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4.21 Plot of Ṡtot versus t for model 2. . . . . . . . . . . . . . . . . 64

4.22 Plot of S̈tot versus t for model 2. . . . . . . . . . . . . . . . . 64
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Abstract

In this thesis, we examine the thermodynamical behavior of homogeneous

and isotropic universe (flat and non-flat) in the framework of f(R, T φ) grav-

ity, where R stands for Ricci scalar and T φ represents the trace of the

energy-momentum tensor of a scalar field φ. Throughout we follow the

first-order formalism, that specifies the scalar field to the Hubble parame-

ter which becomes H = W (φ). By using Bekenstein-Hawking entropy, we

analyze the validity of the generalized second law of thermodynamics at ap-

parent horizon for three different models of W (φ) and discuss the thermal

equilibrium condition for these cases as well. We observe that, this gener-

alized law gives better results only for one model and as well as thermal

equilibrium condition satisfies for each value of W (φ) at apparent horizon

with Bekenstein-Hawking entropy.

Also, we investigate the generalized second law of thermodynamics and

thermal equilibrium condition in multi-component scalar field for flat Friedmann-

Robertson-Walker universe. We are following the first-order formalism and

we choose three superpotential models of the Hubble parameter, and by

using these models we observe the validity of the generalized law as well

as thermal equilibrium condition for Bekenstein entropy. Also, we take

three different entropies which are logarithmic corrected, Sharma-Mittal

and Rényi entropies, for each model of W (φi), we study the behavior of the

generalized law and thermal equilibrium condition, using all entropies at

Hubble horizon. We inspect that, the generalized law is valid and thermal

equilibrium condition satisfies only for some cases.
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Introduction
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Cosmological observations disclose that our universe is approximately

homogeneous and isotropic at large scale described by the standard Friedmann-

Robertson-Walker (FRW) model [80]. Also, several recent observations have

confirmed the accelerated expansion (AE) of the universe but these obser-

vations do not offer any clear picture of this mysterious behavior of the

universe [1]-[3]. The invention of this cosmic AE has promoted many re-

searchers to explore the cause of this massive change in cosmic history [4].

However, a mysterious force known as dark energy (DE) is considered as the

basic element which is responsible for expanding phase of the universe. In

general relativity (GR), the most easy plan to cause the AE is to introduce

the cosmological constant, but it has two basic fine-tuning and coincidence

problems [5]. A few alternative models of DE in geometric part are f(R) [6]

and f(R, T ) [7] theories of gravity. From the different recognize cosmologi-

cal evidence the current cosmic acceleration (CA) of the universe disclosed

[3], [8]- [13], which is measured by certain analyses [14]-[18]. In the present

age current perceptions fully recommend that the CA is experiencing by

the universe [8, 19].

Scalar fields (SF’s) have been studied comprehensively in cosmology

during the last three decades in order to explain the current CA [20]-[22].

Harko et al. [7] described the f(R, T ) theories of gravity, allow one to

scrutinize an optimistic replacement to DE, as a generalization of the f(R)

theories. It can also provided inflationary epoch explanation through its

SF perspective, named as f(R, T φ) gravity. By progressing the f(R, T φ)

approach which is submissive to f(R, T ) gravity, we expect here, to make

the f(R, T ) theories accomplished to contribute additionally to inflationary

and radiation-dominated epoch in a self-consistent technique. Baffou et al.

[23] claimed that the high redshift f(R, T ) cosmological solutions lead to

recover the standard model of cosmology if the f(R, T ) functional form is

linear in R apparently because when z � 1, the radiation with equation

of state parameter (EoS) p = ρ/3 influence the universe dynamics, disap-

pearing the trace of the energy-momentum tensor. Myrzakulov [24] studied

the generalization of F (R), F (T ) and F (R, T ) theories. They found field
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equations of F (R, T ) gravity by presenting point-like Lagrangian explicitly.

By using specific model F (R, T ) = µR + νT, derived the exact solutions.

Alves et al. [25] declared the presence of gravitational waves likewise for

polarization approach in both f(R, T ) other than f(R, T φ) theories.

Moraes and Santos [26] showed how f(R, T φ) theories of gravity can

broaden to the study of the primary stages of the universe, their results es-

timated a elegant exist form an inflationary stage to a radiation -dominated

era. They also predicted a late time CA after a matter-dominated phase,

allowing the f(R, T φ) theories to defined in a self-consistent way, all the dis-

tinctive phases of the universe dynamics. Without necessarily recovering to

make f(R, T ) gravity able to describe a radiation universe without anyone

else’s input, the f(R) formalism outcomes will make such a theory which

is equipped for contributing all the distinctive stages of the universe dy-

namics. So as to do as such, they applied the first-order formalism [27, 28]

to f(R, T φ) gravity. Vijay and singh [29] explored the SF behavior for flat

FRW universe in modified f(R, T ) gravity. They examined the behavior of

constructed model through the deceleration parameter.

In cosmology, many authors observed the significance of the SF. To clar-

ify the CA it perhaps connected to generate the inflaton which is occurred

in the early universe or as a DE applicant like quintessence [30]-[32]. SF’s

illustrate different development of the universe like the inflaton (inflationary

era), the DE, the component of dark matter [33]-[41]. They are character-

ized to be coupled to the gravity, minimally or non-minimally [42] -[46].

In particular, to depict the advancement of the universe at least two SF’s

collaborate over their kinetic or potential state. The quintom is the most

basic multi-SF theory in which quintessence and phantom SF devote dark

portion and mostly DE portion of the region [47]-[50]. It is feasible to uti-

lize just a single SF to interpret the DE and past inflation in quintessence

inflation model [51]. Recently to analyze the possible CA, quintessence is

conjure as alternate of the cosmological constant [52].

Quintessence originates from the SF models, which conclude the universe

elements is represented by the SF. With two SF models, quintessence models

3



additionally developed cosmological models [53]-[55]. Roy and Bamba [56]

explored interacting quintessence model with the quintessence potential, by

using the parametrization of interaction quintessence models they extended

the quintessence SF. Hertzberg et al. [57] investigated the fine-tuning of

quintessence model for DE in the framework of swampland conjectures.

Díaz [58] restricted to EoS to studied the problem of the quintessence

potential, they acquired the statement of luminosity distance. By differing

non-negative cosmological term they generalized the quintessence model,

confining the SF energy density.

Zlatev et al. [59] presented a form of quintessence, tracker field. In-

cluding the new inspiration for the quintessence scheme, to demonstrate

how it might clarify the occurrence. Roy and Banerjee [60] studied dynam-

ical system consideration of SF. They checked for late time attractors and

defined two examples, exponential and the power-law potentials. They ex-

amined the stable solutions for a few quintessence models. SF describe the

late and early aspects of CA [61, 62]. Yang et al. [63] considered different

quintessence SF models and they found that for early deceleration phase to

the present CA all models carried out fine change. They also found a strong

negative relation among the parameters for all quintessence SF models.

The determination of thermodynamical black hole (BH) recommended

basic association between relativistic gravity and thermodynamics laws.

Anyhow, people have been trying to find a remarkable way to develop such

relation [64]. Jacobson [65] was first to find the Einstein field equations

from the Clausius relation ThdSh = δQ, with the fact that the entropy

is proportional to the horizon area (HA). BH act as thermodynamic sys-

tem alongside temperature being related to surface gravity and entropy

for HA [66]. Akbar and Cai [67] discovered that the differential form of

Friedmann equations at the apparent horizon (AH) can be rearranged as

dE = TdS + WdV (E is the total energy of matter, V and W are the

volume inside the AH and work density correspondingly). Mazumder and

Chakraborty [68] analyzed the thermodynamics in scalar-tensor theory for

homogeneous spherically symmetric FRW model and examined the GSLT

4



at event horizon (EH) for the holographic DE and when universe filled with

perfect fluid. The generalized second law of thermodynamics (GSLT) has

a remarkable significance in modified theories of gravity.

Debnath et al. [69] explored GSLT for equilibrium and non-equilibrium

phases at EH as well as AH in flat FRW universe filled with n-components.

Sharif and Fatima [70] examined GSLT in modified Gauss-Bonnet gravity

with power-law correction and logarithmic corrected entropy at EH and

Hubble horizon (HH). Bamba and Geng [71] showed that inward and out-

ward the AH for same temperature of the universe the second law of thermo-

dynamics verified for phantom and non-phantom descriptions in f(R) grav-

ity. Sharif and Zubair [72] constructed that GSLT holds for both phantom

as well as non-phantom phases of the universe likewise checked the thermo-

dynamics for equilibrium and in addition non- equilibrium characterization

at AH in f(R, T ) gravity. Sharif and Ikram [73] studied non-equilibrium

thermodynamical behavior in homogeneous and isotropic universe at AH in

f(G, T ) gravity. Chattopadhyay and Ghosh [74] investigated the validity

of GSLT at AH, EH and particle horizon in modified f(R) Horava-Lifshitz

gravity [75]. They observed that GSLT is valid under this gravity.

