−x) − 〈0|A(0)|N〉〈N |Jµ(0)|0〉e−ipN(x−y)) =

=
i

(2π)3

∫
d4p
[
ρµN(p)e

−ip(y−x) − ρ̃µN (p)e
−ip(x−y)

]
(A.1)

Where an spectral resolution of the identity was inserted in the first line
and the fact that the four-momentum operator is the generator of the space-
time translations was used in the second line. The spectral functions ρ and
ρ̃ are defined as follows:

∗We follow here the proof provided by Weinberg in [48].
♯1Spontaneously broken means that the Noether currents of the symmetry are conserved

but the ground state is not invariant under the action of all the charges associated to that
currents.

♯2If the symmetry is exact. If not, they acquire a mass.
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ρµN(p) = −i(2π)3
∑

N

〈0|Jµ(0)|N〉〈N |A(0)|0〉δ(4)(p− pN) (A.2)

ρ̃µN(p) = −i(2π)3
∑

N

〈0|A(0)|N〉〈N |Jµ(0)|0〉δ(4)(p− pN) (A.3)

Due to Lorentz covariance and that p0N ≥ 0 (because pN represent the
four-momentum of the physical state N), we can state that:

ρµN (p) = pµρN(p
2)θ(p0) (A.4)

ρ̃µN (p) = pµρ̃N(p
2)θ(p0) (A.5)

So, we have:

〈0| [Jµ(y), A(x)] |0〉 =
i

(2π)3

∫
d4p
[
pµρN (p

2)θ(p0)e−ip(y−x) − pµρ̃N (p
2)θ(p0)e−ip(x−y)

]
=

1

(2π)3
∂

∂yµ

∫
d4p
[
ρN(p

2)θ(p0)e−ip(y−x) + ρ̃N(p
2)θ(p0)e−ip(x−y)

]
(A.6)

Writing ρN (p
2) =

∫
dµ2δ(p2−µ2)ρN (µ

2) and ρ̃N (p
2) =

∫
dµ2δ(p2−µ2)ρ̃N(µ

2),
and introducing it into (A.6):

〈0| [Jµ(y), A(x)] |0〉 = 1

(2π)3
∂

∂yµ

∫
dµ2
[
ρN (µ

2)

∫
d4p θ(p0)e−ip(y−x)δ(p2 − µ2)

︸ ︷︷ ︸
(2π)3∆+(y−x;µ2)

+

+ ρ̃N (µ
2)

∫
d4p θ(p0)e−ip(x−y)δ(p2 − µ2)

︸ ︷︷ ︸
(2π)3∆+(x−y;µ2)

]
(A.7)

Lorentz invariance only allow ∆+(z;µ
2) to depend on z2, µ2 and θ(z0) for

z timelike and, for z spacelike, only depends on z2 and µ2. So, for a spacelike
dependence ∆+(y − x;µ2) = ∆+(x − y;µ2). Microcausality involves that
the commutator of two operators spacelike separated vanishes, so for (y− x)
spacelike, we have:

0 = 〈0| [Jµ(y), A(x)] |0〉 = ∂

∂yµ

∫
dµ2
[
ρN(µ

2) + ρ̃N (µ
2)
]
∆+(y − x;µ2)

(A.8)
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And we can conclude that ρN (µ
2) = −ρ̃N (µ2) (note that this relation does

not depend on the spacetime separation x − y). So we can write, without
loss of generality:

〈0| [Jµ(y), A(x)] |0〉 = ∂

∂yµ

∫
dµ2ρN (µ

2)
[
∆+(y − x;µ2)−∆+(x− y;µ2)

]

(A.9)

Because Jµ is a conserved current, ∂µJ
µ(y) = 0, and applying this to the

commutator:

0 = 〈0|
[
∂Jµ(y)

∂yµ
, A(x)

]
|0〉 = ✷y

∫
dµ2ρN (µ

2)
[
∆+(y − x;µ2)−∆+(x− y;µ2)

]

= −
∫
dµ2µ2ρN (µ

2)
[
∆+(y − x;µ2)−∆+(x− y;µ2)

]
(A.10)

Where in the last line we have made use that ∆+(y;µ
2) satisfies the

equation (✷y + µ2)∆+(y − x;µ2) = 0.
For a timelike separation ∆+(z;µ

2) is not even and we have in this case,
from (A.10):

µ2ρN(µ
2) = 0 (A.11)

We could conclude prematurely that ρN (µ
2) vanishes for all µ2, but for

a broken symmetry this is not possible. To illustrate that, we can consider
(A.9) and take the temporal component. After taking the derivative, it
results at equal times:

〈0|
[
J0(~y, t), A(~x, t)

]
|0〉 =

−2i

(2π)3

∫
dµ2ρN (µ

2)
[ ∫

d4p
√
~p 2 + µ2δ(p2 − µ2)ei~p·(~y−~x)θ(p0)

]
(A.12)

Performing the integral in p:

〈0|
[
J0(~y, t), A(~x, t)

]
|0〉 = −iδ(~y − ~x)

∫
dµ2ρN(µ

2) (A.13)

Integrating in the ~y variable, we obtain the charge in the commutator,
and from the previous equation we obtain:
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〈0| [Q(t), A(~x, t)] |0〉 = −i
∫
dµ2ρN (µ

2) 6= 0 (A.14)

The previous equation cannot vanish because the symmetry is broken.
Equations (A.11) and (A.14) can only be reconciled if:

ρN(µ
2) = iδ(µ2)〈0| [Q(t), A(~x, t)] |0〉♯3 (A.15)

And pointing out that 〈N |A(0)|0〉 is rotationally invariant and must va-
nish for any state N which has non-zero helicity, and that 〈0|J0(0)|N〉 van-
ishes for any state N that has different intrinsic parity or internal quantum
numbers from J0, we can conclude that for every generator that does not leave
invariant the ground state, we have in the spectrum a massless particle with
spin zero and the same parity and quantum numbers than the corresponding
generator. These particles are called Goldstone bosons.♯4

♯3The term proportional to δ(µ2) only arises in a theory that has massless particles
because otherwise the spectrum of center-of-mass squared energies p2N would not extend
down to zero.

♯4The above argument breaks down when the spontaneously broken symmetry is a local
rather than a global symmetry.
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Appendix B
Generalization of IR

The procedure explained in Chapter 4 can be extended to scalar integrals
with more mesonic and baryonic propagators by combining all of each type
into one unique propagator. This can be done by using the next trick [97]:

1

a1 . . . am
=

(
− ∂

∂M2

)(m−1) ∫ 1

0

dx1 . . .

∫ 1

0

dxm−1
X

A

Where the ai (i = 1, . . . , m) correspond to m mesonic propagators of
mass M2 and internal momenta k − Pi. On the other hand, the numerator
is given by:

If m = 2 : X = 1 (B.1)

If m > 2 : X = x2(x3)
2 . . . (xm−1)

m−2 (B.2)

And the denominator is obtained recursively for:

Ap+1 = xpAp + (1− xp)ap+1 (p = 1, . . . , m− 1) (B.3)

A1 = a1, A = Am (B.4)

Where the result for A is always quadratic in k, obtaining an expression
with the next shape:

A = Ā− (k − q̄)2 − iǫ (B.5)

Here the Ā term is of O(q2), while q̄ represents a linear combination of
external momenta and is of O(q).
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For several baryonic propagators we can use the same strategy, obtaining
a denominator of the form:

B = B̄ − (P̄ − k)2 − iǫ (B.6)

With P̄ 2 = m2 +O(q), B̄ = m2 +O(q).
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Appendix C
Tree Level Calculations

In this Appendix we show the results concerning the tree level calculation
of πN scattering. The Born-terms, which are expressed in terms of the
Mandelstam variables s and u, include also their crossed version.

C.1 O(q)

• Born-term:

A+(s, t, u) =
g2(m2 +mN )

4f 2

[
s−m2

N

s−m2
2

+
u−m2

N

u−m2
2

]

B+(s, t, u) = − g2

4f 2

[
(s+ 2m2mN +m2

N)

(s−m2
2)

− (u+ 2m2mN +m2
N)

(u−m2
2)

]

A−(s, t, u) =
g2(m2 +mN )

4f 2

[
s−m2

N

s−m2
2

− u−m2
N

u−m2
2

]

B−(s, t, u) = − g2

4f 2

[
(s+ 2m2mN +m2

N)

(s−m2
2)

+
(u+ 2m2mN +m2

N )

(u−m2
2)

]

Where m2 ≡ m − 4c1M
2 includes the O(q2) correction to the nucleon

mass.

• Contact term:

A+(s, t, u) = B+(s, t, u) = A−(s, t, u) = 0

B−(s, t, u) =
1

2f 2
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C.2 O(q2)

• Contact term:

A+(s, t, u) =
1

f 2
π

[
−4c1M

2
π +

c2(s− u)2

8m2
N

+ c3(2M
2
π − t)

]
+O(q4)

B+(s, t, u) = 0

A−(s, t, u) = −c4(s− u)

2f 2
π

B−(s, t, u) =
2c4mN

f 2
π

C.3 O(q3)

• Born-term:

A+(s, t, u) =
4g(2d16 − d18)mNM

2
π

f 2
π

B+(s, t, u) =
4g(2d16 − d18)m

2
NM

2
π(s− u)

f 2
π(s−m2

N )(u−m2
N )

A−(s, t, u) = 0

B−(s, t, u) =
2g(2d16 − d18)M

2
π(3m

4
N − su−m2

N (s+ u))

f 2
π(s−m2

N)(u−m2
N )

• Contact term:

A+(s, t, u) = −(d14 − d15)(s− u)2

4mNf 2
π

+O(q4)

B+(s, t, u) =
(d14 − d15)(s− u)

f 2
π

+O(q3)

A−(s, t, u) =
s− u

2mNf 2
π

[
2(d1 + d2 + 2d5)M

2
π − (d1 + d2)t+ 2d3(s− u)2

]
+O(q5)

B−(s, t, u) = 0
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C.4 The ∆(1232) contribution

The Born-term with the exchange of a ∆(1232)-resonance ∆(1232)is the only
contribution to the πN scattering amplitude that we need to include up to
O(q3). In Fig. C.1 we show the O(q3/2) contribution of the ∆(1232) to the
πN amplitude:

∆

π

N N

π

Figure C.1: Diagram corresponding to the insertion of the ∆ propagator (double

line) in the πN Born-term. The filled circles correspond to vertices of L(1)
∆Nπ.

