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PREFACE

The scientific program of GR13 maintained the traditional format of the Conferences ofthe International Society on General Relativity and Gravitation. The program consistedof plenary sessions with invited talks, workshops, and concurrent poster sessions. A
printed book of abstracts, contributed for presentation at the Conference, was distributedamong Conference participants.

The Proceedings volume contains the GR13 plenary lectures along with summaries
of the highlights of the workshops provided by their Chairmen. We are very much aware
of the effort required of the plenary speakers and of the workshop Chairmen, and are
grateful to all of them for their contributions to the Proceedings.

The major advances since the previous GR Conference were reviewed at the plenarytalks, while the more technical aspects as well as ongoing research were presented at the
workshop and poster sessions. There was, for the first time, a special ‘discussion’ session.We think it was worthwhile and encourage similar sessions in future Conferences.

This was the first GR Conference held in Latin America and the participants
from this region, particularly the graduate students, had the unique opportunity to meetand exchange ideas with the leading researchers in this field. We are grateful to theInternational Society of General Relativity and Gravitation for having selected Cordoba
as the site of the GR13 Conference.

We would also like to acknowledge the sponsorship ofa large number ofinstitutions
which are listed below in alphabetical order. It would not have been possible to organize
GR13 in Argentina without their support. Equally important was the special dedication
offered by the Local Organizing and lntemational Scientific Committees and by so many
of our colleagues and students, as well as by the administrators directly involved in the
Conference. We regret that we cannot mention everybody, although we are convincedthat their help was essential to GR13. However, we consider it necessary to express
our special appreciation to Robert Wald, who chaired the Scientific Committee, to AlanHeld, our link with the GRG Society, and to the GR13 secretaries, Ruth Bestgen, Marta
Garcia, Alberto Gattoni and Victoria Paganini.

Throughout the organization of GR13 we received strong support andencouragement from the Rector of the University of Cordoba, Professor Francisco Delich.The executive and legislative branches of the government of the Province of Cordobaprovided much needed financial and organizational support. Special mention goes toProfessor Ronald Rivas O’Neall, the Secretary of the President of the State Senate, forhis invaluable assistance.

R J Gleiser
C N Kozameh
0 M Moreschi
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Laser interferometric gravitational wave detectors

K Danzmann
Max-Planck—Institut fiir Quantenoptik, D-8046 Garching, Germany

1. Introduction

More than 70 years ago, Gravitational Waves have been predicted as one of the con—
sequences of Einstein’s Theory of General Relativity [1]. They are clearly one of the
fundamental building blocks of our theoretical picture of the universe and there is
some circumstantial evidence pointing to their existence [2]. But in spite of numer—
ous attempts over the last 30 years, their direct detection remains as one of the great
unsolved problems of experimental physics.

1,]. The birth of gravitational astronomy

Today, the technology seems to be in hand to finally tackle this problem and this article
is aiming at outlining the current efforts to bring non—linear gravity into confrontation
with experiment through the detection of gravitational waves. But the final aim is
not a mere proof of the existence of gravity waves, rather to make them useful for ob—
servational astronomy through the creation of a world—wide network of detectors. We
have to realize that the information carried by gravitational waves is complementary
to the information carried by electro—magnetic radiation. Whereas electro-magnetic
radiation is an incoherent superposition of radiation mostly emitted by thermally ex—
cited atoms and high—energy electrons, it is the coherent, bulk motion of huge amounts
of mass that produces significant levels of gravity waves. Electro—magnetic radiation is
easily scattered and absorbed, but gravitational radiation is transmitted almost undis-
turbed through all forms and amounts of intervening matter [3]. The introduction of
Gravitational Astronomy would thus literally open a new window to the universe [4].

2. The detection of gravitational waves

Gravitational waves change the metric of space-time. They can be detected through
the strain in space created by their passage. Consider a gravity wave impinging per-
pendicular to the plane of a circle, see Fig. 1. During the first half-cycle of the wave,
the circle will be deformed into a standing ellipse and during the second half-cycle into
a horizontal ellipse. It is the fractional change in diameter that is commonly quoted
as a measure for the amplitude, h = 2dL/L, of a gravitational wave. The principle
behind the detection of gravity waves is thus a simple length measurement. The prob—
lem is that the length change is so small. As an example, consider a supernova in
a not too distant galaxy. This might produce a relative length change here on earth
© 1993 IOP Publishing Ltd
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Figure 1. Gravitational waves change distances by squeezing space.

of 1 part in 1021. Such a relative length change corresponds to the diameter of one
hydrogen atom on the distance from here to the sun.

2.]. Bar antennas

The history of attempts to detect gravity waves began in the 19608 with the famous
bar experiments of Joseph Weber [5]. Even though these experiments have not yet
detected gravitational waves, they had the undisputed effect of alerting the scientific
community to the possibility of experimentally detecting gravity waves. Bar detectors
have in the meantime been developed and refined in several places all over the world.
Being supercooled to mK temperatures and equipped with very sophisticated length
transducers [6], they have now reached a sensitivity (h z 10—18 for millisecond pulses)
where they could expect to see the next supernova in our own galaxy, and they are
likely to remain an important ingredient of the world—wide gravity wave—watch. But
being resonant devices, they are in practice sensitive only in a relatively narrow band
around their central frequency. They are also limited in their sensitivity through the
quantum—mechanical uncertainty of their mechanical state, although this limitation
may in principle be overcome by QND techniques, and so their usefulness will in all
likelihood remain limited for the forseeable future.

2. 2. Laser interferometers

Although the seeds of the idea can already be found in early papers by Pirani [7]
and Gertsenshtein and Pustovoit [8], it was really in the early 19708 when the idea
emerged that laser interferometers might have a better chance of detecting gravity
waves, mainly promoted by Weiss [9] and Forward [10]. Large interferometers would
offer the additional advantage of having broad—band sensitivity and they would not be
limited by the uncertainty principle until well below a sensitivity of 10‘”. A Michelson
interferometer measures the phase difference between two light fields having propagated
up and down two perpendicular directions, i.e. essentially the length difference between
the two arms. This is exactly the quantity that would be changed by the passage of a
properly oriented gravitational wave, see Fig. 2.

Immediately obvious at this point is the need for long interferometer arms. The
quantity measured is the absolute phase difference between the fields. But the gravity
wave induces a fractional length change. So the phase difference measured can be
increased by increasing the arm length or, equivalently, the interaction time of the light
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Figure 2. Michelson interferometer.

with the gravity wave. This works up to an optimum for an interaction time equal to
half a gravity wave period. For a gravity wave frequency of 1 kHz this corresponds to
half a millisecond or an arm length of 75 kilometers.

2. 3. Long light-path

While it is clearly impractical to build such a large interferometer, there are ways
to increase the interaction time without increasing the physical arm length beyond
reasonable limits. Historically, two approaches have emerged: storing the light in the
arms in resonant optical Fabry-Perot cavities [11] and literally folding the light back and
forth in optical delay lines [12]. Nowadays this distinction is beginning to disappear,
because with the development of Dual Recycling [13], a new optical technique, we
now have a hybrid arrangement in our hands that combines the advantages of both
approaches and more.

3. Prototypes

Several small prototypes of laser interferometric gravitational wave detectors have been
developed in the world, a delay—line based interferometer with 30 m arm length at the
Max-Planck—Institut fiir Quantenoptik in Garching, a Fabry-Perot based instrument
with 10 m arm length at the University of Glasgow, a delay-line based instrument with
10 m arm length at the Institute for Space and Astronautical Science in Tokyo, and
a Fabry-Perot based instrument with 40 m arm length at the California Institute of
Technology. With arm lengths on the order of a few tens of meters these prototypes
are clearly too small to permit observations of real gravity waves. Their sensitivities
have continually been improved over the years, and the larger ones have all reached
sensitivities for millisecond pulses roughly equivalent to the best bar detectors, but in
addition they are broad-band devices.

While the absolute sensitivity reached by the prototype detectors is certainly en-
couraging, it is much more important that they are well-understood devices. That is,
the various physical processes creating noise sources at the various frequencies have to
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Figure 3. Noise analysis of the Garching 30-m prototype.

be identified in order to find ways to improve on those. In Fig. 3 we see such a noise
analysis for the Garching 30—m prototype [14].

Shown is the spectral density of the apparent mirror displacement as expected from
the most important noise sources. For comparison, the measured spectral density of
displacement noise is also given. Very good agreement between the measured and the
expected noise is found. The additional sharp peaks at frequencies of a few hundred
Hertz are due to violin string resonances of the suspension wires holding the mirrors.
The sensitivity of the prototype is presently limited by residual ground motion at fre-
quencies below 1 kHz (labeled c in Fig. 3), by the photon shot noise corresponding
to the available laser power at frequencies between 1 kHz and 6 kHz (labeled a), by
the thermallly excited internal mechanical vibration of the mirrors in a narrow peak
at 6 kHz (labeled f), and by residual frequency fluctuations of the laser at higher
frequencies (labeled g). At the present level of sensitivity, the refractive index fluctu-
ations due to the Brownian motion of the residual gas in the vacuum pipe (labeled b)
are unimportant. Also unimportant at this level are the above-resonant wing of the
thermally excited mirror suspension pendulum resonance (labeled 6), the sub-resonant
wing of the mirror internal mechanical resonance (labeled a), and the noise introduced
by the electronic damping system for the mirror suspension (labeled d). While the
particular noise sources are different, the level of understanding reached for the other
major prototypes is comparable to the one shown for the Garching prototype.

6 General Relativity and Gravitation Z 992

lU‘Il"'—y—.l+ l ——‘—t—.'i—I—l— —

mi
rro

r
di

sp
la

ce
m

en
t

i
[in

/x
/ll

z]

l
2 )4ILE102 104 3

frequency / |Hz]

a: photon Shot noise b: residual gas lluctuntians
C: filtered ground motion d: electronic damping system
f: mirror thermal motion e: pendulum thermal motion
g: laser frequency fluctuations

Figure 3. Noise analysis of the Garching 30-m prototype.

be identified in order to find ways to improve on those. In Fig. 3 we see such a noise
analysis for the Garching 30—m prototype [14].

Shown is the spectral density of the apparent mirror displacement as expected from
the most important noise sources. For comparison, the measured spectral density of
displacement noise is also given. Very good agreement between the measured and the
expected noise is found. The additional sharp peaks at frequencies of a few hundred
Hertz are due to violin string resonances of the suspension wires holding the mirrors.
The sensitivity of the prototype is presently limited by residual ground motion at fre-
quencies below 1 kHz (labeled c in Fig. 3), by the photon shot noise corresponding
to the available laser power at frequencies between 1 kHz and 6 kHz (labeled a), by
the thermallly excited internal mechanical vibration of the mirrors in a narrow peak
at 6 kHz (labeled f), and by residual frequency fluctuations of the laser at higher
frequencies (labeled g). At the present level of sensitivity, the refractive index fluctu-
ations due to the Brownian motion of the residual gas in the vacuum pipe (labeled b)
are unimportant. Also unimportant at this level are the above-resonant wing of the
thermally excited mirror suspension pendulum resonance (labeled 6), the sub-resonant
wing of the mirror internal mechanical resonance (labeled a), and the noise introduced
by the electronic damping system for the mirror suspension (labeled d). While the
particular noise sources are different, the level of understanding reached for the other
major prototypes is comparable to the one shown for the Garching prototype.

6 General Relativity and Gravitation Z 992

lU‘Il"'—y—.l+ l ——‘—t—.'i—I—l— —

mi
rro

r
di

sp
la

ce
m

en
t

i
[in

/x
/ll

z]

l
2 )4ILE102 104 3

frequency / |Hz]

a: photon Shot noise b: residual gas lluctuntians
C: filtered ground motion d: electronic damping system
f: mirror thermal motion e: pendulum thermal motion
g: laser frequency fluctuations

Figure 3. Noise analysis of the Garching 30-m prototype.

be identified in order to find ways to improve on those. In Fig. 3 we see such a noise
analysis for the Garching 30—m prototype [14].

Shown is the spectral density of the apparent mirror displacement as expected from
the most important noise sources. For comparison, the measured spectral density of
displacement noise is also given. Very good agreement between the measured and the
expected noise is found. The additional sharp peaks at frequencies of a few hundred
Hertz are due to violin string resonances of the suspension wires holding the mirrors.
The sensitivity of the prototype is presently limited by residual ground motion at fre-
quencies below 1 kHz (labeled c in Fig. 3), by the photon shot noise corresponding
to the available laser power at frequencies between 1 kHz and 6 kHz (labeled a), by
the thermallly excited internal mechanical vibration of the mirrors in a narrow peak
at 6 kHz (labeled f), and by residual frequency fluctuations of the laser at higher
frequencies (labeled g). At the present level of sensitivity, the refractive index fluctu-
ations due to the Brownian motion of the residual gas in the vacuum pipe (labeled b)
are unimportant. Also unimportant at this level are the above-resonant wing of the
thermally excited mirror suspension pendulum resonance (labeled 6), the sub-resonant
wing of the mirror internal mechanical resonance (labeled a), and the noise introduced
by the electronic damping system for the mirror suspension (labeled d). While the
particular noise sources are different, the level of understanding reached for the other
major prototypes is comparable to the one shown for the Garching prototype.



Laser z'nte/feromelric gravitational wave detectors 7

4. Large interferometer projects

After almost 1m; Llw-mlws ul' l‘(“.‘1t‘£ll’('ll H11 Hmnll prototypes, the time had come to pro-ceed towards tin.- t‘uilnil rut-lion of full-scale interferometers with arm lengths of severalkilometers, and several such proposals were submitted at the end of the 19803. Out often research groups in Germany and Britain, the GEO collaboration was formed [15],aiming at the construction of a laser interferometer with 3km arm length near Han-nover in the German state of Niedersachsen. The French-Italian VIRGO collaboration,comprising 9 research groups from both countries, is planning a detector with 3 km armlength near Pisa [16]. The American LIGO project [17], with scientists at MIT andCaltech, wants to build two detectors, with 4km arm length each. Just recently, the
Australian AIGO collaboration has proposed a 3-km detector near Perth [18].
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Figure 4. Noise sources relevant for laser interferometric gravitational wave detectors,

As an example, Fig. 4 shows the significance of the various noise sources for the
final design sensitivity of a fully optimized GEO—type interferometer to broad-band
gravitational wave bursts. At low frequencies, the sensitivity will be limited by the
thermal noise of the mirror suspension, at intermediate frequencies by thermal noise due
to internal mechanical mirror vibrations, and at high frequencies by photon shot noise.
In the following, the main problems encountered in the design of such an interferometer
and the envisioned solutions for the major noise sources are highlighted, sometimes
using the GEO project as an example. But it should be emphasized that the problems

Laser z'nte/feromelric gravitational wave detectors 7

4. Large interferometer projects

After almost 1m; Llw-mlws ul' l‘(“.‘1t‘£ll’('ll H11 Hmnll prototypes, the time had come to pro-ceed towards tin.- t‘uilnil rut-lion of full-scale interferometers with arm lengths of severalkilometers, and several such proposals were submitted at the end of the 19803. Out often research groups in Germany and Britain, the GEO collaboration was formed [15],aiming at the construction of a laser interferometer with 3km arm length near Han-nover in the German state of Niedersachsen. The French-Italian VIRGO collaboration,comprising 9 research groups from both countries, is planning a detector with 3 km armlength near Pisa [16]. The American LIGO project [17], with scientists at MIT andCaltech, wants to build two detectors, with 4km arm length each. Just recently, the
Australian AIGO collaboration has proposed a 3-km detector near Perth [18].

hall
Seismic

Nowss

Neulmn Star
Iovmnlion (Virgo)

non , axlsymmeln'cal

10721 _

Neutron Slay binary
coalescence (100 M pc)

. _ _ ‘ .-

1042 — -
__ J.

.M) \ w“ ‘
'Iui '

. ' - W“
_ A 'Vflrt
“x .7 ’

' ' “39‘“ 0,2; _ _ r5»: _. - x10 L,” - . ‘ “is"u- .v \rt. , -. _ w“ , Mgr-“W
”may, .

. xq .0040

10.2., I I |
1w 102 103 10

Frequency (Hz)

Figure 4. Noise sources relevant for laser interferometric gravitational wave detectors,

As an example, Fig. 4 shows the significance of the various noise sources for the
final design sensitivity of a fully optimized GEO—type interferometer to broad-band
gravitational wave bursts. At low frequencies, the sensitivity will be limited by the
thermal noise of the mirror suspension, at intermediate frequencies by thermal noise due
to internal mechanical mirror vibrations, and at high frequencies by photon shot noise.
In the following, the main problems encountered in the design of such an interferometer
and the envisioned solutions for the major noise sources are highlighted, sometimes
using the GEO project as an example. But it should be emphasized that the problems

Laser z'nte/feromelric gravitational wave detectors 7

4. Large interferometer projects

After almost 1m; Llw-mlws ul' l‘(“.‘1t‘£ll’('ll H11 Hmnll prototypes, the time had come to pro-ceed towards tin.- t‘uilnil rut-lion of full-scale interferometers with arm lengths of severalkilometers, and several such proposals were submitted at the end of the 19803. Out often research groups in Germany and Britain, the GEO collaboration was formed [15],aiming at the construction of a laser interferometer with 3km arm length near Han-nover in the German state of Niedersachsen. The French-Italian VIRGO collaboration,comprising 9 research groups from both countries, is planning a detector with 3 km armlength near Pisa [16]. The American LIGO project [17], with scientists at MIT andCaltech, wants to build two detectors, with 4km arm length each. Just recently, the
Australian AIGO collaboration has proposed a 3-km detector near Perth [18].

hall
Seismic

Nowss

Neulmn Star
Iovmnlion (Virgo)

non , axlsymmeln'cal

10721 _

Neutron Slay binary
coalescence (100 M pc)

. _ _ ‘ .-

1042 — -
__ J.

.M) \ w“ ‘
'Iui '

. ' - W“
_ A 'Vflrt
“x .7 ’

' ' “39‘“ 0,2; _ _ r5»: _. - x10 L,” - . ‘ “is"u- .v \rt. , -. _ w“ , Mgr-“W
”may, .

. xq .0040

10.2., I I |
1w 102 103 10

Frequency (Hz)

Figure 4. Noise sources relevant for laser interferometric gravitational wave detectors,

As an example, Fig. 4 shows the significance of the various noise sources for the
final design sensitivity of a fully optimized GEO—type interferometer to broad-band
gravitational wave bursts. At low frequencies, the sensitivity will be limited by the
thermal noise of the mirror suspension, at intermediate frequencies by thermal noise due
to internal mechanical mirror vibrations, and at high frequencies by photon shot noise.
In the following, the main problems encountered in the design of such an interferometer
and the envisioned solutions for the major noise sources are highlighted, sometimes
using the GEO project as an example. But it should be emphasized that the problems



8 General Relativity and Gravitation 1992

are common to all projects and that there actually is a very strong coordination and
sharing of tasks between the various collaborations. An overview of the current status
(summer of 1992) of the world-wide efforts is given at the end.

5. Vibration isolation

We are trying to measure very small length changes due to the action of gravitational
waves and so it is extremely important to ensure that no other effect moves the test
masses. By far the largest disturbance is the random ground motion because of the
natural seismic activity. The spectral density of displacement due to seismic ground
motion typically falls of as

2
m) z 10—7m/x/E [1%] . (1)

At a frequency of 1 kHz, this is about 107 times larger than the effect we are trying to
measure and we require an effective way of vibration isolating the test masses.

Passive vibration isolation is, in principle, straightforward [19]. The object to be
isolated gets suspended by a pendulum. If a disturbance shakes the suspension point
of the pendulum with a frequency below its resonant frequency, then the pendulum
will transmit the disturbance unattenuated. But a disturbance above the resonant
frequency f0 will get attenuated with the ratio (f,,/f)2 up to a frequency Qfo, where
the frequency dependence changes to a linear slope. The resonant frequency f0 should
thus be as low as possible. Due to practical limitations on the pendulum length to
around one meter, horizontal resonant frequencies are usually limited to around 1 Hz.
Vertical resonant frequencies are normally a bit higher because the spring has to be
stiff enough to support the full load. Several of these stages can be cascaded to achieve
a very steep fall—off above the highest normal mode of the coupled oscillator system.

5.1. Stacks

A very simple, yet very effective way of achieving vibration isolation at moderately
high frequencies (above 100 Hz) is the use of vibration isolation stacks. A detailed
analysis of stack systems has recently been carried out by Cantley et al [20]. Stacks
are basically alternating layers of a high-density material (like lead) and rubber. Each
layer acts as a 3-dimensional pendulum, although with a fairly low Q. But since it
is easy to use several such layers, a rather steep fall-off towards higher frequencies
can be achieved. As an example, Fig.5 shows a comparison between calculated and
measured transmissibility of a small 4-layer lead-rubber stack intended for the Garching
prototype.

Because of their low mechanical Q-factor, such stacks show a rather high thermal
noise. The last two stages of the suspension should accordingly be very high-Q wire
pendulums of low resonant frequency. These will also give an additional 1 / f4 filtering
in the horizontal direction where it is most critical (this is the direction of the laser
beam; in principle, vibration isolation in the vertical direction is only required because
of the unavoidable cross—coupling between the two degrees of freedom).
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measured transmissibility of a small 4-layer lead-rubber stack intended for the Garching
prototype.

Because of their low mechanical Q-factor, such stacks show a rather high thermal
noise. The last two stages of the suspension should accordingly be very high-Q wire
pendulums of low resonant frequency. These will also give an additional 1 / f4 filtering
in the horizontal direction where it is most critical (this is the direction of the laser
beam; in principle, vibration isolation in the vertical direction is only required because
of the unavoidable cross—coupling between the two degrees of freedom).
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(summer of 1992) of the world-wide efforts is given at the end.

5. Vibration isolation

We are trying to measure very small length changes due to the action of gravitational
waves and so it is extremely important to ensure that no other effect moves the test
masses. By far the largest disturbance is the random ground motion because of the
natural seismic activity. The spectral density of displacement due to seismic ground
motion typically falls of as

2
m) z 10—7m/x/E [1%] . (1)
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Figure 5. ’Ihmsmissibility of a 4-layer stack; (a) measured, (b) calculated.

5. 2. Low-frequency isolation

Extending vibration isolation down to lower frequencies becomes increasingly difficult.
The ground noise spectrum increases towards lower frequencies like l/f2 and the isola-
tion decreases because one is moving closer to the highest normal mode of the pendulum
chain. Some very promising work on low frequency passive isolation has been done in
Pisa [21]. The Superattenuator uses a cascade of an inverted pendulum, 7 gas springs,
and a wire pendulum. The use of gas springs has the advantage of offering isolation in
the vertical direction comparable to that in the horizontal. This is further improved
through the addition of magnetic anti-springs acting in the vertical direction. This
design should achieve efficient vibration isolation all the way down to about 10 Hz.
The control problems associated with this approach seem tractable and it could be an
alternative to the use of stacks.

Another way of achieving isolation at very low frequencies would be the use of
active or combined active/passive vibration isolation systems. Some very promising
work, aiming at achieving isolation all the way down to l, is going on at the Joint
Institute for Laboratory Astrophysics in Boulder, Colorado [22].

6. Position control and feed-back

An interferometer with as many components and degrees of freedom as a gravitational
wave detector requires sophisticated control systems to keep all parameters at their
optimal operating points. The guiding principle behind the position control of the
optical components is easily stated: At low frequencies the optical components must
be rigidly held relative to each other to keep them from drifting and to prevent the
interferometer and the recycling cavities from losing lock. On the other hand, at
higher frequencies, where gravitational wave signals could be detected (above 100 Hz,
or, possibly, above 10 Hz), the test masses must be totally free and the system used
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to prevent them from moving at low frequencies must not exert any residual forces at
high frequencies. Three main Classes of control systems are used:

6.1. Local controls

The suspension of the optical components via high-Q pendulums is an efficient way to
isolate them from high-frequency vibrations and pendulum thermal noise. But at the
resonant frequencies of the undamped suspension, large vibration amplitudes can occur
that will greatly exceed the dynamic range of the detector (a pendulum with a Q of 107
can, at its resonance, lead to an amplification of up to 107). The resonance must thus be
damped. But damping it in the usual dissipative way will degrade the Q and introduce
thermal noise. The damping is instead done in an active and frequency-selective way.
This technique is routinely used on the prototypes. The position of the masses is
sensed with a low—noise local sensor. This signal is then electronically filtered to a
narrow frequency range around the resonance and then fed back to a force transducer
acting on the mass selectively in this band around the resonant frequency only. On
the prototypes the position sensing is usually done via shadow sensors consisting of
a LED-photodetector pair with the light path partly interrupted by a movable vane
mounted on the test mass. The force is applied through a coil acting on a magnet on
the mass. Such systems typically show a sensing noise of around 10—11m/x/E. In the
full scale detector we are trying to measure displacements smaller than 10—20m/m.
So the servo gain would have to roll off by 9 orders of magnitude in the small frequency
range from a few Hz to 100 Hz, which is clearly a formidable task. The problem can
be solved by sensing the motion of, and applying feed-back to, a higher stage in the
suspension system and using the passive 1/f2 filtering of each stage. Such systems are
currently being tested in the prototypes.

6.2. Global controls

In order to optimally align an optical interferometer, and keep it aligned regardless of
drift or stability of the optical components, some kind of automatic alignment system is
required. The guiding principle is that the alignment signals for such a system should
be derived directly from the existing interfering beams without introducing additional
components into the high-sensitivity/high-intensity part of the interferometer. Suitable
feed-back should then be applied to all the relevant optical components.

For example, consider the case of two interfering beams, where a differential high
frequency phase modulation is applied and the overall phase difference is determined
by coherently demodulating the intensity of the interfered output. Relative angular
misalignment introduces a differential phase gradient between the two beams which
can be sensed using a split photodiode and coherently demodulating as before. Lat-
eral misalignment may be detected using another split photodiode and a suitable lens
arrangement to cause laterally offset beams to converge.

An illustration of this techniques for a Fabry-Perot cavity is given in Fig.6. All
4 degrees of freedom necessary for alignment can be extracted. An extension of this
technique can be used to automatically align all degrees of freedom for all components
of the interferometer. A system similar to the automatic alignment system intended
for the large interferometer is being installed and tested in the Glasgow prototype [23].
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Figure 6. Automatic alignment of a Fabry-Perot cavity.

6.3. Fast feed-back

While high-frequency ground motions can be efficiently suppressed by the suspension
system, there are very—low frequency seismic motions (1H2 and less) that are very
difficult to isolate against. This very-low frequency seismic motion may lead to rms
differential arm length changes of several microns. Unsuppressed, these would lead to a
severe limitation of the sensitivity of the detector, because an interferometer operating
away from its null fringe by an amount (it becomes sensitive to the intensity fluctuations
(SI of the laser according to

62: 61
hnoise — e I (2)

The sensing in this case is no problem, because the main interferometer output
itself provides the signal. But these deviations from the null have to be suppressed
by at least 10G which requires a fast servo with a bandwidth of order a kHz. This
feed—back is best applied relative to a reaction mass suspended from the same isolation
system to avoid coupling ground motion back in through the actuator. An alternative
would be feed-back relative to ground using constant-gradient coils. These coils exert
a force essentially independent of the position of the coil. Ground vibrations are
thus decoupled from the test mass if the constant—gradient volume is large enough to
accomodate the residual motion.

7. Thermal noise

7.1. Mirror internal noise

The mirrors are macroscopic objects and, correspondingly, have internal mechanical
vibration modes. Even for perfectly well isolated mirrors, these resonances will still get
thermally excited. At the resonant frequencies the mechanical vibration amplitudes are
too large and will overwhelm any mirror motion due to a possible gravitational wave.
The only solution is to shift all mechanical resonances out of the frequency range of
interest by a suitable choice of mirror shape and material. The best compromise is
obtained for cylindrical mirrors with a length about half the diameter. For synthetic
quartz this yields resonant frequencies of a few kHz, — above the interesting frequency
window.
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But even though the resonances are outside the observation window, the sub-
resonant wings of those resonances do cause a stochastic motion of the mirror surface.
The strain spectral density due to these motions is given by

~ 16kT
h ~ l/WSPUsISQINTeZ, (3)

where p is the density, 3 the arm length, Us the sound velocity, and QINT the mechanical
quality factor of the mirror material. Note that this expression is independent of mirror
size. It is mandatory to use a material with very low internal damping (very high Q).
Single crystal Silicon suggests itself for the non-transmitting components with a Q of
up to 108, but even synthetic quartz gives a Q of a few hundred thousand, whereas
low-expansion Zerodur only has a Q of about 1000. Special attention has to be paid to
the way of suspending the mirrors, because any way of dissipating energy, like friction
of a rubbing suspension wire, will immediately destroy an internal Q as high as this.
The problem of material Q as a function of experimental parameters is currently being
investigated [24].

It should be noted that the noise density due to thermal mirror noise will be strictly
constant in frequency only if the internal damping mechanism has viscosity—like be-
haviour. Sub—resonant thermal noise like this has never been measured directly, but
it is highly likely that the mechanical mirror resonance will behave much more like a
harmonic oscillator with a complex spring constant [25]. In this case the thermal noise
would actually increase from the quoted level towards lower frequencies like the inverse
of the square—root of the frequency.

7. 2. Suspension noise

Thermal noise is also present in the last stage of the vibration isolation system. This
will be a simple wire pendulum made from a sling supporting the mirror. In this case
the resonant frequency is about 1 Hz, and the frequency window of observation is on
the above—resonant wing. The spectral density of apparent strain noise due to this
effect is given by _

~ lfSIcTwoh z ‘ l —sw4€2 ’ (4)
where m is the mirror mass, we the resonant frequency and Q3 the mechanical quality
factor of the suspension pendulum. This Q can be much higher than the internal Q
of the wire material because most of the energy of the pendulum is in the form of
potential and kinetic energy of the swinging bob and not in the elastic energy of a
bent wire. But it is extremely important that the wire support points be properly
designed to avoid friction. Pendulum Qs as high as 107 have been experimentally
observed [26], (meaning that a 1 Hz pendulum will oscillate for more than 4 months
before its amplitude has decreased to one-third).

8. The laser source

The sensitivity of a simple Michelson interferometer with optimized arm length to
gravitational wave bursts is limited by the photon shot noise to

—1/2 3/2
hDL z 2.4 ><10"21 [ do ] [ f ] , (5)50 W 1 kHz
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factor of the suspension pendulum. This Q can be much higher than the internal Q
of the wire material because most of the energy of the pendulum is in the form of
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where e is the quantum efficiency of the detector, I0 is the laser output power, and f
is the center frequency of the burst. Green light and a bandwidth of half the center
frequency have been assumed. The first problem to be solved is thus the construction
of a laser with sufficient output power in a stable single transverse and longitudinal
mode. Moreover, frequency as well as amplitude of the laser have to be stabilized to
unprecedented values.

8.1. Output power

Currently all operating prototypes use Argon ion lasers as light sources. The most
powerful commercially available lasers of this type offer a single—mode output power
of about 5 W. The coherent addition of several such lasers phase-locked to a master
oscillator to reach higher output power has been demonstrated experimentally [16]. But
this approach does not seem promising because of the poor energy efficiency of these
lasers (only about 10‘4), their complexity and high cost of operation, and their poor
free-running noise that requires elaborate means for stabilization. The laser sources
under development for all large projects are all-solid state YAG lasers pumped by
laser diodes. YAG lasers have traditionally been pumped by discharge lamps, but the
dramatic advances in the development of laser diodes in the last few years have now
made it possible to replace the noisy and inefficient lamps with diode lasers [28].

The laser developed in the GEO project is based on a diode—pumped miniature
monolithic ring laser oscillator with an output power of a few hundred milliwatts.
The oscillator incorporates an electro—optic phase modulator to permit fast tuning
and easy frequency stabilization. The output of this oscillator is then amplified in a
diode-pumped YAG rod enclosed in a ring resonator. The oscillator is operational and
by the end of 1992 the final laser system is expected to deliver a single-mode output
power of more than 50 W at a wavelength of 1064 nm. The fundamental wavelength
of this laser could be used in an interferometer, offering advantages concerning ease of
operation, fundamental absorption in optical components, and required figure accuracy
of the optics. Nevertheless, the GEO and LIGO projects are investigating the option
of doubling the frequency to obtain light in the green at 532 nm. Because of the
shorter wavelength in the green only half the power is required to reach the same
shot—noise limited sensitivity. Also the optical components can be smaller because the
diffraction—limited beam—diameter is smaller in the green by the square-root of two.
Doubling efficiencies around 50 percent have been achieved for powers around 10W
and much more seems possible [29].

8. 2. Frequency noise

A perfect interferometer is entirely insensitive to frequency fluctuations of the laser.
But in a real interferometer, noise signals can be created if at the output of the in-
terferometer there is interference of lightbeams that have a different history. Such a
situation can arise if the storage times in the arms are not identical, or if stray light can
reach the output through a path different from that of the main beam. If the relative
amplitude of stray light capable of interfering with the main beam is a, then the arm
length change % simulated by a frequency change 57" of the laser is

_=‘7—5 (6)
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if stray-light with a path-difference of one full round-trip dominates.
The prototypes use relatively noisy Argon lasers that require sophisticated frequency

stabilization techniques. Figure 7 shows as an example the unstabilized frequency noise
of the laser previously used on the Garching prototype, curve (a). Curve (b) shows
the noise after prestabilization onto a rigid Fabry—Perot reference resonator, and curve
(c) shows the noise after final stabilization onto the average arm length of the 30-m
interferometer. A lowest value of about 5 x lO'aHz/x/E is reached in the relevant
frequency range. The Argon laser in the Glasgow prototype, being stabilized onto the
10 m long Fabry-Perot cavity in one of the interferometer arms using similar techniques,
reaches a frequency noise of a few times 10‘5Hz/m.
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Figure 7. Frequency noise of the Garching Innova 90—5 laser:
(a) upper curve: unstabilized laser,
(b) middle curve: laser stabilized onto a 25—em rigid Fabry—Perot,
(c) lower curve: laser stabilized onto the interferometer arm length.

For a full—scale detector, the frequency—noise out of the laser must be smaller than
10—6Hz/x/IE. But for the diode—pumped YAG laser the unstabilized frequency noise is
orders of magnitude smaller than for an Argon laser. So achieving the same gain in the
feed—back loop as for the Argon laser is already enough to reach the desired stability
goal.

9. Recycling

Clearly the sensitivity of a simple Michelson interferometer is not sufficient, even if
very strong lasers are used. Two techniques have been developed that improve the
interferometer sensitivity to a level that would allow the detection of gravitational
wave signals with high confidence. These techniques are known as Power Recycling
and Signal Recycling, and the combination of both as Dual Recycling [13].

Power Recycling makes use of the fact that the interferometer output is held on a
dark fringe by a feed—back loop and almost all the light goes back towards the input,
i.e. the locked interferometer behaves as a mirror. By placing a mirror in the input of
the interferometer (see Fig. 8), a resonant optical cavity can be formed that uses the
whole locked interferometer as an end mirror. So the circulating light power inside the
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Figure 8. Dual recycled interferometer.

interferometer will be higher than the laser power by the inverse of the losses in the
interferometer.

Signal Recycling works similarly, except that it leads to a resonant enhancement
of the signal instead of the light. A gravity wave shaking the mirrors will phase
modulate the reflected laser light, or in other words create side-bands of the laser
frequency. These side—bands exit through the output port of the interferometer. By
placing another mirror there (see Fig. 8), a resonant cavity for the signal—containing
side—bands is formed. Depending on the reflectivity of this mirror, the detector can
be made to operate narrow-band or broad-band, and by changing the position of this
mirror the interferometer can be tuned to specific gravitational wave frequencies. As
an additional advantage, this configuration greatly reduces the power losses due to
bad interference, because the light can no longer escape the interferometer through
the output port, which is now closed by the signal recycling mirror. Just as the signal
recycling cavity enhances light at its resonant mode and frequency, it suppresses light
which, through aberrations, got diffracted into non-resonant modes of the light field.

The shot noise—limited sensitivity of a Dual Recycled interferometer to gravitational
wave bursts is given by

h N 10—22 f 610 —-l/2 1 _ R 1/2 6 —1/2 7

DL N 1kHz 50W 5 ><10—5 3km ’ ( )
where f is the center frequency of the burst, e is the quantum efficiency of the detector,
[0 is the laser output power, é is the arm length, and R is the mirror reflectivity. Green
light and a bandwidth of half the center frequency have been assumed.

9.1. Mirror losses

In order to make these recycling techniques work, we need mirrors with extremely small
losses. This requires substrates with a microroughness on the order of an Angstrom
and reflective coatings with very small scatter and absorption. Fortunately, the last
few years have brought us tremendous advances in the art of making superpolishes and
supercoatings. Mirrors with reflection losses of much less than 50 parts per million are
now available from several sources.
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But it is not just the linear reflection losses that are responsible for the total losses
in the Power Recycling cavity One of the ”mirrors” of this cavity is actually a very
complicated object, - an interferometer locked to a dark fringe. So any effect that
degrades the interfering wavefronts will let light leak out the wrong port of the inter-
ferometer. Though some of this light can be recovered by the Signal Recycling mirror,
this is a serious loss process for the Power Recycling cavity.

There are two main reasons for a degradation of the interference in the interferom-
eter: wavefront deformation because of imperfections of optical elements and because
of thermal effects in the optical elements. Both processes can be addressed through
optical modeling and numerical wavefront propagation calculations.

9.2. Thermal Distortions

Thermal effects can arise because of absorption in the optical coatings or in the bulk of
elements used in transmission. This will cause a deformation of the substrates and/or a
lensing effect through thermally induced refractive index changes. Figure 9 is the result
of a model calculation including thermal effects for the main mirrors [30]. It shows
the interference minimum as a function of the thermally induced mirror deformation.
For increasing light power, the interference quality deteriorates in a very non-linear
fashion, even approaching chaotic looking behaviour above a certain threshold.
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Figure 9. Power loss due to thermal effects:
interference minimum as a function of local mirror deformation.

To this end, we have studied the absorption in coatings produced in ion beam
sputtering chambers. Fortunately, the absorption in modern coatings is only on the
order of very few parts per million and thermal effects seem very tractable. Absorption
in the bulk of the beam-splitter will probably be the limiting process at circulating
powers of many kilowatts.

.9. 3. Mirror quality

Existing supermirrors with almost negligible losses have been developed for applications
using spot sizes of a millimeter or so. For large laser interferometers the beam size will
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be on the order of several centimeters and the high demands on the surface quality
now extend to much larger lateral dimensions. Surface deformations on length scales of
several centimeters will behave just as the microroughness does for the smaller beams.
But it is not the substrate alone that determines the surface quality. The reflective
dielectric multilayer stack coated onto the mirror can show variations of its effective
thickness that may overwhelm the surface variations of the substrate.
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Figure 10. Surface errors of a Garching prototype mirror.

9.4. Optical modeling

Optical modeling is an important activity in all large interferometer projects. Using
a numerical wavefront—propagation code running on the Garching Cray Y-MP, we are
studying the effects of surface deformations on the light fields in the interferometer.
Currently this code can propagate optical wavefronts on a 4000x4000 grid. So it is
possible to even include scattering to angles large enough for the light to miss the
end mirror entirely and to hit the vacuum tube after a few hundred meters. The
code takes as its input assumed or measured surface profiles of the relevant mirrors.
Surface deviations from the ideal shape can be measured with today’s state-of-the—
art to an accuracy of a few Angstroms over a field of a quarter of a meter with a
lateral resolution of half a millimeter [31]. As an example, Fig. 10 shows the spectral
density of surface errors as a function of spatial frequency for one of the 25-cm mirrors
in the Garching prototype detector. A strong increase of the errors for large spatial
wavelengths is obvious. It can also be seen that the process of coating deposition used
in this case has increased the long-wavelength errors considerably. The code permits us
to simulate all kinds of mirror distortions and to predict the performance of a specific
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be on the order of several centimeters and the high demands on the surface quality
now extend to much larger lateral dimensions. Surface deformations on length scales of
several centimeters will behave just as the microroughness does for the smaller beams.
But it is not the substrate alone that determines the surface quality. The reflective
dielectric multilayer stack coated onto the mirror can show variations of its effective
thickness that may overwhelm the surface variations of the substrate.
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mirror in practice. Through an R+D contract with Zeiss we are addressing the mirror
manufacturing and coating geometry problem and we are confident that in 1992 the
first prototype mirrors with the required quality will be finished.

In addition to these static simulations, we are interested in optimizing the Whole
optical lay-out of the interferometer. Through a combination of numerical and analyt-
ical modeling, we are able to take into account all relevant physics, including thermal
effects and the important power recovery through signal recycling. We are especially
interested in finding the best compromise between storage time (or number of bounces)
in the arms and storage time in the signal recycling cavity.

10. Status of efforts in the world

10.1. Proposals

The American LIGO proposal [17] calls for the construction of two detectors with 4 km
arm length. It was approved in the fall of 1991 and funds have been appropriated by
Congress. Two sites were selected in the spring of 1992, one in Hanford, Washington
and the other in Livingston, Louisiana. Construction is expected to begin in 1993 and
commissioning may start as early as 1997.

An Australian proposal (AIGO) for a 3-km detector near Perth [18] has been sub—
mitted, but so far has not been able to obtain approval.

In Japan, a proposal for an intermediate 100-m interferometer (TENKO—lOO) [32]
has been funded. Construction may be finished in 1994. In parallel, plans are being
developed for a 3—km interferometer.

The French—Italian VIRGO collaboration [16] has proposed a 3—km interferometer
to be built near Pisa and the German—British GEO collaboration [15] has proposed a
3—km interferometer to be built near Hannover. Both interferometers have been coor-
dinated under the EUROGRAV framework. A consolidation and tighter integration
of European efforts is currently being prepared. The French government has recently
approved funding and a decision from the remaining relevant funding bodies in Europe
is expected in 1992.

10.2. A world-wide network

All these projects are not in competition with each other. On the contrary, each of the
projects is crucially dependent on the others. To sort out gravitational wave events
from the ever-present noise background requires observation in coincidence of several
detectors. So two gravitational wave detectors are the absolute minimum to even prove
the existence of gravitational waves. But to fully unravel the information contained
in the signals with respect to the source direction, time structure and polarization
requires a world-wide network of four detectors [33].

If all goes well, this network can be in place by the end of this decade, and at the
beginning of the next millenium we may be able to mark the beginning of the age of
Gravitational Astronomy.
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Gravitational lensing
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1. Introduction

1.1. Historical Remarks

In his Opticks, published in 1704, Sir Isaac Newton already asked: “Do not Bodiesact upon Light at a distance, and by their action bend its Rays?” This question was
taken up only in 1784 by Henry Cavendish and, independently in 18017 by Johann Von
Soldner. They both computed the bending of the orbits of “lights corpuscles” by aspherical body of mass ll! and found the “Newtonian” deflection angle

QGM’ R,: — - (1)c27‘ 7'
61/:

provided 7' > R3 is the impact parameter and the photons speed at infinity is c;R3 denotes what we now call the Schwarzschild radius of the deflecting body. Atthe time this prediction could not be tested and was apparently soon forgotten. Thequestion of gravitational light deflection was raised anew by Albert Einstein. In 1907
he rediscovered the law (1) by combining heuristically Maxwell’s equations with his
principle of equivalence, which led to an effective index of refraction

Un = 1 — 0—2 (2)

of a vacuum gravitational field depending on the gravitational potential U. Finally, in
1915, in possession of his field equation, he noted almost in passing that space curvature
doubles the bending, so that (1) and (2) have to be changed into

i o)'

61:2R3 . n:1—H—p—. (3)7' C‘2

results now verified by VLBI to within an uncertainty of about 10—3.
Sir Arthur Eddington (1920) and O. Chwolson (1924) realised that light deflectionmay cause several images (“fictitious binaries”, e.g.) of a source, and Einstein (1936)computed the change of apparent brightness due to differential deflection by a pointmass. The observability of such effects was considered very unlikely, though, due to thesmall probability for sufficient alignment of sources and deflectors, taken to be stars inour galaxy. However, in 1937 in two remarkably prescient papers Fritz Zwicky consid-ered the possible astronomical importance of gravitational light bending by externalgalaxies and concluded that “the probability that nebulae which act as gravitational
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In his Opticks, published in 1704, Sir Isaac Newton already asked: “Do not Bodiesact upon Light at a distance, and by their action bend its Rays?” This question was
taken up only in 1784 by Henry Cavendish and, independently in 18017 by Johann Von
Soldner. They both computed the bending of the orbits of “lights corpuscles” by aspherical body of mass ll! and found the “Newtonian” deflection angle

QGM’ R,: — - (1)c27‘ 7'
61/:

provided 7' > R3 is the impact parameter and the photons speed at infinity is c;R3 denotes what we now call the Schwarzschild radius of the deflecting body. Atthe time this prediction could not be tested and was apparently soon forgotten. Thequestion of gravitational light deflection was raised anew by Albert Einstein. In 1907
he rediscovered the law (1) by combining heuristically Maxwell’s equations with his
principle of equivalence, which led to an effective index of refraction

Un = 1 — 0—2 (2)

of a vacuum gravitational field depending on the gravitational potential U. Finally, in
1915, in possession of his field equation, he noted almost in passing that space curvature
doubles the bending, so that (1) and (2) have to be changed into

i o)'

61:2R3 . n:1—H—p—. (3)7' C‘2

results now verified by VLBI to within an uncertainty of about 10—3.
Sir Arthur Eddington (1920) and O. Chwolson (1924) realised that light deflectionmay cause several images (“fictitious binaries”, e.g.) of a source, and Einstein (1936)computed the change of apparent brightness due to differential deflection by a pointmass. The observability of such effects was considered very unlikely, though, due to thesmall probability for sufficient alignment of sources and deflectors, taken to be stars inour galaxy. However, in 1937 in two remarkably prescient papers Fritz Zwicky consid-ered the possible astronomical importance of gravitational light bending by externalgalaxies and concluded that “the probability that nebulae which act as gravitational
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lenses will be found becomes practically a certainty”. Possible astrophysical and cos-
mological applications of gravitational lensing have been elaborated theoretically since
the early sixties. At GR4, held in London in 1965, Sjur Refsdal showed, among other
things, how masses of galaxies and the Hubble constant might be measured by lensing.

The first verification of Zwicky’s prediction occured in 1979 when D. Walsh, RF.
Carswell and R.J. VVeymann tentatively interpreted a “double quasar” as a. pair of
images of one quasar and within one year A. Stockton and P. Young et (11 identified
the lensing galaxy. Since then at least 7 firm cases of multiply imaged quasars and
about 20 gravitationally lensed images (arcs, rings) of galaxies or radio lobes of quasars
have been found. Theoretical activity has, of course, increased rapidly in connection
with these discoveries.

1.2. The astrophysical significance of lensing

Gravitational lensing may serve to
0 determine masses of galaxies and clusters and the distribution of matter in them,

including dark matter;
0 explain luminous arcs and rings;
0 observe distant sources, magnified by gravitational lenses which act like (cheap)

telescopes;
0 estimate sizes of Lyea clouds.

By microlensing, one may
0 identify dark deflection bodies;
0 measure the size and structure of different emission regions particularly of QSOS;
0 study the graininess (stellar population) of deflecting systems.

Successful models of gravitational lens cases also serve to confirm our picture of
the universe, especially the cosmological nature of QSO redshifts. Moreover, taking
into account statistically the light deflection caused by inhomogeneously distributed
matter provides corrections to the ideal observable relations of Friedmann universe
models. Finally, such successful applications provide evidence, if only indirect one, for
the validity of the law of gravity on galactic and supergalactic scales.

This brief report outlines the theoretical framework and describes some of the ap—
plications of the, by now quite extensive, field of gravitational lensing, with emphasis
on the role of GR. For more details and references, we refer to a forthcoming book
(Schneider, Ehlers and Falco 1992, hereafter SEF), the conference reports Moran, He—
witt 3: Lo (1992), Mellier et al (1990), Kayser & Schramm (1992), the contributions
by Blandford and Fort to GR12, and the excellent review article by Blandford and
Narayan (1992). The notation here follows that of SEF.

2. Theoretical framework

2.1. From Maxwell’s equation to geometrical optics; Fermat’s principle in GR

A locally approximately plane electromagnetic wave in an arbitrary spacetime obeys,
in leading WKB order, Maxwell’s vacuum field equations if and only if

For = ZR {eiskioAm} .
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where

to = 5a , gaflsfisfi = 0 . (4a)
1MA, = 0 . MAW = Tami, , (4b)

According to the eikonal equation (4a) for the (real) phase S, the light rays, defined as
integral curves of at“ = k“, are null geodesics; (4b) says that the (complex) amplitude
A, is transverse, kD'Aa = 0, and propagates along the rays such that the polarization
vector is parallel on the rays and —A;A°’ changes inversely to the area of the cross
section of an “infinitesimal” ray bundle. The energy tensor of such a wave, averaged
“over a wavelength”, behaves like that of a stream of “photons” with 4—momentum
hk“ : P” and conserved 47current number density N" = ~(2h2)-1P°’; TO’fi = NO’Pfl.
A radiation field may be represented classically either as a photon gas or as an inco-
herent ensemble of waves. It then further follows that Iw/wg, where Iw is the specific
intensity and w the circular frequency, is an observer independent invariant which is
constant on each ray if there is no interaction with matter.

For gravitational lens theory, the most useful way to characterise light rays is in
terms of the following version of Fermat’s principle, due essentially to H. Weyl (1917!):

In a conformally static spacetime with metric (c = 1)

d5? = 92 {62‘1a — 6—2Ud12} , (5)
where the scalar U and the Riemannian Simetric (112 depend on the spatial coordinates
only 7 the conformal factor 9 > 0 may depend on all coordinates a a spacetime null
curve :v“(u) is a geodesic if and only if its spatial projection x“(u) obeys the variational
principle

6/e—2Ud120 ; (6)

the variation is to be done with fixed end points. Since 7],, : fe‘zvdl, according to
(5), is the arrival time of a photon emitted at 77 = 0, (6) expresses the stationarity of
the arrival time 7]“. (For a generalisation to arbitrary spacetimes, see Perlick 1990 and
SEF.)

The foregoing statements about light rays, polarization vectors and intensities, com—
bined with approximations and statistics, form the basis of gravitational lens theory.

2.2. Time delay and Fermat potential
Let some domain of spacetime contain a point source S, a point observer 0 and,
between 5' and 0, a matter distribution D, small compared to the distances of D from
S and 0. Because of light deflection by D, 0 may possibly see several images of S,
and if the luminosity of 5 changes, this change might be noticed by O in the various
images at different times. The observer may be able to measure the angles between the
images and between the images and D, the fluxes of the various images, the redshifts
of S and D, the spectra and polarisations of the light, and the time delays between
images. For an extended source, 0 may also observe the shapes of the images of 5.
One basic task of lens theory is to establish relations between (i) the observables just
listed, (ii) a model of D, and (iii) a model of the universe as far as it affects those
relations.
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To do this requires obviously more or less drastic approximations. The least prob—
lematic one is the use of geometrical optics (reasons for this are given, e.g., in SEF). To
proceed, we assume the metric to be approximated, in the relevant part of spacetime
containing the light rays from S to O, by (Futamase 1989, Jacobs at al 1991)

(152 = R2(a){(1+ 2U)d772 — (1 — 2U)dli} , (7)

where dli is a metric of constant curvature, k = 1, —1, 0, R the expansion function
of a “background” Friedmann cosmological model with conformal time 1;, and U the
(Newtonian) gravitational potential of the deflecting, localized matter D. Except for
some neighbourhood of D, U << 1, and (T) is nearly a Robertson "Walker metric.
During the time light passes D, R and U are nearly constant, and in the region Where
most of the deflection takes place, dlf. is nearly Euclidean, so there (7) reduces to the
linearized metric of a weak source. It is, then, reasonable (and usual) to assume that
the relevant light rays proceed from the source to the neighbourhood of D as in the
background, get deflected and retarded near D, and then proceed undisturbed to the
observer.

The metric (7) is conformally static, thus Fermat’s principle applies. To use it, we
consider null curves consisting of two smooth, geodesic pieces, one from the source to
an event D near the deflector, and one from there to the observer, With a corner at D.
Their projections into the “comoving” 37space with metric (11,2C are spatial geodesics
with lengths Id, 1,, 1,1,, see Fig. 1.
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Figure 1. O IS 5-- "'-\\/\
S

O, S”, D are the points in the comoving space representing 0, S, D. The unperturbed
path proceeds smoothly from S to O, of course.

On each ray, since (is? : 0, we have by (7) 1d); ; fdl i EfUdi. Measured in
proper time at the observer when R = R0, the arrival time delay At of the broken ray
relative to the unperturbed ray is therefore

At : R0137): Rotld +1,“ -— I, — 2/ Udl)

With a little trigonometry, the Newtonian expression for U and the assumption that
the deflector is transparent and geometrically thin (SEF), one arrives at a formula for
the arrival time delay:

—2R5(1+zd)@(§)+const. (8)
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9 denotes the (vectorial) angular distance of an image from the center of D7 E the(unobservable) angular distance of the unperturbed source from the deflector, H0 theHubble constant. R5 the Schwarzschild radius of the deflector and

~ In ’em) = / (T; 1n 9 — 9’ (9)“I
1 . t nis a deflection otential, here defined in terms of the fraction ‘1"? of mass of D containedP .11in a solid angle (126’.

The /\/~terms in (S) arise as follows. The auxiliary distances 1 in Fig. 1 can be relatedto angular diameter distances Dd. D3, Dd” as defined in the background universe ofeq. (7). They are also unobservable, theoretical quantities. To relate them to theobservable redshifts of source and deflector, 33 and 24, one has to Specify how themetric of the inhomogeneous universe is to be split into a background part and aperturbation. One way of doing this is to assume that, on average, the expansion rateof the actual universe (on the scale7 say7 of galaxies) equals that of the backgroundFriedmann universe, <6l11l1.> : 9F, and (113111) : 0 (11“ : bacceleration), and that theaveraged area jdilJ-ML of a cross section 5 : const. of a typical past light cone equalsthat of the background universe. Let Qt be the density of that background, and letthe fraction (1 of all mass be distributed smoothly. so that the factor 1 — d is boundin clumps. The angular diameter distance will then refer to “empty cones”7 i.e. to raybundles between clumps where the density is deb; these D’s are called DyereRoederdistances. Then one gets the useful relation (SEF)

Dtl 7 C 71D1” 7 F0 [VII ‘ \s] v (10)
(1th!)

where X (3; Q, (i) is a function of d. the present density parameter Q, and the redshiftand M, E V (:d; 6', Q) etc. This equation has been used to obtain (8).
The function At (6? 3) clearly exhibits the influence of the lens (‘11,133) and 0f thecosmological model (H0, \) on the time delay and thus of the lens mapping (see below);it deserves the name Format potential.

2.3. The lens mapping and 'z'rzlated equations
Eq. (8) is valid for all kineinatically conceivable, broken light rays. The actual, Physicallight rays follow via. Fermat’s principle. (6) which here gives fig. At : 0, hence

~ ~ 6N!flzd—ZRaHotl't—hllMd—Xalfi . (11)
It can be used to express angular distances between several images of a source in theform

6U = 6; — 61‘ 2 gtsd, SS, Q. 61)]?3HU (5(a) — Etta,»

where d" : ‘2 g“ 3—; is the deflection angle. R'Ioreover, using (11) in (8), one getsQ

_.at) = 2341+ 2d) 1209M?»
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In the last two equations, 9 depends on the cosmological model, and h and d? depend
on the deflector model. These equations show how, in principle, the deflector mass or

Rs, Ho, Q, d can be obtained from lens observations, provided one has a reliable model
for the relative mass distribution in the lens. In practice, many difficulties have to be
overcome (see the references cited).

2.4. Two general theorems, magnification

The lens mapping
f:1R2—>1RQ, 6—»,3 (1-2)

given by eq. (11) is, for localized lenses, invertible for large 9. In general, however,

filtfl) : {91,...,62N+1}, the number of images is odd (Burke 1981). The inverse

'11” of the Jaeobian matrix
(3 (9)3,

U I 001*

describes the distortion of an image compared to that of the undistorted source which,
of course, is not observable. However, the )1.) at several images can be composed to
give the relative distortion of the images.

Since lensing does not change the frequencies, constancy of I“, implies that the flux

111agnification (relative to the unlensed case) is given by the absolute value of

)1 : (,let [1,,-

while sgn it gives the parity of an image. In the case of transparent lenses, at least one
image (with positive parity) is not demagnified, n 2 1; generically ,u > 1 for at least
one image (Schneider 1984),

2.5. Critical curves and caustics

Rescaling the variables E, g, one may rewrite the lens mapping (11) as

, A A 1 .42 A A
f;,1' ‘>( : V _~ .L' * \I1(.1',1)) . (13)

Here, [3' denotes parameters on which a lensing configuration may depend.
Alternatively, the source position J corresponding to an image i" can be characterized

by
W=0. 9‘"): (feat—Mam . (14)

[\
D

IH

(As before, the gradient operator refers to :F.)
To avoid confusion, we shall use the terminology appropriate to the physical meaning

of the symbols; thus J is called the source position. 5 the image position (although

according to mathematical terminology f is the preeimage, 1] the image variable for
the map f defined by (13)).

One basic question of lens theory is: How many images exist for a given source, i.e.
what is the set f‘1(J), and how does it depend on y? For localized sources the deflec-
tion potential ‘11 increases like ln 7‘, the deflection angle decreases like 1"]. Therefore,

26 General Rc/aliv/zy and Gravizrm'wz 1992

In the last two equations, 9 depends on the cosmological model, and h and d? depend
on the deflector model. These equations show how, in principle, the deflector mass or

Rs, Ho, Q, d can be obtained from lens observations, provided one has a reliable model
for the relative mass distribution in the lens. In practice, many difficulties have to be
overcome (see the references cited).

2.4. Two general theorems, magnification

The lens mapping
f:1R2—>1RQ, 6—»,3 (1-2)

given by eq. (11) is, for localized lenses, invertible for large 9. In general, however,

filtfl) : {91,...,62N+1}, the number of images is odd (Burke 1981). The inverse

'11” of the Jaeobian matrix
(3 (9)3,

U I 001*

describes the distortion of an image compared to that of the undistorted source which,
of course, is not observable. However, the )1.) at several images can be composed to
give the relative distortion of the images.

Since lensing does not change the frequencies, constancy of I“, implies that the flux

111agnification (relative to the unlensed case) is given by the absolute value of

)1 : (,let [1,,-

while sgn it gives the parity of an image. In the case of transparent lenses, at least one
image (with positive parity) is not demagnified, n 2 1; generically ,u > 1 for at least
one image (Schneider 1984),

2.5. Critical curves and caustics

Rescaling the variables E, g, one may rewrite the lens mapping (11) as

, A A 1 .42 A A
f;,1' ‘>( : V _~ .L' * \I1(.1',1)) . (13)

Here, [3' denotes parameters on which a lensing configuration may depend.
Alternatively, the source position J corresponding to an image i" can be characterized

by
W=0. 9‘"): (feat—Mam . (14)

[\
D

IH

(As before, the gradient operator refers to :F.)
To avoid confusion, we shall use the terminology appropriate to the physical meaning

of the symbols; thus J is called the source position. 5 the image position (although

according to mathematical terminology f is the preeimage, 1] the image variable for
the map f defined by (13)).

One basic question of lens theory is: How many images exist for a given source, i.e.
what is the set f‘1(J), and how does it depend on y? For localized sources the deflec-
tion potential ‘11 increases like ln 7‘, the deflection angle decreases like 1"]. Therefore,

26 General Rc/aliv/zy and Gravizrm'wz 1992

In the last two equations, 9 depends on the cosmological model, and h and d? depend
on the deflector model. These equations show how, in principle, the deflector mass or

Rs, Ho, Q, d can be obtained from lens observations, provided one has a reliable model
for the relative mass distribution in the lens. In practice, many difficulties have to be
overcome (see the references cited).

2.4. Two general theorems, magnification

The lens mapping
f:1R2—>1RQ, 6—»,3 (1-2)

given by eq. (11) is, for localized lenses, invertible for large 9. In general, however,

filtfl) : {91,...,62N+1}, the number of images is odd (Burke 1981). The inverse

'11” of the Jaeobian matrix
(3 (9)3,

U I 001*

describes the distortion of an image compared to that of the undistorted source which,
of course, is not observable. However, the )1.) at several images can be composed to
give the relative distortion of the images.

Since lensing does not change the frequencies, constancy of I“, implies that the flux

111agnification (relative to the unlensed case) is given by the absolute value of

)1 : (,let [1,,-

while sgn it gives the parity of an image. In the case of transparent lenses, at least one
image (with positive parity) is not demagnified, n 2 1; generically ,u > 1 for at least
one image (Schneider 1984),

2.5. Critical curves and caustics

Rescaling the variables E, g, one may rewrite the lens mapping (11) as

, A A 1 .42 A A
f;,1' ‘>( : V _~ .L' * \I1(.1',1)) . (13)

Here, [3' denotes parameters on which a lensing configuration may depend.
Alternatively, the source position J corresponding to an image i" can be characterized

by
W=0. 9‘"): (feat—Mam . (14)

[\
D

IH

(As before, the gradient operator refers to :F.)
To avoid confusion, we shall use the terminology appropriate to the physical meaning

of the symbols; thus J is called the source position. 5 the image position (although

according to mathematical terminology f is the preeimage, 1] the image variable for
the map f defined by (13)).

One basic question of lens theory is: How many images exist for a given source, i.e.
what is the set f‘1(J), and how does it depend on y? For localized sources the deflec-
tion potential ‘11 increases like ln 7‘, the deflection angle decreases like 1"]. Therefore,



Gravitational lensing 27

as one would expect, the map f is bijective for large (fl. Also, f is surjective, i.e.
for any source position 27, there is at least one image .7; such that r] = 1".(5) Thirdly,
if the Jacobian matrix Q}; is invertible at f, the map f is locall invertible at :E'.9.1 y
Therefore, if 1} moves inwards from infinity along a curve, there will for a while be a
unique image .1? until possibly a point is reached where det (gig) = 0. The set of all
points 17' where this equation holds is called the critical set, its image the caustic set of
f. In the theory of singularities of maps one studies the behaviour of f and f“1 near
critical and caustic points, respectively, in general. Lens theory is concerned with the
special case of gradient maps, see eq. (14).

One may study such maps from several points of view, two of which we mention.
Firstly, one may consider f as defining a. 27surface in IR4 : {(137)} On this 2~

surface, the sympletic form 9 : (1y,- /\ (11‘,- vanishes; thus the 27surface is a Lagrangean
submanifold of (R4,Q). The lens map may then be viewed as a projection of this
Zisurface onto the fliplane. This is useful since it gives a “quasiiintuitive” insight into
the way of how j'#1(rj‘) changes with g‘, and since such Lagrangean maps have been
studied extensively by mathematicians.

In the second View, based on (14), one thinks of (E —> (ME, $17), for each fixed value
of the musty-n! purmmme'rs (37,17), as a surface in (f, ¢)7space. For large 57', this arrival
time surfact- approaches the paraboloid gt : fir,— g)? The images, in this context also
called status. then correspond to those points where the tangent plane to the surface
is parallel to the plane V95 2 0. (This second View corresponds to the so—-called “static
model’7 of catastrophe theory, which is popular also in discussions of phase transitions.)

By eqs. (13) and (14) the Jacobian matrix of the lens mapping has components

8311'E: ik :5zk—‘I’zk

Since for .1: —> oo, ‘I’ik —o 0, the critical set is bounded and, of course, closed, hence
compact. The caustic set is compact and in addition of measure zero (Sard’s theorem).. . . . _, . . . .At a re 'ular. 1.0. non--ci.'|tu'al 11111-1 "(‘ .r‘ H, the ma "IllfiCatH is finite and near 53(0)8 v 7f is locally rli'li'imn'uzrpluc. At in em l(':li 1111;111‘1‘ I”), the magnication is formally infinite;
however, if insl'r-arl of a point Sl)lll'l"l‘ an extended source is considered or if wave optics
is taken into account, the “physical” magnification becomes finite, but in general large.

It follows from the above that if g'moves, the number of its images can change only if
ficnters or crosses the caustic set. Thus knowing the critical and caustic sets provides
a qualitative overview of a lens mapping.

Generically, the critical set of a lens mapping consists of finitely many closed,
smooth, compact curves without end points. The images of critical curves, the caustics,
may have finitely many cusps (spikes).

Whenever a source point crosses a caustic where the latter is smooth, two new
images appear on opposite sides of the critical curve; the corresponding segments of
critical curves which consist of “double images”, are called folds. Near and inside a
cusp, a source point has three images which merge when the source reaches the cusp,
and only one image survives if the source has passed through the cusp. Both folds and
cusps are stable, i.e., they are preserved under all small deformations of the deflection
potential, and smooth maps IR2 —> R2 have no other kinds of stable singularities than
folds and cusps (Whitney 1955). Near a fold, the amplification diverges like the inverse
square root of the distance from the caustic; near a cusp, it diverges even stronger.
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These facts can be established by approximating the Format potential at a critical point
by a polynomial of suitably high order and then studying the resulting representative
mapping.

If one considers not a single lens mapping, but a family of those depending on some
parameters 13', the critical curves and caustics depend on the value of 13' Qualitative
changes of the pattern of critical curves and caustics, called meta‘m-u-rphmn.4, (‘zm mm.“
for particular values 13(0) and at special points (5(0), 31(0)). These higher order singu-
larities are also useful to survey lensing models; they are needed In study wineries and
self—intersections of null cones of spacetimes, but we shall not pursue this topic here,
but refer the reader to Chap. 6 of SEF (see also Blandford & Narayan 1986).

2.6. Remarks on mathple Zens plane theory

The theory outlined so far effectively deals with cases where, because of the thinilens
assumption and small deflection angles, the lensing matter may be thought of as being
distributed on a single lens plane between source and observer. Instead, one may
consider the more general case where several such lens planes occur (Blandford ct al
1986, Kovner 1987, SEF), an idealisation which better approximates the real situation
where clumps at all redshifts influence light propagation.

The resulting mapping may again be obtained via Fermat’s principle. It is, of
course, more complicated than the single plane case. In particular, in contrast to (14)
the mapping is no longer a gradient map. (Question: is it still Lagrangean?) The odd
number theorem remains valid, and recently it has been shown that this also holds for
the magnification theorem stated in 2.4 (S. Seitz at (Ll 1992).

3. Remarks about the observational situation

Gravitational lens phenomena, predicted long ago, have been observed in a variety of
appearances. First, there are cases of strong lensing; by that We mean that a deflector

is sufficiently massive and compact to split images of a background source, or at least
to distort them in such a Way that the lens phenomenon is readily identified or at least
suspected. Examples of strong lensing are multiply imaged QSOS, the luminous arcs
in clusters of galaxies, and the radio rings.

In contrast to strong lensing, weak lensing cannot be identified in individual sources,
but only by considering a sample of sources. For example, background galaxies are
distorted by a foreground cluster in a characteristic way (images are preferentially
elongated in a direction tangent to the cluster center). However, since galaxies are
not intrinsically round, the distortion cannot be identified from any individual galaxy
image, but only the statistical analysis of the images of background sources around a
cluster yields evidence for the coherent image distortion. Weak lensing particularily
means that the magnifications of the images are not very much larger than unity.

A third class of lensing phenomena is microlensing: light bundles from distant com—
pact sources ‘feel’ the graininess of the matter distribution in intervening galaxies. The
stars in such galaxies cause only small deflections, but their differential deflection can

be suflicient to yield considerable magnification.
This is not the place to provide an — even only partially — complete review of observed

lensing phenomena and specific objects; the reader is referred to the reviews mentioned
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is sufficiently massive and compact to split images of a background source, or at least
to distort them in such a Way that the lens phenomenon is readily identified or at least
suspected. Examples of strong lensing are multiply imaged QSOS, the luminous arcs
in clusters of galaxies, and the radio rings.

In contrast to strong lensing, weak lensing cannot be identified in individual sources,
but only by considering a sample of sources. For example, background galaxies are
distorted by a foreground cluster in a characteristic way (images are preferentially
elongated in a direction tangent to the cluster center). However, since galaxies are
not intrinsically round, the distortion cannot be identified from any individual galaxy
image, but only the statistical analysis of the images of background sources around a
cluster yields evidence for the coherent image distortion. Weak lensing particularily
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be suflicient to yield considerable magnification.
This is not the place to provide an — even only partially — complete review of observed

lensing phenomena and specific objects; the reader is referred to the reviews mentioned
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in the introduction, and to the report by Port (1990) from the last GR conference and
references therein. instead, we will pick out a few aspects which may be of particular
interest to relativists.

3.1. Multiple 0303
Up to now, we know about seven firm cases of multiply imaged QSOS, and about as
many good candidates for this effect. The criteria by which a candidate lensing system
becomes a secure case of lensing are not easily explicitly stated, but having two QSO
images with the same redshift and similar spectra is not sufficient to enter the class
of lens system. In fact, the lensing community has learned its lesson from objects
like 1145—071, where two closely spaced QSO images have the same redshift, similar
spectra, ~but only one of them is a strong radio source, with very strict limits on the
radio flux ratio. Although one could construct complicated (and artificial) lens models
which account for the observations, this system most likely is a binary QSO, rather
than a lensed source. In order for a multiple QSO to be accepted as a lens system,
one or more of the following criteria should be satisfied in addition to the similarity
of spectra: (a) in the case of two images, (a1) they both should be radio QSOs, and
the radio characteristics should agree (spectral slope, morphology in resolved sources),
(a2) a potential lens should be seen between or near the images, (a3) both QSOs should
show other relatively rare properties, such as broad absorption lines, (correlated) rapid
variability, high polarization etc. (b) If more than two images are seen, the lensing
hypothesis becomes more probable a priori, in particular if the geometrical arrangement
of the images is according to the expectations from ‘generic elliptical’ lens models.

The two doubles confirmed as lens systems both have a Visible galaxy between the
images; in addition, for 0957+561, both components are radio sources, and VLBI has
revealed the similar milliarcsecond radio structure (also showing the different parities
of the two images), which yields particularily striking evidence for the lensing nature
of this system. For the one confirmed triple, 2016+112, there are several objects close
to the images, two of which have been identified as galaxies (at different redshifts); in
this case, light from the QSO is probably deflected more than once. The four known
quadruples, the best—known of which is the so—called Einstein cross 2237+0305, have
their images arranged in a form which is predicted by all canonical models, i.e., either
rather symmetrically, in which case the images have comparable brightness, or two of
the images are close together (as in the case of the so—called ‘triple—QSO’ 1115+080)
and are much brighter than the remaining two, indicating that the close pair of images
lies close to a critical curve of the lens. For 2237+0305 the lens is easily observable
(this lens system will be discussed in more detail below), and the lens in 1115+080
has also been found. The image separation of these multiply imaged QSOs range from
slightly more than one arcsecond to about six arcseconds.

Except for 2016+112, a case which is theoretically not well understood, all multiply
imaged QSOS have an even number of images, in contrast to the theoretical expectation
mentioned in Sect.2.4. However, the odd number theorem made no prediction about
the relative brightnesses of the images. It is currently believed that the ‘missing image’
is very close to the center of the lensing galaxy where the surface mass density is so
high as to yield a strong demagnifieation (overfocusing) of this central image. In fact,
none of the multiple QSO lens systems yields a hint of a finite core radius of the lens.

There are several candidates for multiply imaged QSO, mostly doubles (since for
them verification is most difficult). Perhaps the most interesting case is 2345+007, a
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double QSO with 7.3 arcseeond separation, the largest known. Spectral similarities are
striking; the report (Nieto et al 1988) that one of the images is indeed a close double
has not been confirmed by other groups. No sign of any lens has been obtained in
deep imaging of the field; however, a strong absorption line system at redshift 1.49
indicates matter in the lightbeam in one of the two images (that which is suspected as
double). As will be discussed below, clarification of the lensing nature of 2345+007 is
of vital importance for an application to the determination of intervening Lya clouds.
The status of the double system 1635+267 (A0 = 3.8 arcseconds) is similar to that
of 2345+007: the spectra of both images are remarkably similar, and this system is
an excellent candidate for lensing. Recently, a very close pair (A9 % 0.45 arcseconds)
has been identified, both through ground—based observations (Magain et a1. 1992) and
from the Space Telescope gravitational lens snapshot survey (Maoz et al 1992); the
QSO has a redshift of 3.8, making it the lens candidate with the largest redshift. The
small image separation observed in that system is close to the most probable separation
as expected from theory, if standard assumptions about the distribution of galaxies in
the universe (i.e., the lens population) are made.

3.2. Rings

From symmetry, if a source is situated behind a (sufficiently compact) spherical deflec~
tor, its image will be a ring. However, exact symmetry is not needed for the formation
of ring~shaped images, if extended sources are considered. Five ring images have been
found to date (see contributions in Kayser and Schramm 1992), all by radio obser~
vations. In the first case (1131+0456), optical imaging suggests a similar ring-like
structure for the optical source (Hammer 3: LeFevre 1991), but the best argument
in favour of lensing is detailed modeling: since the image of an extended source con-
tains much more information than a few point images, typical lens models for rings
are highly overdetermined. The reconstruction of the image from a simple lens model,
applied to data in two wavebands and to the polarized flux, provides a powerful tool
not only to constrain lens parameters (such as mass and ellipticity), but also to confirm
the lensing nature (Kochanek ct al 1988), recently, this inversion technique has been
greatly improved to account for finite resolution maps (Kochanek & Narayan 1992).
For a second ring, MG1654+1346, the lensing nature is indisputable: one of the two
radio lobes of a QSO at redshift 1.7 is mapped into a ring image by a galaxy at redshift
0.25, centered on the ring. A third ring source, PKSl830!211, one Of the strongest
radio sources in the sky, contains two compact components which are rapidly variable;
monitoring of this source and detailed modeling could make this an ideal target for
applying the lens method to determine the Hubble constant (see below).

3.3. Area and arclets

In about 10 clusters of galaxies, long and narrow images (arcs) have been observed.
Whereas the nature of these images has been controversial right after their discovery,
the redshift measurement of one of these arcs have ruled out interpretations which put
the are at the same redshift as the cluster. Several such redshift measurements are
available today, all with higher values than the cluster in which the are is seen.

Presently, the nature of the arcs is interpreted as galaxies at high redshift being
gravitationally lensed by foreground clusters. The highly elongated shape of the images
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is due to the distortion by the lens mapping, with the source being situated close
to a cusp singularity of the lens. (There are also “straight arcs”, which are most
conveniently interpreted as sources lying close to so—called beak—to—beak singularities,
one of the types of metamorphoses mentioned in Sect. 2.5.) Note that the length of the
arc in A370 is about 21 arcseconds, and its width is roughly 2 arcseconds, so that the
deformation by lensing is indeed huge; correspondingly, the total flux of the image is
much larger than that of the unlensed source. It is only this high magnification which
allows spectroscopy of such intrinsically faint extended sources — clusters of galaxies
forming arcs provide us with (cheap) ‘natural telescopes’.

If a cluster is sufficiently compact to form such spectacular long arcs, it will also
deform other background sources lying close to the direction to the center of the cluster.
One example of this effect can be seen in A370, where various elongated blue images are
observed. These images share the property that they are elongated in the tangential
direction with respect to the cluster center. Such tangential elongation is expected from
light deflection. Indeed, the redshift of one of these arclets in A370 has been measured
to be zs = 1.305 which thus stems from a background source. Since the density of faint
background galaxies is very large (Tyson 1988), these sources can in principle be used
to ‘map’ the mass distribution of compact clusters. This is not a trivial task, both
from observation and theory. Very deep images have to be obtained in order for the
source density to be sufficiently high. Sources (galaxies) are intrinsically not round,
and therefore intrinsic ellipticity has to be disentangled from lens—induced deformation.
This clearly is an ambitious statistical problem, treated in considerable depth in the
literature (e.g., Kochanek 1990, Miralda—Escude’ 1991), but has been demonstrated to
work in practice (Tyson. Valdes & Wenk 1990), thus constituting a nice example of
weak lensing. In principle, the redshift distribution of this faint background galaxy
population can be obtained from such studies of arclets around a sample of clusters of
galaxies.

3.4. Microlcnsing
The graininess of the matter in galaxies affects the light bundles of sufficiently
small sources traversing such a galaxy. The relevant scale for the source is about
3 X 1016 M/MQ cm, so that the optical (and X—ray) continuum emission from AGNs
can be affected by this effect, whereas the broad line region is probably too large to
be affected as a whole (differential effects, however, affecting the shape of the broad
emission lines, can occur). Since the relative alignment of source and lensing galaxy
changes in time, so does the magnification: microlensing leads to a lens-induced vari-
ability of sources seen through a galaxy. This effect, in general, is extremely diflicult
to distinguish from intrinsic variability of sources, but for multiply imaged QSOs, such
microlensing could be observed: an intrinsic variation of the source will be seen in
all images, with their respective time delay, whereas variability due to microlensing is
uncorrelated between the individual images.

The best lens system for observing microlensing is 2237+0305, owing to the small
redshift (2,1 m 0.04) of the lens (so that velocities in the lens plane correspond to large
effective velocities in the source plane) and to the fact that the time delay of the images
is of the order of one day, so that intrinsic flux variations of the source will be seen
nearly simultaneously in all four images. In fact, uncorrelated flux variations in at
least three images have been observed (Corrigan et a1. 1991), ranging up to half a
magnitude. This is a clear signature of microlensing.
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It is relatively difficult to obtain quantitative conclusions from such microlensing
observations. One can compare observed lightcurves with numerical simulations (see
Wambsganss 1990 and references therein), but due to the statistical nature of the
effect definite conclusions will only be possible if a sample of microlensing events is ob-
served, Which means that a sufficiently long data track of the source must be available.
Nevertheless, the observations of microlensing in 2237+0305 have led to the following
conclusions: the observed flux variations are compatible with the picture in which mi—
crolensing is produced by a normal stellar mass spectrum (Wambsganss, Paczynski &
Schneider 1991, Witt, Kayser 85 Refsdal 1992). The size of the emission region of the
optical continuum source of 2237—1—0305 is just compatible with a simple accretion disc
model (Rauch & Blandford 1991, Jaroszynski, Wambsganss 84: Paczynski 1992); the
observed variations lead to an upper limit of the source size.

In addition, microlensing can be used to obtain information about the brightness
structure of sources. For example, the lightcurve of an extended source crossing a
caustic is a convolution of its one—dimensional brightness profile and a universal func—
tion, the pointrsource magnification function near folds. Hence, from a well—Observed
high—magnification event in an observed microlensing light curve, the one«dimensi0nal
brightness profile of a source could in principle be reconstructed (Grieger 1990). The
broad—line region in QSOS, probably too extended to be magnified as a whole by
microlensing, has intrinsic structure. Therefore, differential magnification across the
broad line region can affect the line profiles of the broad emission lines (Schneider &
Wambsganss 1990). In fact, line profile differences in 2237+0305 have been observed
by Fillipenko (1989). For further applications of microlensing, see Sect. 12.4.of SEF.

4. Applications of gravitational lensing effects

As mentioned before, gravitational light deflection does not only lead to spectacular
effects as multiple images and rings, but has become a useful tool for astrophysics. Here,
we want to mention only some of the potential applications which have been suggested
in the literature, concentrating on those which might interest the cosmologists most.

4.1. Determination of the Hubble constant

As suggested as early as 1964 by S. Refsdal, the difference in light travel time between
any two images of a multiply imaged QSO can be used to determine, at least in prin-
ciple, the Hubble constant, i.e., the overall scale of a gravitational lens arrangement
(from dimensional arguments, H0 o< 1/At). The only lens system which is sufficiently
intrinsically variable and sufficiently monitored by now to detect correlated flux vari-
ations in both images (with a respective time delay) is 0957+561, but even in this
system it has been extremely difficult to measure At. Only recently, by using a sophis-
ticated statistical method applied to optical and radio data (Press, Rybicki &, Hewitt
1992a,b) a reliable estimate has been obtained, At = 540 i 12 days. The correlation of
flux of both images is not perfect, indicating that at least one of the images is affected
by microlensing (Schild & Smith 1991).

The determination of the Hubble constant from the measurement of the time delay,
as discussed above, requires knowledge about the mass distribution of the lens. How—
ever, in this respect the system 0957+561 is a fairly complicated one, since the cluster
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in which the main lensing galaxy is embedded makes a significant contribution to the
deflection. Unfortunately, basically nothing is known about the mass distribution of
the cluster. The construction of lens models proceeds by assuming that the deflection
caused by the cluster varies slowly over the region of the size of the image separation;
the contribution by the cluster is then described by the lowest order terms of a Taylor
expansion of the deflection angle around the center of the main galaxy (the validity
of this approach can be questioned, see Kochanek 1991a). A ‘plausible’ ansatz for the
shape of the mass distribution in the lens galaxy is chosen, compatible with what is
known about the matter distribution in elliptical galaxies, and the parameters of the
model are varied to obtain a match of all observables with the model. Needless to say
that such an approach yields models which are far from being unique. Even worse,
there are invariance transformations of lens model parameters which have no impact on
the observables (Gorenstein, Falco & Shapiro 1988; e.g., adding a uniform mass sheet
to the lens acts like a Gaussian thin lens and is equivalent, in terms of the lens model,
to decreasing the separation between lens and source). This degeneracy can be broken
by obtaining additional observables; in the case of 0957+561, the velocity dispersion
of the lens galaxy (a measure for the lens mass) has been observed, thus allowing the
degeneracy to be broken. It thus seems that a point estimate of the Hubble constant
is possible from this lens system. Taking the lens model from Falco, Gorenstein &
Shapiro (1991), assuming that the velocity dispersion measures the total mass of the
lens galaxy, and taking a cosmological model with 90 = 1, one obtains a value for H0
which is less than 50 km 5‘1 Mpc‘1 (the ‘best’ value being closer to 40). The uncer-
tainties, however, are still considerable. First, as already mentioned, the lens model
is not unique, and one can construct equally good models which would yield different
values for H0. Second, it is not clear whether the velocity dispersion of the stars probes
the total matter of the lens galaxy; if the stellar mass is more centrally concentrated
than the dark matter in the galaxy, the effective dispersion can be larger than the
measured value by up to a factor x/fi. Third, additional inhomogeneities around the
line—of—sight to the QSO can perturb the propagation of light and thus affect the lens
mapping; in this respect it is interesting to know that spectroscopy of the galaxies
around 0957+561 indicates that they do not all belong to a cluster at Zd = 0.36, but
that there seems to be an additional concentration at a higher redshift of about 0.54.

With all the difficulties and uncertainties mentioned, it might appear that the de—
termination of the Hubble constant from lensing will not yield more accurate values
than the classical method of ‘climbing up the distance ladder’. However, it should be
stressed that the latter method measures the Hubble constant from nearby objects,
whereas lensing permits to obtain measurements of H0 on truly cosmic scales. It is by
no means evident that both methods should yield the same results, in fact: since the
probability that a galaxy (on which an observer is situated to measure H0) is placed
in an U‘u‘I-‘l'tlI-‘llHt‘ region of llu: \mivvrm" is high, the local Hubble expansion is likely to
be slower [llilll Ihv inc-an Hubble uxpnnsinn. yielding a systematically higher value of
Ho from local inr-asun11mins. This was demonstrated quantitatively by Turner, Cen &
Ostriker (1992). Hence, measuring H0 from lensing might provide one of the few ways
to obtain that value of H0 which enters the Friedmann equations.

4.2. Constraints on the cosmological constant
Gravitational lensing provides a method to constrain the magnitude of a possible cos-
mological constant. Three different approaches have been used to obtain such con-
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straints: as pointed out by Gott, Park &' Lee (1989), the lensing behaviour of galaxies
changes drastically if the cosmological constant is so large as to have an antipode at
a redshift smaller than that of the source in a lens system. The confirmed lens sys-
tem with the highest redshift (2s = 3.27) is 2016+112, which implies that go > —2.3;
this estimate can be improved once lens systems with sources at higher redshifts are
confirmed.

A positive cosmological constant /\ increases the volume elements corresponding to
a fixed redshift interval and solid angle. Assuming no strong evolution of the number
and mass distribution of galaxies, the probability for any given source to be multiply
imaged can be calculated as a function of source redshift and x\. Lensing probabilities
become very large once /\ approaches unity (for flat universes, i.e., (20 + /\ = 1; see,
e.g., Fukugita 85 Turner 1991, Fukugita at (Ll 1992). Whereas existing lens surveys
are burdened with selection biases (e.g., Kochanek 1991b), it seems unlikely that the
results obtained so far are compatible with large A cosmologies.

The efl'ect of /\ on the volume per redshift element depends on 2. If a multiply imaged
QSO is selected without regards to a lens (thus excluding systems like 2237+0305 for
which the discovering observation was targeted to the lens galaxy), one can calculate
the probability distribution for the lens redshift, which depends on A; in particular, the
probability is shifted towards larger redshifts of the lens for increasing A. From available
data, a large /\ model can nearly be ruled out, and a few more lens systems adequate for
this test can yield strong constraints on A (Kochanek 1992). Note that these statistical
effects are much more sensitive to A than to (20. However the uncertainties in lensing
statistics are considerable (e.g., Mao 1991).

4.3. Mass distribution in lenses

Modeling an observed lens system yields values of the parameters of a parametrized
lens model. Needless to say that there are many possible choices for the lens param—
eters, and so values obtained for physical parameters are not unique. The question is
whether there are some physical parameters which are robust against variations of the
parametrization of the lens model.

For double (2808, there is not much we can learn about the matter distribution of
the lens without a priori assumptions about its characteristics. An example of this can
be found in Borgeest (1986). What is fairly well determined is that part of the mass of
the lens which lies in a cylinder with axis along the line-of-sight and with radius being
the mean of the angular separations of the two images from the center of the lensing
galaxy (this mass estimate includes the mass from, e.g., a cluster in which the main
lens galaxy is embedded).

The situation improves if quadruple QSOs are considered. In that case, the mass
of the lens lying within a cylinder with radius being the mean of the separation of
the images from the lens center is well determined. The best example of this is again
2237+0305: Observations with Space Telescope have revealed the image positions to
very high accuracy. On the other hand, the closeness of the lens allows a detailed map
of its brightness distribution. Assuming a constant mass-to-light ratio (M/L), surface
brightness is directly translated into surface mass density. As has been shown recently
(Rix, Schneider & Bahcall 1992), the assumption of constant M/L, i.e., a model with
just three parameters (the other two being the unknown source position), is able to
reproduce the positions of the images (8 observational constraints!) to within very
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high accuracy. From that we can conclude that a constant 1%/L is a good assumption
for this lens galaxy, and its value agrees with that obtained from stellar dynamics for
2237+0305 (Foltz et al 1992) and for other galaxies. The mass within the inner kpc
of this galaxy is found to be (2.16 :l: 0.04) X 101°M© for a Hubble constant of 50, i.e.,
accurate to within 2%. This model reproduces the observed brightness ratios of the
images only to Within a factor of 1.5, which however is not surprising, since the flux of
the images has been observed to be affected by microlensing.

For ring images, detailed reconstruction can yield fairly good estimates of the mass
within the ring and the orientation and ellipticity of the mass distribution. The obser-
vational predictions of such lens models are very insensitive to the distribution of the
matter inside the ring and nearly unaffected by the matter outside the ring.

Detailed modeling of arcs in several clusters of galaxies has provided us with some
crucial information about the mass distribution in clusters: First, the amount of dark
matter, inferred previously from studies of the dynamics of cluster galaxies, agrees with
that obtained from the lens models (as is the case for galaxy—mass lenses, lens models
for arcs are far from unique, with the mass inside a circle of radius given by the distance
of the arc from the center of the cluster being the most robust parameter). Second, the
dark matter is not tied to individual galaxies, but spread more evenly throughout the
clusters. Third, the mass inside clusters of galaxies must be distributed more compactly
than previously thought; otherwise, clusters would not be able to form caustics and
thus multiple images. Once a complete sample of clusters (selected, say, by their X—ray
flux; it seems that the X—ray luminosity of a cluster is a good indicator of its lensing
power) is scrutinized for the occurrence of arcs, statistical information about the mass
spectrum of clusters, their core radii etc. will be available (see Bergmann 1992, Wu
and Hammer 1992).

4.4. Dark matter in our Galaxy

The rotation curve of our Galaxy and that of other spirals indicates the presence of
dark matter. It is unclear what the nature of this dark matter is; candidates are:
weakly interacting elementary particles, brown dwarfs and ‘Jupiters’, or black holes. If
the dark matter is composed of such compact objects, these can lead to lensing effects
of background sources: for stellar mass lenses, the corresponding angular separation
of split images would be much too small to be detectable, but the magnification could
be observed. The problem with this idea is that the probability of finding a single
lens sufficiently close (within its Einstein radius) to the line of sight of an extragalactic
object is about 10‘s. Hence, for observing this effect a huge number of sources must
be photometrically monitored.

Paczynski (1986) suggested monitoring of the stars of a nearby galaxy, the Large
Magellanic Cloud or M31. In fact, two groups are currently carrying out such an
observational program (see the corresponding contributions in Kayser & Schramm
1992). The difficulties for such a program are enormous; we want to mention only a
few of them. First, many stars are intrinsically variable, and it will be a major task
to separate intrinsic variability from lens-induced one. A magnification event will be
a ‘once in a lifetime’ event, that is, events will not recur. The program will work by
comparing the brightnesses of sources from consecutive observations. The required
large number of stars implies that the amount of data produced in the course of the
program will be huge.
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On the other hand, such an experiment is probably the only way to clarify the nature
of the dark matter in the halo of our Galaxy. It will be sensitive to compact objects of
masses between IO‘GMQ, set by the time resolution, and about 1M9, determined by
the duration of the experiment (note that this is the relevant mass range for ‘brown
dwarfs’: objects with mass smaller than ~ 10‘7MQ will have evaporated during the
lifetime of our galaxy, whereas objects with mass 2 0.1]l/IG burn hydrogen and shine,
see De Rujula, Jetzer 8: Masso 1992). Paczynski (1991) suggested a calibration exper—
iment, to observe the galactic bulge stars. There, we know the minimum density of
lenses along the line of sight (the normal disk population of stars), and the probability
of lensing turns out to be quite similar to that of the halo. Hence, this calibration
experiment can be used to test the sensitivity of the observational program, including
the software for data analysis, and may detect a population of brown dwarfs in the
disk. Whatever the outcome of the program will be, it certainly will produce the most
useful database for stellar variability and is thus worth the effort.

4.5. Massive black holes in the universe
If some fraction of the matter in the universe is contained in compact objects (defined
such that their mass lies inside their Einstein radius; note that even red giants are
compact objects with this definition), lensing can in principle reveal such a cosmic
population (Press & Gunn 1973). Compact objects with mass 2, 1011M® lead to image
splitting with angular separation 2 larcsecond, and their density can be constrained
by the fraction of multiple QSOs. This fraction is small (at least for normal QSOs;
the apparantly most luminous ones can have a larger fraction of lens systems due to
the amplification bias, see Sect. 12.5 of SEF) and can be accounted for by the normal
galaxy population (within all the uncertainties mentioned). Certainly, a mass fraction
9 2 0.01 in compact objects with mass 2 1012M® can be excluded from existing
data. The Space Telescope snapshot survey will be most valuable in obtaining tighter
constraints (Bahcall et al 1992).

Lower mass objects can be constrained by high resolution observations. Using a
sample of VLBI observations of compact radio sources, Kassiola, Kovner & Blandford
(1991) have excluded a mass fraction 9 2 0.4 of compact objects in the mass range
107M® S M S 1091149. In principle, using a homogeneous sample of compact radio
sources, the mass range can be lowered to about 105NIG, and a sample of about 1000
objects can limit 9 in that mass range to better than 0.01.

If the dark matter in galaxies is made of high mass black holes with M ~ 106Mo,
their presence should show up in high-resolution VLBI observations of multiply im-
aged QSOs (Wambsganss & Paczynski 1992), as they would leave an imprint on the
VLBI maps which can be detected by comparing the milliarcsecond structure of the
images. Compact objects of about a solar mass can in principle be detected by their
microlensing power, leading to lens—induced variability. But, as discussed in Sect. 1.4,
it is extremely difficult to distinguish this effect from intrinsic variability. If gamma-ray
bursts originate from sources at cosmological distances, for which the evidence is now
accumulating (e.g., Mao & Paczynski 1992), lensing of a burst source by a compact
object will lead to two images, which cannot be spatially resolved by gamma-ray tele-
scopes, but they can be resolved in time: the time delay is about 50(M/M@)seconds.
Hence, a cosmologically significant density of compact lenses in the appropriate mass
range can be detected from recurrent bursts (see Mao 1992, Narayan & Wellington
1992 for details).
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4.6. Dark matter on large scales

The universe is inhomogeneous on scales larger than galaxy clusters; however, the mass
distribution on such large scales is no longer sufficiently compact to yield strong lensing
events. Still, it may be possible to detect the impact of such large scale inhomogeneities
on the propagation of light rays. At least two such possibilities have been discussed
recently in the literature.