The connection of the thermodynamic evolution is concerned to the

idea of additional thermodynamical variables and entropy. Lymperis and

Saridakis [76] utilized the tsallis entropy and through the application of

the first law of thermodynamics (FLT) they constructed the cosmological

scenarios. They showed that with the sequence of DE span and from the

value of the parameter of DE, EoS δ, during the evolution, experience the

phantom-divide crossing and can be quintessence or phantom-like. Deb-

nath et al. [77] investigated the equilibrium and non-equilibrium picture of

GSLT for EH and AH for flat FRW metric which is filled with n-component

fluid. In quintessence and phantom regimes they acquired constraints on

the power-law parameter α. Bamba [78] studied the GSLT in AH and future

EH in f(T ) gravity. They also showed the conditions of the quintessence

and phantom epoch in particular scenario by which GSLT will be valid.

They also discussed validity of GSLT for logarithmic corrected entropy and

5



power-law correction. Sharif and Zubair [79] checked the validity of GSLT

in f(R, T ) gravity for AH. They focused on two specific models of f(R, T )

gravity and concluded that the derived models signified quintessence and

phantom eras.

Motivated by the work of Sharif and Siddiqa [80], we discuss the validity

of GSLT and thermal equilibrium condition in f(R, T φ) gravity for flat and

non-flat FRW universe. We follow the first-order formalism and chose three

models of Hubble parameter and for each model we construct the equation

of GSLT and discuss the behavior of GSLT and thermal equilibrium condi-

tion at apparent horizon along with Bekenstein-Hawking entropy. We ex-

amine GSLT and thermal equilibrium condition graphically for constructed

models.

We explore thermodynamical behavior in multi-quintessence SF, moti-

vated by the work of Correa [81]. Here, we also implementing first-order

formalism and chose three different superpotential models. We observe the

behavior of GSLT and thermal equilibrium condition at Hubble horizon

with Bekenstein-Hawking entropy for flat FRW universe. We also discuss

the validity of GSLT and thermal equilibrium condition for Renyi, logarith-

mic corrected and Sharma-Mittal entropies at Hubble horizon. We observe

the results graphically. We arrange the thesis work in the following config-

uration:

• In Chapter 2, we give some basic definitions to understand the thesis

work easily.

• In Chapter 3, we discuss the thermodynamical behavior of f(R, T φ)

gravity for (flat as well as non-flat) FRW universe by graphical rep-

resentations.

• In Chapter 4, we discuss the thermodynamical behavior of multi-

quintessence SF for flat FRW universe. And graphically shows the

behavior of GSLT and thermal equilbrium condition for each case.

• In Chapter 5, we conclude the results.
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Chapter 2
Preliminaries
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In this chapter, we discuss some basic concepts which we use in this thesis

and helpful to understand the thesis work.

2.1 Cosmology

The branch of astronomy interested about the investigation of the start-

ing point and expansion of the cosmos is called cosmology. It is the logical

analysis of the initiation, advancement and possible objective of the cosmos.

It has made huge walks in the previous hundred years because of intellec-

tual and informational evolution. Over Einstein’s 1917 static model of the

universe cosmology started as a part of hypothetical material science. The

big bang theory is ruled by modern cosmology which unites observational

astronomy and molecule material science. Instead of considering indepen-

dently the galaxies, stars and BH that fill it, basically it thinks about the

universe as one substance. To figure out the physical cosmos as a bound

together entirely it unites the natural sciences, especially cosmology and

material science. In general it is the logical investigation of the extensive

scale properties of the cosmos.

2.2 Cosmic Acceleration

It is the perception that the development of the cosmos is to such an ex-

tent that the velocity at which a far off cosmic system is retreating from

the spectator is consistently expanding with time. The expansion of the

universe is accelerating. In 1925, Hubble demonstrated the expansion of

the universe. The connection among the speed and distances of distant

galaxies from Earth was demonstrated by him. Firstly, it was indicated by

supernovae that the universe is expanding faster. The High-Z supernovae

search team and the supernovae cosmology project, invented the expansion

of the universe in 1998 and they used distant type Ia supernovae. This de-

velopment more often indicated as the metric expansion. Mathematically

8



Figure 2.1: Expansion of the universe

and Physically, the metric signifies a proportion of distance and it suggest

that the distance inside the universe is evolving itself. It is observed that,

there is a force due to which universe is expanding, named as DE. As per

Einstein’s condition, the cosmic acceleration of the universe is represented

by the sum and kind of energy in the cosmos, also through the geometry of

the space.

2.3 Dark Energy

DE is that mysterious force which is responsible for the AE of the universe.

It has repulsive nature with negatively large pressure but its complete char-

acteristics are still unknown. It is not detected directly. The most recent

discoveries show that over 70 percent of the cosmos is made out of DE. It

is distinguished by its impact on the estimate at which large-scale arranges

and by its impact on the estimate at which the cosmos extends for example
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milky way and bunches of the milky way structure through gravitational

fluctuation.

2.4 ΛCDM Model

To coordinate with later examined data different DE models have been pro-

posed and in this arrangement the most least complex model is the ΛCDM

(Cold dark matter) model, which is in great concurrence with the ongoing

observational information. In GR, this model is obtained by presenting

the cosmological constant Λ, for which EoS is wΛ = −1. In cosmology, this

model can be enhanced by including quintessence, cosmological inflaton and

different components that are flow regions of theory and research.

2.5 Quintessence

Quintessence is a theoretical type of DE, exactly a SF proposed as a clarifi-

cation of the perception of CA of the universe. Relying upon the proportion

of its dynamic and potential energy it can be either attractive or repulsive.

Quintessence is a genuine type of energy particular from any typical issue,

radiation or even dark matter. A few cosmologist state that, quintessence is

a colorful sort of energy field that drives particles from one another, uncon-

trollable gravity and other essential powers. Steinhardt said, quintessence

incorporates a broad range of potential outcomes. It is a time-advancing,

forceful and spatially subordinate type of energy with negative pressure

satisfactory to run the CA. He also recommend, while it was sufficiently

cool for the atoms and ultimately stars to shape, from emission to matter

-dominated cosmos, the quintessence diverted throughout the change. The

coincidence problem and might be the fine-tuning problem can be solve by

quintessence. The action for quintessence is [82]

S =

∫
d4x
√
−g
[
− (∇φ)2

2
− V (φ)

]
,
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d4x is invariant volume element in four-dimension, g is the determinant of

metric, (∇φ)2 = gµν∂µφ∂νφ and V (φ) represents potential of the field. The

variation of the action with respect to scalar field in a flat FRW universe is

given by

φ̈+ 3Hφ̇+ Vφ = 0,

where Vφ = dV
dφ
. By varying the action, the energy-momentum tensor of the

field is established as

Tµν = − 2δS√
−gδgµν

.

Taking δ
√
−g = −1

2

√
−ggµνδgµν , we get

Tµν = ∂µφ∂νφ− gµν
[

1

2
gαβ∂αφ∂βφ+ V (φ)

]
.

The energy density and pressure of the scalar field is given as

ρ =
φ̇2

2
+ V (φ)

p =
φ̇2

2
− V (φ).

The field equations are

H2 =
8πG

3
ρ,

ä

a
= −8πG

3
[φ̇2 − V (φ)].

2.6 Laws of Thermodynamics

A branch of science in which the relationship among energy, heat and work

studied. In this branch, the quantities like pressure, volume, internal energy,

temperature and entropy are discussed. Its interest is just about large-

scale perceptions. It deals with the stability of the system. Firstly, the

word thermodynamics utilized by Thomson [83], has Greek source and is

translated as: Thermo means heat and dynamics means power. Sadi Carnot

is known as Father of thermodynamics. The laws of thermodynamics are

define below:
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Figure 2.2: Example of Zero Law of Thermodynamics

2.6.1 Zeroth Law of Thermodynamics

As indicated by Sommerfeld [84] the title of the zeroth law of thermody-

namics discovered by Ralph, the point at which he was talking about the

1935 content of Saha and Srivastava [85]. It states that if two systems are

in thermal equilibrium with the third system then they all are in thermal

equilibrium with one another.

2.6.2 First Law of Thermodynamics

In 1850, Clausius and Thomson discovered the FLT. This law is also known

as the law of conservation. It states that the energy can be changed from

one form to another form however it can be neither created nor destroyed.

Mathematically, it is define as

∆U = Q−W,

where ∆U is the internal energy change, Q represents heat measure and W

is the work done.
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Figure 2.3: Example of First Law of Thermodynamics

The example of the FLT is the flow of energy in a diesel engine, at a

point when a motor consumes fuel it changes over the energy gathered in the

fuel’s substance bonds into heat and fruitful mechanical work. According

to the FLT when the majority of the fuel’s energy is discharged by blazing

in the chambers it does’nt vanish. For each hundred units of fuel energy

that is blazed in the motor a hundred units of changed over energy needs

to finish up some place. It does’nt vanish.