For the s-channel exchange we have:

A±(s, t) = − h2A
4f 2

πm
2
∆

C±
I

1

s−m2
∆

(
m5

N − 2
(
M2

π + 2s
)
m3

N − 2m∆

(
M2

π + s
)
m2

N

+
(
M4

π − 4sM2
π + 3s(s+ t)

)
mN + 2m∆

(
m2

π − s
)2

+ 3m∆st
)

B±(s, t) = − h2A
4f 2

πm
2
∆

C±
I

1

s−m2
∆

(
m4

N − 2
(
M2

π + 3s
)
m2

N

−2m∆

(
m2

N −M2
π + s

)
mN +

(
M2

π − s
)2

+ 3st
)

(C.1)

With C+
I = 1/9 and C−

I = −1/18. For the full result one should also
add the ∆(1232) u-channel exchange that can be easily obtained from the
previous equation by crossing. The general rule is given in Appendix D.3.

At O(q5/2), we have the following corrections to the Born-term contribu-
tion in the s-channel (Fig. C.2):

A±
2 (s, t) =

hA
2f 2

πm
2
∆

C±
I

FA(s, t)

s−m2
∆

B±
2 (s, t) =

hA
2f 2

πm
2
∆

C±
I

FB(s, t)

s−m2
∆

(C.2)
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∆

π

N N

π

Figure C.2: Diagram corresponding to the insertion of the ∆ propagator (double

line) in the πN Born-term. The filled squares correspond to vertices of L(2)
∆Nπ.

With:

FA(s, t) =
1

6m∆

(
d∆4
(
m2

N −M2
π − s

) (
m5

N − 2
(
M2

π + 2s
)
m3

N

−2m∆

(
M2

π + s
)
m2

N +
(
M4

π − 4sM2
π + 3s(s+ t)

)
mN + 2m∆

(
M2

π − s
)2

+3stm∆) + 2d∆3 m∆

(
−m6

N + 2
(
M2

π + 2s
)
m4

N −
(
M4

π − 2sM2
π

+s(5s+ 3t))m2
N +m∆

((
m2

N − s
)2 −M4

π

)
mN + s

(
2
(
M2

π − s
)2

+ 3st
)))

FB(s, t) =
1

6m∆

(
d∆4
(
m2

N −M2
π − s

) (
m4

N − 2
(
M2

π + 3s
)
m2

N

−2m∆

(
m2

N −m2
π + s

)
mN +

(
M2

π − s
)2

+ 3st
)
+ 2d∆3 m∆

(
m∆

(
3m4

N

−4
(
m2

π + s
)
m2

N +
(
M2

π − s
)2

+ 3st
)
−mN

(
m4

N − 2
(
M2

π + 2s
)
m2

N

+M4
π − 4m2

πs+ 3s(s+ t)
)))

With the new contributions, there are two new constants to fit, d∆3 and
d∆4 . In the HB limit these two constants seem to have the same contribu-
tion and what matters is a combination of both. These contributions are
subleading, scale as Eπ at low-energies and are suppressed by one factor of
M2

π in the subthreshold region as compared with the leading contribution.
However, it could have more important contributions for higher energies.
What we observe in our fits up to

√
smax = 1.20 GeV is that these constants

gives very small values compatible with zero (within errors) so, in order to
reduce the correlations and the number of free parameters we decided to set
d∆3 = d∆4 = 0.
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Appendix D
Loop Level Calculations

In this section we list the scalars and tensor integrals needed for the one-
loop calculations performed in this thesis. These integrals, calculated in
dimensional regularization, are denoted by Hmn, where the subscripts m and
n correspond to the number of mesonic and baryonic propagators, in order,
that each integral has.

We will use the following variables:

Σµ = (P + q)µ = (P ′ + q′)µ

∆µ = (q′ − q)µ = (P − P ′)µ

Qµ = (P ′ + P )µ

Were P (P ′) corresponds to the incoming (outgoing) nucleon and q (q′)
to the incoming (outgoing) pion, so P 2 = P ′2 = m2

N and q2 = q′2 =M2
π .

We also give explicit expressions for some scalar integrals that are needed
in Chapter 5.

D.1 Definitions

• 1 meson, 0 nucleons:

H10 =
1

i

∫
ddk

(2π)d
1

M2 − k2

H10 = 2λ̄M2 +
M2

16π2
log

(
M2

µ2

)
(D.1)
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D.1. Definitions

• 0 mesons, 1 nucleon:

H01 =
1

i

∫
ddk

(2π)d
1

m2 − k2

H01 = 2λ̄m2 +
m2

16π2
log

(
m2

µ2

)
(D.2)

• 2 mesons, 0 nucleon:

{H20,Hµ
20} =

1

i

∫
ddk

(2π)d
{1, kµ}

(M2 − k2)(M2 − (k −∆)2)

Hµ
20 =

∆µ

2
H20(t)

Hµν
20 = (∆µ∆ν − gµν∆2)H(1)

20 (t) + ∆µ∆νH(2)
20 (t)

• 1 meson, 1 nucleon:

{H11,Hµ
11} =

1

i

∫
ddk

(2π)d
{1, kµ}

(M2 − k2)(m2 − (P − k)2)

H11(P
2) = −2λ̄ +

1

16π2

{
1 + log

(
µ2

m2

)
− P 2 −m2 +M2

2P 2
log

(
M2

m2

)

+

√
4M2P 2 − (P 2 −m2 +M2)2

P 2

×
[
arctan

(
m2 −M2 − P 2

√
4M2P 2 − (P 2 −m2 +M2)2

)

− arctan

(
m2 −M2 + P 2

√
4M2P 2 − (P 2 −m2 +M2)2

)]}
(D.3)

Hµ
11 = P µH(1)

11 (P
2)

• 0 mesons, 2 nucleons:

H02 =
1

i

∫
ddk

(2π)d
1

(m2 − k2)(m2 − (k −∆)2)
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D.1. Definitions

• 2 mesons, 1 nucleon:

{H21,Hµ
21,Hµν

21 } =
1

i

∫
ddk

(2π)d
{1, kµ, kµν}

(M2 − k2)(M2 − (k −∆)2)(m2 − (P − k)2)

Hµ
21 = QµH(1)

21 (t) +
1

2
∆µH21(t)

Hµν
21 = gµνH(2)

21 (t) +QµQνH(3)
21 (t) + ∆µ∆νH(4)

21 (t) +
1

2
(∆µQν +Qµ∆ν)H(1)

21 (t)

• 1 meson, 2 nucleon:

{H12,Hµ
12,Hµν

12 } =
1

i

∫
ddk

(2π)d
{1, kµ, kµν}

(M2 − k2)(m2 − (P1 − k)2)(m2 − (P2 − k)2)

For the topologies displayed in Fig. 3.2, one of the momenta is always
on-shell. Choosing this momentum to be P1, we have for the diagram (m):
P1 = P and P2 = P ′. This case defines the integral HA(t) as follows:

HA(t) = H12(m
2
N , t)

For this case, the tensor decomposition is defined as:

Hµ
A(t) = QµH(1)

A (t)

Hµν
A (t) = gµνH(2)

A (t) +QµQνH(3)
A (t) + ∆µ∆νH(4)

A (t)

For the diagrams (c), (d), (g) and (h) we have instead P1 = P and
P2 = P + q. This case defines the integral HB(s) as follows:

HB(s) = H12(s,M
2
π)

For this case, the tensor decomposition is defined as:

Hµ
B = QµH(1)

B (s) + ∆µH(2)
B (s)
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D.1. Definitions

• 0 mesons, 3 nucleon:

H03 =
1

i

∫
ddk

(2π)d
1

(m2 − k2)(m2 − (k − P1)2)(m2 − (k − P2)2

This integral can appear in two different configurations. In the first one
P1 = q and P2 = q′, which is labeled in Secs. D.2 and D.3 as H03(t,M

2). For
this case its dependence on the t variable comes from the combination (P1 −
P2)

2. For the second configuration, however, the t dependence comes from
P 2
2 , because in this second case P1 = q and P2 = q − q′. This configuration

is labeled in Secs. D.2 and D.3 as H03(M
2, t).