A light bundle propagating through the universe is affected by the shear (Weyl
focusing) produced by the inhomogeneities. Thus, an intrinsically round source will
attain a slight ellipticity. So far, the situation is similar to the formation of arclets in
clusters, except that here no ‘center of gravity7 can be identified in general. But, as
demonstrated in Blandford et al (1991, see also Miralda-Escudé 1991b, Kaiser 1992),
the shear of large-scale inhomogeneities will lead to a nonzero two-point correlation
function of the ellipticities of images from high—redshift sources. The sky is fairly
densely covered with faint galaxies, which are supposed to have redshifts 2, 1 (Tyson
1988); this source population is thus the natural candidate for such an investigation,
which, due to the faintness of the galaxies and their intrinsic ellipticities will be difficult
to carry out. The shape of the two-point correlation function reflects the spectrum of
the inhomogeneities of large-scale matter in the universe.

Another method for detecting large-scale matter inhomogeneities has been recently
pointed out by Bartelmann & Schneider (1992). Motivated by the claim of Fugmann
(1990) that there is a large—scale density excess of galaxies from the Lick catalogue
around high—redshift flat—spectrum radio sources, we studied the lensing effect of the
large—scale matter distribution in the universe on high—redshift objects. Although the
corresponding magnifications are very small, they can be detected in a statistically
significant way if the source population has a steep intrinsic luminosity function (or if
multiple waveband amplification bias is taken into account, see Borgeest, Von Linde &
Refsdal 1991). In this case, the sources will be preferentially observed behind overdense
structures. If one now assumes (as is generally done) that galaxies find themselves in
overdense regions, they trace the overdensities and a large—scale correlation of high—
redshift sources and galaxies is expected. These effects are, however, tedious and
require robust statistical methods to extract them from observations.

4.7. The size of Lya clouds

Each QSO at sufficiently high redshift, such that the Lya emission line can be observed
from Earth, shows a large number of narrow absorption lines shortward of the Lya
emission line. This so-called ‘forest’ is interpreted as being due to intervening material
in the line-of—sight to the Q80, and the absorption lines being due to the Lya transition.
It is less clear what the nature of the absorbers is; one can measure the redshift,
equivalent width (yielding the column density of neutral hydrogen) and line width.
Gravitational lens systems provide us with an invaluable tool to determine the size of
this absorbing material.

Consider a lens system in which a high-redshift QSO has two observable images.
The transverse separation between the corresponding light bundles varies as a function
of redshift: it is zero at the source, and largest at the redshift of the lens. Suppose an
absorption line is seen in the spectra of both images, at the same redshift; then the
size of the absorbing material must be at least as large as the separation between the
two light bundles at the respective redshift. Hence, redshift coincidences of absorption
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lines leads to a lower bound on the size of the absorbing material. If, in addition, the
equivalent widths of the corresponding lines in both spectra are strongly correlated, it
could be concluded that the two light bundles actually have crossed the same cloud
(as opposed to crossing two different clouds at the same redshift).

Two lens systems have turned out to be useful for such studies. As mentioned
above, the lensing nature of one of them, 2345+007, has not yet been totally clarified,
but it is an excellent candidate system. The large angular separation of 7.3 arcseconds
makes this a very useful target for these spectroscopic investigations (Foltz et al 1984),
although the faintness of the QSO images renders such an investigation difficult. If
this is indeed a lens system, and if the lens redshift is 1.49 as suggested by the strong
iron absorption at this redshift, the size of Lya clouds can be estimated to be 10 kpc S
R S 20 kpc (Bajtlik, personal communication). A second system, UM673 with an
image separation of 2.2 arcseconds, is brighter and thus higher-quality spectroscopy
can be obtained. Results of such a study are reported in Smette et al (1992); due
to the smaller image separation, only sharp lower limits can be obtained, which are
completely compatible with the value quoted above.

One can turn this argument around: suppose the size of the Lyor clouds were known;
then, a correlation analysis of the absorption line spectra of multiple QSOs could be
used to decide whether the multiple system is due to lensing. Note that for this kind
of argument, the size of the clouds need to be known only approximately, since the
transverse separation of light rays corresponding to multiple QSO images differs greatly
for physical pairs of QSOs and for lensed sources. Thus, this Lya diagnostics may turn
out to be the most powerful tool to decide about the lensing nature of multiple QSO
systems.

5. Concluding remarks

The investigation of gravitational lensing has provided us with a powerful tool in extra-
galactic astronomy. Currently, the interplay of observations and theory is most fruitful
for both: lensing has triggered renewed interest in old topics like simple geometrical
optics or light propagation in curved spacetime, whereas on the other hand, theoretical
predictions can be tested observationally only if highest quality data are obtained. It
is possible that gravitational lensing effects (microlensing) will shed light on the struc-
ture of QSOs and can yield interesting cosmological information, most noticibly about
the Hubble constant. The history of gravitational lensing has provided us with quite a
few surprises — arcs were not predicted, for example — and some visionary ideas have
come true finally, such as the detection of microlensing, first predicted by Chang and
Refsdal in 1979. On the other hand, we see a great potential of applying statistical
lensing to well—defined samples of sources once these become available. Whatever the
main direction of future research in lensing, exciting results can be anticipated.
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Applications of numerical relativity: critical behavior and
black-hole containing spacetimes

Charles R. Evans

Department of Physics and Astronomy
University of N. Carolina, Chapel Hill, NC 27599

Abstract. Several recent applications of numerical relativity techniques are
described. The first is the remarkable evidence of critical phenomena in gen-
eral relativity associated with gravitational collapse of massless fields. We
discuss the two currently known examples of such critical behavior: gravi-
tational collapse of massless scalar field and of axisymrnetric gravitational
waves, A second application is discussed, in which numerical relativity tech-
niques are used to probe the interaction between strong gravitational waves
and black holes. Finally, a numerical approach to computing initial data for
spacetimes that contain twr) black holes is described. Such initial data may
ultiiriately serve as a starting point for the comptniaticm of the orbital decay
and <::_:alescence of a black hole binary,

1. Introduction

Very near or shortly after the turn of the century, the Laser Interferometer Gravitational-
wave Observatory (LIGO) is expected to detect signals from compact binary star systemsin their final stages of orbital decay and coalescence [1, 2], The theoretical foundation formaking precise predictions of the phase of the orbit during orbital decay, and using sucha prediction to fit observed signals to determine stellar and orbital parameters, is thesubject of intense present-day scrutiny [3, 4], as variOus speakers at the conference have
attested. ln ctmtrast, theoretical predictions of the signals from the coalescence itself, at
least for the coalescence of two black holes, have yet to be made. It seems likely that to
make these predictions the full machinery of numerical relativity will be required, and
then only after further advances have been achieved in supercomputer technology and
additional experience is gained in multidimensional simulations.

Since the development of the cosmic censorship hypothesis [5] over two decades
ago, no definitive theorems have been advanced to prove that singularities will always
be clothed by event horizons. Nonetheless, support for the conjecture is provided by
linear stability analysis of black holes and, with few exceptions, by numerical relativity
calculations of gravitational collapse. The latter refers to the fact that in nearly every
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gravitational collapse calculation in numerical relativity to date, in which the impend-
ing development of a singularity was indicated, an event horizon (and a black hole) has
been shown to form. A notable exception is the computation carried out by Shapiro
and Teukolsky [6] of collapse of a prolate cluster of collisionless matter. This topic is
discussed in some detail by Teukolsky in this volume and will not be addressed further
here except to note that cosmic censorship and modeling sources of gravitational radia-
tion are precisely the types of issues that numerical relativity, in principle, can serve to
address.

Numerical relativity includes, broadly speaking, any large-scale computational ap-
proach to a problem in classical general relativity. It usually refers to calculations of
the complete Einstein equations, although a variety of distinct schemes (e.g., spacelike
3+1 [7], 2+2, and null-cone [8] decompositions) have been developed to provide numer-
ical solutions. Occasionally, the term is used to refer to multidimensional Newtonian
and post-Newtonian calculations as well, such as Finn’s [9] models of gravitational ra-
diation from rotating stellar core collapse and Nakamura and Oohara’s and Rasio and
Shapiro’s [10] simulations of binary neutron star merger. It encompasses applications
of Regge calculus also [11]. In general, numerical relativity is used to denote numerical
approaches to any problem involving at least two nontrivial dimensions and the solution
of partial differential equations. Numerical relativity has as its goal to provide solutions
of the field equations in circumstances where an analytic approach is not feasible, which
typically means spacetimes that lack a high degree of symmetry or that involve strong,
dynamic, and nonlinear fields. Some common applicatidns include i) modeling sources
of gravitational radiation, it} nonspherical gravitational collapse and explorations of cos—
mic censorship [6], iii) inhomogeneous cosmologies, iv) black-hole collisions [12], and 1;)
strong gravitational wacblack hole interactions.

While this presentation is meant to be partly in the nature of a review, with so
many areas of active research it proved necessary to be somewhat selective in the topics
to be treated. I have opted to narrow the focus considerably and review 1') the very
recent discovery of critical phenomena in general relativity, ii) numerical models of the
interaction between strong gravitational waves and black holes, and iii) the numerical
construction of initial data for spacetimes containing two black holes (a possible starting
point for the coalescence problem). With the focus of the article thus restricted, this
discussion unavoidably manages to slight the work of many other researchers and we must
instead merely refer the reader to several recent, more-complete, book-length reviews [13,
14].

2. Critical behavior in gravitational collapse

Choptuik [15, 16] recently discovered the existence of critical phenomena in general
relativity. The critical behavior is associated with spacetimes that come very close to
forming a black hole and those that just manage to do so. Choptuik discovered these
effects by computing the gravitational collapse of spherically-symmetric wavepackets of
massless scalar field 45(7', 13) using a sensitive finite-difference method. The finite difference
code is based upon an adaptive-mesh-refinement algorithm developed by Berger and
Oliger [17] that is particularly well suited to follow the development of very fine spatial
and temporal features. A second example of critical phenomena has been found by
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Abrahams and Evans [18] who considered numerical models of collapse of axisymrnetric
gravitational waves. These spacetimes were also computed by using a finite difference
method, but in this case with a modestly-adjustable moving-mesh algorithm and not
with a full adaptive-mesh-refinement scheme.

Some of the characteristics of the critical phenomena seen in these simulations can
be summarized in general terms. Critical phenomena become evident in the simulations
as variations in the properties of spacetimes across a parameter space of spacetimes.
While there are many ways of parameterizing spacetimes, we will restrict attention to
parameter spaces that are each described by a single parameter. We can consider a set
g of many such distinct one-dimensional parameter spaces 9'], of spacetimes Skk]. For
each (appropriately defined) parameter space gt, a critical value p; of the parameter pk
separates the parameter space into a half space 9; of spacetimes that contain a black hole
and a half space g; of spacetimes that do not. In this way, the parameters pk are associ-
ated with variations in the strength of the ensuing gravitational self-interaction. Critical
behavior occurs in a neighborhood of the critical parameter value, when k — pil < 6k,
and hence in spacetimes that are just on either side of the “edge” of forming a black
hole. Certain features of individual spacetimes display variations across a parameter
space that can be considered critical. For example, in 9;, black-hole mass is found to be
a critically-behaving quantity with a power-law dependence Clpk ~pilfi on the separation
of pk from p: and with a critical exponent fl. The critical behavior of black-hole mass
is reminiscent of spontaneous magnetization of ferromagnets in statistical physics, and
suggests [18] that black-hole mass plays the role of order parameter in general relativity.
Near p7,, whether a black hole forms or not, the individual spacetimes develop a strong-
field region 'R that exists during the height of the gravitational self-interaction and within
a small enough neighborhood of the center of the implosion. In this strong—field region
the gravitational field (and any coupled field) develops an oscillatory character. Close
examination of these oscillations has revealed the existence of scaling relations that make
successive oscillations echoes of each other on progressively smaller spatial and temporal
scales.

Choptuik [16] has been able to demonstrate the universality of these critical phe-
nomena in scalar field collapse. (It is likely, but not yet established, that universality is
a feature of axisyrnmetric gravitational wave collapse as well.) To discuss universality
the more general space 9, of many distinct one-parameter spaces 91., comes into play.
Each gk contains a. critical spacetime Sh [pi] associated with a critical parameter value
pi. Universality refers to the fact that, in scalar-field collapse at least, the shape of the
fields in the critical solution 5;: [pg] deep in the strong-field region (and hence the sealing
relation) and the value of the critical exponent for black-hole mass both do not depend on
which parameter space, 9,“ of g is examined. In other words the critical phenomena are
generic features independent of the details of the initial data. The critical exponent and
scaling relation may depend, however, on the type of field (e.g., minimally-coupled and
non-minimally-coupled scalar fields, electromagnetic field, gravitational field, etc.) that
induces the collapse and, in a related fashion, on the degree of symmetry (or nontrivial
dimensionality) of the spacetimes, but in ways that are not yet understood. The two
known examples of critical phenomena in gravitational collapse illustrate these issues
and the present rudimentary state of our knowledge.
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2.1. Critical phenomena in massless scalar field collapse

The initial discovery [16] of critical behavior was found by modeling collapse of
spherically-symmetric wavepackets of scalar field. The equation of motion of the scalar
field is

‘l’ww = (R¢, (1)

and Choptuik considers [15] both minimally-coupled (( = 0) and non-minimally-coupled
fields. In spherical symmetry, the line element is taken to have the form

d32 = —a2(r,t)dt2 + a2(r,t)dr2 + rzdflz, (2)

with a the lapse function and a the radial metric function. This gauge is a generalization
of Schwarzschild coordinates for dynamical spacetimes. The lapse is fixed by adopting
the polar time slicing condition [19] and the spatial coordinate trajectories are fixed to be
normal to the time slices by adopting a vanishing shift vector fi' = 0. Defining auxiliary
variables

«1) : (15', H = 343, (3)
the equations Choptuik solves (in the minimally-coupled case) are

<r> = (311),, (4)

n : Ti, (refs), (5)

———+ :0, (6)

a,’ 0.2—1
a 27'

— 27rr(‘l>2 + H2) : 0, (7)
where a dot and a prime denote 6/6t and 6/67‘, respectively. As mentioned before, finite
difference equations are obtained from these partial differential equations and solved by
using an adaptive-mesh-refinement algorithm. The adaptive-mesh-refinement algorithm
dynamically monitors the local truncation errors and maintains a limit on the size of
these errors by producing, as needed, local, nested refinements in the mesh in both space
and time. Hence, any sharp spatial and temporal features that might develop can be
followed with this scheme, whereas they would otherwise become underresolved and lost
in a simulation using a fixed mesh.

A typical one-parameter space of solutions is generated from initial (Cauchy) data
that takes the scalar field ()3 to have an initial profile

430,0) = ¢orae—l('—To)/Alq’ (8)

and demands, as a condition on H, that the scalar radiation be purely ingoing initially.
There are several parameters in these data, but if m, A and q are considered fixed, then
450 serves as a single parameter p characterizing the sequence (i.e., a particular subspace
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spherically-symmetric wavepackets of scalar field. The equation of motion of the scalar
field is

‘l’ww = (R¢, (1)

and Choptuik considers [15] both minimally-coupled (( = 0) and non-minimally-coupled
fields. In spherical symmetry, the line element is taken to have the form

d32 = —a2(r,t)dt2 + a2(r,t)dr2 + rzdflz, (2)

with a the lapse function and a the radial metric function. This gauge is a generalization
of Schwarzschild coordinates for dynamical spacetimes. The lapse is fixed by adopting
the polar time slicing condition [19] and the spatial coordinate trajectories are fixed to be
normal to the time slices by adopting a vanishing shift vector fi' = 0. Defining auxiliary
variables

«1) : (15', H = 343, (3)
the equations Choptuik solves (in the minimally-coupled case) are
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where a dot and a prime denote 6/6t and 6/67‘, respectively. As mentioned before, finite
difference equations are obtained from these partial differential equations and solved by
using an adaptive-mesh-refinement algorithm. The adaptive-mesh-refinement algorithm
dynamically monitors the local truncation errors and maintains a limit on the size of
these errors by producing, as needed, local, nested refinements in the mesh in both space
and time. Hence, any sharp spatial and temporal features that might develop can be
followed with this scheme, whereas they would otherwise become underresolved and lost
in a simulation using a fixed mesh.

A typical one-parameter space of solutions is generated from initial (Cauchy) data
that takes the scalar field ()3 to have an initial profile

430,0) = ¢orae—l('—To)/Alq’ (8)

and demands, as a condition on H, that the scalar radiation be purely ingoing initially.
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gk). The initial data are completed by solving the slicing condition (6) for a and the
Hamiltonian constraint (7) for a.

The parameter (to is monotonically related to the strength of the self-interaction.
For small 430 the wavepacket implodes, passes through itself and then disperses to infinity,
while for sufficiently large ¢o the imploding wavepacket forms a black hole. There exists
along the sequence a critical value, (150 2 gig, at which a black hole first appears and
which separates supercritical (¢o > 4%) solutions from subcritical (450 < ¢3) ones. The
solutions of greatest interest are those with parameter values (#50 close to the critical value
([53. In regions of parameter space near ¢3, Choptuik has found that the natural variable
for characterizing variations in parameter space is

7r =ln|¢o — ¢5|. (9)
Stated another way, critical features in solutions that lie near the critical point tend to
depend linearly on 7r, and therefore exponentially on the initial conditions. Additionally,
structures with increasingly finer spatial and temporal scales develop as (150 —> ¢3.

The echoing behavior and scaling relation can best be described in terms of two
alternative variables, X : \/2—7rr<I>/a and Y : \/2—7r'rH/a, which are useful because they
are invariant with respect to rescalings of the length and time coordinates ('r —r m- and
t —» Kit), and hence to rescaling of the mass of the spacetime. In near—critical solutions
and in the strong—field region, a number of oscillations of the scalar field appear, with
their number being proportional to |7r|. It is therefore conjectured that every critical
solution (one from each gk) will contain an infinite number of echoes. To describe why
these are echoes and to express the scaling relation, we need logarithmic spatial and
temporal coordinates p and 7' defined by

p : lnr, (10)

'r :ln(T*—T), (11)

where r is the proper (areal) radius and T is the proper time of the central observer at
1“ : 0. The constant T* is the finite accumulation time of the echoes in the precisely
critical solution and is a value that can be determined in near-critical solutions by fitting.
Choptuik finds [16] that an approximate scaling relation holds for the oscillations of the
scalar field:

’Y(P_A)T_A)=X(pif)i (12)

YO, _ A:T _ A) = Y(p!7-)i (13)

for a particular logarithmic scaling constant A. This makes the oscillations appear as
echoes of one another but on scales progressively finer by a factor e'A. Stated another
way, if we observe the radial profiles of X and Y at some time T1, which gives a small
interval 6T1 = T* — T1 before T" but is otherwise arbitrary, and again at a second time
T2 with the still smaller interval 5T2 = e‘A6T1 before T", then a new feature will have
appeared in the later profiles on a finer scale but the new profiles are in fact identical to
the earlier ones upon rescaling radially by a factor eA.
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Figure 1. Evolution of the phase portrait of a near-critical solution of the
minimally-coupled scalar field—gravity equations. Each portrait is the figure
formed by plotting Y(p,'r) versus X(p,'r) at fixed time T with ,0 serving as
curve parameter. Phase portraits at successive times are labeled by their
values of IT]. Echoes in the strong-field region appear as self-similar wraps
about the nearly elliptical “attractor,” whose shape is found to be universal.

The scaling relation is approximate because even in the precisely critical solution
the initial oscillations near the outer edge of the strong-field region contain information
about the initial data. This information is washed out with each echo, making adherence
to the sealing relation progressively tighter. Furthermore, any solution that is near
critical, but not precisely critical, will produce only a finite number of echoes as T* is
approached before it “decides” whether to form a black hole or not.

These echoing properties are illustrated in Figure l by plotting, for a particular
near-critical solution, the parametric relationship that can be formed between Y(p,'r)
and X(p, 7') at fixed time T with the radial coordinate ,0 serving as curve parameter. This
produces a phase portrait of the solution at fixed times. The phase portraits at successive
times are shown labeled by their values of |'r|. As T —> T” a series of oscillations appear,
each evident as a loop about X = Y = 0. The fact that the loops are self-similar, nearly
identically overlapping each other and producing something analogous to an attractor,
illustrates the echoing property and the existence of the scaling relation. The value of
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Figure 2. Illustration of the power—law dependence of black—hole mass versus
critical separation in parameter space for scalar field collapse. The figure plots
ln MBH versus ln(¢0 — 455). Data from three separate one-parameter spaces
are displayed, providing evidence of the universality of the critical behavior of
black-hole mass. The slope is the value of the critical exponent, in this case
estimated to be 2 0.37.

A in the scaling relation is found to be A ’2 3.4. Both A and the profiles, X(p,7') and
Y(p, 7'), (and hence the shape of the attractor) are found to be universal, or independent
of the family of initial data. Weak dependence on the coupling constant C may exist [15].

Equally intriguing behavior is found in one-parameter sequences of solutions from
the half-spaces 9;: that contain black holes. For the initial data discussed previously,
these correspond to tile —> 433 from above. The masses of these black holes have been
shown to fit a power law

MBH 2’ 0|¢o — 453W, (14)
with a critical exponent, ,6 2 0.37 (see Figure 2). The power-law behavior of M33 is also
found to be universal, 01' independent of the family of initial data, and once again only
weak dependence exists, if any, on the coupling constant (. The immediate conjecture
is that a black hole first appears along any sequence at p = p* with infinitesimal mass.
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Because of the drastic change in scale with each successive echo (e‘A 1’ 1/30), the
scaling relation probably would not have been discovered without the resolving power
afforded by Choptuik’s implementation of the Berger-Oliger algorithm. In some of the
models Choptuik has computed, the adaptive-mesh-refinement scheme has provided local
resolution equivalent to a single uniform grid of 109 zones. This has allowed Choptuik to
probe points in parameter space with critical separations as small as [(p—P*)/P*l S 10‘”.

2.2. Critical phenomena in acisymmeti‘ic gravitational-wave collapse

Abrahams and Evans [18] have recently found a second example of critical phenomena in
general relativity that occurs as axisymmetric gravitational wavepackets collapse. These
spacetimes are quite distinct physically from Choptuik’s spherically-symmetric models
of scalar field collapse in two ways: they are source-free, T“" = 0, and have less sym-
metry (one instead of two Killing vectors). Of course, they also necessarily involve a
dynamical degree of freedom of the gravitational field. Several numerical models from
a one—parameter family of initial data were discussed at the conference and described
elsewhere [20]. While the sequence had a critical parameter value, these particular mod-
els each had parameter values far from critical and served merely to show that collapse
of gravitational wavepackets would either form a black hole or lead to dispersal of the
packet following implosion. In this paper it is now possible to describe the properties
of near-critical solutions and to show [18] the existence of critical phenomena similar to
that seen in scalar field collapse.

Abrahams and Evans [18] compute axisymmetric, asymptotically—flat vacuum
spacetimes using the 3+1 formalism [7]. The coordinates are fixed by adopting the
maximal time-slicing condition and the quasi-isotropic spatial gauge. Allowing only one
dynamical degree of freedom, the line element takes the form

(132 = —a2dt2 + ¢4[e2"/3(dr + sway

”zen/3010 + satay + e-‘WW sinz 0d<p2], (15)
where a is the lapse function, fl' and fig are shift vector components, at is the conformal
factor, and 77 is the even-parity “dynamical” metric function. Maximal slicing results
from the condition K'} = 0 on the extrinsic curvature K‘j. Abrahams and Evans compute
numerical solutions of the following equations:

at :— Dfim — ¢6(D'D,a + BDVD¢a)

+ou;5“(11‘t'r + 21%,) + % [watts — 89 «37” , (16)

am = DAM] — lsDtDta + arm, (17)
1‘0 X” 16.( 9) = 13;, [—9[ _ %¢6D'D9a + ;a¢6R’9

7‘7‘

+(2x _ aka) [a (57) _ a (18)7‘

Kw]
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an = wan + £96671 + M9 — fie cot 6 + at (19)

Nah/1: — 1/) < 77+ é—w 3 WW" Ki >, (20)

A“) 1 A”) 7/1210 Ki 211(a¢)=—Za¢ f77_§ j i, ()

"9' (57) _ 5959 = am — 3W», (22)

ram" + as (K) = 2afl, (23)7‘ 7‘

where

11"a : 212 : 611m, + 6(K‘Q,)2 + 2 ( r > , (24)

and where the transport operator D5 is defined by

1 1Dan] : T—zmrzfiru] + madam 6,3914. (25)

In these equations /\—_ K', +2K‘aw K‘j—_ ¢6Kij, Dk is the spatial covariant derivative,
R'j IS the spatial Ricci tensor A: ¢2e"/3 B: (We4"” ,1/1: 31/2 and A(3) and A?)
are the three- and two-dimensional fiat- space Laplacians respectively. The analytic
properties of this gauge have been discussed previously [21 22, 19, 23] and the reader 18
referred to these sources for more details on the coordinates, boundary conditions and
asymptotic properties of the gauge. Similarly, portions of the finite difference method
have been described elsewhere [21, 22] and will not be elaborated here.

To find Cauchy data for the gravitational field, the freely-specifiable fields, 17 and
K'g, are taken to have the form of a linear ingoing gravitational wavepacket possessing
quadrupolar (l : 2) angular dependence. The general linear Z : 2 solution is described
by a quadrupole moment 1(1)) of arbitrary profile in advanced time It (or retarded time
u). The linear solution involves the quadrupole moment 1(1)), its first two derivatives,
1(1)('u) E dI(v)/d1) and 1(2)(U), and its integrals, 1(‘1)(v) E f" dv’I(v’) and 1(‘2)(v).
Expressions for T7 and K’g that are consistent With this solution have been found:

1(2) 1(1) . 27, : (T ~ 2r—2) sm 0, (26)

Kr, 1(2) 1(1) 1 1(—1) .r ‘ (r—z—fl—aHT—Ns rs 51,129, (27)
However, since a wavepacket of finite amplitude confined within a. finite radius will
generate a finite mass, these Cauchy data will be at least slightly nonlinear, depending
on the initial amplitude and radius. So to find proper data, the exact Hamiltonian and
momentum constraints are solved for gt, A, and Ka, subject to the choice above of 1}
and K'g. Not surprisingly, nearly-linear Cauchy data are found still to generate ingoing
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Figure 3. Power-law dependence of black-hole mass versus critical separation
in parameter space for axisymmetric gravitational-wave collapse. Remarkably,
the value of the critical exponent in this case, 2 0.37, is indistinguishable from
that of scalar field collapse.

solutions. To complete the specification of data, the form of 1(1)) must be given. A
wavepacket with polynomial radial dependence of the form 1(‘Z)('u) = aIcPL5[1 —('u/L)2]6,
for M = |r — Vol < L at t = 0, is chosen. Here, Np is a constant but a is an amplitude
parameter, L is a width parameter, and n, is a centering parameter. Each of these might
serve as useful parameters of spaces gk. Initially, L and re have been fixed while a
has been chosen to parametrize the Cauchy data and therefore the solutions. Since in
the limit a —> 0 the mass of the wavepacket is MEM” = azL/(27r), a useful alternative
strength parameter is (9(a) = 27rMp/L 2 (12. A wavepacket with ('3 << 1 only weakly
self-interacts [20], escaping to infinity virtually unaffected, while a black hole forms in
an evolution where G) 2 1, with MBH —> M,D as G -» 00. The critical value along the
sequence is found [18] to be 6* 2 0.80 (a* ’2 0.93).

Like in the scalar field case, supercritical collapse of gravitational wavepackets is
found to generate black-hole masses, MBH, that are well described by a power law

MBH '1 C(a. — (1*)? (28)

Quite remarkably, the critical exponent value obtained for gravitational wavepacket col-
lapse is also fl 2' 0.37 and is presently indistinguishable from that seen in scalar field
collapse (the estimated numerical uncertainties place the value between 0.35 and 0.39).
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Figure 4. Scaling property of a near-critical solution of axisymmetric
gravitational—wave collapse. Radial profiles of the metric function 77 (along
0 = 7r/2) plotted at four times corresponding to alternate maxima of the cen-
tral value of the lapse function, ac. The upper panel depicts all four profiles
(labeled sequentially n = 0 — 3) plotted versus p = ln 7'. The two lower panels
illustrate scaling by overlapping profiles that are shifted by p —> p' = p + nA
with A E 0.6. Profiles n : 0,1,2 are plotted in the bottom panel and
n = 1, 2, 3 in the middle panel.

Figure 3 shows the power-law behavior of black-hole mass found for gravitational-wave
collapse. The mass MBH refers to the mass MAM/16w associated with the area of the
apparent horizon AM, and this is determined at a time At = 21r/o.21=2 (where wf=2 is
the real part of the lowest-order Z = 2 quasinormal mode frequency) after the apparent
horizon first appears.

Tentative evidence is also observed for a scaling relation on the gravitational field in
the strong-field region R. The gravitational field is observed to oscillate on progressively
finer spatial and temporal scales. This behavior is evident in examining radial profiles
of 17 (along the equatorial plane 0 = 7r/2) as displayed in Figure 4. As can be seen, 17
exhibits an echoing in p = 1117‘ of the form

17(1) - Am) 1’ n(p,tn+1)- (29)
The times t,l are found, in this case, by using the central value of the lapse function
a(t,r = 0) as a diagnostic to determine the completion of successive oscillations. Once
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again a single value of A is found to describe the scaling of the echoes. However, in this
case, the scaling constant is A ’z 0.6 and it therefore implies a radial scale ratio 6A 1’ 1.8
which differs considerably from the corresponding value of eA 2 30 (A 1’ 3.4) in scalar-
field collapse. This result appears to be robust, having been obtained in simulations
with several different resolutions. It is fortunate the scale ratio is much less extreme
in this case, since it was obtained using a 2+1 finite difference code without the use of
adaptive mesh refinement. Existing 2+1 and proposed 3+1 computations cannot come
close to the resolution afforded by adaptive mesh refinement in 1+1, so extension of the
adaptive-mesh-refinement scheme to 2D and 3D will be well worthwhile.

2.3. Tentative conclusions

The results obtained so far are suggestive of critical phenomena, but it is fair to ask how
close the association really is to standard critical phenomena. Answering this question
will likely require the construction of analytic models and more simulations of additional
physically-distinct spacetimes with different symmetries and sources. We have seen so
far two remarkably similar values of the critical exponent ,6 and two quite different
values for the logarithmic scaling factor A. The differences may be attributable to the
different dimensionalities (or number of Killing vectors) of these two physical models.
Do these two physical models then represent different universality classes, despite the
nearly identical values of ,3? The appearance of black holes in only those solutions with
p > p", and the reasonable conjecture that a hole of infinitesimal mass appears at p : 11*,
suggests that MBH plays the role of order parameter for these critical phenomena, like
spontaneous magnetization M does for ferromagnets below the Curie temperature and
like Ip — p5] does for liquid—gas transitions in the co-existence region. To the extent that
MBH can be regarded as the order parameter, it is interesting to note that the critical
exponent (: 0.37) lies in a range typically observed for ,8 in other critical systems [24].
Choptuik [16] has shown that details inherent in the original data are “washed out”
within ’R in near—critical evolutions. Information may be steadily lost with each echo
as r —> 0 and T a T‘ and the rate of loss per echo may depend on the value of A.
It seems likely that an analogue of the correlation length 6 in statistical systems is the
ratio of the radii of the outer edge of the scaling region, rm“, and the inner edge, 1'",
of the innermost echo: i.e., { ~ rmBX/rn ~ e"A. This brings in the scaling variable A,
and as p —> p* an ever-larger region (in terms of the scale 7'") becomes “correlated” with
self-similar echoes and f —> oo.

3. Interaction of black hole spacetimes and gravitational waves

A group of researchers, who are based at or have ties to the US NSF National Cen-
ter for Supercomputing Applications at the University of Illinois (hereafter called the
Illinois group), have recently described [25] numerical models of black-hole spacetimes
that interact with finite-amplitude gravitational waves. These are axisymmetric models
computed with the Illinois group’s new two-dimensional numerical relativity code. This
finite difference code also evolves vacuum spacetimes on spacelike time slices by using
the 3+1 form of the Einstein equations [7]. The equations for the gravitational field are
similar, but not identical to those given in section 2.2.
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Figure 5. Extracted waveform (solid curve) that is emitted following interac-
tion of a gravitational wave and a black hole This wave represents a mild but
finite amplitude disturbance of the black hole. The normal mode fit (dashed
curve) of the waveform is shown to compare well at late times.

The initial data for these models consist of a single black hole superimposed with a
time—symmetric gravitational wave (e.g., a Brill wave [26]). The spatial part of the line
element takes the form

dsz : x114 [62701772 + as?) + sin2 a M] , (30)
where 7] is a logarithmic radial coordinate. The function (1(7), (9) is arbitrary up to sat—
isfying appropriate boundary conditions and \Il(n,l9) is determined by the Hamiltonian
constraint. For q = 0 and with an appropriate boundary condition, \I/ becomes the con-
formal factor for the Schwarzschild solution in isotropic coordinates. When (1 31$ 0 the
solution of the Hamiltonian constraint for 9107,19), along with «1(7), 0), corresponds to the
superposition of a gravitational wave and a single black hole, Specification of the initial
data is completed by assuming time symmetry so that Kg! = 0. The Brill wave is taken
to have the form

q = Afig) (e—[(n+no)/cvlz + (Kn—nova?) ’ (31)

with parameters A, 770 and a specifying the amplitude, range and radial width, respec-
tively. Brill waves with angular dependence f(0) = sin" 0, for several (even) values of n,
have been examined.

The Illinois group describe several simulations with varying initial Brill wave am-
plitudes and with n = 4. Low amplitude Brill waves are shown to excite the fundamental
l = 2 and l = 4 quasi-normal modes of the black hole. The demonstration of an accu-
rate fit by the quasi-normal modes to the late-time behavior of the waveform in these
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Figure 6. Extracted waveform (solid curve) that is emitted following the
interaction between a strong gravitational wave and a black hole. Here the
black hole is significantly disturbed by the wave and grows in mass as part
of the wave crosses the horizon. The waveform of Figure 5 is overlapped for
comparison.

calculations provides an important verification of the code (see Figure 5). A spacetime
initially containing a high amplitude Brill wave has also been computed. In this model,
the mass associated with the apparent horizon is only 0.59 of the total mass on the
initial slice and the initial apparent horizon is observed to be highly distorted. Nev—
ertheless, the gravitational waves shown emerging from the vicinity of the hole quickly
develop damped—oscillatory behavior similar to that of quasi—normal modes (Figure 6).
The waveform is no longer described well by the quasi—normal modes because the black
hole mass grows significantly during the time the waves are being emitted as a significant
fraction of the Brill wave is swallowed by the hole. It is as if the initial wave excites
oscillations in a bell (the black hole) whose resonance properties are rapidly changing on
a time scale of the fundamental oscillation.

In these simulations, the gravitational radiation signal is extracted from data that
are available at a finite radius on the spacelike slices. Typically, the fields at distances of
15 — 30M from the hole are used to construct a gauge-invariant variable that determines
an estimate of the asymptotic waveform. As a check7 these researchers also use this
boundary data, and data interpolated onto a future-directed null cone, for an integration
of the Zerilli equation. The numerically computed Zerilli function, evaluated at larger
radii, provides a useful check on the gauge-invariant determination of the waveform.

The intention is to next use this code to compute the head-on collision of two black-
holes. This problem was originally studied by Smarr and Eppley [12] over a decade ago,
but with less sophisticated techniques and computers. These limitations made it difficult
to gauge the accuracy of those calculations. Apart from confirming the previous work,
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accurate computation of the axisymmetric collision problem is viewed as a necessary
prelude to any attempt to calculate in three dimensions the orbital decay and coalescence
of a black-hole binary.

4. Three-dimensional initial data for two black hole collisions

With construction begun on the US Laser Interferometer Gravitational-wave Observa-
tory (LIGO), increasing attention must be devoted to the theoretical task of modeling
the orbital decay, coalescence, and gravitational radiation signal of black hole binaries.
Before a dynamical evolution can be attempted, initial data must be constructed for the
two black holes that satisfies the constraint equations. One means of generating such
initial data sets has now been successfully demonstrated [27, 28] that uses the conformal
and transverse-traceless decomposition of the constraint equations [7]. This is a con—
formal imaging procedure that extends Misner’s [29] original calculation, of initial data
on two asymptotically-flat sheets for a time-symmetric configuration of multiple black
holes, to include non—time—symmetric configurations of holes with linear and angular
momenta [30, 31, 32].

The procedure involves solving the vacuum Hamiltonian and momentum con—
straints of 3+1 gravity using the conformal transformations of York [7] to bootstrap
into a. simultaneous solution. For initial data we take the spatial metric 7,3, to be con-
formally flat, 'ygj : \Ilt'iqj : \Il4fij where fij is the flat three-metric, and the time slice to
be maximal K 2 K‘; = 0. The remaining part of the physical extrinsic curvature Ki, is
then conformally related to the trace-free conformal background extrinsic curvature AH
by K;,- : ‘II_2A.‘]‘. The Hamiltonian and momentum constraints then become

- 1 _ ~ -.~We: is: 7A,,AJ, (32)

Dj/i'i : 0, (33)
where D]- and 62 are flat-space differential operators. In order for the solutions of these
equations to represent black holes, certain boundary conditions have to be assumed.
First, boundary conditions are imposed that are consistent with the spacelike slices
being asymptotically flat. Second, in order for the source-free equations to describe black
holes, the hypersurface must be topologically nontrivial, with each black hole connected
to another asymptotically-flat sheet through a throat or Einstein-Rosen bridge. This is
the. effect of the inner boundary condition used in the work described in the preceding
section for one hlark hole. Here, each black hole on the top sheet may connect to a
separate bottom Hlluet or all of the holes may be connected to the same bottom sheet.
The latter approach, with a two-sheeted manifold, has been adopted since it provides an
isometry between physical fields on the top and bottom sheets. This isometry implies
unique boundary conditions that can be imposed on each of the throats and eliminates
the need to include the bottom sheet in the computational domain.

The procedure starts with solutions of the momentum constraint [31] for a. single
black hole, which have specified (physical) linear and angular momenta:

.. _3
AS = gLPgnj + Pjn; — (fij — mnflPknk]
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+§r—4[P,'nj -|- PJ'TL,‘ + (fgj - 5n,n,-)Pknk], (34)

3
‘5'r (ehmsmnknj + ekimnkni). (35)A5, =

The former expression adopts one of two possible isometry conditions (here the negative
isometry), which is seemingly mOst useful physically. The physical linear and angular
momenta are given by Pk and 51., which are not affected by conformal mapping and
therefore are not dependent on the solution of the Hamiltonian constraint. These data.
for [1,3 are isometric for one hole only. A superposition of two or more such solutions
is a solution of the momentum constraint, but does not satisfy the isometry condition.
Kulkarni, Shepley and York [32] have shown how higher-order corrections to (34) and
(35) can be added, through a method of images for tensors, to construct a solution of
the momentum constraint that is inversion symmetric through each hole. This process is
rapidly convergent, but analytically nearly intractable. Fortunately, Cook [27] has found
a recursive procedure that can be used numerically to generate a discrete solution (i,e.,
on a computational mesh) to arbitrarily high precision.

Once an inversion-symmetric solution of the momentum constraint is known, the
nonlinear Hamiltonian constraint can be solved for ‘11 by employing an asymptotically-
flat boundary condition \11 —> 1 as 7' —> 00 and isometry boundary conditions on each of
the throats. The conformal factor is then used to “dress” [1,,- and obtain the physical
extrinsic curvature.

Cook [27] has solved these equations for two black hole initial data, subject to the
restriction of axisymmetry, for a variety of different black hole linear momenta (aligned
along the symmetry axis) and angular momenta (spin axes aligned along the symmetry
axis). These results were obtained with two separate finite difference codes, one using
Cadez coordinates [33] and one using bispherical coordinates, in order to confirm his
results and gauge their precision. In new work, Cook, Choptuik, Dubal, Klasky, Matzner
and Oliveira [28] have generalized these results to three dimensions and obtained initial
data for two black holes with truly arbitrary linear and angular momenta and masses.
Cook and Abrahams [34] have examined these data sets to determine some of the physical
properties that are evident on the initial slice, such as asymptotic mass, linear momentum
and angular momentum, and areas of apparent horizons.

5. Conclusions

The examples cited here should make evident that numerical relativity has reached a
level of sophistication where it is possible both to discover previously unknown physical
effects and to state certain results with numerical precision. Even in the interaction of
strong gravitational waves with black holes, where we have not yet been surprised with
a violation of our physical intuition, the results probe a regime that is far from what
we might calculate analytically. Each such solution, where the black hole is strongly
perturbed yet fails to produce a naked singularity, lends weight to the notion of relatively
generic adherence to the cosmic censorship hypothesis. Finally, the first forays have
begun toward designing algorithms and writing codes for three-dimensional numerical
relativity calculations. This comes at an opportune time as there are increasing hopes
that we will enter the era of gravitational-wave astronomy at the end of the 19908.
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The examples cited here should make evident that numerical relativity has reached a
level of sophistication where it is possible both to discover previously unknown physical
effects and to state certain results with numerical precision. Even in the interaction of
strong gravitational waves with black holes, where we have not yet been surprised with
a violation of our physical intuition, the results probe a regime that is far from what
we might calculate analytically. Each such solution, where the black hole is strongly
perturbed yet fails to produce a naked singularity, lends weight to the notion of relatively
generic adherence to the cosmic censorship hypothesis. Finally, the first forays have
begun toward designing algorithms and writing codes for three-dimensional numerical
relativity calculations. This comes at an opportune time as there are increasing hopes
that we will enter the era of gravitational-wave astronomy at the end of the 19908.
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Relativistic dissipative fluids
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We observe in Nature fluids that manifest dissipation, e.g., the effects of heat
conductivity and viscosity. We believe that all physical phenomena are to be described
within the framework of General Relativity. What, then, is the appropriate description
of a relativistic dissipative fluid? This is not only a question of principle, but also one of
practical interest. There exist systems, such as certain neutron stars, in which relativity
and dissipation are at the same time significant.

The nonrelativistic theory of a dissipative fluid - the Navier-Stokes theory — has
been remarkably successful. The fields of this theory consist of a velocity field of the
fluid, two state lie-iris of the fluid (tag, density and pressure), a heat-flow vector field,and a stress tensor Field. The emu-Minus of the theory are conservatiLm of mass, energy
and i'nmnmltmn, togetlm‘ with twu aritlitinnal equations: One equates the heat—ilow
to a multiple of the temperature gradient; the other the stress to a multiple of the
velocity gradient. There is a natural relativistic generalization of this Navier- Stokes
theory, called the Eckart theoryil]. The fields of this theory are a 4—velocity of the fluid,
two state fields, a spatial heat-flow field, and a spatial stress field. The equations are
essentially those of Navier-Stokes, written in the rest frame of the fluid. Thus, there
are three conservation equations, together with equations for the heat-flow and stress.
But this Eckart theory turns out to be unsatisfactory. For example, the equations of the
theory have no initial-value formulation.

It is not difficult to see what is the problem with the Eckart theory. Consider, forexample, the heat equation in one space and one time dimension

61 61‘
at K 62:2 (1)

where n is the thermal conductivity. This equation sends signals at arbitrarily large
speed. This behavior is not a problem in a nonrelativistic theory, for we have in that
case a Newtonian time, which regulates the forward march of the solution. But in a
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relativistic theory (such as the Eckart) this behavior means that signals could, at each
point of space- time, be sent along all directions in the 3-flat orthogonal to the local fluid
4-velocity at that point. In general, these local 3—flats would not integrate to 3-surfaces,
and so the equation could send signals into the past. This behavior, in turn, manifests
itself as lack of an initial—value formulation.

it is easy to modify the heat equation to correct its infinitespced behavior. Intro-
duce a. characteristic speed v, and replace Eqn. (1) by

6T 62 r :62 2
E 4 6x2 112 8t2 ( )

Then, provided 1) < c, this equation sends no signal faster than light. But, un—
fortunately, this new equation appears to be unsuitable for the description of thermal
phenomena. For example, it requires as initial data the spatial distribution of both
the temperature and its first time derivative. How, physically, does one “set” an initial
time—derivative of the temperature?

This situation for the heat equation is rescued by a theorem to the following effect:
Consider a solution of Eqn. (1) with initial data To(cc), and of Eqn. (2) with initial data
T0(a:) and T0(m). Then these two solutions are close to each other, except on distance
scales of the order of n/U, and time scales of the order of 5/112 [2] Choosing v to exceed
the typical thermal speeds of the particles making up the fluid, then these scales will be
less than, respectively, the mean free path and mean free time of the fluid particles. But
on these scales, “temperature” does not even make physical sense, and so neither do the
solutions of our equations. Thus, we are able to modify the heat equation to achieve
causal behavior, the only cost being to change the solutions on scales on which those
solutions do not make physical sense anyway.

Similar modifications of the Eckart theory have been proposed[3]. In these new
theories, the fields are the same, and the conservation laws remain intact. But the
equations relating the heat—flow and stress to the other fluid variables are modified by
introducing new terms involving, among other things, the time-derivatives of these two
fields. The result, provided the coefficients in these new terms are chosen with sufficient
care and to be sufficiently large, is a hyperbolic system. Furthermore, it is believed —
although the proof is not complete - that the solutions of this new system are physically
realistic. How could such a result be obtained, given that now we cannot expect to
have solutions of the old theory - the Eckart theory - for comparison? What is done is
the following. Consider any solution of the new system of equations. Write down the
expressions that vanish in the case of the Eckart theory - heat-flow minus a multiple of
temperature gradient and stress minus a multiple of velocity gradient. Now try to show
that these expressions evolve, by virtue of the full equations of the theory, to be “small”.

So, it now appears likely that we will have physically acceptable theories for rel—
ativistic dissipative fluids. But they will exist only in a rather curious context. For a
fixed physical fluid, there will be many different systems of equations to describe that
fluid - corresponding to the many different ways that one can add the extra terms to the
Eckart equations to obtain a hyperbolic system. But all these systems will give precisely
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the same physical results, i.e., the same description of our fluid on scales on which a
“fluid description” is valid at all. This is a most surprising resolution of the puzzle of
the status of dissipative fluids in general relativity.
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Abstract. We consider the problem of extracting physical predictions from the wave function
of the universe in quantum cosmological models. We state the features of quantum cosmology an
interpretational scheme should confront. We discuss the Everett interpretation, and extensions of
it, and their application to quantum cosmology. We review the steps that are normally taken in
the process of extracting predictions from solutions to the Wheeler-DeWitt equation for quantum
cosmological models. Some difficulties and their possible resolution are discussed. We conclude
that the usual wave function—based approach admits at best a rather heuristic interpretation,
although it may in the future be justified by appeal to the decoherent histories approach.

1. Introduction

Quantum mechanics was originally developed to account for a number of otherwise
unexplained phenomena in the microscopic domain. The scope of the theory was
not thought to extend beyond the microscopic. Indeed, the existence of an external,
macroscopic, classical domain was felt to be necessary for the theory’s interpretation.
This view of quantum mechanics has persisted for a very long time, with not one shred
of experimental evidence against it.

Today, however, more ambitious views of quantum mechanics are entertained. The
experimental possibilities afforded by SQUIDS suggest that quantum coherence may
act on macroscopic scales (Leggett, 1980). Furthermore, the separation of classical
and quantum domains is often felt unnatural from a foundational point of view. The
domain of applicability of quantum mechanics may therefore need to be extended.
But in extrapolating quantum mechanics to the macroscopic scale, where do we stop?
At the scale of large molecules? At the laboratory scale? At the planetary scale?
There is only one natural place 7 at the scale of the entire universe. One rapidly
arrives, therefore, at the subject of quantum cosmology, in which quantum mechanics
is applied to the entire universe. It might only be through this subject that the form
of quantum mechanics as we know it may be fully understood.

Yet quantum cosmology was not originally developed with the foundational prob-
lems of quantum mechanics in mind. Rather, it was perhaps Viewed as a natural area
to investigate as part of a more general drive to understand quantum gravity (DeWitt,
1967; Misner, 1969; Wheeler, 1963, 1968). More recently, the success of models like
inflation (Guth, 1981) in early universe cosmology has led to a greater desire to under-
stand the initial conditions with which the universe began. On very general grounds,
the universe appears to have emerged from an era in which quantum gravitational
effects were important. Quantum cosmology, in which both matter and gravitational
fields are taken to be quantized, is therefore the natural framework in which to address
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questions of initial conditions. Indeed, there has been a considerable amount of activity
in this subject in recent yearsl

Much of this recent attention on quantum cosmology has been focused on obtaining
a crude idea of the physical predictions made by certain theories of initial conditions.
However, little attention has been devoted to understanding or even clarifying the prin-
ciples involved in extracting these predictions from the mathematical formalism. This
contribution represents a small step towards filling this gap. That is, it is concerned
with the interpretation of quantum cosmology. In particular, I shall be addressing the
question, “How are predictions extracted from a given wave function of the universe?”.
I will state immediately that there is no wholly satisfactory answer to this question.
The aim of this contribution, therefore, is to describe the difficulties involved and the
attempts to overcome them, the procedures that are actually used in practice and the
motivation behind them.

The interpretation of quantum cosmology raises two particular sets of issues which
may be discussed separately. The first set concerns the fact that, unlike ordinary
quantum mechanics, the system under scrutiny, the universe, is a closed and isolated
system. The special features of (non—relativistic) quantum mechanics applied to such
systems are discussed in the accompanying paper by Hartle (Hartle, 1992a). For com-
pleteness, some of these features are also covered here, but from a somewhat difl'erent
angle (namely from the wave function point of view, rather than that of the decoherent
histories approach). The second set of issues concerns the fact that the wave function
for the system is described not by a time—dependent Schrodinger equation, but by the
Wheeler—DeWitt equation. Associated with this is the so—called “problem of time”, and
the absence of the usual machinery of projection operators, unitary evolution, Hilbert
space etc. It is this second set of issues that will form the primary focus of this paper.

To focus the discussion, consider the sort of features of the universe one might hope
to predict in quantum cosmology. Some of the most important are:
0 Spacetime is Classical. One of the crudest and most obvious observations about

the universe we can make, is that the structure of spacetime is described very ac—
curately by classical laws. The very first requirement of a quantum theory of the
universe, therefore, is that it predict this. The question of how classical behaviour
emerges in quantum systems is a difficult one, that has not been completely solved
even in non-relativistic quantum mechanics. Still, it ought be possible, at least in
some crude sense, to see whether a given wave function for the universe is consistent
with a prediction of classical spacetime.

0 Initial Inflationary Phase. Many current observational features of the universe,
such as the horizon, flatness and monopole problems, are explained by postulating
an inflationary phase at very early times. In models of the universe which admit in—
flationary solutions, the occurrence and amount of inflation are generally dependent
on initial conditions. A correct quantum theory of initial conditions should supply
the initial conditions for an inflationary phase to take place.

0 Spectra of Density Fluctuations and Gravitational Waves. In inflationary
models, it is possible to generate gravitational waves and density fluctuations consis-
tent with the observed isotropy of the microwave background, yet sufliciently large

T For general reviews of quantum cosmolo y, see Fang and Ruffini (1987 , Fang and Wu 1986 ,S
Halliwell (1990, 1991), Hartle (1985, 1986, 1990), Hawking (1984b), Hu (1989), Lnflamme (1991),
Page (1986, 1991).
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for the formation of large scale structure. These results are obtained by considering
the quantum field theory of the fluctuations during the inflationary phase. Again
they are initial conditions dependent, and one might hope that quantum cosmology
will supply the requisite initial conditions.

0 Low Entropy Initial State. One of the most striking features of the universe is
its time asymmetry. It is very far from equilibrium, indicating that it started out in
a very special, low entropy initial state. One would therefore hope to predict this
very smooth beginning. This is closely related to the spectra of fluctuations.

In what follows, we will not be concerned with detailed predictions of particular the-
ories of initial conditions. Rather, we will assume that we are given a wave function
for the universe (perhaps determined by some theory of initial conditions), and discuss
the extraction of predictions from it. In particular, we will focus on the emergence of
a semiclassical domain ~ an approximately classical spacetirne background with quan—
tum fields in itl. This is appropriate for two reasons. First, all observational features
of the universe are semiclassical in nature. Second, even if the theory could make ob-
servable quantum gravitational predictions, as one would certainly hope of a quantum
theory of cosmology, observation of them would be through their correlation with the
semiclassical domain. Quite generally, therefore, the emergence of the semiclassical
domain is the appropriate thing to look for.

2. Canonical Quantization

In the interests of conciseness, I shall assume that the formalism of quantum cosmol-
ogy is known, and give only the briefest account here (see for example Halliwell (1990),
and the general references cited earlier). For definiteness, we consider the canonical
quantization of Einstein gravity coupled to matter for closed universes. The quan—
tum state of the system, the universe, is represented by a wave functional, \I/[h;j, 45], a
functional on superspace, the space of three-metrics hi and matter fields (15 on a three-
surface. The wave function has no explicit dependence on time. There is therefore no
Schrodinger equation, only the constraints of the Dirac quantization procedure,

lhiji ¢l : 0) Hi‘lllhijlj (fl = 0 (2.1)

where H and 7'2.- are the operator versions of the classical constraints,

H = h—% (Wm, _ énjnj) _ hi ( 3R — 2A) + 71mm" = 0 (2.2)

71,-: —27r,-,lj + Hrm" = o (2.3)
(in the usual notation). Eqs.(2.1) are of course the Wheeler-DeWitt equation and the
momentum constraints.

l This is, loosely speaking, the same thing as the quasi-classical domain defined by Cell-Mann and
Hartle (1990) in the context of the decoherent histories approach, but I give it a slightly different
name since the wave function approach considered here does not permit it to be defined in quite the
same way.
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Wave functions satisfying the constraints (2.1) may also be generated using a (com-
plex) path integral representation (Halliwell and Hartle, 1990, 1991). This is used,
for example, in the specification of the no-boundary wave function (Hawking, 1982,
1984a; Hartle and Hawking, 1983). The sum-over—histories approach is more general
in that it may be used to construct more complicated amplitudes (6.9., ones depending
on the three-metric and matter fields on many three-surfaces) and in fact the latter
type of amplitude is likely to be the most useful for interpreting the theory. Here we
are concerned with describing what has actually been done, and this means discussing
single surface amplitudes.

There are other very different ways of quantizing the classical system described
by the constraints, (2.2), (2.3). In particular, one could contemplate solving the con—
straints classically, prior to quantization, and then quantizing an unconstrained theory.
The Dirac quantization scheme outlined here is the one most commonly used in prac—
tical quantum cosmology, and it is this that we shall use in what follows.

Of course, all known approaches to quantum gravity are fraught with severe tech—
nical difficulties, and the formal framework outlined above is no exception. Moreover,
a proper theory of quantum gravity, should it exist, might involve substantial depar—
tures from this general framework (6.9., string theory). However, there are a number
of reasons why it might nevertheless make sense to persevere with this approach to
quantum cosmology. Perhaps the most important is that in quantum cosmology one is
frequently concerned with issues. Many issues, and in particular the interpretational
issues considered here, are not very sensitive to the resolution of technical difficulties.
Furthermore, they are likely to be equally present in any approach to quantum gravity.
No generality is lost, therefore, in employing the formal scheme envisaged in Eq.(2.1).

3. Interpretation

The question of interpretation is that of extracting physical statements about the
universe from the wave function, \I/[hi], o]. In non-relativistic quantum mechanics there
is a well—defined procedure for achieving this. It is generally known as the Copenhagen
interpretation. Although it is frequently regarded as problematic from a foundational
point of view, it has been very successful in its physical predictionsi The Copenhagen
interpretation involves a number of features and assumptions that should be highlighted
for the purposes of this account:

Cl. It assumes the existence of an a priori split of the World into two parts: a (usu—
ally microscopic) quantum system, and an external (usually macroscopic) classical
agency.

C2. It concerns systems that are not genuinely closed, because they are occasionally
subject to intervention by the external agency.

C3. The process of prediction places heavy emphasis on the notion of measurement by
the external agency.

C4. Predictions are probabilistic in nature, and generally only have meaning when mea—
surements are performed on either a large ensemble of identical systems, or on the
same system many times, each time prepared in the same state.
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C5. Time plays a very distinguished and central role.
Quantum cosmology, by contrast, involves a number of corresponding features and
assumptions that render the Copenhagen interpretation woefully inadequate:

QCl. It is assumed that quantum mechanics is universal, applying to microscopic and
macroscopic systems alike, up to and including the entire universe. There can
therefore be no a priori split of the universe into quantum and classical parts.

Q02. The system under scrutiny is the entire universe. It is a genuinely closed and isolated
system without exterior.

Q03. Measurements cannot play a fundamental role, because there can be no external
measuring apparatus. Even internal measuring apparatus should not play a role,
because the conditions in the early universe were so extreme that they could not
exist.

QC4. The universe is a unique entity. It does not belong to an ensemble of identical
systems; nor is it possible to make repeated measurements on it prepared in the
same state.

QC5. The problem of time: general relativity does not obviously supply the time param—
eter so central to the formulation and interpretation of quantum theory.

Of these features, only (QC5) is specific to quantum gravity. The rest would be true of
any closed and isolated system described by non»relativistic quantum mechanics, and
may be discussed in this context.

The problem of interpretation is that of finding a scheme which confronts features
(QC1)7(QC5), yet which may be shown to be consistent with or to reduce to (C1)~(C5)
under suitable approximations and restrictions.

Probably the best currently available approach to these difficulties is the decoherent
histories approach, which employs not the wave function, but the decoherence func—
tional as its central tooll It has a number of features which strongly recommend it
for quantum cosmology: it specifically applies to closed systems; it assumes no a priori
separation of classical and quantum domains; it does not rely on the notion of measure—
ment or observation; and its focus on histories rather than events at a single moment
of time might sidestep (or at least alleviate) the problem of time in quantum gravity.
Unfortunately, a detailed application of this approach to quantum cosmology has not
yet been carried out (although efforts in this direction are currently being made (Har—
tle, 1992b)). Furthermore, my task here is to describe what has actually been done,
and for that reason I will describe the somewhat cruder approaches to interpretation
based on the wave function. However, I find it useful to remain close to the spirit
of the decoherent histories approach, and to think of the wave function approach as
an approximation to it (although in a sense yet to be explained). In particular, it
is convenient to have as one’s aim the assignment of probabilities to histories of the
universe.

In order to deal with the issues noted above, conventional wave function-based
approaches invoke the Everett (or “Many Worlds”) interpretation.ll Above all, the

l The consistent histories approach to quantum mechanics was introduced by Griffiths (1984), and
later developed by Omnes (reviewed in Omnés, 1990, 1992). Much of it was developed independently
under the name decoherent histories, by Gell-Mann and Hartle (1990). See also Hartle (1990, 1992a).
For applications and generalizations, see Blencowe (1991), Albrecht (1990) and Dowker and Halliwell
(1992)
ll Everett (1957). A useful collection of papers on the Everett interpretation may be found in DeWitt
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Everett interpretation is a scheme specifically designed for quantum mechanical systems
that are closed and isolated. Everett asserted that quantum mechanics should be
applicable to the entire universe, and there should be no separation into quantum and
classical domains. These features of the Everett interpretation are therefore consistent
with features (Q01) and (Q02) of quantum cosmology. Furthermore, the state of the
entire system should evolve solely according to a wave equation, such as the Schrodinger
equation, or in quantum cosmology the Wheeler-DeWitt equation, and there should
be no discontinuous changes (collapse of the wave function).

Everett went on to model the measurement process by considering a world divided
into a large number of subsystems, and showed how the conventional Copenhagen view
of quantum mechanics can emerge. It is this part of the Everett interpretation that
leads to its “Many Worlds” feature — the idea that the universe splits into many copies
of itself whenever a measurement is performed. It is at this stage, however, that the
original version of the Everett interpretation departs in its usefulness from practical
quantum cosmology. For the sort of models one is often interested in interpreting in
quantum cosmology are minisuperspace models, which are typically very simple, and
do not contain a large number of subsystems. Furthermore, the many worlds aspect of
the interpretation has, I believe, been rather over—emphasized, perhaps at the expense
of undermining the credibility of the overall set of ideas. The Everett interpretation,
especially as it applies to practical quantum cosmology, is not so much about many
worlds, but rather, about how one might make sense of quantum mechanics applied to
genuinely closed systems.

It is, therefore, convenient to pass to a restatement of the Everett interpretation due
to Geroch (1984). Geroch translated Everett’s modeling of the measurement process
using a large number of subsystems into statements about the wave function of the
entire system. He argued that predictions for closed quantum systems essentially boil
down to statements about “precluded” regions ~ regions of configuration space in which
the wave function for the entire system is very small. From here, it is a small step
to a slightly more comprehensive statement given by Hartle, specifically for quantum
cosmology (Hartle, 1986). It is the following:

If the wave function for the closed system is strongly peaked about a particular region
of configuration space, then we predict the correlations associated with that region; if
it is very small, we predict the lack of the corresponding correlations; if it is neither
strongly peaked, nor very small, we make no prediction.

This basic idea appears to have been adopted, perhaps provisionally, in most, if not all,
attempts to interpret the Wave function in quantum cosmology (see also Wade (1988)).

The statement is admittedly rather vague and a number of qualifying remarks are
in order. Firstly, to say that a wave function is “strongly peaked” necessarily involves
some notion of a measure, and this has to be specified. For example, do we use |\P[2?
The Klein-Gordon current constructed from ‘11? We will return to this below. Second,
the interesting correlations in the wave function are often not evident in the configu-
ration space form. It is therefore appropriate to interpret the above statement rather
broadly, as refering to not just the wave function, but any distribution constructed
from the wave function. For example, phase space distributions such as the Wigner
function, and related functions, have been the focus of attention in a number of pa-

and Graham (1973). See also Bell (1981), Deutsch (1985), Kent (1990), Smolin (1984) and Tipler
(1986).
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The interpretation of quantum cosmological models

pers, and these have sometimes proved quite useful in identifying classical correlations
(Anderson, 1990; Calzetta and Hu, 1989; Habib, 1990; Habib and Laflamme, 1990;
Halliwell, 1987, 1992; Kodama, 1988; Singh and Padmanabhan, 1989).

For practical quantum cosmology, the implication of the above interpretational
scheme is that rather than find the probability distributions for quantities felt to be of
interest, as in ordinary quantum mechanics, it is necessary to determine those quanti-
ties for which the theory gives probabilities close to zero or one, and hence, for which
it makes predictions. On the face of it, this may seem to suggest that the predictive
power of quantum cosmology is very limited in comparison to ordinary quantum me-
chanics. However, by studying isolated systems consisting of a large number ofidentical
subsystems, it may be shown that this interpretation implies the usual statistical inter-
pretation of ordinary quantum mechanics, in which subsystem probabilities are given
by |1,/)[2 where 1/) is the subsystem wave function (Farhi, Goldstone and Gutmann, 1989;
Finkelstein, 1963; Graham, 1973; Hartle, 1968). It is in this sense that feature (QC4)
of quantum cosmology is reconciled with (C4) of the Copenhagen interpretation.

Given a measure on a set of possible histories for the universe, it is often not peaked
about a particular history or family of histories. To obtain probabilities close to one
or zero, it is often necessary to restrict attention to a certain subset of the possible
histories of the universe, and make predictions within that subset. That is, one looks
at conditional probabilities. The motivation behind this is anthropic reasoning — we as
observers do not look out into a generic universe, but to one in which the conditions for
our own existence have necessarily been realized (see, for example, Barrow and Tipler,
1986). Obviously the detailed conditions for our existence could be very complicated
and difficult to work out. However, it is possible to get away with exploiting only the
weakest of anthropic assumptions in order to make useful and interesting predictions
about the universe. It is, for example, extremely plausible that the existence of life
requires the existence of stars like our sun. It therefore makes sense to restrict attention
only to those histories of the universe which exist long enough for stars to form before
recollapsing.

This completes our brief survey of the special features of closed quantum systems.
We have discussed features (QCl), (QCZ) and (QC4) of quantum cosmology. The
status of measurements, (QC3), in the above discussion is admittedly somewhat vague,
although it is clear that they do not play a significant role. Their status is perhaps
clarified more fully in the decoherent histories approach. Finally, although it is an
important issue for the interpretation of quantum cosmology, l have not discussed the
problem of time, (QC5). This will be briefly mentioned below, but it would take a lot of
space to do it justice. The interested reader is referred to the reviews by Kuchai' (1989,
1992), which cover the problem of time and its connections with the interpretation of
quantum cosmology. See also Unruh and Wald (1989).

4. Interpretation of Solutions to the Wheeler-DeWitt Equation

We now come to the central part of this contribution, which is to describe how
in practice predictions are actually extracted from solutions to the Wheeler-DeWitt
equation. As mentioned earlier, the primary aim is to determine the location and
features of the semiclassical domain. Different papers in the literature treat the process
of prediction in different ways, but it seems to boil down to four distinct steps, which
I now describe in turn.
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A. Restriction to Perturbative Minisuperspace.
The full theory described by Eq.(2.1) is not only difficult to handle technically, it is
not even properly defined. This problem is normally avoided by artificially restricting
the fields to lie in the region of superspace in the neighbourhood of homogeneity (and
often isotropy). That is, one restricts attention to the finite dimensional subspace
of superspace called “minisuperspace”, and considers small but completely general
inhomogeneous perturbations about it.i

In more detail, the sort of restrictions entailed are as follows. One restricts the
three-metric and matter fields to be of the form,

h;j(x,t) = h53)(t) + 6h,j(x,t), <I>(x,t) = ¢(t) + 6¢(x,t) (4.1)

Here, the minisuperspace background is described by the homogeneous fields hf?)
and ¢(t). For example, the three—metric could be restricted to be homogeneous and
isotropic, described by a single scale factor a. We will denote the minisuperspace back—
ground coordinates by the finite set of functions q“(t), where a = 1, - -.n 6hgj and
645 are small inhomogeneous perturbations about the minisuperspace background, de-
scribing gravitational waves and scalar field density perturbations. They are retained
only up to second order in the action and Hamiltonian (and therefore to first order in
the field equations). For convenience, we will denote the perturbation modes simply
by M5.

With these restrictions on the class of fields considered, the Wheeler—DeWitt equa—
tion, after integration over the three—surface, takes the form

1
—WV2 + "1211(4) + H2(q,6¢) ‘I’(q.6a$) = 0 (4,2)

Here, V2 is the Laplacian operator in the minisuperspace modes q and we have ex—
plicitly included the Planck mass mp, since it is to be used as a large parameter in a
perturbative expansion. H2 is the Hamiltonian of the perturbation modes, 6gb, and is
quadratic in them. There are more constraint equations associated with the remaining
parts of the Wheeler—DeWitt equation, and with the momentum constraints. These
are all linear in the perturbations and can be solved, after gauge—fixing. When this
is done, only Eq.(4.2) remains, in which 6gb may be thought of as a gauge—invariant
perturbation variable.

The restriction to perturbative minisuperspace is of course very difficult to justify
from the point of view of the full theory. A number of attempts have been made to
understand the sense in which minisuperspace models might be part of a systematic
approximation to the full theory, but the answer seems to be that their connection is
at best tenuous (Kuchar and Ryan, 1986, 1989). What one can say, however, is that
solutions to the minisuperspace field equations, including perturbations about them,
will (with a little care) be solutions to the full field equations, and thus the lowest or-
der semiclassical approximation to perturbative minisuperspace quantum cosmological
models will agree with the lowest order semiclassical approximation to the full theory.

T This general approach has been the topic of many papers, including Banks (1985), Banks, Fischler
and Susskind (1985), Fischler, Ratra and Susskind (1986), Halliwell and Hawking (1985), Lapchinsky
and Rubakov (1979), Shirai and Wada (1988), Vachaspati and Vilenkin (1988), Wade (1986).
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The interpretation of quantum cosmological models

These models may therefore be thought of as useful models in which a number of issues
can be profitably investigated, but which may also give some crude predictions about
the physical universe.

The essential ideas of the practical interpretational scheme described here will very
probably be applicable to situations more general than perturbative minisuperspace,
but very little work on such situations has been carried out. We will not go into that
here.

B. Identification of the Semiclassical Regime.
The next step involves inspecting the wave function \I/(q°’, 64$), asking how it behaves as
a function of the minisuperspace variables q, and in particular, identifying the regions
in which the wave function is exponentially growing or decaying in q, or oscillatory in
q.

The regions in which the wave function is rapidly oscillating in q are regarded as
the semiclassical domain, in which the modes q, are approximately classical, whilst the
perturbation modes 25¢ need not be. This interpretation comes partly from analogy
with ordinary quantum mechanics. But also one can often argue that certain distribu—
tions constructed from a rapidly oscillating wave function are peaked about classical
configurations. For example, the Wigner function, mentioned earlier, is often used to
support this interpretation.

The other regions, in which the wave function tends to be predominantly exponential
in behaviour are regarded as non-classical, like the under—the—barrier wave function in
tunneling situations. Were this ordinary quantum mechanics, then the wave function
would typically be exponentially small in the tunneling regions. One could then invoke
Geroch’s version of the Everett interpretation, and just that the system will not be
found in this region, because it is “precluded”. However, a peculiar feature of gravity
(readily traced back to the indefiniteness of the action) is that the wave function may be
either exponentially small or exponentially large in the regions where it is of exponential
form. Nevertheless, one still says that the system is not approximately classical in this
regime, even when the wave function is exponentially large. To support this claim,
one can argue that, in contrast to the oscillatory regions, a predominantly exponential
wave function, either growing or decaying, is not peaked about classical configurations.

C. WKB Solution in the Oscillatory Regime.
The next stage of the scheme involves solving in more detail in the region in which
the wave function is rapidly oscillating in the minisuperspace variables. This involves
focusing on a particular type of state, namely the WKB state,

‘1’(q.6¢)= 0(4) 6XP 077125000) was) + 0071,72) (4-3)
50(q) is real, but 1/) may be complex. Many models also involve a slowly varying
exponential prefactor contributing at order mg, but for the purposes of the present
discussion it can be assumed that this is absorbed into C. Also, a possible phase at
order m3 depending only on (1 may be absorbed into 1/), so C may be taken to be real.

Eq.(4.3), it must be stressed, is an amatz for the solution, and many of the predic-
tions subsequently derived depend on assuming this particular form. We will return
later to the question of the validity and usefulness of this particular ansatz.

The Wheeler-DeWitt equation may now be solved perturbatively, by inserting the
ansatz (4.3), and using the Planck mass mp as a large parameter. Since this parameter
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is not dimensionless, the expansion is meaningful only on length scales much greater
than the Planck length. Note also that a double expansion of the full Wheeler-DeWitt
equation is involved: a WKB expansion in the Planck mass, and a perturbation ex-
pansion in small inhomogeneities about minisuperspace.

Equating powers of the Planck mass, one obtains the following. At lowest order,
one gets the Hamilton-Jacobi equation for So,

éwso)? + U(q) = o. (4-4)
To next order one obtains a conservation equation for C

2vs0 - v0 — CVZSO = 0 (4.5)

and a Schrodinger equation for 1/),

iVSo - V11) 2 H211) (4.6)

Consider now (4.4). As indicated above, it may be argued that a wave function
predominantly of the form elmzs" indicates a strong correlation between coordinates
and momenta of the form

— m2 % (4 7)pa — P aqa '

Since 4“ = p", (4.7) is a set of n first order differential equations (Where, recall,
a = 1,-~n). Furthermore, since by (4.4), So is a solution to the Hamilton Jacobi
equation, it may be shown that these equations define a first integral to the classical
field equations. The first integral (4.7) may be solved to yield an n-parameter set of
classical solutions. It is for this reason that one says that the wave function (4.3) to
leading order, corresponds to an ensemble of classical solutions to the field equations.

In ordinary quantum mechanics, this interpretation may be substantiated by sub—
jecting an initial wave function of the form (4.3) to a sequence of approximate po-
sition samplings, and showing that the resulting probability distribution for histories
is peaked about the set of classical solutions satisfying the first integral (4.7). See
Halliwell and Dowker (1992), for example, for efforts in this direction.

The tangent vector to this congruence of classical paths is

8
VS - V E — 4.0 at ( 8)

(4.6) is therefore the functional Schrodinger equation for the perturbation modes along
the family of minisuperspace trajectories. This indicates that the perturbation modes
are described by quantum field theory (in the functional Schrodinger picture) along
the family of classical backgrounds described by (4.7).
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The interpretation of quantum cosmological models

D. The Measure on the Set of Classical Trajectories
The final stage is to put a measure on the congruence of classical paths, and to find
an inner product for solutions to the Schrodinger equation (4.8). Suppose one chooses
some (n — 1)-dimensional surface in minisuperspace as the beginning of classical evo-
lution. Through (4.7), the wave function then effectively fixes the initial velocities
on that surface, in terms of the coordinates. However, the wave function should also
provide a probability measure on the set of classical trajectories about which the wave
function is peaked. How is this measure constructed from the wave function? The
construction of a satisfactory non-negative measure remains an outstanding problem
of quantum cosmology, but perhaps the most successful attempts so far involve the
Klein-Gordon current,

J = éorvqfl — o‘vqx) (4.9)
It is conserved by virtue of the Wheeler—DeWitt equation (4.2),

V - J = 0 (4.10)

Choose a family of surfaces {2),}, parametrized by A, cutting across the flow of J. Then
(4.10) suggests that for each x\, a probability measure on the congruence of trajectories
is the flux of J across the surface:

dP = J - d): (4.11)
This measure is conserved along the flow of J, as is readily shown from (4.10).

The problem with (4.11), however, is that it is not always positive. For example, if
the surfaces 2 are taken to be surfaces of constant scale factor, the flow of J typically
cuts these surfaces more than once, because of the possibility of expanding and col—
lapsing universes, leading to negative values for (4.11). Furthermore, J vanishes when
\I/ is real. Still, some sense may be made out of (4.11) by restricting to the WKB wave
functions, (4.3). For these wave functions, the current is

J m m}, (0)2 W2 V50 + 0(mg) (4.12)

For reasonably large regions of minisuperspace (but not globally), it is usually possible
to choose a set of surfaces {2;} for which V50 . d): 2 0, and thus the probability
measure will be positive. Furthermore, this measure implies the standard It/JI2 measure
for the perturbation wave functions, completing the demonstration that quantum field
theory for the perturbations emerges in the semiclassical limit.

This approach was described a long time ago by Misner (1972), and developed more
recently by Vilenkin (1989). It is problematic for a number of reasons: one is the
global problem of choosing the surfaces {21}; another is that is very tied to the WKB
wave functions (4.3). More will be said about this in the next section. Still, it allows
predictions to be made in a number of situations of interest.

The “naive” Schrodinger measure is also sometimes proposed in place of (4.11)
(e.g., Hawking and Page, 1986, 1988). This is the assertion that the probability of
finding the system in a region of superspace of volume dV is [‘I/iQdV, where \I/ is the
wave function of the whole system. This does at least have the advantage that is is
everywhere positive. Furthermore, it can be argued to reduce to (4.11) for WKB wave
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functions, in the limit in which the volume of superspace dV is taken to be hypersurface
of codimension one slightly thickened along the direction of the flow of J. As argued
by Kuchai', however, this measure is problematic for other reasons (Kuchaf, 1992).

At this stage, it is appropriate to comment on the problem of time. In the Wheeler-
DeWitt equation (4.2) (or (2.1)), there is no distinguished variable that plays the role
of time. This is the problem of time. In the scheme described above, however, a
time parameter has emerged. It is the parameter A labeling the family of surfaces
{2),}, and may be chosen to be the same as the parameter t defined in Eq.(4.8), the
affine parameter along the integral curves of V50. The point to be made is that this
parameter has emerged only in the region where the wave function is oscillatory, and
in particular, as a consequence of the assumed semiclassical form of the wave function,
(4.3). This is therefore an explicit illustration of the point of view, not uncommonly
expressed, that time, and indeed spacetime, need not exist at the most fundamental
level but may emerge as approximate features under some suitable set of conditions.
It is in this sense that feature (QC5) of quantum cosmology may be reconciled with
(C5) of ordinary quantum mechanics.

Modulo the above difficulties, Eq.(4.11) is the desired probability measure on pos—
sible histories of the universe. It is commonly not normalizable over the entire surface
E; but this need not matter, because it is conditional probabilities that one is typically
interested in. Suppose, for example, one is given that the history of the universe passed
through a subset .91 of a surface 2, and one wants the probability that the universe
passed through a subset so of .91. The relevant conditional probability is,

_ 50 J - d2
p<80181) — W (4.13)

1

The set of all histories intersecting 2 could include universes which recollapse after a
very short time. A reasonable choice for .91, therefore, might be universes that exist
long enough for stars to form before recollapsing, as discussed earlier. .90 could then
be taken to be the subset of such universes which possess certain features resembling
our universe. If the resulting conditional probability turned out to be close to one or
zero, this would then constitute a definite prediction.

Steps (A)—(D) above constitute the general interpretational scheme implicit or ex-
plicit in most attempts to extract predictions from the wave function of the universe.
It is not by any means a consistent interpretational scheme, but is almost a list of rules
of thumb inspired by the Everett interpretation, and built on analogies with ordinary
quantum mechanics. It has many difficulties, some of which we now discuss.

5. Problems and Objections

We have argued that the WKB wave functions (4.3) correspond to an ensemble of
classical paths defined by the first integral (4.7). Strictly speaking, what this means
is that the WKB wave function is really some kind of superposition of wave functions,
each of which corresponds to an individual classical history (like a superposition of
coherent states).Jr A closely related point is the question of why one should be allowed

T For the explicit construction of wave packets in quantum cosmology, see Kazama and Nakayama
(1985) and Kiefer (1988).
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The inteipretation of quantum cosmological models

to study an interpretation based on the WKB form, (4.3): one would expect a more
general wave function to be expressed as a sum of such terms. In each of these cases,
we are acting as if we had a classical statistical ensemble, when What we really have is
a superposition of interfering states. Why should it be permissible to treat each term
in the sum separately, when strictly they are interfering?

This point concerns the general question of why or when it is permissable to ignore
the interference terms in a superposition, and treat each term as ifit were the member of
a statistical ensemble. Technically, the destruction of interference is generally referred
to as decoherence.

Two notions of decoherence have been employed. The most precise is that of the
decoherent histories approach, where it enters at a very fundamental level: Interference
is most generally and properly thought of as the failure of the probability sum rules for
quantum-mechanical histories. Decoherence, as destruction of interference, is therefore
best regarded as the recovery of these rules (Cell—Mann and Hartle, 1990).

By contrast, in the wave function approach to quantum cosmology, decoherence
appears to have been added as an afterthought, using a different and somewhat vaguer
definition: decoherence is held to be related to the tendancy of the density matrix
towards diagonality (Joos and Zeh, 1985). It is also associated with the establishment
of correlations of a given system with its environment, and with the stability of certain
states under evolution in the presence of an environment (Zurek, 1981, 1982; Unruh
and Zurek, 1989). These definitions are problematic for a number of reasons. One
is that (in ordinary quantum mechanics) the density matrix refers onlyr lo a single
moment of time, yet the proper definition of interference — Lhi- affect. one is trying to
destroy — is in terms of histories. Another is the question of the- bnsis in which the
density matrix should be diagonall

Despite the difficulties, the density matrix approach has been the topic of a number
of papers on decoherence in quantum cosmology, perhaps because it is technically much
simpler (Fukuymna anal Morikuwa, 1989; Habib and Laflamme, 1990; Halliwell, 1989;
liliefer, 1987: Lullannnc and Luulm, 1991; Mellor, 1989; Morikawa, 1989; Padmanabhan,
1989; Paz, 1991; Paz and Sinha, 1992). Models are considered in which the variables
of interest are coupled to a wider environment, and a coarse—graining is carried out,
in which the states of the environment are traced over. In the case of the whole
universe, which strictly has no environment, this is achieved quite simply by postulating
a sufficiently complex universe with a suitably large number of subsystem, and ignoring
some of the subsystems. The typical result of such models is that the intel'filrunco terms
are suppressed very effectively. Furthermore, one and the same mechanism of coarse-
graining also causes decoherence in the histories—based definition of the process. It
is therefore plausible that a more sophisticated analysis using the decoherent histories
approach will lead to the same conclusions. One way or another, one finds some amount
of justification for treating the terms in a superposition separately, and treating the set
of paths to which a WKB wave function correspond as a statistical ensemble. These
arguments have not gained universal acceptance, however (see for example, Kuchar
(1992)).

After the presentation of this contribution, J.Ehlers asked about the observational

i The basis issue is discussed, for example, in Barvinsky and Kamenshchik (1990), Deutsch (1985),
and Markov and Mukhanov (1988). Also, see Zurek (1992) for a possible reconciliation of the above
two differing views of decoherence.
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status of quantum cosmology. Since quantum cosmology aspires to make observable
predictions, this is obviously a very important question. Interest in quantum cosmol-
ogy arose partly as a result of the realization that conventional classical cosmological
scenarios relied on certain (possibly tacit) assumptions about initial conditions. As is
well known, the inflationary universe scenario alleviates the hot big bang model of ex-
treme dependence on initial conditions; but it does not release it from all dependence.
The amount of inflation, the details of the density fluctuations generated, and indeed,
the very occurrence of inflation are initial conditions-dependent. One of the main suc-
cesses of quantum cosmology (modulo the objections described in this paper) has been
to demonstrate that the desired initial conditions for inflation are implied by certain
simple boundary condition proposals for the wave function of the universe. This might
therefore be regarded as an observational prediction, although it is admittedly a very
indirect one.

More direct tests will clearly be very difficult. The universe has gone through many
stages of evolution, each of which is modeled separately. In observing the universe
today, it is difficult to distinguish between effects largely due to initial conditions and
those largely due to dynamical evolution or to the modeling of a particular stage.
What is needed is an effect produced very early in the history of the universe, but
that is largely insensitive to subsequent evolution. Grishchuk (1987) has argued that
gravitational waves might be the sought-after probe of the very early universe. Bound-
ary condition proposals for the wave function of the universe typically make definite
predictions about the initial state of the graviton field (e.g., Halliwell and Hawking,
1985). Memory of this initial state could well be preserved throughout the subsequent
evolution of the universe, because gravitational waves interact so weakly. Parts of their
spectra observable today might therefore contain signatures of the initial state, leading
to the exciting possibility of distinguishing observationally between different boundary
condition proposals. These ideas are of course rather speculative, and gravitational
wave astronomy is still in a very primitive state. Still, quantum cosmology suffers from
an acute lack of connections observational cosmology, and any potentially observable
effect deserves further study.

L.Smolin commented that the scheme described here is very semiclassical in nature,
and suggested that it is perhaps not much more than a classical statistical theory.
It is certainly true that it is very semiclassical in nature, that its predictive output
has the form of classical statistical theory, and perhaps causes one to wonder how
much of it is really quantum—mechanical in nature. However, there are some genuinely
quantum—mechanical aspects to this predictive scheme. Perhaps the principle one is the
prediction of regions in which classical laws are not valid (the regions of superspace in
which the wave function is exponential). Determination of the existence and location
of these regions requires the quantum theory — their existence and location cannot be
anticipated by inspection of the classical theory alone. Furthermore, the existence of
these regions underscores the necessity of discussing the issue of initial or boundary
conditions from within the context of the quantum theory. For in classical theories
of initial conditions (including classical statistical ones), one might be attempting to
impose classical initial conditions in a region in which classical laws are quite simply
not valid.

Finally, a critical appraisal of the quantum cosmology program (which inspired some
of the remarks made here) may be found in Isham (1991).
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well known, the inflationary universe scenario alleviates the hot big bang model of ex-
treme dependence on initial conditions; but it does not release it from all dependence.
The amount of inflation, the details of the density fluctuations generated, and indeed,
the very occurrence of inflation are initial conditions-dependent. One of the main suc-
cesses of quantum cosmology (modulo the objections described in this paper) has been
to demonstrate that the desired initial conditions for inflation are implied by certain
simple boundary condition proposals for the wave function of the universe. This might
therefore be regarded as an observational prediction, although it is admittedly a very
indirect one.

More direct tests will clearly be very difficult. The universe has gone through many
stages of evolution, each of which is modeled separately. In observing the universe
today, it is difficult to distinguish between effects largely due to initial conditions and
those largely due to dynamical evolution or to the modeling of a particular stage.
What is needed is an effect produced very early in the history of the universe, but
that is largely insensitive to subsequent evolution. Grishchuk (1987) has argued that
gravitational waves might be the sought-after probe of the very early universe. Bound-
ary condition proposals for the wave function of the universe typically make definite
predictions about the initial state of the graviton field (e.g., Halliwell and Hawking,
1985). Memory of this initial state could well be preserved throughout the subsequent
evolution of the universe, because gravitational waves interact so weakly. Parts of their
spectra observable today might therefore contain signatures of the initial state, leading
to the exciting possibility of distinguishing observationally between different boundary
condition proposals. These ideas are of course rather speculative, and gravitational
wave astronomy is still in a very primitive state. Still, quantum cosmology suffers from
an acute lack of connections observational cosmology, and any potentially observable
effect deserves further study.

L.Smolin commented that the scheme described here is very semiclassical in nature,
and suggested that it is perhaps not much more than a classical statistical theory.
It is certainly true that it is very semiclassical in nature, that its predictive output
has the form of classical statistical theory, and perhaps causes one to wonder how
much of it is really quantum—mechanical in nature. However, there are some genuinely
quantum—mechanical aspects to this predictive scheme. Perhaps the principle one is the
prediction of regions in which classical laws are not valid (the regions of superspace in
which the wave function is exponential). Determination of the existence and location
of these regions requires the quantum theory — their existence and location cannot be
anticipated by inspection of the classical theory alone. Furthermore, the existence of
these regions underscores the necessity of discussing the issue of initial or boundary
conditions from within the context of the quantum theory. For in classical theories
of initial conditions (including classical statistical ones), one might be attempting to
impose classical initial conditions in a region in which classical laws are quite simply
not valid.

Finally, a critical appraisal of the quantum cosmology program (which inspired some
of the remarks made here) may be found in Isham (1991).
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The interpretation of quantum cosmological models

6. Conclusions

In this talk I have described the heuristic set of rules that have been used so far to
make crude but plausible predictions in quantum cosmology. These rules are, however,
rather heuristic and semiclassical in nature. The interpretation of the wave function
seems to proceed on a case by case basis, and no satisfactory scheme for a completely
general wave function is available. I am therefore forced to conclude that quantum
cosmology does not yet possess an entirely satisfactory scheme for the extraction of
predictions from the wave function.

At the present time, the decoherent histories approach appears to offer the most
promising hope of improving the situation. A reasonable expectation is that the heuris-
tic interpretational techniques described here will emerge from this more sophisticated
approach. Detailed demonstration of this assertion is very much a matter of current
research.
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ABSTRACT

A pedagogical introduction is given tn the quantum mechanics of closed systems.
most generally the universe as a. whole. Quantum i'uechanics aims at predicting
the probabilities of alternative r-~:+.i's«-'—;._giiiiiierl tiuir- histuries nlw H c‘lrwsvtl syslmli
Not every set Of alternative COfll‘SP-ggi‘ninml liisllii‘ir's tlinl (‘nn l)!‘ (lesi‘l'ilwil may
be consistently assigned probabilities. because: of quuul um mechanical iul.r-.i'h--ri-nu-
between individual histories of the set. In “Copenhagen” quantum mechanics, prob—
abilities can be assigned to histories of a subsystem that have been “measured”. In
the quantum mechanics of closed systems, containing both observer and observed,
probabilities are assigned to those sets of alternative histories for which there is
negligible interference between individual histories as a consequence of the system’s
initial condition and dynamics. Such sets of histories are said to decohere. We
define decoherence for closed systems in the simplified case when quantum gravity
can be neglected and the initial state is pure. Typical mechanisms of decoherence
that are widespread in our universe are illustrated.

Copenhagen quantum mechanics is an approximation to the more general
quantum framework of closed subsystems. It is appropriate when there is an ap—
proximately isolated subsystem that is a participant in a measurement situation
in which (among other things) the decoherence of alternative registrations of the
apparatus can be idealized as exact.

Since the quantum mechanics of closed systems does not posit the existence
of the quasiclassical domain of everyday experience, the domain of the approximate
aplicability Hf classical physics must he explained. We describe how a quasiclassical
domain described by averages nl' densities Hr amu'uximately conserved quantities
could be an rrrrurrrirynl. lmhirv of mi mu izil Criiiilit mu of the universe that implies the
approximate classical l>¢"l|.HVII)l' lif sluice-time nu accessible scales.

I. INTRODUCTION

It is an inescapable inference from the physics of the last sixty years that we live
in a quantum iiir:r.h:iiiic'ai| unlveisc — :i worhl in which the basic laws of physics
conform I.” that fl'fl-Hlt‘wul'li fur prmlic'tinn we l'Hll quantum umclmuics. We perhaps
have little evidence Hf peculiarly quantum mechanical phenomena on large and even

81Paperpresented at the 13th Int. Conf. on General Relativity and Gravitation
Cordoba, Argentina, 1992: Part 1, Plenary Lectures

The quantum mechanics of closed systems

James B [Hartle
Department of Physics
University of California
Santa Barbara, CA 93106 USA

ABSTRACT

A pedagogical introduction is given tn the quantum mechanics of closed systems.
most generally the universe as a. whole. Quantum i'uechanics aims at predicting
the probabilities of alternative r-~:+.i's«-'—;._giiiiiierl tiuir- histuries nlw H c‘lrwsvtl syslmli
Not every set Of alternative COfll‘SP-ggi‘ninml liisllii‘ir's tlinl (‘nn l)!‘ (lesi‘l'ilwil may
be consistently assigned probabilities. because: of quuul um mechanical iul.r-.i'h--ri-nu-
between individual histories of the set. In “Copenhagen” quantum mechanics, prob—
abilities can be assigned to histories of a subsystem that have been “measured”. In
the quantum mechanics of closed systems, containing both observer and observed,
probabilities are assigned to those sets of alternative histories for which there is
negligible interference between individual histories as a consequence of the system’s
initial condition and dynamics. Such sets of histories are said to decohere. We
define decoherence for closed systems in the simplified case when quantum gravity
can be neglected and the initial state is pure. Typical mechanisms of decoherence
that are widespread in our universe are illustrated.

Copenhagen quantum mechanics is an approximation to the more general
quantum framework of closed subsystems. It is appropriate when there is an ap—
proximately isolated subsystem that is a participant in a measurement situation
in which (among other things) the decoherence of alternative registrations of the
apparatus can be idealized as exact.

Since the quantum mechanics of closed systems does not posit the existence
of the quasiclassical domain of everyday experience, the domain of the approximate
aplicability Hf classical physics must he explained. We describe how a quasiclassical
domain described by averages nl' densities Hr amu'uximately conserved quantities
could be an rrrrurrrirynl. lmhirv of mi mu izil Criiiilit mu of the universe that implies the
approximate classical l>¢"l|.HVII)l' lif sluice-time nu accessible scales.

I. INTRODUCTION

It is an inescapable inference from the physics of the last sixty years that we live
in a quantum iiir:r.h:iiiic'ai| unlveisc — :i worhl in which the basic laws of physics
conform I.” that fl'fl-Hlt‘wul'li fur prmlic'tinn we l'Hll quantum umclmuics. We perhaps
have little evidence Hf peculiarly quantum mechanical phenomena on large and even

81Paperpresented at the 13th Int. Conf. on General Relativity and Gravitation
Cordoba, Argentina, 1992: Part 1, Plenary Lectures

The quantum mechanics of closed systems

James B [Hartle
Department of Physics
University of California
Santa Barbara, CA 93106 USA

ABSTRACT

A pedagogical introduction is given tn the quantum mechanics of closed systems.
most generally the universe as a. whole. Quantum i'uechanics aims at predicting
the probabilities of alternative r-~:+.i's«-'—;._giiiiiierl tiuir- histuries nlw H c‘lrwsvtl syslmli
Not every set Of alternative COfll‘SP-ggi‘ninml liisllii‘ir's tlinl (‘nn l)!‘ (lesi‘l'ilwil may
be consistently assigned probabilities. because: of quuul um mechanical iul.r-.i'h--ri-nu-
between individual histories of the set. In “Copenhagen” quantum mechanics, prob—
abilities can be assigned to histories of a subsystem that have been “measured”. In
the quantum mechanics of closed systems, containing both observer and observed,
probabilities are assigned to those sets of alternative histories for which there is
negligible interference between individual histories as a consequence of the system’s
initial condition and dynamics. Such sets of histories are said to decohere. We
define decoherence for closed systems in the simplified case when quantum gravity
can be neglected and the initial state is pure. Typical mechanisms of decoherence
that are widespread in our universe are illustrated.

Copenhagen quantum mechanics is an approximation to the more general
quantum framework of closed subsystems. It is appropriate when there is an ap—
proximately isolated subsystem that is a participant in a measurement situation
in which (among other things) the decoherence of alternative registrations of the
apparatus can be idealized as exact.