2.6.3 Second Law of Thermodynamics

In 1850, Clausius established the framework for the second law of thermo-

dynamics by inspecting the connection between heat exchange and work

[86]. His defination of the second law of thermodynamics was published in

1854 in German, which states that, without other same change heat can

never go from a colder body to a hotter body, associated therewith hap-

pening in the meantime [87]. From conventional experience of refrigeration,

heat can’t suddenly spill out of cold areas to hot areas without outside work
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Figure 2.4: Example of Second Law of Thermodynamics

being performed on the system. For instance, in a refrigerator heat streams

from cold to hot, however just when constrained by an outer assistant, the

refrigeration system.

Thomson stated the second law of thermodynamics as, It is impracti-

cal, by means of extinct material firm, to get mechanical impact from any

segment of matter by cooling it underneath the temperature of the coldest

of the atmosphere substances [88].

2.6.4 Entropy

In 1865, Clausius formulated the term entropy. He had seen that a specific

proportion was consistence in perfect or reversible heat cycles. The pro-

cess was heat transaction to simple temperature. Clausius chose that the

rationed proportion must compare to genuine physical amount and gave it

name entropy [89]. We can write it mathematically as

S =
Q

T
,
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Figure 2.5: Example of Entropy

where S is the symbol of entropy, Q is the heat substance and T represents

temperature. The change in entropy is always positive.

2.6.5 Third Law of Thermodynamics

The third law of thermodynamics was created by physicist Nernst (1906-

1912) [90]. This law states that, for a limited number of physical processes

it is not feasible for a physical system or object to have an absolute zero

temperature. In 1923, Lewis and Randall expressed the alternative form of

the third law of thermodynamics which states that, each substance has a

limited positive entropy if the entropy of every component in a few crys-

talline state be taken as zero at the absolute zero of temperature, however

without a doubt the zero of temperature the entropy may become zero and

does as such become on account of perfect crystalline substances [91].

2.7 Thermodynamics in Black Hole

BH thermodynamics [92] is the territory of concentrate that tries to accom-

modate the laws of thermodynamics with the presence of BH EH’s. The
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Figure 2.6: Example of Third Law of Thermodynamics
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laws of BH mechanics are physical properties that BH are accepted to ful-

fill. In 1970, Hawking discovered the four laws of BH mechanics with Carter

and Bardeen, drawing a similarity with thermodynamics [93, 94].

2.7.1 Zero Law of Black Hole Mechanics

The zero law of BH states that, for a static BH horizon has a constant

surface gravity. i.e., it could never be achievable to twist a BH so fast that

it would break separated.

2.7.2 First Law of Black Hole Mechanics

The difference in energy is identified with change of region, angular mo-

mentum and electric charge for perturbation of static BH

dE =
k

8π
dA+ ΩdJ + ΦdQ,

where E represents energy, k is the surface gravity, A defines HA, Ω is angu-

lar velocity, J is angular momentum, electrostatic potential is represented

as Φ and Q is the electric charge.

2.7.3 Second Law of Black Hole Mechanics

This law is the remark of Hawking’s area theorem. It expresses that for a

spontaneous process the change in entropy is always greater and equal to

zero in an isolated system, recommending a connection among the HA of

BH and entropy
dA

dt
≥ 0.

2.7.4 Generalized Second Law of Thermodynamics

Bekenstein [95] proposed a generalized version of the second law of thermo-

dynamics which states that the sum of BH entropy SBH , and the entropy
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of matter in the BH outer region S, always increases. Mathematically, it

can be represented as

ṠBH + Ṡ ≥ 0.

2.7.5 Third Law of Black Hole Mechanics

This law states that without surface gravity the BH cannot form. Express-

ing that k can’t go to zero is practically equivalent to third law of BH

thermodynamics which expresses that the entropy of the system at total

zero is a well defined constant.

2.8 Thermal Equilibrium Condition

If there is no net progression of thermal energy among two physical sys-

tems when they are associated with each other and exchange no heat, then

they are in thermal equilibrium. It obeys the zero law of thermodynamics.

Two systems are in thermal equilibrium with each other, if the following

condition holds:

S̈tot ≤ 0,

where double dot represents the double derivative with respect to time.

2.8.1 Bekenstein-Hawking Entropy

The Bekenstein-Hawking entropy [96] or BH entropy is the measure of en-

tropy that must be appointed to BH with the end goal for it to consent to

the laws of thermodynamics as they are explained by observers outside to

that BH. BH entropy is an idea with geometric root however with numerous

physical results. In Einstein’s gravity Bekenstein-Hawking entropy relation

is,

SBH =
A

4G
,

where A is the area of the AH, given as, A = 4πr2.
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Figure 2.7: The Bekenstein-Hawking entropy is the entropy to be attributed
to any BH: one fourth of its HA expressed in units of the Planck area

2.8.2 Rényi Entropy

Recently, Rényi generalized entropy have extensively used in order to study

various gravitational and cosmological framework. The Rényi entropy is

also important in quantum information where it can be used as a measure

of tangle [97]. Here we define Rényi entropy to check the validity of GSLT,

we have

S =
1

δ
ln(1 +

δA

4
),

where δ = 1−Q.

2.8.3 Logarithmic Corrected Entropy

The entropy-area relation including quantum corrections conduct curva-

ture corrections within Einstein-Hilbert action. The Bekenstein-Hawking
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logarithmic corrected entropy [98] is defined by the relation

S =
A

4G
+ α ln

A

4G
+ β

4G

A
+ γ,

where α, β and γ are dimensionless constants, apart from the exact values

of these constants are still checked.

2.8.4 Sharma-Mittal Entropy

The unique entropy measure is the Sharma-Mittal entropy [99] that permits

rise to a thermostatistics, which is

SSM =
1

1− r
[(1 +

δA

4
)
1−r
δ − 1],

where r is the free parameter.

2.9 Modified Theories

The excessively interesting way is the modified gravity, for the DE and

late time accelerating universe application. It gives the natural substi-

tute for DE and useful in high energy physics. It defines the transition

of non-phantom phase to phantom phase and from deceleration phase to

acceleration phase [100]-[102]. To account the late acceleration and early

inflation and to characterize the universe history in the general context

of modified gravity, higher order gravities have been proposed [103]-[108].

A more profound comprehension of Einstein-Hilbert gravity arranged by

higher order gravities and in general modified gravities . The development

of modified theories begin from the Einstein Lagrangian and incorporate

additional term for example, in Weyl gravity [109, 110], in f(G) gravity

[111, 112], in f(R) gravity [113]-[115], in Lovelock gravity [116] etc.

In 1915, Einstein proposed the general theory of relativity and the

present characterization of gravitation in modern physics. Giving a coop-

erative depiction of gravity as a geometric property of spacetime or space

and time, it generalizes the special relativity and supplants Newton’s law
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of universal gravitation. GR anticipate the gravitational curving of light by

enormous body. In 1970, Buchdahl [6] proposed a form of modified theory

f(R) which is the extension of Einstein’s theory. This theory is a group of

family, each one characterized by a distinct function f of the Ricci scalar R.

There might be opportunity to clarify the CA and structure arrangement

of the cosmos without including unknown types of DE and dark matter, as

a result of presenting an arbitrary function.

2.10 f (R, T ) Theory

The f(R, T ) gravity is the extension of f(R) theory proposed by Harko [7],

which is an explicit coupling of an arbitrary function of R with the trace of

energy-momentum tensor T. The action for this gravity is

S =
1

16π

∫ √
−gd4xf(R, T ) +

∫ √
−gd4xLm,

where Lm is the matter Lagrangian and T is the trace of energy-momentum

tensor. The stress-energy tensor is defined as

Tµν = −2δ(
√
−gLm)

δgµν
√
−g

,

its trace is T = gµνTµν . The variation of Christoffel symbols is

δΓλµν =
gλα

2
(∇µδgνα +∇νδgαµ −∇αδgµν).

The Ricci scalar variation gives the following expression

δR = Rµνδg
µν + gµν2δg

µν −∇µ∇νδg
µν .

The field equation for this model is defined as

fR(R, T )Rµν −
f(R, T )gµν

2
+ (gµν2−∇µ∇ν)fR(R, T )

= 8πTµν − fT (R, T )Tµν − fT (R, T )Θµν ,

where∇µ corresponds to the covariant derivative, 2 ≡ ∇µ∇µ is the d’Alembert

operator and

Θµν ≡ gαβ
δTαβ
δgµν

.
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2.11 f (R, T φ) Theory

We examine the self-interacting case of f(R, T ) gravity which is f(R, T φ)

gravity with a SF. The action for the f(R, T φ) gravity is [7]

S =
1

2

∫ √
−gd4x[f(R, T φ) + 2Lφ],

where Lφ represents matter Lagrangian density, is descibed as

Lφ = −εφ̇
2(t)

2
+ V (φ).

The energy-momentum tensor of matter source is

Tµν = −2δ(Lφ
√
−g)√

−gδgµν
.

The field equations for this gravity are

fR(R, T φ)Rµν −
f(R, T φ)gµν

2
+ (gµν2−∇µ∇ν)fR(R, T φ)

= TµνfT (R, T φ)(Tµν + Θµν),

Θµν ≡ gαβ
δT φαβ
δgµν

.