• 1 meson, 3 nucleon:

{H13,Hµ
13} =

1

i

∫
ddk

(2π)d
{1, kµ}

(M2 − k2)(m2 − (P − k)2)(m2 − (Σ− k)2)(m2 − (P ′ − k)2)

Hµ
13(s, t) = QµH(1)

13 (s, t) + (∆ + 2q)µH(2)
13 (s, t)
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D.2. Coefficients of the Passarino-Veltman
Decomposition

D.2 Coefficients of the Passarino-Veltman

Decomposition

H(1)
11 (s) =

1

2s

[
(s−m2 +M2)H11(s) +H10 −H01

]
(D.4)

H(1)
A (t) =

H11(m
2) +M2HA(t)−H02(t)

4m2 − t

H(2)
A (t) =

2M2H11(m
2) + 2M2(M2 − 4m2 + t)HA(t)− (2M2 − 4m2 + t)H02(t)

2(2− d)(4m2 − t)

H(3)
A (t) =

M2((1− d)M2 + 4m2 − t)HA(t) + (1− d)M2H11(m
2)

(2− d)(4m2 − t)2

− (2(1− d)M2 + (3− d)(4m2 − t))H02(t)

2(2− d)(4m2 − t)2
+
M2H11(m

2) +H10 −H01

4m2(4m2 − t)

H(1)
B (s) =

1

2(M4 + (m2 − s)2 − 2M2(m2 + s))

[
(s−m2 +M2)((s−m2 − 2M2)HB(s)

−H11(s)) + (s−m2 −M2)H11(m
2) + 2M2H02(M

2)
]

H(2)
B (s) =

1

2(M4 + (m2 − s)2 − 2M2(m2 + s))

[
(s−m2)(s+ 3m2 − 3M2)HB(s)

+ (M2 −m2 − 3s)H11(s) + (s+ 3m2 −M2)H11(m
2)
]

+
2(s−m2)H02(M

2)

2(M4 + (m2 − s)2 − 2M2(m2 + s))

H(1)
21 (t) =

(2M2 − t)H21(t)− 2H11(m
2) + 2H20(t)

2(4m2 − t)

H(2)
21 (t) =

−2(M4 +m2(t− 4M2))H21(t) + 2(M2 − 2m2)H11(m
2) + (t− 2M2)H20(t)

2(d− 2)(4m2 − t)

H(3)
21 (t) =

(4(d− 1)M4 − 4M2((d− 2)t+ 4m2) + t((d− 2)t+ 4m2))H20(t)

4(d− 2)(t− 4m2)2

+
1

4(d− 2)m2(t− 4m2)2

[
((d− 2)(M2 + 2m2)t + 4(3− 2d)M2m2

+ 8m4)H11(m
2) + (d− 2)(4m2 − t)(H01 −H10)

]
− (d− 1)(t− 2M2)H20(t)

2(d− 2)(t− 4m2)2
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D.3. Results for the loop diagrams

H(1)
13 (s, t) =

1

4(M4 − 2M2(s+m2) +m2(m2 − 2s) + s(s+ t))

[
(4M2 + 2m2

− 2s− t)H13(s, t) + 2(m2 − s−M2)HB(s) + (2s+ t− 2m2 − 2M2)HA(t)
]

+
(4M2 − t)H03(M

2, t)

4(M4 − 2M2(s+m2) +m2(m2 − 2s) + s(s+ t))

H(2)
13 (s, t) =

1

4(M4 − 2M2(m2 + s) +m4 − 2m2s+ s(s+ t))

[(
M2(2s+ t− 2m2)

+ (m2 − s)(4m2 − t)− 2M4
)
H13(s, t) + (2s+ t− 2m2 − 2M2)H03(M

2, t)
]

+
2(s+m2 −M2)HB(s) + (t− 4m2)HA(t)

4(M4 − 2M2(m2 + s) +m4 − 2m2s+ s(s+ t))

D.3 Results for the loop diagrams

We list in this section the results concerning to the loop integrals. For the
diagrams a + b, c + d, e, f , g + h, i, n + o and p+ r only the direct version
is shown. To construct the full contribution of the mentioned diagrams is
necessary to add its crossed version according to the following rules [19]:

A±
TOTAL(s, t, u) = A±(s, t)± A±(u, t)

B±
TOTAL(s, t, u) = B±(s, t)∓ B±(u, t)

• Loops a+b

A+
a+b(s) =

g2m

2f 4

[
H01 +H10 + (s−m2 −M2)H11(s)− (s+m2)H(1)

11 (s)
]

B+
a+b(s) = − g2

8f 4

[
−4(3m2 + s)(H01 −M2H11(s))

m2 − s
+ 4(m2 + s)H11(s)

]

A−
a+b(s) = A+

a+b(s)

B−
a+b(s) = B+

a+b(s)
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D.3. Results for the loop diagrams

• Loops c+d

A+
c+d(s) =

g4m

8f 4(s−m2)

[
4m2H01 − 2(m2 + s)H10

+ 2(2m2(s−m2) +M2(m2 + s))H11(m
2)

− 2(s2 −m4 +M2(3m2 + s))H11(s)− 4m2(s +m2)H(1)
11 (m

2)

+ (m4 + 10m2s+ 5s2)H(1)
11 (s) + 4m2(m2(m2 − 2s) + s2)HB(s)

+8m2(m2 − s)(2(s+m2)−M2)
]

B+
c+d(s) =

g4

8f 4(m2 − s)

[
−(s+ 7m2)H01 + 4m2H10

+ 4m2(3m2 + s)H02(M
2) + 4m2M2H11(m

2) + (M2(s+ 3m2)

+ 4m2(s−m2))H11(s)− 8m4H(1)
11 (m

2)− (s2 + 6sm2 +m4)H(1)
11 (s)

− 4m2M2(s+ 3m2)HB(s) + 4m2(s−m2)2H(1)
B (s)

+4m2(m2 − s)(3m2 + s)H(2)
B (s)

]

A−
c+d(s) = A+

c+d(s)

B−
c+d(s) = B+

c+d(s)

• Loop e

A+
e (s) =

3g4m

16f 4(m2 − s)

[
2(s+ 3m2)H01 + 2(s−m2)H10

+2((s−m2)2 −M2(3m2 + s))H11(s)− (s−m2)2H(1)
11 (s)

]

B+
e (s) =

3g2

16f 4(m2 − s)2
[
(9m4 + 6m2s+ s2)H01 + 4m2(s−m2)H10

+(4m2(s−m2)2 −M2(3m2 + s)2)H11(s)− (m2 − s)3H(1)
11 (s)

]

A−
e (s) = A+

e (s)

B−
e (s) = B+

e (s)
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D.3. Results for the loop diagrams

• Loop f

A+
f (s) =

m(s−m2)H(1)
11 (s)

2f 4

B+
f (s) =

(4H01 −H10 − 4M2H11(s) + 4H(1)
11 (s))

8f 4

A−
f (s) =

A+
f (s)

2

B−
f (s) =

B+
f (s)

2

• Loops g+h

A+
g+h(s) =

g2m(s−m2)

2f 4

[
−2H11(s) +H(1)

11 (s) + 8m2H(1)
B (s)

]

B+
g+h(s) =

g2

4f 4

[
−2H01 +H10 + 8m2H02(M

2) + 2M2H11(s)− 2m2H(1)
11 (m

2)

−2(m2 + s)H(1)
11 (s)− 8M2m2HB(s)− 8m2(m2 − s)(H(1)

B (s)−H(2)
B (s))

]

A−
g+h(s) = 0

B−
g+h(s) = 0
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D.3. Results for the loop diagrams

• Loop i

A+
i (s, t) = −3g4m

16f 4

[
8m2(H02(M

2)−H02(t)) + 2(4m2 −M2)H11(m
2)

+ (m2 − s)H(1)
11 (s) + 2(M2 − (s+ 3m2))H11(s) + 32m4(m2 − s)H13(s, t)

+ 8m2M2HA(t)− 32m4H(1)
A (t) + 8m2(2s+ t− 2M2 − 2m2)H(3)

A (t)

− 8m2(M2 +m2 − s)HB(s) + 8m2(M2 + 3m2 + s)H(1)
B (s)

+8m2(M2 +m2 − s)H(2)
B (s)

]

B+
i (s, t) = − 3g4

16f 4

[
−H01 +H10 + 4m2(2H02(M

2) +H02(t)) + 16m4H03(t,M
2)

+ (M2 − 4m2)H11(s)− 4m2H(1)
11 (m

2) + (m2 − s)H(1)
11 (s) + 16m4M2H13(s, t)

+ 32m4(m2 − s)H(2)
13 (s, t)− 4m2M2HA(t) + 8m2H(2)

A (t)− 8m2M2HB(s)

+8m2(s+ 3m2)H(1)
B (s) + 8m2(m2 − s)H(2)

B (s)
]

A−
i (s, t) = −A

+
i (s, t)

3

B−
i (s, t) = −B

+
i (s, t)

3

• Loop k

A+
k (t) = 0

B+
k (t) = 0

A−
k (t) = 0

B−
k (t) =

tH20(t)

f 4
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D.3. Results for the loop diagrams

• Loop l

A+
l (t) =

g2m

2f 4

[
−2H01 + 2M2H11(m

2) + (M2 − 2t)(4m2H(1)
21 (t)−H20(t))

]

B+
l (t) = 0

A−
l (t) = −4g2m3

f 4
(s− u)H(3)

21 (t)

B−
l (t) = −g

2

f 4

[
4m2H(2)

21 (t) + tH(1)
20 (t)

]

• Loop m

A+
m(s, t, u) = 0

B+
m(s, t, u) = 0

A−
m(s, t, u) = −g

2m3

f 4
(s− u)H(3)

A (t)

B−
m(s, t, u) = − g2

8f 4

[
H10 − 4m2(H(1)

11 (m
2)−H02(t) +M2HA(t)− 2H(2)

A (t))
]

• Loops n+o

A+
n+o(s, t) =

g2m

f 4

[
H01 −M2H11(m

2)
]

B+
n+o(s, t) =

g2

4f 4

(7m2 + s)(H01 −M2H11(m
2))

(m2 − s)

A−
n+o(s, t) = A+

n+o(s, t)

B−
n+o(s, t) = B+

n+o(s, t)

• Loops p+r

A+
p+r(s, t) =

g2m

2f 4
H10

B+
p+r(s, t) =

g2

4f 4

(s+ 3m2)H10

m2 − s

A−
p+r(s, t) = A+

p+r(s, t)

B−
p+r(s, t) = B+

p+r(s, t)
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D.3. Results for the loop diagrams

• Loops t+u

A+
t+u(s, t) =

g2m

f 4
(H01 −M2H11(m

2))

B+
t+u(s, t) =

g2

2f 4
(H01 −M2H11(m

2))

A−
t+u(s, t) = 0

B−
t+u(s, t) = 0

• Loop v

A+
v (s, t) = 0

B+
v (s, t) = 0

A−
v (s, t) = 0

B−
v (s, t) =

5

8f 4
H10
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Appendix E
Identifying the power counting
breaking terms

In this Appendix we explain the method used to extract analytically the
power counting breaking terms from the O(q3) loop amplitude (Tloops). First,
as we did with the full amplitude, we decompose Tloops in terms of its scalar
integrals using the Passarino-Veltman decomposition.