Since the quantum mechanics of closed systems does not posit the existence
of the quasiclassical domain of everyday experience, the domain of the approximate
aplicability Hf classical physics must he explained. We describe how a quasiclassical
domain described by averages nl' densities Hr amu'uximately conserved quantities
could be an rrrrurrrirynl. lmhirv of mi mu izil Criiiilit mu of the universe that implies the
approximate classical l>¢"l|.HVII)l' lif sluice-time nu accessible scales.

I. INTRODUCTION

It is an inescapable inference from the physics of the last sixty years that we live
in a quantum iiir:r.h:iiiic'ai| unlveisc — :i worhl in which the basic laws of physics
conform I.” that fl'fl-Hlt‘wul'li fur prmlic'tinn we l'Hll quantum umclmuics. We perhaps
have little evidence Hf peculiarly quantum mechanical phenomena on large and even
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familiar scales, but there is no evidence that the phenomena that We do see cannot
be described in quantum mechanical terms and explained by quantum mechanical
laws. If this inference is correct, then there must be a description of the universe
as a whole and everything in it in quantum mechanical terms. The nature of this
description and its observable consequences are the subject of quantum cosmology.

Our observations of the present universe on the largest scales are crude and a
classical description of them is entirely adequate. Providing a quantum mechanical
description of these observations alone might be an interesting intellectual chal—
lenge, but it would be unlikely to yield testable pmrlivliuns differing from those of
classical physics. Today, however, we have a mum" :m'iliilirms aim. We aim, in quan—
tum cosmology, to provide a theory of the initial r" winlili: In If the universe which will
predict testable correlations among observations today. There are no realistic pre—
dictions of any kind that do not depend on this initial condition, if only very weakly.
Predictions of certain observations may be testably sensitive to its details. These
include the large scale homogeneity and isotropy of the universe, its approximate
spatial flatness, the spectrum of density fluctuations that produced the galaxies,
the homogeneity of the thermodynamic arrow of time, and the existence of classical
spacetime. Recently, thF‘lH hm: been sprvrnl.’itum lhiil I'vcn the coupling turnstnnls
Of the effective interactions ml the- elementary particles at Hi1méHfillll’-‘ energy stale-'5
may be probabilistically (listrilnitr-rl with .1 distribution which may depend, in purl.
on the initial condition of the universe (Hawking, lili‘til, (.ll)lPlllEill, HMS-i, Hidilingh'
and Strominger, 1988). It. is for such reasons tlinl lliP search for r: tlIc-iry uf 1hr:
initial condition of the universe is just as necessary and just as fundamental as the
search for a theory of the dynamics of the elementary particles. They may even be
the same searches.

The physics of the very early universe is likely to be quantum mechanical in
an essential way. The singularity theorems of classical general relativity suggest
that an early era preceded ours in which even the geometry of spacetime exhibited
significant quantum fluctuations. It is for a theory of the initial condition that
describes this era, and all later ones, that we need to spell out how to apply quanr
tum mechanics to cosmology. Recent years have seen much promising progress in
the search for a theory of the quantum initial condition. However, it is not my
purpose to review these developments here.‘ Rather, I shall argue that this some—
what obscure branch of astrophysics may have implications for the formulation and
interpretation of quantum mechanics on day—to—day scales. My thesis will be that
by looking at the universe as a whole one is led to an understanding of quantum
mechanics which clarifies many of the long standing interpretative difficulties of the
subject.

The Copenhagen frameworks for quantum mechanics, as they were formulated
in the ’305 and ’40s and as they exist in most textbooks today, are inadequate for
quantum cosmology. Characteristically these formulations assumed, as external to
the framework of wave function and Schrodinger equation, the quasiclassical domain
we see all about us llnln‘ (“7:33) spnlu- of [lllPlIHllH'HEL which could be alternatively
described in classical Inngiuiigr‘. ln tlmir classic text, Landau and Lifschitz (1958)
formulated quantum l!1"(‘llH.!li(‘i: in tnrms ul‘ :1 separate classical physics. Heisenberg
and others stressed the central role of an external, essentially Classical, observer.‘
Characteristically, these formulations assumed a possible division of the World into

"' For a recent review of quantum cosmology see Halliwell (1991).
‘ For a clear statement of this point of view, see London and Bauer (1939).
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The quantum mechanics of closed systems

“obsever” and “observed”, assumed that “measurements” are tlu‘ primary I'ncus uf
scientific statements and7 in effect, posited the existence of an external ”uunsic.la.s.si
cal domain”. However, in a theory of the whole thing there can lw- ue- lumlmnmnnl
division into observer and observed. Measurements and observers cannot be funda-
mental notions in a theory that seeks to describe the early universe when neither
existed. In a basic formulation of quantum mechanics there is no reason in general
for there to be any variables that exhibit classical behavior in all circumstances.
Copenhagen quantum mechanics thus needs to be generalized to provide a quantum
framework for cosmology.

In a generalization of quantum mechanics which does not posit the existence
of a quasiclassical domain, the domain of applicability of classical physics must be
explained. For a quantum mechanical system to exhibit classical behavior there
must be some restriction on its state and some coarseness in how it is described.
This is clearly illustrated in the quantum mechanics of a single particle. Ehrenfest’s
theorem shows that generally

d2<m> 8V
M 4:2 test (1)

However, only for special states, typically narrow wave packets, will this become an
equation of motion for (m) of the form

/ (12(w> g (9V((m>)M—dtT _ , 6$— (2)
For such special states, successive observations of position in time will exhibit the
clnfisicnl cru'rvlntiruw prr-dictcd by the equation of motion (/3) m‘nritlcrl that these
..li~u-.v‘\':'-.linu~‘ urv rum-gm numngh so that the properlics Ml the stale which :-1llrxw (2)
ln mplncr‘ 1hr- general Inlatinu (:1) are not affected by these whatervutianns An exact
dell-rununliull rll position. for example, would yield :1 «‘nrllple'ltcly dr--localir_.r-'Ll wave
packet an instant Inter and (L!) \VUllltl no longer be a good approximation to (1)
Thus, even for largr systems. mnl in particular for the universe as a whole7 we
can expect classical behavior truly for certain initial states and then only when a
sufficiently coarse grainrtd description is used.

If classical behavior is in general a consequence only of a certain class of states
in qnnulum mechanic-H, theu‘ as :i particular case, we cim expect to have classical
spacr.—:l.iuu—- unly frn- certain states in quantum gravity. The classical spacetime ge-
nmclry we see all almui us in tlll' late universe is not property (if every state ill
:: theory Wl'tt"!'t" gt‘oructry fluctuates rpxzmtum mechanically. Rather, it is traceable
l'uuclmucutally tr- l'F'Hll‘lf‘l.i'vHS nu tlu' initial condition. Such restrictions arr: likely to
he gcucrrius in that, “.5 in the singlc particle case, many dill-errant states will exhibit
classical features. ’I‘luv existence. of classical spacntime and the. applicability uf clash
nicnl physics are thus unt likely to he \H‘ry restrictive Clivrlclltuinw on c-rrnstrnctiug a
l-l]f"lll"‘r‘ at thc initial condition.

It was Everett who, in 1957, first suggested how to generalize the Copenhagen
frameworks so as to apply quantum mechanics to cosmology.* Everett’s idea was
to take quantum mechanics seriously and apply it to the universe as a whole. He

'1—‘he original reference is Everett (1957). For a useful collection of reprints see
DeWitt and Graham (1973).
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showed how an observer could be considered part of this system and how its activ-
ities — measuring, recording, calculating probabilities, etc. —— could be described
within quantum mechanics. Yet the Everett analysis was not complete. It did not
adequately describe within quantum mechanics the origin of the “quasiclassical do—
main” of familiar experience nor, in an observer independent way, the meaning of
the “branching” that replaced the notion of measurement. It did not distinguish
from among the vast number of choices of quantum mechanical observables that are
in principle available to an, observer, the particular choices that, in fact, describe
the quasiclassical domain.

In this essay, I will describe joint work with Murray (tell Mnnn [Gull-Mann
and Hartle, 1990a, 1990b) which aims at a coherent loriiiulnlion of quantum me-
chanics for the universe as a whole that is a framework to explain rather than pogit
the quasiclassical domain of everyday experience. It is an attempt at an extension,
clarification, and completion of the Everett interpretation. It builds on many as—
pects Hi the. so ('nllml [inst l'lvr‘rr‘tt development, r‘spw'inlly the work Hf 7ir'h [mil-IT].
Yum-k [_ Ill-‘il, 1.21542), and Jun»; :iml Zeh (1985). At important points if. tinilu‘irlus with
the, |11t'|<".|n'ntlr‘nl, purlir‘r Wurh (it Bob Griffiths (liltirl) and Huluml {hunt-'3 [t‘_!}.. m;
r'r-x'ir-u-‘e-rl in ”Mini-s, [091?)

Our wurk is nut. complete, but I hope to skv-lrh how it might Immune 51:. H. is
by now a very long story but I will try to describe the important parts in simplified
terms.

11. Probabilities in General and Probabilities in Quantum Mechanics

Even apart from quantum mechanics, there is no certainty in this world and there-
fore physics deals in probabilities. It deals most generally with the probabilities for
alternative time histories of the universe. From these, conditional probabilities can
be constructed that are appropriate when some features about our specific history
are known and further ones are to be predicted.

To understand what probabilities mean for a single closed system, it is best
to understand how they are used We deal, first of all, with probabilities for single
events of the single system. When these probabilities become sufliciently close to
zero or one there is a definite prediction on which we may act. How sufficiently
close to 0 or 1 the probabilities must be depends on the circumstances in which
they are applied. There is no certainty that the sun will come up tomorrow at the
time printed in our daily newspapers. The sun may be destroyed by a neutron star
now racing across the galaxy at near light speed. The earth’s rotation rate could
undergo a quantum fluctuation. An error could have been made in the computer
that extrapolates the motion of the earth. The printer could have made a mistake
in setting the type. Our eyes may deceive us in reading the time. Yet, we watch
the sunrise at the appointed time because we compute, however imperfectly, that
the probability of these things happening is sufficiently low.

Various strategies can be employed to identify situations where probabilities
are near zero or one. Acquiring information and considering the conditional prob-
abilities based on it is one such strategy. Current theories of the initial condition
of the universe predict almost no probabilities near zero or one without further
conditions. The “no boundary” wave function of the universe, for example, does
not predict the present position of the sun on the sky. However, it will predict that
the conditional probability for the sun to be at the position predicted by classical
celestial mechanics given a few previous positions is a number very near unity.
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Aunthz-w sir-i-iia'gv tcv ifirwlntt‘ prulmlulitin‘s near 0 or 1 is to consider ensemblesof repeated nbsr.-i'\'."ilinns ml irlt“]|lll‘lll szlli-iVcnn: in the closed system. There are
nu genuiiu-:|__V infinite: I‘Tlfif‘llllnlr‘ru m the wmlrl st» we are necessarily concerned with
the mnlniliilitn‘s I'm Ilm'ininnns ml the" lwhnt' ml' a finite ensemble from the ex—
pected behavior of an infinite one. These are probabilities for a single feature (the
deviation) of a single system (the Whole ensemble).

—9

M2
Fig. 1: The two—slit experiment. An electron gun at right emits an
electron traveling towards a screen with two slits, its progress in space
recapitulating its evolution in time. When precise detections are made
of an ensemble nl such n-lvn'trnns at the screen it is not possible, because
nl iiitl-rlm'(--lu'e, to assign a pi'tvlmbility to the alternatives of whether
an inrlivnlnnl electron went llll'nngli the upper slit or the lower slit.
llr-wevcrr, if the electrun llll.(‘i'm.‘l.s with apparatus that measures which
slit it passed through, then these alternatives decohere and probabilities
can be assigned.

The existence of large .ensembles of repeated observations in identical circum-
stances and their ubiquity in laboratory science should not, therefore, obscure the
fact that in the last analysis physics must predict probabilities for the single sys-
tem that is the ensemble as a whole. Whether it is the probability of a successful
marria e the robability ml the )rescnl. galaxy galaxy muiululiun rum-Mun, rn' 1,ag 7 p , l t . _
probability of the fluctuatiuns in nu ensemble r-l repented nhsr-rvntinns, we must
deal with the probabilities of single events in single systems. In geology, nsh'miuniy.
history, and cosmology, must predictions ul interest have! this character. 'l‘ln- goal of
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physical theory is, therefore, most generally to predict the probabilities of histories
of single events of a single system.

Probabilities need be assigned to histories by physical theory only up to the
accuracy they are used. Two theories that predict probabilities for the sun not
rising tomorrow at its classically calculated time that are both well beneath the
standard on which we act are equivalent for all practical purposes as far as this
prediction is concerned. It is often convenient, therefore, to deal with approximate
probabilities which satisfy the rules of probability theory up to the standard they
are used.

The characteristic feature of a quantum mechanical theory is that not every
set of alternative histories that may be described can be assigned probabilities.
Nowhere is this more clearly illustrated than in the two slit experiment illustrated
in Figure 1. In the usual “Copenhagen” discussion if we have not measured which of
the two slits the electron passed through on its way to being detected at the screen,
then we are not permitted to assign probabilities to these alternative histories. It
would be inconsistent to do so since the correct probability sum rule would not be
satisfied. Because of interference, the probability to arrive at y is not the sum of
the probabilities to arrive at y going through the upper or lower slit:

My) at 2M?!) + pm!) (3)
because

WLW) +1/)u(y)|2 at With/N2 +|1/1u(y)l2 - (4)
If we have measured which slit the electron went through, then the interference is
destroyed, the sum rule obeyed, and we can meaningfully assign probabilities to
these alternative histories.

A rule is thus needed in quantum theory to determine which sets of alternative
histories may be assigned probabilities and which may not. In Copenhagen quantum
mechanics, the rule is that probabilities are assigned to histories of alternatives of
a subsystem that are measured and not in general otherwise.

III. Probabilities for a Time Sequence of Measurements

To establish some notation, let us review in more detail the usual rules for the
probabilities of time sequences of ideal measurements of subsystem using the two—
slit experiment of Figure 1 as an example.

Alternatives for the electron are represented by projection operators in its
Hilbert space. Thus, in the two slit experiment, the alternative that the electron
passed through the lower slit is represented by the projection operator

Puzzs/daxif,s)(f,s| (5)
U

where lips) is a lumii'lwtl state at the electron with spin component .9, and the
integral is over :1 \wlumr' around the upper slit. 'l'hcre is a similar projection
operator PL fur tiw J-lli-("I‘Hiltiw' that the elm-tron goes through the lower slit. These
are exclusive Elltt'l'lU-LLIVPS {Hui they are ('Xililllfitlvn ‘l‘hesc properties, as well as the
requirements of being projections, are represented by the relations

PLPU=O, Pu+PL=1, PEZPL, n=Pu. (6)

86 General Relativity and Gravitation .1992

physical theory is, therefore, most generally to predict the probabilities of histories
of single events of a single system.

Probabilities need be assigned to histories by physical theory only up to the
accuracy they are used. Two theories that predict probabilities for the sun not
rising tomorrow at its classically calculated time that are both well beneath the
standard on which we act are equivalent for all practical purposes as far as this
prediction is concerned. It is often convenient, therefore, to deal with approximate
probabilities which satisfy the rules of probability theory up to the standard they
are used.

The characteristic feature of a quantum mechanical theory is that not every
set of alternative histories that may be described can be assigned probabilities.
Nowhere is this more clearly illustrated than in the two slit experiment illustrated
in Figure 1. In the usual “Copenhagen” discussion if we have not measured which of
the two slits the electron passed through on its way to being detected at the screen,
then we are not permitted to assign probabilities to these alternative histories. It
would be inconsistent to do so since the correct probability sum rule would not be
satisfied. Because of interference, the probability to arrive at y is not the sum of
the probabilities to arrive at y going through the upper or lower slit:

My) at 2M?!) + pm!) (3)
because

WLW) +1/)u(y)|2 at With/N2 +|1/1u(y)l2 - (4)
If we have measured which slit the electron went through, then the interference is
destroyed, the sum rule obeyed, and we can meaningfully assign probabilities to
these alternative histories.

A rule is thus needed in quantum theory to determine which sets of alternative
histories may be assigned probabilities and which may not. In Copenhagen quantum
mechanics, the rule is that probabilities are assigned to histories of alternatives of
a subsystem that are measured and not in general otherwise.

III. Probabilities for a Time Sequence of Measurements

To establish some notation, let us review in more detail the usual rules for the
probabilities of time sequences of ideal measurements of subsystem using the two—
slit experiment of Figure 1 as an example.

Alternatives for the electron are represented by projection operators in its
Hilbert space. Thus, in the two slit experiment, the alternative that the electron
passed through the lower slit is represented by the projection operator

Puzzs/daxif,s)(f,s| (5)
U

where lips) is a lumii'lwtl state at the electron with spin component .9, and the
integral is over :1 \wlumr' around the upper slit. 'l'hcre is a similar projection
operator PL fur tiw J-lli-("I‘Hiltiw' that the elm-tron goes through the lower slit. These
are exclusive Elltt'l'lU-LLIVPS {Hui they are ('Xililllfitlvn ‘l‘hesc properties, as well as the
requirements of being projections, are represented by the relations

PLPU=O, Pu+PL=1, PEZPL, n=Pu. (6)

86 General Relativity and Gravitation .1992

physical theory is, therefore, most generally to predict the probabilities of histories
of single events of a single system.

Probabilities need be assigned to histories by physical theory only up to the
accuracy they are used. Two theories that predict probabilities for the sun not
rising tomorrow at its classically calculated time that are both well beneath the
standard on which we act are equivalent for all practical purposes as far as this
prediction is concerned. It is often convenient, therefore, to deal with approximate
probabilities which satisfy the rules of probability theory up to the standard they
are used.

The characteristic feature of a quantum mechanical theory is that not every
set of alternative histories that may be described can be assigned probabilities.
Nowhere is this more clearly illustrated than in the two slit experiment illustrated
in Figure 1. In the usual “Copenhagen” discussion if we have not measured which of
the two slits the electron passed through on its way to being detected at the screen,
then we are not permitted to assign probabilities to these alternative histories. It
would be inconsistent to do so since the correct probability sum rule would not be
satisfied. Because of interference, the probability to arrive at y is not the sum of
the probabilities to arrive at y going through the upper or lower slit:

My) at 2M?!) + pm!) (3)
because

WLW) +1/)u(y)|2 at With/N2 +|1/1u(y)l2 - (4)
If we have measured which slit the electron went through, then the interference is
destroyed, the sum rule obeyed, and we can meaningfully assign probabilities to
these alternative histories.

A rule is thus needed in quantum theory to determine which sets of alternative
histories may be assigned probabilities and which may not. In Copenhagen quantum
mechanics, the rule is that probabilities are assigned to histories of alternatives of
a subsystem that are measured and not in general otherwise.

III. Probabilities for a Time Sequence of Measurements

To establish some notation, let us review in more detail the usual rules for the
probabilities of time sequences of ideal measurements of subsystem using the two—
slit experiment of Figure 1 as an example.

Alternatives for the electron are represented by projection operators in its
Hilbert space. Thus, in the two slit experiment, the alternative that the electron
passed through the lower slit is represented by the projection operator

Puzzs/daxif,s)(f,s| (5)
U

where lips) is a lumii'lwtl state at the electron with spin component .9, and the
integral is over :1 \wlumr' around the upper slit. 'l'hcre is a similar projection
operator PL fur tiw J-lli-("I‘Hiltiw' that the elm-tron goes through the lower slit. These
are exclusive Elltt'l'lU-LLIVPS {Hui they are ('Xililllfitlvn ‘l‘hesc properties, as well as the
requirements of being projections, are represented by the relations

PLPU=O, Pu+PL=1, PEZPL, n=Pu. (6)



The quantum mechanics of closed systems

There is a similarly defined set of projection operators {Py} representing the alter-
native positions of arrival at the screen.

We can now state the rule for the joint probability that the electron initially
in a state |¢(t0)) at t = to is determined by an ideal measurement at time t1 to have
passed through the upper slit and measured at time t; to arrive at point y on the
screen. If one likes, one can imagine the case in which the electron is in a narrow
wave packet in the horizontal direction with a velocity defined as sharply as possible
consistent with the uncertainty principle The joint probability is negligible unless
t1 and t2 correspond to the times of flight to the slits and to the screen respectively.

The first step in calculating the joint probability is to evolve the state of the
electron to the time t1 of the first measurement

WWI» : e—iH(t1—to)/h‘¢(t0)> . (7)

The probability that the outcome of the measurement at time tl is that the electron
passed through the upper slit is:

(Probability of U) : Hpultp(t1))H2 (8)
where [I - H denotes the norm of a vector in the electron’s Hilbert space. If the
outcome was the upper slit, and the measurement was an “ideal" one, that dis—
turbed the electron as little as possible in making its determination, then after the
measurement the state vector is reduced to

war»
llPulwttillll '

This is evolved to the time of the next measurement

: e—tmtrtJ/h PUtWti»
W2” HPuWUiW

(9)

. (10)

The probability of being detected at point y on the screen at time t2 given that the
electron passed through the upper slit is

(Probability of y given U): HPy|1/)(t2))|tz . (11)
”Nu: joint probability that the electron is measured to have gone throu h the

upper slit and is detected at y is the product of the (‘Umlitiollnl prol‘mbility (11 with
the probability (8) that the electrun passed through U. The. latter factor cancels
the denominator in (11)) so that combining, all of the above equations in this section,
we have

. . 2(Probability of y and U) = HPye—iHUZ—‘fl/hPUe—‘HW-‘°>/h(¢(to))H . (12)
With Heisenberg picture projections this takes the even simpler form

(Probability of y and U) = HPy(t2)Pu(ti) hb(to)>H2 (13)
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where, for example, , ,PU(t) = et/FLPUe—t/hl (14)

The formula (13) is a compact and unified expression of the two laws of evolution
that characterize the quantum mechanics of measured subsystems — unitary evolu-
tion in between measurements and reduction of the wave packet at a measurement.‘
The important thing to remember about the expression (13) is that everything in
it — projections, state vectors, Hamiltonian — refer to the Hilbert space of a
subsystem, in this example the Hilbert space of the electron that is measured.

In “Copenhagen” quantum mechanics, it is measurement that determines
which histories of a subsystem can be assigned probabilities and formulae like (13)
that determine what these probabilities are. We cannot have such rules in the
quantum mechanics of closed systems. There is no fundamental division of a closed
system llltrv inr'asurwl subsystem aurl measuring apparatus. 'l'llere is no fundamen-
tal. reasrni [or the closed system to Contain classically behaving measuring apparatus
in all cirruuislaura-er. In partii'ulm, in lllP early universe. mum of these trinncepts seem
relm’nut. We tlt‘t‘ti a more UliSGl'Vt‘l"ltitlt"|)'."ll(l(!l1l., nieasurenient—intlepnmlel'll., qua-
sirlassiral til‘tllflill-ll|t.lt'])t‘lltlt"llt rule tor wlui‘h histories ot a. r'.lt_!.‘it:‘(l system can he.
assigned probabilities and what tluese piulu-iliilit-s are. Tilt" next sei'liuu iiest'rilms
this rule.

IV. Post—Everett Quantum Mechanics

To desCI‘il)!‘ llu- Milo}: nt' [yemt-l‘lvnt quantum uu=rlmuies,l shall make a simplifying
assumption. l shall neglert gross quantum lluctuatirms in the. geometry of space-—
time, and assume a. fixed liaekgrnuurl spaeetinic geometry which supplies a. definite.
meaning to tlu‘ nutmn of time this is an excellent E!pl.)l'""Xil1131ilLlll on accessible.
scales for tinu-s: later than I“ “3 «w:- atlr't' the My, hang The taqniliar apparatus
of Hilbert space, states, Hamiltonian, and other uperatui's may then llt' applied to
process of prediction. Indeed, in this context tlw quantum merhauii's nl' C'.!S[11tllk.rg.\'
is in no way distinguished from the quantum mechanics of a large isolated linx,
perhaps expanding, but containing both the ulysm VPKI and its observe-rs (if any).

A set of alternative histories for a closed system is speeilied by giving ex-
haustive sets of exclusive alternatives at a sequence of times. Consider a. model
closed system initially in a pure state that can be described as an observer and two
slit experiment, with appropriate apparatus for producing the electrons, detecting
which slit they passed through, and measuring their position of arrival on the screen
(Figure 2). Some alternatives for the whole system are:

1. Whether or not the observer decided to measure which slit the electron went
through.

2. Whether the electron went through the upper or lower slit.
3. The alternative positions, y1,- - - ,yN, that the electron could have arrived at

the screen.
This set of alternatives at a sequence of times defines a set of histories whose
characteristic branching structure is shown in Figure 3. An individual history in
the set is specified by some particular sequence of alternatives, 6.9., measured,
upper, ya

As has been—noted by Ely authors, 6.9., Groenewold (1952) and Wigner (1963)
among the earliest.
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time, and assume a. fixed liaekgrnuurl spaeetinic geometry which supplies a. definite.
meaning to tlu‘ nutmn of time this is an excellent E!pl.)l'""Xil1131ilLlll on accessible.
scales for tinu-s: later than I“ “3 «w:- atlr't' the My, hang The taqniliar apparatus
of Hilbert space, states, Hamiltonian, and other uperatui's may then llt' applied to
process of prediction. Indeed, in this context tlw quantum merhauii's nl' C'.!S[11tllk.rg.\'
is in no way distinguished from the quantum mechanics of a large isolated linx,
perhaps expanding, but containing both the ulysm VPKI and its observe-rs (if any).

A set of alternative histories for a closed system is speeilied by giving ex-
haustive sets of exclusive alternatives at a sequence of times. Consider a. model
closed system initially in a pure state that can be described as an observer and two
slit experiment, with appropriate apparatus for producing the electrons, detecting
which slit they passed through, and measuring their position of arrival on the screen
(Figure 2). Some alternatives for the whole system are:

1. Whether or not the observer decided to measure which slit the electron went
through.

2. Whether the electron went through the upper or lower slit.
3. The alternative positions, y1,- - - ,yN, that the electron could have arrived at

the screen.
This set of alternatives at a sequence of times defines a set of histories whose
characteristic branching structure is shown in Figure 3. An individual history in
the set is specified by some particular sequence of alternatives, 6.9., measured,
upper, ya

As has been—noted by Ely authors, 6.9., Groenewold (1952) and Wigner (1963)
among the earliest.
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Pig. 2: A lll‘fl'lt-lt closed quantum system containing an observer tugf‘tllfii'
with the necessary apparz-itus fur carrying nut in. turn-slit e-xpnriIm-mt. Al
I.f'f‘IHiI.l\-‘F‘§ fur the. system HH‘llHll‘ whether the HIDSL‘I'VL'I' measnrml which
slit the ele:.:tr¢.\n passed thrnngh nr (lltl nut, whether the. electron passed
l-ln"‘1-llfil' “I" UH)” HI“ lnwm' Slit. the alternative positions of arrival of thr-
rilmtron :11. the screen, the alternative arrival posit-inns registered l)_\' the
nppai'ntils, the" registration at these in the hrnin ml the observer" etcl, etc...
etc. Each exhaustive set of exclusive :Lll‘m‘imlives is represented 11y an
exhaustive sr-‘t ofurtlmgnnal projection -.wpm'u.tnrs on the Hilbert space. of
the. Closed system, lll'ilnc sequences of such sets Hf alternatives describe.
Sets of alternative (rnal‘sv-gi‘ainerl histrn‘ie-‘s of the closed system. Quan-
tum theory assigns pl‘nhalnlities tn tlw individual alternative lllfitnl‘iPR
in such a set when there is negligible quantum mechanical interference
between them, that is, when the set of histories decoheres.

A more refined model might consider a quantity of matter in a
closed box. One could then consider alternatives such as whether the
box contains a. two-slit experiment or does not as well as alternative
positions of atoms.

Many other sets of alternative histories are possible for the closed system.
For example, we could have included alternatives describing the readouts of the
apparatus that detects the position that the electron arrived on the screen. If
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Fig. 3: Branching structure of a set of alternative histories, This figure
illustrates the set of alternative histories defined by the alternatives of
whether the observer decided to measure or did not decide to measure
which slit the electron went through at time t1, Whether the electron
went through the upper slit or through the lower slit at time 132, and the
alternative positions of arrival at the screen at time t3. A single branch
corresponding to the alternatives that the measurement was carried out,
the electron went through the upper slit, and arrived at point 1/9 on the
screen is illustrated by the heavy line.

The illustrated set of histories does not decohere because there is
significant quantum mechanical interference between the branch where
no measurement was carried out and the electron went through the upper
slit and the similar branch where it went through the lower slit. A related
set of histories that does decohere can be obtained by replacing the
alternatives at time t2 by the following set of three alternatives: (a record
of the decision shows a measurement was initiated and the electron went
through the upper slit); (a record of the decision shows a measurement
was initiated and the electron went through the lower slit); (a record
of the decision shows that the measurement was not initiated). The
vanishing of the interference between the alternative values of the record
and the alternative configurations of apparatus ensures the decoherence
of this set of alternative histories.
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The quantum mechanics of closed systems

the initial condition corresponded to a good experiment there should be a high
correlation betw«=en these alternatives and the position that the electron arrives at
the screen. In a more refined model we could discuss alternatives corresponding to
thoughts in the observer’s brain, or to the individual positions of the atoms in the
apparatus, or to the possibilities that these atoms reassemble in some completely
different configuration. There are a vast number of possibilities.

Characteristically the alternatives that are of use to us as observers are very
coarse grained, distinguishing only very few of the degrees of freedom of a large
closed system. This is especially true if we recall that our box with observer and
two-slit experiment is only an idealized model. The most general closed system
is the universe itself, and, as 1 hope to show, the only realistic closed systems are
of cosmological dimensions. Certainly, we utilize only very, very coarse»grained
descriptions of the universe as a. whole.

I would now like to state the rules that determine which coarse—grained sets
of histories may be assigned probabilities and what those probabilities are. The
essence of the rules I shall describe can be found in the work of Bob Griffiths
(Griffiths, lE-lr‘tvl']. 'l'ln- ,u,r-nvr:—vl Irwin-Work was ertuimlr-rl by Hnlnml (iliniies (Omnes,
[992) and was iIHli:ilt ml: ntly, but later, arrived at by Min my lil"ll-l\"lil.ill| and myself
(GellrMann and llnrllv-, lt-l‘llla]. rl'lu- idea is siinplvr 'l‘liv lnilnrc- of probability
sum rules due to (pinntnrn interference is the r'vbstnrln to assigning probabilities.
Probabilities can be assigned to .just those sets of alternative histories of a closed
system for which there is negligible interference between the individual histories in
the set as a consequence of the particular initial state the closed system has, and
for which, therefore, all probability sum rules are satisfied. Let us nOW give this
idea a precise expression

Sets of alternatives at one moment of time are represented by sets of orthog—
onal projection operators. Employing the Heisenberg picture these can be denoted
{P5,v (tk)}. The superscript k: denotes the set of alternatives being considered at
time tk (for example, the set of alternative position intervals {311,- - . ,yN} at which
the electron might arrive at the screen at time t3), ak denotes the particular alter—
native in the set (for example yg) and it is the time. The set of P’s satisfy

fl k k k ‘ lc
Lak [Jak<tl€) ::1 r Pok(tklpa;¢(tk) : éakCYLPak(tk) (15)

showing that they represent an exhaustive set of exclusive alternatives,
Sci-ts ol' alternative l'nistoru-is are defined by glVlIlfl sequences of sets of alterna-

tives a! definite lllIilllPlll-S of time, I=.y.. { I‘ll” (t, )} ,{l’li,‘(t2)}, . - - .{_.”,_’:“(f..,,}}. Dif-
ferent rlmizxes for {111: {id}, {flirt/'2”: etc, describe dillurunt sets of alternative
histories of the closed system. An individual history in a given set (wrrcsprinds tn a,
particular sequence- (ri1,-- ,o,,) 9.: N and, for each history, there is a corresponding
(illillll “r pl‘l"_if‘i‘l.1f1n "IJl’l'illl‘I—fi

Ca E Pgnnn) - . . £1,031). (16)

For example, in the two slit experiment in a box illustrated in Figure 2, the history
in which the observer decided at time t1 to measure which slit the electron goes
through, in which the electron goes through the upper slit at time 152, and arrives
at the screen in position interval yg at time is, would be represented by the chain

Pigltslpéfizlfltmfli) (17)
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in an obvious notation. The only difference between this situation and that of
the “Copenhagen” quantum inmchmmzs of measured subsystems is thi- tiatluwing:
The sets of operators { {if [ii )} rlr‘tinun: alternatives for the closed systmu art [in
the Hilbert space of the t'lliHr‘rl sytni that includes the variables rlr‘sc'riliing an);
apparatus, observers, mul anything Him". The operators defining alternatm-s in
Copenhagen quantum mechanics act only on the Hilbert space of the measured
subsystem,

Win-n thv initial slat:- lt-l [Mll‘l‘, it ran lie rustilvml int-- branches corresponding
to tin: inrlivirlual n'irenitir'is of any set at alternative histories. The generalization to
an impure initial density matrix is nut. llllll('l|ll. (Hell-Mann and Hartle, 1990a), but
for smipluzity we shall ittjfillll'lc‘ a iiurt‘ initial state throughout this article. Denote
the initial stutr- try H!) m the.- Heisenberg picture Then

I‘I’) = 2Q Cal‘l’t = Z Pgnttn)---P;,(t1)|‘1’). (18)

This identity follows by applying the first of (15) to all the sums over ak in turn.
The vector

Calm) (19)

is the branch corresponding to the individual history a and (18) is the resolution
of the initial state into branches.

When the branches corresponding to a set of alternative histories are suffi—
ciently orthogonal the set of histories is said to decohere. More precisely a set of
histories decoheres when

(mogoaixpwo, for any (steak, (20)

We shall return to the standard with which decoherence should be enforced, but
first let us examine its meaning and consequences.

Decoherence means the absence of quantum mechanical interference between
the individual histories of a coarse—grained set.“ Probabilities can be assigned to

The term “(lt'roherancc" is used in several dilic.‘i‘cut ways ill the literature. Therehire,
for l-hnsv familiar with other WUt'h, a. coniuu'ut is in order in specify how we are
cruphsiying the term in this simplified presentation. V‘Ve have followed our previous
work ((le-lI—l‘v‘lami and Martin. ltltilia and littllth) in using the term “Lincolierenm”
tr: refer tn a. property of a set. of alternative time histories of a. closed system. A
item-hermit set of histories is one- for which the quantum mechanical interference
lit-tween inrliviclilal histories is small enough to guarantee an appropriate set of
prulisitiility sum rules. Hill-went untinus of (lecnhereure can be defined by utilizing
dill-errant measures of interference. The weakest notion is just the consistency of thi.‘
probability sum rules that. was railed “(gunsistruu'y" by Griliiths timid) and Dinner-
(1992) and that term is used by S'HIH' to refer to all measures of interference.
Vanishing ”f the real part at (2t!) in :1. sullii'ient condition for the consistency of the
iirmtiabilitv sum rules called the “weak i'lcrmhijrr‘ucn cririditimi". Vile artn using the
stronger {IiIItLlitiUll (2” because it ('liararterimts Widespread and typical mechanisms
of decriliereucc‘. Illq [2”] has been called the. “inediurn Llecoherence condition".
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is the branch corresponding to the individual history a and (18) is the resolution
of the initial state into branches.

When the branches corresponding to a set of alternative histories are suffi—
ciently orthogonal the set of histories is said to decohere. More precisely a set of
histories decoheres when
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prulisitiility sum rules. Hill-went untinus of (lecnhereure can be defined by utilizing
dill-errant measures of interference. The weakest notion is just the consistency of thi.‘
probability sum rules that. was railed “(gunsistruu'y" by Griliiths timid) and Dinner-
(1992) and that term is used by S'HIH' to refer to all measures of interference.
Vanishing ”f the real part at (2t!) in :1. sullii'ient condition for the consistency of the
iirmtiabilitv sum rules called the “weak i'lcrmhijrr‘ucn cririditimi". Vile artn using the
stronger {IiIItLlitiUll (2” because it ('liararterimts Widespread and typical mechanisms
of decriliereucc‘. Illq [2”] has been called the. “inediurn Llecoherence condition".
“Decoherence” in the context of this paper, thus, means the medium decoherence

92 General Relativity and Gravitation 1992

in an obvious notation. The only difference between this situation and that of
the “Copenhagen” quantum inmchmmzs of measured subsystems is thi- tiatluwing:
The sets of operators { {if [ii )} rlr‘tinun: alternatives for the closed systmu art [in
the Hilbert space of the t'lliHr‘rl sytni that includes the variables rlr‘sc'riliing an);
apparatus, observers, mul anything Him". The operators defining alternatm-s in
Copenhagen quantum mechanics act only on the Hilbert space of the measured
subsystem,

Win-n thv initial slat:- lt-l [Mll‘l‘, it ran lie rustilvml int-- branches corresponding
to tin: inrlivirlual n'irenitir'is of any set at alternative histories. The generalization to
an impure initial density matrix is nut. llllll('l|ll. (Hell-Mann and Hartle, 1990a), but
for smipluzity we shall ittjfillll'lc‘ a iiurt‘ initial state throughout this article. Denote
the initial stutr- try H!) m the.- Heisenberg picture Then

I‘I’) = 2Q Cal‘l’t = Z Pgnttn)---P;,(t1)|‘1’). (18)

This identity follows by applying the first of (15) to all the sums over ak in turn.
The vector

Calm) (19)

is the branch corresponding to the individual history a and (18) is the resolution
of the initial state into branches.

When the branches corresponding to a set of alternative histories are suffi—
ciently orthogonal the set of histories is said to decohere. More precisely a set of
histories decoheres when

(mogoaixpwo, for any (steak, (20)

We shall return to the standard with which decoherence should be enforced, but
first let us examine its meaning and consequences.

Decoherence means the absence of quantum mechanical interference between
the individual histories of a coarse—grained set.“ Probabilities can be assigned to

The term “(lt'roherancc" is used in several dilic.‘i‘cut ways ill the literature. Therehire,
for l-hnsv familiar with other WUt'h, a. coniuu'ut is in order in specify how we are
cruphsiying the term in this simplified presentation. V‘Ve have followed our previous
work ((le-lI—l‘v‘lami and Martin. ltltilia and littllth) in using the term “Lincolierenm”
tr: refer tn a. property of a set. of alternative time histories of a. closed system. A
item-hermit set of histories is one- for which the quantum mechanical interference
lit-tween inrliviclilal histories is small enough to guarantee an appropriate set of
prulisitiility sum rules. Hill-went untinus of (lecnhereure can be defined by utilizing
dill-errant measures of interference. The weakest notion is just the consistency of thi.‘
probability sum rules that. was railed “(gunsistruu'y" by Griliiths timid) and Dinner-
(1992) and that term is used by S'HIH' to refer to all measures of interference.
Vanishing ”f the real part at (2t!) in :1. sullii'ient condition for the consistency of the
iirmtiabilitv sum rules called the “weak i'lcrmhijrr‘ucn cririditimi". Vile artn using the
stronger {IiIItLlitiUll (2” because it ('liararterimts Widespread and typical mechanisms
of decriliereucc‘. Illq [2”] has been called the. “inediurn Llecoherence condition".
“Decoherence” in the context of this paper, thus, means the medium decoherence



The quantum mechanics of closed systems

the individual histories in a decoherent set of alternative histories because decoher-ence implies the probability sum rules necessary for a consistent assignment. Theprobability of an individual history a is

19(a)=ll0cxl‘1’>ll2 - (21)
To see how decoherence implies the probability sum rules, let us consider anexample in which there are just three sets of alternatives at times 131,132, and 133. Atypical sum rule might be

zazp(aa,a2,ail=p(aa,a1)- (22)
We show (20) and (21) imply (22). To do that write out the left hand side of (22)using (21) and suppress the time labels for compactness.

Zu2p(a3,a2,a1) :Z (wipglpgnapgspgnlm . (23)a;

Decoherence means that the sum on the right hand side of (23) can be written withnegligible error as

21 natwmzm outegpgapsspsptin . (24)
the extra terms in the sum being vanishingly small. But now, applying the first of(15) we see

Zazptaaiaball“<WlP51P23P23P31lW>Z P(aa,a1) (25)
so that the sum rulr.‘ (22} is sittislictl.

(liven an initial Stuta' “llfl and a llHIlHllniltitHl I], one could, in principle, iden—tify all lmssililc- sets «It r'lr'ci'ilwriug histories. Among these will lir‘ the iixairtly (le—rtuhei‘iug sets where the orthogonality ml the branches is exact. lnrleml, triVinlexamples can be supplied lay rnswlving l‘I’} into a sum oli..ii‘llii.~gnii;il wetnrs at time.h. resolving tllust‘ vectors intu suins nl' further \r‘tzft‘ldil‘s such that the whole. set isorthogonal at tinn- t2, and so win. However, such sets iiil'exnctly (lecolieriug historieswill not, in general, have a Sllllllll‘ dcsvriptirvn in terms of fundamental fields norany connection, for example, with the quusiclussical domain of familiar cxpvrirure.For this reason sets of histories tlmt apprnxiinately clear-here are. of interest. As wewill argue in the next l-WH Set'timis, realistic mechanisu‘is lctml to the (li‘t‘tlvllt‘l't’lu‘f‘ (if

of sets of histories.
ln l.llL‘ literature tlm trrni ”(learlu‘ritmteH has also been usncl to refer to tho decay intime of the (L‘lllifllilfit'ulitl (:lcnnents of It rmlucrvcl density matrix defined by traring thefull rleusity matrix over :1. given set of variables [Zurcl-K, .ltltll). The two notions 11fullt‘t‘t'lllf‘TCllfiit.‘ of reduced density mntrires’l uml ‘ilmtolwl‘tnu‘t' til histories” fire notgei'ivrally equivalent l..Hll. ulsu not unconnected in the. sense that in partirnlm' morlr‘lscertain physical processes can ensure lmtli. (Sr-e, rag. the remarks in Section ”(514nF(I-lai'tli=.. lSltllall.
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hiSLIJI'H‘H r-niistillilliiig ii ttlltlé-‘sit‘lilhhit'ill ilniimili Iii iiii '*.\'('|“ll£‘l|l aiiirivvz-HinnlInn. With-£11
HIV {li‘f'illlf'l'F'Hl‘I‘ l'iil'l'ltllmt] tztlil it :ipimr-ziiilntrliv i=nl'ni‘i‘vr-rl. the pinhzlliilitv l'HIlII lHIl'FI
.cnn'h :ii; (‘32) will Hill_\" In: :iiiiviv-xiiimli'l_i' izlii-_i<nl lli "i‘-’!'\'f'l. :iH Illi—H'HH—vf‘tl uniliri. l.l|I-=F:t'
iii'niizillililln‘s r“! Hilliglr- Hyslfliia llll‘ Iiit‘.’l.l)lllgl-lll {1!}: ti. ll)!" Stiiilitfii'i'l tln'i' il.l_'t‘ l1.‘5{‘(l_
Aliiii—uximntiv [iivilmtnlitir-s: liii' whirl) ”IN MI!” inlet-i ni'r- Miliisliml tn n I.'l'll1[}itl‘§lil.‘|<‘
stniiilHi'vl ll'li'l‘t‘ tlli'tt'l‘tllti :ihiu lw riniiluiwil in liH‘ lH'Hr't‘Hh ul‘ inmhiinnr \"Vhr-n we
speak Ht aptii'uxiliirltv' rli‘t‘whi‘i'i HW‘ :inil :ililiiutx'iiimtl' iii‘uliiiliilities t'f'“ IIIF'EIH ilmj: >11”.
pin-5' HCllltEVf‘ll iiiirl iiiuiluiliihti' HIHH llllt“w‘ sntiqlivrl l_)("\i'ti]||l any striinlmrl thnt ii'iighl
lit': tfrliir'vii-‘nlitv rumtl‘mplntwl trui' lilt‘ nr'c'nim')‘ ul' I!l't‘(ltt'lt"|l “Hit “11' l‘tlllljfiil‘lwfll Inl-
theory with experiment.

Decoherent sets of histories of the universe are what we may utilize in the
[H'HCr’Sh iii lil‘t‘Flif‘lIHH in quantum nirzi'hI-init's. tin they IIHI)’ be. assigned [JI'III.)E1l)lllLlCS.
l.)l_‘Ci‘1ll{‘I"'!nt‘f.‘ thus givnrwiilim-s :inil l't‘plilt'f‘H the within Ml "iiiei-tsiii‘eiilent”, whii‘h
served this rule in the (la-pi‘iihziigeii iiitrli‘pi't'tittixins. I.Ir't'iJlicreiicc is :1 iiiiirr- precist"

IUJUT' Ht)JC(.‘,I-iV(:‘ inure nhseiwn' inrlv‘puiiileiit idea and giwzs a (infinite meaning 1n
lt-vei'r‘tt's liraiiz'lms. l5'ni‘ extiiiilile, it their assw'interl histories (lentihr-re, we may
assign pl'uliilililitil‘s ti. vniivms mini-i; iii nuts-nimble scale density lhir‘tiinl.iuiis; in thi-
(-ni'ly tliliUt'L‘St" \‘JllF‘lllt’I ni' not anything like :i “iiieusnreiiit'iitH was i'rtrrietl mil. HI]
thorn {Lilli Certainly \i'huthr-i' (11' not llil‘l‘r‘ was :in “l'lJSF‘I'VV‘I'H tn (hi H.

V. The Origins of Decoherence in Our Universe

What are 1hr“ twitiiius nl' (TIii'H'S"-}_’."[‘Hilif"ll H'tfi Ail histories that tlr-i'ulirrri- iii nnr uni
VI-i'fii-T in seeking tn iiiiswni this question it is iiiipm'taiit tn keep in iiiiiirl the Intsic
imports of the tllf‘ril'lilitfill l'i'niiiuwin'lt I!“ which (lei'ntiei‘eiice depends. l_ll‘.l_‘.rll1~"'1"‘1l('<‘
of at set nl' alternative histuiics is not a I'JI'vttt't‘V Ul their operators ”June, it depends
rm the i't‘leilinns Ul- thusv ”per-filling tn the initial state l‘l‘l. tht= l'laniiltwiiiaii H\ :tnil
tlii‘ lliiirlnineiitnl iii-his. Uiven tin-9w, We". (Winhl, in principle, mmpntc whirih 3018 :Il‘
alternative histories decohere‘

VVv FIT!" not likely In (‘Ill‘l'y mil :1 roiiiinitntirrn till. all detinliri'rii'ip; sets Ht nitm‘nn
tiw‘ histories l'ni' tln‘ ‘IHIVT‘I'Rtg ilvsriiln-it in lt‘l'IHS ml the “Ulilfllllf‘nlnl lielrls, anytime
in thc.‘ iir-zii' liltni'v, if ever. It is tlii_‘ii:l'-~i‘r- inipnrtniit tn investigate specific iiinrhii-
iiisnis by whir‘h (it‘t'Itllf‘l'l‘Ht‘f' lvt'f'lll‘h lml us begin with a very siiiiiih' iiimlr-l tine.
in its; F'SSPIItHll [ventures tn Jung; and [ch “985]. ““63 ('unsirler thr' tWih-slit example
again, but this tiiiw SIIIJINM-H’ that in the lH-‘tglllflvl'lliflfll or the slits thei'r‘ 15 n. gm: Hf
phi-tuna (.II' other light pin-titles i:i_»lhi.liiii_{ with the elect.l‘r.iiis [Figure 4‘), l’liysirnlly
it is “El-“Y to see what ltilpimlib‘ tln' i'niiiluiii iint‘ni‘i'c-‘littr‘cl cullisiniis (inn (‘Flr'l‘y awn};
delicate phase ('r-i'i'eh-iliniis between the lH-EEHHS even il‘ the ti'njnrtnries of the elm“.
trons are nnl. all-retail HHH‘lL 'l'he- illl!‘l'h“l'l'llt1t' pattern will then ll‘.‘ (tr-str-iytiti F'lilti
it will be possible to assign probabilities to whether the electron went through the
upper slit Hr the lli‘l' slit

lit-t ns HFE’ huw this picture in words is given precise meaning in mathematics.
initially sniilmm- the statr- iii the entire system is a state of the electron W) > and
N tlistiiiguislmlilr" “iihntnns” in states 1901), hog), etc., viz.

|W>=l¢>lgp1flo2 > "'l‘PNl- (26)
Suppose further that ht) is a coherent superposition of a state in which the electron
passes through the upper slit lU) and the lower slit lL).Exp1icitly:

l¢> =a|U>+filL>- (27)
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in thc.‘ iir-zii' liltni'v, if ever. It is tlii_‘ii:l'-~i‘r- inipnrtniit tn investigate specific iiinrhii-
iiisnis by whir‘h (it‘t'Itllf‘l'l‘Ht‘f' lvt'f'lll‘h lml us begin with a very siiiiiih' iiimlr-l tine.
in its; F'SSPIItHll [ventures tn Jung; and [ch “985]. ““63 ('unsirler thr' tWih-slit example
again, but this tiiiw SIIIJINM-H’ that in the lH-‘tglllflvl'lliflfll or the slits thei'r‘ 15 n. gm: Hf
phi-tuna (.II' other light pin-titles i:i_»lhi.liiii_{ with the elect.l‘r.iiis [Figure 4‘), l’liysirnlly
it is “El-“Y to see what ltilpimlib‘ tln' i'niiiluiii iint‘ni‘i'c-‘littr‘cl cullisiniis (inn (‘Flr'l‘y awn};
delicate phase ('r-i'i'eh-iliniis between the lH-EEHHS even il‘ the ti'njnrtnries of the elm“.
trons are nnl. all-retail HHH‘lL 'l'he- illl!‘l'h“l'l'llt1t' pattern will then ll‘.‘ (tr-str-iytiti F'lilti
it will be possible to assign probabilities to whether the electron went through the
upper slit Hr the lli‘l' slit

lit-t ns HFE’ huw this picture in words is given precise meaning in mathematics.
initially sniilmm- the statr- iii the entire system is a state of the electron W) > and
N tlistiiiguislmlilr" “iihntnns” in states 1901), hog), etc., viz.

|W>=l¢>lgp1flo2 > "'l‘PNl- (26)
Suppose further that ht) is a coherent superposition of a state in which the electron
passes through the upper slit lU) and the lower slit lL).Exp1icitly:

l¢> =a|U>+filL>- (27)
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Fig. 4: The two slit experiment with an interacting gas. Near the slits
light particles of a gas collide with the electrons. Even if the collisions
do not affect the trajectories of the electrons very much they can still
carry away the phase correlations between the histories in which the
elrartrun arrivr-‘il (ll. puinl gi/ un thr- N'l'f'f‘l) Irv passing through the upper
Hill. :iinl that in which ll l-ll'llW‘Kl at the Hl-HH" [mini Ivy passing through theIFH‘UI‘I' 5111. A (warm: grinning; that describe-(l only nr these twrv alternatin-
hturins ul' thw l'l(‘(‘l.l'i‘ll wunlil HIJIH"IXlHHHf‘ly (lHt'Ullt’l’C as n rinnscrnicncc
ml the interactions With the gas givun :uleqnalr- density, rross-scctinil,
etc. l||l.r‘rl'm'(‘r|.(‘.P is destroyed mnl [H‘Hlml‘llllll—ffi i‘nn lie-r assigned 1,0 these
alternative histories ml- l.ll(' elitrlwn In :1 way that they runlil nut be if
the gas were not present (Cf. Fig. 1‘). The lost phase. infiu'uiatiriii is
still available in correlations between states of the gas and states of theelectron. The alternative histories of the electron would not decohere
in a coarse graining that included both the histories of the electron and
operators that were sensitive to the correlations between the electrons
and the gas.

This model illustrates a widely occuring mechanism by which cer—
tain types of coarse-grained sets of alternative histories decohere in the
universe.

”Nth states 7”?“ wave prirkvts in 3'. Hui that positinn in .r I't’t‘HIfilJlléttF‘S history intnnr. Wr- inm‘ ‘t'l-Z \N'lif"l:llt‘l llM' histnry Wllr‘ri‘ tlw Olf‘r‘il‘UU passes through the nppmslit and arrives at. a detector :11 point y «in lillk" screen. (lent-liars from that in whichil. passes thrunigh tht' lriwr'r slit nnzl arrives at point _1/ as a camscquence of the. initialcondition (if this ulllH‘x't'fl‘SF'“. That is, as in SPCHUH 4-, We ask whether the twr.)
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branches Py(t2)Pu(t1)l‘1’> , mmmmm (28)
are nearly orthogonal, the times of the projections being those for the nearly clas-
sical motion in ac. We work this out in the Schrodinger picture where the initial
state evolves, and the projections on the electron’s position are applied to it at the
ailpl'fllil'ifltr' times.

(hailisinns .m-m; hm. the states; it?) mul I!) are left more or less undisturbed.
'l'hn states 01' the “pl'ii'vtrins”, oi C‘JlII'SC‘, are. signllicantly affected. If the photons are
(liiIILI-i c-riiniiigh In he- scattvred nm‘t' hy the Pil‘f'llon in its time to traverse the gas
the two iJI'EUltlH‘H (‘38) will be (M)])l.'t.)/\'l(1'lfltf’.i_\'

“PyiU>SUi$01>SUiW2> ' ' ' SUi‘PNi: (29a)

and
fl PyiL>SL $01>5L|902> ' ' ' SLIWNt- (29b)

Here, SU and SI, are the scattering matrices from an electron in the vicinity of the
upper slit and the lower slit respectively. The two branches in (29) decohere because
the states of the “photons” are nearly orthogonal. The overlap of the branches is
proportional to

(soilStSLlsm><s/>2|SLSL|¢2> - - - Wistst lwv) . (30)
Now, the S—matrices for scattering off the upper position or the lower position can
be connected to that of an electron at the orgin by a translation

SU : exp(iik - xu)S exp(+ik - xU) , (31a)

SL :exp(~ik-xL)S exp(+ik-xL). (31b)

Here, hk is the momentum of a photon, xU and x1, are the positions of the slits
and S is the scattering matrix from an electron at the origin.

1'(k'lSik) : 5<3>(k s k’) + f(k,k’)6(wk ~ wt) . (32)2wwk

where f is the scattering amplitude and oak : iki.
Consider the case where initially all the photons are in plane wave states in an

interaction volume V, all having the same energy fiw, but with random orientations
rnr their Illliillt‘liliJ-I. Huppnse further that the energy is low so that the electron is not
much disturbed hy n scattering anti low enough so the wavelength is much longer
than Lin" HPpni‘fltiun lwtwenn the slits, klxu — 3:1,: »:;< 1. It is then possible to work
out the overlap, The miswer according, to .iu-"rs anti Zeh (1985) is

(Marv—MW N<1 “W (33)
where a is the effective scattering cross section and the individual terms have been
averaged over incoming directions. Even if 0' is small, as N becomes large this tends
to zero. In this way decoherence becomes a quantitative phenomenon.
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Thr- I'f"f.‘UVPI‘_Y 'Il' tlw Copenhagen rule [UT whriu prnlmhilitit‘s may he amigm'il
is immediate. Nlfiflfilll'c'u'l quantities are (‘Hl'l'i‘lntml with rlmmheiiug hintui-juh [in
winning himnries: can he. assigned protmhilitirm Thus in the twu—slit exptu'imcnt
(Figure l). whmi the r-h-irjtrun interacts; with an apparatus that Ilelv-riiiinpg whip}.
slit it [it'lfifif'tl through, it is; tin- (l(‘CHll(‘H_‘IlL'(' All the. alternative izruiiiguratiiiinfi of the
aipliui'nliis that r-nrihh'n' pl'lhl.)£ll)llll.i(‘:i LL. lw assigned fur the FIE‘CLI'IL“.

’li'hvrz- is unthing incorrect :lhtiut Chilir-ziiliiignii quantum lilr’fflininit‘s. Neither is
'21, in any 59:150. '.'|}])“S(:(l tn 1hr. post Everett {Lil'llllllfltlllll «if the quantum mechanics
of (Llnsezl systems. it IS an upli‘i'n-J‘inmtiun in the more. general framework nippi'u
priute- in 1hr spm‘ial CHEFS of iimzisui'eu'imit. situritiuufi and when the (lucullPiHu‘t' of
alternative configurations Hi the apparatus may he idealized as exact and instan-
taneous, However. While incasuu‘tuic'iit situu‘tinns imply alumliei'eiiur:3 they EHT‘ nuly
spatial cases ol‘ dwuheiiuy. histories Pi'nlmliilitius may hr- assigned to alternative
positions of the moon and tn filteriiittivr.‘ valuefi uf density lluctuiitimis near the big
hung in :1 universe in which thz-se alternativt‘s ih‘cnhere. whether Mr not they were
pnrtir‘jpnuts in (it I'l'lf‘iLHll['CIHCIIl. situation and (:‘vi'tniuly Whether I” not there was; an
observer registering their values.

VII. Quasiclassical Domains

As observers of the universe, we deal with coarse—grained histories that reflect our
own limited sensory perceptions, extended by instruments7 communication and
records but in the end (‘llHl‘t‘lJ-El‘lflcd by n lni'gz-i :uununt ml ignrui'inm'e, Yet, we
have the impression that the universe exhibits a nuu'h linnrvgrainei'l gel, of histories.
independent of us, defining an always (it'ttnliuiiug, ”tpia.si:.'lassical domain", to which
our senses are adapted, hut. :Iunl with nnly a small par! of it. If we are preparing
for a journey into a yet unseen purl. of llw universe, we do not hclieve that we
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neerl tn t'qltip uursvlvv-‘es with sluiresuits hrwing tI—H‘tcvrs sensitim, say, tn pullerent
sup::I-!.msit.lmus ul' unsitiuu Hr other unfamiliar qunntum variables. W'e I‘Xpm‘t that
the lumilinr qunsirlmsu'ul vnrialnll-s Will tlm-mhm‘c and he .'-1[)}H'n_\tult:ltcl_\' t'nrrclated
in tiuu' hy r‘inssu'nl (.li‘tt‘l'Tt‘tlnlfillF InWs in any new part ml the universe We may visit
Just as tluy nre hv-rt' :uul ne-w

Sim-v tilt‘. pustl'ivcrett quantum mr‘rshnmcs ml clusr‘tl systems (Ines unt [irvsit
n qlmsiv-lnssu-nl :lumniu, it must mnvuto an nxplnnntjnn at this manifest. fart. of
cw'vi'yttriy uxpm‘u‘ut‘f'. Nu such cxplanntinn run hr‘ IH'HVltlf‘tl hunt the :lynmnics nl'
quantum thmvry :ilnnv. ltntlu-r. lilac- (ll"('tllll-“l‘l“ll(jl‘.‘ the existence nl~ a quasiclnssirnl
:l-uuniu in the uniwrse must he :1 ('nusrqucure ml lmth initial condition ml the
nnit'm‘sr nml tlu" llmuiltrulinu alcst'rlliing ('lutirvu.

ltnughly Hl'lt'inltllltfi‘ a quusirlnssicnl rlumniu shuuhl he a set ml ulti-irnzitivr‘ his-
tories thnl tIm‘uhr-rr-‘s ncrnrrliug in :\ rr'alistir principle of tlccnhcreuce‘ that is tuux—
imally relinrul txuusistnut with thnt notion of (tcr'nlim'cmcr', EHHl whusc imlivirlunl
historiesn.1'vtlvsrrilir-ll largely liy nltcrnntivv values nl' Ft limitml set. viii quasiclnssical
wu'inhlcs at lllll‘t’J'Flll. uirmu‘nts of timr: that e-xhiliit us much as possible patterns
of classical correlation in time To make the question of the existence of one or
more quasiclassical domains into a calculable question in quantum cosmology we
need measures of how close a set of histories comes to constituting a “quasiclassical
domain’h A quasiclassical domain cannot be a completely fine—grained description
for then it would not decohere. It cannot consist entirely of a few “quasiclassical
variables” repeated over and over bccnnse snumtiu'ics we. may umasure sou-isthiug
highly quantum mechanical. Launsit‘lnssicnl vuriaililes cannot. he. always cot'i'ulnttirtl
in time by classical laws hocnusc sometimes quantum mechanical phcnruucnn cans:~
deviations from classical physics. Wt' new! measures lnr maximnlity 21nd classicality
((Jr-lI-l‘v'lunn mul Ilnrtlr" liltlttnl

It is possible tn givi- ('HHlP arguments fur the type ml habitually llPtttil'lfll'lng
”Fmrnturi: we cxpect [u m-rm- uvcr nurl HW-‘I' again in a set nl histories defining a
qIn-tsirlnssiv'nl LlHllHllH [(lrall-l‘v‘laun :uul llnrtln. ll-tllttn). Such haliitunlly (lccnhnr-
Int; rmmjnturs arc ('z-illml “qunsir‘lnssicnl opt-Irntursl'. In the earliest instants ml the
universr' thr- operators defining simwtimc nn scales well above. the Planck scale.
emerge lrnm thr' quantum lug as qunsiclnssirnl. Any theory of the initial cnnrli-
tinn that tlnl‘h' nut inm this is simply inconsistent with (:iliservz'it.imi in a. manifest
way. i'\ li."I.<‘.l(p;rv.uuul snacctimc is thus tlclint-rl mul conservation laws arising h'rnn
its synumvtrins haw Inf-mung 'l'heu. where there are suitable crumliticms of low
LIEKIIIM‘I'flltll‘lY, ('lcnsily, etc, various sorts of hyrlrmlynnn'iic variables may emerge as
qunsich-issicnl UIH’T‘HLIH'S These» are integrals uvnr suitnlily small volumes nl' rleusi
Lit-s ml conserved or nearly conserved quantities, Examples are densities of finer g3"
momentum, linrynn numhm . mul, in lat.«-"1‘c1'm('lis, nuclei. ancl even clicn‘iical species
'l'htr sizes of the vnluincs arc lit'uitctl nhr-VP l'iy nmximnlity and are limited huluw
by classicality because they require sufficient “inertia” resulting from their approx—
imate conservation to enable them to resist deviations from predictability caused
lay their llll-r'l'ilt'llHHS with vine nut-then by quantum spreading, alul by the quantum
mul statistics] tluctuatuvns resulting; l'ruin mtmrmttinns with the rust til the universe
lhut m'cnumlisll (lo-mlwrrnu'v (Hell-Mann :unl llnrtlu, 19532). Suitable integrals ut'
rlcusilins n'l1-1ppruximately (:utuisCI'WJLl quantities are thus ('nmlitlnles lul‘ habitually
rlr‘t'nlit.‘ri|uz, qiuzsiwlnssir'al upcratuxs. Thesi- "hyllriulyumnic variahles” are running
the principal variatilcs Ml clnssutnl physics

it Wntlltl he in such ways that the classirnl rlumnin of familiar experience
crauhl hr: am mnergr-nt pn-pcrty (\l the fundamental description of the universe.‘
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not generally in quantum mechanics, but as a consequence of our specific initial
condition and the Hamiltonian describing evolution. Whether the universe exhibits
a quasiclassical domain, and, indeed, whether it exhibits more than one essentially
inequivalent domain, thus become calculable questions in the quantum mechanics
of closed systems.

VIII. Conclusion

Quantum mechanics is best and most fundamentally understood in the context
ril‘ quantlun Illf.‘(‘llht|ll'fi Hf i'lusml systmns. must generally tinn universe as a whole.
The. lininiim-s til. qnHlllIll nn:chunics worr- i‘ight in pointing out that something
r‘Xl.f'I'Ilill in III.u frmm-wvurk ul- wmw function nnrl the Schrodinger nqimlinn is Ilt‘J'i'lt‘tl
in interpret the Hui-my. lint II. is not n lmstulatcd classical domain to which quantum
mechanics tint-'5 nut apply. l—iflllIF‘l‘ it is thr- initinl condition of the universe that,
together with the action function of thc‘. cluncntniy particles and the thruws of the
quantum (lice since the beginning, is the likely origin of quasiclassical domain(s)
within quantum theory itself.
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Paperpresented at the 13th Int. Conf. on General Relativity and Gravitation 101
Cordoba, Argentina, 1992: Part], Plaza/y Lectures

0n the mathematical theory of classical fields and general
relativity
Sergiu Klainerman*

From the perspective of an analyst, like myself, the General Theory of Relativity
provides an extrordii‘iary rich and vastly virgin territory. It is the aim of my lecture
to provide, first, an account of those aspects of the theory which attract me most and
second a perspective of what has been accomplished so far in that respect. In trying to
state our main objectives it helps to view General Relativity in the broader context of
Classical Field Theory. As we know today, among all classical field theories, only the
Maxwell equations and the Einstein field equations are known to have direct physical
content. Others, like the Yang—Mills equations, are believed to become relevant. only
after they suffer the painful and still mysterious, process of quantization. In view of
this fact one can describe the basic goals of the mathematical theory of classical fields
as follows:

(1) Investigate the mathematical consequences of the Einstein Field Equations in so far
as they describe the physical world.

(2) Investigate the mathematical properties of the other nonlinear field theories
(a) In View of the fact that the Einstein field equations are exceedingly complicated

some of the other field theories provide a simplified testing ground for new ideas.
From this point of view the final goal remains the understanding of the Einstein
field equations but we hope to get important insights from the simpler nonlinear
field theories. To this one might add our belief that any new ideas which lead to
significant progress made on problems of nonlinear classical fields will prove useful
in other areas of lvlathcmatical Physics Where nonlinear P.D.E’s, in particular
hyperbolic, are at the heart of the subject.

(b) Investigate the mathematical properties of nonlinear field theories in view of their
possible relevance to quantum field theory.

This final goal is most vague. One may attempt to render it slightly more meaningful
by pointing out the importance of uncovering the fundamental properties of classical
mechanical systems as carried out by mathematicians such as Euler, Lagrange, HamiL
ton, Poincare and others, to the very formulation of Quantum Mechanics.

Since according to the above scheme, General Relativity and the Einstein ficld equa:
tions play the dominant role in the mathematical theory of classical fields, I will conv
centrate my attention to it and refer to other field theories from the perspective of
2a. The mathematical structure of the EinsteiniVacuum equations, or shortly E—V, is
already sufficiently complicated. I will thus restrict my attention to them.

Clearly, the aim of the mathematical theory of General Relativity is to understand
the main features concerning the behaviour of general solution to the Einstein Field
equations. Since general solutions can be naturaly parametrized by initial data sets one
can reformulate our goal as being that of studying the main features of the evolution
of general initial data sets. Now this goal is too broad since without an appropriate
asymptotic restriction the evolution of an arbitrary initial data set can be very wild. A
reasonable physical restriction is to consider initial data sets which look flat outside a
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sufficiently large compact set of H. The evolution of such initial data sets correspond
to “isolated physical systems.” These systems are particularly important in G.R. since,
it is only for such systems that we can define the physical notions of mass, linear and
angular momentum.

We thus redefine our central theme as being the study of the main features regard—
ing the evolution of general classes of asymptotically flat initial data sets. From the
perspective of (2a) we can broaden this to include all classical field theories. In this
respect I will restrict myself to a discussion of field theories in Minkowski space—time.

Having thus defined our object of study I can turn my attention to What is considered
to be the most fundamental mathematical question concerning the differential equa—
tions of General Relativity and the other classical Field theories. This is to understand
when and how, solutions to a classical, nonlinear, field theory can breakdown.

The break—down phenomenon can occur despite the existence of the basic conser—
vation laws, in particular the energy, or total mass, which is positive. To understand
what this means consider the comparable situation in one dimension, namely systems
of ordinary differential equations which arise as the Euler—Lagrange equations of a
Lagrangean with positive energy. To be more precise consider the example of the
differential equation,

7132+ Vl(.’1,‘) = 0

subject to the initial conditions at if : 0,

C(0) : 1'0, 1(0) 2 .721 .

The total energy of the system is given by the expression %I.Tl2 * V(.7:), where flilz is
the kinetic energy and ~V the potential energy. For any reasonable physical system
7V Z 0. Since the total energy is conserved we immediately conclude that, for any
initial conditions, the corresponding solutions exist for all time. There can be no finite
time blow—up of the solutions.

The situation is very different for Classical field theories. Though We have a positive
energy momentum tensor which leads, in Minkowski spaceitime, to well defined con
served quantities, we cannot infer in general that the solutions, starting with perfectly
smooth inital conditions, remain so for all time. Take as an example the field theory
closest to our one dimensional example, namely the scalar wave equation in Minkowski
space—time M"+1,

so + V’(¢) : 0, (N.WE)

subject to the initial conditions at t = 0,

45(0) 2 foy 3145(0): f1-

Assume that f0,f1 are as regular as we want, say f0, f1 6 C€°(§R”). Assume also that
—V Z 0 so that the energy-momentum tensor satisfies the required positivity condition.

The total energy 1 at time t has the form,

E0) = f n (gaw + (31¢)? - - . + (aw) — we) dx
' which is the conserved quantity corresponding to the Killing vectorfield To = 3,
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One can easily check directly that %E(t) = 0 and hence, if the initial data at time
= 0 are such that E(O) is bounded, we infer that EU) is bounded for all time.

Yet, unlike in the previous example we cannot conclude that the solutions remain
smooth at all later times. It is easy to see that as long as (15 remains bounded its
time evolution preserves the regularity of the initial conditions in the L2 norm . The
problem, thus, is to show that (15 stays bounded. In space dimension n : 1 we can
conclude, from the boundedness of EU) and a simple form of the Sobolev inequalities,
that (15 is poiznt—wise bounded. Indeed, since —V Z 0, we infer that at any time t,
fw G ((6t¢)2 + (81¢)? +(8n ¢)2 )) d1 < E(0 ) On the other hand, according to the
simplest version of the basic Sol)olev inequalities the sup— norm of a function 1n R" can
be bounded 1n terms of the squa1e integials of the sum of all its derivatives of o1der2
[g]. Hence for 71. : 1,

1/2
sup [¢(t,r)l g e </ gag, Q5)? , , . + (3n¢)2)d$) g cE(0)1/2 .

:r. . 1‘"

The form of the Sobolev inequality we have used above fails just a little for n : 2.
In fact we can only estimate (f |¢5(t, :1')l”)1/7’ for any 39 < 00, this turns out nevertheless
to be enough to conclude that the solutions remain smooth for all time3. For n 2 3
the above form of the Sobolev inequality require a little more than 3/2 derivatives in
L2 in order to estimate the sup norm of (13. The boundedness of the energy provides
11s with a bound of only one derivative in L2. We have thus a gap of more than 1/2
derivatives. The situation gets, of course, even worse in higher dimensions. We can still,
nevertheless, show that (1) remains bounded provided that V((l>) does not grow too fast
as <15 —» 00 For simplicity consider the ease of the power potential V(¢)) : 7% |q5|1’+1_

Presc1ibing to the space time variables 1 — :00, .131, . . . ,1‘" the same scale L, the solution

d) of the equation Dd>+ V’ (4/1) _ 0, aequires the scale L The1efoie the total energy
E has the scale Lg wheie s is the exponent s — n — 2 i10:471.

The case when the exponent s is stiictly negative is called s11bc1itical” It is quite
easy to analyze and has lead to the well known global rcgulaiity result of Jorgens
[J6]. The case 3 : 0 is called “critical ” while 3 > 0 is called “supercritical.” In
the snpercritical regime we have no results, even for spherically symmetric solutions,
despite the relatively large attention this problem has received. The critical case has
been recently settled by the combined efforts of Struwe [Stru], Grillakis [Grl] and more
recently ShatahrStruwe [Sh—Stru].

Theorem. Consider the initial value problem D115 + V'(¢) = 0 with initial conditions
¢(0,$) = f0(m),3t¢(0,m) = f1(:c) which, for simplicity, we may assume in CS”. Assume
that n g 7 and that the exponent s g 0. Then the equations admits unique smooth
solutions globally in Mn‘H.

Despite the difficulty of the problem it is widely believed that, even in the super—
critical case, the solutions to (N.VV.E.) remain smooth for all time.

A more interesting field theory is provided by the equations of Wave Maps defined
from Minkowski space—time M"+1 with values in a Riemannian manifold N. Relative

2 [g] denotes the smallest integer strictly greater than g.
3 provided that V(¢) has polynomial growth in gt for large gt.
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to standard coordinates r“, or = 0,. . . ,n and local coordinates y“, a = 1, . . . m in N
the equations take the form,

at“ + rgcwnnwambamc = 0 (W.M.)

where I‘gc are the Christoffel symbols of N. Consider the initial conditions at 3:0 =
t = 0,

W0) = f0, 5t¢(0) = fi
with f0,f1 compactly supported smooth maps defined from R" R” to N.

Since the nonlinear terms are quadratic in the first derivatives of the map gt, in order
to preserve the L2 regularity of the initial conditions, we now need to have pointwise
bounds not only on d) but also its first derivatives. The total energy, in this case, has
the form,

Em = / <é<l51¢l2+l31¢lgw+3n¢l2))d$
with Wart]? : IzabanW‘OHz/Jb, h the Riemannian metric of N. The law of conservation
of total energy is, as before,

E(t) = E(0) .
This provides us with only with an L2 bound for the derivatives of (15. We therefore

see that the conservation law for the total energy does not suffice to control the L"0
norm of the first derivatives of <35 even for wave maps in M1“. A simple remark,
however, allows us to bypass the difficulty in this case (see [Sh] and also [G11]). Indeed
consider the energy momentum tensor T. It has the form, Tag : % (¢’a,¢_fi> ~

%g(,/j(g“"(¢‘ll¢,,,)) with <, > the scalar product in N. Since we are in 1+1 dimensions
T has only the components T00,T01 : T10,T11. Moreover, since T is trace—less
in MH'I, we have Too 2 T“. New recall that T verifies the divergence equation
afiTag = 0. Hence,

aeToo = 31T01
atTUl : arToo

and therefore T00 is a solution of the linear wave equation in M1“, DToo : 0. One can
now easily check that T remains bounded for any t > 0 provided that TomatToo are
bounded at t = 0. Since T00 = %(l8,q§l2 + [81(1)]2) we conclude that all first derivatives
of the map g6 are bounded. Therefore, in M1“, all wave maps, which are initially
smooth remain so.

The proof we have presented is typical to the sweeping simplifications which occur
only in 1+ 1 dimensions. The case of wave maps defined in M1+2 is already much more
complicated. We can proceed as before and classify the (WHM) according to the scale
associated to the total energy E. Thus, prescribing to the space-time variables the scale
L and to ¢ the scale L0 we find that E has the scale L3 with s = n — 2. Consequently
the (W.M.) is subcritical in M1“, critical in M1+2 and supercritical in M1+", n 2 3.
Under reasonable geometric assumptions we expect global regularity in the critical case
M1“. This conjecture has been recently checked for wave maps satisfying additional
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symmetry assumptions, see [Ch-Za] in the case of spherical symmetry and [Sh~Za],
[Gr2] in the equivariant case.

Of course, we also know examples of partial differential equations, for which blow—up
actually occurs. This is the case of the Burger equation

111+ uttr = 0.

Despite the fact that the equation has, not only one but infinitely many positive con—
served quantities, e.g flu(t,.r)|2kd.r, any initial condition u0(ac) E C€°(§R) leads to
blow-up in finite time3 Remark that the Burger equation is supercritical relative to the
total energy E = (f |u(t, m)|2dr)1/2 and critical relative to the L°° norm of u. Indeed if
we prescribe to t, a: the same scale L and to u the scale L0 then the conserved quantities
(f |u(t,x)]2kdm)1/2k acquire the scales LilE

There are also known examples4 of finite time breakdown of solutions for wave;
maps in the supercritical case M3“. But more important, from a physical point of
View, is the well known fact that the Einstein equations also leads to singularities. It is
interesting to remark in this respect that, relative to the total ADM mass, the Einstein
field equations are supercritical 5.

According to the classification we. have indicated above it is widely expected that
in subcritical situations break—down can be ruled out. We also believe that the same
holds true in most critical problems. Finally, in the supercritical cases we have a lot
of evidence that break—down can in fact occur.

Though we do not expect any bad behaviour in the subcritical problems, proving
that it is indeed so is not necessarily an easy task. This is the case of the beautiful
result of Eardley and Moncrief [ELM] for the Yang—Mills equations6 in M3“. The proof
required an insightful observation concerning the structure of the nonlinear terms of
the Yannills equations expressed in the Cronstrom gauge. As we have indicated
above the question of regularity in the critical case has been solved for (NW.E.) and
is now the focus of considerable attention for (W.M.)

It is helpful to divide the general question of break—down and regularity into a.
sequence of simpler ones for which is easier to envision ongoing progress. Once more
I will refer directly to the Einstein field equations and look at the other field theories
from the perspective of (2a). The simplest of them all is,
Question 1. Under What assumptions on the initial conditions is the Cauchy problem
locally well posed 7

Technically this is the question of local in time existence and uniqueness of the
development of an initial data set. Our present technology, based on energy estimates
and Sobolev inequalities, requires too much differentiability on the initial data set.

3 u

4 see [Sh]
5 Proceeding as before for (N.VV.E.) and (WM.) we assign to the space—time metric

the scale L0 and remark that the ADM mass E = Té_7r lim f5. 2(31‘91‘1‘ — ajgii)da
“Too F 111

has the “supercritical” scale L1.
6 Proceeding as before we associate to the vector potential A the scale L‘1 and to

the electromagnetic field F the scale L‘Q. Thus the total energy at time t has the scale
L"_4 which is subcritical for n — 3.
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Lowering these differentiability requirements is crucial in understanding the regularity
properties of the solutions to (E—V) and also the general Einstein equations in the
presence of matter.
Question 2. Under What assumptions on the initial data sets do there exist global,
smooth and geodesically complete solutions of the EinsteinJhcuum equations .7

This question is intimately connected to that of stability of the Minkowski spacee
time. Namely the Minkowsky space~time M3+1 is a special solution of E—V free of
singularities. As mentioned above an initial data set is said to be flat if its development
is diffeomorphic to M3“. It is thus natural to ask what happens to the developments
of initial data sets which are small perturbations of a flat initial data set. The answer
to this question is not only important in View of the general program of studying
the regularity of solutions evolving from regular Cauchy data but also in regard to
the question of the structure of null infinity7 of general solutions which evolve from
asymptotically fiat initial data sets. Indeed any AF. initial data set can be interpreted,
outside a sufficiently large relatively compact set )C, as a small perturbation of a flat
initial data set. Thus the methods used in the study of the global stability of the
Minkowski space—time can also be used in the study of the asymptotic properties of
the development of any AF. initial data set outside the future set of a sulhciently large
set [C C H.

The problem of the stability of the Minkowski spaeeitimc has been recently ad
dressed in my joint work with D. Cln‘istodoulou [CHlZ]. The result which we were
able to prove asserts the following1

Theorem CH—Kl . An S.A.F. ’ initial data set which satisfies. in addition a Global1 . 7

Smallness Assunmtion leads to a uni( ue smooth and eodesicall ' com )lete (levelsI 7 , , u I

opment, solution of the Einstein—Vacuum Equations, iMoreover, this development is
globally asymptotically fiat, by which we mean that its Riemann curvature tensor
approaches zerog on any causal or spacelike geodesic, as the corresponding affine pa.»
rameter tends to infinity.

The global smallness assumption requires that an appropiatc Lzrnorm of up to 2
derivatives of the curvature tensor of g and 3 derivatives of k are small. A more
primitive version of our result requires one derivative less7 in line with the statement of
the local existence theorem. Further improvements of our result will depend crucially
on progress made on Question 1.
Question 3. Under What conditions do initial data sets develop black holes and

singularities?
The famous incompleteness theorem of Penrose asserts that if an initial data set of a

space—time verifying the Einstein field equations (with very general assumptions on the
energy—momentum tensor T) has a trapped sphere9 then some outgoing null geodesics
normal to 5 must be future—incomplete. Though the Penrose theorem indicates that

7 of order k = 4. We note that the precise fall-oft conditions of the initial data set
are in fact given in Lg-Weighted norms, and thus differ slightly from those we have
discussed below
8 Our result gives precise information on the rate of decay of different components of
the curvature tensor.
9 i.e. a space—like sphere S on H with a compact filling such that the outgoing null

normal to S are everywhere converging
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singularities can indeed occur for general solutions of the Einstein equations it remains
entirely unclear what is the nature of these singularities and, more important, if the
trapped sphere hypothesis is of any relevance in the actual process of a gravitational
collapse.

At the present time we have no results concerning the formation of black holes
for the (EV) equations. Since the general problem is too hard one needs to look
first at simplified situations. Unfortunately the (E—V) does not allow interesting A.F.
solutions with additional symmetries, e.g. spherically symmetric. To overcome this
one has to consider the general Einstein field equations coupled with some matterfield.
The simplest such field is the linear scalar wave equation (SW) with V = 0. This
coupling allows one to obtain nontrivial dynamics even in the spherically symmetric
case. In this case the group 50(3) acts as an isommetry group on the space—time
(M,g). The group orbits are spacelike metric 2aspheres S of Gauss curvature 1"2
where 7‘ is the area radius of S, i.e. A(S) : 47r7‘2. Due to the 50(3) symmetry the
field equations can be reduced to quotient Q of the spaceitime by the group. This a
2»dim(r:nsional manifold with boundary. The boundary corresponds to the set of fixed
points of the group action and forms a timcrlike geodesic F. Choosing, on Q, a pair
of conjugate optical functions 71,2: with a constant on any future directed null curve

initiating at F, '1) constant along each of the conjugate familly of null curves and such
that both functions are increasing towards the future, the induced metric on Q has the
form illgdudo. Remark that 11,2) are determined up to general transformations of the

form u H flu), v >—> flv) with f,g arbitrary increasing functions. The reduced field
equations form a system on Q for the functions 7‘, Q, (I),

. 02/" , 1S22 07: 8—7
7 (91100 T 4 an 81)

827' . 07' (99 896 '2# :25247— a 7
0mg all an 7 (all)
827- 8T 69 63¢ 2i :252’17—7‘ i
8112 01) 81} 7 (81))

82¢ (97' 345 (97‘ 0o
7 01181) _ 07% — 5v Bu (E _ S-VV-l

The above system is invariant under the transformations u H ft“), 1) r—v g(v) and
(2 H (f'g')'/2Q.

The program of studying the spherically symmetric solutions of the coupled Einstein—
scalar wave equation was initiated and carried out with remarkable success by D.
Christodoulou, see [ChZ],[Ch3]. A basic ingredient of his analysis relies on the mono-
tonicity properties of the mass function in defined by the formula 1—2—21— : —4Q_2gfi—g—Z.

We have 213 > 0 and M < 0,: 0, Z 0 according to whether 1 — 2—7" S 0,: 0,2 0.
61) -— 6n — r

In [C112] Christodoulou combines this montonicity properties of m together with the
powerful method of characteristics, typical to 2—dimensional hyperbolic problems, to
prove a deep result concerning the formation of black holes for the system (E-S.W.).
He considers the evolution of regular initial conditions defined on an outgoing null
curve 00+, starting at a point on T, and shows that under reasonable assumptions of
the data trapped spheres must form.
Question 4. What are the global regularity features of arbitrary devlopments ofA.F.
initial data sets 17
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One of the main distant goals of the mathematical theory of General Relativity is
to give a correct formulation and solve what is referred to as the “Cosmic Censorship”
conjecture. Loosely speaking the conjecture asserts that there are no singularities
outside black holes or, more picturesque, there exist no naked singularities.

Once again the understanding of the global regularity properties of the general Ein—
stein equations is beyond our reach. To make progress we have to either restrict our
attention to solutions with spherical symmetry or to consider simpler field theories.
Concerning the first approach I have to mention once more the pioneering work of
Christodoulou on the coupled E—S.VV. equations. Following his result on the forma—
tion of black holes, which was mentioned above, he has concentrated his efforts on the
regularity of solutions outside black holes. His results show that though “naked sin—
gularities” are possible they are unstable in the sense that the initial conditions from
which these could evolve form an exceptional set of strictly positive codimension in the
set of all allowable initial conditions.

In what follows I will give a short description on some of the progress made recently
on the questions 1,3,4 and give a short description of the proof of Theorem (CHl)
mentioned in connection with question 2.

Q1. As we have mentioned below the first solution to this problem was given by Y.C.
Bruhat, see [Brl], under the assumption that the initial metric g has 3 derivatives,
and the tensor It has 2 derivatives locally on L201). Her proof is based on two
ingredients. The first consists on an auxilliary construction of wave coordinates
relative to which the EWV equations take the form of a system of nonlinear wave
equations. The special choice of wave coordinates is in fact not important, they
can be replaced by other more geometric structures 10. The second ingredient
is more basic as it reflects on our present, limited, techniques in dealing with
the local theory for all systems of nonlinear hyperbolic equations in more than 2
space—time dimensions“. It combines standard energy estimates for derivatives
of solutions of the hyperbolic system together with Sobolev inequalities and an
iteration procedure. The procedure has a built in limitation, as it requires too
many derivatives on the initial data. For EeV it means that we have to restrict
ourselves to initial data sets with one derivative of the curvature tensor and two
derivatives of k in LIZOJ'H). This limitation is very significant when one passes from
the local to the global study of the regularity properties of the system. To overcome
the limitation it seems imperative to develop new analytic techniques. It helps,
of course, to first address this question for a much simpler field theory. A good
example is provided by the equations of Wave Maps from the Minkowski space-
time M”+1 to an arbitrary Riemannian manifold (N, h). Recall that, relative to

10 In [Ch-K12] the local existence theorem is proved relative to a maximal foliation.
In other words the space—time is constructed locally together with a “time function” t
whose level hypersurfaces are maximal, i.e. trk = 0.

11 In 2 space—time dimensions the situation is radically different because of the
method of characteristics which allows better results based on the method of charac-
teristics. This remains true in higher dimensions if one considers only solutions with
spherical symetry.
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a local chart in N, the VV.M. equations take the form,

w’+§jru.WoQIwJIw“> I=1t~,N (u
Jlt

where,
“13¢,l = D0¢Da¢ = mOfiDagffiDgt/L (2)

Here ¢ = (¢])I=1,...,N is a vector valued function defined on M3“. The FIJK’S
are given arbitrary smooth functions of 45.
We consider the initial value problem on the hyperplane t = 330 : 0,

WW) : fot'rt 340$) : f1(37)- (3)

The classical local existence result for equations of type (1) requires f0 6 H3(R3),
f] E H2(R3). Recently, in collaboration with M. Machedon [KlrMa] we were able to
prove the following,

Theorem (Kl-Ma). Consider systems of nonlinear wave equations in M3+1 of the
type (1), (2) subject to the initial conditions (3) under the assumptions f0 6 H2(R3),
f1 6 H.(R3). There exists a T, > 0 and a unique solution d) defined in the slab
D, : [0,T,.] X R3 and verifying the following,
awwcm<w
outptflww¢r+mM¢¢Ham<m

Wt )llH7(R3) < 00-
As we have mentioned above the L2 estimates, provided by the energy method,

are not enough to prove a result like this. On the other hand any attempt to replace
L2 with any other LT’ is known to fail (see [LD even for the linear problem, in M"’+1,

(iii) supl0 71]

D¢=Fs (MOW): .Jfot 7)8t(0 $)=_-7>-f1() (4)
The only other possibility to get additional information is to consider space-time inte—
grals. The best known result of this type, for the wave equation (4), is due to Strichartz
[Str1, 2] who has proved the following inequality,

Immschmum+wtfln+wtq (o
where L”, L" are space-time norms with exponents, p—— 2%”, q = 2 2:}

The novelty of our result consists of estimating, in space time, the Lorentz i11-
variant bilinear form Q(¢,1/)) and derive for it an estimate which is stronger than that
which could be derived from the Strichartz inequality. This allows us to gain a full
derivative over the classical result. The basic new tool is contained in the following

Proposition. Let (i), it; be solutions in M“1 to the equations no = F, 07/} = G
with initial conditions ¢(0,.r) = f0(.r), 81¢(0,x) = f1(.r) and 7,!)(0,.r) = go(;r),
811/}(0,x) 2 91(50). Assume that f0,go E H2(R3), f1,91 E H2(R3) and that the
integrals f0T||DF(t, )||L2( R3) (11‘, ff HDF(t, )||L2(Ra)dt are both finite. Then the
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space—time integral fOTfRa lDQ(o. it")? (ltdrr is also bounded. with a bound depend—
ing only on the product of (llfollHUR‘U + Hf] llHltRs) + f0] HDFtt, ")HL2(R3) (It) with

T(ltgollmma) + plums) +10 “Dec. -)tlL2(m> (1t)-
Remark 1. The result of the proposition remains true if we replace the quadratic
form Q by n(¢,1/l) = 80968” — eat/ram. On the other hand the result is wrong if we
replace the bilinear form Q with any other bilinear form in the space—time gradients
of (15, it). The result of Theorem (Kl—Ma.) remains true if we also allow the forms Qafl
but we believe is wrong if one considers in (1) general expressions quadratic in the
Do. This suggests that any future improvements of the classical local existence and
uniqueness results require special features of the equations one is interested in.
Remark 2. The proof of Theorem (Kl-Ma) depends heavily on the fact that the
nonlinear terms in (1), (2) do not depend on the top derivatives. 11. is reasonable to
believe. however that the result of the theorem can be extended to certain classes of
quasilinear equations. Most important we believe that a similar result holds true for
the Einstein vacuum equations, in other words the (E V) equations should be well
posed for initial data sets (71,9, l‘) for which the (omponents curvature tensor I?(g)
and the first derivatives of lo are bounded in L2.

Q2. In proving the result on the stability of the Minkowski spacotime 111entioned above
we had to overcome the following major obstacles,

a. The problem of coordinates.
b. The strongly nonlinear character of the equations.
c. The longr range character of the initial data set.
d. The nontrivial Character of the asymptotic properties of the. causal structure of

any small perturbation of the .Minltowslri space—time.
e. The conjunction of all of the above.
The scope of this lecture doesn‘t allow me to discuss in detail each of the above

difficulties and describe our strategy for overcoming them. For those interested I would
like to refer to the extensive introduction of [CHlZ] or the recent Bourbaki seminar
[Bour]. In what follows I will only give a very short description of the main ideas in
[Ch—K12].

The difficulty (a) is typical to General Relativity. In short one is faced with the
following dilemma. To write the equations in a meaningful way one, seems forced
to introduce an additional structure, e.g. wave coordinates. Such a structure seems
necessary even to allow the formulation of well posed Cauchy problem and a proof of a
local in time existence result. Nevertheless, as the particular case of wave coordinates
illustrates, the structure, if not carefully chosen, may lead, in the large, to problems
of its own making. Indeeed, as pointed by Y. ChocqueteBruhat [B12], the “wave
coordinates” are unstable in the large even when one starts with initial conditions close
to flat. In [Ch-K12] we solve this problem by constructing our space—times together
with two additional geometric stuctures. One is given by a time function t whose
level hypersurfaces are maximal. The second, much more important, is given by the
level hypersurfaces of an optical function . This is a special solution it of the Eikonal
equation gafiaouagu = 0, whose level hypersurfaces are outgoing null hypersurfaces
with correct asymptotic properties at null future infinity.

The other major obstacle in the study of the Einstein equations consists in their
hyperbolic and strongly nonlinear character. As we have already mentioned the only
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apriori bounds we have available in the study of quasilinear hyperbolic equations,
in the physical space-time dimension. are those based on energy estimates. Yet the
classical energy estimates are limited to proving estimates which are local in time. The
difficulty has to do with the fact that, in order to control the higher energy norms
of the solutions, one has to control the integral in time of their bounds in uniform
norm. For this we need to control the decay of the L00 norms for which we have no
direct information. This difficulty was overcome by us using a strategy based on two
important ideas. The first has to do with the existence of the so called Bell-Robinson
tensor which plays, for the Einstein field equations, a role simmilar to that played by
the the energy~momentum tensor of the standard field theories of matter. The second
is a technique, developed by us, of deriving all the asymptotic behaviour of a field
based entirely on energy estin’iates. Recall that, if T is the energyemomentum tensor
of a field theory we have,

Dqu : 0 .

Let X be an arbitrary veetorfield and P be the leform obtained by contracting the
energy momentum tensor with X i.e. Pu : nXfl. Then, since T is symmetric and
divergencerless,

1
Dflpo : ETfi/i 770;} (6)

where,
7rd,? : D;3Xo 'l‘ DOAYS (7)

is the deformation tensor of X. \‘Ve now integrate (6) on a lens shaped domain 'D be
bounded by two space—like hypersurfzufies H”, H]. In view of the divergence theorem
we derive the integral identity,

/ TtX,T)dag — / T(.Y,T)dag 2 ~/ TM; 7mg (8)
Ha , 'H1 '17

where T is the future oriented unit normal, g the induced metric and dag the area
element of (9D.