The energy-momentum tensor of a SF with self-interacting scalar potential

V (φ) is

T φµν = εφ,µφ,ν − gµν
[
εg%σ

2
φ,%φ,σ − V (φ)

]
,

where ε = ±1 correspond to the phantom and quintessence SF. Its trace is

T φ = gµνT φµν .
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Chapter 3
Thermodynamic Consequences
of Specific Modified Gravity on
the Apparent Horizon

23



In this chapter, we examine the GSLT and thermal equilibrium condition in

f(R, T φ) gravity by implementing the first-order formalism. We take three

distinct models of Hubble parameter. By using these models, we observe the

GSLT and thermal equilibrium condition. We show our results graphically

for flat as well as non-flat FRW universe at AH with Bekenstein-Hawking

entropy. The results of this chapter are compiled and accepted in the form

of a paper.

3.1 Basics of f (R, T φ) theory

The case of self-interacting SF in f(R, T ) gravity yields the f(R, T φ) gravity

[117]. Here we introduce first-order formalism to evaluate analytical mod-

els corresponding to the f(R, T φ) theory. We use the model f(R, T φ) =

−R/4 + λT φ, [118] where λ is known as model parameter. The relevant

action (The time integral of the Lagrangian is called the action denoted by

S) in f(R, T φ) gravity is

S =

∫
d4x
√
−g
[
−R
4

+ λT φ + L(φ, ∂νφ)

]
. (3.1.1)

Here, we choose 4πG = c = 1 throughout this article. The related field

equations are

Gαβ = 2(T φαβ − gαβλT
φ − 2λ∂αφ∂βφ), (3.1.2)

where Gαβ is the Einstein tensor and T φαβ is the energy-momentum tensor

of the SF. In addition to, it is most convenient to define a field theory by

specifying the Lagrange density, from which all equations of motion can be

derived, here we are dealing with standard Lagrangian density for real SF,

which is

L =
1

2
∂µφ∂

µφ− V (φ), (3.1.3)

where V(φ) assumed as self-interacting potential. However, the energy-

momentum tensor is described as

T φαβ = ∂αφ∂βφ− gαβL, (3.1.4)
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the trace of energy-momentum tensor is defined as T φ = gαβT φαβ which

becomes

T φ = φ̇2 + 4V (φ), (3.1.5)

where dot represents derivative with respect to t. The line element of FRW

model is

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
, (3.1.6)

where a(t) is the scale factor and k represents curvature of the space:

• k = 0 ⇒ flat space-time,

• k = +1 ⇒ spherical curvature,

• k = −1 ⇒ hyperbolic geometry.

From Eq.(3.1.2), the corresponding field equations are

H2 =
2

3
ρeff − k

a2
, (3.1.7)

H2 + Ḣ = −peff − k

2a2
, (3.1.8)

where H is denoted as Hubble parameter, which depends on scale factor

a(t), the function of time t i.e (H = ȧ
a
), here ρeff and peff are

ρeff =

(
1

2
− λ
)
φ̇2 + (4λ− 1)V (φ), (3.1.9)

peff = −
(

1

2
− λ
)
φ̇2 + (4λ− 1)V (φ). (3.1.10)

By using Eqs.(4.1.6) and (4.1.7), we have

Ḣ = −(ρeff + peff ) +
k

a2
. (3.1.11)

The equation of motion for SF is acquired as

(1− 2λ)(φ̈+ 3Hφ̇) + (1− 4λ)Vφ = 0, (3.1.12)
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where φ in subscript represents the derivative with respect to φ. With the

assumption of first-order formalism [117], the Hubble parameter is given by

H = W (φ). (3.1.13)

From the field equations, the potential of SF is established as

V (φ) =
1

4λ− 1

(
3

2
H2 − (

1

2
− λ)φ̇2 +

3k

2a2

)
. (3.1.14)

By substituting H = W (φ) into Eq. (4.2.2), we have

(1− 2λ)φ̇2 +Wφφ̇−
k

a2
= 0, (3.1.15)

which is a quadratic equation and has two roots

φ̇ =
−Wφ ±

√
W 2
φ + (4k

a2
)(1− 2λ)

2(1− 2λ)
, (3.1.16)

each of which is first-order differential equation. For flat universe (k = 0),

Eq.(4.2.6) yields the following two solutions

φ̇ = 0, and φ̇ = − Wφ

1− 2λ
. (3.1.17)

We here choose three models of the Hubble parameter, which are W (φ) =

eb1φ [117], W (φ) = b2(φ
3

3
− φ) [119] and W (φ) = b3 sinh(φ) [120], where

b1, b2 and b3 are real constants. Now, the first-order differential equation

φ̇ = − Wφ

1−2λ
, for the three different models of W (φ) is satisfied by

• φ(t) = 1
b1

ln[ 1−2λ
b21(t+c1)

]

• φ(t) = tanh[ b2(t+c2)
1−2λ

]

• φ(t) = 2 arctanh[tan[ b3t
2−4λ

+ c3
2

]]

where c1, c2 and c3 are constant parameters. However, in the case of closed

and open universe (k = ±1), Eq.(4.2.6) gives two roots of φ+ and φ− which

are solved numerically for the Hubble parameter W(φ).
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3.2 Thermodynamics Laws

Thermodynamics is the branch of physics which concerned with heat and

temperature and their relation to energy and work. It is discussed on micro-

scopic and macroscopic levels. The quantities like pressure, volume, internal

energy, temperature and entropy are discussed in this branch. Now, we are

interested to explore the generalized thermodynamics laws in the context

of the f(R, T φ) gravity. The fundamental purpose of the next sections is to

construct the FLT and GSLT in f(R, T φ) gravity.

3.2.1 First law of thermodynamics

Here, we are going to study the FLT in f(R, T φ) gravity at AH for FRW

universe. To review this law, firstly we find the dynamical AH calculated

by the condition [121] hµν∂µRA∂νRA = 0, hµν is a two-dimensional metric

which is interpreted as hµν = diag(1, a2

1−kr2 ). The above condition gives the

AH as

RA =
1√

H2 + k
a2

.

From the above expression, we get

dRA = HR3
A(ρeff + peff )dt, (3.2.1)

where dRA through small time interval dt clarify infinitesimal change in the

radius of AH. Moreover, Bekenstein-Hawking entropy relation is given by

S = A
4G
, where A is the area of the AH given as, A = 4πr2 [122, 66]. We

rewrite Eq.(4.2.8) as

G

2πRA

dS = HR3
A(ρeff + peff )dt. (3.2.2)

The temperature of the AH is defined as [123]

Th =
|ksg|
2π

, ksg =
1

2
√
−h

∂µ(
√
−hhµν∂νRA)

= − 1

RA

(1− ṘA

2HRA

) = −RA

2
(2H2 + Ḣ). (3.2.3)
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By multiplying both sides of Eq.(4.2.9) with a term −Th = 1
2πRA

(1− ṘA
2HRA

),

we can get

ThdS = [−4πHR3
Adt+ 2πR2

AdRA](ρeff + peff ). (3.2.4)

Now, we are going to explain the energy content of the universe within the

AH. The Misner-Sharp energy is described as E = RA
2G
. Defining the volume

of the 3-dimensional sphere on the AH as V =
4πR3

A

3
, the energy density can

be written in term of volume as

Ẽ =
3(H2 + k

a2
)

2
V ≡ ρeffV, (3.2.5)

Eq.(4.2.12) shows that Ẽ is directly related to AH radius, so the small

displacement dRA in horizon radius will cause the infinitesimal change which

is established as

dẼ = −4πR3
A(ρeff + peff )dt+ 4πR2

Aρ
effdRA. (3.2.6)

Additionally, putting together Eqs.(4.2.11) and (4.2.13), it follows that

ThdS = dẼ − 2πR2
A(ρeff − peff )dRA. (3.2.7)

Introducing the work density, we find out

W̃ = −1

2
(T (M)µνhµν + T̃ (de)µνhµν) =

1

2
(ρeff − peff ), (3.2.8)

here T (M)µνhµν is the energy density of the matter and T̃ (de)µνhµν is the en-

ergy density of the dark components. Using the work density in Eq.(4.2.14),

it results in

ThdS = dẼ − W̃dV. (3.2.9)

Thus, the FLT on the AH satisfies in f(R, T φ) gravity.