Tloops =
∑

mn

CmnHmn (E.1)

Where the scalar integrals Hmn are defined in Appendix D and Cmn refers
to the coefficients that result in the decomposition process. Second, we cal-
culate the infrared regular part [97] of these scalar integrals (Rmn), because
the PCBT arise from that part in the final amplitude. Its calculation, for
each of the scalar integrals used here, is straightforward because the chiral
expansion and the integration in the Feynman parameters commutes [177].
The chiral order of each Cmn tell us up to which order in the chiral expansion
we need to retain the regular part of Hmn. So, it results:

T
(regular)
loops =

∑

mn

CmnRmn (E.2)

Finally, we only have to expand Eq.(E.2) in a chiral series, to end with
a string of terms that can be splitted into a part that has chiral order lower
than three (these are the PCBT) and an infinite series that respect the power
counting. The (finite) terms that break the power counting have the same
analytical structure than the monomials in the original Lagrangian and can
be cancelled via redefinition of LECs (see the next Appendix).
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Appendix F
Low-Energy Constants
Renormalization

In this appendix we show how to redefine the O(q2) and O(q3) LECs in order
to cancel the divergences, the scale-dependent pieces and the PCBT. In this
way we have full relativistic scale-independent chiral amplitudes free from
divergences that respect the chiral power counting.

F.1 O(q2) LECs

The O(q2) LECs are redefined in order to cancel both divergent parts, as
well as PCBT.

c1 → cEOMS
1 − 2λ̄

3g2m

8f 2
+

3g2m

128π2f 2
(1− log

(
m2

µ2

)
)

c2 → cEOMS
2 + 2λ̄

(g2 − 1)2m

2f 2
+

m

32π2f 2
[(g2 − 1)2 log

(
m2

µ2

)
− (2 + g4)]

c3 → cEOMS
3 + 2λ̄

(g4 − 6g2 + 1)m

4f 2
+

m

64π2f 2
[(g4 − 6g2 + 1) log

(
m2

µ2

)
+ 9g4]

c4 → cEOMS
4 + 2λ̄

(3g4 − 2g2 − 1)m

4f 2
+

m

64π2f 2
[(3g4 − 2g2 − 1) log

(
m2

µ2

)
− g2(5 + g2)]
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F.2. O(q3) LECs

F.2 O(q3) LECs

In contrast to the O(q2) LECs, the O(q3) ones only cancel divergent parts
(along with their scale-dependent logarithms) because at O(q3) the analytical
terms do not break the power counting in our calculation done up to O(q3).

The resulting LECs are renormalized within the M̃S scheme (also known as
MS − 1).

d1 + d2 → (d1 + d2)
M̃S + 2λ̄

3g4 − 4g2 + 1

48f 2
+

3g4 − 4g2 + 1

768π2f 2
log

(
m2

µ2

)

d5 → dM̃S
5 − 2λ̄

g2 + 8

48f 2
− g2 + 8

768π2f 2
log

(
m2

µ2

)

d14 − d15 → (d14 − d15)
M̃S + 2λ̄

(g2 − 1)2

4f 2
+

(g2 − 1)2

64π2f 2
log

(
m2

µ2

)

d16 → dM̃S
16 + 2λ̄

g(g2 − 1)

4f 2
+
g(g2 − 1)

64π2f 2
log

(
m2

µ2

)

196



Appendix G
Partial Wave Projections

We explain now how we computed Eq.(3.8) to extract the explicit expressions
for the partial wave projections. We reproduce Eq.(3.8) here again:

TJℓ(a
′, α′; a, α) =

1√
4π(2ℓ+ 1)(0σσ|ℓ1

2
J)

(G.1)

×
∑

m,σ′

∫
dp̂′ 〈π(−p′; a′)N(p′, σ′;α′)|T |π(−p; a)N(p, σ;α)〉(mσ′σ|ℓ1

2
J)Y m

ℓ (p̂′)∗

For the S-waves (ℓ = 0) we have J = ℓ± 1
2
= 1

2
. On the other hand, σ = 1

2

and m = 0♯1 so, because ℓ = 0 ⇒ m′ = 0, we have from the conservation of
the total angular momentum σ′ = 1

2
. That means that Eq.(G.1) reduces to:

T 1
2
0(a

′, α′; a, α) =
1√

4π(01
2
1
2
|01

2
1
2
)

×
∫
dp̂′ 〈π(−p′; a′)N(p′,

1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉(01

2

1

2
|01
2

1

2
)Y 0

0 (p̂
′)∗

=
1

4π

∫
dp̂′ 〈π(−p′; a′)N(p′,

1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉

Where the last equality comes from the fact that Y 0
0 (p̂

′)∗ = 1√
4π
.

For the P -waves (ℓ = 1) we have J = 1± 1
2
= 3

2
, 1
2
. On the other hand, we

have in this case the possibilities m′ = −1, 0, 1 and from the possible values
of the final state nucleon spin σ′ = ±1

2
, we obtain from the conservation of

the total angular momentum m′ = σ − σ′ = 0, 1.

♯1As pointed out in Sec.2 of Chapter 3, this is because Y m
ℓ (ẑ) 6= 0 only for m = 0.
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G Partial Wave Projections

For J = 1
2
:

T 1
2
1(a

′, α′; a, α) =
1√

12π(01
2
1
2
|11

2
1
2
)

(G.2)

×
{∫

dp̂′ 〈π(−p′; a′)N(p′,
1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉(01

2

1

2
|11
2

1

2
)Y 0

1 (p̂
′)∗

+

∫
dp̂′ 〈π(−p′; a′)N(p′,−1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉(1−1

2

1

2
|11
2

1

2
)Y 1

1 (p̂
′)∗
}

If we make use of the following spherical harmonics and Clebsch-Gordan
coefficients:

Y 0 ∗
1 (0, 0) =

√
3

4π
Y 0 ∗
1 (p̂) =

√
3

4π
cos θ Y 1 ∗

1 (p̂) = −
√

3

8π
sin θ e−iφ

(0
1

2

1

2
|11
2

1

2
) = − 1√

3
(1
−1

2

1

2
|11
2

1

2
) =

√
2

3

We obtain the following result for Eq.(G.2):

T 1
2
1(a

′, α′; a, α) =
1

4π

{∫
dp̂′ cos θ 〈π(−p′; a′)N(p′,

1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉

+

∫
dp̂′ sin θ e−iφ 〈π(−p′; a′)N(p′,−1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉

}

For J = 3
2
:

T 3
2
1(a

′, α′; a, α) =
1√

12π(01
2
1
2
|11

2
3
2
)

(G.3)

×
{∫

dp̂′ 〈π(−p′; a′)N(p′,
1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉(01

2

1

2
|11
2

3

2
)Y 0

1 (p̂
′)∗

+

∫
dp̂′ 〈π(−p′; a′)N(p′,−1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉(1−1

2

1

2
|11
2

3

2
)Y 1

1 (p̂
′)∗
}

For this case, we have to use the following spherical harmonics and
Clebsch-Gordan coefficients:

Y 1 ∗
1 (p̂) = −

√
3

8π
sin θ e−iφ (0

1

2

1

2
|11
2

3

2
) =

√
2

3
(1
−1

2

1

2
|11
2

3

2
) =

1√
3
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Obtaining:

T 3
2
1(a

′, α′; a, α) =
1

4π

{∫
dp̂′ cos θ 〈π(−p′; a′)N(p′,

1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉

−1

2

∫
dp̂′ sin θ e−iφ 〈π(−p′; a′)N(p′,−1

2
;α′)|T |π(−p; a)N(p,

1

2
;α)〉

}

Now we write the amplitudes 〈π(−p′; a′)N(p′, σ′;α′)|T |π(−p; a)N(p, σ;α)〉
in terms of A±(s, t, u) and B±(s, t, u) shown in Appendices C and D. But
first, we need to write an explicit representation for the Dirac bilinears ūσ′uσ
and ūσ′(/q+/q

′)uσ. We take, for the Dirac spinors, the following representation:

uσ(s, θ, φ) =
√
Ep(s) +mN

(
χσ

~p·~σ
Ep(s)+mN

χσ

)
,with χ↑ =

(
1
0

)
, χ↓ =

(
0
1

)

With the following definitions for the angles θ and φ:

x

y

z~p
θ

φ

~p ′
~p = (0, 0, p)

~p ′ = (p cosφ sin θ, p sinφ sin θ, p cos θ)
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G Partial Wave Projections

From these definitions we obtain the following results:

ū↑u↑(s, θ, φ) = (Ep(s) +mN )

[
1− p2(s) cos θ

(Ep(s) +mN )2

]

ū↓u↑(s, θ, φ) = (Ep(s) +mN )

[
− p2(s) sin θ

(Ep(s) +mN )2
eiφ
]

ū↑(/q + /q
′)u↑(s, θ, φ) = 2(Ep(s) +mN)

[√
s−mN +

√
s+mN

(Ep(s) +mN)2
p2(s) cos θ

]

ū↓(/q + /q
′)u↑(s, θ, φ) = 2(Ep(s) +mN)

[ √
s+mN

(Ep(s) +mN )2
p2(s) sin θeiφ

]

Recalling that our amplitudes are written in terms ofA±(s, t) andB±(s, t),
Eq.(3.2), we obtain the following representation for the S- and P -waves pro-
jections Tℓ J :

T±
S 1

2

(s) =
1

4π

∫ 2π

0

dφ

∫ 1

−1

dcosθ
[
A±(s, t(s, cos θ))ū↑u↑(s, cos θ, φ)