In the particular case when X is Killing12 its deformation tensor 7r vanishes identir
cally and we derive the conservation law,

/ T(X,T)day = / T(X,T)day (9)
'H0 (H1

Remark that the result (9) remains true if X is a conformal Killing vector field, i.e. it
generates conformal isometries, and T is traceless. Indeed, if X is conformal Killing,
mm = Agag and hence WagTafi = .\t7‘(T) = 0. One can easily show that if the action
integral S[1/},g] is invariant under conformal rescalings of the metric, i.e. g 2 (Pg,
then the corresponding energyflnomentum tensor is traceless. This is the case of the
YangeMills Theory in 3 + 1 dimensions.

The identities (8) and (9) are usually applied to time—like future oriented vectorfields
X, in which case, in View of the positive energy condition, the integrand T(X, T) is
positive. This is the essence of the standard energy method. The method allows us
to obtain apriori bounds, typically L2 on space-like hypersurfaces, of the field under

12 i.e. it generates a one parameter group of isometries
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Dqu : 0 .
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1
Dflpo : ETfi/i 770;} (6)

where,
7rd,? : D;3Xo 'l‘ DOAYS (7)

is the deformation tensor of X. \‘Ve now integrate (6) on a lens shaped domain 'D be
bounded by two space—like hypersurfzufies H”, H]. In view of the divergence theorem
we derive the integral identity,

/ TtX,T)dag — / T(.Y,T)dag 2 ~/ TM; 7mg (8)
Ha , 'H1 '17

where T is the future oriented unit normal, g the induced metric and dag the area
element of (9D.
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/ T(X,T)day = / T(X,T)day (9)
'H0 (H1
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12 i.e. it generates a one parameter group of isometries
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consideration. Our main new idea is based on a simple extension of this method in
situations when the background has symmetries or, more appropiate for the stability
of the Minkowski space-time7 approximate symmetries.

To illustrate the method consider the Maxwell equations in M3“. As mentioned
above the Maxwell theory is conformal invariant. This means that whenever F is a
solution and X is an arbitrary conformal Killing vectorfield the Lie derivative of F
with respect to X is also a solution to the Maxwell equations. Combining this fact
with the standard energy method described above we can now derive L2 estimates for
various vectorfields applied to F. For example, consider the following quantities,

Q00) 2/ T(F)(KO,T0)(I$

Q1(t) — Z/l’m((‘Cfla FMI\(),T0)(1.I +/ T(£SF)(Y\7(;, T0 )d]:

71!:

+/ T(£T0F)(T'0, T0)d;r
71:

Q20?) _ Z /T((‘CU()(1))£Q(b Fl) 1\(1,T0) (II + Z/T(Cs£9(a)F)(F0,T0)d.r
a b: I

+/ T(£5£SF)(E,T0)d:c+/ T(caT0F)(m,T0)dx. (10)
. Ht ’ 1

Here H; are the level hypersurfaces of the time function i : 9:0 with future directed
unit normal T0 : 80. To is also the generator of time translations. The veetorfields
(2(a) : eabczrbac, a = 1,2,3 are the usual angular momentum operators. S = 3:080,
is the generator of dilations while K0 : K0 + T0 with K0 : (t2 + 7'2)30 + 2t$i3i the
generator of inverted time translations.

In view of the above discussion the quantities Q00), Q1(t),Q2(t) are all time in—
dependent and therefore bounded for all t E ER if (Qt-(0), i : 0,1,2 are all bounded.
These L2 bounds can be combine with some global version of the classical Sobolev
inequalities to derive very sharp uniform estimates for F.

To do this we decompose F lelative to the pair of conjugate null vectors 6+ :
at + 21:1 7:315 e_ ——8; H 21— 1 £107 and an arbitrary orthonormal frame (6A)A_1 2
on the 2— spheres SH U obtain by the intersection of the level hypei surfaces of u = t — r
with those of v =t +17“, into the vectors 01A: F(e+, eA) aA—— F(e_,eA) and scalars
p—— .1F(e+,e_ ) 0—— ,- F(e+,e _). This 1s called the null decomposition of F. We can
now state the following,

Proposition 1 [Ch-K11]. Let F be a solution of (M) and assume that the initial
conditions on the hypezplanet—— 0 are such that the quantities Q1(0),i= 0,1,2 are all
bounded Consider the asymptotic behaviour ofF for t > 0 In the space- time region
7' < 1 +21,— all components ofF behave in the same way, |F(t :c)l < C(l +t) 7 Outside
that lregionm we have, |a(t .r )l < (1 +t+ r)_7, |p(t e) 0(t, z)l S (1 +t+r) 2(1 + [t—
M) ,Ia(m)l<<1+t+r> (H-It—TD'?
13 The crucial region, Where different null components ofF decay in different ways, is
the wave zone region Where u = t — 7‘ is bounded.
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We have thus been able to derive the asymptotic properties of the Maxwell-equations
relying only on their geometric properties. This feature is crucial in applications to
nonlinear problems. A similar method lies also at the heart of our proof of the sta—
bility of the Minkowski space—time. It consists in the derivation of L2 estimates for
the modified Lie derivatives of the curvature tensor R of a space—time M, g verifying
the Einstein~Vacuun1 equtions (EiV) relative to some modification of the vectorfields
T0, 9, S, ITO, as above. This is based on the crucial observation that the Bianchi iden—
tities,

D5R05‘15 + DORfie'yé ‘t’ Dn.,,5 = 0 (B)

if interpreted as equations satisfied by R relative to a fixed background metric
g, are conformally covariant. The role of the BellsRobinson tensor, Tafi‘yb :
%(R(,,,fl,,R7 It 6 V + *RWM *R, ,t 5 V) where, *R0,«;.,5 : ; gum RM ,5, plays
the same role for (B) as that played by the energyrmomentuin tensor before. Indeed
T exhibits all the properties of an energy—momenti1m tensor. Thusl4 T is syn’nnetr
ric relative to all pair of indices and satisfies the conservation law, DbTwflw : 0.
Moreover it verifies the positive energy condition, i.c. T(X,Y,X,Y) is positive
whenever X,Y are future directed timerlike vectors The conformal covariance of
(B) translates into the very important fact that T is traceless. Also, if we def
fine the modified Lie derivative of R relative to a vectorfield X by the formula,
lR : LXRryfl'yé 7 %(7fi(Lafiyb 'i' ”léRapfifi + 7"];R031L5 i nm/i'fll) + gt7'7e/3757

we see that the commutation of LN with (B) produces error terms depending on the
vector X only through the trace—less part of its deformation tensor 7r. Thus, if the
background metric. is that of the Minkowski spaceitime the modified Lie derivative
relative to a conformal Killing vectorfield commutes with the Bianchi equations (B)
These properties of (B) allow us to define generalized energy norms for R, as we have
done previously for F. These norms allow us to control the asymptotic behaviour
of R. We illustrate this in Minkowski spacestime as follows, Assume that W is a
4rcovariant tracerlcss tensor \r'crifying all the symmetry properties of the curvature
tensor R. Assume that W is a solution of the Bianchi equations (B) in Mii‘H. Let
Q0(t),Q1(t), Q2“) be the quantities,

Q0(t):/ T(U”)(m,m,T0TU)d;r
k

3

we : Z A Ttiniitii"i/)(Tb,m.TuToM-r
(1:1

+ / T<£T0W>mmmroida~,H,
3

QM): Z / TrinaifimbmaimmTo,Todw
a,b=1 Ht

3

+2 / T<émaéaivitmmmTom
71:a=1

14 These properties hold true as a consequence of the symmetries of R and, in view of
the E—V equations, the condition Rag = 0.
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+/ TastymmTx’ETodm
. n,

+ / Trziafinwxmmmrodm (11)
Wlth T0,Q,S,R0 as in (10).

The null decomposition of \V is given by 01,; = VV(e,4,e+,eB,e+)7 flA :
%W(eA,e+,e_,e+), p = %IVV(e_,e+,e_,e+), a = iVV(e-,e+,e_,e+), EA 2

%W(eA,e_,e_,e+). QAB = W(eA,e_., eB,e_). We can now state the following,

Proposition 2. Let W be a solution of the Bianchi equations in M3+1 and assume
that the initial conditions on the hyperplanet = 0 are such that the quantities (LL-(0)
are all bounded. Consider the asymptotic behaviour of W for t > 0. In the space
time region 1‘ S 1 + % all components of W behave in the same way, |W(t,.r)| S
c(1 + 07%. Outside that region we have, |o(t,a;)| S (1+t+ r)_%, ,8 g (1+t + TlTTa

Ip<t,x),a<t,ol s <1 +t+v~r3<1 + ltvv'lfl, lfil : (1+t+r)'2(1+lt—rl)’%
moi : (1 +t+r)“(1+l1—rl)‘%-

Both Propositions 1,2 have been proved in [Ch—K11].
The implementation of a similar strategy for the actual EiV equations requires some

fundamental modifications. We rely on the same quantities 15 Q1(t), Q1305) introduced
in (11). The major departure from the linear theory of Prop. 2 is that the vectorfields
TO,Q,S,K0 are now themselves unknown and have to be constructed together with
our spaceitime. This is due to the difficulty (d). Indeed, if the asymptotic behaviour
of the causal structure of the spacetime we construct would have been trivial we
could have chosen as vectorfields TU,SZ,S,K0 the ones given to us in M3+1. As it
stands, due to the mass term which appears in the Schwarzschild part of an (S.A.F.)
initial data set, has the long range effect of changing the asymptotic position of the
null geodesic cones relative to the maximal foliation. They are expected to diverge
logarithmically from their corresponding position in flat spaccrtime. In addition to
this their asymptotic shear16 differs drastically from that in the Minkowski space—
time. This difference reflects the presence of gravitational radiation in any nontrivial
perturbation of the Minkowski space—time. To take this effect into account we rely
heavily on our optical function u and construct the vectorfields TMQ, 5,1{0 based on
its properties”. The construction of u itself is very elaborate and requires a systematic
study of the geometry of null hypersurfaces.

In linear theory the time derivatives of the Q1, Q2 are zero. In the case of the (EeV)
equations they give rise to cubic error18 terms which depend linearly on the traceless
part of the deformation tensors of K0, T, S, Q , and quadratic with respect to R and its
covariant and Lie derivatives in the direction of T, S, Q. The crucial point of our overall
strategy is to control the time integral of these error terms. This depends on the one

15 Because of the difficulty (c) we have to avoid the use of Q0(t) which would be infinite
at t = 0.
16 the traceless part of their null second fundamental form
17 and also those of the maximal foliation induced by the time function t.
'8 generated each time we commute the Bianchi Identities with a one of the veetorfields
used in the definition of (2t
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band on the asymptotic behaviour of all components of R and its covariant derivatives,
which are themselves controlled by the basic quantities Q1,Q2. On the other hand
it depends on the asymptotic behavior of the deformation tensors of our vectorfields,
and finally, due to the general covariance of the equations, on the cancellations of
the “worst possible” cubic terms. It is well known that arbitrary quadratic nonlinear
perturbations of the scalar wave equation, even when derivable from a. Lagrangean,
could lead to formation of singularities unless a certain structural condition, which we
have called the Null condition, is satisfied (see [K12], anad [Chl], [K12]). It turns out
that the appropriate, tensorial version of this structural condition is satisfied by the
Einstein equations. Roughly speaking one could say that the troublesome nonlinear
terms, which could have led to formation of singularities, are in fact excluded due to
to the covariance and algebraic properties19 of the Einstein equations.

Putting together all the elements discussed above requires an elaborate bootstrap
argument based on the method of continuity. In the end we show that Q|,Q2 can
never become large, it they are sufficiently small at t : 0. The local existence theorem
then guarantees that we can extend our spacertime indefinitely.

Finally it remains to note that our work has many important conclusions. Far from
beeing an abstract proof of existence it provides precise information on the asymptotic
nature of gravitational radiation, 50a of our conclusions confirm the nonwigurous
results20 obtained by Bondi, Sachs, Pcnrose etc.

Some of them are however new. One of these has lead D. Christodoulou to a real
experimental prediction. In [C114] he shows that gravitational waves generated by
astronomical sources can have a nonlinear effect on laser interferomctcr detectors on
Earth. This effect is shown to be of the same order of magnitude as the linear effects
upon which all previous efforts to detect gravitational waves were based. Moreover
the nonlinear effect is shown to produce a permanent displacement of test masses after
the passage of a wave. it can thus alter significantly the startegy upon which the
experimentalists plan to build their future detectors.

19 These basic algebraic properties of the Einstein equations. which allow us to prove
the above stated global existence result, are in sharp contrast with the nonlinear hy-
perbolic equations of classical continuum mechanics. Indeed the equation of Nonlinear
Elasticity [John] and of Compressible fluids [Si], in four space and time dimensions,
form singularities even for arbitrary small initial conditions.
20 I want to point out however that our results are inconsistent with the assumption,
made by Penrose [Pei], [PeZ], concerning the smoothness of null infinity. Our results
ShOW weaker “peeling”7 than those implied by the Penrose requirement. It remains
questionable whether there are any smooth initial conditions which lead to Ricci flat
space—times for which the Penrose requirement is valid.
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Canonical quantum gravity

Karel V. Kuchaf‘
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Salt Lake City, Utah 841127 U.S.A.

Abstract. This is a review of the aspirations and disappointments of the
canonical quantization of geometry. 1 compare the two Chief ways of looking
at canonical gravity, geometrodynamics and connection dynamics. 1 capture
as much of the classical theory as i can by pictorial visualization. Algebraic
aspects dominate my description of the quantization program. I address the
problem ofobservables. The reader is encouraged to follow the broad outlines
and not worry about the technical details.

CLASSICAL CANONICAL GRAVITY

Dynamical laws and instantaneous laws

()ne of the main preoccupations of classical physics has been finding the laws governing
physical data. One of the oldest schemes of quantization has been to subject. such data
to canonical commutation relations. I am going to review where this program leads us
when it is applied to geometry.

Classical physics deals with two kinds of laws: dynamical laws, and instantaneous
laws. The discovery of dynamical laws started the Newtonian revolution. The first
instantaneous law was found by Gauss: at any instant of time, the divergence of the
electric field is determined by the distribution of charges. In empty space, the instanta—
neous electric field is divergence—free.

Theorema egregium

Without knowing it7 and without most of us viewing it this way, Gauss also came across
the fundamental instantaneous law of general relativity: the Hamiltonian constraint.
This constraint is a simple reinterpretation of the famous result Gauss obtained when
studying curved surfaces embedded in a flat Euclidean space [1].

To start with, Gauss drew the key distinction between intrinsic and extrinsic prop-
erties of a surface. The intrinsic properties are not Changed by bending the surface
without stretching; the extrinsic ones are. The basic intrinsic property of a surface

((3) 1993 IOP Publishing Ltd

Paper presented at the 13m Int. Conf. on General Relativity and Gravitation 119
Cordoba, Argentina, 1992: Part I, Plenary Lectures

Canonical quantum gravity

Karel V. Kuchaf‘

Department of Physics, University of Utah7
Salt Lake City, Utah 841127 U.S.A.

Abstract. This is a review of the aspirations and disappointments of the
canonical quantization of geometry. 1 compare the two Chief ways of looking
at canonical gravity, geometrodynamics and connection dynamics. 1 capture
as much of the classical theory as i can by pictorial visualization. Algebraic
aspects dominate my description of the quantization program. I address the
problem ofobservables. The reader is encouraged to follow the broad outlines
and not worry about the technical details.

CLASSICAL CANONICAL GRAVITY

Dynamical laws and instantaneous laws

()ne of the main preoccupations of classical physics has been finding the laws governing
physical data. One of the oldest schemes of quantization has been to subject. such data
to canonical commutation relations. I am going to review where this program leads us
when it is applied to geometry.

Classical physics deals with two kinds of laws: dynamical laws, and instantaneous
laws. The discovery of dynamical laws started the Newtonian revolution. The first
instantaneous law was found by Gauss: at any instant of time, the divergence of the
electric field is determined by the distribution of charges. In empty space, the instanta—
neous electric field is divergence—free.

Theorema egregium

Without knowing it7 and without most of us viewing it this way, Gauss also came across
the fundamental instantaneous law of general relativity: the Hamiltonian constraint.
This constraint is a simple reinterpretation of the famous result Gauss obtained when
studying curved surfaces embedded in a flat Euclidean space [1].

To start with, Gauss drew the key distinction between intrinsic and extrinsic prop-
erties of a surface. The intrinsic properties are not Changed by bending the surface
without stretching; the extrinsic ones are. The basic intrinsic property of a surface
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Figure 1. Intrinsic metric and extrinsic curvature.

is its intrinsic metric; the basic extrinsic property, its extrinsic curvature. These are
highlighted on the umbrellas of Figure 1. The network of distances from the tip of the
umbrella along the ribs is encapsulated by the familiar metric tensor

ds?‘ = gab(z)dr”dmb. (1)

The ribs lie in the planes passing through the shaft of the umbrella; they represent its
normal sections. Each normal section has a radius of curvature, r, whose reciprocal
value7 k, is the curvature of the normal section. The extrinsic curvature, Kab, of the
surface is an inventory of the curvatures of all its normal sections:

r‘1 : k : Kab(:r)dx“dxb / dsz. (2)

From the metric, one can derive other intrinsic objects: lengths, angles, and areas.
Geodesics are completely determined by the metric. So is the parallel transport of a
tangent vector: a vector is parallel transported from a point to a neighboring point if
it keeps its angle with the geodesic segment connecting the points. In its turn, parallel
transport leads to the concept of scalar (or Gaussian) curvature (Figure 2):

Take a curve enclosing the tip of the umbrella. Mark where you want to START,
take the tangent vector to the curve, and parallel transport it along the curve back to
the starting point. On the way, the tangent vector (bold) rotates clockwise with respect
to the parallel transported vector (double arrow). If the umbrella were a plane (I would
not like to use such an umbrella on a rainy day), the tangent vector would run all around
the clock. On the bulging umbrella of Figure 2, it does not quite make it; it still has an
angle 6w to go. As the curve is drawn tighter and tighter around the tip, the deficit angle
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Figure 2. Scalar curvature.

60.; becomes proportional to the surface area 62 surrounded by the curve. The ratio of
these two quantities defines the scalar curvature:

6w 2 §R6Z. (3)
(Gauss did not obtain the scalar curvature this way; by brute force, he expressed it as a
function of the metric and its first and second derivatives: R[g].)

Let the ribs again represent normal sections. Of all the ribs, one has the gentlest
bending, [mum and another has the steepest bending, kMAX. Which rib is which, how
large is kMAX, and how small is kMIN, depends on the wind. On a quiet day, all ribs
have the same curvature kMAX : kMIN. The values kMAX and kMIN are called principal
curvatures.

Because the principal curvatures depend on the wind, they are clearly extrinsic
rather than intrinsic properties of an umbrella. However, their product, called the total
curvature, remains always the same. Indeed, it is proportional to the scalar curvature
which, as we have seen, is an intrinsic property of the umbrella:

R = 2 kMAX'kMIN
scalar curvature = 2 total curvature. (4).

Gauss has found many remarkable theorems in his life, but this one he himself regarded
to be remarkable: he named the result (4) theorema egregium.

By looking at the surface of a single umbrella, we cannot be sure if it is worn by
an upright old man walking across Great Plains, or if it protects a crooked old goblin
wedged into a curved space. However, if the intrinsic metric and extrinsic curvature of all
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possible umbrellas are connected by Gauss’ theorema egregium, we can safely conclude
that the space in which they are embedded is flat and Euclidean. The flatness of space
is thereby guaranteed by the match of certain intrinsic and extrinsic properties of all
embedded surfaces.

Still, what has all of this to do with the assertion that dynamics is a consequence of
instantaneous laws? There are no instants and hence no dynamics in a Euclidean space.
To talk about instants, space must be Lorentzian. In a flat three—dimensional Lorentzian
spacetime the theorema egregium still holds. The only thing we need to change is the
sign. On every spacelike surface,

R = —2 kMAx ' kMIN. (Lorentzian) (5)

And, conversely, if the Lorentzian theorema egregium (5) holds on every spacelike surface
in a three-dimensional Lorentzian spacetime, we can be sure that the spacetime is flat.

Now, the Lorentzian theorema egregium is an instantaneous law. On the other
hand, the statement that spacetime is flat is a dynamical law, albeit a very simple
dynamical law, about geometry. Roughly speaking, it tells us that there is no dynamics:
spacetime remains flat all the time. This argument illustrates how an instantaneous law,
the Lorentzian theorema egregium, can lead to a dynamical law, that the spacetime is
flat.

General relativity, I remember someone saying, does not confine us to Euclidean
barracks. Even if the spacetime is empty (which, for simplicity, I shall assume for the
rest of my lecture), its dynamics is quite rich. The ripples of gravitational radiation
can travel around, interfere, attract each other, and amplify. They can hold themselves
together in a gravitational geon. Part of the gravitational radiation can leak out, part
of it may collapse and form a black hole. I find it quite surprising that all this dynamics
is encoded in an almost trivial generalization of Gauss7 tlieorema egregium:

The intrinsic geometry and the extrinsic curvature of a threerdimensional hyper~
surface embedded in a fouredimensional Riemannian spacetime have the same definition
and the same geometric significance as those of a two-dimensional surface in a three—
dimensional flat space. However, instead of two principal sections there are three, with
principal (extremal) curvatures k1, kg, and k3. One cannot define the total curvature T
as the product of a selected couple of principal curvatures. As a true egalitarian, one
takes

T:k1k2+klk3+k2k3. (6)

Similarly, there is no single surface on which one can determine the deficit angle 6w
by parallel transporting the tangent vector along a curve. Instead, one chooses three
perpendicular surfaces passing through the tip of a three-dimensional umbrella, and
determines the three deficit angles 604, ($0.22, and 6013. The scalar curvature R has the
geometric meaning 1 . a 62 éfl . (7,

7' 621 622 623
Compare now the total curvature (6) and the scalar curvature (7) of a hypersurface in
an arbitrary Ricci—flat spacetime. Behold, the theorema egregium still holds:

_ — (Lorentzian) r)
R W { + (Euclidean) T' (8)
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Inversely, if the scalar curvature is related to the total curvature by Eq.(8) on any
spacelike hypersurface7 the spacetime is necessarily Ricci-fiat. Therefore, the statement
that the theorema egregium holds at any instant is entirely equivalent to the Einstein
law of gravitation in empty space!

I am sorry that the continuation of my narrative requires some juggling of indices.
The total curvature (6) is a quadratic combination of the three principal curvatures.
Because each of these is a linear function of the extrinsic curvature (2), the total curvature
can be expressed as a quadratic form of the extrinsic curvature:

T 2 {KM GM 1rd,. (9)
The coefficient

(1d _ 1 ac bri ad be ( ab Cd0 —§(gg +9.0 —Zgr1) (10)
is called the supermctric. Symmetric pairs of covariant indices can be raised by the
supermetric, and symmetric pairs of contravariant indices lowered by its inverse, Gubcd-
The contravariant version of the extrinsic curvature is

p“ :: Gabflijed. (11)
The total curvature is a lld’(ll‘(1l;l(l fOl'Ill Of ab and t [C Lorentziai theorema. 6 re lllllp 7
(8) assumes the form 1

”(20) 1: MIL) - GM 9) - 11(1) e 3(1'; 9] = 0- (12)
The theorema egregium is the most fundamental instantaneous law of Einstein’s

theory of gravitation. Gauss did not realize that the theory of curved surfaces in a
flat Euclidean space (and of curved hypersurfaces in a Ricci—flat spacetime) is subject
to yet another instantaneous law, closely resembling the law which he had found for
electricity. As shown by Codazzi [2]. the covariant divergence of the extrinsic curvature
pab vanishes: 2

Ha :2 npab(at) : 0. (l3)

Canonical geometrodynamics

The stage is now ready for stating (not proving, nor even properly explaining) the sea
change which the theorema egregium (l2) and the Codazzi law (13) suffered a century
later. Working from quite an opposite direction of variational principles and Hamiltonian
dynamics, Dirac [3] and Arnowitt, Deser, and Misner [4] have shown that the intrinsic
metric gab and the (densitised) extrinsic curvature pub are canonically conjugate to each
other. In canonical theory7 the instantaneous laws (12) and (13) are called the Hamil—
tonian and diffeomorphism constraints. They start playing a double role. On one hand,
they restrict the canonical data. On the other hand, as dynamical variables on the phase
space, they become capable of evolving the canonical data. The Poisson bracket of the
data with Ha(x) generates their change by a Lie derivative in the direction along the

1 The notation R(z; g] emphasizes that R is a function of x and a functional of g.
2 I write 2 whenever I want to sweep a numerical factor under the rug.
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hypersurface. Similarly, the Poisson bracket with H(:c) generates the change of the data
under a normal displacement of the hypersurface. These two processes enable us to or-
ganize the embeddings by displacements which deform one embedding into another, and
to correlate the data which the embeddings carry. Instead of checking the Einstein law
by criss-crossing the spacetime by all possible hypersurfaces, we obtain it by an orderly
Hamiltonian evolution which smoothly deforms the original hypersurface. The change
of the canonical data by the generators Ha(.r) and H(.r), together with the statement
that the generators, once they generated the change, are constrained to vanish, is the
Einstein law. This is the new strange role of the instantaneous laws: they become the
agents of dynamics.

The change generated by H,,(.r) is induced by a spatial diffeomorphism DiffE on
a given hypersurface. This property gave the Codazzi constraint its new name W the
diffcomorphism constraint. The constraint ensures that the theory is invariant under
DiITE. In other words, canonical geometrodynamics does not depend on the intrinsic
metric and the extrinsic curvature, but only on such combinations of these variables
which are unaffected by spatial diffeomorphisms, i.e., only on the intrinsic and extrinsic
geometries. There are fewer physical variables than the symbols which meet the eye.

This message can also be read backwards: by making the theory dependent on more
variables, one can make it invariant, with respect to a Wider class of transformations. A
good example of this process is triad dynamics.

Triad dynamics

Let 11s choose as our basic variables a triad Ef, i : 1,2,3, of orthonormal vectors [5].
These determine the intrinsic metric,

gab : 5iJEfEf, (14)

but the metric determines the triad only up to an medependent 80(3) rotation. The
rotation group 80(3) becomes a gauge group of the Einstein theory. Canonical analysis
reveals that the projected extrinsic curvature

7 Km) : —K,,(x)E,‘?6fi (15)

is the canonical coordinate whose conjugate momentum is the (densitised) triad ET. The
30(3) rotations of the canonical variables are generated by the dynamical variable
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G',(:I:) is constrained to vanish. The rotation constraint (16) ensures that the extrinsic
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Any vector, u“, can be characterized by its internal components, u', in the or-
thonormal basis E,“ :

ua = uE, (17)
Let us parallel transport the vector u“ from x to w + drc; we get the double-arrow vector
of Figure 3. There is a basis, Ef‘(rc + dr), sitting at m + d3: . In this basis, I draw a
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hypersurface. Similarly, the Poisson bracket with H(:c) generates the change of the data
under a normal displacement of the hypersurface. These two processes enable us to or-
ganize the embeddings by displacements which deform one embedding into another, and
to correlate the data which the embeddings carry. Instead of checking the Einstein law
by criss-crossing the spacetime by all possible hypersurfaces, we obtain it by an orderly
Hamiltonian evolution which smoothly deforms the original hypersurface. The change
of the canonical data by the generators Ha(.r) and H(.r), together with the statement
that the generators, once they generated the change, are constrained to vanish, is the
Einstein law. This is the new strange role of the instantaneous laws: they become the
agents of dynamics.

The change generated by H,,(.r) is induced by a spatial diffeomorphism DiffE on
a given hypersurface. This property gave the Codazzi constraint its new name W the
diffcomorphism constraint. The constraint ensures that the theory is invariant under
DiITE. In other words, canonical geometrodynamics does not depend on the intrinsic
metric and the extrinsic curvature, but only on such combinations of these variables
which are unaffected by spatial diffeomorphisms, i.e., only on the intrinsic and extrinsic
geometries. There are fewer physical variables than the symbols which meet the eye.

This message can also be read backwards: by making the theory dependent on more
variables, one can make it invariant, with respect to a Wider class of transformations. A
good example of this process is triad dynamics.
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REPRODUCED VECTOR

Figure 3. The 80(3) parallel transport.

vector which has the same components, u‘, as the original vector had at 1'. I call it the
reproduced vector. To turn the reproduced vector into the parallel transported vector, I
must rotate its internal components by an angle 6w’. This angle is a linear function of
the displacement dx“:

a» : —r;dx“. (18)
The coefficient Ff, tells us how the parallel transport of a vector affects its internal
components. It can be expressed in terms of the triad Ef($) and its first derivatives. It
is called the 30(3) connection.

As usual, the curvature tensor of a connection is defined by the parallel transport
of a vector u along a small parallelogram with the edges dr and 6:6 (Figure 4). The
parallel transported vector (shown as double arrow) does not return back to its original
position (shown in bold). To turn the original vector into the parallel transported vector,
we must subject its internal components to a rotation:

6M = —Rabldma6xb. (19)

The coefficient Rub“ is the curvature tensor of the 80(3) connection. It can be expressed
in terms of the basis vectors E? , and their first and second derivatives.

The curvature tensor satisfies the cyclic identity. Its geometric significance istil-
lustrated on the right in Figure 4. Take a small box with edges u, v and w, Parallel
transport 11) along the boundary of the face u, v. The parallel transported vector does
not coincide with w; it differs from it by 6w. Repeat this procedure for the remaining two
vectors, and obtain the differences 6n and 6w. While none of them in general vanishes,
their sum is identically equal to zero: 61!. + 61) + 6w E 0.
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Figure 4. The 80(3) curvature tensor and the box identity.

It is easy to write down what this geometric construction yields for a small box
whose edges lie in the direction of the orthonormal vectors E? . We obtain

Rab‘Ef’ E 0. (20)

The 80(3) curvature tensor Rab‘IE] necessarily satisfies the box identity (20).
Once we know the curvature tensor, we can determine the curvature scalar as in

Eq.(7). We take three mutually perpendicular curves, each of them enclosing a unit
area, parallel transport their tangent vectors, determine the deficit angles, and add them
together. In particular, we can choose for the curves the parallelograms spanned by the
pairs of the orthonormal vectors Ef. In this way we learn that

RlE] : 4m efl'kEfEZ. (21)

Algebraically, R[E] can be obtained by substituting the metric (14) into R[g].
We can now take the Hamiltonian constraint (12) and express it in terms of the

new canonical variables —K; and E51. By using Eqs.(9)—(10) and (14), we cast the total
curvature into a form in which it is quadratic both in —K: and in Ef. The curvature
scalar is a concomitant (21) of the triad E? . As a result, H is set forth as a functional of
—K: and Ef‘. The diffeomorphism constraint can be handled in the same way. Neither
of the constraints looks any simpler in the new variables than it did in the old ones.

In addition to the old constraints, we have the rotation constraint (16). More
variables call for more constraints. There are nine entries in the triad Ef, while there
are only six entries in the symmetric metric gab- Similarly, there are nine entries in
—K‘ while there are only six in the extrinsic curvature Kat. However, the physics
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Figure 5. New parallel transport.

depends only on the old set of variables, gab and Kub. The triad E? enters into the
Hamiltonian and diffeomorphism constraints only through the combination (l4), and the
extrinsic curvature given by Eq.(l5) is forced to be symmetric by the rotation constraint
(16). The surplus dynamics — rotations of the triad generated by the constraint (16)
7 is expendable. In the end, only such quantities which are unaffected by rotations
(like gab and Kab) physically matter. We can return to them, forget about the rotation
constraint, and retrieve geometrodynamics from triad dynamics. To gain more invariance
by introducing more variables is not a big deal.

Connection dynamics

To simplify the constraints, one must go one step beyond introducing the triads: one must
modify the parallel transport. Figure 5 shows a three-dimensional umbrella protecting us
from a storm of gravitational waves in a four-dimensional Euclidean Ricci-flat spacetime.
Take a tangent vector to the umbrella (shown as a double arrow) and parallel transport it
from the tip along one of the principal sections. The transported vector is again shown
as a double arrow. Viewed from the center of curvature, the are da; along which the
vector is transported subtends the angle kdw. Give now the parallel transported vector
an additional twist by the angle kdm about the principal direction. The position of the
vector after the twist defines the new parallel transport.

The twist does not look quite right in the two-dimensional sketch of the three-
dimensional umbrella. It seems that to rotate the vector about the rib we must rotate
the whole tangent plane, and destroy thereby its tangential character. To see what
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is happening, we must look at the tangent plane through one of the most powerful
instruments ever invented by a theoretical physicist: John A. Wheeler’s dimensional
magnifying glass [6]. Under the glass, the plane thickens into what it actually is, a three—
dimensional tangent space, and the twist moves the vector along a cone in this space
into its new position. The normal to the umbrella stays fixed because the twist takes
place in the plane perpendicular to the principal section.

To transport a vector in an arbitrary direction, we must decompose the displace-
ment drr into the three principal directions and perform the appropriate twists one after
another. The new parallel transport amounts to a single rotation (18) of the reproduced
vector. The angle of rotation is given by a. new 80(3) connection [7, 8]

A}, : l“; i K; . (Euclidean) (22)

From the canonical standpoint, it is remarkable that Eq.(22) represents a canonical
transtormation: the new 80(3) connection A; is a coordinate canonically conjugate to
the momentum Ff. (To see that A; is conjugate to E,” is trivial, because —K:, is
conjugate to Ef. It is more dilhcult to prove that Aug?) can serve as a field coordinate,
i.e., that it has a vanishing Poisson bracket with Ai(.7:’).) But why should we ever want
to perform the canonical transformation (22)? (711i prodest?

The new parallel transport leads, by Figure 4 and iq.(19), to the new curvature
tensor [$1,114]. In terms of this tensor, the instantaneous laws of Euclidean lticciflat
spacetimes take a remarkably simple form. The new curvature tensor no longer satisfies
the box identity (20). Instead, the expression Edd/9'? yields the supermomentum 3

11, g uni/us). (23)
The box equation (20) still holds, but no longer as an identity. It is now equivalent
to the Codazzi law (13) in a. Riccietlat spacetime. liven more remarkably, the H of
(lauss’ theorema egregium turns out to be the scalar curvature (21) of the new parallel
transport:

11 2 111,111] gm; Ez. (24)
These striking Facts were discovered by Ashtekar [8]. It is quite tempting to call
Eq.(2/l) Ashtekar’s theorema egregium: In a Ricci-flat spacetime, the scalar curvature of
Ashtekar’s connection A vanishes on every hypersurface.

The new connection A; defines the new covariant derivative AD“ acting on internal
indices. In terms of this derivative, the rotation generator (l6) takes the form

Gi : ADa E,“ (25)
(Because E1? is a vector density, AD, does not need to act on spatial indices to produce
a. scalar density.)

These are the good news. Now, for the bad news. The transition from a Euclidean
to a Lorentzian spacetime enforces a change of sign in the Gauss theorema egregium.
The Ashtekar theorema egregium can absorb this change of sign only at the price of
introducing a complex 80(3) connection:

A; = F; — 7‘.Kf,. (Lorentzian) (26)
To handle this complication in canonical quantum gravity is not entirely trivial.

3 This time, 2 sweeps under the rug not only numerical factors, but also the fact that the rotation
constraint is used in rearranging the diffeomorphism constraint and the Hamiltonian constraint.
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Dialogue concerning the two chief systems of canonical gravity:
geometrodynamics and connection dynamics

Geometrodynamics and connection dynamics are the two chief forms of canonical gravity.
Let us pause and compare them before proceeding with quantization. I suppress the
turmoil of indices and highlight the two structures in a table. Let

. denote contraction in spatial indices7
0 denote contraction in spatial indices and internal indices,
” denote internal dualization,

and the details take care of themselves. Then

GEOMETRODYNAMICS CONNECTION DYNAMICS

Coordinates Momenta Coordinates Momenta

g p CANONICAL A E
VARIABLES

Intrinsic Extrinsic SO(3) Triad
Inetric curvature connection

(mixed) (intrinsic)

GENERATORS OF

p - 0(9) -p 7 Mg] I EVOLUTION E o *F[A] o E

9V ~p Diff): F[A] o E

None ROTATIONS AD - E

A comparison of the two columnes brings forward a number of simple observations:

| . Variables and constraints. Geometrodynamics works with fewer variables and fewer
constraints than connection dynamics. The geometrodynamical variables are in-
variant under triad rotations.

2. Connection with gauge theories. The rotation constraint makes connection dy-
namics resemble an 80(3) Yang-Mills theory. In geometrodynamics, the rotation
constraint is eliminated and one works with SO(3)-invariant canonical variables.
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Dimension. I discussed the constraints in 3 + 1 dimensions. Geometrodynamics
remains virtually the same in any dimension it + l. n 2 2. The 80(3) connection
dynamics is intimately adapted to a three-dimensional space and it is not easily
generalized to n > 3.

Positivity restrictions. The Cauchy problem works only if the hypersurfaces are
spacelike, i.e.7 if the induced metric g is positive definite. In geometrodynamics,
this puts a restriction on the domain of the configuration space. In connection
dynamics, the metric is automatically positive definite, as long as the triad is 110n—
degenerate. However> even for degenerate triads (leading to degenerate metrics)
the formalism seems to make sense, and it is viable to lift the nowdegeneracy
restriction.

Structme of ilie Hamiltonian constraint. In geometrodynamics, [l is a quadratic
function of the momentum p. The supermeiric (1(9) is ultralocal, and there is a.
local potential term Rig]. In connection dynamics, the potential is absorbed into
the quadratic term; [I is a quadratic form of the momentum E. llowever7 the
supermetric 'Fl/l] is no longer ultralocal. but merely local.

I’olyiioniialili/ of constraints. In connection dynamics, all constraints are low—
deg‘rce polynomials in the canonical variables A and 12'. It was originally claimed
that geomctrodynamical constraints are non-polynomial in the canonical variables
g and p, but a more careful look [9] reveals that a simple scaling by a power of
det(_rj) also makes them polynomial However, they are polynomials of a rather
high degree.

Reality conditions. (leometrodynamics works with real canonical variables on a real
phase space. We have seen that in a Lorentzian spacetime the Ashtekar variable A
is necessarily complex. This forces one to work with complex canonical variables,
either on a complex or a real phase space. A pair .4 and E of canonical variables
that satisfy the constraints define a real liicci—llat spacetimc only if they satisfy
the reality conditions

l'J— lo':0, A+A: Ill/3']. (27)
These conditions are non—polynomial in 19'. People replace [10] the reality conditions
(27) by somewhat weaker conditions that are polynomial. A simpler procedure is
to scale the second condition (‘27) by [det(g)l2 which makes it polynomial in E and
A. Whichever way one proceeds7 the polynomial reality conditions are of a rather
high degree.

In View of these observations, which scheme is simpler, geometrodynamics or con-
nection dynamics? Simplicity, of course, is in the eye of the beholder, and my assessment
is quite personal.

1.

2.

I believe that, on one hand7 one should not make too much fuss about the count of
the variables and constraints and, on the other hand7 one should not overemphasize
the resemblance between connection dynamics and the 80(3) gauge theories.

The 80(3) invariance is a simple consequence of introducing the redundant vari-
ables. The ease with which such variables are eliminated and connection dynamics
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reduced back to geometrodynamics may be an indication that the achieved 80(3)
invariance is not that deep. However, one should not overlook that the mixing of
the extrinsic and intrinsic variables brings in a true simplification of the constraints
prior to the imposition of the reality conditions.

3. Our space is threedimensional and a theory which makes an effective use of this
fact is not to be blamed. I view the simplifications which can be achieved only in
three dimensions speaking for rather than against connection dynamics.

4,, The positivity restrictions on the metric are quite a nuisance in quantum theory.
The possibility of lifting the non-degeneracy condition on the triad without en-
dangering the connection dynamics is a real advantage. However, when listing
the achievements of quantum connection dynamics, one should bear in mind that
many of these correspond to situations in which the triad and hence the metric are
degenerate.

5. Trading an ultralocal supcrmetric and a local potential term for a local supermetric
without any potential is an interesting quid pro quo. Whether such a trade»oil‘ pays
off in quantum theory depends quite heavily on whether it is easier or not to turn
the new Hamiltonian constraint into a well»deiined operator.

6. A lowrdegree polynomiality is certainly an asset in quantizing a classical theory.
In this respect, the constraints of connection dynamics are definitely simpler than
the geometrodynamical ones.

7. One should bear in mind, however, that connection dynamics is sooner or later
confronted with the task of implementing the reality conditions. These conditions
are unseemly, being polynomials of such a high degree as the geometrodynamical
constraints. The simplifications which the connection dynamics achieves may thus
be a mere temporary advantage.

The Galilean overtones of my section heading are meant to go beyond a mere joke.
Eliminating variables or constraints is like getting rid of epicyclcs. The presence of a
potential term may be aesthetically repugnant like the use of an equant. Nevertheless, the
fact remains that geometrodynamics and connection dynamics are entirely equivalent at
the classical level, just as the Ptolemaic and Copernican systems are entirely equivalent
at the kinematical level. The Copernican system may be aesthetically more pleasing,
but its real power emerges only when one starts asking dynamical questions. Similarly,
the real power of connection dynamics may emerge only when one starts quantizing the
classical theory. This is the task we should now discuss.

CONSTRAINT QUANTIZATION: A PROGRAM

Canonical gravity is a system whose dynamics is entirely generated by constraints. Its
quantization and interpretation presents some special difficulties. The ground rules for
quantizing constrained systems were laid by Dirac [3] and refined over the years. Every
major review of canonical quantum gravity [4, 11, 12] attempted to list a sequence of
steps expected to lead to a satisfactory theory. People more or less agree about what
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these steps are, but they do not know how to implement them: by listing the steps,
they present a mere quantization program. I shall picture seven steps of a quantization
program as seven gateways on a road paved with good intentions.

1. Fundamental variables

The first step is the selection of fundamental variables. These are classical dynamical
variables that are to be turned into operators whose commutator algebra replicates the
classical Poisson algebra. The fundamental variables are expected to span a vector space
V closed under the Poisson brackets { , }. The space V should be complete in the sense
that. any dynamical variable F can be approximated by an element of the free algebra.
A over V, i.e., expressed as a sum of products of the elements of V.

In geometrodynamics, V is taken to be a real vector space spanned by g, p, and the
unit dynamical variable 1. I11 connection dynamics, V is taken to be a complex vector
space spanned by A, E, and I. The elements V E V are expected to be mapped into
operators V E V in such a way that

v3={i/,,V2} :» 1732—ilI/1,Vzl- (28)
In geometrodynamics, the metric g should be positive definite. The positivity

conditions cannot be written as relations in V, and their imposition is quite tricky [I3].
Connection dynamics is fully equivalent. to geometrodynamics only for non—degenerate
triads E. People working in connection dynamics propose not to impose the condition
that E be non-degenerate.

Connection dynamics has a difficulty which does not exists in geometrodynamics:
not all elements of the complex vector space V describe a real spacetime. Ultimately,
one must impose the reality conditions (27). However, V is not closed under the complex
conjugation. The reality conditions thus cannot be formulated in V (the old 30(3) con—
nection T‘(E) does not lie in V). It was proposed [12, 14] that at the level of representing
the fundamental variables by operators one should simply forget about the reality con
ditions. These are to be taken care of much later, during the construction of a Hilbert
space. Conforming to this View, I return to the issue of reality conditions at the last of
my gates.

2. Dynamical variables (including constraints)

In the next step, one must decide on how to turn an arbitrary dynamical variable F[g, p] E
A or F[A, E] E A into an operator. Such variables typically do not lie in V, but they can
be approximated by sums of products of the elements of V. Van Hove [15] has proved
that it is impossible to turn dynamical variables into operators in such a way that Eq.(28)
holds for all of them. Without the guiding principle (28), the quantization of dynamical
variables is subject to factor-ordering ambiguities. It is popular to dismiss these as ‘mere
quantum-mechanical corrections”. I do not share this view. Unless one knows how to
factor order significant dynamical variables, one really does not know how to construct
quantum theory. In a sense, the right factor ordering is the quantum theory. If one does
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not set any rules about factor ordering, one can turn a classical variable F(Q,P) into
any quantum operator one pleases:

Let F(Q,P) be a classical dynamical variable, and C(Q, P) any other dynamical
variable (whose dimension is that of F divided by the action). Fix some factor ordering
of 13' = F(Q, 15) and G = C(Q, P), and define the quantum variable

FH=F—HQPM§=F+G. mm
The quantum variables F’ and F have the same classical limit, namely, F(Q,P), and
yet they differ by an arbitrary operator 6' This is what a ‘mere’ factor ordering can do.

A particular case of dynamical variables in canonical gravity are the constraints.
One should turn them into operators H(.r), Hatf) (and possibly (1(a)). In field theory,
this presents a regularization problem. Moreover, in the next step of the quantization
procedure one wants to impose the constraints on the states. This poses a consistency
problem. Both of these problems are troublesome, but they at least impose severe
restrictions on the factor ordering. On the other hand, very little is known and, even
more remarkably, said about what to do with other dynamical variables.

3. Representation space J:

The operators representing the dynamical variables are expected to act on a space of
states. One way of choosing this space is to rely on the Schrodinger representation:
the canonically conjugarc pairs of fundamental variables are taken as multiplication and
differentiation operators acting on functionals of the configuration variables. Thus, in
geometrodynamics .7: is taken to be a complex vector space whose elements are the
functionals \ll[g] of the metric. In connection dynamics, the elements of .7: are the
functionals \IJ[A] of the Ashtekar connection. ‘1

There is an important difference between the Schrodinger representation for un—
constrained systems and the Schrodinger representation in canonical gravity: the repre—
sentation space .7: is not necessarily assumed to be a Hilbert space, and (real) dynamical
variables are not required to be represented by selfeadjoint operators [17]. Physically,
the Hilbert space structure is needed to calculate the expectation Values of observables.
However, prior to the imposition of constraints, the states in .77 do not necessarily de—
scribe physical states, and it does not have a good meaning to ask what is the expectation
value of an observable in such a state.

The rejection of the Hilbert space structure liberates us from a straitjacket that
often leads to inconsistencies [18], but it unfortunately leads to a loss of control over
mathematical objects. I shall later comment on both of these aspects.

4. Space of solutions

The key idea of the Dirac constraint quantization is to turn the constraints, which I shall
now collectively call H, into operators (gate 2), and impose them as restrictions on the
states:

Hw=0. mm
4 The connection representation KPH] is formally related to the loop representation. This is discussed

by Smolin in this volume, and in a recent review by Rovelli [16].
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One surmises that only such states \11 which solve the constraints can be physical. All
physics is to be done on the space .70 of states which solve Eq.(30).

A number of remarks is appropriate. First of all, the quantum constraints should
not limit the quantum states more than the classical constraints limit the classical states:
they should not beget other constraints by commutation. This imposes stringent require
ments on the factor ordering of the constraint functions. One can see on simple models
that these requirements virtually dictate the factor ordering, and that to satisfy them
the constraints cannot and should not be represented by self—adjoint operators on .7:
[18]. In geometrodynamics (and in connection dynamics), a consistent factor ordering of
constraints is a notorious unsolved problem. The task is seriously hampered by the field—
theoret.ical aspects of canonical gravity, which call for regularization of the constraint
operators. 5

rl‘he absence of a Hilbert space structure on f helps us to make the constraints
consistent. However, it also makes the quantization badly dependent on the choice of
representation. One can see the problem already when solving the Schrodinger equation
of a simple unconstrained system like an anharmonic oscillator [26],

2., : it” + 322 + [Qt (31)
rl‘he solution of the Schrodinger equation calls for finding the eigenfunctions of the en—
ergy operator (31). In the Q?representation, the eigenfunction equation is a differential
equation of the second order. ln the P7representation, it is a differential equation of
the fourth order. As a differential equation, the first equation has fewer solutions than
the second equation. The mismatch is removed by requiring that the solutions we seek
be square integrable (in Q and in 1)), i.e., belong to the Hilbert space based on the
Schrodinger norm.

When, as in canonical gravity, we are unwilling to impose a Hilbertrspace strue
turc on 7:, the size of .7: depends on the choice of rcpresentatimi. Thus, in principle,
the solution space mm in geometrodynamics is different from the solution space \l/[p].
Similarly, the connection representation \1/[A] is not necessarily equivalent to the triad
representation \1/[E]. In other words, by not requiring that the representation space J'— be
a Hilbert. space, one affirms a strong belief in the primacy of those fundamental variables
on which the representation is based.

This is only a part of a larger problem. Unless one imposes some boundary coir
ditions on the solutions of the constraint equation (31), the solution space To may be
much too big. The quadratic character of the Hamiltonian constraint in the momenta p

5 One should find a factor ordering of the Hamiltonian and diffeomorphism constraints such that the
commutator of the Hamiltonian constraints yields an expression in which the diffeomorphism constraint
acts on the state function first, followed by the structure functions of the ‘Dirac algebra’. It was noticed
by Anderson [19] that this task cannot be accomplished if one insists on representing the constraints
by self—adjoint operators on f. A solution to the factor—ordering problem was offered by Schwinger [20]
and criticized by Dirac [21]. The best, and certainly the shortest, exposition of Schwinger’s solution
may be found in a footnote of the paper [22] by DeWitt; this was later rediscovered by Komar [23].
DeWitt himself made a rather sweeping proposal on how to remove the problem by letting any two
field operators taken at the same point formally commute [22]. Ashtekar [8] proposed a simple factor
ordering of his constraints which (disregarding the regularization difficulties) satisfies the consistency
requirement. Unfortunately, all these results are purely formal: Tsamis and Woodard [24], and Friedman
and Jack [25] have persuasively argued that by formal manipulations of the commutator one can obtain
whatever result one wants.
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(or E) evokes the analogy with the Klein-Gordon constraint for the relativistic particle.
There we know that the solution space of the mass—shell constraint is also too big: the
physical states of a one—particle system correspond only to positive—energy solutions. In
geometrodynamics (and in connection dynamics), we do not have any accepted method
of cutting the basis of the solution space into half. We are thus stuck with a. solution
space which may be physically too big.

If, on the other hand, we start imposing boundary conditions or some other lim-
itations on the states, we may inadvertently force the solution space to be too small.
This may (though it does not need to) happen in connection dynamics when one re—
quires that the states \PM] be holomorphic functions of the complex connection A. One
imposes such a requirement in analogy with the Bargmann representation for the states
of a harmonic oscillator [27]. The solution of the eigenvalue equation for the oscillator
Hamiltonian it on the space of holomorphic functions of Z = Q — iP gives automati—
cally a correct spectrum for 11. This is surprising, because at this stage we do not yet
have any Hilbert space. Only much later is the space of holomorphic functions turned
into a Hilbert space which yields the same spectrum. This may not work so smoothly
in canonical gravity. The complex connection is in some respects quite different from
the complex variable Z for the harmonic oscillator. (i shall return to this point three
steps later.) There is a chance that the ‘preestablished harmony’ between holomorphic
functions and the subsequent construction of the Hilbert space no longer exists.

To summarize, without the Hilbert space structure on f and without boundary
conditions or some auxiliary conditions on the states, we are bound to end up with a
solution space .70 that contains many unphysical states. For this reason, I am reluctant
to call .70 ‘the physical space”, and prefer to stick to a more neutral name, the space of
solutions.

5. Observables

An outstanding question in the theory of constrained systems is what dynamical variables
can in principle be observed. An often made proposal [28, 12] is that

0 Classical ‘observables’ are those dynamical variables F whose Poisson brackets with
the constraints weakly vanish:

11:0 : {1«;H}:o. (32)
Its quantum mechanical counterpart is that

0 Quantum ‘pbservables’ are those operators F that commute with the constraint
operators H on the space of solutions f0:

I‘m/=0 = [131 PIN/=0. (33)
The second definition seems to be virtually forced on us if we insist that the measurement
of an observable does not throw the state \11 out of the space of solutions .70.

These two definitions are straightforward generalizations of the concept of an ob—
servable in gauge theories. i am going to argue that they are inappropriate for canonical
gravity.
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To see why the definitions (32) and (33) are natural in ordinary gauge theories, con—
sider electrodynamics. The vector potential A describes the state of the electromagnetic
field. The potentials AU) and A0) which lie on the same orbit of the Gauss constraint
C(33) = V . E(.r) differ by a gauge transformation. They are physically indistinguishable:
they represent two equivalent descriptions of the same physical state. One cannot ob-
serve the individual A’s along the orbit, only the magnetic field B. The magnetic field
remains the same if we change the vector potential by a gauge transformation:

{3(5), G(10)} = 0- (34)
The magnetic field is an example of an observable.

A quantum state of the electromagnetic field is described by the state functional
WM]. This functional is the probability amplitude for finding the electromagnetic field
in the state described by the vector potential A. The probability should remain the same
when we change A by a gauge transformation. This is ensured by the Gauss constraint

C(rc) \IIM] : 0. (35)
Equation (35) implies that KI! can depend on A only via the classical observable B:
\I/ : \IJ[B]. On an ensemble of systems described by the state functional \II[B], we
cannot measure fl, but only B. The magnetic field operator B is a quantum observable.
It satisfies the quantum counterpart of Eq.(34):

[13(5), em] : 0. (36)
The same case which I made for the Gauss constraint G in electrodynamics can be

repeated for the rotation constraint (J,- and the difieomorphism constraint 1],, in canonical
gravity:

Spacelike hypersurtaces in a Ricci—flat spacetime carry the induced geometry, but do
not come equipped with an orthonormal triad E. The triad is a mere tool for calculating
the metric (14). Two triads, EU) and Et?) , on the same orbit of the constraint (16) differ
by a rotation. They both yield the same metric (l4). Rotations can be thought about
as a gauge, and metric as an observable. In general, the 80(3) observables are those
dynamical variables which are unaffected by rotations,

In the triad representation, the quantum state of the gravitational field is described
by the state functional \I/[E]. The rotation constraint

A

GttI)‘1'lEl= 0 (38)
implies that ‘1! can depend on E only through the metric (14): \I' = \Il[g]

However, the metric is not yet an observable with respect to diffeomorphisms. Two
metric fields, g(1)(z:) and 9(2)(.r), that differ only by the action of DiffE, i.e., which lie on
the same orbit of Ha($)7 are physically indistinguishable. This is due to the fact that we
have no direct way of observing the points .1‘ E E. A dynamical variable constructed from
the metric field is a true observable only if its value is unaffected by diffeomorphisms:

Ha(r)=0 => {F,H,(.~c)}=0. (39)
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by a rotation. They both yield the same metric (l4). Rotations can be thought about
as a gauge, and metric as an observable. In general, the 80(3) observables are those
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A

GttI)‘1'lEl= 0 (38)
implies that ‘1! can depend on E only through the metric (14): \I' = \Il[g]
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Thus, e.g., the volume of E is an observable:

Vin = Ads. Idet(g(w))li- (40)
The momentum constraint ‘

am My] = 0 (41)
implies that the value of the state functional nl is the same for all metrics connected
by DiffE, i.e. , that \I/[g] does not depend on the individual metrics 9(a), but only on
the three-geometry 39'.

However, the definition (32) of an observable requires yet something more. It claims
that a dynamical variable F cannot be observed unless it has a vanishing Poisson bracket
with the Hamiltonian constraint H. I feel that this requirement is misguided.

The action of G,- on the dynamical variables generates their change under rota—
tions 30(3). The action of Ha on the dynamical variables generates their change under
Dil. Both of these actions operate in the space of the instantaneous data on a fixed
hypersurface. The change of the data which they generate is unobservable. The action
of [I is different: it generates the dynamical change of the data from one hypersurface
to another. The hypersurface itself is not directly observable, just as the points x E E
are not directly observable. However, the collection of the canonical data 9(1), 11(1) on the
first hypersurface is clearly distinguishable from the collection 9(2), 19(2) of the evolved
data on the second hypersurface. If we could not distinguish those two sets of the data,
we would never be able to observe dynamical evolution.

The same reasoning applies to quantum theory. In the Schrodinger picture, the
evolution is carried by the state \D. The Hamiltonian constraint

H(;17)\I/ = 0 (42)

plays a different role from the diffeomorphism constraint or the rotation constraint. It
does not tell us that the evolved state is indistinguishable from the initial state, but rather
it tells us how the state evolves. Thus, in geometrodynamics, the constraint (42) is a
second~order variational differential equation for the state MSG] of the three—geometry,
called the WheelereDeWitt equation [6, 22]. This can be viewed as analogous to the
Klein—Gordon equation for the state 1/}(zra) of a relativistic particle. The three-geometry
39 is considered as an internal configuration spacetime variable, similar to the argument
1:“ of the Klein—Gordon state. The Wheeler-DeWitt equation is supposed to describe the
dynamical evolution of the state in an internal configuration spacetime.

It is this fundamental distinction between the states which are and the states which
are not distinguishable that leads me to reject the definition (32) according to which ‘ob-
servables’ should also have a vanishing Poisson bracket with the Hamiltonian constraint.
The dynamical variable F which satisfies this requirement,

H(:v)=0 2 {F,H(:r)}=0, (43)
must have the same value on all spacelike hypersurfaces. Therefore, it is necessarily
a constant of motion. This underscores the point which I already made: If we could
observe only constants of motion, we could never observe any change.
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I hold that one can observe other dynamical variables, like the volume variable
(40), not only constants of motion. Therefore, I shall call observables those dynamical
variables which are invariant under 80(3) and DiffE, but which do not necessarily obey
Eq.(43). Those observables which also satisfy Eq.(43) I shall call perennials. I want to
argue that

0 One can observe dynamical variables which are not perennial,

and that

o Perennials are often difficult to observe.

To make these two points, I do not need to deal with general relativity. Any
parametrized (or already parametrized) system [29] illustrates the same point. I shall
try to clarify the issues on the simplest of such systems, a parametrized free Newto—
nian particle moving on a line. The phase space of the system is the cotangent bundle
(T,Q; PT,P) over the configuration spacetime ('1', Q), and the Hamiltonian constraint
amounts to the definition of the energy iPT in terms of the momentum P:

11;:11,v+ $1)? :0. (44)
Perform a canonical transformation [30]

Q’ = Q — PT, 1” = P. (45)
TI : 7" PT’ : PT + é‘Pj]. (46)

The primed canonical variables (45) are the initial data at T : 0. The primed time ’1"
is identical with the Newtonian time '1'. The momentum PT, conjugate to T’ coincides
with the Hamiltonian constraint:

[{ZZPTI:0. (47)

Due to the constraint (47), any dynamical variable G(T',Q’; Prr,P’) can be re
placed by an equivalent variable F(T’,Q’; P’) :: G(T’,Q'; 0, P'). The variable F is a
perennial if {F, [1} = 0. Equation (47) enables us to conclude that perennials are
simply arbitrary functions of the initial data. They cannot depend on T’:

Perennials : F = F(Q’; P’). (48)

No perennial ever changes along a dynamical trajectory. To observe change, we must
observe at least one dynamical variable, like T or Q, which changes.

An opposite view has been expressed by Rovelli [31]. I interpret his paper as
saying that to observe a changing dynamical variable, like Q, amounts to observing a
one-parameter family

Q’(T):=Q’+P/r=Q—P(T—r), 76R (49)

of perennials. The perennials (49) are the values of Q at T = r. By observing the
perennials Q’(7’1) and Q’(T2) one can infer the change of Q from T = 7'1 to T = 7'2 .
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The problem with such a view is that one is not told how to observe 7'. One way
of observing 'r is to watch the dynamical variable T (the hand of an ideal Newtonian
clock). The value of T is 7'. However, this amounts to observing a dynamical variable T
which is not a perennial. An alternative is to say that one can observe T directly. Again,
one is forced to admit that one can observe an entity which is not a perennial. The third
alternative is to say that because perennials are constants of motion, it does not matter
when they are observed. One can observe all the perennials Q’(7'), T E R at once, and
infer ‘the change of Q with T’ from that instantaneous observation. Any instant is like
any other, and each contains the same set 7' E R of perennials from which the change is
inferred. This does not make me too happy either. If all time 7' is eternally present, all
time is irredeemable.

My discussion was so far concerned with the epistemological status of observables.
I tried to argue that the identification of observables with perennials drives one to a
Parmenidean View of the world. Physicists are soundly sceptical of epistemological argu—
ments, and I am not delrrding myself that my argument is an exception. “Refutations are
seldom final; in most cases, they are only a prelude to further refinements.” Significantly,
Bertrand Russell made this remark when closing his discussion of Parmcnides [32].

So far I argued that some observables are not perennial. I must now defend my
other point, namely, that perennials are often difficult to observe. In this part of the
discussion, I take the attitude of physical common sense, that at any instant one can
directly observe the position Q of the particle, its momentum P, and the time T on an
ideal Newtonian clock, but not the position Q’ which the particle had at time T : 0.
The initial position Q', which does not change with T and is a perennial, is infemred from
the observed data Q, P, and T by using Eq.(45). For a free particle, such an inference
is easy because we know how to integrate equations of motion. However, even for such a
simple system as a free particle, the inference may be hampered by experimental errors.
If one determines P with an error AP, the error in the inferred value of Q’ scales with
T. If the particle moves 011 a circle and T is large, it is practically impossible to infer
from the observations at T where on the circle the particle was at T = 0. For more
complicated Hamiltonians, like those governing dynamics of many interacting particles,
the task of inferring perennials becomes pretty hopeless. Take, e.g., a globular cluster,
observe the current positions and momenta of the stars, and then try to infer what were
their positions and momenta when the Cluster was formed some 15 billion years ago.

In quantum theory, there is yet another reason why perennials are difficult to ob—
serve. To measure a quantum variable, one needs to design an apparatus with appropriate
coupling. 6 Theoretically, it is possible to find an apparatus which measures an arbi-
trary quantum variable F: F(Q, P). Experimentally, this can be done only for a small
number of especially simple variables, like F: Q or F: P. For elementary systems,
like a free particle 01 a harmonic oscillator, the initial -data perennials (45) are linea1
functions of the current data Q and P. Experimentalists know how to build the appa-
ratuses for measuring such perennials. An example is the discussion of non—demolition
experiments for detecting gravitational waves [33]. To circumvent the limits imposed by
the uncertainty principle, one constructs an apparatus for monitoring the initial length
of an oscillating bar, i.e., the perennial like Q’ of Eq.(45) for a linear harmonic oscillator.
However, even for such a simple system as the hydrogen atom, the initial-data perenni—

6 My discussion takes place within the framework of von Neumann’s theory of measurement. It
should be rephrased in a scheme like that advocated by Hartle in the present volume.
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als are complicated functions of the current data Q and P. It is difficult to conceive an
apparatus which would monitor such perennials at all times.

If the dynamical system is not Newtonian, i.e., if the Hamiltonian constraint is
not linear in the momentum PT conjugate to a time variable T, the practical difficulty
of determining classical perennials from the current data turns into something much
more serious: into an argument questioning their very existence. A classical example is
an asymmetric top spinning around a fixed point in a homogeneous gravitational field.
Describe the configuration of the top by the Euler angles Q“ = (¢,1/2,0), where 0 is
measured from the direction of the field. The Hamiltonian h of the top is a quadratic
function of the momentum Pa. Constrain the motion of the top to be taking place with
a definite energy E:

11:11—15: 0. h = %G"b(Q)Pa+V(Q)- (50)
The trajectory of the top in the phase space (62”, 11,) is generated by the Hamiltonian
constraint. (50). Notice that we do not ask how the top moves in the Newtonian time T,
we are merely asking about its trajectory. The momentum PT does not enter into the
constraint (50); it was replaced by a constant E.

Perennials are defined as those dynamical variables F(Q”, P”) that have a (weakly)
vanishing Poisson bracket with H. Notice that T cannot be used in the construction of
perennials because it no longer is a canonical variable.

One perennial is the angular momentum Mg about the direction of the gravitational
field. This perennial is linear in the momentum Pa:

M. = Mama. (51)
A century ago, Poincare asked the question [34]: Does the top have any other integrals
of motion than those of vis viva and the area? In the way I formulated the problem, this
translates into the question: ls there any perennial besides Mg? The answer is no [35].

The configuration space (T, Q) of a parametrized free Newtonian particle is two—
dimensional, and there is one Hamiltonian constraint. There are 2 X (2 — 1) : 2 in-
dependent perennials (45); any other perennial is their function. An n~dimensional
parametrized Newtonian system should have 2(71 e 1) independent perennials. The top
is a three—dimensional system, and one would expect to find four independent perennials.
However, the constraint (50) does not have the Newtonian form, and there is only one
perennial, (5]).

Let me briefly return from models to canonical gravity. General relativity is not a
parametrized field theory whose constraints have a ‘Newtonian’ form (44). In particular,
both in geometrodynamics and in connection dynamics, the Hamiltonian constraint is
quadratic in the momenta. The supermetric has some non-trivial dependence on the
canonical coordinates. In these respects, the Hamiltonian constraint resembles the con-
straint (50) for the top. This prompts the following remarks:

0 We do not know how to construct perennials for canonical gravity.

0 We do not know how to select families of perennials (similar to the family (49))
labeled by a functional time parameter (similar to T) which would correspond to
‘simple’ dynamical variables as the volume observable (40) (similar to Q).
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als are complicated functions of the current data Q and P. It is difficult to conceive an
apparatus which would monitor such perennials at all times.

If the dynamical system is not Newtonian, i.e., if the Hamiltonian constraint is
not linear in the momentum PT conjugate to a time variable T, the practical difficulty
of determining classical perennials from the current data turns into something much
more serious: into an argument questioning their very existence. A classical example is
an asymmetric top spinning around a fixed point in a homogeneous gravitational field.
Describe the configuration of the top by the Euler angles Q“ = (¢,1/2,0), where 0 is
measured from the direction of the field. The Hamiltonian h of the top is a quadratic
function of the momentum Pa. Constrain the motion of the top to be taking place with
a definite energy E:

11:11—15: 0. h = %G"b(Q)Pa+V(Q)- (50)
The trajectory of the top in the phase space (62”, 11,) is generated by the Hamiltonian
constraint. (50). Notice that we do not ask how the top moves in the Newtonian time T,
we are merely asking about its trajectory. The momentum PT does not enter into the
constraint (50); it was replaced by a constant E.

Perennials are defined as those dynamical variables F(Q”, P”) that have a (weakly)
vanishing Poisson bracket with H. Notice that T cannot be used in the construction of
perennials because it no longer is a canonical variable.

One perennial is the angular momentum Mg about the direction of the gravitational
field. This perennial is linear in the momentum Pa:

M. = Mama. (51)
A century ago, Poincare asked the question [34]: Does the top have any other integrals
of motion than those of vis viva and the area? In the way I formulated the problem, this
translates into the question: ls there any perennial besides Mg? The answer is no [35].

The configuration space (T, Q) of a parametrized free Newtonian particle is two—
dimensional, and there is one Hamiltonian constraint. There are 2 X (2 — 1) : 2 in-
dependent perennials (45); any other perennial is their function. An n~dimensional
parametrized Newtonian system should have 2(71 e 1) independent perennials. The top
is a three—dimensional system, and one would expect to find four independent perennials.
However, the constraint (50) does not have the Newtonian form, and there is only one
perennial, (5]).

Let me briefly return from models to canonical gravity. General relativity is not a
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0 So far, we did not find a single gravitational perennial. 7 The existence of a
complete set of perennials would imply that gravity is a completely integrable
theory. They are indications that it is not [36, 37]. It is likely that the gravitational
perennials are rare, and it is quite possible that there are none.

Perennials in canonical gravity may have the same ontological status as unicorns
eea pr2072, these are possible animals ,but a poste220r2, they a1e not roaming 0n the
Earth. According to bestiaries, the unicorn is a beast of fabulous swiftness, strength,
and beauty, but, alas, it can be captured only by a virgin [38]. Corrupt as we are, we
better stop hunting mythical beasts.

6. Hilbert space

Once we have decided what dynamical variables can be observed, we need to know what is
the statistical distribution of their observed values. ln quantum mechanics, probabilities
are determined by the inner product in a Hilbert space. Therefore, we need to endow
the space of physical states with a Hilbert space structure.

The proposals on how to find the inner product depend 011 what position one
takes on observables. Let me first discuss the proposal [39], which relies on identifying
observables with perennials:

0 Choose an inner product (W1 W2) on the solution space f0 such that all real quan—
tum perennials are sclf-adjoint under it.

In geometrodynamics, the phase space is real and it is easy to say when a dynamical
variable is real. l return to the reality problem in connection dynamics in the next
section.

There are several problems with the above proposal. First of all, we have seen that
there may not be any perennials in canonical gravity, or that at least there may not be
a sufficient number (a complete set) of them. If so, the proposal on how to determine
the inner product either loses its content, or becomes too weak. Secondly, even when
one disregards this difficulty, one should notice that the proposal as it stands is self—
(:0nt1adictory.ll F and (,1 are quantum perennials, so is FC. If F and G are self—adjoint
under the 1nne1 p1oduct (\Pl “112), PO is not. To remove the contradiction, one needs to
find ‘l‘undamental perennials’, and approximate all other perennials by polynomials of the
fundamental perennials. One can then require that only the fundamental perennials be
self—adjoint, and symmetrically factor order the polynomials which define the remaining
perennials. Unfortunately, the original fundamental variables y and p (or A and E) are
not perennials, and we lack a guiding principle on what the fundamental perennials may
be.

The third problem with the proposal is that the solution space .70 is probably larger
than the space of physical states. We have seen that it may contain ‘improper elements’,
‘unbounded states’, and ‘states with negative norms”. The definition of a perennial F
requires that F commutes with the constraints on the solution space f0. If .70 is too

7 It is not clear whether the interesting result reported at this meeting by Goldberg et al. can be
recast into a construction of a perennial,
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large, the set of perennials may be too small: Some physically significant perennials may
have been excluded by the requirement that they commute with the constraints on a
larger-than—physical space of solutions. Further, it may happen that those perennials
which remain cannot be made self-adjoint under an inner product on the whole solution
space, but only on a drastically reduced space from which the ‘unphysical’ states have
been excluded. In brief, it seems impossible to follow step by step the ‘quantization
program’: firstly, to find the space of solutions without having the inner product to
determine which states are physical, secondly, on that space of solutions to define the
perennials, and thirdly, to find the inner product on .70 which makes all such perennials
self-adjoint. Rather, the steps should be replaced by a single jump. As I am growing
older, the difficulty of replacing three steps by a single jump is becoming more and more
obvious.

The second standpoint is that observables do not need to commute with the llamilr
tonian constraint, but only with the gauge constraints. If so they do not act 111 the space
of solutions: if ‘11 E .750 and F 1s an obser,vable F\I‘ ¢ .70. To proceed, one should

0 abandon the space of solutions and work instead in the space of instantaneous
states.

To talk about instantaneous states requires a decision about what is an instant.
A11 instant in a relativistic spacetime is a spacelike hypersurface. However, spacelike
hypersurfaces are not elements of the gravitational phase space. The task is to find
an observable T (or, rather, a set of 003 commuting observables, to account for 003
hypersurfaces) whose value uniquely fixes a hypersurlace in a Ricci~fiat spacetime gen
erated by the evolution of the classical canonical data. Such an observable is called an
internal time. (The adjective ‘internal’ means ‘constructed solely from the phaseespace
variables’.)

The Hamiltonian constraint is interpreted as an evolution equation for \l/ in T. One
tries to cut down .750 to a linear subspace .756 C .70 whose elements are in a 011e-t0»o11e
correspondence with the instantaneous values of W: the restrictions \I/T of \II to a fixed
hypersurface T. These restrictions are the instantaneous states W11 6 .771. The program
is to find an inner product in fT which is independent of T, i.e., which is conserved
in internal time. The discussion centers on how different forms of the Hamiltonian
constraint (the Wheele1 DeWitt form, and others) suggest what such an inn01 product
may be. A T i—ndependent 1nne1 p1oduct can be inte1p1eted as an inner p1oduct 1n f’.
In gene1al, the obse1vables F depend on 1. One requiies that they be factor o1de1ed
so that, at each T they are self- adjoint under the 1nner product 1n 1'}. The expression
(\IlTIFN/T) 1s inte1p1eted as the mean value of F 1n the state lI'T at the internal time T.

These things are mo1e easily said than done. The internal time proposal meets as
many difficulties as the approach based on the concept of perennials. I discussed the
problems of time in a recent review [40] which complements my present treatment of
observables.

It is sometimes maintained that the approach based on perennials somehow avoids
the problems of time. It would be great if it did, but I fear it does not. A closer look
reveals that the problems of time and the problem of perennials are rather closely related.
A Czech saying has it that the devil thrown out of the door returns through a window.
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7. Reality conditions

The connection dynamics looks in many respects simpler than geometrodynamics7 but
its simplicity has been bought at a price: the 50(3) connection A is necessarily complex.
One needs to ensure that the quantum theory based on such a connection describes a
real gravitational field.

One can attempt to accomodate complex objects in canonical gravity in two dif—
ferent ways:

Complezify the Einstein theory, i.e., work with complex metrics 7 on a real space—
time manifold M. The statement that (Mm) is Ricci-fiat amounts to a system of
coupled equations for the real and imaginary parts of the complex metric 7. These
equations can be derived from a real action whose Lagrangian is the real part of the
complex curvature scalar. introduce the Ashtekar variables ALLEu for the complexified
spacetime. Both A and E are now complex. The canonical form of the action leads to
the Poisson brackets among these variables and their complex conjugates.

To restrict the spacetime metric to be real, one imposes the condition that its
imaginary part vanishes. In the canonical version of the theory, this imposes the reality
conditions (27) on A and E. The reality conditions are preserved by the constraints:
when the evolution starts from real canonical data, it continues building a real spacetime.
However, the Poisson brackets among the reality conditions do not vanish: to put the
imaginary part of the metric and its rate of change equal to zero amounts to requiring
both a canonical coordinate and its conjugate momentum to vanish. It means that
the reality conditions are, in Dirac’s terminology, second—class constraints [3]. Such
constraints must be eliminated before quantization. Unfortunately, their elimination
destroys the new variables.

A11 alternative is to derive the complexitied equations from a holomorphic La,
grangian [4]]. The corresponding canonical theory knows how to form the Poisson
brackets among A and E, but the Poisson brackets involving the complex conjugates
A and E are undefined. The status of the reality conditions thus remains unclear and
one does not know what to do with them 011 quantization.

Use complex chart on a real phase space. The second option is to consider A and
E as a complex chart on a real phase space (E, -K). This is similar to introducing a
complex chart Q and Z : Q iii) on the real phase space (Q, P) of a harmonic oscillator.
The proposal [12, 14] is to ignore the reality conditions in the first five steps of the
quantization program. In particular, the vector space V spanned by the fundamental
variables A and E is allowed to be complex, and so are the dynamical variables F[A, E] E
A and the perennials F[A, E] 6 A0.

one knows how to complex conjugate, F, the elements F of the classical spaces V
and A The task 18 to define the cor1esponding ope1at10n *, on the elements F 1n V and
A. Ashtekar s proposal is fi1st to define the * operation in V by requi1ing that complex
conjugate elements of V are carried into the *- related elements of V.

F,F€V :5 fi=fi*. (52)
The at operation is then extended from V to A by using the axioms of the involution
operation:

(aF + bG)* = {113“ + 562*,
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(FG)* 2 GF*, (53)
(Fwy : F1

VEC‘EA and Va,b€C.

If F* = F, the operator F represents a real dynamical variable. If there are no
constraints, this dynamical variable is an observable. The expectation value of F should
be real. This objective can be achieved by requiring that the inner product (WIN/2) in
.7" be such that it makes all air—related operators Hermitian adjoints,

F=G‘* =1 <r.|Fr2>=<Grliq/2>, (54)
and hence all operators representing real variabl es self— adjoint. lf the * operation in xi
is determined by the * operation in V as in lilqs. (52) and (53), it is sufficient to require
that the condition (54 ) holds fo1 all fundamental vaiiablcs F, C E V.

Canonical gravity, however, 1s a const1a1ncd system. Ashtekar 3 program assumes
that only perennials can be observed, and that their expectation values are obtained
from an inner product 011 the space of solutions. To impose the 1eality condit,ions one
needs to define the * ope1ation for perennials. lhis would be st1a1ghl forward if the *
ope1ation 110111 A could be restricted to perennials. Unfortunately, this does not need to
be the case: if F 1s a perennial, F does not need to be a pe1en11ial (though it may be a
pe1ennial undel special circumstances). lhe hope is that the1e 1s a “sufficient number
of pe1ennials F whose»?*—21djoi11ts F* are also pc1ennials. By "suflicient one means that
the condition (54), when imposed on these pcicnnials, uniquely determines the 1nner
product in f0.

To summarize, Ashtekar’s program calls for implementing the reality conditions as
requirements on the inner product in the space of solutions .70. Firstly, one must find
a sullicient number of *iadjoint perennials, and then require that these be Hermitian
adjoints under the inner product.

One can ask two questions about this proposal. The first is Whether it works for
simple model systems. The second is whether it can reasonably be expected to work in
canonical gravity.

The answer to the first question is yes. Ashtekar’s proposal determines the in—
ner product for a number of simple systems (a harmonic oscillator with complex chart, a
parametrized Newtonian particle, a free relativistic particle on a flat background). It also
works for 2 + l gravity and linear field theories on a (3 + l)—dimensional flat Lorentzian
background, including Maxwell’s electrodynarnics and linearized gravity. With the ex-
ception of 2+1 gravity (which does not have any field degrees of freedom) these examples
are reducible to collections of harmonic oscillators.

To approach the second question, one should ask whether there are any relevant
differences between the prototype of a linear harmonic oscillator and full canonical grav—
ity. (By ‘relevant’ I mean relevant to the proposal on handling the reality conditions.) I
feel there are two such differences:

In the harmonic oscillator problem, one works with the fundamental variables Q
and Z = Q — iP, which are analogous to E and A in connection dynamics. The vector
space V is spanned on Q, Z, and 1. The reality conditions are the conditions

Q:QandZ=—Z+2Q (55)
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on the dynamical variables F = Q, G = Z, and their complex conjugates F and G. Both
F and G, and F and G lie in V. It is thus possible to define the * on A by Eqs.(52) and
(53), and to impose the reality condition (51).

In connection dynamics, V is spanned by A, E and 1. The second reality condition
(27), however, is not a condition on the elements of V, because HE] is a non-linear
functional of E. (The same remark applies to polynomial forms of reality conditions.)
This prevents one from defining the at operation on V, as in Eq.(52), and from extending
it to A, as in Eq.(53).

This difficulty can be clarified on simple models. Take a one—dimensional system
with the Hamiltonian 8

h. :: QP2 + C2—2 (56)

and introduce the complex chart (Q, Z), with

Z : (2717231), (57)

on the real phase space (Q, 1’). The llamiltonian (56) becomes polynomial in Q and Z,

1r: —QZ2 + 22. (58)

The reality condition on 7. can be written either in a non»polynomial form linear in Z,
or in a polynomial form:

1(z+2):o*1, or Q(Z+Z)=2. (59)
2

Whichever form we use, it is not a condition in the complex vector space V spanned by
the fundamental variables Q and Z.

This is my first reason for believing that the harmonic oscillator is not quite repr
resentative of canonical gravity. The algorithm for handling reality conditions needs to
be checked on more general models than those which have been investigated so far, like
the model I have just described.

The second dilIerence between the oscillator and canonical gravity is that the later
is a. parametrized theory. Ashtekar’s proposal on how to handle the reality conditions
depends on the existence of a sufficient number of perennials, and on the possibility
to define a * operation on their algebra. I expressed my doubts that there exists a
sufficient number of perennials in canonical gravity. Even if there is a sufficient number
of perennials, it remains unclear whether it is possible to extend the * operation from V
to fl, and then to restrict it to a suitable subset of perennials.

I do not claim that these problems are insurmountable, but I feel that they represent
a major unsolved problem of connection dynamics.

8. Conclusions

Where do we stand? We certainly gained in the years a good geometric understanding
of classical general relativity as a canonical dynamical system. In quantum theory, we

8 In the sector Q > 0, the Hamiltonian (56) can be brought into the form I: : 502 + 4g“l by the
1 1

canonical transformation q = @625 , p = fiQEP
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inherited a set of rules of thumb called Dirac constraint quantization. They were never
precise, and Dirac himself never claimed they were much more than rules of thumb.
People tried to make them more precise and they ended with something resembling the
seven gates I described.

Let me revisit those gates and ask what steps in the quantization program have
actually been accomplished. And, even more importantly, let me summarize what are
the main unsolved problems.

1. Different sets of fundamental variables (not only those which I mentioned in this
report) have been explored and understood. We also know how to take care of the
positivity restrictions on the metric variables [13].

. Most of the work on turning constraints into operators is formal. Both the reg
ularization problem and consistency problem remain open. Very little is known
about how to handle other dynamical variables, especially the future candidates
for observables or perennials.

Important work has been done on clarifying the n'iathematical status of the states
WM and \lll/ll and of the fundamental operators [l3]. ’l‘he connection represerr
tation has been linked to the loop representation [42]. One should note that the
latter investigation has been successful only for real connections.

Because the regularization and consistency problen’is for the constraints have not
been satisfactorily resolved, all attempts to find the states which solve the quan
tum constraints (30) are to a large extent formal. It is notable that connection
dynamics actually exhibited a large number (indeed, infinitely many) such solue
tions. Most of these were obtained in the loop representation and lie outside the
scope of this report [16]. When comparing this success with the lack of solutions
in geometrodynamics, one should keep in mind that these solutions correspond to
degenerate metrics which geometrodynamics excludes. One solution that can be
written directly in the connection representation is the exponential of the Cherne
Simons form [43]. Passing from particular solutions to general considerations, it is
not clear what boundary or other conditions should be imposed on the solutions
1I1 E To to select the true physical states.

The problem of what quantities can be observed (and how they can be observed) is
one of the most intriguing and important questions in quantum gravity. A widely
held View (which I dispute) is that one can observe only perennials. N0 true
perennials, classical or quantum, have so far been found, and even if they exist,
finding them is difficult. I feel we should instead concentrate on formulating and
proving (non?)existence theorems about perennials.
Unlike perennials, there are many concrete examples of classical observables. It
is, however, obscure what classical observables are to be represented by operators,
and on what space these operators act. This is connected with the problem of time:
one does not expect the time observable to be represented in quantum mechanics
by an operator.

Another outstanding problem of canonical quantum gravity is the construction of
the inner product. Quantum geometrodynamics has been unsuccessful in this task
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[22, 36], and connection dynamics has hardly done more than formulate broad
guidelines on how one might try to proceed. These guidelines crucially depend on
the existence of perennials.
In contrast, one knows how to construct (at the formal level) the inner product
for parametrized field theories [1?]. Each choice of an internal time casts canonical
gravity into the mold of a parametrized field theory and leads to an inner product.
The procedure, however, is not without problems [40]. One which is closely related
to the problem of perennials is that internal time may not exist globally [44].

7. Connection dynamics, unlike geometrodynamics, needs to take care of reality con-
ditions. Ashtekar’s proposal is to impose them as requirements which determine
the inner product. Two problems arise: firstly, the necessity of finding a complete
set of perennials and defining on them the * operation and, secondly, the high
polynomiality of the reality conditions, which takes them out of the realm of the
fundamental vector space V.
The reality conditions are the only major problem which does not exist in gee
ometrodynamics. The ability of connection dynamics to handle this problem will
be crucial for judging its success in the Galilean contest between the two chief
systems of canonical gravity.

The problem of reality conditions exemplifies the general pitfall of any quantization
program. As I described it, the program resembles seven doors to the law, each of them
guarded by a doorkceper. We certainly did not sit on a stool at the side of the first door
for days and years: we tried to enter the law. However, on our way through the doors
we learned that their orderly sequence is deceptive. One can never be sure of passing a
door before all have been passed. The entries are so interconnected that they cannot be
made separately: What is a. solution of the quantum constraints depends on the choice
of fundamental variables and the form of the constraints. \Vhat solutions are physical
depends on the inner product. What is an inner product depends on what quantities are
observable. What quantities are observable may depend on what solutions are physical.
More often than not we are caught in a vicious circle which calls for entering all the
doors at once.

This may be frustrating, but it should have been expected. lndeed, it would be
rather disappointing if one could reach a truly fundamental theory like quantum gravity
by following step by step a travel guide, or its medieval predecessor, a pilgrim’s itinerary
to a wholy shrine. in this spirit, let me end my account of canonical quantum gravity
in the dark ais les of St. Vitls cathedral of my native city of Prague, talking to a priest
[45]:

“You have studied the story more exactly and for a longer time than I
have,” said K. They were both silent for a while. Then K. said: “So you
think that the man was not deceived?” “Don’t misunderstand me,” said the
priest, “I am only showing you the various opinions concerning that point.
You must not pay too much attention to them. The scriptures are unalterable
and the comments often enough merely express the commentators" despair.”
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guidelines on how one might try to proceed. These guidelines crucially depend on
the existence of perennials.
In contrast, one knows how to construct (at the formal level) the inner product
for parametrized field theories [1?]. Each choice of an internal time casts canonical
gravity into the mold of a parametrized field theory and leads to an inner product.
The procedure, however, is not without problems [40]. One which is closely related
to the problem of perennials is that internal time may not exist globally [44].

7. Connection dynamics, unlike geometrodynamics, needs to take care of reality con-
ditions. Ashtekar’s proposal is to impose them as requirements which determine
the inner product. Two problems arise: firstly, the necessity of finding a complete
set of perennials and defining on them the * operation and, secondly, the high
polynomiality of the reality conditions, which takes them out of the realm of the
fundamental vector space V.
The reality conditions are the only major problem which does not exist in gee
ometrodynamics. The ability of connection dynamics to handle this problem will
be crucial for judging its success in the Galilean contest between the two chief
systems of canonical gravity.

The problem of reality conditions exemplifies the general pitfall of any quantization
program. As I described it, the program resembles seven doors to the law, each of them
guarded by a doorkceper. We certainly did not sit on a stool at the side of the first door
for days and years: we tried to enter the law. However, on our way through the doors
we learned that their orderly sequence is deceptive. One can never be sure of passing a
door before all have been passed. The entries are so interconnected that they cannot be
made separately: What is a. solution of the quantum constraints depends on the choice
of fundamental variables and the form of the constraints. \Vhat solutions are physical
depends on the inner product. What is an inner product depends on what quantities are
observable. What quantities are observable may depend on what solutions are physical.
More often than not we are caught in a vicious circle which calls for entering all the
doors at once.

This may be frustrating, but it should have been expected. lndeed, it would be
rather disappointing if one could reach a truly fundamental theory like quantum gravity
by following step by step a travel guide, or its medieval predecessor, a pilgrim’s itinerary
to a wholy shrine. in this spirit, let me end my account of canonical quantum gravity
in the dark ais les of St. Vitls cathedral of my native city of Prague, talking to a priest
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Abstract. The Cosmic Background Explorer (COBE 2 ), NASA’S first space
mission devoted primarily to cosmology, carries three scientific instruments
to make precise measurements of the spectrum and anisotropy of the cos—
mic microwave background (CMB) radiation on angular scales greater than
7° and to conduct a search for a diffuse cosmic infrared background (CIB)
radiation with 07" angular resolution. The observing strategy is designed
to minimize and allow determination of systematic errors that could result
from spacecraft operations, the local environment of the spacecraft, and emis—
sions from foreground astrophysical sources such as the Galaxy and the solar
system. Data from the Far—InfraRed Absolute Spectrophotometer (FIRAS)
show that the spectrum of the CMB is that of a blackbody of temperature
T22.73:t0.06 K, with no deviation from a blackbody spectrum greater than
0.25% of the peak brightness. The first year of data from the Differential Mi—
crowave Radiometers (DMR) show statistically significant CMB anisotropy.
The anisotropy is consistent with a scale invariant primordial density fluc-
tuation spectrum and with the gravitational potential variations required to
cause the observed present day structure. Infrared sky brightness measure-
ments from the Diffuse InfraRed Background Experiment (DIRBE) provide
new conservative upper limits to the CIB. Extensive modeling of solar system
and galactic infrared foregrounds is required for further improvement in the
CIB limits.

1 E—mail: mather©stars.gsfc.nasa.gov (Internet).
2 The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC)

is responsible for the design, development, and operation of the COBE. Scientific guidance is provided
by the COBE Science Working Group. GSFC is also responsible [or the development of the analysis
software and for the production of the mission data sets.
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1. Introduction to the COBE and mission objectives

The observables of modern cosmology include the Hubble expansion of the universe;
the ages of stars and clusters; the distribution and streaming motions of galaxies; the
content of the universe (its mass density, composition, and the abundances of the light
elements); the existence, spectrum and anisotropy of the cosmic microwave background
radiation; and other potential backgrounds in the infrared, ultraviolet, x-ray, gamma-ray,
etc. The purpose of the COBE mission is to make definitive measurements of two of these
observable cosmological fossils: the cosmic microwave background (CMB) radiation and
the cosmic infrared background (CIB) radiation. Since the discovery of the CMB in
1964 (Penzias & Wilson 1965), many experiments have been performed to measure the
CMB spectrum and spatial anisotropies over a wide range of wavelengths and angular
scales. Fewer attempts have been made to conduct a sensitive search for a CIB radiation,
expected to result from the cumulative emissions of luminous objects formed after the
universe cooled sufficiently to permit the first stars and galaxies to form.

In 1974 NASA issued Announcements of Opportunity (AC—6 and AO-7) for new
Explorer class space missions. A proposal for a Cosmic Background Radiation Satellite
was submitted by John Mather et al.(1974) from NASA/Goddard. The objectives of this
mission were: (1) make “definitive measurement of the spectrum (of the 2.7 K CBR)..
with precision of 10“1 around the peak... It will also look for the emission from cold
dust clouds and from infrared galaxies”; (2) “measure the large scale isotropy of the
background radiation... to a precision of 10—5... Measurements at several wavelengths
are required in order to distinguish anisotropy in the background radiation itself from
anisotropy due to discrete sources"; and (3) “... search for diffuse radiation in the 5—30
micron wavelength range, expected to arise from interplanetary dust, interstellar dust,
and, in particular, from the integrated luminosity of very early galaxies. The experiment
is designed to separate these contributions by their spectral and directional properties."
Additional proposals were also submitted for large angular scale microwave isotropy
experiments by Sam Gulkis et al.(1974) from JPL and by Luis Alvarez et al.(1974) from
UC Berkeley. NASA selected six investigators from these proposals and formed the core
of what was to become the COBE Science Working Group, as shown in Table 1.

To achieve the full benefit of space observations, a goal of the mission and instru—
ment design was that COBE measurements would be limited ultimately by our ability to
identify and model the various components of the astrophysical foreground emission, and
discriminate between them and the cosmological emission. This goal drove the design
of the mission strategy, the spacecraft and operations, and the choice of instruments.
Basic elements in the mission strategy were the requirements for highly redundant full
sky coverage and for sufficient time in orbit to achieve necessary sensitivity and evaluate
potential sources of systematic errors in the observations. The instruments were designed
to measure specific attributes of the cosmological backgrounds and also, through their
complementary spectral coverage, to enable the modeling and subtraction of foreground
emissions. Early descriptions of the mission concept have been given by Mather (1982,
1987) and by Gulkis et al.(1990).

The three scientific instruments are the Far Infrared Absolute Spectrophotome-
ter (FIRAS), the Differential Microwave Radiometers (DMR), and the Diffuse Infrared
Background Experiment (DIRBE). The FIRAS objective is to make a precision mea-
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Table 1. COBE Science Working Group

Bennett, C. L. NASA-GSFC DMR Deputy Principal Investigator
Boggess, N. W. NASA-GSFC COBE Deputy Project Scientist
Cheng, E. S. NASA-GSFC COBE Deputy Project Scientist
Dwek, E. NASA-GSFC
Gulkis, S. NASA-JPL
Hauser, M. G. NASA-GSFC DIRBE Principal Investigator
Janssen, M. NASA—JPL
Kelsall, T. NASA-GSFC DIRBE Deputy Principal Investigator
Lubin, P. M. U.C.S.B.
Mather, J. C. NASA-GSFC FIRAS Principal Investigator

& COBE Project Scientist
Meyer, S. S. M.I.T.
Moseley, S. H. NASA-GSFC
Murdock, T. L. Gen. Res. Corp.
Shafer, R. A. NASA—GSFC FIRAS Deputy Principal Investigator
Silverberg, R. F. NASA-GSFC
Smoot, G. F. LBL & UCB DMR Principal Investigator
Weiss, R. M.I.T. COBE SWG Chairman
Wilkinson, D. T. Princeton
Wright, E. L. U.C.L.A.

surement of the spectrum of the CMB from 1 cm to 100 pm. The DMR objective is to
search for CMB anisotropies on angular scales larger than 7" at frequencies of 31.5, 53,
and 90 GHz. The DIRBE objective is to search for a CIB by making absolute brightness
measurements of the diffuse infrared radiation in 10 photometric bands from 1 to 240 pm
and polarimetric measurements from 1 to 3.5 pm. The FIRAS and DIRBE instruments
are located inside a 650 liter superfluid liquid helium dewar.