3.2.2 Generalized second law of thermodynamics

Bekenstein [95] proposed a generalized version of the second law of thermo-

dynamics by utilizing the conjectured proportionality among BH entropy

and HA. Thoroughly, the generalized entropy relation satisfies the condition

Ṡtot = Ṡ + Ṡin ≥ 0, (3.2.10)
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here Ṡtot is the entropy of all energy sources inside the horizon, Ṡ corre-

sponds to the entropy associated with the horizon and Ṡin represents the

sum of all entropy components inside the horizon. Let us continue with

the modified FLT, to establish the GSLT in this formulation of f(R, T φ)

gravity, we can write Gibb’s equation as

TidSi = dEi + pidV. (3.2.11)

The Gibb’s equation relates the entropy of energy sources inside the horizon

to density and pressure in the horizon is defined as E = ρV and W = −p.
Eq.(4.2.18) can be expressed as

TindSin = 4πR2
A(ṘA −HRA)(ρi + pi). (3.2.12)

Tin signify the temperature for all the component insides the horizon. Here∑
i(ρ

i + pi) = ρeff + peff , combining the total entropy inside the horizon,

it becomes

TindSin = 4πR2
A(ṘA −HRA)(ρeff + peff ), (3.2.13)

which leads to

Ṡ = −
8π2H(Ḣ − k

a2
)

(H2 + k
a2

)
4
2

. (3.2.14)

In case of thermal equilibrium, Tin = Th, Eq. (4.2.20) implies

Ṡin =
4πR2

A

Th
(ṘA −HRA)(ρeff + peff ). (3.2.15)

After some calculations, we have

Ṡin = 16π2

(H(− (Ḣ − k
a2

)− (H2 + k
a2

)

)
(−Ḣ + k

a2
)(

2(H2 + k
a2

) + (Ḣ − k
a2

)

)
(H2 + k

a2
)
4
2

)
. (3.2.16)

Hence, by substituting Eqs.(4.2.21) and (4.2.23) in (4.2.17), it indicates the

relation of GSLT of the form

Ṡtot = 4π2

[4W

[
− (Wφφ̇− k

a2
)− (W 2 + k

a2
)

]
(−Wφφ̇+ k

a2
)[

2(W 2 + k
a2

) + (Wφφ̇− k
a2

)

]
(W 2 + k

a2
)
4
2
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−
2W (Wφφ̇− k

a2
)

(W 2 + k
a2

)
4
2

]
, (3.2.17)

where a = 1
1+z

, W is in the form of Hubble parameter for which we choose

three different forms and φ̇ defines in (4.2.7).

3.3 GSLT for Flat Spacetime: k = 0

In the following, we observe the behavior of GSLT and thermal equilibrium

condition for Bekenstein entropy at AH for flat universe, with three different

forms of W (φ).

W = eb1φ:
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Figure 3.1: Plot of Ṡtot versus
φ for Bekenstein entropy along
with W = eb1φ and k = 0.
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Figure 3.2: Plot of S̈tot versus
φ for Bekenstein entropy along
with W = eb1φ and k = 0.

In Figure 3.1, we plot Ṡtot versus φ for Bekenstein entropy at AH with

the values b = 5 and λ = −5. The trajectory of Ṡtot confirms the validity of

GSLT at φ ≤ 0.15 with flat spacetime. In Figure 3.2, we plot S̈tot versus

φ for Bekenstein entropy at AH with the same values of b and λ. The

trajectory of S̈tot ≤ 0 shows the condition of thermal equilibrium satisfies

with flat spacetime.
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Figure 3.3: Plot of Ṡtot versus
φ for Bekenstein entropy along
with W = b2(φ

3

3
− φ) and k = 0.
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Figure 3.4: Plot of S̈tot versus
φ for Bekenstein entropy along
with W = b2(φ

3

3
− φ) and k = 0.

W = b2(
φ3

3 − φ):

We plot Ṡtot versus φ by taking b = 7 and λ = 7 in Figure 3.3 for Beken-

stein entropy at AH. The trajectory of Ṡtot increases in positive direction

which shows validity of GSLT for flat spacetime. In Figure 3.4, by taking

the same values of b and λ, we plot S̈tot versus φ for Bekenstein entropy

at AH. The trajectory of S̈tot ≤ 0 and satisfies the thermal equilibrium

condition for flat spacetime.

W = b3 sinh(φ):
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Figure 3.5: Plot of Ṡtot versus
φ for Bekenstein entropy along
with W = b3 sinh(φ) and k = 0.
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Figure 3.6: Plot of S̈tot versus
φ for Bekenstein entropy along
with W = b3 sinh(φ) and k = 0.

In Figure 3.5, we plot Ṡtot versus φ for Bekenstein entropy with b = −6

and λ = 1.5. The trajectory of Ṡtot confirms the validity of GSLT for early
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Figure 3.7: Plot of S ′ with z for Bekenstein entropy along with W = eb1φ

and k = 1, for φ+ on left and φ− on right.

time at φ < 0.4 with flat spacetime at AH. In Figure 3.6, for the same

values of b and λ we plot S̈tot versus φ for Bekenstein entropy at AH. The

trajectory of S̈tot shows the condition of thermal equilibrium satisfies for

flat spacetime at early time.

3.4 GSLT for Closed Spacetime: k = 1

In this section, we observe the behavior of GSLT and thermal equilibrium

condition for Bekenstein entropy at AH for closed universe, with different

values of Hubble parameter W (φ).
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Figure 3.8: Plot of S ′′ versus z for Bekenstein entropy along with W = eb1φ

and k = 1, for φ+ on left and φ− on right.
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W = eb1φ:

In Figure 3.7, we plot in terms of redshift and the axis label assign as

S ′ ≡ dS
dz

with Bekenstein entropy at AH with the following values b = 5

and λ = −5. The entropy in left figure tends to zero at present and future

times and remains negative at early times, for present and future times it

fulfills the condition S ′ ≥ 0 which shows GSLT is valid and the entropy in

right figure remains zero at early and present times, tends to positive at

future times which confirms the validity of GSLT. In Figure 3.8, we plot

S ′′ versus z, the axis label assign as S ′′ ≡ d2S
dz2

by taking same values of

b and λ the trajectory of left figure is remains negative at early time but

it tends to zero at present and future times which confirms the thermal

equilibrium condition (S ′′ ≤ 0) at past, present and future times and the

right side trajectory remains zero at past and present times and it tends to

negative at future time so the condition of thermal equilibrium confirms at

each time at AH for closed spacetime along with Bekenstein entropy.

W = b2(
φ3

3 − φ):

By using the following values of b = 7 and λ = −7 in Figure 3.9, the

entropy (left side) remains positive at each time which shows the validity

of GSLT for closed spacetime together with Bekenstein entropy at AH and

the entropy (right side) remains negative for each time but it leading to

zero for z < −0.2 at future time for which GSLT is valid. In Figure 3.10,

with the same values of b and λ the left and right side trajectory gradually

decreasing at early, present and future times and increasing at future time

for z ≤ −0.3, it tends to a negative d2S
dz2

which shows the thermal equilibrium

condition satisfies at past, present and future times for closed spacetime at

AH.
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Figure 3.9: Plot of S ′ versus z for Bekenstein entropy along with W =
b2(φ

3

3
− φ) and k = 1, for φ+ on left and φ− on right.
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Figure 3.10: Plot of S ′′ versus z for Bekenstein entropy along with W =
b2(φ

3

3
− φ) and k = 1, for φ+ on left and φ− on right.

35



-0.5 0.0 0.5 1.0
0.35

0.40

0.45

0.50

0.55

0.60

z

S 
to

t

-0.5 0.0 0.5 1.0

-0.000025

-0.00002

-0.000015

-0.00001

-5.´10-6

0

z

S 
to

t

Figure 3.11: Plot of S ′ versus z for Bekenstein entropy along with W =
b3 sinh(φ) and k = 1, for φ+ on left and φ− on right.
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Figure 3.12: Plot of S ′′ versus z for Bekenstein entropy along with W =
b3 sinh(φ) and k = 1, for φ+ on left and φ− on right.

36



W = b3 sinh(φ):

We use the same values of b and λ in Figure 3.11 with Bekenstein entropy

at AH. The left side entropy gradually decreasing towards present and fu-

ture times and also at future time it tending to zero. GSLT is valid for

closed spacetime at each time as S ′ ≥ 0 and the right side entropy shows

the validity of GSLT at present and future times for closed space time as for

present and future times entropy leading to zero but at early time entropy

decreases. In Figure 3.12, for Bekenstein entropy at AH, the trajectory

of left side tends to a negative d2S
dz2

at present and future times and remains

zero at early time and the right side trajectory shows S ′′ leading to zero at

present and future times and remains negative at early time. For both the

condition of thermal equilibrium satisfies for closed spacetime.

3.5 GSLT for Open Spacetime: k = −1

For Bekenstein entropy at AH for with different values of Hubble parameter

W (φ), we observe the validity of GSLT and thermal equilibrium condition

for open universe in the following.

W = eb1φ:

By utilizing Bekenstein entropy at AH with the same values of b and λ in

Figure 3.13, the entropy (left figure) remains negative at early time but

leads to zero at present and future times which confirms the validity of

GSLT for open spacetime and the entropy (right figure) is positively mov-

ing towards future time and it tends to zero for early and present times.