+
1

2
B±(s, t(s, cos θ))ū↑(/q + /q

′)u↑(s, cos θ, φ)
]

(G.4)

T±
P 1

2

(s) =
1

4π

∫ 2π

0

dφ

∫ 1

−1

dcosθ
[
A±(s, t(s, cos θ))ū↑u↑(s, cos θ, φ)

+
1

2
B±(s, t(s, cos θ))ū↑(/q + /q

′)u↑(s, cos θ, φ)
]
x

+
1

4π

∫ 2π

0

dφ

∫ 1

−1

dcosθ
[
A±(s, t(s, cos θ))ū↓u↑(s, cos θ, φ)

+
1

2
B±(s, t(s, cos θ))ū↓(/q + /q

′)u↑(s, cos θ, φ)
]√

1− x2 e−iφ (G.5)

T±
P 3

2

(s) =
1

4π

∫ 2π

0

dφ

∫ 1

−1

dcosθ
[
A±(s, t(s, cos θ))ū↑u↑(s, cos θ, φ)

+
1

2
B±(s, t(s, cos θ))ū↑(/q + /q

′)u↑(s, cos θ, φ)
]
x

− 1

8π

∫ 2π

0

dφ

∫ 1

−1

dcosθ
[
A±(s, t(s, cos θ))ū↓u↑(s, cos θ, φ)

+
1

2
B±(s, t(s, cos θ))ū↓(/q + /q

′)u↑(s, cos θ, φ)
]√

1− x2 e−iφ (G.6)
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Appendix H
Suppression of diagrams in Fig. 6.1

Let us now consider the relative size of diagrams 4–17 in Fig. 6.1 of Chapter
6 compared to diagram 2. We show here this figure to make the monitoring
easier. On the other hand, diagram 3 is not considered here because it was
already discussed at the end of section 6.2.

4 5 6

8 9 11 127

14 16 1715

1 2 3

13

10

• Diagram 4

The enhanced configurations are those in which the kaon line on the left
correspond to an outgoing particle. In this way the leftmost intermediate
kaon propagator is almost on-shell, taking the value:

1

(p− k′1,2)
2 −m2

K

(H.1)

At threshold it is given by 1/a with:
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H Suppression of diagrams in Fig. 6.1

a = 2mK(Mφ − 2mK) ≡ 2mKδ (H.2)

Numerically,
√
a ≃ 170 MeV. Like in diagram 2, the vertical kaon prop-

agator is nearly on-shell and of value 1/a′ with:

a′ = (k1 + k2 − k′2,1)
2 −m2

K = (p′ − p+ k′1,2)
2 −m2

K (H.3)

While a is not large because of the proximity of the φ mass to the KK̄
threshold, a′ is proportional to the small kaon three-momenta. The initial
and final |KK̄〉0 states are not in their CM. The velocities of the boosts that
take these states to their CM frames are v = −p/

√
s and v′ = −p′/

√
s,

respectively. These velocities are small because we are close to threshold so
that it is a good approximation to write:

k1,2 = ±q +mKv +O(|v|3) = ±q− 2mK

√
s

s+M2
f0
−M2

φ

p+O(|v|3) ≃ ±q− 1

2
p

(H.4)

Similarly:

k′
1,2 = ±q′ +mKv

′ +O(|v|3) = ±q′ − 2mK

√
s

s+M2
f0
−M2

φ

p′ +O(|v|3) ≃ ±q′ − 1

2
p′

(H.5)

In the last two equations q and q′ are the CM three-momentum of a kaon
in the initial and final |KK̄〉0 states, respectively. The last equality in these
equations follows because 2mK

√
s/(s +M2

f0
−M2

φ) ≃ 1/2. In this way we
can rewrite Eq.(H.3) as:

a′ = (p′ − p+ k′1,2)
2 −m2

K = Q2 − 2Qk′1,2 ≃ −p2(1− cos ρ)± 2Qq′ (H.6)

Which is zero at threshold. On the other hand, the vertices involving the
coupling of the external vector resonances to two-kaons are proportional to
small three-momenta. As a result, this diagram is of order:

g2

f 2

m2
K

a′
|k|2
a

(H.7)

202



H Suppression of diagrams in Fig. 6.1

With |k| representing the modulus of any small external three-momentum.
Since |k|2/a = O(1), this diagram seems to be of the same order as diagram
2. However, there is an extra suppression coming from the angular projec-
tion into S-wave. The angular dependence is dominated by the ratio |k|2/a′,
since a has a finite angular independent part [Eq.(H.2)]. From the vertices
with one vector resonance one gets the factor:

[ǫ(p) · k′1][ǫ(p′) · (k′1 − p)] (H.8)

If the spin direction is given by the unitary vector n̂, such that n̂ · p = 0
we can write:

ǫ(p) = (0, n̂)

ǫ(p′) = (p′ · n̂/p′0, n̂) +O(v2) (H.9)

The following angular structures result from Eq.(H.8):

(p′ · n̂)2, (p′ · n̂), (n̂ · q′), (n̂ · q′)2 (H.10)

In the energy region where |p| . √
a, diagram 4 is suppressed compared

to diagram 2 because of the ratio |k|2/a. On the other hand, for |p| &√
a, a′ is dominated by p2(1 − cos ρ) because p2 ≫ q2 ≈ M2

f0
/4 − m2

K

for typical energies just slightly above threshold. Thus, we can neglect its
angular dependence on q̂′ in good approximation. In this case, the second
angular structure in the previous equation vanishes because of the integration
in q̂′. The last structure is suppressed by a factor κ2, with κ = |q|/|p|.
Regarding the dominant structure in the first line, when divided by a′, one
has:

∫ +1

−1

d cos ρ
p2 sin2 ρ cos2 φ

p2(1− cos ρ)
(H.11)

Where we have written (p′ · n̂)2 = p2 sin2 ρ cos2 φ, since n̂ is perpendicular
to p. Eq.(H.11) is finite and equal to 2 cos2 φ. For diagram 2 the angular
integration on p̂′ is dominated by 1/a′:

∫ +1

−1

d cos ρ
1

p2(1− cos ρ)
(H.12)
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H Suppression of diagrams in Fig. 6.1

Which is divergent. Keeping also the subleading terms on the right hand
side of Eq. (H.6), the angular integration for diagram 2 is not infinite but
still large, of order 1/κ. Therefore, we conclude that diagram 4 is suppressed
by a factor κ with respect to diagram 2 for |p| & √

a and by a factor |k|2/a
for |p| . √

a.

• Diagram 5

For the amplitudes represented globally by diagram 5 in Fig. 6.1 there
are no enhanced vertices like those discussed above for diagram 2 or 4. For
some kaon arrangements, it is possible that the intermediate kaon is nearly
on-shell but each of the vertices in these amplitudes require one power of
small three-momentum. Then, the ratio between the enhanced propagator
and the suppressed vertices is O(1). As a result, these diagrams are at most
of O(g2/f 2).

• Diagram 6

The enhanced configurations have an outgoing kaon on the leftmost vertex
and an incoming one on the vertex at the far right. In between the kaon
propagators are each of them of size 1/a. On the other hand, the coupling of
the external vector resonances with the kaons is suppressed by small powers
of three-momentum. Then, the size of the amplitudes is estimated to be:

g2

f 2

m2
K

a

|k|2
a

(H.13)

The suppression compared to the diagram 2 happens in the same way
as for diagram 4. For |p| . √

a the last factor in the previous equation is
small, and for |p| & √

a there is a suppression due to the angular projection.
Indeed, from the vertices involving the vector states one gets the product:

[ǫ(p) · k′1,2][ǫ(p′) · k1,2] (H.14)

Which implies that the following angular structures [see Eq. (H.9)] are
present:

(n̂ · p′)2 , (n̂ · p′)(n̂ · q), (n̂ · q′)(n̂ · q) (H.15)

These terms are multiplied by 1/a2 which has a lessened angular depen-
dence since a is 2mKδ close to threshold. The integrals over q̂ and q̂′ in the
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H Suppression of diagrams in Fig. 6.1

second and third lines of Eq.(H.15) are zero. The first line instead is finite
and gives a contribution that compared with diagram 2 is suppressed by a
factor κp2/a.

• Diagram 7

A KK̄ pair must couple to the vector propagator. In addition, the kaon
and anti-kaon in the pair cannot belong both to the same |KK̄〉0 state
because the latter is in S-wave. As a result, the four-momentum running
through the vector propagator nearly vanishes due to the vicinity to the KK̄
threshold. Notice that from LV Φ2 in Eq.(6.10) the vertex for a vector reso-
nance coupled to a KK̄ is proportional to the difference of the four-momenta
of the kaon and the anti-kaon.

Figure H.1: Configurations left for the coupling of aKK̄ to an intermediate vector
resonance.

The diagram shown in Fig. H.1 is obtained by modifying the local low-
est order meson-meson chiral vertex in the diagram 2 by the exchange of a
vector resonance between the kaons with vanishing four-momentum transfer.
It is well known that for these modifications to be meaningful [178], they
must be calculated together with the exchange of the octet of axial-vector
resonances aµ in Eq.(6.4). After adding them, the result at the lowest chiral
order is not modified, i.e., the corrections are of higher order, suppressed
by powers of m2

P/M
2
V,A where mP is the mass of a pseudoscalar meson and

MV,A, those of the first octet of vector and axial-vector resonances. Let us
stress that in Ref.[158] a very good description of the I = 0,1 meson-meson
scattering data was achieved by taking the lowest order Chiral Perturbation
Theory amplitudes as the interacting kernels. At the two kaon threshold
the I = 0, 1, S-waves are dominated by the presence of the f0(980) and
a0(980) resonances, in that order. Both resonances are well reproduced in
Ref.[158], with the same approach followed here. Therefore, since we take
diagram 2 into account, we can neglect the contribution of diagram 7 when
summed with others not drawn in Fig. 6.1 and that also include the exchange
of axial-vector resonances, expressing the result in terms of the full S-wave
KK̄ strong amplitude derived in Ref.[158].
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H Suppression of diagrams in Fig. 6.1

• Diagram 8

The enhanced configurations in diagram 8 have an outgoing kaon coupled
to the vertex at the far left and an incoming one on the next vertex to the
right. In this way the intermediate kaon propagator ∼ 1/a while the vector
resonance propagator is ∼ 1/a′. The two vertices with two pseudoscalars and
one vector resonance involve small external three-momenta. Altogether, this
diagram is of order:

g2

f 2

g2f 2|k|2
aa′

(H.16)

Numerically, g2f 2 ≃ 0.42 GeV2 = 0.64m2
K which implies already some

suppression. In addition there is an additional reduction due to the angular
integration, similarly to the situation explained above for diagram 4, so that
the additional suppression factor κ with respect to diagram 2 applies also
here.