2. COBE mission design & implementation

A full description of the COBE mission by Boggess et al.(1992) is summarized here.
Many papers giving overviews, implications, and additional detailed information about
the COBE have been presented by Mather et a1.(1990b), Mather et al.(1991b), Mather
(1991), Janssen & Gulkis (1992), Wright (1990), Wright (1991a), Hauser (1991a), Hauser
(1991b), Smoot et al.(l991c), Smoot (1991), Bennett (1991), and Boggess (1991).

The need to control and measure potential systematic errors led to the requirements
for an all-sky survey and a minimum time in orbit of six months. The instruments
required temperature stability to maintain gain and offset stability, and a. high level of
cleanliness to reduce the entry of stray light and thermal emission from particulates.
The control of systematic errors in the measurement of the CMB anisotropy and the
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need for measuring the interplanetary dust cloud at different solar elongation angles for
subsequent modeling required that the satellite rotate.

In near-Earth orbit, the Sun and Earth are the primary continuous sources of ther-
mal emission and it was necessary to ensure that neither the instruments nor the dewar
were exposed to their radiation. A circular Sun-synchronous orbit satisfied these require-
ments. An inclination of 99° and an altitude of 900 km were chosen so that the orbital
plane precesses 360° in one year due to the Earth’s gravitational quadrupole moment.
The 900 km altitude is a good compromise between contamination from the Earth’s
residual atmosphere, which increases at lower altitude, and interference due to charged
particles in the Earth’s radiation belts at higher altitudes. A 6 PM ascending node
was chosen for the COBE orbital plane; this node follows the terminator (the boundary
between sunlight and darkness on the Earth) throughout the year. By maintaining the
spacecraft spin axis at about 94° from the Sun and close to the local zenith, it is possible
to keep the Sun and Earth below the plane of the instrument apertures for most of the
year. However, since the Earth’s axis is tilted 23.5° from the ecliptic pole, the angle
between the plane of the COBE’s orbit and the ecliptic plane varies through the seasons
from -14.5° to +325”. As a consequence, the combination of the tilt of the Earth’s axis,
the orbit inclination, and the offset of the spacecraft spin axis from the Sun brings the
Earth limb above the instrument aperture plane for up to 20 minutes per orbit near
the June solstice. During this period the limb of the Earth rises a few degrees above
the aperture plane for part of each orbit, while on the opposite side of the orbit the
spacecraft goes into the Earth’s shadow. In the nominal COBE orbit the spacecraft’s
central axis scans the full sky, though not with uniform coverage, every six months. The
orbital period is 103 minutes, giving 14 orbits per day.

A 3-axis attitude control system was implemented by using a pair of inertia wheels
(yaw angular momentum wheels), with their axes oriented along the spacecraft spin axis.
These wheels carry an angular momentum opposite that due to the spacecraft rotation
to create a nearly zero net angular momentum system. The spacecraft orientation is
controlled by three reaction wheels with spin axes 120° apart in the plane perpendicular
to the spacecraft spin axis and by electromagnetic coils (torquer bars) that interact with
the Earth’s magnetic field. Earth and Sun sensors (one of each on each of the three
transverse control axes) provide control signals to point the spin axis away from the
Earth and at least 90° from the Sun. Rate damping and fine resolution attitude sensing
are provided by six gyros, one on each transverse control axis and three on the spin
axis. Coarse attitude parameters are calculated by using telemetered data from the
attitude control sensors to produce attitude solutions good to 4 arcmin (1 a). A fine
aspect is determined by using gyro data to interpolate between the positions of known
stars detected in the short wavelength bands of the DIRBE instrument. The fine aspect
solution has an accuracy of 1.5 arcmin (1 a) and is now used in the analysis of data from
all three instruments (Kumar et 3.1.1991).

The FIRAS instrument, located inside the dewar, points along the spin axis with
its 7° field of View. The three pairs of DMR receivers are spaced 120° apart around
the aperture plane of the dewar. Each radiometer channel measures the difference in
sky signal from a pair of horn antennas defining 7° fields of view separated by 60°, each
beam being 30° from the spin axis. The spin causes a short-term interchange of the two
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beams associated with a single differential radiometer and thereby gives a modulation
of the differential sky signal at the spin rate. The 0.8 rpm spin rate was chosen to be
fast enough to reduce the noise and systematic errors that could otherwise arise from
radiometer gain and offset instabilities. The DIRBE, also located inside the dewar,
views 30° from the spin axis. The spin allows DIRBE to measure the emission and
scattering by the interplanetary dust cloud over a range of solar elongation angles for
each celestial direction, which aids in the discrimination and subsequent modelling of
zodiacal radiation. DMR and DIRBE trace out a pattern of epicycles that enable them
to scan half of the sky every day and obtain multiple measurements for each pixel of the
sky.

The dewar is a 650 liter superfluid helium cryostat that kept the FIRAS and DIRBE
instruments cooled to ~1.6 K. A deployable dewar aperture cover protected the cryogen
and permitted calibration and performance testing of the cryogenic instruments prior
to launch. A contamination shield attached to the inside of the dewar cover protected
the DIRBE primary mirror from particulate or gaseous contamination until ejection of
the dewar cover in orbit. It also protected DIRBE from emission from warm parts of
the cryostat during ground testing. The deployed conical Sun—Earth shield protects the
scientific instruments from direct solar and terrestrial radiation and provides thermal
isolation for the dewar. The shield also provides the instruments isolation from Earth-
based radio frequency interference (RFI) and from the spacecraft transmitting antenna.
The shield was designed to be flexible and was folded to fit within the Delta rocket fairing
for launch. Contamination covers attached to the Sun—Earth shield were placed over the
DMR horn antennas and were pulled away in orbit by the deployment of the shield. The
deployed solar arrays provide the nominal spacecraft and instrument power load of 542
Watts.

The COBE has two omnidirectional antennas, one to communicate with the Track—
ing and Data Relay Satellite System (TDRSS), and the other to transmit data stored
on tape recorders directly to the ground. The antennas are located on a mast at the
bottom of the spacecraft deployed after launch. The COBE has a command and data
handling system that stores and decodes the commands received from the ground, col-
lects data from the instruments and spacecraft at the rate of 4 kbps, and prepares data
for transmission to the ground. The on-board tape recorders and data system allow 24
hours of data to be transmitted to the Wallops Flight Facility in a single 9 minute pass.
The data rate allocations for DIRBE, FIRAS, and DMR are 1716, 1362 and 250 bps,
respectively. The remainder of the telemetry is assigned to spacecraft subsystems.

The COBE, as initially proposed, was to have been launched by a Delta rocket.
However, once the design was underway, the Shuttle was adopted as the NASA standard
launch vehicle. After the Challenger accident occurred in 1986, ending plans for Shuttle
launches from the West Coast, the spacecraft was redesigned to fit within the weight
and size constraints of the Delta. The final COBE satellite had a total mass of 2,270
kg, a length of 5.49 m, and a diameter of 2.44 m with Sun-Earth shield and solar panels
folded (8.53 m with the solar panels deployed).

Ground testing of the COBE was necessary to demonstrate that the individual sub-
systems, and ultimately the entire spacecraft and instrument assembly in its flight con-
figuration, could satisfy both the sensitivity and systematic error requirements. System
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level tests were performed: to simulate the space environments, including vacuum and
temperature; to determine susceptibility to vibration, acoustic excitation, and acoustic
shock; to quantify electromagnetic interference (EMI) self-compatibility and RFI sus-
ceptibility; to determine the interaction between instruments and spacecraft; to simulate
the thermal and power conditions that would occur during eclipse periods; to test the
deployables and moving parts (Sun-Earth shield, antenna boom, solar panels, dewar
cover, FIRAS external calibrator and moving mirror transport, and DIRBE shutter and
chopper); and characterize and calibrate the instruments.

Technical papers on various aspects of the COBE have been published. These
include papers on contamination control (Barney 1991); test facility requirements for
thermal balance tests (Milam 1991); design of the dewar (Hopkins & Castles 1985);
optical alignments (Sampler 1990); thermal performance of the dewar prior to launch
and in orbit (Hopkins & Payne 1987, Volz & Ryschkewitsch 1990a, Volz et al.1990,
Volz et al.1991a & 1991b, Volz & Dipirro 1992); thermal design of the cryogenic optical
assembly (Mosier 1991a, 1991b); cryogenic cool-down tests (Coladonato et al.1990), and
attitude control (Bromberg & Croft 1985).

3. COBE operations in orbit

The COBE was launched aboard Delta rocket No. 189 at 1434 UT on November 18, 1989
from the Western Space and Missile Center at Vandenberg Air Force Base, California.
The DMR receivers began operating the day after launch. The dewar cover was ejected
three days after launch, and the FIRAS and DIRBE instruments began obtaining data
on the same day. During the first month in orbit, various tests were undertaken to
evaluate the performance of the instruments and spacecraft, and to optimize instrument
parameters.

The CUBE operated in a routine survey mode. The three instruments completed
their first full sky coverage by mid-June 1990, and returned high quality data until the
depletion of the liquid helium at 0936 UT September 21, 1990. The FIRAS, which had
surveyed the sky 1.6 times, ceased operating when the helium ran out, but the DMR
is still operating normally in all of its six channels. By November 1991 (over one year
after helium depletion) the dewar temperature at the DIRBE detectors was about 50 K.
The six longest wavelength bands were turned off in September 1990, but the four short
wavelength bands of the DIRBE continue to acquire data at reduced sensitivity. The
detector system responsivity in the short wavelength bands decreased about an order
of magnitude following cryogen depletion (largely due to the change in load resistance).
However, sky maps of the large scale interplanetary dust signals are of adequate quality
to permit searching for evidence of temporal changes on annual time scales.

In flight, the helium temperature inside the main cryogen tank was 1.40 K and the
temperature of the inner surface of the Sun-Earth shield was 180 K. As expected, the
Earth limb rose a few degrees above the Sun-Earth shield for a part of every orbit during
a three month period starting in May. At these times, the Earth’s radiation produced
thermal transients in the instruments and adversely affected data for a portion of each
orbit. Some of these data are still usable after careful calibration. One of the gyros for a
transverse control axis failed electrically on the fourth day after launch. On September
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7, 1991, one of the three gyros on the spin axis failed, but no data were lost and satellite
operations continue in the nominal orbit.

4. Spectral results from FIRAS

4.1. The spectrum of the primeval radiation

The discovery of the cosmic microwave background radiation by Penzias & Wilson (1965)
provided strong evidence for Big Bang cosmology. Radiation produced in the very early
universe was frequently scattered until about 300,000 years after the Big Bang. At this
point, the “recombination", the characteristic energy in the universe fell to the point
where previously free electrons could combine with nuclei to form neutral atoms. The 2.7
K radiation we see today has been traveling to us unimpeded since that time. The rapid
production and destruction of photons within the first year after the Big Bang forced
the radiation to have a Planck (blackbody) spectrum. Any mechanism that injected
energy into the Universe (e.g. a particle decay) between a year after the Big Bang and N
2000 years after the Big Bang would give rise to a radiation spectrum characterized by
a non-zero chemical potential. Thus there would be a Bose-Einstein spectral distortion
with the photon occupation number

1
M‘) N e(¢-u)/"T _ 1 (1)

where [L is the chemical potential and e is the photon energy. A Compton distortion is
usually parameterized in terms of a Compton y-parameter,

a'T: ,k T: — T dt 23/ me! /n ( 0MB)C ( )

where HT is the Thomson scattering cross«section and the integral is the electron pressure
along the line of sight. A Compton distortion of the spectrum can become important
when (1 + z)dy/dz > 1, which occurs N 2000 years after the Big Bang. The thermody—
namic temperature distortion observed at a frequency 11 is

6T ec—é—l
T~y(ze’—1—4) (3)

where a: = hu/kTCMB, h is the Planck constant, and k is the Boltzmann constant (Sun-
yaev & Zeldovich 1980). After recombination it becomes nearly impossible to distort
the CMB spectrum short of reionizing the universe. Thus a perfect Planck CMB spec-
trum would support the prediction of the simplest Big Bang model of the universe, while
spectral distortions would indicate the existence of more complicated releases of energy.

4.2. The FIRAS instrument

The FIRAS instrument is a polarizing Michelson interferometer (Mather 1982, Mather
et al.1991a) with two separate spectral channels. The low frequency channel, extending
from 0.5 mm to 1 cm, was designed to obtain a precision comparison between the CMB
spectrum and a Planckian calibration spectrum. The objective was to attain, in each
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5% wide spectral element and each 7° pixel, an accuracy and sensitivity of 11],, E’ 10—9
W m‘2 sr“, which is 0.1% of the peak brightness of a 2.7 K blackbody. The high
frequency channel, with a useful spectral range from 0.12 mm to 0.5 mm, was designed
to measure the emission from dust and gas in our galaxy and to remove the effect of
galactic radiation on the measurements of the CMB made in the low frequency channel.

The FIRAS uses a multimode flared horn (Mather, Toral, & Hemmati 1986) with
8. 7° beam. The instrument directly measures the difference between the sky signal
in its beam and that from a temperature-controlled internal reference body. The best
apodized spectral resolution is 0.2 cm—1 (6 GHz). The in-orbit absolute calibration of
FIRAS was accomplished by inserting an external blackbody calibrator periodically into
the mouth of the horn. The calibrator is a precision temperature-controlled blackbody,
with an emissivity greater than 0.999. The FIRAS uses bolometric detectors (Mather
1981, 1984a,b) in both bands.

In ten months of cryogenic operation the FIRAS obtained over two million inter-
ferograms. This complete data set is now undergoing careful analysis.

4. 3. FIRAS results

Analysis of the FIRAS data to date confirm the prediction of the simplest Big Bang model
that the CMB must have a thermal spectrum. Initial results based on only nine minutes
of data. showed that there is no deviation from a blackbody spectrum BV(T) as large as
1% of the peak brightness (Mather et al.1990a, 1991a) over the spectral range from 500
um to 1 cm. The temperature of the CMB in the direction of the north galactic pole is
2.735:l:0.060 K, where 60 mK is the initial conservative uncertainty in the calibration of
the thermometry of the absolute calibrator. These data also ruled out the existence of
a hot smooth intergalactic medium that could emit more than 3% of the observed x-ray
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in spectra between the poles of the dipole is that expected from two Doppler-shifted
blackbody curves. This result also indicates that the stability of the FIRAS instrument
is better than one part in 5000 over long time scales. The dipole amplitude measured
by FIRAS is 3.31 d: 0.05 mK in the direction (1,b)=(266° 5: 1°, 47.5° 2t 0.5°).

158 General Relativity and Gravitation 1992

5% wide spectral element and each 7° pixel, an accuracy and sensitivity of 11],, E’ 10—9
W m‘2 sr“, which is 0.1% of the peak brightness of a 2.7 K blackbody. The high
frequency channel, with a useful spectral range from 0.12 mm to 0.5 mm, was designed
to measure the emission from dust and gas in our galaxy and to remove the effect of
galactic radiation on the measurements of the CMB made in the low frequency channel.

The FIRAS uses a multimode flared horn (Mather, Toral, & Hemmati 1986) with
8. 7° beam. The instrument directly measures the difference between the sky signal
in its beam and that from a temperature-controlled internal reference body. The best
apodized spectral resolution is 0.2 cm—1 (6 GHz). The in-orbit absolute calibration of
FIRAS was accomplished by inserting an external blackbody calibrator periodically into
the mouth of the horn. The calibrator is a precision temperature-controlled blackbody,
with an emissivity greater than 0.999. The FIRAS uses bolometric detectors (Mather
1981, 1984a,b) in both bands.

In ten months of cryogenic operation the FIRAS obtained over two million inter-
ferograms. This complete data set is now undergoing careful analysis.

4. 3. FIRAS results

Analysis of the FIRAS data to date confirm the prediction of the simplest Big Bang model
that the CMB must have a thermal spectrum. Initial results based on only nine minutes
of data. showed that there is no deviation from a blackbody spectrum BV(T) as large as
1% of the peak brightness (Mather et al.1990a, 1991a) over the spectral range from 500
um to 1 cm. The temperature of the CMB in the direction of the north galactic pole is
2.735:l:0.060 K, where 60 mK is the initial conservative uncertainty in the calibration of
the thermometry of the absolute calibrator. These data also ruled out the existence of
a hot smooth intergalactic medium that could emit more than 3% of the observed x-ray
background. The thermal character of the CMB spectrum was subsequently confirmed
by Gush, Halpern, & Wishnow (1990), who obtained virtually the same temperature
over the spectral range 2—30 cm‘l. Neither mean CMB temperature quoted above are
corrected for the dipole distortion. These experiments found no submillimeter excess as
previously reported by Matsumoto et al.(1988b).

More recently, Shafer et a1.(1991) and Cheng et a1.(1991a) have examined FIRAS
spectra in a direction known previously to be very low in interstellar material (I = 142°,
17 = 55°). In this direction, known as Baade’s Hole, the temperature is 2.730 :E 0.060 K
and there is no deviation from a blackbody spectrum greater than 0.25 % of the peak
brightness. The lack of deviations from a Planck spectrum translate to a limit on a
chemical potential (see eqn 1) of “#l < 0.005 (95% CL) and a limit on the Compton
y—parameter (eqn 2) of y < 0.0004 (95% CL). These results rule out a hot smooth
intergalactic medium that could emit more than 1% of the observed x-ray background.

The dipole anisotropy of the CMB, presumed due to our peculiar motion relative to
the Hubble flow, can be seen clearly in the FIRAS data, and is consistent with previous
results (Cheng et al.1990). The FIRAS data show for the first time that the difference
in spectra between the poles of the dipole is that expected from two Doppler-shifted
blackbody curves. This result also indicates that the stability of the FIRAS instrument
is better than one part in 5000 over long time scales. The dipole amplitude measured
by FIRAS is 3.31 d: 0.05 mK in the direction (1,b)=(266° 5: 1°, 47.5° 2t 0.5°).

158 General Relativity and Gravitation 1992

5% wide spectral element and each 7° pixel, an accuracy and sensitivity of 11],, E’ 10—9
W m‘2 sr“, which is 0.1% of the peak brightness of a 2.7 K blackbody. The high
frequency channel, with a useful spectral range from 0.12 mm to 0.5 mm, was designed
to measure the emission from dust and gas in our galaxy and to remove the effect of
galactic radiation on the measurements of the CMB made in the low frequency channel.

The FIRAS uses a multimode flared horn (Mather, Toral, & Hemmati 1986) with
8. 7° beam. The instrument directly measures the difference between the sky signal
in its beam and that from a temperature-controlled internal reference body. The best
apodized spectral resolution is 0.2 cm—1 (6 GHz). The in-orbit absolute calibration of
FIRAS was accomplished by inserting an external blackbody calibrator periodically into
the mouth of the horn. The calibrator is a precision temperature-controlled blackbody,
with an emissivity greater than 0.999. The FIRAS uses bolometric detectors (Mather
1981, 1984a,b) in both bands.

In ten months of cryogenic operation the FIRAS obtained over two million inter-
ferograms. This complete data set is now undergoing careful analysis.

4. 3. FIRAS results

Analysis of the FIRAS data to date confirm the prediction of the simplest Big Bang model
that the CMB must have a thermal spectrum. Initial results based on only nine minutes
of data. showed that there is no deviation from a blackbody spectrum BV(T) as large as
1% of the peak brightness (Mather et al.1990a, 1991a) over the spectral range from 500
um to 1 cm. The temperature of the CMB in the direction of the north galactic pole is
2.735:l:0.060 K, where 60 mK is the initial conservative uncertainty in the calibration of
the thermometry of the absolute calibrator. These data also ruled out the existence of
a hot smooth intergalactic medium that could emit more than 3% of the observed x-ray
background. The thermal character of the CMB spectrum was subsequently confirmed
by Gush, Halpern, & Wishnow (1990), who obtained virtually the same temperature
over the spectral range 2—30 cm‘l. Neither mean CMB temperature quoted above are
corrected for the dipole distortion. These experiments found no submillimeter excess as
previously reported by Matsumoto et al.(1988b).

More recently, Shafer et a1.(1991) and Cheng et a1.(1991a) have examined FIRAS
spectra in a direction known previously to be very low in interstellar material (I = 142°,
17 = 55°). In this direction, known as Baade’s Hole, the temperature is 2.730 :E 0.060 K
and there is no deviation from a blackbody spectrum greater than 0.25 % of the peak
brightness. The lack of deviations from a Planck spectrum translate to a limit on a
chemical potential (see eqn 1) of “#l < 0.005 (95% CL) and a limit on the Compton
y—parameter (eqn 2) of y < 0.0004 (95% CL). These results rule out a hot smooth
intergalactic medium that could emit more than 1% of the observed x-ray background.

The dipole anisotropy of the CMB, presumed due to our peculiar motion relative to
the Hubble flow, can be seen clearly in the FIRAS data, and is consistent with previous
results (Cheng et al.1990). The FIRAS data show for the first time that the difference
in spectra between the poles of the dipole is that expected from two Doppler-shifted
blackbody curves. This result also indicates that the stability of the FIRAS instrument
is better than one part in 5000 over long time scales. The dipole amplitude measured
by FIRAS is 3.31 d: 0.05 mK in the direction (1,b)=(266° 5: 1°, 47.5° 2t 0.5°).



Recent results from COBE 159

FIRAS results also include the first nearly all-sky, unbiased, far infrared sur-
vey of the galactic emission at wavelengths greater than 120 um (Wright et 3.1.1991).
Wright et a1.present a map of the dust emission across the sky from the COBE FI-
RAS experiment. They write the absolute Galactic emission intensity in the form
I(V,l,b) = g(l/)G(l,b), where 9(1)) is the mean spectrum of the emission and G'(l,b)
is a dimensionless map. The dust component of the mean spectrum is given as

gnu) = 0.00016 (.7/30cm—1)1‘65 B,(23.3 K), (4)
or,

My) = 0.00022 (17/30cm_1)2 [3420.4 K) + 07344.77 K)] (5)
where 17 is the frequency in units of cm'l, and BV(T) is the Planck function. The total
far infrared luminosity of the Galaxy is inferred to be (1.8 :l: 0.6) X 101°LO (Wright
et 8.1.1991).

Wright et alreport that spectral lines from interstellar [C I], [C II], [N II], and CO
are detected in the mean galactic spectrum, g(u). The lines of [C II] at 158 pm and
[N II] at 205.3 mm were sufliciently strong to be mapped. This is the first observation of
the 205.3 pm line. Wright et alinterpret the [C II] line as coming from photodissociation
regions and the [N H] lines as partially arising from a diffuse warm ionized medium and
partially arising from dense H II regions. Petuchowski & Bennett (1992) agree with this
conclusion and further elaborate on it by apportioning the [C II] and [N II] transition
line intensities among various morphologies of the interstellar medium. Petuchowski
& Bennett (in preparation) have conducted observations on NASA’S Kuiper Airborne
Observatory to measure the scale height of the 205.3 um [N II] line with a much higher
angular resolution (~l arcmin) than FIRAS.

5. DMR: microwave anisotropy measurements and interpretations

Primordial gravitational potential fluctuations at the surface of last scattering give rise
to the distribution and motions of galaxies and to large angular scale fluctuations in the
CMB (Sachs & Wolfe 1967). In inflationary models of cosmology (Guth 1981, Linde 1982,
Albrecht & Steinhardt 1982) the gravitational energy fluctuations arise from quantum
mechanical fluctuations from 10‘35 seconds after the Big Bang that inflate to become
classical fluctuations with a nearly scale invariant power spectrum (Bardeen, Steinhardt,
& Turner 1983, Guth & Pi 1982, Hawking 1982, Starobinskii 1982). Inflation theories are
not yet sufficiently constrained to be able to make accurate predictions of the amplitude
of current energy fluctuations. Rather, estimates of the energy fluctuations inferred from
observations are a constraint on the theories.

The large angular scale CMB‘temperature anisotropy AT and gravitational poten-
tial fluctuations at the surface of last scattering A11) are simply related by 3AT/T =
AQ/cz for adiabatic fluctuations in a universe with no cosmological constant (A0 = 0).
On much smaller scales than the DMR measures (9 < 4°), i.e. on scales in causal contact
with one another after the universe became matter dominated, the gravitational poten-
tial fluctuations are aflected by the growth of structures through gravitational instability
(e.g. Bond & Efstathiou 1987). Usually the mass density is written as

M, t) = 50 + 603. 0). (6)
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where 6(E,t) describes the spatial density fluctuations. Density fluctuations are often
considered in terms of their spectrum by comoving wavenumber, k. The Fourier relations

flE= ifiwflflw) aa:/fifl%®y (0@fl3 ’
Newtonian gravitational potential fluctuations are related to density fluctuations through
the Poisson equation, V2<I> = 47e, and its Fourier transform (I);c = —41rGfia26k/k2,
where a is the cosmological scale factor relating the physical scale size r to the comoving

are

scale size 2:, r = a(t)z.
A “transfer function”, T(k), relates the initial primordial density fluctuations at

the epoch t.- to those observed at the present epoch, to: 5(k,to) o< T(k)6(k,t,~). By
convention, on large angular scales (small k) TUE) = 1 for Ao=0 and 90 = 1 cosmologies.
That is, the fluctuations on the largest angular scales are primordial and unaffected
by any physical evolution since there was never sufficient time for causal contact on
this scale. The statistics of the primordial density fluctuations, 5(k,t,~), are described
by a primordial power spectrum, the Peebles-Harrison—Zeldovich (Peebles & Yu 1970,
Harrison 1970, Zeldovich 1972) spectrum,

Pmaazhaaaw>=Aw (@

where the angle brackets represent a spatial average over a large volume of the universe.
For this spectrum the rms Sachs—Wolfe potential fluctuations (and the resulting CMB
temperature anisotropies) as a function of angle 0 are Adam, /c2 : 3AT,,,,,/T 0( 9(1_")/2
for 90 = 1 and 024° (Sachs & Wolfe 1967). Note that P(k,to) = T2(k)P(k,t,-) :
Ak"T2(k). The scale invariant value n : 1 gives gravitational potential fluctuations
with an rms amplitude that is independent of scale size and a large angular scale CMB
temperature fluctuation spectrum that is approximately independent of the separation
angle. For 00 < 1 and A0 : 0 the above expression is still approximately true for angles
0 < (lo/(1 — nor/2.

Measurements of the abundances of the light elements together with nucleosynthesis
calculations imply that 0.011 S Qghz S 0.037 (Walker et al.1991, Olive et al.1990), where
93 is the fraction of the critical mass density (pa = 3H3/87rG = 1.88112 X 10‘29 gm cm'a)
in baryons and h = Ho/100 km s'1 Mpc‘l. Inflation requires that (20 + Ao/3Hg = 1 so
that either A0 yé 0, or inflation theory is incorrect, or most of the mass in the universe
is yet to be detected nonbaryonic material. It is useful to assume that this nonbaryonic
material does not interact with light. This simultaneously explains why it is not seen,
and allows it to begin clustering while the universe was radiation dominated, earlier than
is possible for the baryonic matter. The nonbaryonic material is broadly categorized as
“hot” or “cold” dark matter, depending on whether it was or was not relativistic when
the universe became matter-dominated. A neutrino with mass is a favorite hot dark
matter candidate.

Bond & Efstathiou (1984) calculated the transfer function of the “standard cold
dark matter model” assuming 7‘0n 2 2.7 K, 93 << QCDM, and three massless neutri-
nos with T0,u = 1.9 K, giving

1

: [1+(ak + (bk)3/2 + (ck)2)V]l/uTM) (0
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where a = 6.4/(Qoh2) Mpc7 b = 3.0/(Qoh2) Mpc, c = 1.7/(Qoh2) Mpc, and u = 1.13.
The scale size corresponding to the time when CDM and radiation have equal energy
densities is 10/(Qoh2) Mpc. Holtzman (1989) presents the results of calculations of T(k)
for 94 cosmological madels.

A successful model of cosmology and the evolution of structure must match the
amplitude and spectrum of density fluctuations from the galaxy scale to the horizon
scale. Several observables have been derived from galaxy surveys, including the two-
point correlation function, the amplitude of its integral, the rms mass fluctuation in
a fixed radius sphere, and rms galaxy streaming velocities. The two point correlation
function is defined by {(m) = (5p(5’ + 5)5p(5’)/fi2). 5(3) is simply the Fourier conjugate
of the power spectral density

P k — d5 4” * 10( )— We €(lmll- ( )

The integral of the two point correlation function is J3(R) E fan f(z):n2d:c (Peebles 1981).
Based on the CfA redshift survey Davis & Peebles (1983) find J3(10/h Mpc) x 27711—3
Mpc3 and J3(25/h Mpc) % 780h"3Mpc3. J3 relates directly to the power spectral
density of fluctuations according to

J3(R) : 47r/ PS“) [sin kR — krcoskR] die (11)
where the J3 definition assumed a spatial top—hat sampling or window function that
results in the k—space weighting function 3(kR)‘3 (sin kR — kR cos kR). Galaxies are not
necessarily distributed in the same way as the mass density fluctuations. In general
a linear proportionality is assumed, (zip/p)g : b(6p/p)g where the constant b is the
“biasing factor”. The two point correlation function then scales as {g : mg. The rms
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where a = 1.6, fl = 2.4, kg = 0.19 h Mpc‘l, and he m 0.025 h Mpc‘l. More recently, in
light of the new COBE results summarized below, Peacock prefers kc % 0.033 h Mpc‘1
(private communication).

Hence, measurements of large scale (i.e. primordial) CMB anisotropies can provide
the observational link between the production of gravitational potential fluctuations in
the early universe and the observed galaxy distributions and velocities today. Large scale
CMB anisotropy measurements provide both the amplitude and the power spectrum of
the primordial fluctuations . Large scale anisotropy measurements are usually expressed
in terms of a multipole expansion and a correlation function. The multipole expansion
of the CMB temperature as a function of sky location is

= E Z aszm(97¢). (14)
l m=—l

where t(0,¢) are the spherical harmonic functions. Since DMR is a differential ex-
periment, as are almost all anisotropy experiments, the l = 0 monopole term is not
observed. (It is observed by FIRAS.) The l = l dipole term is also dropped since it is
dominated by the Doppler effect due to our local peculiar velocity and not by cosmic
perturbations. Thus the l = 2 quadrupole term is the first term of interest. We are
at liberty to select any coordinate system we choose. Since galactic emission dominates
the sky signal, we choose galactic coordinates, with the usual galactic coordinate angles
angles 1 and b. We define Q(l, b) to be the l = 2 term of equation (14) and rewrite the
five 37:2,". components:

Q(l,b) : Q1(3sin2 b — 1)/2 + Q2 sin 2bcos l + Qgsin 2bsinl+
Q4 cos2 bcos 21+ Q5 cos2 bsin 21 (15)

where the rms quadrupole amplitude is

l 4 3Q3". : g 41 Q20, b)d9 = 1—,;(ZQE + Q3 + Q3 + Q2 + Q2). (16)
There is a small kinematic quadrupole, Qrm, = 1.2 MK, from the second order
terms in the relativistic Doppler expansion (Peebles & Wilkinson 1968), for which
(Q1,Q2,Q3,Q4.Qs)=(0.9, -0.2, -2.0, —0.9, 0.2) #K.

The measured correlation function determines the parameters of the fluctuation
power spectrum. The correlation function is

:2 AlW )2(P¢ (,cos(a)) (17)
(>1

where P; are Legendre polynomials, and a 32° rms Gaussian beam gives a weighting
W(l) = exp[—%(l(l + 1)/17.82)] and

12 2
: —— m 1AT: 4” and! I ( 8)

are the rotationally-invariant rms multipole moments. As with the spherical harmonic
expansion, the l = 0 is excluded from the correlation function since it is not measured
by differential instruments, and the l = 1 term is excluded because it is contaminated
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by the kinematic dipole. The l = 2 quadrupole term is sometimes excluded since the
quadrupole has only 21+ 1 = 5 degrees of freedom, and thus has an intrinsically high
statistical, or “cosmic” variance, independent of the measurement. For a power law
primordial fluctuation spectrum the pre iicted moments, as a function of spectral index
n < 3, are given by Bond & Efstathiou (1987):

,(21 + 1) ra + (n —1)/2)r((9 — um)
< ”'2 >= “2"“) 5 m + (5 — n)/2)I‘((3 + n)/2)‘ (19)

For n = 1 this simplifies to

6 21 1
< AT!2 >=(Qrms)zgl(1:1) (20)

Smoot et al.(1991b) presented preliminary DMR results based on six months of
data. Smoot et al.(1992) describe results based upon the first year of DMR data, Ben-
nett et al.(1992a) describe the calibration procedures, Kogut et al.(1992) discuss the
treatment of systematic errors, and Bennett et al.(1992b) discuss the separation of cos-
mic and Galactic signals. Wright et 31.0992) compare these data to other measurements
and to models of structure formation through gravitational instability. Previously pub-
lished large-angular-scale anisotropy measurements include Fixsen et al.(1983), Lubin
et al.(1985), Klypin et al.(1987), and Meyer et al.(1991). Some excellent reviews of CMB
anisotropy and cosmological perturbation theory include Bertschinger (1992), Efstathiou
(1990), Kolb & Turner (1990), Peebles (1971, 1980), and Wilkinson (1986).

5.1. The DMR instrument and data processing

The COBEDMR instrument is described by Smoot et al. (1990). DMR operates at three
frequencies: 31.5, 53 and 90 GHz (wavelengths 9.5, 5.7, and 3.3 mm), chosen to be near
the minimum in Galactic emission and near the CMB maximum. Wright et al. (1990)
have used the FIRAS and DMR data to show that the ratio of the galactic emission to
that of the CMB reaches a minimum between 60 and 90 GHz. There are two nearly
independent channels, A and B, at each frequency. The orbit and pointing of the COBE
result in a complete survey of the sky every six months while shielding the DMR from
terrestrial and solar radiation (Boggess et 311992).

The DMR measures the difference in power received between regions of the sky
separated by 60°. For each radiometer channel a baseline is subtracted and the data
are calibrated. Data are rejected when the limb of the Earth is higher than 1° below
the Sun/Earth shield plane, when the Moon is within 25° of a beam center, when any
datum deviates from the daily mean by more than 50, or when the spacecraft telemetry
or attitude solution is of poor quality. Small corrections are applied to remove the
estimated emission from the Moon and Jupiter in the remaining data. Corrections are
also applied to remove the Doppler effects from the spacecraft’s velocity about the Earth
and the Earth’s velocity about the solar system barycenter. A least-squares minimization
is used to fit the data to spherical harmonic expansions and to make sky maps with 6144
nearly equal area pixels using a sparse matrix technique (Torres et al. 1989, Janssen
& Gulkis 1992). The DMR instrument is sensitive to external magnetic fields. Extra
equations are included in the sparse matrix to allow these magnetic susceptibilities to
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be fit separately as a linear function of the Earth’s field and the radiometer orientation.
The magnetic corrections are on the scale of 10 to 100 pK in the time-ordered data.
Residual uncertainties in the individual radiometer channel maps, after correction, are
typically 2 pK and never more than 8.5 12K.

Kogut et al.(1992) have searched the DMR data for evidence of residual systematic
effects. The largest such effect is the instrument response to an external magnetic field.
Data binned by the position of the Earth relative to the spacecraft show no evidence
for contamination by the Earth’s emission at the noise limit (47 pK at 95% CL). The
contribution of the Earth’s emission to the maps is estimated to be less than 2 MK.
The time-ordered data with antenna beam centers more than 25° away from the Moon
are corrected to an estimated accuracy of 10% (4 pK) of the lunar flux. The estimated
residual effect on the maps is less than 1 ,uK. Kogut et allist upper limits for the effects of
variations in calibration and instrument baselines, solar and solar system emissions, RFI,
and data analysis errors. The quadrature sum of all systematic uncertainties in a typical
map, after corrections, is < 8.5 [1K for rms sky fluctuations, < 3 [AK for the quadrupole
and higher-order multipole moments, and < 30 ”K2 for the correlation function (all
limits 95% CL).

5.2. The DMR anisotropy

The DMR maps are dominated by the dipole anisotropy and the emission from the
Galactic plane. The dipole anisotropy (AT/T % 10‘3) is seen consistently in all channels
with a thermodynamic temperature amplitude 3.36:t0.1 mK in the direction I = 264.7":t
0.8°, b = 48.2°:l:0.5°, consistent with the FIRAS results, above. Our motion with respect
to the CMB (a blackbody radiation field) is assumed to produce the dipole anisotropy,
so the dipole and associated % 1.2 pK rms kinematic quadrupole are removed from the
maps.

The DMR instrument noise and the intrinsic fluctuations on the sky are indepen-
dent and thus add in quadrature to give the total observed signal variance

03b- : ”i3MR + ny- (21)

The (705, is estimated from the two channel (A+B)/2 sum maps, and the (A-B)/2 dif-
ference maps provide an estimate of aDMR, yielding the sky variance 05ky(10°) = 30 :t 5
pK for lb] > 20°. The observations are made with a 7° beam, and the resulting maps are
smoothed with an additional 7° Gaussian function, resulting in the effective 10° angular
resolution.

The correlation function, C(a), is the average product of temperatures separated by
angle a. It is calculated for each map by rejecting all pixels within the Galactic latitude
band [bl < 20°, removing the mean, dipole, and quadrupole from the remaining pixels
by a least squares fit, multiplying all possible pixel pair temperatures, and averaging
the results into 26" bins. Bennett et a1.(1992b) conclude that the galactic contribution
to the correlation signal is small for |b| > 15°. This is consistent with the fact that
the correlation function and rms sky fluctuation are insensitive to the Galactic latitude
cut angles so long as |b| < 15° is excluded. The DMR correlation functions exhibit
temperature anisotropy on all angular scales greater than the beam size (7°) and differ
significantly (> 70) from the flat correlation function due to receiver noise alone.
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with a thermodynamic temperature amplitude 3.36:t0.1 mK in the direction I = 264.7":t
0.8°, b = 48.2°:l:0.5°, consistent with the FIRAS results, above. Our motion with respect
to the CMB (a blackbody radiation field) is assumed to produce the dipole anisotropy,
so the dipole and associated % 1.2 pK rms kinematic quadrupole are removed from the
maps.

The DMR instrument noise and the intrinsic fluctuations on the sky are indepen-
dent and thus add in quadrature to give the total observed signal variance

03b- : ”i3MR + ny- (21)

The (705, is estimated from the two channel (A+B)/2 sum maps, and the (A-B)/2 dif-
ference maps provide an estimate of aDMR, yielding the sky variance 05ky(10°) = 30 :t 5
pK for lb] > 20°. The observations are made with a 7° beam, and the resulting maps are
smoothed with an additional 7° Gaussian function, resulting in the effective 10° angular
resolution.

The correlation function, C(a), is the average product of temperatures separated by
angle a. It is calculated for each map by rejecting all pixels within the Galactic latitude
band [bl < 20°, removing the mean, dipole, and quadrupole from the remaining pixels
by a least squares fit, multiplying all possible pixel pair temperatures, and averaging
the results into 26" bins. Bennett et a1.(1992b) conclude that the galactic contribution
to the correlation signal is small for |b| > 15°. This is consistent with the fact that
the correlation function and rms sky fluctuation are insensitive to the Galactic latitude
cut angles so long as |b| < 15° is excluded. The DMR correlation functions exhibit
temperature anisotropy on all angular scales greater than the beam size (7°) and differ
significantly (> 70) from the flat correlation function due to receiver noise alone.
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Recent results from COBE 165

All six channels show a statistically significant quadrupole signal. A comparison

of the fitted quadrupoles between channels and frequencies, and between the first and
second six months of data, shows that individual quadrupole components, Qg, typi-

cally differ from map to map by z 10 aK with comparable uncertainty. Determination

of the cosmic quadrupole is linked to its separation from Galactic emission (Bennett

et al.1992b), summarized below. Discrete extragalactic sources individually contribute

less than 2 [1K in the DMR beam and the expected temperature variations are less than

1 ,uK (Franceschini et al. 1989).

5.3. Separation of galactic signals (‘9’ the cosmic quadrupole

The DMR anisotropy maps are sufficiently sensitive and free from systematic errors that

our knowledge of Galactic emission is a limiting factor in interpreting the measurements

of the 1-year DMR maps. The detected signals expressed in thermodynamic temperature

are nearly constant amplitude: the rms fluctuations on a 10° scale are proportional

to V‘o'ail and the quadrupole and correlation functions o< ”—0.2i1‘ The flat spectral

index of the DMR anisotropy, without correction for Galactic emissions, is consistent

with a cosmic origin and inconsistent with an origin from a single Galactic component.

However, from this fact alone we are unable to rule out a correlated superposition of dust,

synchrotron, and free—free emission and thus more detailed galactic emission models are

required. Bennett et al.(1992b) constructed preliminary models of microwave emission

from our Galaxy based on COBE and other data for the purpose of distinguishing cosmic

and Galactic signals.
Four emission components are important at microwave wavelengths. CMB

anisotropies are assumed to produce differences in the measured antenna temperature

according to ATA : AT :I:ze‘”/(eI — l)2, where z = hu/kT, T is thermodynamic temper—
ature. Synchrotron emission arises from relativistic electrons accelerated by magnetic

fields. Free-free emission occurs when free electrons are accelerated by interactions with

ions. Thermal emission from dust is also important at microwave wavelengths.

The brightest pixels in the DMR maps are TA:5.9 :t 0.4 mK at 31.5 GHz, 1.9:t0.2

mK at 53 GHz, both at (l,b)=(337°, —1°), and 1.3i0.2 mK (348°,+1°) at 90 GHZ. Galactic

plane emission would have to be removed to better than 1% to reveal cosmologically

interesting fluctuations in the CMB at low Galactic latitudes, so our preliminary models

concentrate on |b|>lQ°.
The intensity of synchrotron radiation is given by the integral 1(u) =

ff P(u,§,E)N(E,l)dE dl where P(u,§,E) is the power emitted at a frequency 1/ by

a single electron of energy E in a magnetic field 5-", and N(E,f)dE is the number of

relativistic electrons of energy E per unit volume at the position Talong the line of

sight. Since N(E,l) and EU) are not known for every position in the Galaxy, approx-

imations must be made to model synchrotron emission. Bennett et al.(1992b) use the

local electron spectrum in conjunction with radio data to approximate the synchrotron

integral.
Free-free emission is characterized by an antenna temperature that depends only

on the emission measure and electron temperature along the line of sight for each fre-

quency, with a spectral index flff = 2 + [10.48 + 1.51n(T¢/8000 K) —- ln VGH,]'1. ,6 is
the spectral index of the antenna temperature, TA o< V_E, which relates to the flux
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density, 5(11), by 5(11) 0: 2kTA(l/)Vz/Cz. With Tc = 8000 K (Reynolds 1985), the ra-
tio of the 53 GHz free-free antenna temperature to Ha intensity can be expressed as
TA(pK)/I(Rayleigh) = 0.83 ,uK/0.44 Rayleigh = 2 pK/Rayleigh, almost independent
of the electron temperature. Re) nolds (1984, 1992) has observed several high-latitude
lines of sight with a 0.8° beam and reports that the high latitude Ha diffuse Galactic
distribution is [(R) :8 1.2 csc lbl for lbl > 15°. Deviations from a cosecant-law are larger
than the z 15% Ha measurement uncertainties (Reynolds 1992).

Another estimate of the high latitude emission measure comes from the COBE
FIRAS measurement of the N+ ground state transition at 205 um (Wright et 3.1.1991).
The observed intensity of this line is I(N+) % (7 :1: 2) x 10‘8 csc lbl erg 5*1 cm“zsr‘1 for
lbl > 15° compared with I(N+) z 2.4x 10'8csclbl erg s“1 cm‘zsr‘l predicted by Reynolds
(1992) for the diffuse component. In doing Ha background measurements, Reynolds picks
locations that are free from discrete sources, while the COBE observations do not exclude
sources. The COBE observations may also include emission with velocities outside of
Reynolds’ Ha passband. If we assume that the excess observed N+ arises from the full sky
(unbiased) sampling by FIRAS and any Ha bandwidth exclusions by Reynolds, then we
can use the ratio of measured-to—predictcd N+ to correct the diffuse free—free predictions
for these effects. We deduce from the above that a correction factor of N3 is required;
the free-free emission is then approximately TAULK) % 7csc lbl for lbl > 15° at 53 GHZ.
This prediction is only approximate since it depends on assumptions of the chemical
abundance of nitrogen and its fractional population in the N+ state. Our factor of N3
to convert from diffuse to full sky-averaged Ha intensity is consistent with the Reynolds
(1992) a priori estimate of a factor of ~2. Unfortunately, there exists no full sky survey
of free-free emission to the sensitivity required by the CUBE DMR, so the DMR 31.5
GHz map must serve this purpose. We compare this with the cosecant—law predictions
discussed above and find good agreement.

Along each line of sight the observed dust emission is the sum over the emission
from each dust grain. Since the grain temperatures, emissivities, and spatial distributions
are not known, it is not possible to make a priori full sky dust emission models. We
must rely, instead, on full sky measurements of the dust intensity at higher frequencies
and extrapolate these with empirical spectral fits. The dust antenna temperature is
TA = 33 G(l,b) R: 11K , where R§=(0.43, 1.0, 2.3) at (31.5, 53, 90 GHZ) and C(l, b) is the
dimensionless map of the dust distribution from FIRAS, discussed earlier. G(l,b) % 1
in the plane of the Galaxy and ranges from 0.03 to 0.1 at high Galactic latitudes.

Bennett et al.(1992b) present three approaches to modeling the Galactic emission
signal in the DMR maps. A “subtraction technique” makes use of external data to sub-
tract Galactic emission maps from the DMR maps. The dust and synchrotron emission
models, described above, were subtracted from the DMR maps. Since no map exists
of the ionized component of our Galaxy, the 31 GHz residual map is used to subtract
the free-free emission from the 53 and 90 GHz DMR maps. The angular autocorrela-
tion functions of the individual emission components show that the Galactic components
have different angular correlations than the residual cosmic signal. In fact, the cosmic
correlation function is largely unaffected by the Galactic model subtraction. A “fitting
technique” directly fits the DMR maps pixel-by-pixel. The results of the fit are maps
of free-free and Planckian emission. A “combination technique” uses a linear combina-
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tion of the DMR 31.5, 53, and 90 GHz maps to minimize the Galactic emission without

recourse to Galactic models or other data. The subtraction, fitting, and combination

techniques produce consistent results. The combination technique is independent of the

fitting and subtraction techniques, aside from the use of DMR data and the asrumed

free—free spectral index. Bennett et a1.conclude that no known Galactic emission com-

ponent or superposition of components can account for most of the observed anisotropy

signal. In the absence of significant extragalactic source signals or systematic errors, as

argued above, this signal must be intrinsic to the CMB radiation.

DMR maps, with the modeled Galactic emission removed, are fit for a quadrupole

distribution. Bennett et alderive a cosmic quadrupole, corrected for the expected kine-

matic quadrupole, of Qm, = 13 :l: 4 aK, (AT/Th, = (4.8 :l: 1.5) x 10—6, for |b| > 10°.
When Galactic emission is removed from the DMR data, the residual fluctuations are vir-

tually unaffected and therefore they are not dominated by any known Galactic emission

component (5).

5.4. Interpretation of the DMR anisotropy

The anisotropy detected by the DMR is interpreted as being a direct result of primordial

fluctuations in the gravitational potential. Assuming a power spectral density of density

fluctuations of the form P(k) : Ak", the best—fit results are n = 1.1:l:0.5 with Qrm,_p5 :

16i4 ”K. Qfm,_p3 is the rms quadrupole amplitude resulting from this power spectrum

fit, i.e. making use of fluctuation information from all observed angular scales, as opposed

to the Q"... derived from a direct quadrupole fit. Forcing the spectral index to n = 1

gives Qflnkps = 16.7 :l: 4 pK and increases the X2 from 79 to 81 for 68 degrees of

freedom. Interpreted as a power—law spectrum of primordial fluctuations with a Gaussian

distribution, the AT,2 in each horizon have a X2 distribution of 21+ 1 degrees of freedom,

giving a cosmic variance for observations within a single horizon volume in the universe

of 2 < AT,2 >2 /(2l + 1). Best fit values are n = 1.15%; and Q,,,,,_Ps = 16.3 i 4.6 ,LK
including the cosmic variance, with a X2 of 53. Cross«correlation of the 53 GHz and 90

GHz maps are consistent with a power law spectra with index n = 1:}: 0.6 and amplitude

Q,m._ps = 17 :i: 5pK, including cosmic variance.

The observed cosmic quadrupole from the maps [Q,,,,, = 13 d: 4pK from Bennett

et al.1992b (see above)] is slightly below the mean value predicted by the higher-order
moments deduced from the correlation function (Q,m,_p5 = 16 :l: 4uK). This is a likely

consequence of cosmic variance: the mode of the X2 distribution is lower than the mean.

A map quadrupole value of 13 aK or lower would be expected to occur 35% of the time

for an n = 1 universe with Q,m,_p5 = 16 MK. The results above exclude the quadrupole

before computing C(01). Including the quadrupole in computing C(a) increases the X2,
raises n to 1.5, and decreases Q,m,_p5 to 14aK.

The measured parameters [asky(10°), QM”, Q,m,_ps, 0(a), and n] are consistent

with a Peebles-Harrison-Zeldovich (scale invariant) spectrum of perturbations, which

predicts Q,,,., = (1t3;2)Q,m,_p5 and asky(10°) = (2.0 :l: 0.2)Q,m,_p5. The theoretical

68% CL errors take into account the cosmic variance due to the statistical fluctuations in

perturbations for our observable portion of the Universe. The minimum Q...“ for models

with an initial Peebles—Harrison-Zel’dovich perturbations, normalized to the local large-
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techniques produce consistent results. The combination technique is independent of the

fitting and subtraction techniques, aside from the use of DMR data and the asrumed

free—free spectral index. Bennett et a1.conclude that no known Galactic emission com-

ponent or superposition of components can account for most of the observed anisotropy

signal. In the absence of significant extragalactic source signals or systematic errors, as

argued above, this signal must be intrinsic to the CMB radiation.

DMR maps, with the modeled Galactic emission removed, are fit for a quadrupole

distribution. Bennett et alderive a cosmic quadrupole, corrected for the expected kine-

matic quadrupole, of Qm, = 13 :l: 4 aK, (AT/Th, = (4.8 :l: 1.5) x 10—6, for |b| > 10°.
When Galactic emission is removed from the DMR data, the residual fluctuations are vir-

tually unaffected and therefore they are not dominated by any known Galactic emission

component (5).

5.4. Interpretation of the DMR anisotropy

The anisotropy detected by the DMR is interpreted as being a direct result of primordial

fluctuations in the gravitational potential. Assuming a power spectral density of density

fluctuations of the form P(k) : Ak", the best—fit results are n = 1.1:l:0.5 with Qrm,_p5 :

16i4 ”K. Qfm,_p3 is the rms quadrupole amplitude resulting from this power spectrum

fit, i.e. making use of fluctuation information from all observed angular scales, as opposed
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scale galaxy streaming velocities, is predicted to be 12 ,uK, independent of the Hubble
constant and the nature of dark matter (Gorski 1991, Schaefer 1991).

These observations are consistent with inflationary cosmology models. The natural
interpretation of the DMR signal is the observation of very large (presently >>100 Mpc)
structures in the Universe which are little changed from their primordial state (t << 1
sec). These structures are part of a power law spectrum of small amplitude gravitational
potential fluctuations that on smaller length scales are sources of the large scale structure
observed in the Universe today. The DMR data provide strong support for gravitational
instability theories (Wright et al.1992). Wright et alcompare the 94 cosmological models
for which Holtzman (1989) has computed a transfer function, T00), with the DMR
anisotropy results. None of the Holtzman isocurvature models are compatible with the
DMR anisotropy amplitude for a biasing factor b < 4. Wright et al.find that three
Holtzman models fit the observational data (galaxy clustering, galaxy streaming velocity,
and CMB quadrupole amplitude) reasonably well. These models are described below.

A model with vacuum energy density with 0,,“ : Ao/3Hg = 0.8, H0 2 100 km s—1
Mpc‘l, 93 = 0.02, QCDM = 0.18 is an excellent fit to the observational data (see, e.g.
Gorski, Silk & Vittorio 1992; Efstathiou, Bond & White 1992, and Peebles 1984, 1991).

A “mixed dark matter” (MDM) model that fits the data uses both hot dark matter
(a massive neutrino with QHDM : 0.3) and cold dark matter (QcpM : 0.6) with baryonic
dark matter 93 : 0.1 and Ho 2 50 km s-1 Mpc‘l. See, for example, Efstathiou, Bond
& White (1992), Davis, Summers & Schlegel (1992), and van Dalen & Schaefer (1992)
for further recent discussions of mixed dark matter models.

An open universe model with (lo : 0.2, $23 : 0.02, and QCDM = 0.18 for Ho 2 100
km s"1 Mpc‘l satisfies the observations, except perhaps for the galaxy rms peculiar
velocities, but is in conflict with the inflation model and theoretical prejudices for 90 = 1
(see Gouda & Sugiyama 1992, Peebles 1984, 1991).

The unbiased standard cold dark matter is in conflict with galaxy clustering data,
even without the constraint of the COBE data (e.g. Vogeley et al.1992, Loveday
et al.1992). Hogan (1991, 1992, 1993) and Hoyle & Burbidge (1992) interpret the COBE—
DMR results in terms of models where the temperature anisotropies do not arise from
gravitational potential fluctuations on the surface of last scattering. Bennett & Rhie
(1992) interpret the DMR data in terms of global monopoles and textures.

In summary, the COBE detection of OMB temperature anisotropy has added an-
other important observational piece of knowledge to the cosmic puzzle. There is not yet
a clear favorite among the models that attempt to account for all of the pieces, nor is
there likely to be one without further observational information.

6. The DIRBE experiment

6.1. The cosmic infrared background radiation

The Difl'use Infrared Background Experiment (DIRBE) is the first space experiment
designed primarily to measure the CIB radiation. The aim of the DIRBE is to conduct
a definitive search for an isotropic CIB radiation, within the constraints imposed by the
local astrophysical foregrounds.
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Cosmological motivations for searching for an extragalactic infrared background

have been discussed in the literature for several decades (early papers include Partridge
81, Peebles 1967; Low & Tucker 1968; Peebles 1969; Harwit 1970; Kaufman 1976). Both
the cosmic redshift and reprocessing of short-wavelength radiation to longer wavelengths
by dust act to shift the short-wavelength emissions of cosmic sources toward or into the
infrared. Hence, the wide spectral range from 1 to 1000 ,um is expected to contain much
of the energy released since the formation of luminous objects, and could potentially
contain a total radiant energy density comparable to that of the CMB.

The CIB radiation has received relatively little attention in the theoretical liter-

ature compared to that devoted to the CMB (Negroponte 1986), which has a central

significance to Big Bang cosmology and quite distinctive and definite predictions as to

its character. However, advances in infrared instrumentation, and especially the intro-

duction of cryogenically cooled infrared instruments on space missions, have stimulated
increasing attention to prediction of the character of the CIB radiation (Fabbri and

Melchiorri 1979; Bond, Carr, and Hogan 1986; McDowell 1986; Fabbri et al.1987; Fab-

bri 1988; Bond, Carr, and Hogan 1991). Measurement of the spectral intensity and
anisotropy of the CIB radiation would provide important new insights into intriguing
issues such as the amount of matter undergoing luminous episodes in the pregalactic

Universe, the nature and evolution of such luminosity sources, the nature and distribu-

tion of cosmic dust, and the density and luminosity evolution of infrared—bright galaxies.

Observing the CIB radiation is a formidable task. Bright foregrounds from the

atmosphere of the Earth, from interplanetary dust scattering of sunlight and emission of

absorbed sunlight, and from stellar and interstellar emissions of our own Galaxy dominate

the diffuse sky brightness in the infrared. Even when measurements are made from

space with cryogenically cooled instruments, the local astrophysical foregrounds strongly

constrain our ability to measure and discriminate an extragalactic infrared background.

Furthermore, since the absolute brightness of the CIB radiation is of paramount interest
for cosmology, such measurements must be done relative to a well established absolute
flux reference, with instruments which strongly exclude or permit discrimination of all
stray sources of radiation or offset signals which could mimic a cosmic signal.

Hauser (1991b) lists recent experiments capable of making absolute sky brightness

measurements in the infrared (for a compilation including some earlier measurements,
see Negroponte 1986). Instruments or detector channels designed specifically to mea-
sure that part of the spectrum dominated by the CMB radiation have been excluded.

Murdock 85 Price (1985) flew an absolute radiometer with strong stray light rejection

on a. sounding rocket in 1980 and 1981. Their primary objective was measuring scat-

tering and emission from interplanetary dust, and no attempt was made to extract an
extragalactic component. Matsumoto et al.(1988a) flew a near-infrared experiment on
a rocket in 1984. They have reported possible evidence for an isotropic residual near 2

pm, perhaps in a line feature, for which they cannot account in their models of emis-
sion from the interplanetary medium and the Galaxy. This group has flown a modified

instrument early in 1990 to investigate further this result (Noda et 31.1992). The IRAS
sky survey instrument, though not specifically designed for absolute background mea-

surements, was, within the limits of long term stability, capable of good relative total

sky brightness measurements, and so is included in this list. Uncertainties in the IRAS
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absolute calibration have impeded efforts to extract an estimate of the CIB radiation
(Rowan— Robinson 1986). The FIRAS high frequency channel (100 to 500 pm), with its
all-sky coverage, excellent stray light rejection, absolute calibration, and high sensitivity,
also promises to be an important instrument for CIB radiation studios. Quantitative
comparison of the measurements from the experiments discussed above, and a summary
of current CIB radiation limits are discussed further below.

6.2. The DIRBE instrument

The experimental approach is to obtain absolute brightness maps of the full sky in 10
photometric bands (J[1.2], K[2.3], L[3.4], and M[4.9]; the four IRAS bands at 12, 25,
60, and 100 pm; and 140 and 240 ,um bands). To facilitate discrimination of the bright
foreground contribution from interplanetary dust, linear polarization is also measured in
the J, K, and L bands, and all celestial directions are observed hundreds of times at all
accessible angles from the Sun in the range 64° to 124°. The instrument rms sensitivity
per field of view in 10 months is /\I(/\) : (1.0, 0.9, 0.6, 0.5, 0.3, 0.4, 0.4, 0.1, 11.0,
4.0) X 10—9 W m—2 sr‘l, respectively for the ten wavelength bands listed above. These
levels are generally well below both estimated CIB radiation contributions (e.g., Bond,
Carr, Hogan 1986) and the total infrared sky brightness.

The DIRBE instrument is an absolute radiometer, utilizing an off—axis Gregorian
telescope with a 19-cm diameter primary mirror. Since the DIRBE was designed to
make an absolute measurement of the spectrum and angular distribution of the diffuse
infrared background it must have extremely strong rejection of stray light. The optical
configuration (Magner 1987) has strong rejection of stray light from the Sun, Earth limb,
Moon or other off—axis celestial radiation, or parts of the COBE payload (Evans, 1983;
Evans and Breault 1983). Stray light rejection features include both a secondary field
stop and a Lyot stop, super—polished primary and secondary mirrors, a reflective fore-
baf'lle, extensive internal baffling, and a complete light—tight enclosure of the instrument
within the COBE dewar. Additional protection is provided by the Sun and Earth shade
surrounding the COBE dewar, which prevents direct illumination of the DIRBE aper—
ture by these strong local sources. The DIRBE instrument, which was maintained at a
temperature below 2 K within the dewar as long as the helium was present, measures
absolute brightness by chopping between the sky signal and a zero flux internal reference
at 32 Hz using a tuning fork chopper. The synchronously demodulated signal is averaged
for 0.125 second before transmission to the ground, Instrumental offsets are measured
by closing a cold shutter located at the prime focus. All spectral bands view the same
instantaneous field—of—view, 07“ x 07°, oriented at 30° from the spacecraft spin axis.
This allows the DIRBE to modulate the angle from the Sun by 60° during each rotation,
and to sample fully 50% of the celestial sphere each day. Four highly-reproducible inter-
nal radiative reference sources can be used to stimulate all detectors when the shutter
is closed to monitor the stability and linearity of the instrument response. The highly
redundant sky sampling and frequent response checks provide precise photometric clo-
sure over the sky for the duration of the mission. Calibration of the photometric scale
is obtained from observations of isolated bright celestial sources. Careful measurements
of the beam shape in pre-flight system testing and during the mission using scans across
bright point sources allow conversion of point-source calibrations to surface brightness
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(Rowan— Robinson 1986). The FIRAS high frequency channel (100 to 500 pm), with its
all-sky coverage, excellent stray light rejection, absolute calibration, and high sensitivity,
also promises to be an important instrument for CIB radiation studios. Quantitative
comparison of the measurements from the experiments discussed above, and a summary
of current CIB radiation limits are discussed further below.

6.2. The DIRBE instrument

The experimental approach is to obtain absolute brightness maps of the full sky in 10
photometric bands (J[1.2], K[2.3], L[3.4], and M[4.9]; the four IRAS bands at 12, 25,
60, and 100 pm; and 140 and 240 ,um bands). To facilitate discrimination of the bright
foreground contribution from interplanetary dust, linear polarization is also measured in
the J, K, and L bands, and all celestial directions are observed hundreds of times at all
accessible angles from the Sun in the range 64° to 124°. The instrument rms sensitivity
per field of view in 10 months is /\I(/\) : (1.0, 0.9, 0.6, 0.5, 0.3, 0.4, 0.4, 0.1, 11.0,
4.0) X 10—9 W m—2 sr‘l, respectively for the ten wavelength bands listed above. These
levels are generally well below both estimated CIB radiation contributions (e.g., Bond,
Carr, Hogan 1986) and the total infrared sky brightness.

The DIRBE instrument is an absolute radiometer, utilizing an off—axis Gregorian
telescope with a 19-cm diameter primary mirror. Since the DIRBE was designed to
make an absolute measurement of the spectrum and angular distribution of the diffuse
infrared background it must have extremely strong rejection of stray light. The optical
configuration (Magner 1987) has strong rejection of stray light from the Sun, Earth limb,
Moon or other off—axis celestial radiation, or parts of the COBE payload (Evans, 1983;
Evans and Breault 1983). Stray light rejection features include both a secondary field
stop and a Lyot stop, super—polished primary and secondary mirrors, a reflective fore-
baf'lle, extensive internal baffling, and a complete light—tight enclosure of the instrument
within the COBE dewar. Additional protection is provided by the Sun and Earth shade
surrounding the COBE dewar, which prevents direct illumination of the DIRBE aper—
ture by these strong local sources. The DIRBE instrument, which was maintained at a
temperature below 2 K within the dewar as long as the helium was present, measures
absolute brightness by chopping between the sky signal and a zero flux internal reference
at 32 Hz using a tuning fork chopper. The synchronously demodulated signal is averaged
for 0.125 second before transmission to the ground, Instrumental offsets are measured
by closing a cold shutter located at the prime focus. All spectral bands view the same
instantaneous field—of—view, 07“ x 07°, oriented at 30° from the spacecraft spin axis.
This allows the DIRBE to modulate the angle from the Sun by 60° during each rotation,
and to sample fully 50% of the celestial sphere each day. Four highly-reproducible inter-
nal radiative reference sources can be used to stimulate all detectors when the shutter
is closed to monitor the stability and linearity of the instrument response. The highly
redundant sky sampling and frequent response checks provide precise photometric clo-
sure over the sky for the duration of the mission. Calibration of the photometric scale
is obtained from observations of isolated bright celestial sources. Careful measurements
of the beam shape in pre-flight system testing and during the mission using scans across
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calibrations.
The data obtained during the helium temperature phase of the mission are of

excellent photometric quality, showing good sensitivity, stability, linearity, and stray light

immunity. Few artifacts are apparent other than those induced by energetic particles in

the South Atlantic Anomaly and variations in instrument temperature. Both of these

effects will be removed in final data processing. Strong rejection of ofi—axis radiation

sources is confirmed by the absence of response to the Moon (which saturates the response

in all detectors when in the field of View) until it comes within about 3° of the field of

view. The sensitivity per field of view, listed above, is based on noise measured with the

shutter closed and response determined from measurements of known celestial sources.

The noise when the shutter was open is somewhat above the shutter-closed values due

to discrete source confusion. The nuclear radiation environment in orbit caused very

little response change (<1%) in all detectors except the GezGa photoconductors used at

60 and 100 pm. Thermal and radiative annealing procedures applied to these detectors

following passages through the South Atlantic Anomaly will allow response correction to

about 1% at these wavelengths. It is expected that fully reduced DIRBE sky maps will

have photometric consistency over the sky better than 2% at each wavelength, nearest

neighbor band-to-band (color) brightness accuracy of 3% or better, and absolute intensity

scale accuracy better than 20%.

6. 3. DIRBE results

Preliminary results of the DIRBE experiment have been described by Hauser et al.(1991),

Hauser (1991a, 1991b). Qualitatively, the initial DIRBE sky maps show the expected

character of the infrared sky. For example, at 1.2 ,um stellar emission from the galactic

plane and from isolated high latitude stars is prominent. Zodiacal scattered light from

interplanetary dust is also prominent. These two components continue to dominate out to

3.4 pm, though both become fainter as wavelength increases. A composite of the 1.2, 2.3,

and 3.4 pm images was presented by Mather et al. (1990b). Because extinction at these

wavelengths is far less than in visible light, the disk and bulge stellar populations of the

Milky Way are dramatically apparent in this image. At 12 and 25 ,um, emission from the

interplanetary dust dominates the sky brightness. As with the scattered zodiacal light,

the sky brightness is strongly dependent upon ecliptic latitude and solar elongation angle.

At wavelengths of 60 ,um and longer, emission from the interstellar medium dominates

the galactic brightness, and the interplanetary dust emission becomes progressively less

apparent. The patchy infrared cirrus noted in IRAS data (Low et al.1984) is evident at

all wavelengths longer than 25 ,um. Weiland et al.(1991) gave a preliminary description

of the emission from the interplanetary dust bands, and Murdock et aJ.(1991) have used

the DIRBE data to carry out a preliminary examination of the ecliptic pole emission.

The DIRBE data will clearly be a valuable new resource for studies of the inter-

planetary medium and Galaxy as well as the search for the CIB radiation.

In searching for the extragalactic infrared background, the most favorable condi-

tions are directions and wavelengths of least foreground brightness. In general, because

of the strong interplanetary dust foreground and the relatively modest gradient of that

foreground over the sky, the infrared sky is faintest at high ecliptic latitude. A prelimi-
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nary DIRBE spectrum of the sky brightness toward the south ecliptic pole was presented
by Hauser et al.(1991), and is reproduced in Table 2.

Table 2. Cosmic Infrared Background Limits

Reference /\ AI;
(um) (10'7 W In—2 St“)

DIRBE 1.2 8.3 d: 3.3
(South Ecliptz'c Pole) 2.3 3.5 :l: 1.4

3.4 1.5 i 0.6
4.9 3.7 :t 1.5

12. 29. d: 12
22. 21. d: 8
55. 2.3 d: l
96. 1.2 i 0.5

151. 1.3 i 0.7
241. 0.7 i 0.4

This table shows the strong foreground from starlight and scattered sunlight at the
shortest wavelengths, a relative minimum at 3.4 pm, emission dominated by interplan—
etary dust peaking around 12 pm, and generally falling brightness from there out to
submillimeter wavelengths.

To meet the cosmological objective of measuring the CIB radiation, the foreground
light from interplanetary and galactic sources must be discriminated from the total ob-
served infrared sky brightness. This task requires extensive careful correlation studies
and modelling, which in the case of the DIRBE investigation is in progress. A conser-
vative upper limit on extragalactic light is the total observed brightness in a relatively
dark direction. The sky brightness at the south ecliptic pole is a fair representation of
the best current limits from the DIRBE. The faintest foregrounds occur at 3.4 mm, in the
minimum between interplanetary dust scattering of sunlight and re-emission of absorbed
sunlight by the same dust, and longward of 100 pm, where interstellar dust emission be-
gins to decrease. Through careful modelling, we hope to be able to discriminate isotropic
residuals at a. level as small as 1 percent of the foregrounds. These near-infrared and
submillimeter windows will allow the most sensitive search for, or limits upon, the elusive
cosmic infrared background.

These data are to be compared with the theoretical estimates of contributions to
the CIB radiation from pregalactic and protogalactic sources in a dust free universe
(Bond, Carr, and Hogan 1986, Carr 1988). The present conservative observational limits
are beginning to constrain some of the theoretical models at short infrared wavelengths,
though in a dusty universe energy from these sources can be redistributed farther into
the infrared. If the foreground components of emission can confidently be identified,
the current COBE measurements will seriously constrain (or identify) the CIB radiation
across the infrared spectrum. However, the spectral decade from about 6 to 60 ,um will
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have relatively weak limits until measurements are made from outside the interplanetary
dust cloud.

The CIB radiation promises to enhance our understanding of the epoch between
decoupling and galaxy formation. The high quality and extensive new measurements of
the absolute infrared sky brightness obtained with the DIRBE and FIRAS experiments
on the COBE mission promise to allow a definitive search for this elusive background,
limited primarily by the difficulty of distinguishing it from bright astrophysical fore-
grounds.

7. COBE data products and plans

Extensive data products from the COBE mission consisting of calibrated maps and
spectra with associated documentation are planned. The COBE databases have been
described by White & Mather (1991). An overview of the COBE software system has
been given by Cheng (1991). All COBE data processing and software development for
analysis take place at the Cosmology Data Analysis Center (CDAC) in Greenbelt, MD, a
facility developed by the COBE project for that purpose. This facility, and the software
tools developed there, will become available to the scientific community when the data
products are released.

Initial data products are planned for release in mid 1993. Galactic plane maps,
including the nuclear bulge, will be available at all 10 DIRBE wavelengths and the
high frequency FIRAS band. Full sky maps from all six DMR radiometers will also be
available.

Full sky maps from all three COBE instruments, spanning four decades of wave-
length, are planned for release in mid—1994. These data gathered by the COBE’S three
instruments will constitute a comprehensive data set unprecedented in scope and sensi-
tivity for studies of cosmology, and large scale galactic and solar system science.
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0 Introduction

At a conference in honour of John S. Bell, held in October 1991, the following quotation,
from a paper by Bell and Nauenberg (1966), was presented (in a talk by Dipankar Home):

“... the quantum mechanical description will be superseded. In this it is like all
theories made by man. But to an unusual extent its ultimate fate is apparent in its

internal structure. It carries in itself the seeds of its own destruction.”

I was struck by a similarity of sentiment, as expressed here, with one that I have
myself often expressed, but now in relation to general relativity; e.g. (Penrose 1991):

“... in a clear sense, general relativity predicts its own downfall as a complete
description of the structure of space—time”

There is, indeed, a remarkable parallel, in this regard, between these two great
physical theories. Both theories are now known to be exceptionally accurate, within
the range of phenomena to which they are applied; yet both present us with profound
difficulties. In the case of general relativity, the profound problem is that of space-time
singularities, whose presence in Einstein’s theory is an implication of the theory itself
(cf. e.g. Hawking and Penrose 1970). In the case of quantum theory, the difficulty
is the so—called measurement problem, which still has no really satisfactory solution.
Many different viewpoints are expressed in relation to the measurement problem, often
accompanied by claims of some kind of solution - but where the “solution” proposed
satisfies none of those holding to an opposing viewpoint.

Despite the fact that both theories have their profound difficulties, the normal attitude
to them, amongst contemporary physicists, is very different in the two cases. The
standard reply to the question of the space-time singularities of classical general relativity
is that that theory should be modified by applying to it, in some appropriate way, the
rules of standard quantum theory — or, if this fails to work, then the classical Einstein
theory itself should be changed (as would be the case with Kaluza-Klein-type theories,
supergravity, and the classical limit of superstring theory) so as to force it into a more
amenable shape for the consistent application of quantum procedures. When it comes
to quantum theory’s own problems, on the other hand, the normal attitude among
contemporary physicists seems to be that the problem ought just to go away - if we
only understood the theory itself properly. There is little suggestion that the very rules
of quantum mechanics might in any way be in need of modification, or that quantum
mechanics might itself derive any benefit from general relativity. (Isolated expressions of
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dissent from this general viewpoint have, however, been put forward from time to time;
cf. Karolyhazy 1966, 1974, Karolyhazy, Frenkel, and Lukacs 1986, Komar 1969, Diosi
1989, Penrose 1981, 1989.)

My own attitude to these problems is a much more even—handed one than that
normally adopted. I believe that the sought-for union between general relativity and
quantum theory will involve as much change in the structure of quantum theory as in
general relativity. I believe that both quantum theory and general relativity are (superb)
approximations to some hitherto undiscovered new theory, where each would be valid
in some appropriate limiting sense. The solution to the singularity problem and to the
measurement problem would then both find their resolutions within this new theory;
indeed, the solutions to these two problems should arise, accordingly, as two sides of but
a single coin.

1 Quantum theory’s fundamental problem
Since the singularity problem of general relativity is now generally accepted as providing
a limit to that theory’s classical applicability, I shall concentrate here on the central
problem of quantum theory. I think that a very profound remark concerning different
people’s attitudes to quantum theory was made to me some years ago in a dinner—table
comment by Bob Wald:

“If you really believe in quantum mechanics, then you can’t take it seriously.”
This expresses the fact that it is only those who dissent from the standard “Copenhagen”
view who are prepared to regard the state—vector | ll) > as actually representing (even
an approximation to) physical reality. Niels Bohr, on the other hand, was one of the
strongest proponents of the idea that l 11) > was to be regarded merely as a calculational
tool, an expression only of our knowledge about a physical system, and to be used simply
for the mathematical calculation of probabilities with regard to the various results of
“measurements” that might be performed on a system. Bohr, indeed, was someone who
really did believe in quantum mechanics, and so was unable to take I z/) > seriously as a
description of actual physical reality.

Those who do take I 1/) > seriously as an objective description of the physical world
— although possibly only a provisional 0r approximate one, perhaps to be superseded if
quantum theory is someday replaced by an even more accurate theory — seem to me to
fall into two camps. There are those who believe that the present theory of the way that
I 2/; > evolves, namely unitary evolution U, must be preserved at all costs, and that the
phenomenon of state-vector reduction R is some kind of illusion; on the other hand there
are those who believe that U applies only to an approximate (though highly accurate
degree) and that R represents a real physical phenomenon that effectively interrupts,
from time to time, the continuous evolution according to U (such as might be entailed
by some modification of the Schrodinger equation). In my own view, it is those in
this latter camp (and I would count myself among their number) who are taking the
formalism of quantum mechanics most “seriously” of all, because they believe that both
the main ingredients of the theory, indeed R as well as U, are to be taken seriously as
describing something objectively real about the evolution of the world. Among those
in the latter camp would be such as Karolyhazy 1974, 1986 and his co-workers, Pearle
1985, 1989, Ghirardi, Rimini, and Weber 1986, Diosi 1989 moreover, I would count John
Bell as essentially being in this camp.
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Belonging to the former camp within the group who “take I IL > seriously” would
be those who follow a “many-worlds” viewpoint with regard to the quantum state.
Accordingly, I 1b > always evolves according to U, but all the different outcomes of a
“measurement” must co—exist in different “worlds”, each being perceived by a separate
copy of any observer. The difficulties with this viewpoint lie, to my own mind, not so
much in its lack of economy and in its extreme stretching of one’s notions as to what
“reality” should encompass, but in its incompleteness with regard to its descriptions as
to what a conscious observer would actually perceive about the world and about the
probability values that such an observer would assign to different perceived events. In
short, in itself, it provides no solution to the “Hilbert space basis problem” or to the
problem of why squared moduli of amplitudes should actually become probabilities. Also
in this former camp might be those who hold to some form of “decoherence” explanation
of R, although the standard explanations of this kind, described by John Bell as FAPP
(“for all practical purposes”) explanations, could really be satisfying only to those who
do not take | 1/) > seriously as providing an actual description of the physical world. With
regard to those “decoherence” viewpoints, such as those put forward by Grifliths (1984),
Gell—Mann, and Hartle (1990), which adopt a path—integraletype picture of reality, I
would regard them as being to some extent modifications of standard quantum theory
(which would place them in the latter camp), but in any case, as not providing a real
resolution of the measurement problem. For they accept their own versions of U and R
as things with distinct mathematical descriptions, and they do not tell us under what
actual physical circumstances a “measurement” would be deemed as taking place.

2 Two sides to the state-reduction phenomenon

Consider a simple (thought) experiment, where a photon source (the lamp L) and a de—
tector (the photo—cell P) are placed at opposite ends of a hall, with suitable paraboloidal
or ellipsoidal mirrors placed so as to ensure that virtually every photon emitted by the
source would reach the detector, provided that there is no obstruction on the linejoining
them (fig. 1). Let us now imagine that there is a half«silvered mirror M placed mid—way
between them on this line, tilted at 45° to the line. We are to take it that any photon
moving along this line in either direction, when reflected off the mirror, would be ab—
sorbed at a point of the hall wall (at B if the photon comes from the direction of L, and
at A if the photon were to come from P). Suppose that from time to time photons are
emitted by L and that from time to time P (assumed to be a 100% efficient detector)
registers the reception of a photon. Assume, also, that every time L emits a photon, it
registers this fact (again with 100% efficiency), so that all the emission and reception
events are clear-cut measurements.

Suppose, now, that it is given that L has emitted a photon. We ask: what is the
probability that P receives one? Clearly the answer is i' This is a consequence of the
standard quantum rule whereby probabilities are obtained by squaring the moduli of
complex amplitudes. The photon wave function splits into two components, each of
which has an amplitude % (times a possible phase factor). One component reaches the

1detector at P, and the other reachm the wall at B. The squared modulus of each is 5,
so the respective probabilities of reaching P or B are each %.
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Fig.1 Photons, aimed towards the detector P, are emitted from time to time by the source L. Between
the two is a halfesilvered mirror M which partially deflects the photons to the absorbing wall at B. A
photon ejected from the wall at A also could reach P. The probability that P receives a photon, given
that L emits one, is governed by the quanturn—rnechanical squaredmodulus rule, whereas the probability
that L has emitted one given that 1’ receives one is determined by the second law of thermodynamics.

Let us now ask a time—reversed kind of question. Suppose that we are given that P
has received a photon. We now ask: what is the probability that L had emitted one?
Now the answer is certainly not %, but we have a probability of essentially 1 that the
photon came from L and a probability of essentially 0 that it came from A, which is the
only other possibility. It is virtually certain that the photon came from the lamp L rather
than from the wall at A. However, had we tried to use the “squared modulus’7 rule for
calculating these probabilities, we should have indeed obtained % for each of them. This
discrepancy has nothing to do with the fact that it is usual to evolve wave functions into
the future rather than into the past. Precisely the same answers are obtained whichever
way we evolve. The conclusion is that the “squared modulus” rule simply does not work
if we try to apply it to obtain retrospective probabilities. There is no real reason why
it should. The miracle is that such a simple and elegant rule indeed works in the future
time—direction!

if we were to ask what rules indeed govern probabilities in the past time direction,
then we are forced to consider such matters as the second law of thermodynamics. This
law is certainly playing a role here, because for a photon to jump out of the wall at A
in order to be reflected off the mirror and arrive at the detector P, a severe violation of
the second law would be needed. Basically it is the second law that is responsible for a
virtual vanishing of the probability of a photon emerging from the wall at A.

It is clear from all this that there is no necessity for the probabilities in the past
and future directions to match up in a particular experimental situation, such as this.
However, there are strong reasons for expecting that if we were to consider, in some
appropriate sense, the totality of all possible “experimental situations”, then there would
indeed be a past-future balance for the probabilities, taken as a whole. Basically, we
must balance the physics responsible for the second law of thermodynamics against the
physics responsible for the quantum—mechanical probabilities — in order to show that
these two areas of physics must actually be two different aspects of the same physics.
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3 The role of the Weyl curvature hypothesis

I do not wish to repeat the entire argument here, since it is one that 1 have given many
times before (see, particularly, Penrose 1981, 1989). The essential point is that the
second law arises ultimately from the enormous constraint on the space—time geometry
that was operative at the big bang singularity. This initial constraint (which for a 108°—
baryon universe would amount to a restriction of the phase-Sp ace down to a region whose
volume is about exp(-10123) of that of the entire phase space) starts the universe off with
a very tiny entropy, as compared with what it “might have been”, and the entropy has
been rising ever since, in accordance with the second law. The simplest way to impose
such a constraint is to take it as a geometrical restriction: the initial Weyl curvature is
to be zero — or at least to be much smaller, in some appropriate sense, than it would have
been for a generic big bang. This restriction, which is taken to apply only to initial,
and not to final space—tirne singularities (so that we can derive the time—asymmetric
second law), is referred to as the Weyl curvature hypothesis (WCH). (In recent work,
R.P.A.C.Newman has shown that a form of WCH due to K.P.Tod can be used to derive
an initial Friedmann—RobertsoneWalker structure for the early universe, assuming an
appropriate perfect—fluid state.)

Thus it is WCH (or something closely of this nature) that we seem to have to balance
against the “squared modulus” rule of the R part of quantum mechanics. Moreover,
if we take it that this singularity structure, as implied by WCH, is a feature of the
correct quantum gravity theory - or rather, of the putative correct new theory out of
which classical general relativity and standard quantum mechanics must both emerge
as appropriate limiting cases — then we appear to conclude that it is this new theory
that must also be responsible for the probabilities involved in R. In other words, the
modification of quantum theory that would be needed in order for us to be able to
understand R as a real physical process must be a modification that operates at the
level where gravitational effects begin to become quantumemechanically important.

In fact the connection can be made more explicit if we consider the “Hawking box”
thought experiment (described in Penrose 1981, 1989). In this situation, the phase—space
volume gain that occurs with experiments like that discussed in the previous section,
where in effect there are more possible outputs than there are inputs (here: P and B
allowed as outputs, whereas L is allowed as an imput but A is effectively forbidden),
is balanced against a phase—space loss that occurs in black holes. There is a net loss
because black holes are allowed by WCH, but their time~reverses , the white holes —
are forbidden by it. The black hole singularity is a future singularity which absorbs
information, whereas a white hole’s singularity would be a past singularity, like the big
bang, but with an infinite rather than zero Weyl curvature. The absorbing of information
by a black hole’s singularity is what is responsible for the Hawking effect, according to
Hawking’s original derivation (fig. 2). It should be mentioned, however, that there are
some opposing points of view, according to which it is argued that if the entire history
of a black hole’s formation and ultimate disappearance (or possible non—disappearance)
due to its Hawking evaporation is taken into account, then information is not actually
lost. My own considered opinion is that such information restoration is not plausible,
particularly if one is to believe that something of the nature of WCH must hold, so that
white-hole singularities, with their potential for creating new phase—space volume, are
not permitted.
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Fig.2 Hawking evaporation. The conformal diagram on the left gives the geometrical background for
Hawking’s original derivation of the presence of Hawking radiation — as an effect of a loss of information
in the Black hole’s singularity. The diagram on the right takes into account the final disappearance of
the hole from the backereaction of this radiation on the spacetime geometry.

4 A gravitational origin for R?

An implication of the preceding discussion is that we should look for some criterion for
the onset of quantum state—vector reduction which is of a gravitational character. There
are, indeed, other reasons for suspecting that the standard quantum formalism might not
apply without change in situations where the curved—space features of general relativity
begin to become significant. For example, the normal ideas of energy, momentum, and
angular momentum, in a quantum context, relate these physical concepts directly to
symmetries of the space—time manifold, whereas in a general~relativistic setting, such
symmetries would normally be absent. This leads to certain severe difficulties with
regard to quantization, since it is indeed the quantum rules for energy, momentum,
and angular momentum that provide the initial guide to quantization in a normal flat-
space setting. (We recall that the passage from a classical to a quantum description -
i.e. from a symplectic manifold to Hilbert space - is not a well-defined mathematical
procedure, except in the presence of further structure such as that supplied by space-
time symmetries; cf. Woodhouse 1980.) Even the notion of positive/negative energy (i.e.
frequency) splitting, vital for the setting up of quantum field theory, is not well-defined
in a general curved space-time.

These difficulties occur even for the problem of quantizing within a curved space-
time background. As is well known, the problems that arise when it is the curvature
of space-time itself that has to be subjected to the laws of quantum mechanics are of a
much more serious nature. One must ask, in particular, how it is possible to interpret a
physical system in which different space-time geometries are being subjected to quantum
linear superposition; indeed, even worse than that, one must ask how is it possible to
interpret other physical objects that try to inhabit such a curious quantum-superposed
background? When there is no natural correspondence even between the individual
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points in the different classical space-times that are to be superposed, then it is hard to
see how interference between the different physical states associated with the different
geometries can be understood.

What has this to do with state-vector reduction R? Let us consider a type of situation
like a “Schrodinger’s cat”, in which one strives to produce a state in which a pair of
macroscopically distinguishable alternatives are linearly superposed. For example, in
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Fig.3 A photon impinges on a half—silvered mirror, so that only the transmitted part ofits wave function
is received by a device which if activated would move a macroscopic spherical lump of mass m and radius
a through a distance d. Is there stage at which linear superposition between the two possible positions
of the lump fails, and the lump actually becomes localized in one position or the other?

Fig. 3 we have a situation in which a photon impinges upon a half—silvered mirror,
and the photon state becomes a linear superposition of being transmitted through it
and reflected by it. The transmitted part of the photons wave function activates (or
would activate) a device which moves a macroscopic spherical lump from one location
to another. So long as Schrodinger evolution U holds good, the “location” of the lump
becomes a quantum superposition of its being in the original position with its being
in the displaced position. As soon as R comes into effect, we are allowed to consider
that the lump is in either one position or the other — and a “measurement” has been
performed. The idea here is that this is an entirely objective physical process which
occurs whenever the mass of the lump is large enough or the distance it moves is far
enough. In particular, it has nothing to do with whether or not a conscious observer
may happen to have actually “observed” the movement or otherwise of the lump. (In
this, I am imagining that the device that detects the photon and moves the lump is itself
“small” enough that it can be treated entirely quantum mechanically, and it is only the
lump that registers the measurement. For example, in an extreme case, we might simply
imagine that the lump is poised sufficiently unstably that the mere impact of the photon
would be adequate to cause it to move off significantly.)

How would such a situation be treated according to the standard U procedure of
quantum mechanics? After the photon has encountered the mirror its state would have
to be considered as a non-local system, with the two parts of its wave function in two
very different locations. One of these parts then becomes entangled with the device
and finally with the lump. We thus have a quantum state which involves a linear
superposition of two quite dfferent positions for the lump. Now the lump will have its
gravitational field, which must also be involved in this superposition. Thus, the state also
involves a superposition of two different gravitational fields - i.e., according to Einstein’s
theory, with two different space-time geometries! The question is: is there a point at
which the two geometries become sufficiently different from each other that the rules of
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of the lump fails, and the lump actually becomes localized in one position or the other?
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quantum mechanics must change, and rather than forcing the different geometries into
superposition, Nature chooses between one or the other of them to efl'ect the reduction
procedure R?

5 The weak-field gravitational symplectic integral
As a guide to establishing a plausibe criterion, in accordance with the foregoing general
ideas, we consider a certain integral (Fierz 1940), over a spacelike Cauchy hypersurface
E, which determines the symplectic structure on the function—space of weak vacuum
gravitational fields (i.e. massless fields of spin 2 in flat space). This integral (up to a
real factor) is:

{1((1), 1(a)} = /(\I/(1)ABCD7?5)CAD, + \T/(1)AIBICID,nf32')(/,1'IDI)d3xAAi,

E

where the fields (labeled by (l) and (2), respectively) are described by linearized curva~
tures in Minkowski space

Kabcd = ‘I’ABCDEA/BIEC'D' + EABECDq/A’B’C’D’a
where we have a (Dirac) chain of potentials

B’C’D’ C’D’ AA' B’C’D’VBB’UA = XAB 7 V 7711 I 0,
C’D’ _ D’ AA’ C’D’ _VBB’XAB — VABCa V XAB — 0,

DI _ AA, I _
VBB/‘YABC — ‘I’ABCD7 V ”YABC — 0»

VAAI‘I’ABCD = 07

all of \l/ABCD, 721,30, n)’, Ugo/0' being symmetric in their unprimed and primed
indices separately. (See Penrose and Rindler 1984 for the relevant spinor notation.) ln
vacuum, the divergence of the integrand vanishes, showing that (with suitable fall—oil
at infinity), the integral is independent of the choice of E. The symplectic form {,} is
closely related to the scalar product <l>. We have < K I K >2 i{K,JK}, where J
multiplies the positive—frequency part of K by i and the negative frequency part by —i.
Integrating by parts, we find, schematically, (for fields falling oil suitably at infinity):

/‘1’<1)77(2> = -/7<1)X(2) = /X<1>7(2) = — /m1)‘1’(2)a

{1\’(1),1\'(2)} = —{K(2),K(1)}.
The quantity 7... describes the linearized spin-coefficients or, equivalently, the linearized
Christoflel symbols; moreover, the Hermitian part of x... describes the linearized metric.

We can use this symplectic integral as a measure of the difierence between two weak
(vacuum) gravitational fields. When this difference reaches order unity, all quantities
being measured in absolute units (G = c = h = l), we can say that the two fields
are “significantly different”. The idea is, roughly, that when two (weak) gravitational
fields are judged as being significantly different according to this criterion, then quantum
linear superposition between them cannot be maintained, and the state reduces to one
or the other of them - so R has been efiected!
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6 A gravitational criterion for the onset of R
How can we apply this kind of idea to the situation considered in 4., as illustrated in Fig.
3? A difficulty is that the symplectic integral of 5. applies (and is divergence-free) only
in the vacuum region, whereas we need it in situations where the lumps are actually
present. Any spacelike Cauchy hypersurface 2 must intersect the lump (in both its
alternative locations). One point to note, however, is that there is actually no need for
2’ to be spacelike everywhere. It just has to be topologically deformable to a Cauchy
hypersurface. As it stands, this is no direct help, but it indicates that we need not feel
restricted to spacelike hypersurfaces in applying the integral expression.

What seems suggestive, however, is to perform the integral over a timelike hypersur-
face 2’ in a region between the two locations of the lump after they have separated from
one another, as indicated

Fig.4 The two alternative locations of the lump, as depicted in Fig.3, are indicated, on the left, in
a space—time diagram. The symplectic integral is performed over a portion of timelike hypersurface,
suggesting that a criterion for reduction to take place is when this integral becomes of order unity. The
spatial configuration is depicted on the right.

in Fig. 4. The hypersurface E’ is bounded between two times, and let us call the time-
interval between them T. A tentative suggestion might now be that the system reduces
in a timescale T such that the symplectic integral, applied between the gravitational
fields of the two possible positions of the lump, is of order unity.

The situation is basically a Newtonian one, assuming that, compared with the speed
of light, the lump moves slowly, and the gravitational escape velocity at its surface
is also tiny. In the Newtonian limit, for an essentially static situation, and taking a
hypersurface 2’ that is also static - i.e. the product of a spacelike 2- surface S with an
interval of the time axis (of duration T) - our symplectic integral becomes (some simple
constant multiple of )

T/(¢(2>v¢<1)- ¢(1>V¢(2)) ' d5-
5

Here ¢ denotes the Newtonian gravitational potential due to the lump. The parenthetic
grimy gnprifips the lnmn lnratinn We note that the inteoranrl is (‘livpro‘pnrp—frpp in
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vacuum, so the integral remains unchanged under topological deformations of S through
regions of matter-free space. Where lump matter is present (density p), we make use of

_¢

V ° (¢(2)§¢(1) - ¢(1)6¢(2)) = *47r¢(2)p(1) + 4W¢(1)P(2);

thus, moving S across one of the two possible locations for the lump, we find that the
value of our integral is 47rT times the gravitational energy of one instance of the lump
in the gravitational field of the other. This would suggest that the time that it takes for
the state to reduce is a simple multiple of the reciprocal of this energy.

This energy is

mZ/d,
where the lump has mass m, and the spatial displacement between the centres of its
two alternative positions is (1. However, the reciprocal of such a measure is not really
a satisfactory suggestion as to the time it takes for reduction to occur in this situation,
because for large displacements the measure gets smaller and tends to zero. Thus the
suggested “time” would get longer, making it less likely for R to occur, the greater
the displacement, rather than more likely as one would expect. Moreover, when the
two instances of the lump overlap, there would be no way of locating 2' so that it lies
entirely in the vacuum region.

This suggests that the reduction time should be something a little different from
this, but perhaps belonging to the same order of ideas. In fact a slight modification
of this expression (arrived at some ten weeks following the Cordoba meeting) does give
something reasonable. The expression mz/d is the gravitational energy gained (in ab-
solute units) if one moves one instance of the lump in from infinity, in the gravitational
field of the other, until it reaches the required separation d. If we consider, instead, the
more relevant energy of moving one instance of the lump away from the other, starting
from coincidence, until they reach the required separation, then, taking the lump to
have radius a, we obtain something of the order of mZ/a for this energy. Although the
energy now indeed increases as the separation increases, the additional energy in moving
from the contact position to all the way out to infinity is of the same order as that in
moving from coincidence to the contact position. Thus, as far as orders of magnitude
are concerned, one can ignore the contribution due to the displacement d, and take the
reduction time to be of the order of

a/mz.