Hence, GSLT is valid at each time for open spacetime. In Figure 3.14, by

using the same values of b and λ we plot S ′′ along redshift. The trajectories

(left and right figures) show that the condition of thermal equilibrium sat-

isfies for past, present and future times with open spacetime together with

Bekenstein entropy at AH.
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Figure 3.13: Plot of S ′ versus z for Bekenstein entropy along with W = eb1φ

and k = −1, for φ+ on left and φ− on right.
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Figure 3.14: Plot of S ′′ versus z for Bekenstein entropy along with W = eb1φ

and k = −1, for φ+ on left and φ− on right.
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Figure 3.15: Plot of S ′ versus z for Bekenstein entropy along with W =
b2(φ

3

3
− φ) and k = −1, for φ+ on left and φ− on right.

W = b2(
φ3

3 − φ):

In Figure 3.15, by following the values b = 7 and λ = 7 we plot S ′ versus

z for Bekenstein entropy at AH. The entropy of left side shows the validity

of GSLT for open spacetime, S ′ is positively increases from early time to

present and future times and the right side entropy positively decreases

at early and present times and tends to zero at future time. Thus, the

GSLT is valid for both. In Figure 3.16, for Bekenstein entropy at AH, left

trajectory shows S ′′ < 0 for future time and gradually decreases and right

trajectory shows S ′′ remains zero at early time and it tends to a negative

d2S
dz2

at present and future times. Thus, it confirms the condition of thermal

equilibrium for both trajectories with open spacetime.
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Figure 3.16: Plot of S ′′ versus z for Bekenstein entropy along with W =
b2(φ

3

3
− φ) and k = −1, for φ+ on left and φ− on right.

W = b3 sinh(φ):

At AH with the same values of b and λ in Figure 3.17, along with Beken-

stein entropy. The entropy remains positive at each time and leading to

zero at future time (left figure) and the entropy (right figure) remains neg-

ative at early time and tends to zero at present and future times. Hence,

the GSLT is valid for both figures for open spacetime. In Figure 3.18, the

left and right figures trajectory shows that the condition of thermal equi-

librium satisfies for both at each time with open spacetime at AH together

with Bekenstein entropy.
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Figure 3.17: Plot of S ′ versus z for Bekenstein entropy along with W =
b3 sinh(φ) and k = −1, for φ+ on left and φ− on right.
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Figure 3.18: Plot of S ′′ versus z for Bekenstein entropy along with W =
b3 sinh(φ) and k = −1, for φ+ on left and φ− on right.
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Chapter 4
Thermodynamic Implications
of Multiquintessence Scenario
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In this chapter, we discuss the GSLT and thermal equilibrium condition

for flat FRW universe in multi-quintessence SF. We here following the first-

order formalism and chose three superpotential models of W (φ). We repre-

sent our results graphically at HH along with Bekenstein-Hawking entropy.

Also, we observe the GSLT and thermal equilibrium condition for flat FRW

universe at HH along with Bekenstein-Hawking entropy for three different

entropies which are Renyi entropy, logarithmic-corrected entropy as well

as Sharma-Mittal entropy. The results of this chapter are compiled and

submitted in the form of a paper.

4.1 First-order formalism of multiquintessence

scenario

We define the first-order formalism [117, 124] for the coupled SF’s with

gravity. The action [81] of four-dimensional gravity is given in the form

S =

∫
d4x
√
|g|
[
−R
4

+
1

2
gab∇aφi∇bφi − V (φi)

]
, (4.1.1)

where φi, i = 1, 2, ..., N, defines real SF’s, coupled to a set and V (φ) ≡
(φ1, φ2, ..., φN) is the potential which characterize the theory on the subject

of a limited arbitrary number of SF’s, we here assuming that c = 4πG = 1.

The field equations for this model are

H2 =
2ρ

3
,

ä

a
= −ρ

3
− p, (4.1.2)

where double dots represents the derivative with respect to time, ρ describes

the energy density and p is the pressure of the system, respectively. The

energy density and pressure are given as [81]

ρ =
N∑
j=1

φ̇2
j

3
+

3W (φi)
2

2
− 1

2

N∑
i=1

W 2
φi
,
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From Eq.(4.1.1), the equation of motion for SF’s is defined as

φ̈i + 3Hφ̇i + Vφi = 0, (4.1.4)

where φi in subscript defines the derivative with respect to φi, Vφi ≡ dV
dφi

and φi = φi(t). By following the first-order formalism, the Hubble parameter

H = −Wφi , which leads to

φ̇i = Wφi , i = 1, 2, ..., N. (4.1.5)

By solving the field equation, the potential term we have

V (φi) =
3W (φi)

2

2
− 1

2

N∑
i=1

W 2
φi
. (4.1.6)

We defining the models of Hubble parameter and corresponding solutions

of SF’s. The models are:

4.1.1 Model 1

Firstly, we choose the superpotential that is Z2 model [125] and the direct

sum of sine-Gordon [126], given by

W (φ1, φ2) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sinh(φ2) + α1, (4.1.7)

where λ1, λ2 and α1 are arbitrary constants. Table 1, shows the first-order

equations and corresponding solutions of SF’s.

Table 1:
φ̇i, i = 1, 2 φi(t)

λ1(1− φ2
1) tanh(λ1t)

λ2 cosh(φ2) arcsinh[tan(λ2t)]

4.1.2 Model 2

The second superpotential is the combination of sine-Gordon, Z2 and BNRT

models [127], we have

W (φ1, φ2, φ3, φ4) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sinh(φ2)
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−λ3φ3 +
λ3φ

3
3

3
+ µ3φ3φ

2
4 + α2. (4.1.8)

The first-order equations and solutions of φ1 and φ2 are same as in model

1. In Table 2, we show the differential equations and their solutions.

Table 2:

φ̇i, i = 3, 4 φ
(k)
i (t), k = 1, 2(
√
c2o−4

)
sinh(2µ3t)

(
√
c2o−4) cosh(2µ3t)−co

,

−λ3(1− φ2
3) + µ3φ

2
4 (

√
1−16co

)
sinh(4µ3t)

(
√

1−16co) cosh(4µ3t)+1
,

where co < −2 and λ3 = µ3.

2(
√
c2o−4

)
cosh(2µ3t)−co

,

2µ3φ3φ4

− 2(
√

1−16co

)
cosh(4µ3t)+1

,

where co <
1
16

and λ3 = 4µ3.

4.1.3 Model 3

For third model [128], the superpotential is as follows

W (φ1, φ2, φ3, φ4) = λ1

(
φ1 −

φ3
1

3

)
+ λ2 sin(φ2)− λ3φ

3
3

3

−φ2
3φ4 + φ4 −

φ3
4

3
+ α3, (4.1.9)

where α3 is an arbitrary constant. The first-order differential equations

and solutions of φ1 and φ2 are of model 1. Table 3, shows the first-order

differential equations and solutions of the equations which satisfies the dif-

ferential equations.
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Table 3:

φ̇i, i = 3, 4 φi(t)

4

(
(c2
o(λ

2
3 + 4)− λ2

3 − 5) sinh(2t)

−λ3φ
2
3 − 2φ3φ4 +(c2

o(λ
2
3 + 4)− λ2

3 − 3) cosh(2t))

+ 2co
√
λ2

3 + 4

)−1

.(
(c2
o(λ

2
3 + 4)− λ2

3 − 3) sinh(2t)

+(c2
o(λ

2
3 + 4)− λ2

3 − 5) cosh(2t)− 2λ3

)
×

−φ2
4 − φ2

3 + 1

(
c2
o(λ

2
3 + 4)− λ2

3 − 5) sinh(2t)

+(c2
o(λ

2
3 + 4)− λ2

3 − 3) cosh(2t)) + 2co
√
λ2

3 + 4

)−1

.

4.2 GSLT and Thermal Equilibrium Condi-

tion

In next sections, we study the validity of GSLT of the multiquintessence at

HH for flat FRW universe. HH is given as

RA =
1

H
.

From the above expression, we get

dRA = HR3
A(ρ+ p)dt. (4.2.1)

The Bekenstein entropy is defined as S = A
4G
, where A = 4πr2 is the area of

the horizon [122, 66]. By using the Bekenstein entropy, Eq.(4.2.1) becomes

G

2πRA

dS = HR3
A(ρ+ p)dt. (4.2.2)

The temperature of the horizon is defined as [129]

Th =
|ksg|
2π

, ksg =
1

2
√
−h

∂µ(
√
−hhµν∂νRA)

= − 1

RA

(1− ṘA

2HRA

) = −RA

2
(2H2 + Ḣ). (4.2.3)
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Multiplying Th = − 1
2πRA

(1− ṘA
2HRA

) on both sides of Eq.(4.2.2), we have

ThdS = [−4πHR3
Adt+ 2πR2

AdRA](ρ+ p). (4.2.4)

Now, we define the Misner-sharp energy which is E = RA
4G
, we describe the

energy density in terms of the volume V =
4πR3

A

3
, which becomes

Ẽ =
3H2

8πG
V ≡ ρV. (4.2.5)

By taking the differential of the energy density, we easily find

dẼ = −4πHR3
A(ρ+ p)dt+ 4πR2

AρdRA. (4.2.6)

Assembling Eqs.(4.2.4) and (4.2.6), we can obtain

ThdS = dẼ − 2πR2
A(ρ− p)dRA. (4.2.7)

The work density is defined as

W̃ = −1

2
(T (M)µνhµν + T̃ (de)µνhµν) =

1

2
(ρ− p), (4.2.8)

utilizing the work density in Eq.(4.2.7), we get

ThdS = dẼ − W̃dV. (4.2.9)

Eq.(4.2.9) shows that FLT is satisfied in multi-component SF.