• Diagram 9

Here, the enhanced configurations have, from left to right, a kaon going
out, the next one coming in, another leaving and the last one entering the
vertex. This means that the kaon propagators are of size 1/a and the inter-
mediate vector resonance propagator is of size 1/a′. In addition, one has now
four vertices involving one vector resonance and two pseudoscalars. Each of
them proportional to the difference between two slow kaon four-momenta.
Then, the corresponding amplitudes go as:

g2

f 2

|k|4g2f 2

a2a′
(H.17)

The ratio |k|4/a2 is O(1) but for |p| . √
a is suppressed. Calculating

explicitly the intermediate vertices, attached to the vector meson propagator,
a factor δ2 appears, so that δ2/a is suppressed by a factor δ/mK . Besides,
the angular projection suppression due to the vertices involving the external
resonances also operates here for their ratio with a′. As a result there is an
extra factor κ compared with diagram 2.
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• Diagram 10

The enhanced configurations arise when there are, from left to right,
a kaon leaving the diagram and another entering it on the vertices that
couple two pseudoscalars with an external vector resonance. In this case the
intermediate kaon propagators are ∼ 1/a. These contributions are of order:

g2

f 2

m2
K

a

g2f 2

M2
φ

|k|2
a

(H.18)

The last factor is due to the vertices with the external resonances and
involve small external kaon three-momenta. The angular projection suppres-
sion operates here similarly as for diagram 6.

In analogy to diagram 7, the diagrams 9 and 10 are vector resonance con-
tributions to the meson-meson scattering vertex. They must be accompanied
by other diagrams involving also the exchange of axial-vector resonances so
that the final modification of the lowest order chiral amplitude is further
suppressed as indicated in the discussion for the diagram 7.

• Diagram 11

This diagram is similar to diagram 5 but including an extra vector reso-
nance exchange that modifies the four-pseudoscalar one-vector vertex to the
right of the diagram 5. As for the latter there is a suppression of the enhanced
intermediate propagator, when the external kaon to the left of the diagram
is leaving, because it is quadratic in the external small three-momentum.
Therefore, it is just O(g2/f 2).

• Diagram 12–17

As in Fig. H.1, one must have a leaving and entering KK̄ pair attached
to every intermediate vector meson line. As a result, from Eq.(6.13) one
can conclude that all these diagrams are zero. Diagram 12 vanishes because
there are no four-vector meson vertices coupling φφρ0ρ0, φφρ+ρ−, φφωω and
in general φφVW , with V and W any vector state. Diagram 13 is also zero
because there are no three-vector resonance vertices coupling φφV , with V
any vector resonance. For the same reason diagrams 14 and 15 are also zero.
Finally, diagrams 16 and 17 vanish because there are no vertices with three
vector resonances that couple φωω, φρ0ρ0 and φρ+ρ−.
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Appendix I
Resumen en español

El proceso de dispersión pión-nucleón es un proceso hadrónico básico que
ha sido estudiado en profundidad durante los últimos 50 años. Esto es de-
bido a que nos permite probar la dinámica quiral de las interacciones fuertes
basada en su teoŕıa fundamental: la cromodinámica cuántica. Una de las
principales ventajas de dicho proceso es la enorme cantidad de datos exper-
imentales de gran calidad que hoy en d́ıa hay disponibles. Dichos datos,
aparte, contienen información experimental sobre los estados excitados del
nucleón, cuya determinación es uno de problemas fundamentales de la teoŕıa
de las interacciones fuertes. Por otro lado, el cálculo de la amplitud pión-
nucleón es de gran interés para el estudio de las interacciones pión-núcleo
llevadas a cabo en las factoŕıas de mesones. Históricamente, el cálculo de las
amplitudes pión-nucleón ha sido llevado a cabo mediante lo que se denom-
ina análisis en ondas parciales. Dichos análisis determinan la amplitud de
dispersión a partir de los datos correspondientes a los procesos π+p → π+p
y π−p → π−p haciendo uso de la unitariedad y analiticidad de la amplitud
asumiendo además simetŕıa de isosṕın y analiticidad a t (variable de Man-
delstam) fija♯1 [16, 17], o bien usando modelos de potenciales hadrónicos con
la ecuación de Schrödinger relativista [18]. Sin embargo, existe un modo más
simple de estudiar esta complicada interacción haciendo uso de la simetŕıa
quiral.

La simetŕıa quiral es una simetŕıa que, aunque tiene una explicación di-
recta si asumimos que la cromodinámica cuántica es la teoŕıa fundamental
de las interacciones fuertes, puede ser propuesta a partir de estudiar el espec-
tro hadrónico. En dicho espectro se puede observar que parece haber, por
cada hadrón con una paridad dada, un “compañero quiral” con los mis-

♯1La analiticidad a t fija no es una caracteŕıstica común a todos los análisis en ondas
parciales que usan métodos dispersivos, pero śı lo es a todos los que se usan en esta tesis.
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Figure I.1: Espectro hadrónico hasta masas de 1.3 y 1.5 GeV para mesones y
bariones, respectivamente, distinguiendo entre hadrones con paridad positiva (P =
+1) y negativa (P = −1). Las lineas azules (rojas) se refieren a bariones con
J = 1/2 (J = 3/2), las verdes (amarillas) se refieren a mesones con J = 0 (J = 1)
y s se refiere a su contenido de extrañeza.

mos números cuánticos pero con paridad opuesta. Sin embargo, si esta
simetŕıa quiral fuera exacta, ambos compañeros debeŕıan tener la misma
masa, cosa que no se observa en el espectro hadrónico. Aśı que, si asumimos
simetŕıa quiral en las interacciones fuertes, debemos asumir que esta sime-
tria está espontáneamente rota, que quiere decir que aunque la interacción
tenga dicha simetŕıa, ésta no está realizada sobre los estados f́ısicos (espa-
cio de Fock). El hecho de que el espectro hadrónico esté dominado por una
simetŕıa espontáneamente rota (al menos a bajas enerǵıas) nos proporciona
una potente herramienta de cálculo basada en dos pilares:

• El teorema de Goldstone [6, 7], el cual nos dice que si tenemos una
simetŕıa global espontáneamente rota aparecen en nuestro espectro de
part́ıculas unos bosones de esṕın cero y sin masa asociados a los ge-
neradores del grupo roto (un bosón por cada generador) que tienen
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los mismos números cuánticos que su correspondiente generador. Es-
tas propiedades son justamente las de los mesones pseudoescalares
másligeros (π, K, η), y por lo tanto éstos se identifican con los bosones
de Goldstone de la simetŕıa quiral espontáneamente rota. Una de las
consecuencias del teorema de Goldstone es que la intensidad de la in-
teracción de los bosones de Goldstone es más pequeña a medida que
su enerǵıa va decreciendo, de forma que cuando el momento de dichos
bosones tiende a cero su interacción también tiende a cero. Por otro
lado, también hay que tener en cuenta que los mesones tienen masa
debido a que los quarks tiene masa no nula, lo cual da lugar a una
ruptura expĺıcita de la simetŕıa quiral. Sin embargo, esto no plantea
grandes problemas en la teoŕıa ya que dichas masas son pequeñas (al
menos la de los quarks ligeros) y la desviación con respecto al caso de
masa nula puede ser tratada de forma perturbativa.

• La realización no lineal de la simetŕıa quiral, la cual nos permite cons-
truir la teoŕıa efectiva en la que la interacción de los mesones (bosones
de Goldstone) aparece con acoplos derivativos. La realización no lineal
de los Lagrangianos efectivos quirales, los cuales tienen en cuenta la
interacción de los mesones con otros hadrones (incluyendo mesones),
es crucial para la aplicación de teoŕıa de perturbaciones en procesos
hadrónicos ya que, como comentamos anteriormente, dicha interacción
decrece con el cuadrimomento del meson y, por lo tanto, podemos es-
tablecer una jerarquia entre los infinitos diagramas de Feynman que en
principio habŕıa que calcular.