It is reassuring that this gives very ”reasonable” answers in certain simple situations.
For example, in the case of a nucleon, where we take a to be 10‘13cm, which in absolute
units is about 102°, and m to be about 10‘”, we get a reduction time of 106°, which
is about a Hubble time. If we consider a droplet of water of radius 10‘5cm, we get a
reduction time of about a day; if of radius 10'4cm, the reduction time, according to this
scheme is roughly a. second; if of radius 10‘3cm, then about 10'5 of a second. So far,
this seems to be quite plausible, but clearly more work is needed to see whether the idea
will survive more stringent examination.

I am grateful to many colleagues for valuable comments, most particularly Abhay
Ashtekar and Ted Newman.
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Sources of gravitational waves and their detectability

B.F. Schutz

Department of Physics and Astronomy, University of Wales College of
Cardiff, Cardiff, UK

Abstract. With the funding of the LIGO project in the US and the likely
funding of VIRGO in Europe, we can now anticipate the detection and as—
trophysical study of gravitational waves before the end of this decade. I re-
view the position of detector development today and the plans for the large—
scale interferometers. I then survey likely sources of gravitational waves:
supernovae (gravitational collapse), coalescences of compact—object binary
systems, pulsars, and a stochastic background. I try to make realistic as—
sessments of the uncertainties in our models of these sources, and in our
estimates of their event rates; and I point out what information we may be
able to extract from observations when they are made. I pay particular at—
tention to the uncertainties that allow the possibility that even first—stage
interferometric detectors might be able to detect gravitational waves from
gravitational collapse or coalescing binaries. I also point out that, before
observers will be able to extract maximum information from a coalescing
binary signal, relativists will have to make more progress in understanding
the two—body problem in general relativity.

1. Introduction

1.1. Gravitational wave astronomy

After many decades of developing techniques for gravitational wave detection and of
studying possible sources of gravitational waves, we may finally be standing on the
threshold of gravitation wave astronomy. The approval last year of the LIGO project
by the US Congress, and the expected approval later this year of the VIRGO project in
Europe, at last marks the beginning of the construction of instruments whose sensitivity
should exceed by a large margin the targets that theoretical studies of sources have set
for detecting waves that pass through the Earth a few times per year.

It will, nevertheless, be several years before these big interferometers begin operat-
ing, and it will probably be several years more before they begin returning observations
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with the regularity that will be needed to extract reliable astronomical information from
them. In the meantime, bar detectors of increasing sensitivity will be watching for rare
events of unusual strength, and it could well happen that they will turn in the first
detections of gravitational waves before the interferometers get going.

In this review I will discuss our present understanding of possible sources of grav-
itational waves, in the context of efforts to detect them. First I will review the most
important recent detector developments. Then I will focus on the most promising sources,
namely supernova explosions, coalescing compact-object binary systems, and a cosmolog-
ical background. Because the interferometers will be built in two stages, I will speculate
as well on what they might be capable of detecting even with their lower, first-stage
sensitivity.

1.2. Gravitational wave uncertainties

The most important intrinsic characteristics of a gravitational wave are the total energy
it carries and its frequency, or its spectral bandwidth. In addition, for reliable predictions
about the likelihood of detecting gravitational waves we need estimates of the distance
to the source and the number of sources out to that distance. These are bound up with
the sensitivity of detectors, so our review begins with a survey of the types of detectors
and their expected characteristics.

Not surprisingly, the astrophysics of almost all potential gravitational wave sources
is sufficiently uncertain that we have to allow for wide ranges of variability in at least some
of the characteristics needed for our predictions. This is not a reason to be discouraged;
on the contrary, only by making gravitational wave observations can we fill in the gaps
that present observational techniques leave in our understanding of many astronomical
systems.

The one exception to this “rule” of uncertainty is the coalescing binary: the radi—
ation emitted from the orbital motion of two neutron stars or black holes as they spiral
ever closer together from a tight binary orbit. We are sufficiently sure of the strength
of the waves and of the number of sources in a given volume of space to have great
confidence that future interferometric detectors like LIGO Will see them. Interestingly,
this source presents a challenge to relativists at this time: can we solve the two—body
problem with sufficient accuracy to allow us to extract the wealth of information that
the signal contains? I will return to this question at the end.

There is at least one aspect of our predictions about gravitational waves that is
not a major source of uncertainty: relativity theory itself. The Binary Pulsar system,
PSR1913+16, discovered by Hulse & Taylor[1] in 1975, has confirmed the predictions of
general relativity to such an accuracy that it is now necessary to take into account the
acceleration of the system caused by the Galaxy before arriving at the best value of the
period change attributable to gravitational radiation.[3] This is described in much more
detail in the article by Taylor in this volume.

1.3. Energy carried by a gravitational wave

The amplitude of the gravitational waves that pass the Earth regularly (once a month or
more often) is likely to be well below 10‘“. The smallness of this number is a measure
of the weakness of its interaction with the matter it passes through. This is at once a
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benefit and a curse: a curse because it makes the waves hard to detect, a benefit because
one can be sure that the radiation has not been significantly affected by anything it may
have passed through since leaving its source. Unlike photons, which are easily scattered
and reprocessed, gravitational waves carry their original information intact.

The weakness of the effect of gravitational waves on our detectors should not make
us overlook the fact that they carry enormous amounts of energy. Using the Isaacson
stress-energy tensor (see [2]), one can easily calculate that the energy flux in a gravita-
tional wave of amplitude h and frequency f is

2 2

_ -3 f h -2fsw_3.2><10 [MHZ] [104,] Wm . (1)

In astronomers’ language, a 1 kHz wave with amplitude 10’22 is as bright as a star of
apparent magnitude —13, which is twice as bright as the full moon! This may last only a
millisecond, but since the wave originates in a distant galaxy, it is clear that enormous
energies are involved.

By integrating Eq. (I) over a sphere of radius r for a time T, we find the relation
between the amplitude h and the energy E carried by the wave during T:

E 1/2 f 71 'r 71/2 7" 71

h : 1.4 ’21 l .X10 [0.01MG c2l [1 Hal 1 ms [15 Mpcl (2)

2. Detector developments

2.]. Types of detector

The two principal types of detector under development are bar detectors and laser inter-
ferometers. In addition, a number of other techniques have been used, such as ranging to
interplanetary spacecraft and searching for irregularities in timing of millisecond pulsars.

Bar detectors use the fundamental longitudinal normal mode of a cylindrical bar
to detect waves. Although bars have their greatest sensitivity near the frequency of this
mode, which is usually chosen to be near 1 kHz, they do not act as resonant detectors:
impulsive gravitational waves do not last long enough to excite a resonance. Instead, bars
use the high Q of this mode effectively to reduce the noise due to the thermal vibrations
of the bar. For this reason, they have bandwidths of some tens of Hertz, much greater
than the sub—milliHertz bandwidth of the resonant mode itself. In principle they can
have even larger bandwidths, but this has not yet been achieved in practice. The narrow
bandwidth affects another characteristic of bars: their poor time—resolution (worse than
0.1 s) makes them unable to discriminate between the time-of—arrival of a wave at one
detector and another, so that networks of bars are relatively poor at determining the
direction, and therefore the intrinsic amplitude, of gravitational waves.

Bars can be made more sensitive by reducing their physical temperature, and this
is the major route for progress at the moment. Novel designs of bars, such as spherical
ones, may allow further improvements. But somewhere near a sensitivity of 10‘”, bars
encounter the quantum limit, where the energy left in the bar by the gravitational wave
is less than the energy of one phonon of the longitudinal mode. This can be circumvented
in principle, but again there are no practical ways as yet. Bars are therefore now, and
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for the foreseeable future, narrow—band detectors which can in principle reach to about
10“”. Despite this limitation, bars have one great advantage over interferometers: they
exist and will be taking data regularly during the next few years, while interferometers
are under construction.

Interferometers are described more fully in K. Danzmann’s article in this volume.
They do not involve any natural frequency, so they are intrinsically broad-band detectors.
Their bandwidth extends from perhaps 10 Hz up to several kHz. This means that a
network of 3 or more interferometers can deduce the direction to a source by measuring
the time-delays among the various detectors. Optical tricks can be used to reduce their
bandwidth if desired, such as for high-sensitivity observations of a particular pulsar.
Interferometers are not troubled by the quantum limit at sensitivities of 10—22 or so,
because they can take advantage of the length effect: the tidal forces in a gravitational
wave increase in proportion to the size of the apparatus, so that a detector 4 km in
size will experience 100 times the displacement of its end masses that a 40 m detector
experiences.

In the near future, the only existing interferometers are various prototypes that
are rarely used for data-taking, being required for technical development instead. In
five years or so, once the kilometer—scale interferometers begin operating, they will give
us our first broad—band look at the universe in gravitational waves, with a sensitivity
comparable to the best that bars can achieve. Within a few years after that, they should
be operating at a sensitivity that ought to guarantee a multitude of detections.

Detectors on the ground cannot hope to observe at really low frequencies, even
though much of the radiation in the sulrmilliHertz region is easy to predict, coming
as it does from ordinary binary systems in our Galaxy. Ground vibration and even the
Newtonian gravitational fluctuations produced by movements of atmospheric masses will
mask signals at low frequency. Present space—based detection methods involve ranging
to interplanetary spacecraft[4] and monitoring millisecond pulsars (see the article by
Taylor). Both methods are improving, and will be our only access to this frequency
window until dedicated interferometers are placed in space.

2.2. Current ground—based detectors

2.2.1. Cryogenic bar detectors. The best currently operating bar detectors are cryogenic,
cooled to liquid helium temperatures (4.2 K) The sites currently operating include

0 LSU. The cryogenic bar at Louisiana State University takes data continuously (
you can even tune in to the data system on the Internetl). Its noise level is well
below 10‘”.

0 Rome. The University of Rome bar (called Explorer) is situated at CERN. It re-
cently ran for 2 years, and will soon be back on the air. Its sensitivity is comparable
to that of the LSU bar. The Rome and LSU bars have run in coincidence and the
groups are currently analyzing 6 months of data.

0 Perth. This cryogenic bar, made of niobium, is planned to be in operation by
the end of 1992 at the University of Western Australia. Its sensitivity will be
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for the foreseeable future, narrow—band detectors which can in principle reach to about
10“”. Despite this limitation, bars have one great advantage over interferometers: they
exist and will be taking data regularly during the next few years, while interferometers
are under construction.

Interferometers are described more fully in K. Danzmann’s article in this volume.
They do not involve any natural frequency, so they are intrinsically broad-band detectors.
Their bandwidth extends from perhaps 10 Hz up to several kHz. This means that a
network of 3 or more interferometers can deduce the direction to a source by measuring
the time-delays among the various detectors. Optical tricks can be used to reduce their
bandwidth if desired, such as for high-sensitivity observations of a particular pulsar.
Interferometers are not troubled by the quantum limit at sensitivities of 10—22 or so,
because they can take advantage of the length effect: the tidal forces in a gravitational
wave increase in proportion to the size of the apparatus, so that a detector 4 km in
size will experience 100 times the displacement of its end masses that a 40 m detector
experiences.

In the near future, the only existing interferometers are various prototypes that
are rarely used for data-taking, being required for technical development instead. In
five years or so, once the kilometer—scale interferometers begin operating, they will give
us our first broad—band look at the universe in gravitational waves, with a sensitivity
comparable to the best that bars can achieve. Within a few years after that, they should
be operating at a sensitivity that ought to guarantee a multitude of detections.

Detectors on the ground cannot hope to observe at really low frequencies, even
though much of the radiation in the sulrmilliHertz region is easy to predict, coming
as it does from ordinary binary systems in our Galaxy. Ground vibration and even the
Newtonian gravitational fluctuations produced by movements of atmospheric masses will
mask signals at low frequency. Present space—based detection methods involve ranging
to interplanetary spacecraft[4] and monitoring millisecond pulsars (see the article by
Taylor). Both methods are improving, and will be our only access to this frequency
window until dedicated interferometers are placed in space.

2.2. Current ground—based detectors

2.2.1. Cryogenic bar detectors. The best currently operating bar detectors are cryogenic,
cooled to liquid helium temperatures (4.2 K) The sites currently operating include
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2.2.2. Interferometric detectors. Laser interferometers are presently being used as de-
velopment tools for the larger-scale interferometers of the future. They occasionally have
made observing runs. The main ones include:

o Garching. A 30 m prototype at the Max Planck Institute for Quantum Optics is
currently being modified. Its broadband sensitivity at 1 kHz is a few times 10‘”.

0 Glasgow. The 10 m prototype at the University of Glasgow has a sensitivity similar
to that of Garching. The Garching and Glasgow instruments took 100 hours’
data in coincidence with each other, the first such observing run between two
interferometers. Analysis of these data sets is being done in my research group at
Cardiff.

0 Caltech. At the California Institute of Technology, the LIGO project operates a
40 In prototype, the largest in the world at present. It will soon be rebuilt, after
which its sensitivity may well better that of Garching and Glasgow. There are no
plans at present for long observation periods.

0 MIT. The LIGO project also operates a small prototype at the Massachusetts
Institute of Technology. This was one of the first to be constructed, and is used
for testing interferometer techniques.

0 Tokyo. There is a 10 m prototype at ISAS, near Tokyo. Its sensitivity is about
10717. It will soon to be replaced by a 100 In instrument, which is nearing comple—
tion. The 10 m detector took data over several days that partly overlapped with
the Glasgow—Garching run. These data will soon be analysed for coincidences at
Cardiff as well.

2.3. Future ground-based detectors

2.3.1. Ultracryogentc bars. The next generation of bars will be cooled to Well below
liquid helium temperatures by dilution refrigeration. The two such bars that are now
under construction are:

0 Rome. This bar, called Nautilus, has already been cooled (Without its instrumen—

tation) to below 90 rnK. It is expected to begin observations later this year, and
to approach a sensitivity of 10’19 within another year. With improvements in

transducers, cryogenics, and other systems, it could in principle reach about 10’”.

0 Stanford. The group at Stanford University operated a cryogenic bar until it was
destroyed by an earthquake. They are currently building an ultracryogenic detector
similar to that of Rome. First tests of it are expected later this year. Coincident
observing runs between these two bars offer the hope of seeing any large supernova-
like event in our Galaxy.

2.3.2. Large-scale laser interferometers. There is general agreement that laser interfer-
ometers need to go to the scale of a few kilometers in order to achieve a sensitivity of
10‘22 with foreseeable technology. Several projects have been proposed along these lines,
and are at various stages of approval:
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o LIGO. This project, a collaboration between the California Institute of Technol-
ogy and the Massachusetts Institute of Technology, was approved last year by the
US Congress. It expects to build two detectors, each 4 km long, at sites in Han-
ford (Washington) and in Louisiana. The Hanford installation would also contain
a half-length detector. These detectors should reach a broadband sensitivity of
10—21 at Stage 1 (1997—8?) and can anticipate going beyond that to 10“22 with
present designs. As technology improves, there is no fundamental barrier to further
improvements beyond that.

o VIRGO. This Italian-French collaboration plans to build a detector of 3 km arm-
length near Pisa. It has been approved by France and is now awaiting approval
by Italy. Its capability will be similar to that of each LIGO detector, but with an
emphasis on reaching very low frequencies (10 Hz or below). Coincident observa-
tions by the two LIGO and the VIRGO detectors could determine the direction to
a source to within a degree or so.

0 GEO. This is a collaboration between Germany (Garching and the University of
Hannover) and the UK (Glasgow and Cardiff). It is stalled at the moment by
funding problems in both countries, after having been approved in the UK in 1989.
The plan is to build a 3 km detector near Hannover, with capabilities similar to each
LIGO detector. The close separation of the two European detectors is attractive
for doing cross-correlation searches for a stochastic background of gravitational
waves (see below).

0 AIGO. This Australian project is still in the planning stage, looking for inter—
national partners. Good sites exist in Australia, and its long baseline from the
other detectors makes it attractive for improving the directional resolution of the
network.

3. Gravitational collapse

We turn now to a discussion of possible sources of gravitational waves. Informed by
our survey of the available ground-based detectors, we shall concentrate on sources at
frequencies above about 10 Hz. Historically, the most important source that drove the
development of bar detectors was the supernova, or more generally gravitational collapse.

3.]. What we know and what we don’t know

Gravitational collapse is attractive as a gravitational wave source because it involves a
considerable mass compressed to a high density on a very short timescale. Collapses
that produce neutron stars lead to supernovae of Type II, where the formation of the
star creates a rebound of infalling material that then blows away the original envelope
of the star. It is less clear that collapses that lead to black holes will produce bright
supernovae, since these events might involve rebounds that do not succeed in blowing
away the envelope; this might subsequently fall in and convert the neutron star into a
black hole. Moreover, many supernovae (Type Ia, particularly) do not appear to involve
gravitational collapse. So there will not be a one-to-one relation between supernovae and
strong bursts of gravitational waves.
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Moreover, despite decades of theoretical study of supernovae of type II, it is still
difficult to assess their likely importance as sources of gravitational waves. This is because
optical and gravitational wave observations of supernovae measure effectively orthogonal
quantities. Optical observations see the expanding cloud of ejecta; this is material that
never reached a particularly high density, and which is expanding roughly spherically.
Gravitational waves do not come from spherical motions; they measure the asymmetries
in the very core of the collapse. Making a link between these two has proved difficult,
not least because modelling three-dimensional supernovae with a full nuclear reaction
network, hydrodynamics, and radiation transport is a job that exceeds the capacity of
supercomputers available today.

There is also contradictory observational evidence on the subject. If large asym-
metries do develop in collapse, they are likely to be related to rotation (see below). But
young pulsars, which were presumably formed in such events, do not show dynamically
rapid rotation rates. The Crab pulsar, for example, rotates at 30 times per second, which
is very much slower than its breakup speed of 1—2 kHz. This agues that rotation is not
dynamically important, at least in the majority of collapses that produce pulsars.

On the other hand, there is general agreement that there must be some asymme-
tries, because pulsars seem to be given a “kick” of 1007200 km/s when they are formed,
in addition to any velocity they acquire due to binary breakup. There is even a case
which may show a velocity of 1600 km/s.[5] While this is again only a moderate speed
(the rotational speed of the Crab pulsar at its surface is almost 2000 km/s), if it comes
from an asymmetric emission of radiation (neutrinos or gravitational waves) then the
energy carried away by the asymmetric radiation must be a sizeable fraction (perhaps
10% or more) of the energy released by the explosion.

In the absence of detailed modelling, the best one can do is to calculate the radiation
amplitude at the Earth of a gravitational wave produced in a distant galaxy by a collapse
that converts a certain amount of energy into gravitational waves. Assuming that the
duration of the burst is the timescale of the rebound, is. about a millisecond, then
Eq. (2) implies that the amplitude of a burst of energy E occurring at a distance r is

hcollap..=10’“[iH T l (3)lO‘zMec2 15 Mpc

The strongest possible burst would emit the whole binding energy of a neutron star,
about 0.1 MG c2. This would produce an amplitude of 3 x 10”18 if it occurred in our
Galaxy, and 3 x 10‘21 in the Virgo cluster. A more moderate, and plausible, amount
would be 0.0 MG c2, which would give an amplitude of about 4 X 10"22 at 40 Mpc.

These numbers are very interesting in view of our discussion of detectors. Present
day bars and interferometers could in principle see a strong burst in our Galaxy. The
second—stage large interferometers could see a moderate burst twice as far away as the
Virgo cluster. This is a volume of space containing many thousands of galaxies, in which
hundreds of supernovae occur each year. Even if a small fraction of them should produce
bursts as large as this, the second- stage interferometers should see a few per year. We
will return below to what the first-stage interferometers might see.

3.2. Scenarios for collapse leading to strong radiation

If even a small fraction of gravitational collapse events do lead to strong gravitational
waves, they will probably be driven into asymmetric collapse by rotation. Rotation has
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bursts as large as this, the second- stage interferometers should see a few per year. We
will return below to what the first-stage interferometers might see.
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If even a small fraction of gravitational collapse events do lead to strong gravitational
waves, they will probably be driven into asymmetric collapse by rotation. Rotation has
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two effects. The first is the obvious one, causing the collapsing core to form a oblate
figure of rotation. The second effect develops only at sufficiently high rotation rates,
and probably only for strong differential rotation: the development of non-axisymmetric
“bar-mode” instabilities that cause the core to assume a tumbling tri-axial ellipsoidal
shape.[6]

The radiation produced by the first effect is likely to be very small. Numerical
simulations of axisymmetric gravitational collapse produce very little energy, perhaps
10'6 MG) c2.[7, 8, 9, 10]. There is also evidence that rotational effects slow the collapse
and thereby lower the dominant frequency at which the radiation comes out. If this
frequency turns out to be well below 1 kHz, then bar detectors will not see such events.

If there is enough rotation to lead to non-axisymmetry, then the resulting configu-
ration must shed its excess rotational energy. Since the instability sets in when the total
rotational energy is about 25% of the binding energy of the neutron star, it is reasonable
to expect that this may lead to radiated energy of the order of 0.01MQ c2 or more. The
timescale and frequency of the radiation will depend in detail on the dynamics of the
collapse.

If rotation does dominate collapsel then it might be possible to explain the absence
of young, rapidly rotating pulsars in one of the following two ways:

0 A rapidly rotating collapse eventually produces a black hole. Perhaps the outgoing
shock is too weak to blow away the envelope, or perhaps the collapsed ellipsoidal
core, with its rotational support, exceeds the upper mass limit of a slowly rotating
neutron star.

0 The collapsed core may have so much angular momentum that it fissions7 expelling
a small part of itself that carries off substantial angular momentum. The recoil
might explain high—velocity pulsars.

Better hydrodynamical calculations even in Newtonian gravity would shed considerable
light on these questions.

3.3. Supernovae and Stage—1 Interferometers

The usual assumption about supernovae is that they produce a burst of radiation in a
timescale characteristic of the bounce, about 1 ms. This would be a broad-band burst
at about 1 kHz. It is possible, however) that considerable radiation from a collapse
event emerges at a frequency well below 1 kHz, particularly if rotation is involved. As
an illustration, we construct the following simplified and optimistic scenario, in which
first-stage interferometers could see a good number of events:

0 Suppose the energy emerges at 100 Hz as a pulse lasting 10 ms. Then the amplitude
of the signal increases by a factor of 3.

0 Suppose the detector is optimized in recycling mode for detecting pulses at 100 Hz
instead of 1 kHz. Then the noise goes down by a factor of 10.

The result is that the signal-to-noise ratio goes up by 30. Events that radiate 0.01MO (:2
of energy become visible hundreds of megaparsecs away, so hundreds of thousands of
supernovae per year become potential sources.
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There is no reason in principle that the real situation should not be closer to this op-
timistic scenario than to the conventional one. Although the rotational frequency of the
collapsed core must be in the kHz range for instabilities to set in, the non-axisymmetric
deformation that emits the radiation may be a CFS-unstable bar mode,[ll, 12] which
could have a significantly lower frequency cs. In such as case, the supernova would
produce a long, low-amplitude wavetrain at a frequency fCFs < 1000 Hz rather than
a structureless burst of duration l/fCFs, but the signal-to-noise ratio will go up by the
same factor of(1000 HZ/cs)(3/2) provided we have by then good enough models of the
waveform to perform matched filtering.[l3]

This scenario requires that detector builders decide to control their noise sources
down to lower frequencies, and then to optimize the interferometers for the frequency
fcps rather than 1 kHz. These circumstances are not part of the present plans for the
first stage detectors. But the potential payoff of doing so should be kept in mind. Even if
detectors are not optimized for lower frequencies, matched filters should still be applied
to the low-frequency data to look for such events; in this case the potential gain in
signal—to—noise is still a factor of 1000 Hz/fcps.

Unfortunately, this optimistic scenario does not help bar detectors, since a low—
frequency gravitational collapse burst would be outside their bandwidth.

3.4. Astrophysical payoffs of detecting supernovae

In addition to the satisfaction of finding a supernova, there are many astrophysical
reasons for wanting to detect them If bar detectors register a collapse event in our
Galaxy, then:

0 a coincident observation of neutrinos associated with the event would confirm it
and test models of collapse, and may help give the direction to the event if it is
not seen optically;

0 this would define at least one type of supernova that can be a strong gravitational
wave emitter.

If two interferometers detect a collapse event in a distant galaxy, then:

0 they will give waveform information that will greatly constrain collapse models
and the nuclear physics of neutron stars (the waveform information will always be
available because the detection threshold will be at a signal-to-noise ratio of 7 or
so, which means that any detection will yield extra information too);

0 they may, from the characteristic frequencies of the waveform, be able to measure
the mass of the compact object and therefore identify it as a neutron star or black
hole.

Finally, if three or more interferometers detect the event, then they can do the above
plus:

0 they will fix the direction to the event (to better than a degree) and be able to
measure its intrinsic amplitude h and polarization;
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o the direction information may lead to an identification of the galaxy or cluster of
galaxies in which the event occurred, from which one could infer a distance and
thence, from the amplitude h, estimate the total energy released in gravitational
waves ;

0 if the detection can be confirmed and its direction analyzed quickly, then optical
astronomers can be alerted to look in that direction for a new supernova — it is
rare for astronomers to have the opportunity to see a supernova before it reaches
its maximum brightness.

4. Coalescing compact-object binaries

The first suggestion that the orbital radiation emitted just before two binary neutron
stars coalesce would be an interesting source of gravitational radiation was, remarkably,
made by Freeman Dyson[14] before the discovery of pulsars, at a time when the existence
of neutron stars was speculative. This paper correctly estimated the principal features
of the radiation and its sources 7 the timescale of a few seconds, the waveform of
increasing frequency and amplitude that we now call a “chirp”, even that the distance to
a typical source would be 100 Mpc — but erred in considering that these events would be
detectable by the first bar detectors that were then under construction by Joseph Weber.
In fact, no bar detectors so far designed have the frequency bandwidth that would be
necessary to detect a chirp.

Subsequent papers[15, 16, 17] developed the basic theory of such systems, with
the View that the actual coalescence event could be detectable by bars, a possibility
which still exists. But the present intensive interest in coalescing binaries arose from
the realization[18] that the planned interferometers would have a more reliable chance of
seeing these events than of seeing supernovae. In this section I review the main charac—
teristics of these sources, the prospects of seeing them with first—stage and second-stage
detectors, and the considerable astrophysical information that we can expect to extract
from the waveforms, provided relativists can make progress on the 2—b0dy problem in
the next few years.

4.1. Basics

The Binary Pulsar PSR 1913+16 referred to earlier will, in about 108 years, evolve to
a point when the stars are separated by about 250 km. By that time the orbit will
have circularized and the system will be emitting radiation with a frequency of 70 Hz.
From then until the stars begin to merge, the system will evolve in a predictable way,
the frequency of the radiation increasing as the stars gradually spiral together. Over a
period of some 5—6 s, the frequency will increase from 70 Hz to nearly 1 kHz. Theoretical
calculations by Clark and Eardley[16] and more recent numerical simulations by Oohara
and Nakamura[19] have shown us that the stars do not begin to merge until they are
so close together that the radiation has a frequency near 1 kHz. Although LIGO-type
detectors may be able to detect this radiation from about 10 Hz, their best sensitivity
will be above 70—100 Hz, so estimates of detection range are most conservatively made
by assuming the detection begins at about this frequency.
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The general character of the orbit is well represented if we simply take the radiation
to be governed by the quadrupole formula. This tells us that there are of order N ~ 630
periods of gravitational waves until the stars begin to coalesce. If we can construct a
detailed waveform that follows the radiation over this whole period, then we should be
able to use it as a matched filter to improve the signal-to-noise ratio of a detection by
about x/fi ~ 25 over what it would be for a broad-band burst of the same amplitude and

central frequency. Put another way, if we know the waveform we can obtain the same
signal-to—noise ratio as we would have for a broadband burst of the same total energy
(integrated over the whole signal) at the same frequency.[l3] Since the orbital motion
radiates some 5 X 10‘3M® 02 of energy, these sources will be as detectable as a moderate
supernova burst at a low frequency, say 100 Hz.

Our discussion above of low-frequency bursts from supernovae shows that this
makes coalescing binaries some 30 times more detectable than a conventional kilo-
Hertz supernova burst of the same energy. It therefore becomes possible to con-
template detecting these events out as far as 800 Mpc, which is a redshift of z :
0.26(H0/100 km s’1 Mpc'l.

There are also likely to be a certain number of binaries containing a neutron star
and a black hole of, say, lOMQ. These radiate with an amplitude approximately 5 times
as large as that from two neutron stars. Although they execute fewer orbits before
coalescence, such systems are still visible almost 3 times further away. And systems
consisting of two black holes can be seen more than 10 times further away, which means
that they are visible essentially everywhere in the Universe.

This great distance is the key to the interest in these sources. Although the coa-
lescence events are rare in any galaxy, the volume of space we can observe is very large,
and the number of events turns out to be very significant. Moreover, as we shall see, the
observations themselves can carry very interesting cosmological information.

4.2. Event rate

Since coalescence events are rare and have never been observed, we can only infer a
likely event rate from observations of their progenitors, binary systems containing two
neutron stars in an orbit close enough to decay in a Hubble timescale. Such systems
may be observable in our Galaxy if one of the neutron stars is a pulsar. The Binary
Pulsar PSR1913+16 was our first example, and two others have been discovered since:
PSR2127+IIC (in the globular cluster M15) and PSR1534+12. Searches currently un-
derway are very likely to turn up more.

Based on a careful analysis of the selection effects in the pulsar surveys that have
taken place so far, two independent studies[20, 21] have reached broadly similar con-
clusions about the rate of coalescence in our Galaxy. Its most probable value is about
one neutron-star coalescence per 107 years. When we extrapolate this to a distance of
800 Mpc, containing some 2 X 109 galaxies, we arrive at about 200 coalescences per year.
Perhaps 10% of these will give strong enough signals to be detected[22], so the detection
rate should be some tens per year. This estimate is to be regarded as an observational
lower bound to the event rate, and it is uncertain by a factor of 10 either way. (This
is a considerable improvement on the best earlier estimate, by Clark, et al,[17}, which
I estimated to be uncertain by a factor of 100.[24]) It could be increased by any of the
following:
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o If new searches turn up new progenitor systems, the estimated fraction of pulsars
in binaries will increase and so will the predicted event rate.

0 The event rate may also increase because of another remarkable conclusion of
the two studies just cited. Because the formation of a black hole in a supernova
explosion retains more of the mass of the original star, it has a. smaller probability
of disrupting a binary system. This means that the number of binaries containing a
black hole and a neutron star may be much larger than one would at first suppose:
it may be that one compact-object binary in three contains a black hole. If so, then
pulsar surveys now underway should find such a system in our Galaxy. Since such
systems are detectable at greater distances, they may even dominate the detection
rate, raising it by a factor of 2 or more above the estimate we have just made.

0 We have considered only the sensitivity of detectors above about 70 Hz. Depending
on the noise performance at low frequencies, it may be possible to gain at least a
factor of 2 in signal—to— noise ratio by going down to 40 Hz or lower.[23] This would
double the range and multiply the detection rate by 8. Improving sensitivity at low
frequency also offers more information about stars from the waveform, but only if
the two-body problem in relativity can be solved more completely than it has been
so far. I will return to this challenge below.

If one is optimistic about all these possibilities, then the expected detection rate in
stage—two detectors could be pushed up from two per month to as many as 40 per day!

4.3. Coalescing binaries and first—stage detectors

More interesting, perhaps, is the possibility that stage—one detectors could see coalescing
binaries. This possibility is usually discounted, because these detectors are not expected
to be optimized for observing as low as 70 Hz, and this, coupled with a 10—times poorer
sensitivity, leaves them with an expected event rate of about one per 105 years!

But if a stage—one detector is built with noise controlled down to 40 Hz, and is
optimized for observing at 70 Hz, then its range is only a factor of 5 less than the
conservative assumption we made for the stage-two detector above. Then if the event
rate is actually 10 times higher, and if black holes contribute a further factor of 2, the
expected detection rate even with a stage—one detector could be a few per year. Again,
to exploit this possibility, detector designers and builders would have to give priority to
low-frequency performance at the first stage of construction.

4.4. Information to be learned from observing them

The amount of information that one can in principle extract from coalescing binary
observations is enormous. As for supernovae, we consider what different arrays of detec-
tors can do. Coalescing binaries are essentially invisible to bar detectors because they
emit very little of their total energy in the bandwidth of realistic detectors. If two laser
interferometers were to observe a coalescing binary, they could do the following.

0 They would automatically measure what we call the “chirp mass” of the binary,
which is the following combination of the reduced mass a and total mass M of the
system:

M : #S/SMZ/S‘ (4)

202 General Relativity and Gravitation 1992

o If new searches turn up new progenitor systems, the estimated fraction of pulsars
in binaries will increase and so will the predicted event rate.

0 The event rate may also increase because of another remarkable conclusion of
the two studies just cited. Because the formation of a black hole in a supernova
explosion retains more of the mass of the original star, it has a. smaller probability
of disrupting a binary system. This means that the number of binaries containing a
black hole and a neutron star may be much larger than one would at first suppose:
it may be that one compact-object binary in three contains a black hole. If so, then
pulsar surveys now underway should find such a system in our Galaxy. Since such
systems are detectable at greater distances, they may even dominate the detection
rate, raising it by a factor of 2 or more above the estimate we have just made.

0 We have considered only the sensitivity of detectors above about 70 Hz. Depending
on the noise performance at low frequencies, it may be possible to gain at least a
factor of 2 in signal—to— noise ratio by going down to 40 Hz or lower.[23] This would
double the range and multiply the detection rate by 8. Improving sensitivity at low
frequency also offers more information about stars from the waveform, but only if
the two-body problem in relativity can be solved more completely than it has been
so far. I will return to this challenge below.

If one is optimistic about all these possibilities, then the expected detection rate in
stage—two detectors could be pushed up from two per month to as many as 40 per day!

4.3. Coalescing binaries and first—stage detectors

More interesting, perhaps, is the possibility that stage—one detectors could see coalescing
binaries. This possibility is usually discounted, because these detectors are not expected
to be optimized for observing as low as 70 Hz, and this, coupled with a 10—times poorer
sensitivity, leaves them with an expected event rate of about one per 105 years!

But if a stage—one detector is built with noise controlled down to 40 Hz, and is
optimized for observing at 70 Hz, then its range is only a factor of 5 less than the
conservative assumption we made for the stage-two detector above. Then if the event
rate is actually 10 times higher, and if black holes contribute a further factor of 2, the
expected detection rate even with a stage—one detector could be a few per year. Again,
to exploit this possibility, detector designers and builders would have to give priority to
low-frequency performance at the first stage of construction.

4.4. Information to be learned from observing them

The amount of information that one can in principle extract from coalescing binary
observations is enormous. As for supernovae, we consider what different arrays of detec-
tors can do. Coalescing binaries are essentially invisible to bar detectors because they
emit very little of their total energy in the bandwidth of realistic detectors. If two laser
interferometers were to observe a coalescing binary, they could do the following.

0 They would automatically measure what we call the “chirp mass” of the binary,
which is the following combination of the reduced mass a and total mass M of the
system:

M : #S/SMZ/S‘ (4)

202 General Relativity and Gravitation 1992

o If new searches turn up new progenitor systems, the estimated fraction of pulsars
in binaries will increase and so will the predicted event rate.

0 The event rate may also increase because of another remarkable conclusion of
the two studies just cited. Because the formation of a black hole in a supernova
explosion retains more of the mass of the original star, it has a. smaller probability
of disrupting a binary system. This means that the number of binaries containing a
black hole and a neutron star may be much larger than one would at first suppose:
it may be that one compact-object binary in three contains a black hole. If so, then
pulsar surveys now underway should find such a system in our Galaxy. Since such
systems are detectable at greater distances, they may even dominate the detection
rate, raising it by a factor of 2 or more above the estimate we have just made.

0 We have considered only the sensitivity of detectors above about 70 Hz. Depending
on the noise performance at low frequencies, it may be possible to gain at least a
factor of 2 in signal—to— noise ratio by going down to 40 Hz or lower.[23] This would
double the range and multiply the detection rate by 8. Improving sensitivity at low
frequency also offers more information about stars from the waveform, but only if
the two-body problem in relativity can be solved more completely than it has been
so far. I will return to this challenge below.

If one is optimistic about all these possibilities, then the expected detection rate in
stage—two detectors could be pushed up from two per month to as many as 40 per day!

4.3. Coalescing binaries and first—stage detectors

More interesting, perhaps, is the possibility that stage—one detectors could see coalescing
binaries. This possibility is usually discounted, because these detectors are not expected
to be optimized for observing as low as 70 Hz, and this, coupled with a 10—times poorer
sensitivity, leaves them with an expected event rate of about one per 105 years!

But if a stage—one detector is built with noise controlled down to 40 Hz, and is
optimized for observing at 70 Hz, then its range is only a factor of 5 less than the
conservative assumption we made for the stage-two detector above. Then if the event
rate is actually 10 times higher, and if black holes contribute a further factor of 2, the
expected detection rate even with a stage—one detector could be a few per year. Again,
to exploit this possibility, detector designers and builders would have to give priority to
low-frequency performance at the first stage of construction.

4.4. Information to be learned from observing them

The amount of information that one can in principle extract from coalescing binary
observations is enormous. As for supernovae, we consider what different arrays of detec-
tors can do. Coalescing binaries are essentially invisible to bar detectors because they
emit very little of their total energy in the bandwidth of realistic detectors. If two laser
interferometers were to observe a coalescing binary, they could do the following.

0 They would automatically measure what we call the “chirp mass” of the binary,
which is the following combination of the reduced mass a and total mass M of the
system:

M : #S/SMZ/S‘ (4)



Sources ofgravitational waves and their detectability 203

This is the only parameter that governs the quadrupolar emission of radiation,
and so it determines the overall acceleration of the frequency of the chirp signal.
Determining the value of this parameter is essential to extracting the signal from
the interferometer noise.

0 Provided sensitivity at or below 70 Hz is adequate, or if the system is near and
the signal is sufficiently strong, they would be able to measure the individual com-
ponent masses from post- Newtonian effects in the orbit. The dominant effect is
a slowly accumulating phase error in the signal, as post-Newtonian corrections to
the orbit grow secularly alongside the quadrupolar secular terms. With good low-
frequency sensitivity, a stage-two detector should be able to measure the masses
of hundreds of neutron stars and black holes over a few years’ observing. The im-
provement in our understanding of neutron star formation, evolution, and equation
of state will be enormous.

0 Again, for the strongest systems they should be able to measure other parameters,
such as the spins of the neutron stars. These have a marginal but accumulating
effect on the orbital phase.

0 They should observe black holes coalescing. Provided such events occur more than
once a year out to quasar distances, second-stage detectors should see them. If
numerical calculations of black-hole coalescence can be performed by the time ob—
servations occur, the observations will provide a unique test of strong—field gravity
theory.

If three or more interferometric detectors detect a coalescing binary signal, then
they can determine its intrinsic amplitude and direction, as well as secondary parameters
such as the orientation of the plane of the binary system. Compact-object binaries are
so easy to model that a knowledge of the chirp mass M, the intrinsic amplitude, and
the orientation of the binary are enough to tell us exactly how far away the system is.
Such simple and reliable “standard candles” are rare in astronomy, and offer a wealth of
new possibilities. Two such possibilities are:

0 The determination of the Hubble constant.[25] This can happen in two ways.

— We may be lucky enough to observe an event whose position can be deter—
mined precisely enough to locate it in a particular galaxy. This requires
more precision than the :tl" accuracy we expect for typical events, This may
happen if the event is much closer and therefore stronger, or if it is also ob-
served with other instruments (such as gamma-ray detectors, as described in
the next section). Then the redshift of the galaxy can be measured, and its
gravitational-wave distance then determines the Hubble constant.

— More likely, individual events that occur within 100—150 Mpc will fall within
error boxes containing a few clusters of galaxies. Since about 50% of galaxies
are members of identifiable clusters, there is a good chance that, by mea-
suring the redshifts of all the clusters and obtaining candidate values of the
Hubble constant from each, one will find the correct value of Ho among the

candidates. Then if a number of different events are treated in the same way,
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the correct value will repeat often, while the incorrect candidates will be dis-
tributed randomly. After a few (ten or so) such events, the real value of the
Hubble constant will emerge. Depending on the event rate, this could take
anywhere from 1 year to a decade to accomplish.

0 Test the cosmological mass distribution for super-clustering on the 200+ Mpc scale.
Given positions and distances to these systems, and given that they probably
sample the visible mass distribution fairly well, one can expect to accumulate
statistics on the homogeneity of the mass distribution on scale that we have little
information about at present.

4.5. Gamma-ray bursts and coalescing binaries

Among the most puzzling astronomical phenomena at present are gamma-ray bursts.
Originally these were thought to originate in neutron stars in the Galaxy, as fairly low—
energy and relatively benign events. But the recent announcement[26] that the BATSE
instrument on the Compton Observatory has detected hundreds of bursts, and that
they are distributed perfectly isotropically on the celestial sky, has cast grave doubt on
such models, which would have predicted a concentration towards the galactic plane. A
currently popular model is that they are associated with the coalescence event of two
neutron stars or a neutron star and a black hole.

Although all models are uncertain at present, it this one turns out to be correct,
then gamma ray bursts should also be accompanied by gravitational wave signals. Nichol—
son and H27] have studied the consequences of joint observations between a gamma—ray
burst detector and two or three gravitational wave detectors. The principal advantage
is that the gravitational wave detectors can lower their threshold for detection, since
they need only discriminate between noise and real events in a narrow window of time
(perhaps a second or less) before the gamma burst. This improves the range of the de-
tectors and of course markedly affects the detected event rate. The more distant events
that are now detectable have, of course, lower signal—to—noise, so it is harder to extract
information from them. In particular, distance determinations become very inaccurate
outside of perhaps 500 Mpc. Nevertheless, the added statistics on the chirp mass, and
the ability to correlate gravitational waveforms with the individual characteristics of the
gamma bursts is likely to be of great value in making models.

4.6. Challenge to relativity

When I discussed above the information that can be extracted from the signals from
coalescing binaries, I qualified the discussion with the proviso that the two-body problem
should have been adequately solved by the time observations are made. The reason is
that, to identify a signal buried in detector noise that is of much higher amplitude, and
to measure its parameters, one must perform matched filtering of the data stream: one
must match the pattern expected from a source to the actual incoming wave. To do this,
one needs good theoretical predictions of the waveform over a long period of time, and
the prediction must keep in phase with the actual wave all the way.

The problem is that, although we have solutions of the two-body problem including
terms of post- Newtonian order, including radiation reaction, there is doubt[28] that the
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post- Newtonian hierarchy of approximations will produce a convergent, or at least well-
behaved, approximation for the evolution of the orbital phase as a function of time
over the several minutes that systems can be observed if they are picked up at a few
tens of Hz. In fact, the problem gets worse for systems that can be observed first at
lower frequencies, that is when they are more nearly Newtonian. This counter—intuitive
problem is worth describing.

The post-Newtonian hierarchy of approximations is an asymptotic approximation
in a small parameter (essentially Q ~ GM/rcz) that is uniform for a fixed number of
orbits.[29] But observing coalescing binaries means following them as they decay, on a
timescale proportional to (v/c)“‘ ~ 43—2. As the system becomes more Newlmmian, so
that <I> —> 0, any fixed number of orbits occupies a time proportional to 1/1: ~ Q)" U“, and
therefore represents a fraction of the overall decay time that gets smaller as 6’3” w (II/(3)3.
It follows that, the more closely Newtonian the system is when it is first observed, the
worse the post-Newtonian approximation will be for predicting what the orbit does all
the way to coalescence.

If, despite this, the post—Newtonian approximations do provide a convergent de-
scription of the orbit, then it is just a matter of hard work to develop them out to
post-post—Newtonian order, which might be sufficient for most observations. But if, as
seems likely, they do not, then relativists have a challenge: find another way to give a.
reasonably complete solution. Numerical calculations for widely separated bodies seem
prohibitively expensive. Is there another analytic method, involving expansions in a
new small parameter, that will produce computationally feasible approximations that
converge?

The reward will be signal templates that can extract the maximum information
from the observations. It should be emphasized that the mere detection of the signal,
and the measurement of the simple chirp mass, does not necessarily require a solution of
the whole approximation problem: filters can be designed to pick up most signals even
if they do not fit the whole wavetrain with a single analytic expression. But to measure
physically interesting things requires filters that translate physical parameters into the
observed waveforms.

5. Pulsars and the stochastic background

I will briefly discuss two other possible sources of gravitational waves: pulsars and a
cosmological background. These are not as strongly emphasized in discussions of gravi-
tational wave sources because they are more speculative, but they would nevertheless be
very interesting if they are observed. It is arguable, in fact, that a positive detection of a
cosmological background would be the most important observation that interferometers
could make.

5.1. Pulsars old and new

A number of pulsars spin fast enough for any gravitational waves emitted by them to be
of a high enough frequency (twice the pulsar frequency) to be detected by ground-based
detectors. Indeed, searches for radiation from the Crab pulsar have been performed
with special bar detectors built to resonate at 60 Hz.[30] Such radiation would arise in
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tens of Hz. In fact, the problem gets worse for systems that can be observed first at
lower frequencies, that is when they are more nearly Newtonian. This counter—intuitive
problem is worth describing.

The post-Newtonian hierarchy of approximations is an asymptotic approximation
in a small parameter (essentially Q ~ GM/rcz) that is uniform for a fixed number of
orbits.[29] But observing coalescing binaries means following them as they decay, on a
timescale proportional to (v/c)“‘ ~ 43—2. As the system becomes more Newlmmian, so
that <I> —> 0, any fixed number of orbits occupies a time proportional to 1/1: ~ Q)" U“, and
therefore represents a fraction of the overall decay time that gets smaller as 6’3” w (II/(3)3.
It follows that, the more closely Newtonian the system is when it is first observed, the
worse the post-Newtonian approximation will be for predicting what the orbit does all
the way to coalescence.

If, despite this, the post—Newtonian approximations do provide a convergent de-
scription of the orbit, then it is just a matter of hard work to develop them out to
post-post—Newtonian order, which might be sufficient for most observations. But if, as
seems likely, they do not, then relativists have a challenge: find another way to give a.
reasonably complete solution. Numerical calculations for widely separated bodies seem
prohibitively expensive. Is there another analytic method, involving expansions in a
new small parameter, that will produce computationally feasible approximations that
converge?

The reward will be signal templates that can extract the maximum information
from the observations. It should be emphasized that the mere detection of the signal,
and the measurement of the simple chirp mass, does not necessarily require a solution of
the whole approximation problem: filters can be designed to pick up most signals even
if they do not fit the whole wavetrain with a single analytic expression. But to measure
physically interesting things requires filters that translate physical parameters into the
observed waveforms.

5. Pulsars and the stochastic background

I will briefly discuss two other possible sources of gravitational waves: pulsars and a
cosmological background. These are not as strongly emphasized in discussions of gravi-
tational wave sources because they are more speculative, but they would nevertheless be
very interesting if they are observed. It is arguable, in fact, that a positive detection of a
cosmological background would be the most important observation that interferometers
could make.

5.1. Pulsars old and new

A number of pulsars spin fast enough for any gravitational waves emitted by them to be
of a high enough frequency (twice the pulsar frequency) to be detected by ground-based
detectors. Indeed, searches for radiation from the Crab pulsar have been performed
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non-axisymmetric mass distributions, small lumps or irregularities in the crust of the
star.

Irregularities are certainly present, if only because the stars possess non-
axisymmetric magnetic fields, but they need not be large enough to produce observable
amplitudes. The only observational limits we have on most pulsars come from spindown:
gravitational waves must not carry away more energy than can be accounted for by the
spindown of the pulsar. In fact, the gravitational wave luminosity of pulsars is likely to
be much smaller than this, since the dominant loss of energy is almost certainly in the
form of electromagnetic and particle fluxes.

The bounds that spindown places on the radiation from the Crab and Vela pulsars
still leaves plenty of room for detectable amplitudes, and second-stage interferometers
will certainly look for it. Millisecond pulsars, on the other hand, tend to be older and to
be spinning down less rapidly, so their radiation limits are more stringent. A recently—
discovered nearby millisecond pulsar[31] might offer some hope of eventual detection.

5.2. All—sky search for pulsars

There are many more radio—quiet (“dead”) pulsars than there are active ones: perhaps
one star in 10 in our Galaxy is a neutron star. So the nearest is only a few parsecs away,
and it might well be a source of gravitational waves even though its radio emission has
ceased.

Finding it, however, means performing an all—sky, all—frequency survey of the sky
in gravitational waves. The sensitivity of such a search, it turns out, will be limited by
available computing power in the foreseeable future.[32] The reason is that, provided a
data set longer than a few hours is used, it will be necessary to remove the Doppler
effects of the Earth’s motion from the signal, and these effects depend on the pulsar’s
position on the sky. The data set must therefore be searched separately for each of a
large number of small patches on the sky. This will limit data sets to a couple of weeks
in the near future.

5.3. Stochastic background and the early Unwerse

While pulsars are relatively well-known objects, sources of a stochastic cosmological
background of gravitational waves are a good deal more exotic. The leading candidates
are cosmic strings. If they are massive enough to act as seeds for galaxy formation,
then they must also produce gravitational waves as they oscillate and decay.[33] Other
candidates are bubble collisions in extended inflation scenarios and quantum fluctuations
in the fields that drive inflation.[34]

A stochastic background looks just like noise in a single detector. The only way to
detect it is to look for correlated noise between two different detectors. The detectors
must be separated enough so that other sources of noise — ground vibration, for example
— are uncorrelated. But if the detectors are separated by too much, they will also not
be correlated in their response to the background: if the time it takes a random wave to
travel from one detector to the other is a good fraction of the period of the wave, then
the responses of the detectors will not be correlated at a given time. For observing at
50 Hz, separations less than 1500 km are ideal. The two European detectors are well
placed for this, while the two LIGO sites are rather further apart.
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Bar detectors can also look for background radiation, and they have done so.[35]

But their narrow bandwidth and limited sensitivity allows only very weak limits to be

set at present.
The strength of the background is conveniently expressed by a quantity called 0,1,”,

which is the fraction of the closure density contributed by the energy of the background

per decade of frequency. In a bandwidth of about 50 Hz about 50 Hz, stage-two LIGO-

type detectors could in principle reach below 0W 2 10—9, which would be enough to

eliminate the cosmic string model or detect its background. Current limits from pulsar

timing are around 107 at very low frequencies (periods of several years) — see the article

by Taylor in this volume,
Although the existence of such a background is very speculative, a detection would

open up an entirely new window on the very early Universe; the radiation would be

coming to us directly from an epoch to which we have no other possible direct access.

Performing a correlation experiment is arguably one of the most important goals of

interferometer development, and it has a high priority in the detector groups.
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Computer calculations of collisions, black holes, and naked
singularities

Stuart L Shapiro and Saul A Teukolsky

Center [or Radiophysics and Space Research, Cornell University, Ithaca, NY
14850, USA.

Abstract. We describe a method for the numerical solution of Einstein’s
equations for the dynamical evolution of a collisionless gas of particles in gen»
eral relativity. The gravitational field can be arbitrarily strong and particle
velocities can approach the speed of light. The computational method uses
the tools of numerical relativity and N—body particle simulation to follow the
full nonlinear behavior of these systems. Specifically, we solve the Vlasov
equation in general relativity by particle simulation. The gravitational field
is integrated using the 3 + l formalism of Arnowitt, Deser, and Misner. One
application of our method is the study of headeon collisions of relativistic
clusters. We have constructed and followed the evolution of three classes of
initial configurations: spheres of particles at rest; spheres of particles boosted
towards each other; and spheres ol‘ particles in circular orbits about their re-
spective centers, in the first two cases, the spheres implode towards their
centers and may form black holes before colliding. These scenarios thus can
be used to study the headeon collision of two black holes. In the third case
the clusters are initially in equilibrium and cannot implode. In this case
collision from rest leads either to coalescence and virialization, or collapse
to a black hole. This scenario is the collisionless analog of colliding neutron
stars in relativistic hydrodynamics. Our method also provides a new tool
for studying the cosmic censorship hypothesis and the possibility of naked
singularities. The formation of a naked singularity during the collapse of a
finite object would pose a serious difiiculty for the theory of general rela~
tivity. The hoop conjecture suggests that this possibility will never happen
provided the object is sufficiently compact (SM) in all of its spatial dimen-
sions. But what about the collapse of a long, nonrotating, prolate object
to a thin spindle? Such collapse leads to a strong singularity in Newtonian
gravitation. Using our numerical code to evolve collisionless gas spheroids
in full general relativity, we find that in all cases the spheroids collapse to
singularities. When the spheroids are sufficiently compact the singularities
are hidden inside black holes. However, when the spheroids are sufficiently
large there are no apparent horizons. These results lend support to the hoop
conjecture and appear to demonstrate that naked singularities can form in
asymptotically flat spacetimes.
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1. Introduction

For several years we have been using the tools of numerical relativity to explore the
dynamical behavior of collisionless matter. One of our goals is to learn how to solve
Einstein’s equations on the computer, and collisionless matter provides a particularly
simple matter source. The dynamical equations for collisionless particles are simply
the geodesic equations, which are ODEs and are considerably easier to solve than the
equations for hydrodynamic matter, which are PDEs. In contrast to hydrodynamic
matter, collisionless matter is not subject to shocks or other discontinuities which present
computational difficulties unrelated to solving Einstein’s equations.

Basically we are solving relativistic Vlasov equation for the matter coupled to Ein-
stein’s equations for the gravitational field. The method is mean—field particle simulation
scheme: the distribution function is sampled by a large number of particles to get the
stressrenergy tensor Tw- This stressienergy tensor is the source for the the field equa—
tions. Once they have been solved for the metric, the particles are moved for a small
time step along geodesics of this background metric, and TM, is recalculated. The whole
procedure is repeated to follow a complete evolution.

A second goal of our study is to explore the dynamical late and evolution of rela
tivistic star clusters, and their possible astrophysical importance. For example, we have
shown how a sufficiently relativistic star cluster collapses to form a supermassive black
hole. Since supermassive black holes are likely to be the engines that power quasars
and AGNs, the question of their origin is an important unsolved problem that our work
addresses. In this paper, we will not deal with this and other astrophysical issues related
to our work. instead, we will focus on some of the fundamental issues connected with
general relativity, rather than with astrophysical applications.

The simplest problems to tackle first are those with lots of symmetry and thus
fewer degrees of freedom. Even in spherical symmetry, the dynamical evolution of a star
cluster is not trivial. One must choose a good set of coordinates that allow the evolution
to be calculated without the appearance of coordinate singularities. More importantly,
when there are black holes, one wants coordinates that avoid the accompanying physical
singularities, while continuing to follow the evolution outside the black holes. There
are no recipes for choosing good coordinates in general. However, the spherical prob-
lem is essentially solved (Shapiro and Teukolsky 1985a,b,c, l986, 1988). One can start
with an arbitrary distribution of particle velocities and positions and follow the cluster’s
evolution, even for cases in which the velocities are close to the speed of light and the
gravitational fields become arbitrarily strong. Black hole formation and the growth of
the event horizon can be tracked with reasonable accuracy.

Fully three-dimensional problems with no symmetry whatsoever are beyond the
reach of present computational resources and algorithmic developments. The current
focus is on handling nonspherical problems in axisymmetry. These problems allow one
to study two new qualitative features absent in spherical symmetry: rotation and the
production of gravitational waves. Also, as we shall see below, they allow us to investi-
gate some fundamental issues of general relativity including cosmic censorship and the
formation of naked singularities.

212 General Relativity and Gravitation 1992

1. Introduction

For several years we have been using the tools of numerical relativity to explore the
dynamical behavior of collisionless matter. One of our goals is to learn how to solve
Einstein’s equations on the computer, and collisionless matter provides a particularly
simple matter source. The dynamical equations for collisionless particles are simply
the geodesic equations, which are ODEs and are considerably easier to solve than the
equations for hydrodynamic matter, which are PDEs. In contrast to hydrodynamic
matter, collisionless matter is not subject to shocks or other discontinuities which present
computational difficulties unrelated to solving Einstein’s equations.

Basically we are solving relativistic Vlasov equation for the matter coupled to Ein-
stein’s equations for the gravitational field. The method is mean—field particle simulation
scheme: the distribution function is sampled by a large number of particles to get the
stressrenergy tensor Tw- This stressienergy tensor is the source for the the field equa—
tions. Once they have been solved for the metric, the particles are moved for a small
time step along geodesics of this background metric, and TM, is recalculated. The whole
procedure is repeated to follow a complete evolution.

A second goal of our study is to explore the dynamical late and evolution of rela
tivistic star clusters, and their possible astrophysical importance. For example, we have
shown how a sufficiently relativistic star cluster collapses to form a supermassive black
hole. Since supermassive black holes are likely to be the engines that power quasars
and AGNs, the question of their origin is an important unsolved problem that our work
addresses. In this paper, we will not deal with this and other astrophysical issues related
to our work. instead, we will focus on some of the fundamental issues connected with
general relativity, rather than with astrophysical applications.

The simplest problems to tackle first are those with lots of symmetry and thus
fewer degrees of freedom. Even in spherical symmetry, the dynamical evolution of a star
cluster is not trivial. One must choose a good set of coordinates that allow the evolution
to be calculated without the appearance of coordinate singularities. More importantly,
when there are black holes, one wants coordinates that avoid the accompanying physical
singularities, while continuing to follow the evolution outside the black holes. There
are no recipes for choosing good coordinates in general. However, the spherical prob-
lem is essentially solved (Shapiro and Teukolsky 1985a,b,c, l986, 1988). One can start
with an arbitrary distribution of particle velocities and positions and follow the cluster’s
evolution, even for cases in which the velocities are close to the speed of light and the
gravitational fields become arbitrarily strong. Black hole formation and the growth of
the event horizon can be tracked with reasonable accuracy.

Fully three-dimensional problems with no symmetry whatsoever are beyond the
reach of present computational resources and algorithmic developments. The current
focus is on handling nonspherical problems in axisymmetry. These problems allow one
to study two new qualitative features absent in spherical symmetry: rotation and the
production of gravitational waves. Also, as we shall see below, they allow us to investi-
gate some fundamental issues of general relativity including cosmic censorship and the
formation of naked singularities.

212 General Relativity and Gravitation 1992

1. Introduction

For several years we have been using the tools of numerical relativity to explore the
dynamical behavior of collisionless matter. One of our goals is to learn how to solve
Einstein’s equations on the computer, and collisionless matter provides a particularly
simple matter source. The dynamical equations for collisionless particles are simply
the geodesic equations, which are ODEs and are considerably easier to solve than the
equations for hydrodynamic matter, which are PDEs. In contrast to hydrodynamic
matter, collisionless matter is not subject to shocks or other discontinuities which present
computational difficulties unrelated to solving Einstein’s equations.

Basically we are solving relativistic Vlasov equation for the matter coupled to Ein-
stein’s equations for the gravitational field. The method is mean—field particle simulation
scheme: the distribution function is sampled by a large number of particles to get the
stressrenergy tensor Tw- This stressienergy tensor is the source for the the field equa—
tions. Once they have been solved for the metric, the particles are moved for a small
time step along geodesics of this background metric, and TM, is recalculated. The whole
procedure is repeated to follow a complete evolution.

A second goal of our study is to explore the dynamical late and evolution of rela
tivistic star clusters, and their possible astrophysical importance. For example, we have
shown how a sufficiently relativistic star cluster collapses to form a supermassive black
hole. Since supermassive black holes are likely to be the engines that power quasars
and AGNs, the question of their origin is an important unsolved problem that our work
addresses. In this paper, we will not deal with this and other astrophysical issues related
to our work. instead, we will focus on some of the fundamental issues connected with
general relativity, rather than with astrophysical applications.

The simplest problems to tackle first are those with lots of symmetry and thus
fewer degrees of freedom. Even in spherical symmetry, the dynamical evolution of a star
cluster is not trivial. One must choose a good set of coordinates that allow the evolution
to be calculated without the appearance of coordinate singularities. More importantly,
when there are black holes, one wants coordinates that avoid the accompanying physical
singularities, while continuing to follow the evolution outside the black holes. There
are no recipes for choosing good coordinates in general. However, the spherical prob-
lem is essentially solved (Shapiro and Teukolsky 1985a,b,c, l986, 1988). One can start
with an arbitrary distribution of particle velocities and positions and follow the cluster’s
evolution, even for cases in which the velocities are close to the speed of light and the
gravitational fields become arbitrarily strong. Black hole formation and the growth of
the event horizon can be tracked with reasonable accuracy.

Fully three-dimensional problems with no symmetry whatsoever are beyond the
reach of present computational resources and algorithmic developments. The current
focus is on handling nonspherical problems in axisymmetry. These problems allow one
to study two new qualitative features absent in spherical symmetry: rotation and the
production of gravitational waves. Also, as we shall see below, they allow us to investi-
gate some fundamental issues of general relativity including cosmic censorship and the
formation of naked singularities.



Computer calculations of cal/isions) black IIOiC’S) and naked singularities 213

2. Cluster collisions

As a first example of the kind of problem that is now amenable to solution, we will
consider the head—on collision of relativistic star clusters. Collision experiments are
a time—honored means of probing the nature of an interaction in physics, and here we
discuss numerical collisions that we have performed to study the gravitational interaction.

To follow the head-on collision of two clusters, we solve the field equations in 3 + l
form following Arnowitt, Deser, and Misner (1962). We use maximal time slicing and
isotropic spatial coordinates in axisymmetry. The metric is

(is2 : ingdfl + /12((ir + li7‘(it)2 + Agrgtcfli + find/)2 + 1327‘2 sin2 Whiz. (I)

The key equations are presented in Shapiro and 'l‘eukolslcy (1992a).
We have considered three different collision scenarios (Shapiro and 'l‘eukolsky

1992a):
(l) the collision from rest of spheres of particles with no initial internal motion;
(2) the collision of the same spheres initially boosted towards each other with a.

uniform velocity;
(3) the collision from rest 01' (,aquilibrium spheres 01‘ particles, i.e.. spheres in which

the internal particle motions maintain dynamical equilibrium when the spheres are widely
separated.

In the first two cases the nonequilibrium spheres collapse towards their own centers
and may form black holes before they collide, Thus these scenarios provide a. way of
studying the headon collision of two identical nonrotating black holes. This treatment
is an alternative means of analyzing this important problem, which has only been consid
ered previously (Smarr 1979) using the vacuum Einstein equations (“topologica.l” black
holes). We thus demonstrate how a code designed to handle matter in general relativity
can be used to treat black holes, without having to develop specialepurpose routines to
handle the boundary conditions for vacuum black holes.

The third case is the cluster analog of the headeon collision 01' two neutron stars
(Smarr and Wilson 1979; Cilden and Shapiro 1984; l‘ivans 1987', Kochanek and l‘lvans
1989). jollisions of equilibrium clusters have previously been studied only in Newtonian
gravitation (see, c.g., Kochanek at a! 1990). in a strong gravitational field the collision
can lead to black hole formation. However, stable equilibrium clusters do not implode
on their own centers. Thus a black hole can only form when the Clusters interact closely.

2.1. Boosted spheres

By way of illustration, consider how case (2) can be used to study the head-011 colli-
sion of two black holes. Figure 1 shows snapshots from the collision of two identical
nonequilibrium spherical clusters boosted towards each other with a velocity v = 0.12c
(as measured in the frame of a “normal” observer; see Shapiro and Teukolsky 1992a).
The spheres each have a radius a = 0.8111 and are separated by 20 = 1.4111, so there are
no apparent horizons initially. The velocity was chosen so that the collapse of the clusters
individually gives rise to two distinct black holes well before the systems merge to form a
single black hole. At t/r‘W : 6.5, a “disjoint” apparent horizon forms around each of the
spheres. The spheres then implode rapidly toward their centers. However. they continue
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to move toward each other, and by the end of the simulation a “common” apparent hori-
zon encloses the two clusters. As in other cases considered, the amount of gravitational
radiation emitted here is small, << 170W]. With the computational resources used for
this simulation, the precise amount of radiation produced is not accurately determined.

We are forced to terminate the integrations when the field gradients near the cluster
centers become so large that we can no longer maintain accuracy. This is the same
problem that limits integrations of spherical collapse to black holes with maximal time
slicing and isotropic coordinates (Shapiro and Teul<olsl<y l986). By the time the lapse
has fallen exponentially to ~ 10—2 at the cluster center, the code becomes inaccurate.
Thus these coordinates are not adequate to follow the entire collision and coalescence.

2.2. Equilibrium, spheres

Working with equilibrium spheres allows us to study collisions without the clusters im—
ploding on their own centers before making contact. This is the collisionless analog of
the headron collision of neutron stars in hydrodynamics.

ln Newtonian theory the hcadion collision from rest of two clusters leads to violent
relaxation, coalescence and Virialization to a new equilibrium state (see, e.g., Kochanek
cl (ll H100). in general relativity, however, there is the possibility that. the collision will
be followed by collapse to a black hole. To anticipate when this might happen, note first
that a single spherical cluster is dynamically unstable to collapse whenever its radius in
Schwarzschild coordinates is less than 6N1, corresponding to an isotropic radius of 4.95M.
Numerical examples of this phenomenon are given in Shapiro and Teukolsky (1985a).
'l‘wo welleseparatcd spheres of mass i’W/Q are thus individually unstable if (I < 2.47M.
If these spheres were suddenly superposed, the resulting sphere would be unstable if the
original a was less than 4.5)51W. In fact, the final sphere would be unstable for even
larger values of it because the original internal velocities that maintained equilibrium
were those appropriate to a mass [VI/2 rather than 11/], We thus expect to find for a
value of (£25114 a transition between collisions leading to black hole formation and those
leading to virialization to a merged equilibrium.

In Figures 2 , 1l we consider a sequence of collisions from rest between equilibrium
clusters with successively smaller values of (i/ll/I. Figure 2 shows the evolution of spheres
of radius a : ti/lll/I separated by 20 : 256M. This case is essentially Newtonian. Fol»
lowing coalescence and violent relaxation, the two clusters achieve virial equilibrium. To
monitor the approach to virial equilibrium, we computed the ratio ZT/IWI, where T is
the Newtonian kinetic energy and 1V is the N<:\\'toniaii gravitational potential energy. in
equilibrium, this ratio is precisely unity. After some initial large oscillations, the ratio
had fallen to 1.07 by the time we stopped the integration. As expected, violent relaxation
produces equilibrium in just a few dynamical timescales.

Figure 3 shows a more relativistic encounter, with a = 9M and 20 2 36M. The
outcome is qualitatively similar to the Newtonian case. The virial ratio is no longerapplicable when relativistic effects are important. However, the quantity

E0 = —Z(1 + us) (2)
.7

becomes constant in time as the spacetime becomes stationary. Here ué is the timecomponent of the 4-velocity of the jth particle. Note that E0 reduces to the total energy
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Figure 2. Snapshots of particle positions at selected times for the collision
of two equilibrium spheres of particles whose centers are initially at rest. The
initial radius of each sphere is a = 64W], and their centers are at 20 = i256M,
so that this case is essentially in the Newtonian regime. Following collision
and coalescence, the spheres virialize.
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Figure 3. Snapshots of particle positions at selected times for the collision
of two equilibrium spheres of particles whose centers are initially at rest.
The initial radius of each sphere is a = 9M, and their centers are at zo =
i36M. While this case is more relativistic than in Figure 2, the behavior is
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in the Newtonian limit. We find numerically that E0 is conserved over several orbital
periods towards the end of our integrations, indicating that we have reached a steady
state.

By contrast. Figure 4 shows the evolution when a = 71W and 20 = 281”. Now the
merger results in collapse to a black hole. Thus the critical radius at which the transition
from stable merger to catastrophic collapse occurs lies in the range 7.44 S a ,S 9M.

The real significance of this numerical experiment is that we expect analogous
behavior for the head-on collision of neutron stars. in particular, the collision of two
neutron stars, each of which is below the maximum mass limit, can result. in a merged
configuration that is too massive to be stable. The collapse may be postponed, however,
it the [luid is sutiiciently shock heated that thermal pressure provides an appreciable
traction of the total pressure support. This behavior has already been demonstrated for
the collapse of single spherical stars above the maximum mass (Shapiro and rl‘eukolsky
1980). 'l‘hese stars can exist in stable equilibrium as long as their temperature remains
high. l‘lventually, after neutrino cooling, any neutron star must collapse it its total mass
exceeds the cold mass limit. For collisions between li‘lL‘l neutron stars, however, ther»
mal pressure may be unable to impede dynamical collapse. Just as for cluster collisions,
where there is a critical value of (L/iM, there should be a critical mass for neutron star
collisions above which collapse will occur even on a dynamical timescale.

3. Cosmic censorship and naked singularities

it is W(‘.ll*l(ll()V\'l1 that general relativity admits solutions with singularities, and that such
solutions can be produced by the gravitational collapse of nonsingular, asymptotically
[lat initial data. The cosmic cursors/ill; hypothesis (l’enrose l969) states that such sin-
gularities will always be clothed by event horizons and hence can never be visible from
the outside (no naked singularities). ll' cosmic censorship holds, then there is no prob—
lem with predicting the. future evolution outside the event horizon. If it does not hold,
then the formation of a naked singularity during collapse would be a crisis for general
relativity theory. In this situation, one cannot say anything precise about the future
evolution of any region of space containing the singularity since new information could
emerge from it in a completely arbitrary way.

Are there guarantees that an event horizon will always hide a naked singularity?
No definitive theorems exist. l’roving the validity of cosmic censorship is perhaps the
most outstanding problem in the theory of general relativity. Until recently, possible
countei‘»(:xarnples (see, e.g. (loldwirth ct (L/ 1989) have all been restricted to spherical
symmetry and typically involve shell crossing, shell focusing, or self—similarity. Are these
singularities an accident of spherical symmetry?

Very little is known about nonspherical collapse in general relativity. In the absence
of concrete theorems, Thorne (1972) has proposed the hoop conjecture: Black holes
with horizons form when and only when a mass M gets compacted into a region whose
circumference in every direction is C SAWM. If the hoop conjecture is correct, aspherical
collapse with one or two dimensions appreciably larger than the others might then lead
to naked singularities.

For example, consider the Lin-Mestel-Shu instability (Lin elf a] 1965) for the col—
lapse of a nonrotating, homogeneous spheroid of collisionless matter in Newtonian grav-
ity. Such a configuration remains homogeneous and spheroidal during collapse. If the
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in the Newtonian limit. We find numerically that E0 is conserved over several orbital
periods towards the end of our integrations, indicating that we have reached a steady
state.

By contrast. Figure 4 shows the evolution when a = 71W and 20 = 281”. Now the
merger results in collapse to a black hole. Thus the critical radius at which the transition
from stable merger to catastrophic collapse occurs lies in the range 7.44 S a ,S 9M.

The real significance of this numerical experiment is that we expect analogous
behavior for the head-on collision of neutron stars. in particular, the collision of two
neutron stars, each of which is below the maximum mass limit, can result. in a merged
configuration that is too massive to be stable. The collapse may be postponed, however,
it the [luid is sutiiciently shock heated that thermal pressure provides an appreciable
traction of the total pressure support. This behavior has already been demonstrated for
the collapse of single spherical stars above the maximum mass (Shapiro and rl‘eukolsky
1980). 'l‘hese stars can exist in stable equilibrium as long as their temperature remains
high. l‘lventually, after neutrino cooling, any neutron star must collapse it its total mass
exceeds the cold mass limit. For collisions between li‘lL‘l neutron stars, however, ther»
mal pressure may be unable to impede dynamical collapse. Just as for cluster collisions,
where there is a critical value of (L/iM, there should be a critical mass for neutron star
collisions above which collapse will occur even on a dynamical timescale.
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spheroid is slightly oblate, the configuration collapses to a pancake, while if the spheroid
is slightly prolate, it collapses to a spindle. While in both cases the density becomes
infinite, the formation of a spindle during prolate collapse is particularly worrisome. The
gravitational potential, gravitational force, tidal force, kinetic and potential energies all
blow up. This behavior is far more serious than mere shell—crossing, where the den—
sity alone becomes momentarily infinite. For collisionless matter, prolate evolution is
forced to terminate at the singular spindle state. For oblate evolution the matter simply
passes through the pancake state, but then becomes prolate and also evolves to a spindle
singularity.

Does this Newtonian example have any relevance to general relativity? We already
know that infinite cylinders do collapse to singularities in general relativity, and, in
accord with the hoop conjecture, are not hidden by event horizons (Thorne 1972; Misner
et al 1973). But what about. finite configurations in asymptotically llat spaeetimes‘.’

Previously, we constructed an analytic sequence of momentarily static, prolate and
oblate collisionless spheroids in full general relativity (Nakamura at al 1988). We found
that in the limit. of large eccentricity the solutions all become singular. In agreement.
with the hoop conjecture, extended spheroids have no apparent horizons. Can these
singularities arise from the collapse of nonsingular initial data? To answer this, we have
performed l'ully relativistic dynamical calculations of the collapse ol‘ these spheroids,
starting from nonsingular initial configurations (Shapiro and ’l‘eukolsky 1991u,b).

We find that the collapse of a prolatc spheroid with sulliciently large semi~major axis
leads to a spindle singularity without an apparent horizon. Our numerical computations
suggest that the hoop conjecture is valid. but that cosmic censorship does not hold
because a naked singularity may form in nonspherical relativistic collapse.

3.1. Collapse of collisionless sp/zc‘mids

We followed the collapse of nonrotating prolate and oblate spheroids ol~ various initial
sizes and eccentricities. The matter particles are instantaneously at rest at t : 0 and the
configurations give exact. solutions of the relativistic initialevalue equations (Nakamura
ct Ill 1988). In the Newtonian limit, these spheroids reduce to homogeneous spheroids.
When they are large (size > [VI in all directions) we confirm that their evolution is
Newtonian (Lin ct a] 1965; Shapiro and 'l‘cukolsky 1987).

We constructed a number of geometric probes to diagnose the evolving spacet.ime.
We tracked the Brill mass and outgoing radiation energy flux to monitor mass—energy
conservation. To confirm the formation of a black hole, we probed the spacetime for
the appearance of an apparent horizon and computed its area and shape when it was
present. To measure the growth of a singularity, we computed the Riemann invariant
I E RWWRW” at every spatial grid point. To test the hoop conjecture, we computed
the minimum equatorial and polar circumferences outside the matter. Because of the
highly curved geometry, these minimum circumferences were not always along the matter
surface, but usually further out.

Typical simulations were performed with a spatial grid of 100 radial and 32 angu—
lar zones, and with 6000 test particles. A key feature enabling us to snuggle close to
singularities was that the angular grid could fan and the radial grid could contract to
follow the matter.
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Computer calculations of co/iisions, black 110/83, and naked singularities 22]

Figure 5 shows the fate of a typical prolate configuration that collapses from a
highly compact and relativistic initial state to a black hole. Note that in isotropic
coordinates a Schwarzschild black hole on the initial time slice would have radius 7‘ :
0.5M, corresponding to a Schwarzschild radius r, = 2M. Figure 6 depicts the outcome of
prolate collapse with the same initial eccentricity but from a larger semi—major axis. Here
the configuration collapses to a spindle singularity at the pole without the appearance
of an apparent horizon. (We searched for both a single global horizon centered on the
origin as well as a. small disjoint horizon around the singularity in each hemisphere.) The
spindle consists of a concentration of matter near the axis at 7‘ % 5M. Figure 7 shows
the growth of the Riemann invariant I at 7“ : 6.1.714 on the axis, just outside the matter.
Before the formation of the singularity, the typical size of l at any exterior radius 1' on
the axis is N Mz/r6 << 1. With the formation of the spindle singularity, the value of I
rises without bound in the region near the pole. The maximum value of I determined
by our code is limited only by the resolution of the angular grid: the better we resolve
the spindle the larger the value of I we can attain before the singularity causes the code
(and spacetimel) to break down. Unlike shellecrossing singularities, where I blows up in
the matter interior Whenever the matter density is momentarily infinite, the singularity
also extends outside the matter beyond the pole at r : 5.8M (Fig. 8).1n fact, the peak
value of I occurs in the vacuum at 7' z 6.1 M. Here the anterior tidal gravitational field is
blowing up, which is not the case for shell crossing. The absence of an. tip;1)(1.7'cn.t horizon.
suggests that the spindle is a naked singularity.

When our simulation terminates, I along the axis falls to half its peak value at
7' % 4.5M inside the matter and 7' A3 6.7/1/1 outside the matter. The singularity is not a
point. Rather it is an extended region which includes the matter spindle, but grows most
rapidly in the vacuum exterior above the pole. A t : constant slice has a spatial metric
(1.52 : A2d7'2 + A27‘2d02 + 827‘2 sir120d<fi2. in flat space A : I} : l. At the termination
of the simulation these quantities have a modest maximum value A m B m 1.7, which
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Nakamura 6/. at (1988). We emphasize that the above characterization of the singularity
and the behavior of the metric is dependent on the time slicing and may be different for
other choices of time coordinate. In principle the spindle singularity might first occur at
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The absence of an apparent horizon does not necessarily imply the absence of a
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Figure 5. Snapshots of the particle positions at initial and late times for pro—
latc collapse. The positions (in units of M) are projected onto a meridional
plane. lnitiallythe semi—major axis 01' the spheroid is 2A4 and the eccentricity
is 0.9. The collapse proceeds nonhoniologously and terminates with the forma—
tion of a spindle singularity on the axis. However, an apparent horizon (dashed
line)forms to cover the singularity. At t/M = 7.7 its area is ,4/1671'M2 = 0.98,
close to the asymptotic theoretical limit of 1. Its polar and equatorial circum-
ferences at that time are (3901/4l = 1.03 and CQIH/47TM = 0.91, At later
times these circumferences become equal and approach the expected theoret-
ical value 1. The minimum exterior polar Circumference is shown by a dotted
line when it does not coincide with the matter surface. Likewise, the mini-
mum equatorial circumference, which is a Circle7 is indicated by a solid dot.
Here a/AMM = 0.59 and CSEIZ/LIWM = 0.99. The formation of a black hole
is thus consistent with the hoop conjecture.
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Figure 6. Snapshots of the particle positions at the initial and final times
for prolate collapse with the same initial eccentricity as Figure 5 but with
initial semi-major axis equal to 10M. The collapse proceeds as in Figure
5, and terminates with the formation of a spindle singularity on the axis at
t/M = 23. The minimum polar circumference is Egg/krill = 2.8. There is
no apparent horizon, in agreement with the hoop conjecture. This is a good
candidate for a naked singularity, which would violate the cosmic censorship
hypothesis.
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Figure 7. Growth of the Riemann invariant I (in units of M4) versus time
for the collapse shown in Figure 6. The simulation was repeated with various
angular grid resolutions. Each curve is labeled by the number of angular
zones used. We use dots to show where the singularity has caused the code
to become inaccurate.
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Figure 8. Profile of I in a meridional plane for the collapse shown in Figure
6. For the case of 32 angular zones shown here, the peak value of l is 24/M“
and occurs on the axis just outside the matter.
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snuggling up to the singularity without actually hitting it.1 Such a slicing would enable
one to confirm that all outward null geodesics propagate to large distances.

Further evidence for the nakedness of the singularity is the similarity of the spindle
singularity to the infinite cylinder naked singularity. In both cases the proper length of
a given segment of matter along the axis grows slowly, while its proper circumference
and surface area shrink to zero much more rapidly. Also, the singularity is an extended
region along the axis and not just a point.

We have also followed the collapse of an initially oblate configuration with the same
initial eccentricity and semi-major axis as Figure 6. Following pancaking, it overshoots,
becomes prolate and forms a black hole. At the time our integrations terminate, we find
that 33;; : 63:" : 0.85(47rM).

All of the above results are consistent with the hoop conjecture. When black holes
form, the minimum polar and equatorial circumferences satisfy Cm‘." $47rM. Conversely,
when naked singularities form the minimum polar circumference is much bigger than this
value. in all cases where an apparent horizon forms, its area satisfies to within numerical
accuracy A : Mimi/[2, as required theoretically (see, c.g., Eardlcy 1975). In every case
we find that gravitational radiation carries away a negligible fraction (<< 1%) of the total
mass—energy by the time a black hole or naked singularity forms.

4. Conclusions

Numerical simulations of relativistic star clusters are a useful tool for probing the nature
of spacetimes with strong gravitational fields. \Ve have shown two examples where this
technique has proven to be fruitful. One is the exploration of black hole and matter
collisions. The other investigates cosmic censorship and the possible formation of naked
singularities.

1n the cosmic censorship investigation, we have presented numerical evidence that
the hoop conjecture is a valid criterion for the formation of black holes during nonspheiv
ical gravitational collapse. We have also found numerical candidates for the formation
of naked singularities from nonsingular initial configurations. These examples are in
contrast with any cases of singularities which may arise during spherical collapse. There
the exterior spacetimc is always the Schwarzschild metric and the Riemann invariant is
always exactly 478/l/12/7'E, which is finite outside the matter. In spherical collapse the
singularities can thus only occur inside the matter. Here the singularities extend above
the pole into the vacuum exterior. These examples suggest that the unqualified cesinic
censorship hypothesis cannot be valid.

While the matter treated here has kinetic pressure, it is collisionless, not fluid. We
do not regard the collisional properties of the matter as crucial: First, the formation
of naked singularities should not depend on the particular details of the fundamental
interactions affecting matter at high densities. The gravitational field equations alone
should be sufficient to rule out naked singularities, at least in the vacuum exterior, for
true cosmic censorship. Second, collisional effects may even accelerate the formation of
singularities via relativistic “pressure regeneration” (Misner et a1 1973) There is at least

1 Maximal slicing apparently does not hold back the formation of prolate spindle singularities. For
prolate spheroids the Newtonian potential diverges only logarithmically as the eccentricity —> 1, which
may explain why a does not plummet precipitously near a spindle.
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one tentative numerical example of prolate fluid collapse (adiabatic index F —> 2) that
appears to be evolving to a singular state without the formation of an apparent horizon
(Nakamura and Sato 1982; Nakamura et (Ll 1987).

It is not impossible that naked singularities qualitatively similar to the ones here
may even arise in vacuum spacetimes. Since the sequence of momentarily static spheroids
(Nakamura et al 1988) proved to be a predictor of the singularities found in the dynamical
calculations, we have been motivated to seek similar sequences of pure vacuum inital data.
We have constructed two sequences characterized by long prolate concentrations of mass
energy: linear strings of black holes, and Brill waves with characteristic widths much
less than their lengths (Abrahams et al 1992). We find once again that the surrounding
gravitational tidal field diverges for limiting members of these sequences, but that no
common apparent horizons occur when the configurations are sufficiently long. It would
be interesting to employ these solutions as initial data in dynamical evolutions.

The collisionless matter simulations described so far have no angular momentum.
The presence of angular momentum could prevent an infinitesimally thin spindle singu-
larity from forming on the axis. Recently, Apostolatos and 'l‘horne (1992) have shown
that, as in Newtonian theory, an infinitesimal amount of rotation is sufficient to prevent
the formation of a singularity in the relativistic collapse of an infinite dust cylinder.
This still leaves open the possibility that collapsing configurations of finite size can col—
lapse to singularities in the presence of rotation. Recall that a small amount of angular
momentum does not prevent the formation of a singularity when a Kerr black hole forms.

To explore this question, we have recently used our code to study the collapse of
rotating collisionless spheroids (Shapiro and Teukolsky 1992b). The spheroids are ini—
tially prolate and consist of equal numbers of co— and counter—rotating particles, as in
the infinite case treated by Apostolatos and ’l‘horne (1992). Although individual partt
cles are rotating, the spheroid has no net angular momentum. 'l‘his restriction greatly
simplifies the spacetime the metric still has the same form as Equation (1). We find
that rotation significantly modifies the evolution when it is sufficiently large. lmploding
configurations with appreciable rotation ultimately collapse to black holes. However, for
small enough angular momentum, our simulations cannot at present distinguish rotating
from nonrotating collapse: spindle singularities appear to arise without apparent hori-
zons. Hence it is possible that even spheroids with some angular momentum may form
naked singularities.
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1. Introduction

Most of what we know about nature at the present time is contained within the realms
of either quantum field theory or general relativity. Each of these is a beautiful, powerful
and profound theory. However neither can, because of the existence of the other, be said
to constitute the basis for a general theory of physics. Thus, while Newtonian physics
has been overthrown, it has not been replaced; and it cannot be until we can invent a
synthesis of these two great theoretical edifices that can serve as a single foundation for
our understanding of all of nature. To do this is the problem of quantum gravity. As
such, the problem of quantum gravity is very different from other problems in which we
seek to apply a well defined theoretical structure to a new phenomena. It is more open,
and more difficult.

Many people who work on this problem complain about its difficulty, and about
its distance from experiment. However, I think both complaints are based on a misun-
derstanding of the nature of the problem. After all, the last time the progress of science
required a transformation of this scale in our basic understanding of nature, it took more
than 140 years from the publication of Copernicus’s Revolutionibus to the publication of
Newton’s Principia [1]. could As far as experiment is concerned, there is a large amount
of data about fundamental physics that is presently unexplained, including the unde—
termined parameters of the standard model of particle physics, the horizon and flatness
problem of cosmology and the problem of explaining the formation of structure in the
universe. There are good reasons to believe that a quantum theory of gravity will have
something important to contribute to the solution of each of these problems.

Many different approaches to this problem have been pursued. This is proper, as
there is no way of really knowing from what direction the solution will come. Moreover,
as the philosopher of science Paul Feyerabend reminds us, science functions best when the
level of consensus remains near the minimum forced on us by the experimental data[2]. In
this contribution, I want to discuss only one approach to the problem. This approach has
been particularly active during the last six years and it has achieved a certain amount of
progress, which I want to summarize here. There are also big unsolved problems, which
I will also be mentioning.

The approach I want to describe can be characterized by a list of questions that
those who pursue it are seeking to answer. These may be stated as follows:

1) We take it as given that any quantum theory of gravity that has a chance of
being a correct description of reality must be non- perturbative. This means that the
theory cannot be based on an expansion around a single classical background, in which it
is the deviations from the background that are quantized. Instead, all of the geometrical
quantities that describe the geometry of spacetime must be treated as quantum operators.
This means that very few of the techniques of conventional quantum field theory can
be directly applied to it. Can we invent a new approach to quantum field theory that
applies to the cases of field theories defined on differential manifolds without fixed metric
structures?

2) Specifically, it is diffeomorphism invariance that expresses the absence of a non-
dynamical background geometry in classical general relativity. As such, its implementa-
tion in the quantum theory is the central problem of constructing any quantum theory of
gravity. We would then like to understand how the requirement of exact difieomorphism
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dynamical background geometry in classical general relativity. As such, its implementa-
tion in the quantum theory is the central problem of constructing any quantum theory of
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invariance requires us to modify the standard quantum field theory techniques such as
regularization, renormalization, operator product expansions, and so forth.

3) We are not trying to construct the quantum theory of gravity. We are trying to
construct a theory which is consistent with quantum mechanics and general relativity.
For this reason we study quantum general relativity because we have its exact nonper-
turbative formulation, classically. String theory is, in principle, an attractive program
for the unification of physics. However, as long as it lacks a nonperturbative formulation
it cannot be the basis of an exploration of the problems of nonperturbative approaches
to quantum gravity. We will not be disappointed if, in the end, quantum general rela-
tivity is not the theory of nature. But we aim to decide cleanly whether or not there is
a consistent mathematical theory, with a sensible physical interpretation, that could be
given that name.

4) Certainly it may be true that a complete solution to the problems of quantum
gravity and quantum cosmology will require also a solution to the problem of the unifica—
tion of gravitation with the other fundamental interactions. This could happen through
a "microphysics a macrophysics” approach like string theory or a ”macrophysics ——r
microphysics” approach, one example of which is proposed in [3]. At the same time,
it may also be the case that important aspects of the problem of quantum gravity can
be solved independently of what matter fields gravitation is coupled to. This will be
the case to the extent that qualitatively new physics emerges from the construction of
diffeomorphism invariant quantum field theories. We would like to see if the study of
quantum general relativity at the nonpertubative level can lead to the discovery of such
phenomena.

5) In any such approach, one of the key questions is what constitutes an observable.
This is because, in a diffeomorphism invariant theory, coordinates and clocks have no
a—priori meaning; any meaningful observable must express some relationship between
physical fields, rather than being defined with respect to a background geometry or
an external observer. One aspect of this problem is the problem of time in quantum
cosmologyl. These problems arise already at the classical level, but there they can be
solved[46, 33, 34, 35, '3]. We then need to ask: Can we put what we know about the
problem of observables and time in classical general relativity together with the technical
developments in diffeomorphism invariant quantum field theory to learn how to construct
operators that correspond to physically meaningful quantities in a quantum theory of
gravity and cosmology?

While these are the main questions that have guided us in the work I will be
describing below, the fact that we have been able to make any progress is due primarily
to two technical developments. These are the Ashtekar formulation of general relativity
[6], and the loop representation of quantum field theories [7, 8].

The Ashtekar variables and the loop representation have been the subject of a
number of reviews, including three published within the last two years[9, 10, 11]. For
this reason, I will not repeat here what the reader can easily find in those reviews or in
the original papers. Instead, I will devote myself to describing, in as concise a manner
as possible, the basic results that have been, so far, achieved by this program. As my
aim is to be brief, I do not give many technical details, except when describing results

1 Good discussion of this problem are in [4, 46]. The author’s point of View about the problem of
time in quantum cosmology is described in [5].
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that have not so far appeared elsewhere.
I should point out that while I have tried to write this paper so it can be read

by someone who is not an expert on quantum gravity, I do not include an introduction
to the basics of canonical general relativity and the methods of canonical quantization.
These can be found in other papers in this proceedings, such as the paper of Kuchar[12],
as well as in numerous other places, among them[9, 10, 11].

I begin in the next section by asking how quantum field theory must be modified
so that it can make sense in the absence of a background metric. The core of the paper
is in the following two sections, where I give, correspondingly, an annotated list of major
results and a list of key open problems. In the conclusion I try to provide an answer to
the question in the titlez.

2. Basic ideas of the approach

A good place to begin is with the question of how to construct diffeomorphism invariant
quantum field theories. The key problem is how to get rid of the dependence on the
background metric that underlie the standard formulations of quantum field theory in
Minkowski spacetime. Here are four ways in which Minkowski spacetime quantum field
theories depend on the background metric:

A) The Fock spaces of linearized field theories are constructed by associating op—
erators with the solutions of free field theories on a background spacetime.

B) The definition of the vacuum and the definition of the creation and annihilation
operators depend on the splitting of the solutions of the linearized field equations into
positive and negative frequency parts. This splitting is Poincare invariant but, as we
know from our experience with quantum field theories in curved spacetime, it is not
invariant under any larger group of transformations and depends also on the background
metric.

C) The regularization and renormalization procedures necessary to make sense out
of operator products and interactions in quantum field theory all depend explicitly on the
background metric. The background metric is used in the definition of the cutoff scale,
in the separation of terms in the operator product expansion and to measure how fast
the cutoffs are removed in taking the limits that define renormalized operator products.

D) The inner products of conventional quantum field theories are defined by the
requirement of Poincare invariance with respect to a given fiat background metric.

We propose to replace each of these constructions with alternatives that do not
depend on any background metric. The way in which we go about doing it defines the
approach we are calling non- perturbative quantum general relativity. These alternative
constructions are:

A’) We construct background independent quantum field theories by constructing
new representations of algebras of observables that are unitarily inequivalent to the

2 I want to mention that this is not intended as a review of all of the developments associated
with the Ashtekar variables. Particularly, there are several important developments connected with the
classical theory that most likely have implications for the quantum theory, such as the Capovilla-Dell—
Jacobson[64] formalism and the classical solutions of the diffeomorphism constraints of Newman and
Rovelli[65]. However, as my focus is the quantum theory, and as their implications for that have yet to
be developed I do not mention them, as well as a number of other very interesting developments, here.
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Fock representations. It is here that the loop representation plays the key role. These
representations carry unbroken unitary representations of the diffeomorphism group;
this makes possible the exact solutions of the constraints that impose diffeomophism
invariance on the quantum states.

B’) We replace the splitting into positive and negative frequency parts by a split-
ting into self-dual and antiself— dual parts. This latter splitting is defined only in special
cases such as that of connection fields in four spacetime dimensions. It has the great
virtue that the connection and curvature of any four dimensional spacetime can be split
into self-dual and antiself-dual parts; as a result, the self-dual representation, in which
states are functions of the self-dual part of the field, can be defined in a nonperturba—
tive quantization. This stands in contrast to a positive frequency representation, which
can only be defined with respect to a fixed background metric and a correspondingly
restricted time coordinate.

This is one of the main motivations for the use of the Ashtekar variables as the
basis for the quantization.