However, GSLT states that sum of the BH entropy and the entropy of

the BH external region can never be decreases [95]. The condition that

satisfies the entropy relation, described as

Ṡtot = Ṡ + Ṡin ≥ 0, (4.2.10)

where Ṡtot is the total entropy of the energy and matter inside the horizon, Ṡ

relates to the horizon entropy and Ṡin correspond to the inner horizon with

the sum of all entropy components. To study the GSLT, we now proceed

with modified FLT,

TidSi = dEi + pidV, (4.2.11)
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which can be written as

TinṠin = 4πR2
A(ṘA −HRA)(ρi + pi). (4.2.12)

Tin denotes the temperature of the inner horizon for all components. Here∑
i(ρ

i + pi) = ρ+ p, the total entropy inside the horizon becomes

TindSin = 4πR2
A(ṘA −HRA)(ρ+ p). (4.2.13)

Taking the time derivative of Bekenstein entropy, we find out

Ṡ = −2πḢ

H3G
(4.2.14)

The thermal equilibrium set with Tin = Th and Eq.(4.2.13) leads to

Ṡin =
1

Th
(ρ+ p)4πR2

A(ṘA −HRA). (4.2.15)

After some calculations, it results

Ṡin =
4π

G

[
Ḣ(Ḣ +H2)

H3(Ḣ + 2H2)

]
. (4.2.16)

By putting Eqs.(4.2.14) and (4.2.16) in (4.2.10), we get

Ṡtot =
π

W 2

[
16πW 2

φ(−W 2
φ +W 2)

W (−W 2
φ + 2W 2)

−
2W 2

φ

W

]
. (4.2.17)
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Figure 4.1: Plot of Ṡtot versus t
for model 1.
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Figure 4.2: Plot of S̈tot versus t
for model 1.
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• For Model 1: In Figure 4.1, we plot graph of Ṡtot versus time for

Bekenstein entropy at HH for flat spacetime. We choose values of

parameter λ1 = 8, 8.5, 9, λ2 = −4, α = 5. All trajectories are

decreasing positively with the increasing value of t, which shows the

validity of GSLT. In Figure 4.2, for λ1 = 8, the trajectory is initially

negative, while shows transition towards after some epoch. It means

thermal condition holds at the present as well as early epoch but

remains invalid in the later epoch. However, the trajectories remain

in the negative phase which exhibits the validity of thermal condition

for λ1 = 8.5, 9.

• For Model 2: Figure 4.3, shows the graph of Ṡtot versus t. With

the same values of λ1, λ2, λ3 = 5, c = 5, µ = 5.5 and α = 4. All

trajectories are gradually increasing in positive direction at present

epoch as well as later epoch with the increasing value of t which leads

to the validity of GSLT. Figure 4.4, shows that for λ1 = 8 the trajec-

tory remain in negative phase at later epoch which fulfills the thermal

condition and for λ1 = 8.5, 9, trajectories show decreasing behavior

towards positive direction at later epoch and cannot maintain the

stability of thermal condition.

• For Model 3: By taking the same values of λ1, λ2, λ3, c and α =

−6.5, Figure 4.5, demonstrate that for λ1 = 9, GSLT preserved the

validity in the later epoch while remains invalid for other two cases of

λ1 = 8, 8.5. Figure 4.6, shows that thermal equilibrium condition

at the later epoch for λ1 = 8. However, thermal stability occurs for

other two cases λ1 = 8.5, 9 at the present epoch as well as later epoch.
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Figure 4.6: Plot of S̈tot versus t
for model 3.

4.2.1 Sharma-Mittal Entropy

We here introduce Sharma-Mittal entropy to discuss the validity of GSLT,

which is

SSM =
1

1− r
[(1 +

δA

4
)
1−r
δ − 1], (4.2.18)

where r is the free parameter. By taking the time derivative of above

entropy, we have

ṠSM = 2πRAṘA(1 + δπR2
A)

1−r
δ
−1. (4.2.19)

For the case of HH, Eq.(4.2.19) becomes

ṠSM = −2πḢ

H3
(1 +

δπ

H2
)
1−r
δ
−1. (4.2.20)

Inserting Eqs.(4.2.16) and (4.2.20) in (4.2.10), we have

Ṡtot =
π

W 2

[
16πW 2

φ(−W 2
φ +W 2)

W (−W 2
φ + 2W 2)

−
2W 2

φ

W
(1 +

δπ

W 2
)
1−r
δ
−1

]
. (4.2.21)

50



We check the validity of GSLT and thermal equilibrium condition for Eq.(4.2.21)

at HH by graphical representation.
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Figure 4.7: Plot of Ṡtot versus t
for model 1.
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Figure 4.8: Plot of S̈tot versus t
for model 1.

• For Model 1: In Figure 4.7, by taking the same values of λ1, λ2, α

and r = 1, δ = 0.1, the graph demonstrates that all trajectories grad-

ually decreasing towards negative direction and remain in the negative

phase at later epoch, which cannot fulfills the stability condition for

GSLT. With the same values of λ1, λ2, α, r and δ and λ1 = 8, 8.5, 9,

the thermal stability remain invalid as all trajectories remains in pos-

itive phase at present epoch as well as later epoch (Figure 4.8).

• For Model 2:All trajectories are increasing in positive direction at

present epoch as well as later epoch with the increasing value of t.

By taking the same values of all parameters λ1, λ2, λ3, r, c, µ, α,

which confirms the validity of GSLT (Figure 4.9). In Figure 4.10,

the thermal equilibrium condition satisfies with the same values of all

parameters as all trajectories for λ1 = 8, 8.5 9 remain in the negative

phase at present as well as later epoch.

• For Model 3:With the same values of all parameters, the left tra-

jectories (Figure 4.11) shown that for λ1 = 8, 8.5 remain in the

positive phase and for λ1 = 9 gradually decreasing towards nega-

tive phase at later epoch. Thus, validity of GSLT confirms only for

two cases λ1 = 8, 8.5. As we increases the value of λ1 the stability
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condition cannot maintain. The right side trajectory λ1 = 8 increas-

ing towards positive phase at present as well as later epoch (Figure

4.12) and for λ1 = 8.5, 9, trajectories show increasing behavior at

later epoch and remain in the positive phase which cannot preserve

the thermal condition.
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Figure 4.9: Plot of Ṡtot versus t
for model 2.
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0.000 0.002 0.004 0.006 0.008 0.010

0

2

4

6

8

t

S  to
t

Λ1=9

Λ1=8.5

Λ1=8

Figure 4.11: Plot of Ṡtot versus t
for model 3.
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4.2.2 Logarithmic Corrected Entropy

The Bekenstein-Hawking logarithmic corrected entropy is defined by the

relation

S =
A

4G
+ α ln

A

4G
+ β

4G

A
+ γ, (4.2.22)
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where α, β and γ are dimensionless constants, apart from the exact values

of these constants are still checked. Now, by taking the time derivative of

logarithmic corrected entropy, we easily get

Ṡ =

(
Ȧ

A

)
A

4G

[
1 + α

4G

A
− β

(
4G

A

)2]
. (4.2.23)

In the case of HH, Eq.(4.2.23) becomes

Ṡ = −2πḢ

H3

[
1 + α

GH2

π
− β(

GH2

π
)2

]
. (4.2.24)

Putting the values of Ṡin and Ṡ in Eq.(4.2.10), we have

Ṡtot =
π

W 2

[
16πW 2

φ(−W 2
φ +W 2)

W (−W 2
φ + 2W 2)

−
2W 2

φ

W

∗
[
1 + α

W 2

4π2
− β

(
W 2

4π2

)2]]
. (4.2.25)

Eq.(4.2.25) graphically represents to observe the validity of GSLT and

thermal equilibrium condition at HH.
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Figure 4.13: Plot of Ṡtot versus t
for model 1.
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Figure 4.14: Plot of S̈tot versus t
for model 1.

• For Model 1:In Figure 4.13, with the same values of λ1, λ2, α and

α1 = 2, β = 1.5, the trajectories decreasing towards positive direction

at later epoch with the increasing value of t, which shows the validity

of GSLT. The trajectories of (Figure 4.14) shown that for λ1 = 8

trajectory increasing in positive phase at present epoch as well as later

epoch. For λ1 = 8.5, 9 the trajectory remains in the negative phase at

present epoch and later epoch. Hence, with the increasing value of λ1

the stability condition maintain and the thermal condition satisfies.

53



• For Model 2: The left side trajectories increasing positively at present

epoch as well as later epoch with the increasing values of t, for all con-

stant parameters, which shows that the GSLT is valid (Figure 4.15).