La teoŕıa efectiva que incorpora ambas piezas y nos permite calcular per-
turbativamente procesos que involucran a los bosones de Goldstone de la
simetŕıa quiral es conocida como Teoŕıa Quiral de Perturbaciones (ChPT en
inglés) y es, por las razones mencionadas anteriormente, una herramienta
apropiada para estudiar la interacción pión-nucleón. El primer intento de
aplicar ChPT a dicha interacción es debido a Gasser, Sainio y Svarc [30]
los cuales encontraron que, trabajando con bariones en ChPT, el contaje
estandard de ChPT (que es lo que nos permite aplicar teoŕıa de pertur-
baciones) está roto en el sentido de que, a un orden dado en el desarrollo
quiral, podemos tener contribuciones de todos los órdenes superiores. Este
problema surge debido a que la masa del nucleón no es una cantidad pequeña
comparada con la escala de enerǵıas de las interacciones hadrónicas y, por lo
tanto, los cálculos que invoucran bariones generan términos cuya magnitud
no decrece en el desarrollo perturbativo. A fin de solucionar este problema, se
han llegado a proponer hasta tres soluciones diferentes. La primera solución
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consiste en tratar de eliminar la componente pesada del espinor del nucleón
de forma que en el Lagrangiano sólo aparezca el remanente asociado a la
enerǵıa cinética del mismo. Este remanente respeta el contaje quiral en el
sentido de que la magnitud del trimomento del nucleón está directamente
relacionada con la enerǵıa de pión, la cual es pequeña en procesos de baja
enerǵıa (que son los que nos interesan). Esta reformulación de ChPT con
bariones se conoce como Teoria Quiral de Perturbaciones con Bariones Pe-
sados (o HBChPT, en inglés) y ha dado resultados bastante buenos a la hora
de describir los desfasajes de las interacciones pión-nucleón [63, 64, 85]. Sin
embargo, este método rompe la estructura Lorentz de la teoŕıa original, lo
que da lugar a problemas de convergencia en regiones cinemáticas de baja
enerǵıa dentro del triángulo de Mandelstam. Esto se manifiesta claramente
cuando se extrapola la amplitud obtenida con HBChPT a la region no f́ısica
del plano de Mandelstam, en cuyo caso algunas integrales de lazo no conver-
gen. Dichas extrapolaciones son interesantes ya que nos permiten estudiar
las predicciones para cromodinámica cuántica basadas en la simetŕıa quiral.
Debido al interés de obtener una amplitud quiral que se pueda extrapo-
lar fiablemente a la región no f́ısica, Becher y Leutwyler propusieron otra
solución al problema del contaje quiral con bariones, preservando la estruc-
tura Lorentz [97]. Dicho método es conocido como Regularización Infrarroja
(IR, en inglés), y está basado en separar la contribución de toda integral de
lazo escalar (que es la que genera los términos que rompen el contaje quiral)
en dos partes: la parte infrarroja y la parte regular. Dicha división es útil ya
que la parte infrarroja tiene la peculiaridad de que respeta el contaje quiral,
mientras que la parte regular (que es la que contiene los términos que rompen
dicho contaje) es anaĺıtica en masas de quarks y momentos de las part́ıculas,
lo que hace que su contribución pueda ser absorbida en los parámetros libres
del Lagrangiano original (conocidos como constantes de baja enerǵıa). Aśı
pues, el método de IR está basado en tomar tan solo la parte infrarroja de
las integrales de lazo escalares para dejar que las constantes de baja enerǵıa
absorban la contribución anaĺıtica de los loops. Sin embargo, esta división
tiene sus limitaciones ya que posee un radio de convergencia limitado [19] y,
como se vio en [21] y en el caṕıtulo 4 de ésta tesis , para enerǵıas que pueden
hacer que la variable de Mandelstam u se anule, la amplitud calculada en IR
desarrolla un corte no f́ısico que da lugar a fuertes violaciones de unitariedad
y limita la descripción de los desfasajes πN a la región de bajas enerǵıas.
Además, como recientemente señaló Pascalutsa en [71], la forma en la que
el método de IR recupera el contaje quiral hace que el propagador bariónico
cambie de forma que viola conjugación de carga y, por lo tanto, causalidad.
Otro posible método que nos permite recuperar el contaje quiral manteniendo
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la formulación relativista de la teoŕıa, denominado Extended-On-Mass-Shell
(EOMS), fue propuesto en [73] a partir de los resultados de [72] en el que se
demostraba que los términos que rompen el contaje quiral en el formalismo
covariante son anaĺıticos en masas de quarks y momentos, lo que hace que
su contribución pueda ser absorbida sin ningún problema por las constantes
de baja enerǵıa. Esto es muy diferente a lo que propońıa IR, ya que este
método divid́ıa la integral covariante original en dos integrales con un radio
de convergencia finito, y la parte regular, que es la que contiene los términos
que rompen el contaje quiral, conteńıa también términos anaĺıticos que no
romṕıan dicho contaje. Esto significa que, mientras que IR elimina una serie
infinita de términos anaĺıticos, EOMS sólo substrae un polinomio finito de
la amplitud covariante original, lo cual no altera sus propiedades anaĺıticas,
al contrario que IR. En esta tesis se presentan nuestros trabajos realizados
con los formalismos de IR y EOMS aplicados al estudio de la dispersión
pión-nucleón a bajas enerǵıas en el limite de isosṕın.

En el caṕıtulo 4 presentamos los resultados obtenidos con IR. Alĺı uti-
lizamos los desfasajes proporcionados por los grupos de Karlsruhe [16] y la
Universidad George Washington [17] para comprobar qué tal se comportaba
este método a la hora de describir los desfasajes por un lado y, por otro lado,
estudiar el comportamiento de la amplitud obtenida en IR bajo métodos de
unitarización. Esto último es especialmente interesante ya que en el sec-
tor de SU(3) con extrañeza −1 los métodos de unitarización se hacen im-
prescindibles a la hora de estudiar la región próxima al umbral debido a la
presencia de resonancias. Por este motivo el sector de SU(2) es un exce-
lente campo de pruebas para las técnicas que se aplicarán posteriormente
a SU(3). Dichas técnicas de unitarización no hab́ıan sido aplicadas nunca
antes a un cálculo covariante de ChPT [21]. Pero no sólo esto hace intere-
sante el cálculo de IR, ya que un trabajo anterior al nuestro [43] arrojaba
unos resultados muy negativos para dicho formalismo, puesto que se obteńıan
unas descripciones de los desfasajes que eran mucho peores que los resulta-
dos no relativistas de HBChPT (en contra de lo que se esperaba) y, por otro
lado, encontraban una gran violación de la relación de Goldberger-Treiman,
∆GT ≈ 20–30%, que estaba muy alejada de los ĺımites tanto teóricos como
experimentales actuales. Nuestro trabajo arrojó luz sobre estas cuestiones
y se probó que, en primer lugar, IR es capaz de describir los desfasajes de
pión-nucleón con una calidad muy parecida a la que proporciona HBChPT
y, en segundo lugar, confirmamos que el cálculo covariante en IR da lugar
a una violación de la relación de Goldberger-Treiman de aproximadamente
20–30%. Este último resultado automáticamente da lugar a cuestionarse si
esa enorme discrepancia en una relación tan fundamental como la relación
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de Goldberger-Treiman era debida al modo en que IR recupera el contaje
quiral, alterando las propiedades anaĺıticas del cálculo, o si bien era debida
a un problema de convergencia de ChPT covariante con bariones, lo cual
podŕıa poner en peligro la aplicabilidad de dicha teoŕıa. Esta pregunta tiene
su respuesta en el caṕıtulo 5, donde se procede a realizar el mismo cálculo
en EOMS [44], en el que el formalismo relativista conserva sus propiedades
anaĺıticas. Aqúı se consideran los mismos desfasajes que en el trabajo de IR
añadidendo además aquellos proporcionados por el grupo de Matsinos [18].
Se observa primeramente que EOMS reproduce los desfasajes mejor que IR.
Es muy importante resaltar que EOMS śı que da un resultado para ∆GT

compatible con las expectativas teóricas y con diferentes determinaciones a
partir de datos experimentales (ver Tablas 5.7 y 5.8). Esto es debido a que la
contribución de los diagramas de lazo, que son los que dan una contribución
de alrededor de 20% en IR, dan en EOMS una contribución mucho menor
(≈ 0.2%), que es perfectamente compatible con lo que se espera de acuerdo
al desarrollo quiral. La conclusión a la que nos lleva este resultado es que el
enorme valor que IR obtiene para ∆GT no es un problema intŕınseco a ChPT
covariante con bariones, sino al particular modo que IR tiene para recuperar
el contaje quiral manteniendo el carácter covariante de la formulación. Dicho
método es el responsable de que se alteren las propiedades anaĺıticas de las
amplitudes. El caṕıtulo 5 (Ref.[44]) tiene además una segunda parte todav́ıa
másinteresante en la que se incluye la resonancia ∆(1232) expĺıcitamente
en el cálculo. Lo primero que se observa es un incremento notable en la
convergencia de la serie quiral. Concretamente, en este caso somos capaces
de describir casi perfectamente los desfasajes hasta enerǵıas cercanas a la
zona de la resonancia (

√
s . 1.20 GeV). Esto nos da confianza a la hora de

utilizar las constantes de baja enerǵıa obtenidas para deducir información
relevante relacionada con el proceso de dispersión pión-nucleón. En primer
lugar, en el la sección 5.4 del caṕıtulo 5 usamos estos valores para calcular
∆GT de forma másfiable y precisa. Lo que observamos es que en los casos
en los que incluimos la ∆(1232), las predicciones de EOMS-BChPT para la
desviación de la relación de Goldberger-Treiman son perfectamente compat-
ibles con las estimaciones de sus correspondientes análisis en ondas parciales
(ver Tablas 5.7 y 5.7). Esto confirma, por primera vez desde BChPT los
resultados obtenidos por los análisis en ondas parciales para ∆GT .