At the linearized level, the selfedual part of a connection (whether or the electro—
magnetic, Yang—Mills or linearized gravitational field) consists of the positive frequency
part of the left handed helicity, plus the negative frequency part of the right handed helic—
ity. The negative frequency part must then be quantized in a kind of "anti- Bargmann”
representation. It was not entirely obvious that such a quantization exists, and one of
the key results of the program is that self—dual representations exist at the linearized
level[13, 14].

C’) As I will describe below, the process of renormalization, through which the
product of local operators is defined to be another local operator, is necessarily dependent
on a background metric (or at least on a background volume element [11, 15].) There
is then no local background independent renormalization procedure for local operators.
At the same time, we have found that there are background independent regularization
procedures for certain non— local observables. Their use results in finite and background
independent operators]15, 11]. Further, one can make an argument that any operator
constructed from functions of local operators through a regularization procedure which
is diffeomorphism invariant in the limit that the regulator is removed will necessarily be
finite[11, 29].

D’) Without a background metric, there is no symmetry principle that can guide
the selection of the inner product. We propose to base the selection on an alternative
principle: a complete set of real physical observables must be represented by self—adjoint
operators[9, 10]. The proposal depends on the construction of a set of physical observ—
ables, realized as well defined operators on the space of physical states, for which the
classically corresponding observables are known. We can then use the reality conditions
satisfied by the corresponding classical observables to posit hermiticity relations for the
physical operators. The inner product is then to be determined by the condition that it
realize these hermiticity conditions.

Clearly, what I have just stated is a strategy, but it is not a completely defined
procedure. Crucial questions such as which observables and how many observables are
necessary are left unspecified. In a number of special cases, including Maxwell theory[16,
13] and linearized gravity[14], in 2+1 gravity[l7, 18, 9] and other finite dimensional
examples [19], this principle can be implemented and leads to the physically correct
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inner products. However, for reasons that will become clear later, we have not yet been
able to test this idea in the case of full quantum gravity.

3. The main results of nonperturbative quantum gravity

I would like now to state, concisely and with a minimum of technicalities, exactly what
the main results of this approach are, to date. To frame the discussion, let me begin by
recalling the main elements of canonical quantization of general relativity in the Ashtekar
formalism, following the method of Dirac[20]. We begin with a phase space, which is
taken to be the space of pairs of complex SU(2) connections, A; and conjugate electric
fields £77"- on a three manifold E of fixed topology. For everything that follows it will be
crucial that E‘“ is a vector density field. This is necessary so that the Poisson bracket
relation,

{AM/)1 BMW} : 5:5.553Wy) (1)
makes sense, because the delta function must, in the absence of a background metric, be
a density.

To quantize the system, we proceed to construct the state space in three steps,
which we call kinematic, diffeomorphism invariant and physical. To define the kinemat—
ical state space, Vkm, which is the starting point for the quantization, one must first
pick out of the algebra of functions on the phase space a subalgebra that one wants to
have represented exactly by quantum operators. A choice is necessarily involved at this
stage; because of the existence of problems of ordering and the regularization of opera—
tor products, it is impossible that the Whole algebra of functions on the phase space be
identically represented as an algebra of operators. We shall call the subalgebra chosen
A. The one condition it should satisfy is that its elements should coordinatize the phase
space of interest.

Once we choose A, the kinematical state space is then constructed by finding a
linear space V1,," on which there acts an algebra A, that is isomorphic to A, at least up
to terms that vanish in the limit that h a 0.

The diffeomorphism invariant and physical state spaces, which will be called l'ffeo
and Vphys are then constructed as follows. One constructs operators in VIC,” that cor—
respond to the classical diffeoniorphism and Hamiltonian constraints. (These will be
denoted D01) and INN), respectively, where 1)“ and N are smearing functions that are,
respectively, a vector field and an inverse density field.) Sduqm is then defined to be
the subspace of states in Vkm that are annihilated by 17(1)). Vplgw is defined to be the
subspace of those states that are annihilated both by D(v) and H(N).

This process is called Dirac quantization[20]. Unfortunately Dirac, while setting
out the procedure in one of his very readable little books, failed to include two details
that must arise in any field theoretic application of the method. The first is that, at least
in all representations known to this time, the Hamiltonian constraint involves operator
products and must be regularized. The second is the question of how to choose the inner
product.

The key point is that it is not sufficient to give an inner product at the kinematical
level, because, unless one is very lucky, the solutions to the quantum constraint equations
will be non-normalizable with respect to the kinematical inner product. (Thus, Vdiffgg
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taken to be the space of pairs of complex SU(2) connections, A; and conjugate electric
fields £77"- on a three manifold E of fixed topology. For everything that follows it will be
crucial that E‘“ is a vector density field. This is necessary so that the Poisson bracket
relation,

{AM/)1 BMW} : 5:5.553Wy) (1)
makes sense, because the delta function must, in the absence of a background metric, be
a density.

To quantize the system, we proceed to construct the state space in three steps,
which we call kinematic, diffeomorphism invariant and physical. To define the kinemat—
ical state space, Vkm, which is the starting point for the quantization, one must first
pick out of the algebra of functions on the phase space a subalgebra that one wants to
have represented exactly by quantum operators. A choice is necessarily involved at this
stage; because of the existence of problems of ordering and the regularization of opera—
tor products, it is impossible that the Whole algebra of functions on the phase space be
identically represented as an algebra of operators. We shall call the subalgebra chosen
A. The one condition it should satisfy is that its elements should coordinatize the phase
space of interest.

Once we choose A, the kinematical state space is then constructed by finding a
linear space V1,," on which there acts an algebra A, that is isomorphic to A, at least up
to terms that vanish in the limit that h a 0.

The diffeomorphism invariant and physical state spaces, which will be called l'ffeo
and Vphys are then constructed as follows. One constructs operators in VIC,” that cor—
respond to the classical diffeoniorphism and Hamiltonian constraints. (These will be
denoted D01) and INN), respectively, where 1)“ and N are smearing functions that are,
respectively, a vector field and an inverse density field.) Sduqm is then defined to be
the subspace of states in Vkm that are annihilated by 17(1)). Vplgw is defined to be the
subspace of those states that are annihilated both by D(v) and H(N).

This process is called Dirac quantization[20]. Unfortunately Dirac, while setting
out the procedure in one of his very readable little books, failed to include two details
that must arise in any field theoretic application of the method. The first is that, at least
in all representations known to this time, the Hamiltonian constraint involves operator
products and must be regularized. The second is the question of how to choose the inner
product.

The key point is that it is not sufficient to give an inner product at the kinematical
level, because, unless one is very lucky, the solutions to the quantum constraint equations
will be non-normalizable with respect to the kinematical inner product. (Thus, Vdiffgg
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and Vphy, are, in general, subspaces of Vim, as vector spaces, and not as Hilbert spaces.)
The physical inner product must be chosen just on the space Vphy, (and similarly for the
diffeomorphism invariant states).

Let us now begin the quantization along these lines. Conventionally, one choices
to quantize using the algebra (1) This is the starting point of the construction of Fock
representations. However, to construct the non-Fock representations we will be interested
in', we take a different subalgebra as a starting point. The main idea behind this choice
is to implement the SU(2) gauge invariance explicitly by choosing an algebra of gauge
invariant functions. To do this we take the configuration variable is taken to be the
holonomies,

Th] E éTrPewA. (2)
For a conjugate variables we would like to take a family of functions linear in the conju—
gate momentum. The requirement of gauge invariance then requires us to take functions
that are also dependent on loops. To construct them, consider a loop ,3 on which we
have a preferred point fi(s) We may then define the function,

Tfifiks)zzérra(etn)peGLdmwoanoj (@
defined by tracing E at the point ,B(s) against the holonomy around ,6 starting and
ending at fi(s). To complete the definition of the conjugate variable, let us consider a
rubber band, ,6 defined by one parameter family of loops 5.,(3) with 0 2 u 2 1. We may
then define dfi“( )dfib( )

sEm] E //dudseabc#;TsTc[flul(s) (4)
The two observables (2) and (4) have a very pretty algebra, Let us define

1m : /we) / was.unseatasanabc (5)
to be the intersection number of the loop 7 with the two dimensional surface ,6. The
intersection number is equal to an integer; it counts, with the sign reflecting the orien-
tation, the number of times that the loop intersects the strip. A simple calculation than
yields,

{Tm Elfil} : 61mm [Th 0 a] — Th o tau-.11.] . (6)
Here, a o ,3 refers to the loop made by combining 0t and fl and fl,“ is the element of the
one parameter family that goes through the point of the rubber band where 7 intersects
it.

This algebra is called the loop-strip algebra, or the loop algebra for short.
It is important to comment on the presence of Newton’s constant, G, in the def-

initions of the holonomies in these observables. Because the frame field Em" should be
dimensionless, the quantity it is conjugate to, the Ashtekar connection, cannot have the
usual dimensions of a connection of inverse length if the Poisson brackets (1) are to hold.
Instead, it is GA:l that has dimensions of inverse length. As a result, there is a G in (6).
We will see later that this plays a key role in several results described below.

With this background, I now give an annotated list of the major results so far which
have been achieved in the direction of nonperturbative quantum general relativity. The
results will be organized according to the three levels of Dirac quantization: kinematical,
diffeomorphism invariant and physical.
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3.1. Existence of the loop representations at the kinematical level

A loop representation is a quantization of a gauge theory based on the loop algebra given
by (6) The loop algebra bears a relationship to the canonical algebra (1) which is some-
what analogous to that the Weyl algebra bears the simple Heisenberg algebra. There
are representations of the loop algebra which are also representations of the canonical
algebra. Among them is the Fock representation. However, there are also representa-
tions of the loop algebra which in which there exist no operator linear in A2,, which are
inequivalent to the Fock representation. Among these are the representations which are
of interest to non—perturbative quantum gravitylZZ, 2l].

A loop representation may be characterized as follows. We introduce a basis of bra
states, labeled by loops, such that any ket state NJ > may be written as

Mfi:<flW> (U
Note that this notation does not assume the existence of an inner product. The elements
of the ket space are functions \Plo/l which live in some space of functions, the complete
specification of which is necessary to define the representation. The bra states, < ’yl
are a linear space dual to the hot space, whose action is defined by (7). For any loop
representation these ketvstates are constrained to satisfy

Ze, <ml :0 (8)

whenever the holonomies satisfy

2 aTrPe‘lil A : 0 (9)

for all connections AZ. This is the way that the identities satisfied by holonomies—the
Mandelstam identities-are imposed on the representation, The loops 7 may then be
taken to be piecewise differentiable loops. It is convenient also to use a convention in
which a loop can refer to a set of loops, if we assume that the trace of the holonomy of a
set of loops is taken to be the product of the traces of the holonomies of the individual
loops. Indeed, by a loop or a set of loop we really always mean equivalence classes of
loops under the relation (8)3.

The action Of the operators that represent the loop Variables (2) and (4) are then
defined by their action on the bra states:

<flTM.<aU1| no

<1lElfil=hG(<70fiuo — mom) (11)
In these equations the U represents union in a set of loops while the 0 represents forming
a new loop by a product of two loops. It is not hard to verify that these operators satisfy
the algebra (6) (with the h inserted. It is, in fact, interesting to note that 1,2, 2 RG
appears in the algebra even at the kinematical level. This fact (and the fact that it is
the Planck area and not the Planck length that appears) plays a crucial role below.

3 As has been emphasized by Gambini and Trias and their coworkers, the space of these equiva-
lence classes of loops actually forms a group[8]. The basis for their alternative formulation of the loop
representation is the representation theory of this group.
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Finally, we may note that the fact that the group is SL(2, C) (or some real subgroup
of it) appears in the form of the right hand side of (6), together with the equivalence
relations generated by (8). Connections based on other Lie groups also have loop rep-
resentations; they differ only in the form of this action and in the equivalence relations
generated by the holonomies.

3.2, Applications of the loop representations to linearized field theories: Fuck represen—
tailons

An example of the forgoing is the loop representations of abelian connections. The loop
representation actually first appeared in a quantization of the free Maxwell field given
by Gambini and Trias in 198l [8]. The loop quantization of free Maxwell theory was
also treated later in [16, 13]. ln these papers it is shown that one can construct a space
of states WM] which is isomorphic to the Fock space of free photon states. The whole
of free quantum electrodynamics, including the Hamiltonian, creation and annihilation
operators and inner product may be written simply in the loop representation.

lndeed, there are several diflerent representations of the Fock space as functions of
loops. These correspond to the different ways to write the Fock space as functions of the
connection. The two well known connection representations of free field theories are the
Schroedinger representation, in which the states are functions of the real connection, A“
and the positive frequency, or Bargmann representation, in which the states are functions
of the positive frequency part of the connection.

In the loop representation that corresponds to the positive frequency connections
the ground state is simply written as

\l/oh] :«:: 3/10 >271 (12)

The state of one photon of momentum {7 and polarization Eis written,

@547] : < 71;), €>: )lfdsepb'lbfsl 7'”(s)cu E [33, E] (13)

The Fm, 61’s play a dual role in the formalism. First, they provide a useful set of
coordinates for the loops modulo the relations (8), with the abelian holonomy4 Second,
the multiphoton states are written as polynomials of the Ffpfij’s. The Fock space is
then defined to be the space of functions of loops that are analytic functions of the loop
coordinates Fffi, El

The Hamiltonian and inner product of quantum Maxwell theory are then written
as operators on loop space as follows,

H : Z/daplplFffiflF—é—a (14)

< q’lx >= /[dF]<i>Xe-H%Waaiz (15)

It is interesting to note that in every case where the construction of the loop
representation has been completed, it has been found that there exists a transform that

4 Their extension to a set of coordinates on the space of loops modulo the relations that arise from
non- abelian holonomies are the basis ofa new approach to the loop representation of Gambini and his
collaborators[23].
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non- abelian holonomies are the basis ofa new approach to the loop representation of Gambini and his
collaborators[23].
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connects it to the appropriate connection representation in which the states are functions
of the connection. The general form for this transform is

w = Marmot/41 (16)
where d,u[A] is an appropriate measure on the space of connections mod gauge transfor-
mations.

3.3. Existence of self-dual representations for both connection and loop representations

The key discovery of Ashtekar is that in full general relativity the self—dual part of
the connection may be considered as a configuration variable of the theory, i.e. every
component at ever point commutes with every other one. Because of this, we would

like to base the quantization of the full theory on the self-dual representation, in which
the observables, (2) and (4), whose algebra we quantize, are taken to be functions of
the self-dual part of the connection. If this is to be a successful route to the quantum

theory it would be most convenient if the linearized theory can also be quantized in a
representation in which the observables are functions of the self—dual part of the linearized
connection. This, however, gives rise to the following question: At the linearized level, the
selfrdual part of the connection is the positive frequency part of the left handed helicity
component, plus the negative frequency part of the right handed helicity component.
This means that the right handed component must be quantized in a kind of negative
frequency, or anti—Bargmann representation. Thus7 the first question that must be asked
is whether there exist such anti-Bargmann representations, which are diagonal in the
annihilation operator rather than in the creation operator. At first sight this seems to be
impossible; consider for example the equation that the annihilation operator annihilates
the ground state. In such a representation it must read

< 2‘l >: 2%(2) 2 0. (17)

In fact, such representations exist, but their expression requires distributions rather than
holomorphic functions, as in the usual Bargmann representation[13], Thus, in the sense
of distributions, the solution to (17) is

1M2) : 6(2). (18)

Once this obstacle is overcome, it is straightforward to construct the full negative
frequency representation, for the harmonic oscillator and for any linear field theory[13]
whose configuration variable is a connection. Among these is linearized gravity[9], which
may be quantized in the loop representationl14l.

The existence of the loop representation for linearized general relativity not only
serves as a confirmation of the basic program of nonperturbative quantum gravity, it
may expected to play a key role in the physical interpretation of the exact theory.

3.4. Non-Fock representations of the loop algebra

The Fock representations are important for the construction of linearized field theories,
but they are inappropriate as a starting point for the construction of diffeomorphism
invariant theories, This is because they cannot carry unbroken representations of the
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diffeomorphism group for the simple reason that the diffeomorphisms are broken by the
existence of the background metric. Since the diffeomorphisms cannot be represented
one cannot use them as a starting point to construct diffeomorphism invariant states.

The key question is then, do there exist representations of the kinematical observ-
able algebra that carry unbroken representations of the spatial diffeomorphism group?
I do not know the answer for the case of the canonical algebra (1). But, for the loop
algebras of the form of (6) (and their generalizations to other groups) there do exist
representations with this property[22, 21].

These representations are based on the use of the discrete measure on the space of
loops5

To construct this representation it will be useful to introduce a set of basis states,
which we call characteristic states. For a loop a which contains no intersections, we may
define the state, such that, for 7 also nonintersecting,

Xai’tl :< vla >: 1 if a : ’yand otherwise vanishes. (19)
Here, the equality is always meant in the sense of the equivalence relations (8). There is
one more case, which is if 7 7t a, but contains intersections. In this case t’] does not
necessarily vanish, its actual value is determined by requiring that it be an eigenstate of
the operators defined in (25) and (30), below [ills There are also basis states associated
with intersecting loops [11].

We will denote these characteristic states abstractly by la >, making use of the
standard Dirac formalism in which bras represent elements of function spaces and kets
are linear maps from those function spaces to the complex numbers.

Let us then consider the linear space7 Vdgmm, which consists of states of the form,

‘I’lvl : Z smlvl (20)

where we require that
Z larl2 < oo (21)

Here the sum is over any countable set of loops in E. It can be easily verified that the
formal definitions of the loop operators, (10) and (11), are well defined when acting on
the states in Vdmrmg.

We can impose an inner product on Vdimm by defining

< all = la > (22)
Note that this inner product does not realize the kinematical relativity conditions for the
Th] observable6, but it does realize them (at least formally) for functions of En“. only.
Like any kinematical inner product, it is useful only as a mathematical device.

With any choice of inner product which makes the characteristic states normal—
izable, the discrete representation is unitarily inequivalent to Fock space. There is a

5 recall that by loops I always mean loops modulo the relations (8).
6 For the reader unfamiliar with the reality conditions, they are the conditions that the three metric

and its time derivative both turn out to be real when computed in the Ashtekar formalism. They
imply that A; is a complex connection, which, together with its complex conjugate, satisfies a certain
polynomial condition. The result is that the loop operators are not real.
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possibility that it may be of use for nonperturbative treatments of gauge theories, be-
cause it implements, in the continuum, the quantization of the electric flux. This is a
possibility that needs further development. At the present time its use comes from its
application to diffeomorphism invariant quantum field theories. This is because an exact,
unbroken, unitary representation of the diffeomorphism group can be defined on it as,

0W7 >= W107 > (23)
where at is any diffeomorphism. This means that the generator of diffeomorphisms is
well defined in this representation,

new : We]. (24)
where 45; is a one parameter group of diffeomorphisms generated by the vector field i)“.
D(1}) may be shown from these definitions to satisfy the algebra of vector fields on E.

3.5. Classification of the loop representations in the real case

I have described two different representations of the loop algebra (6). In one case, in
which we require that both both A; and E‘" are real, the representations of the SU(2)
loop algebra have been completely classified. This was done by Ashtekar and Isham [21],
who make use of the fact that in this case the loop algebra (6) is a star algebra. The
classification can then be done using some of the technology of the representation theory
of star algebras developed by Gel’fand and collaborators.

3.6. Application of the loop representation to quantum Yang— Mills theory

As I mentioned above, the loop representation may be applied to non—abelian gauge
theoriesl24]. The loop representation may be developed in the context of the lattice
regularization, where the loop states provide a gauge invariant basis for the state space.
This formulation has been the starting point for several works in which new numerical
approaches to lattice gauge theory, both with and without fermions have been explored.
These works involve approximation procedures which are based on the fact that in the
loop basis almost all the matrix elements of both the Hamiltonian and inner product
are zero . As a result, sparse matrix and cluster techniques may be appliedl25, 26]. For
example, in 2 + 1 dimensions extensive numerical calculations have been done for both
SU(2) [25] and SU(3) [26], which showed that results for the ground state energy and
mass gap (as functions of the coupling constant), obtained previously by Monte Carlo
simulations and are reproduced accurately. Furthermore, in 3 + 1 dimensions numerical
work has been, and is being, done for the case of QED with fermionsl27].

In addition to these numerical approaches, there have been some very interesting
analytical work done on non-abelian gauge theories in the loop representation, by Loll[28],
Rovellil29] and others.

3. 7. Nonezistence of local operators in non-perturbative quantum gravity

For the remainder of this section, I will confine myself to the applications of the loop
representation to quantum gravity. I begin with several results about observables and the
classical limit at the kinematical level. First, of all, it is not trivial to construct quantum
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observables at the kinematical level because such observables must be invariant under
the Yang-Mills gauge transformations, and any such observables that involve the frame
fields involve operator products. Thus, regularization is an issue even at the kinematical
level.

As the kinematical level is meant to be a stepping stone to the difieomorphism
invariant and physical levels, we will be interested only in regularization procedures that
do not introduce extra background dependence into the final definitions of the opera-
tors. Any regularization procedure depends on additional structure such as background
metrics or coordinate systems as these are needed to specify how the point splitting is
done or define the cutoffs. What we must then require is that when finite operators are
finally produced as a result of the process they have no dependence on these structures.

We have discovered that this requirement seems to rule out the conventional renor—
malization procedures of Poincare invariant quantum field theories[15, 11]. Although
this was discovered through a painful process in which many possible approaches were
tried and discarded, the reason for this can be stated very simply, Local operators are
distribution valued and distributions are, in the absence of a background metric, densi—
ties of weight one. A renormalization procedure is a procedure by which a product of
two local operators is defined to be a third local operator. It is thus a procedure for
multiplying two distributions to get a third distribution. However, there is a problem
with the density weights, because the product of two distributions should have density
weight two, but a local operator will have only density weight one. The result is that any
such renormalization procedure must introduce an additional scalar density so that the
density weights on the left and right hand sides of the product match. What we found
was that in any procedure we tried, such a density always appeared which was a func-
tion of the background structures introduced in the regularization and renormalization
procedures.

Now, in Minkowski spacetime, or even in quantum field theory in a curved space—
time, there is a preferred density which is given by the determinant of the background
metric. In these cases the ambiguity may be reduced to one free renormalization constant.
This is the reason for the existence of a free renormalization scale in the conventional
renormalizations of operator products.

However, in nonperturbative quantum gravity there is no preferred density and
the ambiguity of a scale in the renormalization of a quantum field theory in a classical
background becomes an ambiguity up to a density. The result is that it is very difficult
to imagine how a renormalization procedure could be constructed for operator products
in this context that did not lead to a breaking of diffeomorphism invariance.

This means, in particular, that when using a frame field formalism such as the
Ashtekar variables there is no operator to measure the metric at a point. This is because
the basic variable is the frame field, E“, which is related to the metric through {jab =
E“‘E§’.

3.8. Existence of finite, background independent non-local operators at the kinematical
level

One might think that as a result of the situation I’ve just described it is impossible to de-
fine meaningful observables that measure the spatial metric in non-perturbative quantum
gravity. Fortunately, this is not the case, because there are non-local observables that
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are equivalent to the metric in the sense that a complete measurement of them allows
the metric to be reconstructed. We have found that it is possible to construct quantum
operators that correspond to some of these non-local observables and that these oper-
ators are finite and background independent, when constructed by means of the right
regularization procedure[l5, 11]. Thus, as these operators don’t need to be renormalized,
they escape the difficulty I described in the previous paragraph.

The idea behind the construction of these operators is very simple: If there is no
unambiguous procedure for multiplying two distributions to get a third distribution, we
may construct unambiguous procedures that define the square root of the product of two
distributions.

I will mention here three examples of such observablesllf), 11]. First, given any one
form to, we may define the integral of its norm as follows,

Qlw) Em] : A V/Eaiwa Elm, (25)

This observable can be regulated through a modified point splitting procedure. I
will not describe it here, the details are given in [ll]. As may be expected, the hardest
part of the construction is taking the operator square root. The result is easiest to
express in terms of the bras < al. For the case of a non-intersecting loop, a, the bra is,
for every w, an eigenstate of the operator corresponding to Q[w, 51”]. The action of the
operator is given by,

A [2 GHC '0< alQlwl : T ,m. Ia was)» < alx (26)
A second nonlocal operator that can be defined as a quantum operator is the area

of any surface. Given a surface 8, there is a function on the kinematical phase space
that is its area, it is given by,

,f'mb
Ai57qi : [S Vq nanb (27)

where n“ is the unit normal of the surface. The problem is how to turn this into an
operator when there is no operator for the metric (3gb? There is a solution, which is the
following. Let me represent the surface by a distributional one form, 7r;g which is given
by,

Wm) : [(12910) delta3(w,8(o))eabc, (28)
where a are coordinates on the surface and Eabc is the inverse of the Levi—Civita density.
I then can consider the expression

A(S>E) = Q(7F:E) (29)

It is not difficult to show that this is equal to the area of the surface given by the metric
by (27). To show this, we demonstrate that an equivalent expression, when the frame
fields are smooth, is given by

N _ ._
Amie) = lim 2 ,t’AgWIUzJ (30)

N—vooN:1
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where space has been partitioned into N regions 73,- such that in the limit N —> co the
regions all shrink to points. Here7 the observable that is measured on each region is
defined by,

AZWARJ 2 /R dam fR dSyT°b<m>wa<m>m<y> (31)
Here T°b(x, y) is a loop operator that is quadratic in the frame fields E“. It is constructed
in the following way. Pick a background Euclidean metric and use it to define, for every
two points, a: and y, in the spatial manifold E, a circle, ”by, such that 'yn,(0) = a; and
cyw(7r) = y and such that in the limit that y approaches as, the circles shrink to the point
(n. Then, define

T“b(:r,y) : éTr [(73 exp 0/: Anal’ygy) E"(m) (’P exp G/Iu Aad'yzu) Eb(y)] . (32)

To show the equivalence between (29) and (30), we start with (29) and regulate it by
means of a point splitting procedure by introducing, with respect to the background
euclidean coordinate system, a set of test fields fg(at,y) by

fc<w,y):§36igw 1,.) r16 [”lx y2I19[§+m3—yali. (33)
In these coordinates

lifelfetvyy) : 53mg) (34)
We can then write

A(7r,E‘) : Q(W,E) a lim d3 a: \M/day/dazTab(y z) 7r(y )7rb(z)f5(y,at)f((z,x) (35)

When the expression inside the square root is slowly varying in x we can re—express it in
the following way. We divide space into regions 73. which are cubes of volume 63 centered
on the points cc,- : (ne,me,pe) for n,m,p integers. We then write7

l

A(7r,E) 7 lica [/ day/dazT‘zbw,2)7ra(y)7rb(z)fe(y,92,-)fc(z,m.~)]2
c—aO

: hm Z «Astana-1' (36)
:1

Naoo

If we now plug into these expressions the distributional form (28) it is straightfor-
ward to show that

MM, )=/hf (37)
where h is the determinant of the metric of the two surface, which is given by h = gabnanb
where n‘1 is the unit normal of the surface.

It is not difficult to show that that starting from the expressions (30) and (31) we
may construct a quantum operator for the area of a surface S in the loop representation.
We can show that the expression (30) is equivalent to an expression in which the surface
is partitioned into N subsurfaces S], I = 1, ..., N. We then write

A5: lim A 51) (38)apprl
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where AfippJSI] denotes an approximate expression for the area of the subsurface, which
is defined by

_ be Ib’c’ aa’Agppr[s,]=/51d25 (nabs/5,0523 (cc/)5“;c (13,12') (39)

This last expression may be written as a quantum operator, by writing an operator
for T“"l(:v,m’) . This can be done, but, as the action is a bit complicated, I do not give
it here. It may be found in [7, 9, 10, 11]. The result is that the limit (38) may be taken
on any loop state, leading to a final expression that is finite and independent of the
background structure that went into the definition of the loop operator. The result, for
non-intersecting loops or is[ll, 15],

. 12
< awe] : %I+[5,a] < 04. (40)

Here 1+[8, a] is the positive, unoriented, intersection number, which counts (independent
of orientation) the number of intersections of the loop with the surface.

If the loop or has intersections the action of the operator is more complicated, but
it is still finite and background independent. Details are given in [11].

The third observable that can be constructed in this way is the volume of any
region. It is described in [ll]

3.9. Quantization of areas and volumes in the discrete representation

The result (40) says that the bras in the loop representation are, at least for intersecting
loops, eigenstates of the operator that measures areas. This does not mean that, in
general, there are normalizable states that are eigenstates, this can only be the case if
the inner product is defined in such a way that there is a state which is the hermitian
conjugate of the bra < at which is a normalizable state and if the area operator is
hermitian in that inner product.

In general these conditions will not be satisfied, for example, there are no normal-
izable eigenstates of the area operator in the Fock representation of linearized quantum
gravity. But in the context of discrete representations an inner product can be defined by
the imposing the condition that the inner product be chosen such that the area operator
is hermitian so that its eigenstates comprise an orthonormal basis. For nonintersecting
loops this is given by (22), for intersecting loops it is more complicated [11].

With such an inner product, we may say that area is quantized in the discrete
representation, because the spectrum of the operator that measures area is discrete. This
spectrum consists, first of all, of the eigenvalues lglumk/Q, for every nonnegative integer
N. There is also another discrete sequence of eigenvalues corresponding to eigenstates
that are labeled by intersecting loops, these are described in [11].

In the same representation, the volume operator turns out also to have a discrete
spectrum. The basic action of the volume operator in this representation turns out to be
to annihilate the states |a > associated with nonintersecting loops (1 and to rearrange
the routings through the intersections of the intersecting loops. That is, with each
intersecting loop, a, one can associate a finite dimensional subspace of the state space
which is spanned by the loops which have the same support as a but differ as to how
the loops are routed through the intersection points. The action of the volume operator
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is then to induce a finite dimensional matrix in each such subspace that rearranges the
routings then multiplies by 13‘3”“, Its non-zero eigenvalues are given by lilanck times the
eigenvalues of these finite dimensional matrices.

3.10. The correspondence principle: Existence of states which approximate classical met—
rics at large scales

We are used to describing the classical limit of quantum theories in situations in which
there is a background metric against which to measure distance intervals. It is not a
completely trivial problem to understand what it means to take the classical limit in a
non—perturbative quantum theory of gravity, in which there is no background metric. To
do this we need to first understand two simple points. First, in pure quantum general
relativity the classical limit is a limit of large distances. This is because the theory has
only one dimensional parameter, the Planck length, lplamk : V'IhG/c'd. This obviously
goes to zero as h m» 0. It is perhaps also significant that it is the Planck area that is
proportional to h, this perhaps is the reason why length intervals are not defined in the
quantum theory, while areas are both defined and are quantized,

The second thing to be understood is that without a classical metric we don’t know
what distance and area means and so we cannot tell which intervals are small or large
compared to the Planck scale.

Because of these two points, it is easiest to express the classical limit in a way
that may seem backwards, as follows[15, 10, ll]. Given any classical metric hub, whose
curvatures are small compared to the Planck scale, we seek a quantum state I‘ll > which
has the property that it is an eigenstate of the operators Qlw] and A[S], and where, for
every one form to which is slowly varying with respect to the metric hub and every surface
which has small extrinsic curvatures, again with respect to hub (where, again these area
measured with respect to the Planck scale) we have

Qlwllql >: (Q(wih)+0(zi’lancklvwl))l\P >> (4'1)

and [2

21mm >: (mam + 0 (fi)> is >. (42)

Thus, the eigenvalues are required to give back the corresponding values for the
metric hub up to terms that are small measured in Planck units. When these conditions
are satisfied we say that [\l’ > is a semiclassical state that approximates the metric hub.

In the loop representation we call states that have this property weaves, because it
can be satisfied by loop states m >, where the multiloop A consists of many small loops
which are arranged so that, through every surface, S, as described above, approximately
one line of a loop pierces 8 per half Planck area of the surface, measured in the metric
hub. It is easy to give examples of such states; a particularly simple one, for the case
that the metric hub is flat, is constructed as follows [15].

We use hub, to introduce a random distribution of points on 2 = R3 with density
n. This means that in any given volume V there are nV(l + 0(1/x/n—V)) points. We
center a circle of radius a = (l/nfi at each of these points, with a random orientation.
Again, the notion of a random orientation is defined with respect to hub. We call this
whole collection of circles A.
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is then to induce a finite dimensional matrix in each such subspace that rearranges the
routings then multiplies by 13‘3”“, Its non-zero eigenvalues are given by lilanck times the
eigenvalues of these finite dimensional matrices.

3.10. The correspondence principle: Existence of states which approximate classical met—
rics at large scales

We are used to describing the classical limit of quantum theories in situations in which
there is a background metric against which to measure distance intervals. It is not a
completely trivial problem to understand what it means to take the classical limit in a
non—perturbative quantum theory of gravity, in which there is no background metric. To
do this we need to first understand two simple points. First, in pure quantum general
relativity the classical limit is a limit of large distances. This is because the theory has
only one dimensional parameter, the Planck length, lplamk : V'IhG/c'd. This obviously
goes to zero as h m» 0. It is perhaps also significant that it is the Planck area that is
proportional to h, this perhaps is the reason why length intervals are not defined in the
quantum theory, while areas are both defined and are quantized,

The second thing to be understood is that without a classical metric we don’t know
what distance and area means and so we cannot tell which intervals are small or large
compared to the Planck scale.

Because of these two points, it is easiest to express the classical limit in a way
that may seem backwards, as follows[15, 10, ll]. Given any classical metric hub, whose
curvatures are small compared to the Planck scale, we seek a quantum state I‘ll > which
has the property that it is an eigenstate of the operators Qlw] and A[S], and where, for
every one form to which is slowly varying with respect to the metric hub and every surface
which has small extrinsic curvatures, again with respect to hub (where, again these area
measured with respect to the Planck scale) we have

Qlwllql >: (Q(wih)+0(zi’lancklvwl))l\P >> (4'1)

and [2

21mm >: (mam + 0 (fi)> is >. (42)

Thus, the eigenvalues are required to give back the corresponding values for the
metric hub up to terms that are small measured in Planck units. When these conditions
are satisfied we say that [\l’ > is a semiclassical state that approximates the metric hub.

In the loop representation we call states that have this property weaves, because it
can be satisfied by loop states m >, where the multiloop A consists of many small loops
which are arranged so that, through every surface, S, as described above, approximately
one line of a loop pierces 8 per half Planck area of the surface, measured in the metric
hub. It is easy to give examples of such states; a particularly simple one, for the case
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It is now straightforward to show that lA > is an eigenstate of Q[w] and A[S].
However the conditions (41) and (42) are only satisfied if the density n is chosen so
that[l5],

a = fi/2ZP. (43)

3.11. The necessity of discrete structure at the Planck scale

This last result (43) means that if we require that the state lA > approximate the classical
metric hub, when we measure it with operators that average the metric information over
scales that are large in Planck units, it is necessary that the state have discrete structure
at the Planck scale, where, in both cases, what we mean by the Planck scale is determined
by hab- This is a direct consequence of the fact that we were able to construct non—local
operators to measure the metric information that are finite and background independent.
This result can be generalized by considering families of loops that generalize A by being
described by more parameters. In each case it is found that there is one combination of
parameters that is fixed to be a certain exact multiple of the Planck scale. The other
combinations of parameters with dimensions length are also restricted to be on the order
of the Planck scale, so that the requirements on the orders of the errors in (41) and (42)
are satisfied[15].

This means that in nonperturbative quantum gravity, at least in the formulation
I am describing here, it is possible to have states that are semiclassical on large scales.
However, there are no states that are semiclassical on the Planck scale.

This completes my discussion of the kinematical level of the theory. I now turn to
results concerning diffeomorphism invariant states.

3.12. Complete solution of the dtfleomorphtsni constraints

We have defined the action of diffeomorphisms on states in the loop representation by
(23) and (24). Using these, we define the space of difteomorphism invariant states,
Vdiffeo, to be those loop states that satisfy,

\Illa] : U(¢)\Il[a] : We 0 a] (44)

for all elements of the connected component7 of the diffeomorphism group of Z.
The definition (44) of ditfeomorphism invariant states may be compared with a

similar condition in the metric representation, which says that the quantum states are
functions of the three geometry, which are defined to be diffeomorphisrn equivalence
classes of three metrics. The difference is that the diffeomorphism equivalence classes
of loops are countable8[30] and a great deal is known about their classification. If we
denote by {a} the diffeomorphism equivalence class of the loop (1 (also known as its knot
or link class) the condition (44) means thatm

‘I’lal = ‘l’lfall- (45)
7 There are two ways to treat the large diffeomorphisms: as symmetries or as part of the gauge

group. I do not discuss this issue here.
8 Assuming certain mild conditions on the finiteness of the components and the intersections.
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Because the knot classes are countable the space of diffeomorphism invariant states,
Vdiffeoy has a countable basis, which are the characteristic states of the knot classes.

WMHaH = 5mm- (46)
We can make l‘ffeo a Hilbert space by imposing an inner product. The simplest

possibility is one in which these characteristic states are orthogonal, that is if we chose a.
basis of bra states < {al such that \Il[{a}] =< {a}|\IJ > and we chose the inner product
so that < {oz}|f = Nb} >, we have

< {a}l‘1’m >= 5mm (47)
This is almost certainly not the right inner product for general relativity, because it
corresponds to a reality condition in which the connection is real. However, it may be
useful as a technical device to bound limits in certain calculations.

It should be mentioned there is a diffeomorphism invariant theory for which (47)
is the physical inner product. This is the Husain-Kuchar model[31], which is a limit
of general relativity in which the speed of light has been taken to inflnity[32]. In the
classical version of this theory, all physical evolution has been frozen, and all solutions
are static. Because of this the theory has no Hamiltonian constraint—it has only the

These are,

gauge and diffeomorphism constraints.
The Husain—Kuchar model is a very interesting model because it is a three plus

one dimensional diffeomorphism invariant theory that has an infinite number of physical
degrees of freedom. It is solved to the extent that the exact state space and inner
product have been constructed. The theory needs to be completed by the construction
of a sufficient number of diffeomorphism invariant observables, represented by operators
on Vdgffeo, on which the interpretation can be grounded. As there are only the spatial
diffeomorphism invariant constraints, this problem is significantly easier than in the case
of the full theory. The Husain«Kuchar model is a very useful laboratory to study those
problems of the interpretation of diffeomorphism invariant quantum field theory that are
not related to the problems of time and time reparametrization invariant observables.

3.13. Some finite difleomorphism invariant operators

In fact, a small number of diffeomorphism invariant observables can be directly written
down. I will describe here one of them, which is closely related to the area observable
I described in subsection 3.8 above. The idea is to introduce a dynamical field whose
configuration can define a surface. The area of that surface will then be a diffeomorphism
invariant quantitys.

One way to do this is to couple an antisymmetric tensor gauge field to gravity[36].
This is a two form, Cab = —Cbu subject to a gauge transformation generated by a one
form Aa by,

6Cab = dAab. (48)
It’s field strength is a three form which is denoted WW 2 dC'abc. In the Hamiltonian,
theory its conjugate momenta is given by 7r” = —7r”° so that

{Cab(m)>7e(3/)} : 6L°5§J53(y, CC) (49)
9 The idea of using matter fields to define physical and diffeomorphism invariant observables is an

old idea, which goes back at least to a paper of DeWitt [33]. It has been recently revived [34, 35].
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The gauge transform (48) is then generated by the constraint

G = 86w” 2 0 (50)

Any two dimensional surface 8 defines a distributional configuration of the 7r”
by equation (28), where we now want to understand the field 7ra in that equation as
being the dynamical field dual to Tl'bc by 7ra = eabcrrbc. These distributional configurations
are solutions to the gauge constraint (50) and I thus know of no reason it cannot be
considered to be an allowed configuration of the classical field.

We can then interpret equation (29) as the definition of a diffeomorphism invariant
observable by reading it as a function of a dynamical 7n1 field and the gravitational field.
It has the interpretation that when the 7r” field defines a surface through a distributional
configuration by equation (28), it gives the area of that surface.

This observable can be promoted to an operator if we also quantize the Cub field.
This can be done by constructing a surface representation to represent it, completely
analogous to the loop representation. To do this we introduce a surface observable,

m9] : ekfsc (51)

associated to every closed surface S. The k is a free constant with dimensions of inverse
acti0n[36]. The algebra we will quantize is then the surface algebra

{Tl5la7rbc(m)} = k/d255“(0)53(w,5(0))T[5l (52)
We can then construct a representation of this algebra in which states are functions of
surfaces \1/[5] We then define the representation by[36],

fls’msi : ms’ u 5] (53)

and
7'r“b($)\11[5] : hk/d25“b(0)63(w,5(a))\I/[S] (54)

To represent the coupled Cab—gravity system we take the direct product of this state
space with the loop representation for quantum gravity. The states are then functions,
\I/[oz,5], of loops and surfaces. We may introduce a set of bra’s, < a, SI, labeled by loops
and surfaces so that \I/[a,5] :< 04,5)? >,

We may then impose the diffeomorphism constraints, suitably extended to the
coupled Einstein-Ca,J system[36]. I will not give the details here, the result is that the
diffeomorphism invariant states may be constructed and they are functions of the diffeo-
morphism equivalence classes of loops and surfaces. Denoting these classes by {a,5},
the diffeomorphism invariant state space then consists of functions of the form

‘I’l{a,5}l =< {aisll‘l’ >- (55)
We then want to express the area observable (37) as a diffeomorphism invariant operator
and show that it does indeed measure areas, It is straightforward to show that the bras
at the kinematical level, < a,S|, are, for nonintersecting loops (1, eigenstates of the
operator A. This Operator may be constructed by using the expressions (30) and (31) as
the definition of a regularization procedure, in the usual way[11]. As the regularization

What can we learn from the Study of non-perturbative quantum relativity? 249

The gauge transform (48) is then generated by the constraint

G = 86w” 2 0 (50)

Any two dimensional surface 8 defines a distributional configuration of the 7r”
by equation (28), where we now want to understand the field 7ra in that equation as
being the dynamical field dual to Tl'bc by 7ra = eabcrrbc. These distributional configurations
are solutions to the gauge constraint (50) and I thus know of no reason it cannot be
considered to be an allowed configuration of the classical field.

We can then interpret equation (29) as the definition of a diffeomorphism invariant
observable by reading it as a function of a dynamical 7n1 field and the gravitational field.
It has the interpretation that when the 7r” field defines a surface through a distributional
configuration by equation (28), it gives the area of that surface.

This observable can be promoted to an operator if we also quantize the Cub field.
This can be done by constructing a surface representation to represent it, completely
analogous to the loop representation. To do this we introduce a surface observable,

m9] : ekfsc (51)

associated to every closed surface S. The k is a free constant with dimensions of inverse
acti0n[36]. The algebra we will quantize is then the surface algebra

{Tl5la7rbc(m)} = k/d255“(0)53(w,5(0))T[5l (52)
We can then construct a representation of this algebra in which states are functions of
surfaces \1/[5] We then define the representation by[36],

fls’msi : ms’ u 5] (53)

and
7'r“b($)\11[5] : hk/d25“b(0)63(w,5(a))\I/[S] (54)

To represent the coupled Cab—gravity system we take the direct product of this state
space with the loop representation for quantum gravity. The states are then functions,
\I/[oz,5], of loops and surfaces. We may introduce a set of bra’s, < a, SI, labeled by loops
and surfaces so that \I/[a,5] :< 04,5)? >,

We may then impose the diffeomorphism constraints, suitably extended to the
coupled Einstein-Ca,J system[36]. I will not give the details here, the result is that the
diffeomorphism invariant states may be constructed and they are functions of the diffeo-
morphism equivalence classes of loops and surfaces. Denoting these classes by {a,5},
the diffeomorphism invariant state space then consists of functions of the form

‘I’l{a,5}l =< {aisll‘l’ >- (55)
We then want to express the area observable (37) as a diffeomorphism invariant operator
and show that it does indeed measure areas, It is straightforward to show that the bras
at the kinematical level, < a,S|, are, for nonintersecting loops (1, eigenstates of the
operator A. This Operator may be constructed by using the expressions (30) and (31) as
the definition of a regularization procedure, in the usual way[11]. As the regularization

What can we learn from the Study of non-perturbative quantum relativity? 249

The gauge transform (48) is then generated by the constraint

G = 86w” 2 0 (50)

Any two dimensional surface 8 defines a distributional configuration of the 7r”
by equation (28), where we now want to understand the field 7ra in that equation as
being the dynamical field dual to Tl'bc by 7ra = eabcrrbc. These distributional configurations
are solutions to the gauge constraint (50) and I thus know of no reason it cannot be
considered to be an allowed configuration of the classical field.

We can then interpret equation (29) as the definition of a diffeomorphism invariant
observable by reading it as a function of a dynamical 7n1 field and the gravitational field.
It has the interpretation that when the 7r” field defines a surface through a distributional
configuration by equation (28), it gives the area of that surface.

This observable can be promoted to an operator if we also quantize the Cub field.
This can be done by constructing a surface representation to represent it, completely
analogous to the loop representation. To do this we introduce a surface observable,

m9] : ekfsc (51)

associated to every closed surface S. The k is a free constant with dimensions of inverse
acti0n[36]. The algebra we will quantize is then the surface algebra

{Tl5la7rbc(m)} = k/d255“(0)53(w,5(0))T[5l (52)
We can then construct a representation of this algebra in which states are functions of
surfaces \1/[5] We then define the representation by[36],

fls’msi : ms’ u 5] (53)

and
7'r“b($)\11[5] : hk/d25“b(0)63(w,5(a))\I/[S] (54)

To represent the coupled Cab—gravity system we take the direct product of this state
space with the loop representation for quantum gravity. The states are then functions,
\I/[oz,5], of loops and surfaces. We may introduce a set of bra’s, < a, SI, labeled by loops
and surfaces so that \I/[a,5] :< 04,5)? >,

We may then impose the diffeomorphism constraints, suitably extended to the
coupled Einstein-Ca,J system[36]. I will not give the details here, the result is that the
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morphism equivalence classes of loops and surfaces. Denoting these classes by {a,5},
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We then want to express the area observable (37) as a diffeomorphism invariant operator
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breaks diffeomorphism invariance7 this calculation must be done at the kinematical level.
A straightforward calculation shows that

hkllzi’lanck

2

where 8 D R means the part of the surface that lies inside the region. It then follows
from (30) that

< WSW [n] =( mas m 72]? < a,5| (56)approx

A hkli’lanck ~+—<a,S|A=—2—I [a,8]<a,8l (57)

This may be compared with (40), we see that the only difference is that now that the
surface is dynamical it is specified by the state and not by the operator. In addition, we
see that if we want agreement between the units measured by this and the kinematical
area operator we must pick k = l/h.

The action of A can be lifted to the space of diffeomorphism invariant states, giving
us,

< {ash/1 “if—"Mamet < {a.5}| (58)
We have thus defined a diffeomorphism invariant operator that assigns to the surface an
area which is given by Rhianna/2 times the number of intersections of the loop with the
surface. Thus, we see that the same techniques that gave us finite and background inde—
pendent kinematical operators work to give us finite operators acting on diffeomorphism
invariant states.

If we use the inner product (47) of the Husain—Kuchar model on the space of
diffeomorphism invariant states, suitably extended to include the coupling to the Cap, field
[36], we see that A is a hermitian operator and that its spectrum is quantized. Thus, we
see that the technology we have been developing allows us to derive a prediction from a
3+1 dimensional diffeomorphism invariant quantum field theory. This is that the area of
any two dimensional surface is quantized in units of the Planck area. While that theory
is a model, which corresponds classically only to a limit of full general relativity, this
is an encouraging result. Moreover, it does not seem impossible that with the addition
of structure corresponding to clocks it will be possible to extend the fl observable to
the full physical case7 and that we will find that this prediction stands in full quantum
general relativity.

It is known that a few additional diffeomorphism invariant operators can be con—
structed in this way, in either the case of pure gravity or gravity coupled to matter.
Examples of these[11] are the volume of the universe and the areas of maximal surfaces
(when 7r2 of the spatial manifold is non-trivial.) Of course, there must be an infinite
number of diffeomorphism invariant observables, it is still an open problem to show that
theseftechniques allow the construction of an infinite number of such operators.

3.14. Connection between finiteness and difieomorphism invariance of operators

All of the diffeomorphism invariant operators which have so far been constructed are also
finite. We may ask whether finiteness is a general property of diffeomorphism invariant
operators constructed nonperturbatively. There is a general argument that this is the
case; which I would like to sketch here.

The argument begins with the assumption that any diffeomorphism invariant op-
erator that will exist in a nonperturbative quantum theory must be constructed through
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a regularization procedure. All such procedures which are known require that one intro-
duce both a background metric and a regulator scale. This is necessary, because the scale
that the regularization parameter refers to must be described in terms of some metric
and, since none other is available, it must be described in terms of a background metric
or coordinate chart introduced in the construction of the regulated operator. Because of
this, the dependence of the regulated operator on the cutoff parameter is related to its
dependence on the background metric. This can be formalized into a. kind of renormal-
ization group equation [29]. When one takes the limit of the regulator parameter going to
zero one isolates the nonvanishing terms. If these have any dependence on the regulator
parameter (which would be the case if the term is blowing up) then it must also have a
dependence on the background metric. Conversely, if the terms that are nonvanishing in
the limit the regulator is removed have no dependence on the background metric, they
must be finite.

This point has profound implications for the whole discussion of finiteness and
renormalizability of quantum gravity theories. It means that any nonperturbative and
diifeomorphism invariant construction of the observables of the theory must be finite.
A particular approach could fail in that there could be no way to construct the diffeo—
morphism invariant observables as quantum operators. But if it can be done, without
breaking diffeomorphism invariance, those operators will be finite.

3.15. Exact physical states of the quantum gravitational field

We come finally to the physical state space, Vphwv which consists of those states which are
solutions to all of the constraints of quantum general relativity, including the Hamiltonian
constraint. Although it is logical to put the discussion of these last, this is not the
order in which the subject actually developed. The discovery that the Hamiltonian
constraint could be exactly solved was made first]37]; later the loop representation was
invented to solve the diffeomorphism constraint [7]. At the time the first solutions to
the Hamiltonain constraint were found, it was possible to imagine that the existence of
an infinite dimensional space of exact solutions to the Hamiltonian constraint might be
some kind of spurious result, having nothing to do with physics. Now, six years later,
after the development of the loop representation, and after we have understood how the
discreteness of the quantum representation acts, at the kinematical and diffeomorphism
invariant level, to allow the existence of finite, background independent operators and
discrete structure at the Planck scale, and after we have further understood the role of
this discreteness in assuring the existence of the classical limit, that the Hamiltonian
constraint can be solved in this way seems much more natural.

In order to define its action in any representation, the Hamiltonian constraint must
be regulated. In the literature there are four different proposals for how to carry out
this regularization, due to Rovelli and the author[7], Gambini [23], Blencowe [38] and
Bruegmann and Pullin [39]. These are now understood to be equivalent, at least when
acting on a certain class of states [39].

The result of one of these regularization procedures is a sequence of well defined
operators C5 in V15”, for 5 > 0. A solution to the quantum Hamiltonian constraint is
then taken to be one such that,

£133 (CW >) = 0 (59)
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The physical states are then taken to be those states that are simultaneous solutions to
this condition and the diffeomorphism constraint (44).

I would like to make several comments about this condition.
a) There is no necessity that the limit limgno C5 define an operator in Vin-n. One

could construct such an operator by a renormalization procedure in which the operator
was multiplied by the appropriate power of 6 as the limit is taken. But, it is not clear
what use this would be. The operator, in any case, must vanish on the space Vphy, which
we are interested in, and on VIM, for the reasons we discussed in section 3.7, it will not
be diffeomorphism invariant.

b) The Hamiltonian constraint, even before regularization, is not diffeomorphism
invariant, as it is the integral of an arbitrary density with the local function of the fields.
Thus, it does not define an operator in VdI-Hm. It would be very interesting to have
an expression for the projection of the diffeomorphism constraint into that space. One
could do this, for example, by finding an infinite set of functions on the classical phase
space that vanish on the same surface as C, but which are diffeomorphism invariant, and
then represent those as quantum operators.

c) An issue that is often raised is the question of whether the algebra of the con-
straints, quantum mechanically, has an anomaly which would prevent the existence of
simultaneous solutions to all of them. In fact, as I am about to describe, we know of in—
finitely many simultaneous solutions, so there can be no anomalous terms in the algebra
which is proportional to the identity operator in the state space. Furthermore, as we
have just remarked, the Hamiltonian constraint does not define a good operator on VIM,
unless we further break diffeomorphism invariance by the addition of a renormalization
procedure, so it is not clear exactly what condition to ask from our quantum operator
algebra. However, it would still be interesting to know what the algebra of the regulated
operators is like; this problem is presently under study[40].

d) In the condition (59), the limit is taken in the pointwise topology, which means
that the limit must vanish when taken over every point of the loop space. As the physi—
cally meaningful inner product is constructed on the space of solutions to the constraint,
this is sufficient as long as that solution space is large enough. However, it would be
surprising if the limit could also not be expressed in terms of a Hilbert structure on nn.
I believe that this can be done, but the details have not been worked out.

The result of the regularization procedures is that the Hamiltonian constraint can
be given a kind of geometrical interpretation when acting in the loop representation.
First of all, acting on states that have support only on loops without intersections, the
limit (59) vanishes[37, 7, 23, 39]. Thus, the action of the operator is, in the limit, only
sensitive to the behavior of the state at intersecting loops. At an intersection, the action
of the operator consists of two parts: first, a rearrangement of the routings through the
intersection and second, a loop derivative taken at the intersecting points[7, 23, 39].

At the present time, there are several different sectors of solutions to the physical
state space which have been explicitly constructed. First, as I have just mentioned,
any state that has support on only nonintersecting loops is a solution. This is an in-
finite dimensional space; among these is a state corresponding to every invariant of
nonintersecting linksm. Then, there are two different sectors of states which have been
constructed which have support on intersecting loops. The first consists of characteristic
states, which have support on only a finite number of diffeomorphism equivalence classes
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of intersecting loops. These have been constructed for intersections at which two [37],
three [41], four and five [42] lines meet. Then, very recently, a new sector of physical
states has been discovered by Bruegmann, Gambini and Pullin, which are closely related
to the Jones polynomial[43].

At present, the study of exact physical states is ongoing, and there are a number
of open problems. It is clear that the full set of solutions is not known, and nothing is
known about the relationship between the different sectors of the solution space. Most
importantly, it has not been established the extent to which the known types of solutions
characterize the general solution to the constraints.

Of course, the construction of the theory is not complete without further elements,
particularly the physical observables and the physical inner product. I will discuss the
open problems in the next section. For the remainder of this section, I would like to
discuss a number of results concerning the application of these nonperturbative methods
to models which are simpler than full 3 + 1 dimensional quantum gravity.

3.16. Application of the loop representation to 2+1 gravity

As Witten first pointed out, quantum general relativity in 2 + 1 dimensions is exactly
solvable because for each spatial topology one has, after the solutions of the constraints,
a finite dimensional phase space [44]. Thus, although the model has only a finite number
of degrees of freedom, it provides a good test of many of the ideas and methods that were
originally developed in the 3 + 1 dimensional case. The theory can be completely solved
in using both the connection representation[44, 9] and the loop representation[17, 9, 18].
The physical operators can be constructed, and they turn out to be closely related to
the loop operators (2) and (4). The physical inner product is also easily constructed.

In addition, as Carlip has shown in a very elegant series of papers[45], the difficult
problem of time can be resolved completely in this model, along the lines proposed by
Rovelli [46].

A case which lies intermediate in difficulty between this case and the full 3 + 1
case is that of 2 + 1 gravity coupled to matter. In particular, with the addition of one
scalar field one has a model that can also be interpreted as 3 + 1 gravity with one killing
field[47].

Recently Ashtekar and Varadarajan have studied this model, and have found a
number of interesting results at the classical level[48]. The most important of these is that
it is possible to define a notion of asymptotic fiatness, such that the energy is bounded
both from above and from below. Using very different methods, Bonacina, Gamba
and Martellini have shown that this theory is also perturbatively renormalizable[49]. In
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of intersecting loops. These have been constructed for intersections at which two [37],
three [41], four and five [42] lines meet. Then, very recently, a new sector of physical
states has been discovered by Bruegmann, Gambini and Pullin, which are closely related
to the Jones polynomial[43].

At present, the study of exact physical states is ongoing, and there are a number
of open problems. It is clear that the full set of solutions is not known, and nothing is
known about the relationship between the different sectors of the solution space. Most
importantly, it has not been established the extent to which the known types of solutions
characterize the general solution to the constraints.

Of course, the construction of the theory is not complete without further elements,
particularly the physical observables and the physical inner product. I will discuss the
open problems in the next section. For the remainder of this section, I would like to
discuss a number of results concerning the application of these nonperturbative methods
to models which are simpler than full 3 + 1 dimensional quantum gravity.

3.16. Application of the loop representation to 2+1 gravity

As Witten first pointed out, quantum general relativity in 2 + 1 dimensions is exactly
solvable because for each spatial topology one has, after the solutions of the constraints,
a finite dimensional phase space [44]. Thus, although the model has only a finite number
of degrees of freedom, it provides a good test of many of the ideas and methods that were
originally developed in the 3 + 1 dimensional case. The theory can be completely solved
in using both the connection representation[44, 9] and the loop representation[17, 9, 18].
The physical operators can be constructed, and they turn out to be closely related to
the loop operators (2) and (4). The physical inner product is also easily constructed.

In addition, as Carlip has shown in a very elegant series of papers[45], the difficult
problem of time can be resolved completely in this model, along the lines proposed by
Rovelli [46].

A case which lies intermediate in difficulty between this case and the full 3 + 1
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number of interesting results were obtained[52]. The key open problem in this area is to
represent the generators of the Geroch group as canonical transformations, generated by
an infinite dimensional algebra physical observables of the model. Some very interesting
partial results in this direction have been obtained by Torre[53].

3.18. Nonperturbative quantization of the Bianchi models

A last type of model I would like to mention is the class of Bianchi cosmologies. These
are finite dimensional model cosmologies, which offer good laboratories for ideas about
quantum gravity and quantum cosmology. Most of these have not been solved, in spite
of the fact that they have only a few degrees of freedom; these models thus serve as a
reminder that in quantum gravity, as in ordinary quantum mechanics, finite dimensional
does not imply solvable.

It would be very interesting to be able to solve these models, through approximation
methods if not exactly. There are a number of interesting results concerning them which
employ Ashtekar’s variables[54, 55, 56]. Among these is the construction of a set of exact
states for the Bianchi IX model by Kodama [55] but, as in the full theory, little is known
about the physical observables or the inner product in this model.

4. What are the key open questions?

In quantum gravity, it is safe to assume that any important problem is difficult, until the
occasion of some progress provides evidence to the contrary. Indeed, in the development
of the work I have been describing here, almost every result came out in a surprising
way. Actually, once understood correctly, most of the results are not very difficult; the
key seems to be to ask the question in precisely the right way.

Given this, the key open questions are simply how to construct those elements of a
quantum field theory that are, so far, missing. I give here a list of them; more detailed
discussions about each of them may be found in the reviews [9, 10, 11, 5].

4.1. How can we construct the physical observables?

As I mentioned above, the problem of physical observables in quantum gravity is difficult
partly because there is already a problem in the classical theory. The problem can be
stated this way: any classical observable in general relativity, with cosmological bound-
ary conditions, must be a constant of motion. This is because to be invariant under
diffeomorphisms it must commute with the Hamiltonian constraint, but in the cosmo-
logical case the Hamiltonian is proportional to a linear combination of constraints. This
must be; were there a meaningful nonvanishing Hamiltonian it would be meaningful to
ask how fast the universe is evolving, so that evolutions that differed only by the rate
at which time progressed would be physically distinct. As there can be no clock outside
the universe, this cannot be meaningful.

Thus, the problem of physical observables is closely connected with the notion
of time. As such, it is one of those great problems that are both conceptually and
mathematically profound .

At the present time, a rather large number of ideas are being studied with an aim
towards solving this problem. I list here the ones I am aware of, with references.

254 General Relativity and Gravitation 1992

number of interesting results were obtained[52]. The key open problem in this area is to
represent the generators of the Geroch group as canonical transformations, generated by
an infinite dimensional algebra physical observables of the model. Some very interesting
partial results in this direction have been obtained by Torre[53].

3.18. Nonperturbative quantization of the Bianchi models

A last type of model I would like to mention is the class of Bianchi cosmologies. These
are finite dimensional model cosmologies, which offer good laboratories for ideas about
quantum gravity and quantum cosmology. Most of these have not been solved, in spite
of the fact that they have only a few degrees of freedom; these models thus serve as a
reminder that in quantum gravity, as in ordinary quantum mechanics, finite dimensional
does not imply solvable.

It would be very interesting to be able to solve these models, through approximation
methods if not exactly. There are a number of interesting results concerning them which
employ Ashtekar’s variables[54, 55, 56]. Among these is the construction of a set of exact
states for the Bianchi IX model by Kodama [55] but, as in the full theory, little is known
about the physical observables or the inner product in this model.

4. What are the key open questions?

In quantum gravity, it is safe to assume that any important problem is difficult, until the
occasion of some progress provides evidence to the contrary. Indeed, in the development
of the work I have been describing here, almost every result came out in a surprising
way. Actually, once understood correctly, most of the results are not very difficult; the
key seems to be to ask the question in precisely the right way.

Given this, the key open questions are simply how to construct those elements of a
quantum field theory that are, so far, missing. I give here a list of them; more detailed
discussions about each of them may be found in the reviews [9, 10, 11, 5].

4.1. How can we construct the physical observables?

As I mentioned above, the problem of physical observables in quantum gravity is difficult
partly because there is already a problem in the classical theory. The problem can be
stated this way: any classical observable in general relativity, with cosmological bound-
ary conditions, must be a constant of motion. This is because to be invariant under
diffeomorphisms it must commute with the Hamiltonian constraint, but in the cosmo-
logical case the Hamiltonian is proportional to a linear combination of constraints. This
must be; were there a meaningful nonvanishing Hamiltonian it would be meaningful to
ask how fast the universe is evolving, so that evolutions that differed only by the rate
at which time progressed would be physically distinct. As there can be no clock outside
the universe, this cannot be meaningful.

Thus, the problem of physical observables is closely connected with the notion
of time. As such, it is one of those great problems that are both conceptually and
mathematically profound .

At the present time, a rather large number of ideas are being studied with an aim
towards solving this problem. I list here the ones I am aware of, with references.

254 General Relativity and Gravitation 1992

number of interesting results were obtained[52]. The key open problem in this area is to
represent the generators of the Geroch group as canonical transformations, generated by
an infinite dimensional algebra physical observables of the model. Some very interesting
partial results in this direction have been obtained by Torre[53].

3.18. Nonperturbative quantization of the Bianchi models

A last type of model I would like to mention is the class of Bianchi cosmologies. These
are finite dimensional model cosmologies, which offer good laboratories for ideas about
quantum gravity and quantum cosmology. Most of these have not been solved, in spite
of the fact that they have only a few degrees of freedom; these models thus serve as a
reminder that in quantum gravity, as in ordinary quantum mechanics, finite dimensional
does not imply solvable.

It would be very interesting to be able to solve these models, through approximation
methods if not exactly. There are a number of interesting results concerning them which
employ Ashtekar’s variables[54, 55, 56]. Among these is the construction of a set of exact
states for the Bianchi IX model by Kodama [55] but, as in the full theory, little is known
about the physical observables or the inner product in this model.

4. What are the key open questions?

In quantum gravity, it is safe to assume that any important problem is difficult, until the
occasion of some progress provides evidence to the contrary. Indeed, in the development
of the work I have been describing here, almost every result came out in a surprising
way. Actually, once understood correctly, most of the results are not very difficult; the
key seems to be to ask the question in precisely the right way.

Given this, the key open questions are simply how to construct those elements of a
quantum field theory that are, so far, missing. I give here a list of them; more detailed
discussions about each of them may be found in the reviews [9, 10, 11, 5].

4.1. How can we construct the physical observables?

As I mentioned above, the problem of physical observables in quantum gravity is difficult
partly because there is already a problem in the classical theory. The problem can be
stated this way: any classical observable in general relativity, with cosmological bound-
ary conditions, must be a constant of motion. This is because to be invariant under
diffeomorphisms it must commute with the Hamiltonian constraint, but in the cosmo-
logical case the Hamiltonian is proportional to a linear combination of constraints. This
must be; were there a meaningful nonvanishing Hamiltonian it would be meaningful to
ask how fast the universe is evolving, so that evolutions that differed only by the rate
at which time progressed would be physically distinct. As there can be no clock outside
the universe, this cannot be meaningful.

Thus, the problem of physical observables is closely connected with the notion
of time. As such, it is one of those great problems that are both conceptually and
mathematically profound .

At the present time, a rather large number of ideas are being studied with an aim
towards solving this problem. I list here the ones I am aware of, with references.



What can We leam from the study of non-permrbative quantum relativity? 255

i) Coupling the theory to matter, and using this matter to provide a system of
clocks with which to make observables meaningful. This is a very old idea[33], recently
it has received a lot of attention[34, 32, 36].

ii) Imposing asymptotically fiat boundary conditions, which provide an observer
and a classical clock at infinity. The problem with such an approach is that spatial
infinity is, in a certain sense, too far away, and only a limit number of observables,
corresponding essentially to the globally conserved quantities, may be defined there. Still,
this is undoubtably worth doing, and some recent results of Baez are very interesting in
this regard[57]. The key open problem with this approach is to show that, with respect
to the correct inner product, the quantum Hamiltonian is bounded from below.

iii) Imposing some other kind of boundary conditions, which may allow more ob-
servables to be introduced. One such idea, due to Crane, is to define observables on two
dimensional surfaces, and use conformal field theory thereby as a kind of measurement
theory for quantum cosmology[58]. Another related idea involves choosing boundary
conditions so that a Chem—Simon theory is induced on the boundary [11].

iv) Studying certain limits of the theory, where observables can be constructed
[32, 59].

v) Finding an approximation scheme, such as a strong coupling expansion or a new
form of perturbation theory, that will allow observables to be constructed systematically.

vi) Modifying the interpretative rules of quantum cosmology, so as to make the
problem easier to solve[60].

vii) Construct observables that are associated with global properties of the configu-
ration of the gravitational field. This has led, during the last year, to the construction of
the only explicit examples yet discovered of observables of the pure gravitational field[61]

ix) Construct a superposition of exact states that corresponds, in the semiclassi-
cal sense described above, to Minkowski spacetime. Small perturbations on this state
should then correspond to gravitons traveling on Minkowski spacetime, at least for long
wavelengths. To show this one can construct a map from a sector of the Fock space of
linearized quantum gravity into a subspace the space of exact physical states. This map
then can be used to construct an approximate interpretation of the exact states in that
subspace. There is some preliminary evidence that this map exists[66, 67].

4.2. How can we construct the physical inner product?

The last structure that is necessary to do physics is the inner product. This problem is
closely connected to the problem of the observables because, in the absence of a global
Poincare covariance, the inner product must be picked by the requirement that a complete
set of real classical observables are represented by self-adjoint operators. Further, since
the observables are constants of motion, the problem of determining the inner product is
a dynamical problem. As such, this is a problem that will probably have to be solved by
some approximation scheme, following such a solution to the problem of the observables.

4.3. Completeness of the physical state space

Where do the exact physical states that have been found fit into the whole space of
solutions? This is a problem that is clearly dependent on the inner product and physical
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observable algebra; what we need in the end is to show that the physical states carry a
representation of the physical observable algebra.

4H4 Coupling matter to gravity

The Ashtekar formalism allows coupling to all types of matter, including spin zero and
one-half matter, Yang-Mills fields[62], supergravity[63] and antisymmetric tensor gauge
theories[36]. It is easy to extend the loop representation to describe coupling to these
matter fields at the kinematical and diffeomorphism invariant level. Nothing is known
about solutions to the Hamiltonian constraint including matter.

5. Conclusions

The results that I have been describing constitute a collective work in progress, which has
been undertaken by a number of people who share a common interest in the questions I
outlined in the introduction. As with any result of a scientific endeavor, from Stonehenge
down through the Macintosh computer on which I’m writing this, these results reflect
both the knowledge and the aspirations of those who made them. While such a work
remains unfinished, it is difficult to judge its ultimate worth. We certainly don’t yet know
whether there is a consistent quantum field theory that would go by the name of general
relativity, although the steady progress we have been making keeps us confident that it
will be possible to cleanly resolve this question. However, this was, and is, not the only
goal of this program; it was equally hoped that this work would uncover some general
features that would hold for any quantum theory of gravity that could be constructed
nonperturbatively. I believe that it is fair to say that a number of such features have
emerged, and that as a result of this work we are wiser about how the world will look
when we have a satisfactory quantum theory of gravity then we were before. I would
like to close by listing several morals that I believe we have learned from the work I’ve
described here.

a) To solve the spatial diffeomorphism constraints it is necessary to take a different
starting point already at the level of the quantum kinematics than is taken in conventional
Minkowski space quantum field theories, To avoid introducing background structures,
Fock space must be replaced by representations of the kinematical observable algebra that
rely on no background metric and carry unbroken representations of the diffeomorphism
group. That is, to get the diffeomorphism invariant physics right, we must make sure
that our state space and regularization procedures are background independent already
at the kinematical level.

b) At present the only representations known to have these properties are the dis-
crete representations I discussed here. Whether or not there are others is presently an
open question, however even without resolving this, these new representations have in-
teresting structures that deserve more investigation. In essence, what they seem to do is
to resolve the paradoxes that follow from the uncountable nature of the classical contin-
uum, as each state in these representation has support only on a countable set of loops.
It is exactly this structure that makes it possible to solve directly the difleomorphism
constraints, in a way in which the resulting space of diffeomorphism invariant states has
a countable basis.
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crete representations I discussed here. Whether or not there are others is presently an
open question, however even without resolving this, these new representations have in-
teresting structures that deserve more investigation. In essence, what they seem to do is
to resolve the paradoxes that follow from the uncountable nature of the classical contin-
uum, as each state in these representation has support only on a countable set of loops.
It is exactly this structure that makes it possible to solve directly the difleomorphism
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The price we pay for this is that at the kinematical level the state spaces are
nonseperable. This would be a serious problem at the level of the physical state space;
however it is only a technical inconvenience in our case.

c) It is a further property of this discrete representation that it allows us to con-
struct finite and regularization independent operators to represent non-local functions
of the gravitational field. This results in the quantization of the spectra of areas and
volumes. This is, moreover, not a spurious result of the kinematics, for we can show
by direct construction that the quantization of areas and volumes is maintained at the
diffeomorphism invariant level, when they are measured by diffeornorphisrn invariant
operators.

We believe that these results will survive further translation to the physical level.
If this is the case they will be the first physical predictions made by a quantum theory
of gravity. That is, we propose that any fine enough measurement will reveal that the
area of any surface can only lie in a discrete spectrum consisting of integral multiples
of lfilumk/2, and certain other values associated with intersections that are described in
[11].

d) The necessary dependence of renormalization procedures for local operators on
background metrics is, we believe, a general phenomena. As a result, I conjecture that
in any quantum theory of gravity there will be no renormalized local operators. Further,
all diffeomorphism invariant operators will be finite after an appropriate regularization
procedure[11, 29].

e) I believe that another thing we have seen in our construction of a diffeomor-
phism invariant operator in section 3.13 is quite general, This is that all diffeomorphism
invariant operators, and hence all physical operators, will measure topological properties
of non—local structures.

f) This means that in the final quantum theory of gravity we will see the continuous
geometry of the classical theory emerge from a quantum theory of purely topological
structures at the Planck scale. This is a consequence of what we discovered in section
3.10 and 3.11, in which we saw that when the classical limit was formulated carefully, it
follows that every state that behaves semiclassically at large scales must be far from the
semiclassical limit when probed on Planck scales. So far, in fact, that what is revealed
is the discrete structure required by the quantization of the area operator.

g) We believe that it is this behavior, which is apparent already at the kinematical
level, and not a pathology of the dynamics of general relativity, that is responsible for
the failure of perturbative quantizations of general relativity. That is, the perturbation
theory is already wrong at the kinematical level because it is unitarily inequivalent to the
correct kinematical state space. Moreover, while at large distances the correct physics
can be well approximated by semiclassical states, this approximation becomes worse and
worse at shorter and shorter distances.

h) Finally, while the possibility of solving the diffeomorphism constraint exactly
is implied only by the existence of the loop representation, which implies only that it
is possible to choose a connection as the canonical coordinate of the theory, that it
is in exactly the same representation that the Hamiltonian constraint becomes exactly
solvable seems the main miracle uncovered so far. (Here, by a miracle I mean something
wonderful that happens for a reason we don’t understand.) It seems to be the case that
once the diffeomorphisms have been taken care of correctly, the information remaining
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in the Hamiltonian constraint is very manageable.
i) Although I do not claim to understand completely what is behind this miracle, it

is worth pointing out that it, is in fact, exactly the existence of the self—dual connection
that makes it possible to write the Hamiltonian constraint as a single term, which in turn
makes possible the exact solutions which have been discovered. It seems, as a result,
very possible that self-duality is one of the keys to quantum gravity in the real 3 + 1
dimensional world. Indeed, self-duality is the key to several very interesting results that
have been recently uncovered about the classical theory [64, 65].

Note that only the last two of the nine morals in this list depended on the form of the
Hamiltonian constraint, and hence on the conjecture that general relativity is the correct
microscopic description of gravitation. The rest depend only on the existence of the loop
representation, which needs only that the theory can be expressed in such a way that a
connection is the canonical coordinate. Thus, the fact that so many of the key features
are present at the kinematic and difieomorphism invariant levels, before the dynamics
has been imposed, makes it, in my opinion, quite likely that whatever dynamics turns
out to be right, the description of Planck scale physics in the final theory of quantum
gravity will look a great deal like the picture I have been sketching here.
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Abstract. This paper reviews some of the recent observational results on
compact objects and stellar mass black holes. Over the last decade, much
of the progress in this field has been achieved through the study of transient
X-ray binary sources, which shine only sporadically in the X—ray sky and
undergo much larger luminosity variations than most persistent sources. The
impact of the observations of the transient X—ray pulsar EXO 2030+375 on
the study of accretion processes onto magnetic neutron stars is presented as
one of the most significant examples. There are currently six stellar-mass
black hole candidates for which the mass of the compact object is estimated
to be well above the maximum neutron star mass. The three most recently
identified black hole candidates of this kind belong to a class of transient
X—ray sources with peculiar spectral properties. A number of transients of
the same class which are currently being studied are likely to contain other
black hole candidates. The increasing number of candidates and the large
luminosity (and thus accretion rate) variations in transient sources will allow
to study the chacteristics of accreting black holes in an unprecedented detail.
The potential of iron K—shell lines around 6-7 keV as a new diagnostic for
studying the innermost regions of accretion flows towards collapsed objects
is also outlined and prospects for the future are discussed.

1. Introduction

A large number of collapsed objects has been discovered and made accessible to detailed
study through observations in the X-ray band. Accretion of matter in the strong gravi-
tational field of these objects is in most cases responsible for the efficient production of
radiative energy. Up to ~ 42% of the rest—mass of the accreting flow can, in principle,
be converted into radiation. In the case of accreting collapsed objects with stellar mass
(M S 20 Me) the bulk of the energy is radiated away in the X-ray band.

X-ray binaries consist of a neutron star or a stellar mass black hole accreting matter
from a non-collapsed companion in a close binary orbit. Historically, these systems
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have played a crucial role in the identification of the first black hole candidate and the
measurement of basic physical parameters of compact objects (such as the mass and the
magnetic field) (see e.g. Giacconi 1978). There is a growing body of evidence that the
central region of active galactic nuclei (AGNs) hosts an accreting black hole with a mass
of ~ 105 — 108 M9. The observation and measurement of strong gravitational field effects
are, in principle, possible in all these classes of sources, since most of the radiation is
produced in the vicinity of the collapsed object. However, a number of largely unknown
effects related e.g. to the dynamics, MHD and radiative-transfer of accretion complicates
the interpretation of the observations and only relatively little information on the strong
field regions has been obtained so far. Double neutron star binary systems containing a
radio pulsar have provided so far a much cleaner laboratory for testing the predictions
of gravitational theories. From the study of the propagation delays of the pulsar signal
in these systems it has been possible to accurately test general relativity, but only in
relatively weak fields (R g 10’GGM/c2) (Taylor 1993).

This review concetrates on recent insights regarding collapsed objects, obtained
from the study of X—ray binaries. The progress in the understanding of accreting mag—
netised neutron stars achieved through the observations of the transient X—ray pulsar
EXO 2030+375 is summarised. This example is to emphasise the role of X-ray tran—
sient sources in investigating accretion into collapsed objects over a wide range of source
luminosities and, thus, mass accretion rates. A subclass of X—ray transient sources, in
particular, seems to be associated with accreting black hole candidates. The potential of
this class of sources for the identification of new candidates and for the study of accre—
tion phenomena close to a black hole is outlined. The iron K-shell spectral lines around
6—7 keV, which are observed in virtually all classes of accreting collapsed objects, are
likely to provide the first powerful probe of accretion flows at distances as short as tens
of Schwarzschild radii.

2. X-ray binary basics

Luminous X—ray binaries (Lx > 1035erg/s) are often classified as low mass and high
mass systems depending on the mass of the donor star. While this classification leaves
unspecified the nature of the accreting collapsed object (which indeed can be a neutron
star or a black hole in either class), it allows to distinguish the phenomenology of the
X—ray sources and their optical counterparts in a natural way (see Table 1).

2.]. High mass X-ray binaries

High mass X-ray binaries (HMXRBS) contain an early type (OB) star with a mass of
> 5 MG and have a. galactic disk distribution characteristic of young stars (population
1). Mass transfer in most of these systems takes place because part of the intense stellar
wind emitted by the OB star is captured by the gravitational field of the collapsed
object. The energy production budget in HMXRBS is often dominated by the optical
luminosity of the OB star, with the X—ray flux emitted in the vicinity of the collapsed
object providing only a small perturbation. Correspondingly the optical spectra are
stellar—like (Rappaport and Jess 1983, and references therein)

Periodic X-ray pulsations with periods ranging from ~ 0.1 to ~ 1000 s are present
in a large number (~ 30) of HMXRBs. This signal originates from the beamed radiation
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the interpretation of the observations and only relatively little information on the strong
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of gravitational theories. From the study of the propagation delays of the pulsar signal
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relatively weak fields (R g 10’GGM/c2) (Taylor 1993).
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EXO 2030+375 is summarised. This example is to emphasise the role of X-ray tran—
sient sources in investigating accretion into collapsed objects over a wide range of source
luminosities and, thus, mass accretion rates. A subclass of X—ray transient sources, in
particular, seems to be associated with accreting black hole candidates. The potential of
this class of sources for the identification of new candidates and for the study of accre—
tion phenomena close to a black hole is outlined. The iron K-shell spectral lines around
6—7 keV, which are observed in virtually all classes of accreting collapsed objects, are
likely to provide the first powerful probe of accretion flows at distances as short as tens
of Schwarzschild radii.

2. X-ray binary basics

Luminous X—ray binaries (Lx > 1035erg/s) are often classified as low mass and high
mass systems depending on the mass of the donor star. While this classification leaves
unspecified the nature of the accreting collapsed object (which indeed can be a neutron
star or a black hole in either class), it allows to distinguish the phenomenology of the
X—ray sources and their optical counterparts in a natural way (see Table 1).

2.]. High mass X-ray binaries

High mass X-ray binaries (HMXRBS) contain an early type (OB) star with a mass of
> 5 MG and have a. galactic disk distribution characteristic of young stars (population
1). Mass transfer in most of these systems takes place because part of the intense stellar
wind emitted by the OB star is captured by the gravitational field of the collapsed
object. The energy production budget in HMXRBS is often dominated by the optical
luminosity of the OB star, with the X—ray flux emitted in the vicinity of the collapsed
object providing only a small perturbation. Correspondingly the optical spectra are
stellar—like (Rappaport and Jess 1983, and references therein)

Periodic X-ray pulsations with periods ranging from ~ 0.1 to ~ 1000 s are present
in a large number (~ 30) of HMXRBs. This signal originates from the beamed radiation
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which is produced close to the magnetic poles of a young accreting neutron star with a
surface field of ~ 1012 Gauss. Due to the misalignement of the magnetic and rotational
axes, the neutron star rotation modulates the X-ray intensity in a light-house fashion.
Period (or phase) changes introduced by the binary motion allow to measure some of
the orbital parameters of these systems. Together with the duration of the X-ray eclipse
(which is present in several HMXRBS) and the Doppler velocity and photometric mod-
ulations of the optical star, these measurements provide the absolute orbital solution
and the masses of the two components. Secular spin period changes arise because of
the torque exerted on the neutron star magnetosphere by the accreting matter (Henrichs
1983 and references therein). X-ray pulsations from luminous X—ray binaries provide an
incontrovertible signature of accretion onto a magnetised neutron star.

2.2. Low mass X—ray binaries

Low mass X—ray binaries (LMXRBs) typically contain a late type (K, M) low mass donor
star (or, in the case of very short period binaries, a white dwarf, WD). About 10 LMXRBs
are close to the core of globular clusters and many of the others are concentrated in the
vicinity of the galactic bulge, therefore indicating a distribution characteristic of old stars
(population ll) (Lewin and Joss 1983 and references therein). The short orbital periods
of LMXRBS are usually inferred from the orbital modulation of the optical and/or X—ray
flux, rather than X-ray eclipses proper (which are rare) (Parmar and White 1988). In
most cases mass transfer takes place because the low mass companion overfills a critical
effective potential surface (the Roche lobe) and spills matter with high specific angular
momentum towards the collapsed star, causing the formation of an accretion disk. The
intrinsic optical luminosity of the low mass companion is orders of magnitude lower than
the X—ray luminosity emitted by the accreting collapsed object. The spectral features of
the late type companion are usually outshined by the reprocessing at optical wavelengths
of the X—ray flux intercepted by the accretion disk and the star.

eay pulsations have been found only in a very small number of LMXRBS. Much
more frequent, instead, is the phenomenon of (type 1) X—ray bursts, sudden rises of X—
ray luminosity which typically last for tens of seconds, show a characteristic cooling in
the decay phase and recur on timescales of hours. These bursts account for only a small
fraction of the time—averaged luminosity of LMXRBs. They originate from thermonuclear
flashes in the freshly accreted matter on the surface of a neutron star. Therefore type I
X—ray bursts provide another clear signature of accretion onto a neutron star.

In a few LMXRBs the bursting activity ceases when the persistent emission X-ray
luminosity increases above a level of w 105‘7erg/s (van Paradijs and Lewin 1988 and
references therein). The X-ray properties of this state resemble those of a number of
high—luminosity LMXRBs (L, 2 1037erg/s), such as Sco X-l, Cyg X-2 and many others
which populate the galactic bulge. It is thus inferred that also the latter systems contain
accreting neutron stars.

2.3. X—ray pulsations versus type I X-ray bursts

X-ray pulsations and bursts are mutually exclusive properties of X-ray binaries: type I
bursts have never been observed from an X-ray pulsar and no coherent pulsations have
ever been detected from a type I burst source.
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Table 1. Classification of X-ray binaries

Properties HMXRBs LMXRBs

donor star O-B (M > 5 MQ) K-M or WD (M < 1 Me)
population I II
Lw/v, 0.001 — 10 100 — 1000
optical spectrum stellar-like reprocessing, no absorpt. lines
X-ray spectrum usually hard usually soft
orbital period 1 — 100 d 10 min — 10 d
X-ray eclipses common rare
X-ray pulsations common (Pg 2 0.1 — 1000 s) rare (P3 2 1 — 100 5)
type I X-ray bursts absent common
X-ray QPOs rare (qo 2 0.001 7 1 Hz) common (q0 :1 1 ~ 100 Hz)
collapsed object young neutron star or black hole neutron star or black hole

Pulsations are not expected from the old neutron stars in bursting sources if their
magnetic field has decayed to ~ 108 Gauss, a value below which accretion is not signif—
icantly funneled close to the magnetic poles. On the other hand, LMXRBs are likely
to be progenitors of the old, recycled millisecond pulsars which are found in increasing
numbers especially in globular clusters (van den Heuvel 1991). In this case the neutron
star magnetic field of ~ 109 — 1010 Gauss inferred from the radio pulsar observations
should also characterise the LMXRB stage, and low amplitude X—ray pulsations in the
millisecond range would be expected if accretion occurs preferentially along the magnetic
field lines. The search for fast pulsations in LMXRBs still continues.

Viceversa, type I bursts might not occur in X—ray pulsar binaries because the strong
magnetic field (N 1012 Gauss) of young neutron stars confines the infalling plasma to the
polar caps, thereby increasing dramatically the accretion rate per unit area (compared
to weakly magnetic neutron stars) and giving rise to steady (as opposed to flash-like)
thermonuclear burning in the accreting material (Fujimoto et al 1981, Hanawa and
Fuijmoto 1984).

While pulsations and type 1 X-ray bursts are clearly explained and imply the pres-
ence of an accreting neutron star, a variety of other phenomena characteristic of X-ray
binaries still awaits for unambiguous interpretation. These include aperiodic variabil-
ity (shot, red, very-low frequency, low-frequency, high-frequency noises), quasi-periodic
oscillations (QPOS), some spectral and/or activity states, and continuum and discrete
spectral components. At a phenomenological level, a number of regularities and corre-
lations have emerged, which provide the basis for further classification and study. Some
of these are discussed in some detail in the following sections.
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3. Persistent versus transient X-ray binaries

Besides persistent sources the X-ray sky is populated by a number of transient sources
which remain in their quiescent state for most of the time and sporadically undergo
bright outbursts with peak luminosities of 1036 — loggerg/s , durations ranging from
weeks to months, and recurrence timescales of 1-10 years or longer. Throughout the
years a very clear analogy of the X-ray characteristics of bright transient sources with
those of persistent sources has emerged. In particular a number of X-ray transients
display coherent X-ray pulsations or bursts, testifying to the presence of neutron stars,
which undergo sporadic surges of accretion. Like in the case of persistent sources, X-ray
bursting transients have low mass companions and relatively soft X-ray spectra, whereas
X-ray pulsations are usually observed from transients in Be-star high mass binaries which
are characterised by hard X-ray spectra extending up to a several tens of keV (White et
al 1984).

The identification of the optical counterparts of bright transients, in crowded and
often heavily absorbed regions of the galactic plane, is made easier by the optical fiux
increase associated with the outburst. In the case of low mass systems, in particular,
the reprocessing of high energy radiation can induce an increase of more than a factor of
100 above the quiescent optical flux level (Lewin and Joss 1983). Contrary to the case
of persistent low mass X-ray binaries, detailed photometric and spectroscopic studies of
the companion star are often possible in low mass transient sources, due to the fact that
in the quiescent state its optical spectrum is not dominated by the reprocessing of X—ray
radiation or by the emission from the accretion disk around the collapsed object.

X-ray transients sources are also extremely useful in that they allow to investigate
accretion onto collapsed stars over a much larger range of X-ray luminosities, and thus
accretion rates, than persistent sources. To illustrate the importance of this point, we
summarise in the next section the progress achieved in the understanding of the physics
of accreting magnetic neutron star through the observation of an individual X—ray pulsar
transient, EXO 2030+375.

4. Accretion onto magnetic neutron stars

The accretion flow towards magnetic neutron stars is characterised by a region inside
which the dynamics of the infalling plasma is dominated by the magnetic field. Inside
this magnetosphere, the majority of the material is channeled along the field lines and
reaches the neutron star surface in the vicinity of the magnetic poles, therefore generating
a pulsed signal at the spin period. Once the pulse arrival time delays introduced by the
orbital motion are removed, secular changes in the spin period can be measured which
provide information on the torques applied by the accreting matter. A secular spin up is
observed in a number of X-ray pulsars, which implies the presence of an accretion disk
outside the magnetosphere, transferring mass and angular momentum to the neutron
star. Although this basic picture has been known and progressively confirmed by the
observations of ~ 30 X-ray pulsars over the last twenty years, a number of crucial
predictions of the theory could not be addressed for a long time.
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4.1. The X—ray pulsar transient EXO 2030+375

The study of the 42 s X-ray pulsar transient EXO 2030+375 has improved substantially
our understanding of accretion onto magnetic neutron stars. The source was discovered
and monitored for about six months in 1985 (Parmar et al 1988a). During that period
the source underwent two outbursts and displayed X-ray luminosity Variations of more
than a factor of 1000. A heavily reddened high mass star was identified as the optical
counterpart (Janot-Pacheco et al 1988). Delays in the arrival times of X-ray pulses were
used to derive an orbital period of PM, ~ 45 d, an eccentricity of e N 0.4, a projected
semimajor axis of the neutron star orbit of am sini ~ 260 lt—s and an X-ray mass function
of fg,(M) = (Muwsinz'V/(M.r + Maw)2 ~ 5 — 10M® (here i is the inclination of the
binary, M1 and Mom the mass of the X-ray emitting compact object and the mass of
the companion star, respectively). These values are similar to those measured in various
other HMXRBS containing a high mass Be star and a transient X—ray pulsar.

4.2. Spin-up rate and disk-magnetosphere interaction

Two basic scenarios have been developed to describe the interaction of the accretion
disk with the neutron star magnetosphere. In one model the disk is diamagnetic and
developes surface currents which prevent the magnetic field lines from penetrating the
disk (Aly 1980). In the Ghosh and Lamb (1979) model, instead, the magnetic field lines
diffuse through the disk, giving rise to angular momentum transfer also by magnetic
stresses. The predictions of both theories are in agreement when the mass accretion
rate is high and the disk extends deeper in the neutron star magnetosphere. In this
case the Keplerian frequency of the disk at the radius of the magnetosphere, VK(1-,,,),
is substantially higher than the magnetospheric spin frequency, us, and the angular
momentum transfer towards the neutron star is dominated by the angular momentum
carried by the accreting matter as it leaves the disk at 7',,,. The pulsar spin up rate
in this case is expected to be ~15, (x B2/7R3‘Lg/7, where P, is the spin period, B the
surface magnetic dipole field and LI the X—ray luminosity of the neutron star. For
lower accretion rates7 the magnetosphere extends to larger radii and approaches the fast
rotator regime (111((1‘m) 2 us) for which the consequences of magnetic field lines threading
the disk become important and the predictions of the theory ambiguous. Before the
discovery of EXO 2030+375, measurements of P, were obtained over a limited range of
luminosities for each of about 10 X-ray pulsars. Uncertainties related to the different
distance, emission geometry and magnetic field strength of different sources allowed to
confirm only tentatively the predictions of the theory (Henrichs 1983).

In the case of EXO 2030+375 the spin-up rate could be measured over a factor of
~ 100 variation in luminosity (from ~ 1038 to ~ 1036 erg/s). This provided a power law
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Figure 1. Evolution of the 1-10 keV pulse profile of EXO 2030+375 during
the decay of the first 1985 outburst. The observed profiles are shown by the
crosses; the solid lines represent the best—fit model profiles. These consist of
the sum of fan and pencil-beam emissions from each of the two poles, plus
unpulsed emission. The contributions from the fan and pencil beams (summed
over both poles) are labeled as (a) and (b) (Parmar et al 1989b).

4.3. Pulse profiles and emission beaming from the neutron star magnetic poles

The pulse profiles of X—ray pulsars show great variety from source to source, ranging from
sinusoidal—like profiles, to highly structured and energy—dependent modulations (Rappe-
port and Joss 1983, White et al 1983). The shape of the periodic signal contains informa-
tion on the emission geometry from the regions close to the neutron star magnetic poles
where accretion is concentrated. Detailed modelling of the emission pattern emerging
from the accreting polar cap(s) of a neutron star has shown that beamed emission and
complex pulse profiles can be produced primarily because of the effects of the magnetic
field and the interaction of the radiation with the infalling matter. The preferred beam-
ing direction depends on whether a stand-off shock and, therefore, a dense deceleration
region are present above the polar cap. For high luminosities (> 1037erg/s) a radiative
shock is expected to form. In this case photons will escape preferentially from the sides
of the high density post-shock accretion column, giving rise to a fan-beam. For lower
luminosities (< 1037erg/s) the infalling material might be decelerated in a collisionless
shock above the polar cap possibly arising from plasma instabilities), or by Coulomb and
nuclear collisions at the neutron star surface. If the latter occurs, the emission region
will be located in a thin layer on the neutron star surface and radiative transfer effects
in the strong magnetic field will favor photons escaping in the direction of the field lines,
therefore giving rise to a pencil-beam. If a collisionless shock occurs a fan-beam is likely
to form, as in the high-luminosity case (Basko and Sunyaev 1976, Meszaros 1984).
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Comparative studies of the pulse profiles of the ~ 30 known X-ray pulsars, provided
only marginal evidence in favor of fan-beams, producing the complicated pulse profiles
in several high luminosity X—ray pulsars, and pencil beams, giving rise to the quasi—
sinusoidal modulations of low luminosity X-ray pulsars (White et al 1983). However
due to the inhomogeneities of the sample (different geometry, inclination, magnetic field
strength etc.) the conclusion above was only tentative. EXO 2030+375 ofl'ered the first
opportunity bf observing and modelling the pulse profile of an individual X-ray pulsar
over a factor of ~ 100 variation in luminosity. The points in Fig. 1 show the 1-10 keV
pulse profiles of EXO 2030+375 for luminosities ranging from N 1038 to N 1036 erg/s. It
is apparent that drastic changes in the shape of the pulses took‘place as the luminosity
decreased. In particular the broad peak at a pulse phase of 0.6-0.9 became gradually
less pronounced as the luminosity decreased and virtually disappeared for luminosities
of ~ 1036 erg/s. On the contrary, the importance of the feature centered around a phase
of ~ 0.4 increased as the luminosity of EXO 2030+375 decreased during the outburst
and became dominant around Lr ~ 1036 erg/s (Parmar et al 1989b).