With the same values of all parameters, the thermal equilibrium con-

dition satisfies, as all trajectories decreases at present as well as later

epoch and remain in the negative phase for λ1 = 8, 8.5, 9 (Figure

4.16).

• For Model 3:Figure 4.17, demonstrate that by taking the same

values of λ1, λ2, λ3, c and α = −6.5, for λ1 = 9, GSLT preserved the

validity in the later epoch while remains invalid for other two cases of

λ1 = 8, 8.5. In Figure 4.18, we plot three graphs for λ1 = 8, 8.5, 9,

in first graph for λ1 = 8 shows that trajectory decreasing towards

positive direction at present as well as later epoch, for λ1 = 8.5 the

trajectory is remain in negative phase at present epoch as well as later

epoch and for λ1 = 9 the trajectory decreasing negatively. Hence, the

thermal equilibrium condition satisfies for λ1 = 8.5, 9 and is invalid

for the case λ1 = 8.
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Figure 4.16: Plot of S̈tot versus t
for model 2.

4.2.3 Rényi Entropy

We define here Rényi entropy to check the validity of GSLT, we have

S =
1

δ
ln(1 +

δA

4
), (4.2.26)
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Figure 4.18: Plot of S̈tot versus t for model 3.
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where δ = 1−Q, time derivative of Eq.(4.2.26) is

Ṡ =
2πδRAṘA

δ(1 + δπR2
A)
, (4.2.27)

Rényi entropy written in HH case as

Ṡ = − 2πḢ

H(H2 + δπ)
, (4.2.28)

with given entropy Eq.(4.2.10) becomes

Ṡtot = 16π2

[
W 2
φ(−W 2

φ +W 2)

W 3(−W 2
φ + 2W 2)

]
−

2πW 2
φ

W (W 2 + δπ)
. (4.2.29)

Form Eq.(4.2.29) we check the validity of GSLT and thermal equilibrium

condition for Rényi entropy at HH.
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Figure 4.19: Plot of Ṡtot versus t
for model 1.
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Figure 4.20: Plot of S̈tot versus t
for model 1.

• For Model 1:Figure 4.19, shown that the trajectory decreases in

positive phase for λ1 = 8 and for other two cases λ1 = 8.5, 9 trajec-

tories increases toward positive direction at present as well as later

epoch, which confirms the validity of GSLT. In Figure 4.20, the tra-

jectories for λ1 = 8, 8.5, gradually decreases at present epoch as

well as later epoch and preserved the thermal condition and for the

decreasing trajectory in the positive phase for λ1 = 9 the stability

condition cannot maintain and the thermal equilibrium condition is

invalid for this case.
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• For Model 2:In Figure 4.21, by taking the same values of λ1, λ2, λ3, α,

c, µ and δ, for all cases of λ1 all trajectories remain in the positive

phase at present as well as later epoch which demonstrate that the

GSLT is valid. In Figure 4.22, the trajectory remain constant in

positive phase (λ1 = 8) which cannot preserve the thermal condition

and for other two cases (λ1 = 8.5, 9) trajectories remain constant in

negative phase which confirms the thermal condition.

• For Model 3:Figure 4.23, for λ1 = 9, GSLT preserved the validity

in the later epoch while remains invalid for other two cases of λ1 =

8, 8.5, by taking the same values of all parameters. Figure 4.24,

demonstrate that with the same values of all parameters the thermal

condition cannot satisfies for all cases of λ1 at present epoch as well

as later epoch as all trajectories remain in the positive phase.
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Figure 4.22: Plot of S̈tot versus t
for model 2.
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Figure 4.24: Plot of S̈tot versus t for model 3.

58



Chapter 5
Summary
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In this thesis, we studied the thermodynamical laws in f(R, T φ) gravity

for the expanding universe in the absence of matter. We researched that

FLT and GSLT fulfilled in f(R, T φ) gravity and we checked the validity of

GSLT at AH by utilizing Bekenstein-Hawking entropy. By considering the

first-order formalism, the Hubble parameter becomes H = W (φ), where

W is the function of SF. We choose three distinct values of the Hubble

parameter given as W = eb1φ, W = b2(φ
3

3
− φ) and W = b3 sinh(φ). With

the diverse values of the W (φ) for flat (k = 0), closed (k = 1) and open

(k = −1) universe we checked the validity of GSLT and also analysed

the condition of thermal equilibrium at AH with Bekenstein entropy. By

graphical representation we observed that the thermal equilibrium condition

is satisfied and the GSLT is valid for every different value of W (φ) together

with Bekenstein-Hawking entropy at AH. The above analysis is summarized

in the Table.

Also, we examined the validity of GSLT in multiquintessence at HH for

flat FRW universe. Throughout we follow the first-order formalism and we

take three different superpotential models of the Hubble parameter. Model

1 is the direct sum of Z2 and sine-Gordon, model 2 is the combination

of Z2, BNRT and sine-Gordon and in model 3 we consider the modified

BNRT model along with Z2 and sine-Gordon models. We also checked the

stability condition of the thermal equilibrium and GSLT at present epoch

and later epoch for Bekenstein entropy at HH along with three different

Hubble parameter models for flat spacetime. We also choose three different

entropies as an example which are Sharma-Mittal, logarithmic corrected

and Rényi entropies, to observe the stability condition for each models of

the W (φi) at HH for flat spacetime. We also observed that FLT satisfied in

multiquintessence at HH for flat spacetime. To check the stability condition

we plot graphs by taking the same values of all parameters and for different

cases of λ1 by choosing three different values for flat spacetime along with

different W (φi) in the constructed model of each entropy at HH.

The stability of GSLT validity and thermal condition at HH for flat

spacetime with all the entropies given by:
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• For Bekenstein entropy:

For model 1 and model 2 the stability condition preserved the va-

lidity of GSLT for Bekenstein entropy and thermal condition only

satisfies for λ1 = 9 for model 1 and in model 2 the stability condi-

tion for thermal equilibrium satisfies only for λ1 = 8 at later epoch,

while for model 3 GSLT is valid at later epoch only for λ1 = 9.

Moreover, condition of thermal equilibrium satisfied for all the cases

of λ1.

• For Sharma-Mittal entropy:

For model 1 validity of GSLT cannot hold at later epoch as all tra-

jectories remains in negative phase and the thermal equiibrium condi-

tion cannot occured for all cases, for model 2 the stability condition

of GSLT and the thermal equilibrium maintained at present as well

as later epoch and for model 3 GSLT is valid only for two cases

λ1 = 8, 8.5 and the thermal equilibrium condition cannot be satisfied

for any case.

• For Logarithmic corrected entropy:

The validity of GSLT at HH for model 1 confirmed at later epoch and

the stability condition of thermal equilibrium maintained for λ1 = 9,

for model 2 GSLT validity and the thermal equilibrium condition

confirmed at present epoch as well as later epoch and for model

3 with the increasing value of λ1, the stability condition of GSLT

preserved and the thermal equilibrium condition is invalid for λ1 = 8

and the thermal equilibrium condition occured for other two cases

λ1 = 8.5, 9.

• For Rényi entropy:

The stability condition of GSLT for model 1 is satisfied for all the

cases at present as well as later epoch and the thermal equilibrium

condition confirmed at present epoch as well as later epoch only for
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two cases λ1 = 8, 8.5 and the stability of thermal equilibrium condi-

tion cannot be preserved with the increasing value of λ1. For model

2 GSLT is valid for all values of λ1 at present as well as later epoch

and with the increasing value of λ1, the thermal equilibrium condi-

tion satisfied and for model 3 GSLT maintained the validity at later

epoch for λ1 = 9 and the stability of thermal equilibrium condition

cannot be satisfied for each case.

Thus, the stability of GSLT and the thermal equilibrium condition for

each model satisfied only for some cases at present as well as later epoch.

62



W (φ) Space-time Validity of GSLT Thermal equilibrium

k = 0 Valid at present time and Satisfied at early time.

at early time for z ≤ 0.15.

eb1φ k = 1 Valid for φ+ at present Satisfied for φ+

and future times and for φ− and φ− at past,

at past, present and future times. present and future times.

k = −1 Valid for φ+ at present Satisfied for φ+

and future times and for φ− and φ− at past,

at past, present and future times. present and future times.

k = 0 Valid at early time. Satisfied at early time.

b2(φ
3

3
− φ) k = 1 Valid for φ+ at past, present Satisfied for φ+

and future times and for φ− and φ− at past,

at future time for z < −0.2. present and future times.

k = −1 Valid for φ+ and Satisfied for φ+

φ− at past, present and and φ− at past,

and future times. present and future times.

k = 0 Valid at early time for z < 0.4. Satisfied at early time.

b3 sinh(φ) k = 1 valid for φ+ at past, present Satisfied for φ+

and future times and for φ− at and φ− at past,

present and future times. present and future times.

k = −1 Valid for φ+ at past, present Satisfied for φ+

and future times and for φ− and φ− at past,

at present and future times. present and future times.
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