♯2 En este
caso en el que incluimos la ∆(1232), también hemos realizado un estudio por-
menorizado del valor del término sigma de pión-nucleón (σπN) basándonos
en los resultados de diferentes análisis en ondas parciales. En primer lugar

♯2Esto es porque IR obtiene un valor inaceptablemente alto y HBChPT no da predic-
ciones para ∆GT ya que se suele usar para fijar la constante de baja enerǵıa d18.
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confirmamos, desde ChPT, la discrepancia existente entre las estimaciones
de σπN por parte de los diferentes análisis en ondas parciales. Esto es impor-
tante ya que no se teńıa claro si el origen de esa discrepancia era debido a la
forma en la que los diferentes análisis estimaban σπN o a la base de datos que
cada grupo utilizaba (o ambas cosas). Nosotros vimos con nuestro análisis
que esa discrepancia está relacionada con la base de datos utilizada, no con
el método. Es más, tomando como entrada los análisis en ondas parciales
basados en datos modernos de alta calidad, observamos que para análisis que
usan metodoloǵıas muy diferentes (como WI08 [17] y EM06 [18]) obteńıamos
valores para σπN idénticos. También realizamos un estudio de los errores
teóricos debidos a las correcciones quirales de orden superior. Alĺı encon-
tramos una notable convergencia del desarrollo quiral de σπN confirmando
la jerarqúıa establecida para la ∆(1232) respecto a los nucleones. Esto nos
lleva a concluir que los análisis en ondas parciales basados en datos mo-
dernos de alta calidad apuntan a un valor de σπN = 59(7) MeV. Además,
estudiamos las diferentes implicaciones fenomenológicas derivadas de los re-
sultados obtenidos con los análisis modernos y vimos que éstos reprodućıan
valores compatibles con determinaciones independientes. Concretamente, a
partir de los análisis WI08 y EM06 obtenemos valores para ∆GT compatibles
con determinaciones provenientes de átomos piónicos y dispersión nucleón-
nucleón. Por otro lado, usando como entrada WI08, también somos capaces
de determinar una anchura de la ∆(1232) perfectamente compatible con el
valor dado en el PDG. Sin embargo, la comprobación fenomenológica más
interesante para σπN es la que proviene de la estimación de la longitud de
dispersión escalar-isoescalar a+0+, ya que ésta está estrechamente relacionada
con el valor de término sigma pión-nucleón. Lo que encontramos es que de
los análisis modernos WI08 y EM06 extraemos con ChPT un valor para la
a+0+ perfectamente compatible con los valores positivos obtenidos hoy en d́ıa
a partir de análisis modernos de átomos piónicos incluyendo correcciones de
isosṕın. Por otro lado, observamos que usando como entrada el análisis KA85
no somos capaces de obtener ni un ∆GT compatible con determinaciones in-
dependientes, ni una anchura para la ∆(1232) compatible con los valores
del PDG. Y, en lo que respecta a la a+0+, los valores extráıdos de los datos
proporcionada por KA85 son compatibles únicamente con una longitud de
dispersión negativa, lo cual está en concordancia con los resultados de Gasser
et al. [123] que asocian el valor σπN ≃ 45 MeV con a+0+ negativo mientras que
a+0+ > 0 (que es lo que obtienen los análisis modernos de átomos piónicos)
está asociado a valores de σπN aproximadamente 10 MeV superiores. Estos
resultados respecto a σπN obtenidos en nuestras investigaciones están siendo
sin duda de mucha utilidad para los estudios de detección directa de materia
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oscura, aunque también ha causado un cierto impacto en la comunidad de
QCD en el ret́ıculo.

A nivel global el principal resultado de nuestros estudios de la dispersión
πN con ChPT relativista es que una formulación covariante de ChPT que re-
suelva el problema del contaje quiral sin modificar las propiedades anaĺıticas
de la amplitud, con la ∆(1232) incluida consistentemente como grado de
libertad, es capaz de proveer, a O(q3) al menos, una representación para la
amplitud de dispersión que conecta satisfactoriamente la región f́ısica de baja
enerǵıa (bajo la ∆(1232)) con la región bajo el umbral. Probando, además,
que con esta representación se pueden obtener resultados precisos y fiables
para importantes magnitudes, siendo éstos perfectamente compatibles con
estudios independientes que usan una metodoloǵıa diferente. Esto es cierta-
mente un hito en el campo de ChPT con bariones en el que se pensaba que
la convergencia de la serie quiral estaba mucho más limitada, siendo incapaz
de obtener valores fiables para magnitudes fundamentales como σπN o bien
de extrapolar con precisión la amplitud a la zona no f́ısica.

Por otro lado, en el caṕıtulo 6 se procedió a hacer un estudio fenomenológico
de la amplitud de dispersión φ(1020)f0(980) en el umbral y la naturaleza de
la resonancia Y (2175), que ha sido observada recientemente por la colabo-
ración BABAR en la reacción e+e− → φ(1020)f0(980). Alĺı se aprovechó el
hecho de que la f0(980) está bien descrita como un estado ligado KK̄ de
isosṕın cero (I = 0) en onda S para construir el potencial de interacción
φ(1020)f0(980) sin introducir parámetros libres adicionales al acoplo φK.
Dicho potencial se usó para estudiar los efectos de la interacción en estados
finales de φ(1020)f0(980) y su relación con la aparición de picos resonantes en
la sección eficaz. Nuestros resultados apuntan a que la resonancia Y (2175)
tiene una componente molecular φ(1020)f0(980) importante. Más adelante,
se utilizan estos resultados obtenidos en el canal I = 0 para extrapolarlos
al canal I = 1 e investigar la posible existencia de una compañera isovec-
torial de la resonancia Y (2175) debido a la interacción φ(1020)a0(980) en
onda S. Lo que observamos es que, para ciertos valores de los parámetros
(dentro del rango de valores obtenidos en el caso I = 0), se observa un
pico resonante en

√
s ≈ 2.03 GeV en la reacción e+e− → φ(1020)π0η de-

bido precisamente a la interacción en estados finales de φ(1020)a0(980). El
siguiente paso en esta ĺınea de investigación será estudiar el proceso com-
pleto e+e− → φ(1020)K+K−, que ha sido ya medido, y que involucra si-
multáneamente las amplitudes con I = 0 e I = 1.
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[54] K. H. Augenstein, G. Höhler, E. Pietarinen and H. M. Staudenmaier,
Karlsruhe Data Tape, ZAED Physics Data (1977).

[55] Concretely, KA85 uses the π+p cross sections of Bertin et al. [56], that
nowadays is believed to be erroneous [85].

[56] P. Y. Bertin, B. Coupat, A. Hivernat, D. B. Isabelle, J. Duclos, A. Ger-
ard, J. Miller and J. Morgenstern et al., Nucl. Phys. B 106, 341 (1976).

[57] B. Tromborg, S. Waldenstrom and I. Overbo, Phys. Rev. D 15, 725
(1977).

[58] B. Tromborg, S. Waldenstrom and I. Overbo, Helv. Phys. Acta 51, 584
(1978).

[59] A. Gashi, E. Matsinos, G. C. Oades, G. Rasche and W. S. Woolcock,
Nucl. Phys. A 686, 447 (2001); Nucl. Phys. A 686, 463 (2001).

220



Bibliography

[60] V. Bernard, N. Kaiser and U.-G. Meißner, Int. J. Mod. Phys. E 4, 193
(1995).

[61] V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008).

[62] E. E. Jenkins and A. V. Manohar, Phys. Lett. B 255, 558 (1991).

[63] N. Fettes, U.-G. Meißner and S. Steininger, Nucl. Phys. A 640, 199
(1998).

[64] N. Fettes and U.-G. Meißner, Nucl. Phys. A 676, 311 (2000).

[65] T. Fuchs, J. Gegelia and S. Scherer, Eur. Phys. J. A 19, 35 (2004).

[66] B. R. Holstein, V. Pascalutsa and M. Vanderhaeghen, Phys. Rev. D 72,
094014 (2005).

[67] L. S. Geng, J. Martin Camalich, L. Alvarez-Ruso and M. J. Vicente-
Vacas, Phys. Rev. Lett. 101, 222002 (2008).

[68] J. Martin Camalich, L. S. Geng and M. J. Vicente Vacas, Phys. Rev. D
82, 074504 (2010).

[69] P. J. Ellis and H. B. Tang, Phys. Rev. C 57, 3356 (1998).

[70] T. Ledwig, J. Martin-Camalich, V. Pascalutsa and M. Vanderhaeghen,
Phys. Rev. D 85, 034013 (2012);

[71] V. Pascalutsa, arXiv:1110.5792 [nucl-th].

[72] J. Gegelia and G. Japaridze, Phys. Rev. D 60, 114038 (1999).

[73] T. Fuchs, J. Gegelia, G. Japaridze and S. Scherer, Phys. Rev. D 68,
056005 (2003).

[74] E. E. Jenkins and A. V. Manohar, Phys. Lett. B 259, (1991) 353.

[75] T. R. Hemmert, B. R. Holstein and J. Kambor, J. Phys. G G 24, 1831
(1998).

[76] V. Pascalutsa, M. Vanderhaeghen and S. N. Yang, Phys. Rept. 437, 125
(2007).

[77] N. Fettes and U.-G. Meißner, Nucl. Phys. A 679, 629 (2001).

[78] J. A. Oller, M. Verbeni and J. Prades, JHEP 0609, 079 (2006).

221



Bibliography

[79] W. Rarita and J. Schwinger, Phys. Rev. 60, 61 (1941).

[80] K. Johnson and E. C. G. Sudarshan, Annals Phys. 13, 126 (1961);
C. R. Hagen, Phys. Rev. D 4, 2204 (1971).

[81] G. Velo and D. Zwanziger, Phys. Rev. 186, 1337 (1969); L. P. S. Singh,
Phys. Rev. D 7, 1256 (1973).

[82] V. Pascalutsa and R. Timmermans, Phys. Rev. C 60, 042201 (1999).

[83] K. Nakamura et al. [Particle Data Group Collaboration], J. Phys. G G
37, 075021 (2010).

[84] L. S. Geng, J. Martin Camalich, L. Alvarez-Ruso and M. J. Vicente
Vacas, Phys. Rev. D 78, 014011 (2008).

[85] N. Fettes and U.-G. Meißner, Nucl. Phys. A 693, 693 (2001).

[86] E. Matsinos, Phys. Rev. C 56, 3014 (1997).

[87] G. C. Oades, G. Rasche, W. S. Woolcock, E. Matsinos and A. Gashi,
Nucl. Phys. A 794, 73 (2007).

[88] J. A. Oller, E. Oset and J. R. Peláez, Phys. Rev. D 59, 074001 (1999);
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