The solid lines in Fig. 1 show the results obtained from a semi-empirical modelling
of the pulse profiles, consisting of the emission from two polar caps above the neutron
star surface. The emission pattern from each of the poles was approximated by the sum
of a fan-beam and a pencil beam. The luminosity of each beam was allowed to vary
independently, as well as the longitude, latitude and luminosity of each magnetic pole.
The effects of light bending in the strong field of the neutron star were approximately
taken into account. It is apparent that the model can reproduce the basic characteristics,
though not all the details, of the pulse profiles. The contribution due to fan beam
emission from both poles is shown as a dashed curve at the bottom of each panel in
Fig. 1, whereas the contribution due to pencil beam emission is shown by the dot-
dashed curve. The modelling clearly indicates that, as the source luminosity decreased,
the dominant emission pattern changed from a fan—beam to a pencil—beam, while the
geometrical parameters remained roughly unchanged (as expected) (Parmar et al 1989b).
These results provide the best evidence to date that for luminosities S 1037 erg/s the
material accreting on the. neutron star polar caps is stopped at the neutron star surface,
rather than being decelerated in a post—shock region.

44 QPOs and magnetospheric models

Periodic X—ray pulsations in the millisecond range are expected from LMXRBs if these
systems are the sites where old neutron stars with magnetic fields of ~ 10” — 10'U Gauss
are spun up by accretion torques to very short rotation periods, therefore providing
the progenitors of recycled radio pulsars. During the search for these fast pulsations
(which have not been revealed yet), a different phenomenon was discovered in a number
of bright LMXRBs: namely oscillations with frequencies of 1 — 50 Hz and very poor
coherence. These quasi periodic oscillations (QPOs) display large frequency variations
on timescales as short as tens of seconds and, therefore, cannot represent the rotation
of the neutron star. Their phenomenology is very complex, and different QPO modes
have been identified which correspond to different spectral and activity states (Lewin et
al 1988, Stella 1988). A number of sources show a mode in which the QPO frequency,
q0, increases with the source luminosity. This property played a key role in the
development of QPO models: the qo — La; correlation is suggestive of the presence of
a neutron star magnetosphere which is compressed for increasing accretion rates.
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Figure 2. (a)(b) Power spectra of the intensity variations of two high lumi-
nosity LMXRBS, GX 5-1 and Sco X-l. The broad peaks around 30 and 6 Hz,
respectively, testify to the presence of QPOs (van der Klis 1989). (c) (i) The
power spectrum of the transient X-ray pulsar HMXRB EXO 2030+375 close
to the maximum of the 1985 outburst; the very high peaks are due to the 42 s
coherent pulsations. (ii) Best fit for a model including the first 10 harmonics
of the coherent pulsar signal. (iii) The residual power spectrum after subtrac-
tion of the model for the coherent pulsations. The solid line shows the best fit
for the extended continuum power spectrum components. The ~ 20% broad
peak at about 0.2 Hz reveals the presence of the QPOs (Angelini et al 1989).
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In the best developed model for this kind of QPOs, the beat frequency model
(BFM), the interaction between the disk and the magnetospshere causes the accretion
flow to be modulated at the beat frequency between the disk Keplerian frequency at the
magnetospheric boundary, V]{(7'm), and the neutron star spin frequency, 11,. In this case
the QPO frequency is approximately given by

—e 7 a 7qo 2VK(rm) —1/, 2 BH/ L34 —1/, Hz,
where 312 is the magnetic dipole field at the neutron star surface in units of 1012 Gauss,
L37 the X-ray luminosity in units of 1037 erg/s. The equation above assumes also that
the rest energy of the accreting matter is converted into X-rays with a constant efficiency
of ~ 10%. When used to fit the 11o — LI relation observed in bright LMXRBS like
GX 5—1, Sco X—l and Cyg X-2, this model predicts a neutron star spin frequency of
1/, N 100 Hz, and a surface magnetic field of ~ 10'” Gauss, in agreement with the idea
that these systems contain a weakly magnetic neutron star which has been spun up by
accretion (Lamb et al 1985). Periodic pulsations at the neutron star spin frequency
are expected in the BFM, although their amplitude might be drastically reduced by the
effects of electron scattering.

In the absence of measurements of the magnetic field strength and the neutron
star spin frequency, it is difficult to use LMXRBs to verify the validity of the BFM.
An alternative approach is to detect QPOs from an accreting X—ray pulsar for which
an estimate of the magnetic field strength is available, either from the detection of
cyclotron spectral features, or by the measurement of spin—period changes induced by
accretion torques. This, together with the knowledge of the magnetospheric rotation
period derived from the pulsed X-ray signal, removes the two largest uncertainties when
investigating QPOS in LMXRBs.

QPOs are in most cases revealed and studied through the broad peak that they
produce in the power spectrum of the intensity variations of the source (see Fig. 2a). In
general the power spectrum of an X—ray pulsar contains the narrow peaks from the fun—
damental of the periodic signal from the neutron star rotation and some of its higher har-
monics. These peaks must be removed in order to study the continuum power spectrum
components, including the broad QPO peaks, which originate from noise—like variations
of the source. The power spectra from EXO 2030+375 were investigated in this way.
After the narrow peaks from the periodic modulation were modelled and subtracted, a
broad peak was revealed around frequencies of ~ 0.2 Hz, which testifies to the pres-
ence of QPOs (see Fig. 2b) (Angelini et al 1990). By using the measured values of the
spin frequency, the X—ray luminosity and the magnetic dipole field of the neutron star
in EXO 2030+375 a predicted QPO frequency of 11o ~ 0.2 Hz is obtained from the
BFM. This is in remarkable agreement with the observed value, especially in view of
the fact that no free parameter has been adjusted to the data. Moreover, contrary to
other models in which the QPO signal is generated directly by matter orbiting close to
the magnetospheric boundary (for which 12o ~ VK(7'm)), the BFM model can easily
account for the relatively large amplitude of the QPO in EXO 2030+375 (~ 3.5% mm).

These results provided the first quantitative confirmation of the BFM and showed
that the model can work in the presence of an accretion disk interacting with a rotating
neutron star magnetosphere (Angelini et al 1990). Whether QPO sources in nonpul-
sating LMXRBs possess a small rapidly rotating neutron star magnetosphere which can
generate QPOs by the same physical mechanism remains an open question.
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5. Black hole candidates in X-ray binaries

Despite the increasing evidence in favor of very massive black holes (106 — 109 M9) in
AGNs, black hole candidates in X-ray binaries provide still the strongest case for the
existence of completely collapsed objects, characterised by an event horizon.

5.1. The mass criterion

The chain of arguments that leads to the identification of a black hole candidate in an
X-ray binary through the mass criterion can be summarised as follows (Bahcall 1978,
McClintock 1986):
(i) The luminosity of the X-ray source is high (> 1036 erg/s) and characterised by fast
variability (7' < 1 s): therefore the binary must contain an accreting compact object.
(ii) Optical spectro—photometric observations allow to determine the orbital period and
the Doppler velocity modulation of the donor star around the collapsed object. The
optical mass function of the system, O,,,(M) : (MI sin i)3/(M,C+Mupl)2 : orbK3/2‘II'G ,
is thus measured, where K : v sini(1 2 (32)”2 and 11 sini is the semi-amplitude 0f the
Doppler modulation.

(iii) The mass of the optical star and the inclination are inferred, or at least constrained,
based on the distance, the optical spectrum and luminosity of the optical star, its size
relative to the Roche—lobe and arguments related to the lack of X—ray eclipses and the
presence of optical polarisation. By using fop,(M), the mass of the compact object, M1,
is thus measured or constrained.

(iv) If the mass of the compact object is determined to be larger than the canonical
maximum mass of a neutron star predicted by the theory, Ml. > Mn.” 2 3.2 MG
(Rhoades and Ruffini 1974, Hartle 1978), then the conclusion is reached that the accreting
compact object is most likely completely collapsed and is therefore a black hole candidate.

The identification of the first black hole candidate in the early seventies, represents
one of the most important achievements of X-ray astronomy.

5.2. Cyg X—I

Cyg X—l is a highly variable and luminous HMXRB (L1. > 1037erg/s), with an orbital
period of 5.6 days an optical mass function of fupt(M) 2 0.25 M9. The most likely values
of the companion mass, Mum 2 30 Mo, and the inclination, i 2 30", provide an estimate
of the mass of the compact object of AI, N 16 M3 (Liang and Nolan 1984).

It is important to realise that the value of the optical mass function provides an
absolute lower limit on the mass of the compact object, corresponding to the unrealistic
situation in which Mop; = 0 and i = 90". In the case of Cyg X-l, however, fop¢(M) is only
~ 0.25 MG and deriving a reliable lower limit on Mr is a difficult task. In a number of
studies a devil’s advocate approach was adopted in order to decrease the estimated value
of MI below 3.2 Me). This proved very useful in verifying the validity of the assumptions
underlying the mass estimate. Indeed the velocity curve of the companion star and,
thus, the mass function might be affected by several sources of systematic uncertainties.
These include tidal distortons, non-synchronous rotation and/the effects of X-ray heating
of the companion star, as well as contamination by emission lines from an accretion
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Figure 3. 1—40 keV X—ray spectra of the HMXRB black hole candidates
Cyg X—l, LMC X-3. The high and low state spectra of Cyg X—l are indicated
(Tanaka 1989)

disk, gas streams or the companion’s wind (Bahcall 1978). Moreover the value of M0,”,
determined from the companion’s spectrum might be underestimated by a factor of two
or more (in those X-ray pulsar HMXRBs for which a dynamical determination of the
masses is available, the companion star is often undermassive for its spectral class). To
circumvent this difficulty a different method was devised which sets an upper limit on
the black hole mass as function of the distance, based only on the mass function, the
lack of X-ray eclipses and the dereddened flux of the companion star (Paczynski 1974).

The most conservative assumptions lead to the conclusion that in Cyg X—l M_,. >
3 M9. However, Mz measures the total mass around which the supergiant star orbits. In
a system like Cyg X—l, there is room to accomodate a neutron star and, e.g., a 8 M9 B
star in a tight orbit, which in turn both revolve around the O supergiant. The spectrum of
such a B star could remain undetected, while M1. would be compatible with the measured
value. This kind of triple star models, which clearly do not require the presence of a
black hole, are still marginally viable. Despite this caveat, Cyg X—l remained the most
reliable black hole candidate for more than a decade.

The compact object in most HMXRBs has been determined to be a pulsating
neutron star. Detailed studies of the often heavily reddened optical counterparts of X—
ray binaries close to the galactic plane have proven difficult. For persistent LMXRBs
the problem is even more pronounced, because of the intrinsically low optical luminosity
and the absence (or near absence) of spectral features from the companion low mass
star. Based on the X-ray characteristics of Cyg X—l, two phenomenological signatures of
accreting black holes were suggested. These were aimed at selecting tentative black hole
candidates among X-ray binaries, the optical counterparts of which could be studied in
greater depth in order to apply the mass criterion.
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5.3. Time variability criterion

The X-ray flux of Cyg X-l shows a pronounced aperiodic flickering on timescales of the
order of ~ 1 s or less. Significant structure has been detected down to a few milliseconds.
These variations were modelled in terms of a simple shot noise model as early as 1972
and were suggested to arise by some form of instability in the accreting matter in the
vicinity of the black hole (Liang and Nolan 1984).

In the early eighties, a transient source, V0332+53, was observed which, together
with ~ 4.4 s periodic pulsations, displayed pronounced rapid aperiodic variations similar
to those of Cyg X-l (Stella et a1 1984). This provided the first clear counterexample
of the time variability criterion by showing that the accreting magnetic neutron star in
an X-ray pulsar system could also produce fast aperiodic flickering. By now, virtually
all classes of accreting compact objects in X—ray binaries are known to display rapid
aperiodic variations somewhat similar to those observed from Cyg X—l (Hasinger and van
der Klis 1989, van der Klis 1989, Belloni and Hasinger 1990). More detailed investigations
are required to characterise the time variability of black hole candidates and revise the
criterion accordingly.

5.4. Spectral criterion

Cyg X—1 displays different spectral states. During most of the time the source is in the
low state, characterised by a power-law like X—ray spectrum with a logarithmic slope
of about —0.5, which steepens above ~ 100 keV and extends up to energies of several
hundred keV. The X-ray luminosity is 3 i 4 X 1037 erg/s. In the high state the luminosity
increases by a factor of ~ 2 due to the presence of an additional spectral component for
energies of < 10 keV, with a corresponding decrease of the high energy emission (Liang
and Nolan 1984). The high state spectrum of Cyg X—l is therefore much softer than the
low state spectrum (Fig. 3).

The presence of spectral states similar to those of Cyg X—l (for energies < 20 i
30 keV) and/or a high energy tail extending to hundreds of keV has also been used
as a phenomenological signature of accretion onto black holes. As described in section
5.6, the application of this criterion has been very successfull over the last few years.
HOWever, out of the first two tentative black hole candidates that were suggested on the
basis of the time variability and spectral criteria, only GX 339—4 might contain a black
hole (Ilovaisky et al 1986; Dolan et al 1987). Type I X-ray bursts were instead observed
from Cir X-l, which proved that the system contains an accreting neutron star (Tennant
et al 1986). This fact emphasises that, despite its success, the spectral criterion is not
fully reliable.

5.5. Black hole candidates in the LMC and X—ray colours

Two other black hole candidates were identified in the early eighties from detailed optical
observations of two HMXRBS in the Large Magellanic Cloud. The likely mass of the
compact object in LMC X-3 and LMC X-l was determined to be ~ 9 M0 and ~ 6 MG),
respectively (Cowley et al 1983, Hutchings et al 1987). The value of the optical mass
function, though relatively large for LMC X-3 (~ 2.3 MG), does not, by itself, exclude the
presence of a neutron star in either of the two systems (see Table 2). Rather, systematic
uncertainties in the luminosity and orbital velocity of the optical star in LMC X-3 (Mazeh
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The X-ray flux of Cyg X-l shows a pronounced aperiodic flickering on timescales of the
order of ~ 1 s or less. Significant structure has been detected down to a few milliseconds.
These variations were modelled in terms of a simple shot noise model as early as 1972
and were suggested to arise by some form of instability in the accreting matter in the
vicinity of the black hole (Liang and Nolan 1984).

In the early eighties, a transient source, V0332+53, was observed which, together
with ~ 4.4 s periodic pulsations, displayed pronounced rapid aperiodic variations similar
to those of Cyg X-l (Stella et a1 1984). This provided the first clear counterexample
of the time variability criterion by showing that the accreting magnetic neutron star in
an X-ray pulsar system could also produce fast aperiodic flickering. By now, virtually
all classes of accreting compact objects in X—ray binaries are known to display rapid
aperiodic variations somewhat similar to those observed from Cyg X—l (Hasinger and van
der Klis 1989, van der Klis 1989, Belloni and Hasinger 1990). More detailed investigations
are required to characterise the time variability of black hole candidates and revise the
criterion accordingly.

5.4. Spectral criterion

Cyg X—1 displays different spectral states. During most of the time the source is in the
low state, characterised by a power-law like X—ray spectrum with a logarithmic slope
of about —0.5, which steepens above ~ 100 keV and extends up to energies of several
hundred keV. The X-ray luminosity is 3 i 4 X 1037 erg/s. In the high state the luminosity
increases by a factor of ~ 2 due to the presence of an additional spectral component for
energies of < 10 keV, with a corresponding decrease of the high energy emission (Liang
and Nolan 1984). The high state spectrum of Cyg X—l is therefore much softer than the
low state spectrum (Fig. 3).

The presence of spectral states similar to those of Cyg X—l (for energies < 20 i
30 keV) and/or a high energy tail extending to hundreds of keV has also been used
as a phenomenological signature of accretion onto black holes. As described in section
5.6, the application of this criterion has been very successfull over the last few years.
HOWever, out of the first two tentative black hole candidates that were suggested on the
basis of the time variability and spectral criteria, only GX 339—4 might contain a black
hole (Ilovaisky et al 1986; Dolan et al 1987). Type I X-ray bursts were instead observed
from Cir X-l, which proved that the system contains an accreting neutron star (Tennant
et al 1986). This fact emphasises that, despite its success, the spectral criterion is not
fully reliable.

5.5. Black hole candidates in the LMC and X—ray colours

Two other black hole candidates were identified in the early eighties from detailed optical
observations of two HMXRBS in the Large Magellanic Cloud. The likely mass of the
compact object in LMC X-3 and LMC X-l was determined to be ~ 9 M0 and ~ 6 MG),
respectively (Cowley et al 1983, Hutchings et al 1987). The value of the optical mass
function, though relatively large for LMC X-3 (~ 2.3 MG), does not, by itself, exclude the
presence of a neutron star in either of the two systems (see Table 2). Rather, systematic
uncertainties in the luminosity and orbital velocity of the optical star in LMC X-3 (Mazeh

Recent progress in the observations of compact objects and black holes 275

5.3. Time variability criterion

The X-ray flux of Cyg X-l shows a pronounced aperiodic flickering on timescales of the
order of ~ 1 s or less. Significant structure has been detected down to a few milliseconds.
These variations were modelled in terms of a simple shot noise model as early as 1972
and were suggested to arise by some form of instability in the accreting matter in the
vicinity of the black hole (Liang and Nolan 1984).

In the early eighties, a transient source, V0332+53, was observed which, together
with ~ 4.4 s periodic pulsations, displayed pronounced rapid aperiodic variations similar
to those of Cyg X-l (Stella et a1 1984). This provided the first clear counterexample
of the time variability criterion by showing that the accreting magnetic neutron star in
an X-ray pulsar system could also produce fast aperiodic flickering. By now, virtually
all classes of accreting compact objects in X—ray binaries are known to display rapid
aperiodic variations somewhat similar to those observed from Cyg X—l (Hasinger and van
der Klis 1989, van der Klis 1989, Belloni and Hasinger 1990). More detailed investigations
are required to characterise the time variability of black hole candidates and revise the
criterion accordingly.

5.4. Spectral criterion

Cyg X—1 displays different spectral states. During most of the time the source is in the
low state, characterised by a power-law like X—ray spectrum with a logarithmic slope
of about —0.5, which steepens above ~ 100 keV and extends up to energies of several
hundred keV. The X-ray luminosity is 3 i 4 X 1037 erg/s. In the high state the luminosity
increases by a factor of ~ 2 due to the presence of an additional spectral component for
energies of < 10 keV, with a corresponding decrease of the high energy emission (Liang
and Nolan 1984). The high state spectrum of Cyg X—l is therefore much softer than the
low state spectrum (Fig. 3).

The presence of spectral states similar to those of Cyg X—l (for energies < 20 i
30 keV) and/or a high energy tail extending to hundreds of keV has also been used
as a phenomenological signature of accretion onto black holes. As described in section
5.6, the application of this criterion has been very successfull over the last few years.
HOWever, out of the first two tentative black hole candidates that were suggested on the
basis of the time variability and spectral criteria, only GX 339—4 might contain a black
hole (Ilovaisky et al 1986; Dolan et al 1987). Type I X-ray bursts were instead observed
from Cir X-l, which proved that the system contains an accreting neutron star (Tennant
et al 1986). This fact emphasises that, despite its success, the spectral criterion is not
fully reliable.

5.5. Black hole candidates in the LMC and X—ray colours

Two other black hole candidates were identified in the early eighties from detailed optical
observations of two HMXRBS in the Large Magellanic Cloud. The likely mass of the
compact object in LMC X-3 and LMC X-l was determined to be ~ 9 M0 and ~ 6 MG),
respectively (Cowley et al 1983, Hutchings et al 1987). The value of the optical mass
function, though relatively large for LMC X-3 (~ 2.3 MG), does not, by itself, exclude the
presence of a neutron star in either of the two systems (see Table 2). Rather, systematic
uncertainties in the luminosity and orbital velocity of the optical star in LMC X-3 (Mazeh



276 General Relativity and Gravitation 1992

HEAO-l A2 X-RAY COLOR-COLOR DIAGRAM GSFC
I l l l __

0.3 — I PULSAR _
muss—4 D Be STAR + as.

a * BLACK HOLE CANDIDATE
i Llcx-I {o sco X-I LIKE
S wou’m. A BURSTER

I

§ 0.2 ~ ”'3‘" wmmmmi OACCRETION msx conom —
I - —. A Q-xre 43l¥§§-§§:;f -°“ ‘2 . T TRANSIENT

CL wlsaml ‘ . OTHER
0 0,9 ‘ 4UIsoa-52

3% 6‘ @/ D mums-51D3 . . A tSXBH-l
oII-no o l tcve X-l

a 0. I "i 'g ' —
o o l I

.3? dunno-47 r or"6 “‘0 ' 4UOII'5t63 '
o wmz—u' Hulazvas I

m 4U|a§2~37 I ' I ”"0“

0.0 I I l I
0.0 0.5 |.0 |.5 2.0

Hardness Ratio (7—30/3—7) keV

Figure 4. An X-ray colour-colour diagram. Different types of X—ray sources
are indicated by different symbols (White and Marshall 1984)

et al 1986) and the relatively large error in the mass function of LMC X-l do not allow
ruling out the unlikely scenarios in which the mass of the compact object is < 3 M®~ In
this sense LMC X—3 and, especially, LMC X-l provide less reliable black hole candidates
than Cyg X—l. The X—ray spectra of LMC X-l and LMC X—3 are extremely soft and
resemble the high state spectrum of Cyg X—l (Fig. 3).

When an X—ray colour-colour diagram was assembled from observations in the
1.5 — 30 keV band (Fig. 4), it was noticed that the two LMC black hole candidates and
Cyg X—l and GK 339-4 in their high state lie in the left part of the diagram, characteristic
of ultrasoft spectra (White and Marshall 1984). On the contrary, the low state colours
of Cyg X-l and GX 339-4 are harder and close to those of LMXRBS containing an
old accreting neutron star. Should the colour-colour diagram be calculated for higher
energies (from tens to hundreds of keV, where the observations are still sparse), then the
high energy tail would probably make the hardness ratios of black hole candidates the
highest (see Fig. 5a). In the 1.5 — 30 keV energy range, however, X-ray pulsar binaries
present with the hardest spectra and tend to occupy the right part of the diagram.

A number of ultrasoft sources, that do not display bursts or pulsations, have colours
similar to those of black hole candidates in their high state. Shortly after the optical
studies of LMC X-l and LMC X-3, these sources were suggested as tentative black hole
candidates. Among these there is a high incidence of ultrasoft transient sources, some
of which have been identified as LMXRBs (White et al 1984). While in quiescence,
these systems provide a rare opportunity to study the companion’s optical spectrum and
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high energy tail would probably make the hardness ratios of black hole candidates the
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present with the hardest spectra and tend to occupy the right part of the diagram.

A number of ultrasoft sources, that do not display bursts or pulsations, have colours
similar to those of black hole candidates in their high state. Shortly after the optical
studies of LMC X-l and LMC X-3, these sources were suggested as tentative black hole
candidates. Among these there is a high incidence of ultrasoft transient sources, some
of which have been identified as LMXRBs (White et al 1984). While in quiescence,
these systems provide a rare opportunity to study the companion’s optical spectrum and
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thereby determine the distance and some orbital parameters.

5.6. Black hole candidates in X-ray transients

A0620-00 was the first ultrasoft X-ray transient to be studied in quiescence. For two
months in 1975 it was the brightest X-ray source in the sky and achieved a peak lumi-
nosity of L, ~ 1038erg/s. Its optical counterpart was identified thanks to the ~ 6 mag
brightening that accompanied the X-ray outburst. Detailed optical spectro-photometry
in quiescence revealed an orbital period of ~ 7.7 hr and a low mass K-star companion, the
spectral features of which are modulated with a velocity semiamplitude of f: 450 km/s
(see Table 2) . This provides an optical mass function of ~ 2.9 MG), almost sufficient in
itself to identify A0620-00 as the first black hole candidate in a LMXRB (McClintock
and Remillard 1986). The likely black hole mass is M, N 10 Me. A firm lower limit
of M, > 3.2 M6) is obtained through considerations which are insensitive to the dis-
tance and the companion’s mass. This is unlike the black hole candidates in HMXRBs.
Moreover triple star models similar to those suggested for Cyg X-l would not viable,
because in a compact and optically faint binary like A0620~00 it would be impossible to
hide a non-degenerate star of suffinciently high mass (see Fig. 6). A scenario in which
two or more degenerate stars (neutron stars and/0r white dwarfs) in a very close orbit
revolve around the K—star companion can probably be constructed; such a system, how—
ever, would probably be very short lived due to the emission of gravitational radiation
or the ejection of one (or more) degenerate star(s). As a black hole candidate, A0620-00
presents thus clear advantages with respect to Cyg X-l; some of these are related to the
transient LMXRB character of the system.

The search for other black hole candidates in transient LMXRBs has been very
successful over the last few years. New tentative candidates have been discovered through
the application of the spectral criterion, owing to a more consistent monitoring of the
X<ray sky with large field of View detectors. In particular observations in the hard X-
ray band (2 30 keV) have recently allowed to identify several new transient sources,
with spectra extending to several hundreds of keV. Discovered and monitored in 1989,
GS2023+338 (V404 Cygni) is one such transient; its X-ray spectrum is similar to the
low state spectrum of Cyg X-l (see Fig. 5a). Observations of its optical counterpart
have allowed to measure an orbital period of ~ 6.5 d and a velocity semiamplitude
of ~ 210 km/s for the companion star. The very high value of the mass function,
fopl 9: 6.3 MG), establishes the compact object in G52023+338 as the best black hole
candidate available to date, independent of any consideration concerning the distance,
the luminosity, the inclination or the mass of the companion star (Casares et al 1992).
It is interesting to note that there is inderect evidence for a third star in a tight orbit
around the collapased object in GSZO23+338; the current constraint on the mass of such
a star (M < 0.5 MG) leaves unaffected the conclusion that GS2023+338 contains a black
hole candidate. Another ultrasoft X-ray transient, G81124-68 (Nova Muscae), has been
recently determined to host a black hole candidate, based on a mass function of ~ 3.1 M@'
(Remillard et al 1992).

The number of black hole candidates in X-ray binaries has increased from one to six
over the last decade; two of them were identified in 1992. Despite their faintness (often
requiring observations with the largest telescopes), the optical counterparts of several
other tentative black hole candidates in X-ray transient are currently being studied; some
still remain to be identified. A0620-00 and GS2023+338 were observed as optical novae in
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Figure 5. (a) Comparison of the wide energy range X-ray spectra from
the bright LMXRB Sco X-l, the transient X-ray pulsar HMXRB A0535+26
and the black hole candidate GSZO23+338 (Sunyaev et al 1991a). Note the
spectrum of GS2023—I—338 extends to much higher energies than the spectra of
the other two sources. (b) The 2-40 keV spectral variability of the potential
black hole candidate GS2000+25. Note the independent variations of the
ultrasoft and power law components (Tanaka 1989)
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black hole candidate GS2000+25. Note the independent variations of the
ultrasoft and power law components (Tanaka 1989)
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black hole candidate GS2000+25. Note the independent variations of the
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Figure 6. Schematic sketch, to scale, of likely models of the HMXRB black
hole candidates Cyg X-l, LMC X—3 and the transient LMXRB black hole
candidate A0620—00. The optical companions (shaded regions) are assumed
to fill their Roche lobe (McClintock 1986).

1917 and 1938, respectively; intermediate outbursts may have been missed. Recurrence
times are therefore in the range of tens of years. The total number of transient black
hole candidate LMXRBs in the galaxy, although very uncertain, is estimated between
~ 100 and N 3000 (Tanaka 1991a).

5. 7, Open issues in the physics of black hole accretion

In addition to the advantage which derives from the identification and study of their
optical counterparts, ultrasoft and high energy tail X-ray transients offer the opportunity
of investigating also the physics of accretion into black holes over a wide range of X-
ray luminosities and, thus, accretion rates. The rapidly growing number of candidates,
together with the coverage afforded by wide-field X-ray instruments and intensive follow-
up programs, will allow to address in greater detail a number of open issues related to
the physics of accreting black hole. Among these:
(a) What is the origin of the ultrasoft spectral component, characteristic of the high state,
and the power law component, which is dominant in the low state ? Recent observations
have revealed that the intensity of each of the two components can vary independently
of the other; the tentative black hole candidate GS2000+25 provides the best example
of this behaviour (Fig. 5b; Tanaka 1989, 1991b, Ebisawa 1991). Accretion disk models
have been developed which comprise a relatively cold disk, emitting ultrasoft X-rays,
and a hot phase, in the geometry of either a corona above the accretion disk or a central
bulge, which produces the power law spectrum (Shapiro et al 1976, Galeev et al 1979,
Haardt and Maraschi 1991). While the ultrasoft X-ray component is likely to originate
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Table 2. Properties of black hole candidates

Properties Cyg X-l LMC X-1 LMC X-3 A0620-00 G52023+33 G31124-68

class“ pers. H pers. H pers. H trans. L trans. L trans. L
L;j"“" erg/s 1035 2 X 1038 3 x 1038 1 x 1038 4 x 1038 1037
donor star 09.71 late 0 B3V K5V G/K K2V
d kpc 2.5 U) 55 55 1(?) 2 (?) 2 (?)
V i mag 9 14 17 18 19 20
KkIn/s 75i1 68i8 235:1:11 433:1;4 211:1:4 409i18
PM, (1 5.6 4.2 1.7 0.32 6.5 0.43

fv,,l(M)M(.) 251.01 141.05 2.3i.3 2.911.08 6.26i.31 3.11.4

“ pers: persistent, trans: transient, H: HMXRB, L: LMXRB,

from the superposition of black body spectra (possibly modified by the effects of electron
scattering, Treves et al 1987, White et a1 1988), the power law component is probably
produced by Comptonisation. The latter process may work by upscattering the soft
photons from the cold disk in a hot plasma (kT Z 100 keV) with electron-positron pairs
providing a feedback mechanism for the temperature (Svensson 1990).
(b) Why is substantial emission above a few hundred keV characteristic of accretion into
black holes candidates 7 Only very preliminary explanations are available. Perhaps the
absence of a star surface and of the associated emission of soft photons prevents cooling
of the Comptonising region, and higher electron energies can be mantained than in the
case of accreting neutron stars. Recent observations indicate, however, that also the
persistent emission of X—ray burst source might possess a high energy tail extending to
100—200 keV (MXB1728-34 Cook et al 1991, Terzan 2 Barret et al 1991, KSl731-260
Barret et al 1992).
(c) What is the origin of the emission feature at energies of 400—600 keV or higher
observed in some black hole candidates 7 In the case of Cyg X-1 a variable broad bump
at energies of 400~1500 keV has been observed, which could correspond to the Wien
peak of a Comptonised spectrum or, alternatively, to a blueshifted 8+ ~ 9’ annihilation
line (Ling et al 1987). A much narrower feature around ~ 500 keV has been recently
reported from the ultrasoft X-ray transient G81124-68 which is strongly suggestive of
an 6+ — e- annihilation line (Sunyaev et al 1992, Goldwurm et al 1992). Also the
high energy source 1E1740.7-2942 near the galactic center displayed a variable bump at
300—600 keV, probably related to annihilation processes in an electron-positron plasma
(Sunyaev et al 1991b, Bouchet et al 1991). Further observations with higher spectral
resolution and a. more extensive coverage of a number of sources are required to confirm
this interpretation. Annihilation lines might provide an important diagnostic of pair-
dominated plasmas.
(d) Is there cold optically thick matter in the vicinity of accreting black holes 7 The low
state spectrum of Cyg X-l and, especially, the variable absorption spectra G52023+33
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display a braod excess at ~ 10 — 40 keV, above a simple power law spectrum (Tanaka
1989, 1991b, Ebisawa 1991). A similar excess is observed in the X-ray spectrum of
a number of Seyfert I galaxies (Pounds et al 1990). This feature is best interpreted in
terms of reflection by relatively cold optically thick matter in the vicinity of the collapsed
object. Reflection is most effective above ~ 10 keV, where the photoelectric absorption
by heavy elements is small, and below ~ 300 keV, where the effects of Compton recoil
are not dominant (Lightman and White 1988). The study of this spectral component
can provide insights into the physical state and geometry of matter in the vicinity of the
black hole.
(e) Is there a type of short term X-ray variability which is characteristic of accretion
into black hole candidates '3 While virtually all classes of accreting compact stars are by
now known to produce fast aperiodic variations (7' < 1 s), more detailed studies based
on power spectral and cross-spectral analyses suggest that there might exist a type of
aperiodic variability which is specific to accretion into black hole candidates (Miyamoto
et al 1991a). This would also allow to revise the time variability criterion for identifying
tentative black hole candidates.
(f) Is there a connection between the QPOs in the X—ray flux of black hole candidates
and those from accreting neutron star systems '3 QPOs have already been revealed from
several black hole candidates (and tentative black hole candidates). The QPO frequency
is relatively low in the HMXRB black hole candidates LMC X—l (N 0.07 Hz, Kitamoto
1989) and Cyg X—l (N 0.04 Hz, Vikhlinin et al 1992, Angelini et‘ al 1992). The N 6 Hz
QPOs from GX339—4 display different modes, associated with different time variability
and spectral states, which involve some interesting analogies with the QPOs observed
from LMXRBs containing an old neutron star (Miyamoto et al 1991b). The frequency
of the QPOs from the ultrasoft transient black hole candidate GSll24—68 is also quite
high (~ 10 Hz). Models involving rotating magnetospheres are clearly not applicable
to black hole candidate QPOs. Disk instability models, although still in their infancy,
appear to be more promising.

6. Iron Ka lines in accreting collapsed objects

The iron emission line features observed at ~ 6 — 7 keV in virtually all classes of accreting
collapsed stars provide probably the most promising diagnostic of the physical conditions
and, possibly, the dynamics of the innermost regions of accretion flows towards collapsed
objects. These lines have been studied in most cases only with modest spectral resolution
detectors (E/AE S 10), which could not resolve the profile of the line. Yet two very
important conclusions have been reached. Firstly, the line centroid energy measured
from Cyg X-l (~ 6.2 keV, see Fig. 7a) and the ultrasoft transient 4U1543-47 (~ 5.9 keV)
requires a substantial redshift, as the rest energy of Ka photons range from 6.4 keV for
fluorescence from the lowest ionisations stages of iron, to 6.9 keV for recombination into
hydrogenic iron ions (Barr et al 1985, van der Woerd et al 1989). Secondly, the iron Ka
lines are broadened to widths of 1 keV or more for many accreting collapsed objects, such
as old neutron stars in LMXRBS and a few black hole candidates (White et a1 1986).

Blending of lines from different ionisation stages of iron can produce a maximum
width of only ~ 0.5 keV. The observed line redshifts and widths can be caused by
Compton scattering of line photons in an electron cloud, if the optical depth is 2 3
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and the temperature is ~ 107 —— 108 K (Kallman and White 1989). If the accretion flow
is mediated by a disk, line emission from it is likely to be driven by photoionisation or
Compton heating by radiation from closer to the central object. Compton line broadening
is not expected to play an important role unless there exists a hot phase of the accretion
disk with an optical depth > 1. This, in turn, is not likely to occur in a Compton heated
disk corona, because photons from the central X-ray source, which are responsible for
the heating, would not be able to penetrate to the base of the corona. The interpretation
in which the broadening and shifting of the iron Ka lines arises because of the Doppler,
transverse and gravitational shifts from high velocity plasma motions in the vicinity of
the collapsed object appears to be more natural. The accretion disk modelling of the
line profiles requires a general relativistic treatment, as the observed widths and redshifts
suggest a line emitting region in the range of tens of Schwarzschild radii (Fabian et al
1989).

The profiles calculated for a Keplerian disk orbiting a non—rotating black hole dis—
play a characteristic double-horned profiles, similar to, although much broder than, those
observed from spiral galaxies and cataclysmic variables. Fig. 7b shows an example of
such profile. The inclination, the inner and outer radii of the line emitting region and
the emissivity law were adjusted so as to approximate the parameters of the iron line of
Cyg X—l. Relativistic effects (aberration, time dilation and redshift) combine to produce
a blue horn brighter than the red horn, whereas, due to the relatively low inclination,
the gravitational and transverse effects cause an overall redshift of the line. The solid
state detectors (resolution of E/AE ~ 50) to be flown on board the next generation of
X—ray astronomy satellites should allow to resolve the profile of the iron K05 lines from a
number of accreting collapsed stars. The observation of the characteristic double—horned
profile would not only confirm the accretion disk scenario, but would also provide an
unprecedentedly sensitive probe of regions as close as a few tens of Schwarzschild radii
to the central object. In particular the dimensions (in units of Schwarzschild radii), in-
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line, which take place with a delay of less than 250 s (Kunieda et al 1990). In the accretion
disk scenario, changes of the line emissivity will arise in response to flux variations at
the central source and will induce a time dependence of the line profile observed from
infinity. After a sudden flux increase at the central source, two characteristic features
are expected to form on opposite sides of the line which, owing to light travel time
effects, gradually drift from the line wings, corresponding to the innermost disk regions,
to the blue and red horns. The observation of this line-profile evolution can afford a
measurement of the dimensions of the line emitting region in absolute units (e.g. cm).
The combination of the relative and absolute measurements allows to infer the mass of
the central object (Stella 1990).
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The observability of the expected line profile changes depends on the number of X-ray
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Figure 7. (a) The iron Ka line of Cyg X-l, after sutraction of the contin-
uum spectral components (Barr et al 1985). The detector resolution is about
600 eV (E/AE :4 10) (b) The dashed line shows the line profile expected
from a relativistic accretion disk. The line emitting portion of the disk ex-
tends from 20 to 200 Schwarzschild radii, with an emissivity law oc 172. The
disk inclination is 30". The solid line represents the line profile convolved
with a rectangular window (with E/AE 2 10) for comparison with the ob—
served data. Note that despite the pronounced blue horn, the line centroid is
redshifted

Z 10" higher for bright AGNS than for X—ray binaries. Therefore, observational prospects
for the application of the new technique are far more promising in AGNs.

7. Conclusions

Over the last few years, transient X—ray binaries have provided a number of insights into
the physics of accreting collapsed objects. The case of accreting magnetised neutron
stars is well illustrated by EXO 2030+375, an X—ray pulsar in which several physical
processes could be investigated in detail. Crucial to these findings is the large range
of luminosities and, thus, accretion rates over which properties can be studied in X-ray
transient sources. Moreover a subclass of X-ray transients has been identified which is
clearly associated with black hole candidates in low mass binaries. For three such systems
a reliable upper limit on the mass of the collapsed object has been recently obtained from
dynamical studies of the companion star in the quiescent state, when the reprocessing
of X-ray radiation does not dominate the emission at optical wavelenghts. The optical
counterparts of a number of tentative black hole candidates in X-ray transients remain
to be identified and studied; moreover new transients are being discovered with large
field of view X-ray instruments. Therefore the number of candidates is likely to increase
rapidly in the near future.

Extensive X-ray monitoring of the outbursts, with improved spectral resolution
and extended energy range, will allow to investigate in detail the properties of accreting
black hole candidates over the large luminosity variations which are characteristic of
X-ray transients. These studies will bring the level of our understanding of accreting
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black holes closer to that of accreting magnetic neutron stars. The broad and sometimes
redshifted iron K04 lines, which are observed in virtually all classes of accreting collapsed
objects, are likely to provide a powerful diagnostic of strong gravitational field regions
and a new, more accurate way of measuring the mass of the central object in AGNs.

The mass criterion is currently central to the identification of black hole candi-
dates. While based on a small number of very likely hypothesis, the criterion provides
only an indirect proof of the existence of black holes. Even within the framework of
general relativity, compact stellar configurations substantially more massive than neu-
tron stars could be made of, e.g., unknown light and stable fermions, or high-density
nongravitationally bound states of baryon matter (Q-stars, Bahcall et a1 1990). A new
perspective for the observation and study of the properties of black hole candidates is
clearly emerging, which will allow to probe regions closer and closer to the collapsed
object. Identifying reliable strong field signatures of accreting black holes will require
new synergetic efforts of theorists and observers. Ultimately, incontrovertible evidence
should be found for the existence of an event horizon.
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Testing relativistic gravity with binary and millisecond pulsars

J H Taylor

Joseph Ilenry Laboratories and Physics Department
Princeton University, Princeton, New Jersey 08544, USA

Abstract. Binary and millisecond pulsars oiler unique opportunities for

high precision experiments in relativistic gravity, probing well beyond the
weak—field, slowimotion limit of all previous experimental tests. 'I‘hey also

provide the means for accurate measurements of neutron star masses, plao
ing rigorous constraints on the energy density 01' low-frequency gravitational
radiation in the universe, and a number of other significant results. The

first known binary pulsar, I’SR BI913+l6, has now been observed [or more

than 18 years. Its timing measurements have conclusively established the ex~

istence, quadrupolar nature, and propagation speed of gravitational waves;

the results are presently in accord with general relativity at, the 0.4% level. A
more recently discovered binary pulsar, I’Slt B1534+12, has provided clean

access to a test of gravity under stronghold conditions, independent of grav—
itational radiation effects. In this paper I summarize and update the status
of experiments involving these two pulsars. and provide references to other
related work.

1. Introduction

The discovery of pulsars 25 years ago introduced radio astronomers to a new type of
natural clock, one that has proven remarkably useful for high—precision experiments in
relativity. When a pulsar was found in a gravitationally bound orbiting system (Hulse &
Taylor 1975), the way was opened for making explicit comparison of terrestrial atomic
time with the time kept by a spinning macroscopic object located in a strong gravitational
field and moving with mildly relativistic velocity. Measurements of this orbiting pulsar
have been pursued intensively and have borne excellent fruit, as predicted. Meanwhile,
a number of other pulsars have been found with characteristics and circumstances that
make them interesting for applications in gravitational physics. Interesting results have
now been obtained in areas as diverse as (1) determining neutron star masses, (2) plac-
ing limits on the cosmic gravitational wave backgroun l, (3) testing the constancy of the
gravitational coupling parameter G, (4) establishing the existence and quadrupolar na-
ture of gravitational waves, and (5) establishing constraints on possible departures of the
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“correct” theory of gravity from general relativity, in the strongfield regime. A number
of papers have been published on these topics in the last few years. I shall summarize
and update a few of the results here, and provide references to more complete work
published elsewhere.

2. Overview of experimental details

The first binary pulsar to be discovered, named PSR B1913+16 according to its position
in the B1950 system of celestial coordinates, turned out to be the harbinger of a new
subclass of pulsars whose evolution is substantially modified by the proximity of an
orbiting companion star. More than 40 of these “recycled” pulsars have now been found,
about halfof them since 1990. They are believed to have passed through an evolutionary
phase in which mass and angular momentum were accreted from an evolving companion
after it left. the hydrogen—burning main sequence and began shedding its outer layers.
The recycled pulsars have much shorter rotation periods and weaker magnetic fields than
other pulsars. Moreover, they exhibit even more remarkable long—term timing stabilities
7* approaching and possibly surpassing those of the best atomic clocks.

Pulsar timing experiments are conceptually straightforward, even though one of
the “clocks” being compared may be located several kiloparsecs from Earth. The obser—
vations are usually signaletoenoise limited, so they are best carried out with the largest.
available radio telescopes, such as the 305 in spherical reflector of the Arecibo Obser—
vatory in Puerto ltico. Interstellar propagation effects and galactic background noise
compromise the measurements below about 0.3 Gllz, while steep radio frequency spec
tra make most pulsars hard to observe at frequencies much above 3 GHZ. Therefore,
timing ol')servations are usually carried out somewhere within this oneedecade frequency
interval.

In the pulsar timing measurements that my colleagues and 1 make regularly at
Arecibo, radio—freqnency signals induced in the feed antennas are amplified, converted
to intermediate frequency, and passed through a multiechannel spectrometer. Digital
signal averagers accumulate the pulsar"s periodic intensity waveform in each frequency
channel, using circuitry under computer control and accurately synchronized with the
observatory’s time and frequency standard. A programmable synthesizer, whose output
frequency is adjusted once a. second in a phaseecontinuous manner, compensates for
changing Doppler shifts caused by known accelerations of the pulsar and the observatory.
Average pulse profiles are recorded every few minutes together with appropriate time
tags. Phase offsets of individual profiles are measured relative to a high signal—to-noise
standard profile, converted to time delays, and added to the recorded start times of
the integrations, thereby yielding topocentric times of arrival (TOAs) according to the
observatory’s master clock. TOAs obtained for different spectral channels are combined
after correcting for dispersive delays caused by the ionized interstellar medium, and clock
offsets measured by means of Earth-orbiting GPS satellites (Lewandowski & Thomas
1991) are applied to correct all TOAs to the best available standard of terrestrial atomic
time.

An extensive theoretical framework for analyzing pulsar timing data has been devel—
oped over the years (e.g., Manchester 85 Taylor 1977, Damour & Deruelle 1986, Taylor
& Weisberg 1989, Ryba & Taylor 1991, Damour & Taylor 1992). Each observatory-
centered TOA, say tobs, is first transformed to the reference frame of the solar system
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barycenter, and then, for binary pulsars, to the pulsar co»moving frame (modulo an un—
known constant velocity offset). In this frame the TOAs should be spaced so that pulse
number N (an integer) is emitted at time TM, given implicitly by

l.v = m + 5% + . .. . (1)
Where 1/ = l/P is the neutron star’s rotation frequency and time derivatives higher than
the first are generally found to be negligible. The transformation from terrestrial time to
pulsar proper time is carried out in the wealefield, slowimotion limit of general relatiw
ity; to sullicient accuracy, other viable theories of gravity would yield identical results.
The necessary equations include terms related to the positions, velocities, and masses
of objects within the solar system and to frequencyalependent propagation effects in
the interstellar medium. For binary pulsars there are also terms representing the conse—
quences of orbital motion. The orbital effects have been worked out and parametrized
in a general phenomenological way by Damour and Deruelle (1985, 1986).

To an accuracy consistent with the experimental state, of the art, all significant
terms appearing in the time transl‘ormation can be summarized in the single equation

I]. : Irnhs 7 [(1 + A(‘ 7 [)/f2 l Altai”: ($1 lbw ill“ 7T) l ABE) fl Agmflyi 6)

*Anllk 0. a. am. it. i a, 6n , Ate) , Ase. s) , AA. (2)
Here [,0 is a nominal equivalent TOA at the solar system barycenter; Ac represents
the measured oil-set between the observatory reference clock and the best terrestrial
standard of time; U/f2 is the dispersive delay for propagation at frequency f over the
path from pulsar to liiarth: Aug, Au.“ and ASE. are propagation delays and relativistic
time adjustments within the solar system; and An, A”, A5, and AA are similar terms for
a binary pulsar’s orbit. Subseripts on the various A’s indicate the nature of the delays,

«7which include “ltoemer, “Einstein.“ and “Shapiro” effects within the solar system,
and these as well as “Aberration" effects in the pulsar orbit. Note that the Roemer
terms have approximate amplitut’lcs given by the orbital periods times Yl/C, where e is
a speed clraracteristic of orbital motion and (I the speed of light. 'l‘he Einstein terms
are proportional to (HQ/(72), multiplied by the orbital eccentricities. The Shapiro delay
(Shapiro 19611) in the solar system has a maximum value of x 120 as when the line of
sight grazes the limb of the Sun, and depends logarithmically on the impact parameter.
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barycenter, and then, for binary pulsars, to the pulsar co»moving frame (modulo an un—
known constant velocity offset). In this frame the TOAs should be spaced so that pulse
number N (an integer) is emitted at time TM, given implicitly by

l.v = m + 5% + . .. . (1)
Where 1/ = l/P is the neutron star’s rotation frequency and time derivatives higher than
the first are generally found to be negligible. The transformation from terrestrial time to
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The necessary equations include terms related to the positions, velocities, and masses
of objects within the solar system and to frequencyalependent propagation effects in
the interstellar medium. For binary pulsars there are also terms representing the conse—
quences of orbital motion. The orbital effects have been worked out and parametrized
in a general phenomenological way by Damour and Deruelle (1985, 1986).

To an accuracy consistent with the experimental state, of the art, all significant
terms appearing in the time transl‘ormation can be summarized in the single equation

I]. : Irnhs 7 [(1 + A(‘ 7 [)/f2 l Altai”: ($1 lbw ill“ 7T) l ABE) fl Agmflyi 6)

*Anllk 0. a. am. it. i a, 6n , Ate) , Ase. s) , AA. (2)
Here [,0 is a nominal equivalent TOA at the solar system barycenter; Ac represents
the measured oil-set between the observatory reference clock and the best terrestrial
standard of time; U/f2 is the dispersive delay for propagation at frequency f over the
path from pulsar to liiarth: Aug, Au.“ and ASE. are propagation delays and relativistic
time adjustments within the solar system; and An, A”, A5, and AA are similar terms for
a binary pulsar’s orbit. Subseripts on the various A’s indicate the nature of the delays,

«7which include “ltoemer, “Einstein.“ and “Shapiro” effects within the solar system,
and these as well as “Aberration" effects in the pulsar orbit. Note that the Roemer
terms have approximate amplitut’lcs given by the orbital periods times Yl/C, where e is
a speed clraracteristic of orbital motion and (I the speed of light. 'l‘he Einstein terms
are proportional to (HQ/(72), multiplied by the orbital eccentricities. The Shapiro delay
(Shapiro 19611) in the solar system has a maximum value of x 120 as when the line of
sight grazes the limb of the Sun, and depends logarithmically on the impact parameter.
The corresponding delay within the binary orbit depends on the companion star’s mass,
the orbital phase, and the inclination i between the plane of the orbit and the plane of
the sky. Full details on all of the terms in l‘iq. (2) can be found in the references quoted
earlier.

Eqs. (1) and (‘2) have been written to show explicitly the nature of the most signif-
icant dependences of pulsar TOAs on the set of potentially measurable parameters. In
addition to the pulsar rotation frequency 1/ and its first time derivative 1), these param-
eters include the reference arrival time to, dispersion constant D, celestial coordinates a
and 6, proper motion terms no and its, and annual parallax 7r. For binary pulsars, as
many as 13 orbital parameters are also measurable, at least in principle. These include
five that appear even in a purely Keplerian analysis of orbital motion: the projected
semi—major axis a: E [L] sini/c, eccentricity 8, binary period Pb, longitude of periastron
w, and time of periastron To. If the experimental timing precision is high enough, rela-
tivistic effects give access to as many as eight “post-Keplerian” (PK) measurables: the

Testing relativistic gravity witlz binaly and millisecond pulsars 289

barycenter, and then, for binary pulsars, to the pulsar co»moving frame (modulo an un—
known constant velocity offset). In this frame the TOAs should be spaced so that pulse
number N (an integer) is emitted at time TM, given implicitly by

l.v = m + 5% + . .. . (1)
Where 1/ = l/P is the neutron star’s rotation frequency and time derivatives higher than
the first are generally found to be negligible. The transformation from terrestrial time to
pulsar proper time is carried out in the wealefield, slowimotion limit of general relatiw
ity; to sullicient accuracy, other viable theories of gravity would yield identical results.
The necessary equations include terms related to the positions, velocities, and masses
of objects within the solar system and to frequencyalependent propagation effects in
the interstellar medium. For binary pulsars there are also terms representing the conse—
quences of orbital motion. The orbital effects have been worked out and parametrized
in a general phenomenological way by Damour and Deruelle (1985, 1986).

To an accuracy consistent with the experimental state, of the art, all significant
terms appearing in the time transl‘ormation can be summarized in the single equation

I]. : Irnhs 7 [(1 + A(‘ 7 [)/f2 l Altai”: ($1 lbw ill“ 7T) l ABE) fl Agmflyi 6)

*Anllk 0. a. am. it. i a, 6n , Ate) , Ase. s) , AA. (2)
Here [,0 is a nominal equivalent TOA at the solar system barycenter; Ac represents
the measured oil-set between the observatory reference clock and the best terrestrial
standard of time; U/f2 is the dispersive delay for propagation at frequency f over the
path from pulsar to liiarth: Aug, Au.“ and ASE. are propagation delays and relativistic
time adjustments within the solar system; and An, A”, A5, and AA are similar terms for
a binary pulsar’s orbit. Subseripts on the various A’s indicate the nature of the delays,

«7which include “ltoemer, “Einstein.“ and “Shapiro” effects within the solar system,
and these as well as “Aberration" effects in the pulsar orbit. Note that the Roemer
terms have approximate amplitut’lcs given by the orbital periods times Yl/C, where e is
a speed clraracteristic of orbital motion and (I the speed of light. 'l‘he Einstein terms
are proportional to (HQ/(72), multiplied by the orbital eccentricities. The Shapiro delay
(Shapiro 19611) in the solar system has a maximum value of x 120 as when the line of
sight grazes the limb of the Sun, and depends logarithmically on the impact parameter.
The corresponding delay within the binary orbit depends on the companion star’s mass,
the orbital phase, and the inclination i between the plane of the orbit and the plane of
the sky. Full details on all of the terms in l‘iq. (2) can be found in the references quoted
earlier.

Eqs. (1) and (‘2) have been written to show explicitly the nature of the most signif-
icant dependences of pulsar TOAs on the set of potentially measurable parameters. In
addition to the pulsar rotation frequency 1/ and its first time derivative 1), these param-
eters include the reference arrival time to, dispersion constant D, celestial coordinates a
and 6, proper motion terms no and its, and annual parallax 7r. For binary pulsars, as
many as 13 orbital parameters are also measurable, at least in principle. These include
five that appear even in a purely Keplerian analysis of orbital motion: the projected
semi—major axis a: E [L] sini/c, eccentricity 8, binary period Pb, longitude of periastron
w, and time of periastron To. If the experimental timing precision is high enough, rela-
tivistic effects give access to as many as eight “post-Keplerian” (PK) measurables: the



290 General Relativity and Gravitation 1992

secular derivatives o, H, i“, and e, the Einstein parameter 7, the “range” and “shape” of
the orbital Shapiro delay, called 7‘ and s, and an orbital shape correction, 50 (see Damour
& Taylor 1992, and references therein). Because seven quantities are required to fully
specify the dynamics of a two—body orbiting system (up to theoretically uninteresting ro—
tations about the line of sight). the measurement of any two PK parameters, in addition
to the five readily measured Keplerian ones, provides a full description of the system,
including predictions for the values of the remaining parameters. Thus, if a total of N
post—Keplerian parameters are measurable one has immediate access to N — 2 distinct
tests of relativistic gravity.

In practice. parameter values are extracted from a set of TOAs by calculating the
expected time of emission TM. for each observed pulse number M and then minimizing
the weighted sum of squared residuals,

2 1‘, 4;“ '2 .X : Z — u (3)

with respect. to all phenomenological parameters to be determined. (Here ’I', is the value
of 7' corresponding to the ith measured TOA, and (7,» is the measurement uncertainty.
Note that with sutliciently frequent observations, the integers JV, are know exactly, so
there is no ambiguity in determining Tm.) ln the analysis of a given set 01' data, some
parameters will be more readily measurable than others. When TOAs are available for
many observing dates distributed over a year or more. a pulsarl’s celestial coordinates,
spin parameters, and Keplerian orbital elements are otten measurable to accuracies oli
six or more significant digits. The PK parameters 1rn:asnre smaller effects, and are there:
fore more difficult to quantify tcnsive analyses of their measurabilities in practical
(:ircumstances have been carried out recently by Damour IQ: Taylor H.992) and Taylor
(1992).

As I have mentioned earlier, high—precision timing observations of pulsars have been
put to many diverse uses. Even pulsars with no more than two measurable PK param—
eters can yield fundamentally important inlormation. For example, the best available
measurements ol‘ neutron star masses are derived trom binary pulsar timing observations
(Thorsett ct (Ll 1992, and references therein). Observations extending over many years
have placed tight upper limits on the energy density of gravitational waves in the universe
(Stinebring el. (11 1990) and on the constancy of the gravitational coupling paramctm‘, (I
(Dainour, Gibbons & Taylor lSJSS: Taylor 1992). Pulsar timing data are even proving
useful as practical diagnostic tools. helping to establish time and trequency scales with
the best possible long-term stabilities (Taylor 1991).

3. Binary pulsar PSR B1913+16

The first binary pulsar was found some 18 years ago, and its importance as a testbed for
relativistic gravitation theories was recognized almost immediately (Hulse & Taylor 1975,
Damour & Rufhni 1.974, Brumberg cf (1/ 1975. Esposito 81, Harrison 1975, Wagoner 1975).
In subsequent years, much eflort has been put into making increasingly accurate mea-
surements of its pulse arrival times and comparing the results with parametrized models
such as the one summarized above. More than 11500 TOAs for PSR, B1913+16 have now
been recorded at the Arccibo Observatory (Taylor cf (2/ 1976; Taylor & Weisberg 1982,
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1989, and unpublished work). These data determine the five Keplerian parameters and
d), the largest PK parameter, to a few parts per million or better (see Table 1). Two
further PK parameters, 7 and Pb, have been determined with fractional accuracies better
than 0.3%.

Table 1. Measured orbital parameters and derived masses for two binary
pulsar systems. Figures in parentheses represent uncertainties in the last
quoted digit; those in square brackets represent expected values of unmeasured
quantities, according to general relativity.

PSR B1534+]2 PSR. B1913+16

It'riplcrian p/zm0metro/0mm! parameters:
Orbital period, Pb (s) .................. 3635l.70270(3) 27906.9807804(G)
Eccentricity, c ........................ 0.2736779(6) 0.6171308M)
Projected scmiimajor axis, {1' (s) ...... 3.729468(9) 2.3417592(l.9)
Time of Periastl‘on, To (MJD) ......... 48262.8434966(2) “16411399588319(3)
Longitude of periastrou, w (°) ......... 264.972ltl6) 226.57528(6)

I’ost—[\"eplcrian. p12cnommmlogrcal pnrmnetms:
Advance of periastron, to (° yr‘l) ..... l.7560(3) 4.22662l(l 1)
Time dilation, 7 (ms) ................. 2.05(11) 4.295(2)
Orbital period derivative, P, (1042) 70.1(6) 72mm)
Range of Shapiro delay, 7' ()is) ......... (5.2(l.3) [6.83/1]
Shape of Shapiro delay, s E sini ....... 0.986(7) [0,734]

Derived masses:
Pulsar mass (1W3) .................... 134(7) l 4410(7)
Companion mass (M@) ............... 1.311(7) 1,3874(7)

The PSR Bl913+l6 system thus has more measurable quantities than significant
unknowns, and consequently provides a clean, accurate test 01' relativistic gravitation
theories. it is this test that convincingly demonstrates the existence of quadrupolar
gravitational radiation in general relativity. One uses the measured values of the five
Keplcrian parameters, a), and 7 to calculate the component masses and the expected
rate of orbital period decay caused by gravitational radiation. This prediction is then
compared with the observed value of Pb. At present levels of accuracy it is necessary to
include a small adjustment for the effect of galactic accelerations (Damour and Taylor
1991). An up»to-date error budget for the experiment is presented in Table 2, and
Figure 1 illustrates the observed decay of the PSR B1913+16 orbit from September
1974 through April 1992. General relativity passes this “ti; — A) — Pb” test perfectly at
the present level of accuracy, about 0.35% an impressive confirmation of Einstein’s
theory in a regime where gravitation theories have not previously been testable.
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Table 2. Error budget for the orbital period derivative of PSR B1913+16,
and comparison of experimental result with general relativistic prediction.

Parameter (10—12)

Observed value7 PbObs ....................... —2.4225:l:0.0056
Galactic contribution, Pbgal ....‘........ ...... —0.0124:l:0.0064
Intrinsic orbital period decay, (gobs — Pbgal . .. —2.4101:t:0.0085
General relativistic prediction, PbGR ........ —2.4025:l:0.0001
Pg’bs — PIE/PER ........................... 1.0032i0.0035
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Figure 1. Filled circles represent the measured shifts of the times of perias-
tron passage of PSR B1913+16, relative to a non-dissipative model in which
the orbital period remains fixed at its 1974.78 value. The smooth curve illus-
trates the prediction of general relativity.
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the orbital period remains fixed at its 1974.78 value. The smooth curve illus-
trates the prediction of general relativity.
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Figure 2. Parametric curves corresponding to experimental constraints on
the post-Keplerian parameters ti), 7, r, and s for PSR, 131534+l2, according
to general relativity. Pulsar and companion star masses ml : mg : 1.34 i
0.07 IWQ are consistent with all of the measurements. (Observations carried
out in collaboration with A. Wolszczan.)

4. Binary pulsar PSR B1534+12

About two years ago \Volszczan (1991) discovered a new binary pulsar system with
relativistically interesting characteristics. lts orbit is less eccentric and slower than that
ol PSR, 81913+16 (see Table 1), so most of its relativistic ell'ects are smaller in magnitude.
However, other circumstances contrive to make PSlt Blo34+12 an extremely attractive
candidate for detailed study. The pulsar’s radio signal is several times stronger than that
of PSR, B1913+16, and the pulse width is smaller. Consequently, in similar observations
at Arecibo its TOAs can be measured about 5 times more accurately. In addition, the
orbit of PSR 131534+12 is oriented more nearly edgewise to the line of sight (sin'i > 0.97,
see Table 1), Which greatly magnifies the Shapiro delay. PSR B1534+12 is also much
closer to the Sun (approximately 0.7kpc, compared with 7.1kpc for PSR B1913+16;
see Taylor & Cordes 1993), so contributions to measurable parameters from galactic
kinematic effects are smaller and much easier to estimate.

The parameters of the PSR B1534+12 system measured by Taylor et al (1992) are
listed in Table 1. For this pulsar, four PK parameters have already been measured with
significance, and thus two distinct tests of relativistic gravity are available. The tests
depend on the overall consistency of the parameter set, which is illustrated in Figure 2
by means of a plot of the constraints placed on the pulsar and companion masses, m1
and 1712, by each of the measured PK parameters. The mass values ml 2 1.34 d: 0.07
and 7712 = 1.34 :1: 0.07 are consistent, within general relativity, with all of the directly
measured parameters of PSR B153i’l—l—12 — and thus general relativity is found to be
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fully consistent with the data. it is noteworthy that unlike the a; — ’y — Pb test for PSR
B1913+16, which is a mixed test of the strong-field and radiative aspects of gravity, the
d.) — ”y -— 7' — .3 test for PSR B1534+12 is purely a strong-field test (Damour & Taylor
1992, Taylor et a1 1992).

Experimental results of the sort described here will almost certainly be improved
and extended in the near future. In a recent paper (Taylor 1992) I have shown that on a
10—year time scale two more binary pulsar systems, PSR B1534+12 and PSR B2127+11C,
should yield w—y— Pb tests of gravitational radiation damping at the 1% level or better.
By that time PSR 815344-12 will have at least 5 measurable PK parameters, providing
cleanly separated probes of the coupling of matter to gravitational radiation and the
behavior of gravity in very strong fields. Moreover, combining the results of timing
measurements of several binary pulsars can provide even tighter theoretical constraints
than available from each pulsar separately ('l‘aylor rt. (11 1992).
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Closed timelike curves

Kip S. Thorne

California lnstitute of Technology, Pasadena, California. 9]]25, and
Institute for Theoretical Physics, UCSB, Santa Barbara, California. 93106

Abstract. This lecture reviews recent research on closed timelike curves
(CTCS), including these questions: Do the laws of physics prevent CTCs
from ever forming in classical spacetime? If so, by what physical mechanism
are C'I‘Cs prevented? Can the laws of physics be adapted in any reasonable
way to a. spacetime that contains C'I‘Cs, or do they necessarily give nonsense?
What insights into quantum gravity can one gain by asking questions such
as these?

1. Introduction

Much of the forefront of theoretical physics deals with situations so extreme that there
is no hope to probe them experimentally. Such, largely, was the case nearly a, century
ago for Einstein’s formulation of general relativity, and such is the case today for the
attempt to quantize gravity. ln these situations, thought experiments can be helpful. Of
all thought experiments, perhaps the most helpful are those that push the laws of physics
in the most extreme ways. A class of such thought experiments, which I and others have
found useful in the last few years, asks [l] What constraints do the laws of physics place
on the activities of an arbitrarily advanced civilization? ln asking this question, we have
in mind all the laws of physics that govern our universe, taken together including those,
such as quantum gravity, that are not yet well understood, and others, such as classical
general relativity, that are, and with each set of laws holding sway only in its own domain
of validity.

An especially fruitful question of this type is [1] Do the laws of physics prevent
arbitrarily advanced civilizations from constructing “time machines” (machines for back—
ward time travel), and if so, by what physical mechanism are they prevented? Hawking
[2] has given the name chronology protection to the conjecture that there is such a mech-
anism, and that therefore closed timelike curves (CTCS) can never be created in the real
Universe, no matter how hard advanced civilizations might try. In this lecture I shall
review recent research on the chronology protection conjecture and related issues.

The laws of general relativity by themselves do not enforce Chronology protection:
it is easy to find solutions of the Einstein field equation that have closed timelike curves
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Figure 1. Van Stockum’s spacetime.

(Section 2). However, the combination of general relativity's laws and the laws of quan—
tum fields in curved spacetime may well provide a chronology protection mechanism~
though we might not be sure of this until we understand the laws of quantum gravity
much more deeply than today (Section 3).

Independently of whether chronology protection is correct, much insight into the
laws of physics might be gained by studying how they behave in the presence of closed
timelike curves (Section 4).

2. Spacetimes with closed timelike curves

A number of spacetimes with closed timelike curves have been exhibited in the literature,
and much is now understood about the generic chronological structure of such spacetimes.

2.1. Spacetimes with eternal CTCs

The earliest example of a spacetime with CTCs is Van Stockum’s 1937 solution of the
Einstein field equation [4, 5], which represents an infinitely long cylinder made of rigidly
and rapidly rotating dust. The dust particles are held out against their own gravity by
centrifugal forces, and their rotation drags inertial frames so strongly that the light cones
tilt over in the circumferential direction in the manner shown in Figure 1, causing the
dashed circle in the figure to be a CTC. CTCs pass through eVery event in the spacetime,
even an event on the rotation axis where the light cone is not tilted at all: one can begin
there, travel out to the vicinity of the dashed circle (necessarily moving forward in t
as one travels), then go around the cylinder a number of times traveling backward in
t as one goes, and then return to the rotation axis, arriving at the same moment one
departed. For the mathematical details of Van Stockum’s solution see, e.g. Bonnor [5].

Physicists (but not science fiction writers) have generally dismissed Van Stockum’s
solution as “unphysical” because its source is infinitely long. Whether a finite-length,
rotating body can also produce CTCs is not known; I shall return to this in Sec. 2.2.

A second old, famous example of a spacetime with CTCs is Godel’s solution of
the Einstein equation [6], which describes a stationary, homogeneous cosmological model
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with nonzero cosmological constant, filled with rotating dust. Again, the rotation tilts
the light cones, creating CTCs. Because the spacetime is homogeneous and stationary,
CTCs pass through every event. For the mathematical details of Godel’s spacetime, see,
e.g. Hawking and Ellis [3], especially Figure 31.

Physicists have generally dismissed Godel’s solution as unphysical because it re-
quires a nonzero cosmological constant and/or it doesn’t resemble our owu universe
(whose rotation is small or zero).

2.2. Spacetimes with compactly generated chronology horizons

A spacetime whose CTCs are not eternal can be divided into chronal regions that are
free of CTCs, and nonchronal regions that contain CTCs everywhere. The boundaries
between the chronal and nonchronal regions are called chronology horizons; chronal re-
gions end and CTCs are created at future chronology horizons; CTCs are destroyed and
chronal regions begin at post chronology horizons.

A future chronology horizon is a special type of future Cauchy horizon, and as such
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Figure 2. The chronological structure of a spacetime that might result from
an axially symmetric contraction of finite sized, rotating body. This diagram
is confined to the body’s equatorial plane.

always on the horizon, eventually reaching future null infinity. The other, B, spirals
inward, and then leaves the horizon at the tip of the Mexican hat. Hawking [2] has given
mathematical details of a spacetime with this chronological structure.

In order for horizon generators to emerge from the fountain, there must be a net
defocuslng of any bundle of null geodesics that travels around the fountain. By the
equations of geometric optics together with the Einstein field equation, this requires
that

firapznl’dc < 0, (1)
where the integral is around the fountain .7, Tag is the total stress-energy tensor for all
matter and fields on f, C is an affine parameter along .7, and l“ = dxa/dC is the tangent
to .7. Equation (1) says, in words, that the averaged null energy condition (ANEC)
must be violated around the fountain; i.e., the integral in (1) must be negative. All
ordinary, familiar forms of matter satisfy ANEC; therefore, no imploding body made of
such matter can create CTCs in the manner of Figure 2. In Section 3 we shall return to
the issue of whether ANEC can ever be violated, and shall learn that the answer is yes.

Lorentzian wormholes constitute a class of simple, explicit spacetimes that have
generic-type, compactly generated chronology horizons [1, 7, 8]; as such, they have be-
come a useful testbed for studies of chronology issues.

The simplest such wormholes are obtained by removing two balls from Euclidean
space and identifying their surfaces in the manner of Figure 3a; the surfaces then become
the wormhole’s mouths. Such a wormhole necessarily violates ANEC: Any bundle of
radially traveling null geodesics that passes through the wormhole is converging as it
enters and diverging as it leaves, and therefore gets defocused by the wormhole, which
means that fTaglal( < 0 along the bundle, with the negative contribution coming
from a delta function Tug at the junction between the two mouths. One can show more
generally that every traversable wormhole, regardless of its shape or motion, violatesANEC [1].
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Figure 3. (a) A wormhole formed by removing two balls from Euclidean
space and identifying their surfaces (the wormhole “mouths”); the identified
points are reflections of each other in the midplane between the balls. (b)
Chronology structure for a wormhole, one of whose mouths makes a “twins
paradox trip.” (c) Chronology structure for a wormhole whose mouths move
past each other at uniform speed.

One can construct wormhole spacetimes, whose wormhole mouths travel along arbi-
trarily chosen world lines in Minkowski spacetime, by removing world tubes along those
lines in a manner analogous to Figure 3a, and identifying their surfaces with each other
[7]. Of course, the identification must be done in such a way that the intrinsic geome-
tries of the two mouths’ world tubes are the same. This may require a distortion of the
spacetime geometry near the mouths if they are accelerated, but the distortion becomes
vanishingly small in the limit that (acceleration)><(mouth radius)—» 0 [1, 7]. Since the
mouths’ intrinsic geometries are the same, the proper time interval AT between two
identified neighboring events on the mouths must be same as seen through either mouth;
it is this that dictates the form of the time markings in Figures 3b,c.

Figures 3b,c show the chronological structures of two wormhole spacetimes con-
structed in this way. In Figure 3b, one mouth remains at rest in a chosen Lorentz frame,
while the other makes a “twins—paradox—type trip” into the external universe and returns
[1]. As seen in the external universe there is a dilation of proper time on the moving
mouth relative to the static one, but as seen through the wormhole there is no such time
dilation. As a. result, the relative motion of the mouths changes the manner in which
time hooks up to itself through the wormhole. Initially the hookup is such that there are
no CTCs; spacetime is chronal. After the trip, the hookup entails CTCs; spacetime is
nonchronal. The future chronology horizon (denoted 71+ in the figure) is the future light
cone of the event 7' = 4 at the center of the right face of the left (static) mouth. The
generators of this horizon (long-dashed lines) all originate in a single fountain (labeled
.7): the smoothly closed null geodesic that travels from 7‘ = 4 on the left mouth to 7' = 4
on the right mouth, then through the infinitesimally short wormhole and back to where
it started; cf. Figure 10 of Ref. [7].

In Figure 3c, one mouth moves past the other, creating CTCs that are confined to a

Closed timelike curves 299

moulh
t=_?' -:.._.-2"r”).

(a) " (b) (c)
Figure 3. (a) A wormhole formed by removing two balls from Euclidean
space and identifying their surfaces (the wormhole “mouths”); the identified
points are reflections of each other in the midplane between the balls. (b)
Chronology structure for a wormhole, one of whose mouths makes a “twins
paradox trip.” (c) Chronology structure for a wormhole whose mouths move
past each other at uniform speed.

One can construct wormhole spacetimes, whose wormhole mouths travel along arbi-
trarily chosen world lines in Minkowski spacetime, by removing world tubes along those
lines in a manner analogous to Figure 3a, and identifying their surfaces with each other
[7]. Of course, the identification must be done in such a way that the intrinsic geome-
tries of the two mouths’ world tubes are the same. This may require a distortion of the
spacetime geometry near the mouths if they are accelerated, but the distortion becomes
vanishingly small in the limit that (acceleration)><(mouth radius)—» 0 [1, 7]. Since the
mouths’ intrinsic geometries are the same, the proper time interval AT between two
identified neighboring events on the mouths must be same as seen through either mouth;
it is this that dictates the form of the time markings in Figures 3b,c.

Figures 3b,c show the chronological structures of two wormhole spacetimes con-
structed in this way. In Figure 3b, one mouth remains at rest in a chosen Lorentz frame,
while the other makes a “twins—paradox—type trip” into the external universe and returns
[1]. As seen in the external universe there is a dilation of proper time on the moving
mouth relative to the static one, but as seen through the wormhole there is no such time
dilation. As a. result, the relative motion of the mouths changes the manner in which
time hooks up to itself through the wormhole. Initially the hookup is such that there are
no CTCs; spacetime is chronal. After the trip, the hookup entails CTCs; spacetime is
nonchronal. The future chronology horizon (denoted 71+ in the figure) is the future light
cone of the event 7' = 4 at the center of the right face of the left (static) mouth. The
generators of this horizon (long-dashed lines) all originate in a single fountain (labeled
.7): the smoothly closed null geodesic that travels from 7‘ = 4 on the left mouth to 7' = 4
on the right mouth, then through the infinitesimally short wormhole and back to where
it started; cf. Figure 10 of Ref. [7].

In Figure 3c, one mouth moves past the other, creating CTCs that are confined to a

Closed timelike curves 299

moulh
t=_?' -:.._.-2"r”).

(a) " (b) (c)
Figure 3. (a) A wormhole formed by removing two balls from Euclidean
space and identifying their surfaces (the wormhole “mouths”); the identified
points are reflections of each other in the midplane between the balls. (b)
Chronology structure for a wormhole, one of whose mouths makes a “twins
paradox trip.” (c) Chronology structure for a wormhole whose mouths move
past each other at uniform speed.

One can construct wormhole spacetimes, whose wormhole mouths travel along arbi-
trarily chosen world lines in Minkowski spacetime, by removing world tubes along those
lines in a manner analogous to Figure 3a, and identifying their surfaces with each other
[7]. Of course, the identification must be done in such a way that the intrinsic geome-
tries of the two mouths’ world tubes are the same. This may require a distortion of the
spacetime geometry near the mouths if they are accelerated, but the distortion becomes
vanishingly small in the limit that (acceleration)><(mouth radius)—» 0 [1, 7]. Since the
mouths’ intrinsic geometries are the same, the proper time interval AT between two
identified neighboring events on the mouths must be same as seen through either mouth;
it is this that dictates the form of the time markings in Figures 3b,c.

Figures 3b,c show the chronological structures of two wormhole spacetimes con-
structed in this way. In Figure 3b, one mouth remains at rest in a chosen Lorentz frame,
while the other makes a “twins—paradox—type trip” into the external universe and returns
[1]. As seen in the external universe there is a dilation of proper time on the moving
mouth relative to the static one, but as seen through the wormhole there is no such time
dilation. As a. result, the relative motion of the mouths changes the manner in which
time hooks up to itself through the wormhole. Initially the hookup is such that there are
no CTCs; spacetime is chronal. After the trip, the hookup entails CTCs; spacetime is
nonchronal. The future chronology horizon (denoted 71+ in the figure) is the future light
cone of the event 7' = 4 at the center of the right face of the left (static) mouth. The
generators of this horizon (long-dashed lines) all originate in a single fountain (labeled
.7): the smoothly closed null geodesic that travels from 7‘ = 4 on the left mouth to 7' = 4
on the right mouth, then through the infinitesimally short wormhole and back to where
it started; cf. Figure 10 of Ref. [7].

In Figure 3c, one mouth moves past the other, creating CTCs that are confined to a



300 General Relativity and Gravitation 1992

bounded nonchronal region of spacetime: the region that begins at the future chronology
horizon 71+ and ends at the past horizon H_. The generators of ’H+ (the future light
cone of r = 0 on the static mouth) emerge from the fountain 7-]. and leave the horizon
when they pass through H_. The generators of H- (the past light cone of r = 1 on the
moving mouth) enter the horizon at its intersection with 7%,. and ultimately asymptote
to the fountain .71.

Figures 3b,c are prototypes for the consequences of generic relative motions of a
wormhole’s mouth: such motions will always produce CTCs [1], as will the gravitational
redshifts that result from placing a wormhole in a generic external gravitational field
[8]. Most physicists react to this by asserting that the laws of physics must prevent
the existence of classical, traversable wormholes—perhaps by forbidding the existence of
material that violates ANEC (“exotic material”).

Not all compactly generated chronology horizons have the generic “generators
eniergeefromefountains” structure of Figures 2 and 3. An example that is different is
TaulyNUT space [9]Jra vacuum solution of the Einstein equation with a spatially cont
pact chronal region, followed by a compact future chronology horizon, followed in turn
by a non»compact nonchronal region with CTCs. Being a vacuum solution, Taub—NUT
space satisfies ANEC and also satisfies the local null energy condition (NEC), Taglo‘lfi 2 0
everywhere. This means that the generators of the chronology horizon cannot peel off of
fountains in the manner of Figures 2 and 3. Instead, every generator is itself a fountain
(a smoothly closed null geodesic).

A simpler spacetime with this special type of chronology horizon is Misner space
[10]. The relevant variant of Misner space can be obtained as follows: go into your
bedroom in Minkowski spacetime, identify the back wall with the front wall (so when
you walk into the back you find yourself emerging from the front), similarly identify the
floor with the ceiling and the left wall with the right, and set the right wall moving
toward the left. In other words, Misner space is Minkowski spacetime with identification
under translations along y and z, and under a boost along 1:. Figure 4a shows the :c—t
portion of this spacetime. lt initially is chronal, and then becomes nonchronal at a future
chronology horizon whose generators are the closed null geodesics (fountains) y :const,
2 :const, at : t — 2.

Hawking [2] shows that every fountain .7: on a compactly generated chronology
horizon must have a non—positive ANEC integral, f; Tagiolfi g 0. The generic case where
generators peel off the fountain (Figs. 2 and 3) corresponds to “< 0” for this integral
and thus to a violation of ANEC; the special Taub-NUT and Misner cases correspond to
“= 0”. Hawking points out that as soon as one allows energy of any sort to flow through
the Taub—NUT or Misner horizon, or through any other horizon whose fountains have
Tafilalfi = 0 everywhere, that energy flow will carry a nonzero local value of Tafilalfl, and
therefore in order to keep the ANEC integral nonpositive, the local null energy condition
(NEC) must be violated somewhere along each perturbed fountain. This means that on
any physically realistic, compactly generated chronology horizon, NEC must be violated,
even if ANEC is not. (This conclusion strengthens an earlier result due to Tipler [11].)

2.3. Spacetimes with non-compactly generated chronology horizons

The simplest example of a spacetime with a non-compactly generated chronology horizon
is Grant space [12], which is a slight generalization of Misner space. Go into your bedroom
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Figure 4. (a) The t-a: portion of Misner space. (b) The mvvring space for
Misner space (with the points P identified and Q identified) and for Grant
space (with each successive P or Q identified only lifter a displacement by
distance a into the paper).

in Minskowski spacetime, translate the left wall relative to the right by a distance a, and
then identify them and set the right wall moving toward the left with speed fl; the result
is Grant space. In other words Grant space is Minkowski spacetime identified along the
:1: direction then boosted in cc and translated in y. Misner space (without identification

in y and z) is the same as Grant, but with vanishing y translation (a = 0).
Figure 4b is the t-a: portion of the covering space for Grant space. In this covering

space, a sequence of copies of Grant space (labeled “copy 1”, “copy 2”, etc.) are lined
up side by side, each one boosted by fl with respect to the previous one. The (fictitious)
wall at which the boosts occur is shown dotted. The events P and Q lie on the wall,
with each successive copy of P or Q displaced into the paper by a distance a relative to
the preceding one.

With the aid of Figure 4b, one can show that the translation along y does not
change the location of the chronology horizon; it is the dark line labeled 71+ for a = 0
(Misner space) and also for a finite (Grant space). To show this for finite a, we need
only demonstrate that through any event Q which is in the claimed nonchronal region
but arbitrarily close to the claimed 71+, there passes a CTC. One can connect Q to itself
by many geodesics C", with each one circling around Grant space a different number of
times, n. The figure depicts projections of the geodesics C10 and CM on the t—x plane;
they also extend distances 10a and 14a down the y axis (into the paper). Since 014 has
twice as long a temporal duration At in the covering space as C10, but only makes 40%
more trips around Grant space and thus has only a 40% longer extent in the y direction,
dy/d? is 1.4/2.0 = 0.7 as large on CM as on 010- As one goes to an ever larger number n
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Figure 5. (a) Spatial diagram of (lull space. (h) Sparetimp iliilgrmll Show—
ing the chrr'molugical strm-ture of (lot! space. For ease of visualization, the
wedges are not. removed around the strings, and to compensate for this, the
chronology horizons and generators are shown as ('nrvml rather than flat.

of traversals, dy/dt~ gets ever smaller (as one can readily show by a detailed calculation),
so that eventually, for a sufficiently large number n of traversals, dy/dt~ is small enough
for the geodesic C" to be timelike.

Although the translation (1 76 0 leaves the location of the horizon unchanged, it
alters radically the character of the horizon generators. For a = 0 (Misner space), the
generators are all smoothly closed null geodesics (fountains) and the horizon is compactly
generated. For a 75 0, the generators originate at past null infinity in the covering space
and, never intersecting themselves or each other, they travel to the covering space’s
spacetime origin 0. Correspondingly, after the identification that produces Grant space,
the generators travel around and around Grant space an infinite number of times without
ever intersecting themselves or each other. When followed to the past, through an infinite
afline parameter, they never leave the future chronology horizon 71+. When followed to
the future, after a finite affine parameter and an infinite number of circuits, they reach
the end of H+ and leave it.

A famous example of a spacetime with a noncompactly generated chronology hori-
zon is Gott space [13], which is a solution of the Einstein field equation representing two
infinitely long, parallel, straight cosmic strings that move past each other at high speed.
Figure 5a depicts the strings in a spatial diagram; they are at the vertices of the wedges
and extend into and out of the paper (2 direction) infinitely far. The figure is drawn in
the strings’ mean rest frame; the upper string moves rightward at speed [3 and the lower,
leftward at speed fl. Each string is surrounded by a flat but conical spatial geometry,
which can be obtained by removing the indicated wedge from Euclidean space and iden-
tifying its edges. The identification is synchronous in the rest frame of the string, which
means that for the upper, rightward moving string the event labeled t = 1, at Lorentz
time t = 1, is identified with that labeled t = —l, at Lorentz time t = —1, and similarly
for the lower string.

For a suitable choice of parameters, the dark vertical line in the diagram is a CTC.
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It begins at the “starting point” labeled S, at time t = 0 in the mean rest frame, when

the two strings are just passing each other. It moves upward to meet the right edge of
the upper string’s wedge at t = 1. It passes through the wedge, emerging at t = —1

when the right string was near the left edge of the diagram. It then travels downward to

meet the lower, left-moving string’s wedge at t = 1, passes through the wedge emerging

at t = —1 when the wedge was near the right edge of the diagram, and then travels
upward to its starting event 3.

Cutler [14] has deduced the chronological structure of Gott space. It is shown
in Figure 5b, topologically correctly but not geometrically correctly. (The geometrically
correct depiction, shown in Fig. 3 of Cutler’s paper, takes some work to decipher because

of the string wedges that are removed; their removal permits the chronology horizons and
their generators to be flat planes and straight null lines instead of curved surfaces and
curved lines as here.) The future chronology horizon ’H+ has null geodesic generators H4.
that originate at spatial infinity and, spiraling around and around the moving strings,
work their way in t0 the closed spacelike geodesic C = 'H+ n 'H_, where they leave H+.
The past chronology horizon ’H_ is generated by null geodesics Q_ that enter ’H_ at C,
and then spiral their way around and around the moving strings until they reach spatial

infinity. The CTCs are confined to the nonchronal region outside 'H+ U C U 'H_, which
means that they are bounded away from the strings. In the mean rest frame#indeed, in
any Lorentz frame—the horizons extend to temporal infinity; thus, at all times there are
CTCs, but at arbitrarily early or late times they are confined to arbitrarily large radii.

If one parallel transports a set of vectors around the strings and back to their
starting event, the local Lorentz transformation that relates the returning vectors to the
starting vectors is called the holonomy of Gott space. One can similarly transport vectors
around the closed arr—dimension of Grant space and compute the resulting holonomy.
Grant [12] has shown that for suitable choices of parameters, the two holonomies, that of
Gott space and that of Grant space, are identical; and he has argued that this, plus the

fact that both spaces are flat (except at the string locations) implies that Grant space

must actually be the same as a portion of Gott space.
Because of its translation and boost invariance in the z direction, Gott’s two—string

space can be regarded as a solution of the 2 + 1 dimensional vacuum Einstein equation
for two point masses moving past each other at high speed. This has enabled Deser

et. a1. [15] and Carroll et. a1. [16] to infer, using ideas from the 2+1 dimensional theory,
that, despite the fact that each of the strings moves at less than the speed of light, taken

together they have a tachyom'c total momentum. Stated more precisely, the strings’

holonomy (in a suitable Lorentz frame) is a pure boost and not a rotation, and this

implies in the 2+1 theory that their total momentum is spacelike. Deser et. a1. and

Carroll et. a1. argue that this means Gott space is unphysical within the framework of

2+1 dimensional theory, and it suggests to them that Gott space might also be unphysical

(not creatable by realizable initial conditions) in our real 3+1 dimensional universe. (For
furtherinteresting results on CTCs in 2+1 dimensional, point-particle spacetimes, both

spatially closed and spatially open, see the references in Carroll et. a1. [16].)

Two other arguments have been used to cast doubt on cosmic strings as genera-

tors of CTCs: Gott [13], by order—of—magnitude estimates, suggests that, if one tries to

make CTCs by the relative motion of two curved strings, the strings’ energies in their

center of mass frame will become so great that they might form a black hole around

themselves before the CTCs can arise. More firmly and convincingly, Hawking [2] points
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out that finite loops of cosmic string, by themselves, cannot create CTCS because theirstress-energy tensor satisfies NEC, and any physically realizable, compactly generatedchronology horizon must violate NEC (see the end of Sec. 2.2 above).
Another famous vacuum solution of the Einstein equation that has a non—compactlygenerated chronology horizon is Kerr spacetime. The exterior of Kerr’s outer horizon(r > 7+ in the usual notation) and the region between the outer and inner horizons(7“,. > 7‘ > r-) are chronal; the inner horizon (r = 7;) is a chronology horizon; and theregion inside there (r < r_) is nonchronal. It is conventionally argued that, althoughthe chronal region is likely to occur in our real universe as the exterior and interior ofan old rotating black hole, the spacetime near and inside the chronology horizon will bealtered by an instability due to infalling, blueshifted perturbations; and this alteration(hopefully) will prevent CTCs from arising [l7].

3. Is there a Chronology Protection Mechanism?

The examples in Section 2 show that, according to classical general relativity, a widevariety of circumstances can give rise to CTCs. What attitude should a physicist take tothis? The most common attitude is to assert that all such circumstances are unphysical:Infinitely long, rotating cylinders are unphysical and (presumably) finite ones will not
produce CTCs; our universe does not rotate as fast as the Godel universe, so Godel is
unphysical; traversable wormholes are unphysical; infinitely long, straight cosmic stringsare unphysical; . . ..

I do not find such assertions at all satisfying. Physicists7 past records in labeling
various things as unphysical are not good. For example, Oppenheimer, Wheeler, andothers in the 19305 through the 1950s claimed on physical grounds that the trace of thestress—energy tensor cannot be negative, and therefore superdense matter cannot have apressure that exceeds 1/3 its energy density. They were wrong, as Zel’dovich showed inthe early 1960s by a simple quantum—fieldvtheory model, and nowadays several plausible
equations of state for nuclear matter entail To“ < 0. As another example, it was widelyasserted several decades ago that negative energy densities are unphysical, but we nowknow they are not: quantum field theory predicts negative renormalized energy densitiesunder a variety of circumstances eeg. in the Casimir vacuum between two electricallyconducting plates and in squeezed Vacuum states of light, both of which are realized inthe laboratory.

This poor record cautions us to keep an open mind about CTCs until we have founda concrete chronology protection mechanism (or mechanisms): a mechanism that willprevent CTCs from arising under all conceivable circumstances—cg. when a hypotheticalarbitrarily advanced civilization is using all means at its disposal to produce CTCs. Itseems likely to me that the search for such a firm chronology protection mechanism mayteach us much about the laws of physics.
It would be rather surprising to me if Nature uses one protection mechanism in onesituation (e.g., collapsing, spinning bodies), a different one in another situation (e.g.,moving cosmic strings), and a third mechanism in a third situation (e.g., the interiorof a spinning black hole). More likely there is one universal mechanism, that alwaysdoes the job if other mechanisms fail. (Visser [18] has argued for a number of universal
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mechanisms, Le. a “defense in depth” against CTCs. On this I am agnostic; I would be
happy to find just one firm, universal mechanism).

In the following subsections I shall discuss the three mechanisms that have seemed
most promising in recent years: An enforcement of NEC or ANEC by quantum field the-
ory, a classical instability of future chronology horizons, and a quantum—field instability.

3.1. Enforcement of NEC or ANEC

Because compactly generated chronology horizons across which energy flows must always
violate NEC, if we knew that NEC is always enforced by the laws of physics, then we
could rule out CTCs ever being generated in compact regions of spacetime. This might
not be a fully universal chronology protection mechanism, but it would come close.

Unfortunately, quantum field theory—the ultimate arbiter of obedience to energy
conditions—insists that NEC can be violated; for example, it is violated in the Casimir
vacuum and in squeezed states of light.

It may well be that in the real universe, for reasons that we do not yet understand
firmly, compactly generated chronology horizons must be of the generic sort illustrated
in Figure 2 (contracting, rotating cylinder) and Figure 3 (wormholes): the horizon gen-
erators emerge from fountains that necessarily violate ANEC. This makes enforcement
of ANEC an attractive possible chronology protection mechanism.

With this motivation, there has been considerable effort in the last several years to
determine quantum field theory’s attitude toward ANEC. It has been shown that ANEC
is enforced for noninteracting quantized scalar and electromagnetic fields in Minkowski
spacetime [19, 20], and in generic, curved 1+1 dimensional spacetimes [21]. On the other
hand, in 3+1 dimensions (the real universe), both nontrivial topology [19] and spacetime
curvature [21] can induce ANEC violations. Indeed, as Wald and Yurtsever have shown,
there are generic classes of curved spacetimes in which quantum fields violate ANEC.

It could still turn out that ANEC is enforced under all circumstances where CTCs
try to form, thereby protecting chronology; for example, it might be impossible for
quantum fields ever to produce the specific ANEC-violating stress—energy tensors that
are required to hold a wormhole open, and therefore wormhole—based CTCs might be
forbidden. However, the fact that ANEC can be violated under a wide class of generic
situations suggests to me that ANEC enforcement is not a very promising, universal
chronology protection mechanism.

3.2. Classical instability of future chronology horizons

The future chronology horizons in the Kerr, Taub-NUT, and Misner spaces are infa-
mously classically unstable. Particles or fields falling into 8. Kerr black hole, or traveling
around the spatially closed Taub or Misner space, become infinitely blue shifted as they
near the horizon; and it seems reasonable to hope that the resulting divergent energy
density will always act back on the spacetime, via the Einstein equation, to prevent the
CTCs from forming.

The example of Misner space is depicted in Figure 6a: A high-frequency electro-
magnetic wave acket moving along the solid Wm‘hl line gets blue shifted by a factor
g E «(1 + [3) / (1 - fl) with PELL'll passage around the. “universe”, and it traverses the uni-
verse an infinite number of times as it. nears the chronology horizon’s fountain, thereby
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Figure 6. (a) The motion of a high—frequency electromagnetic wave packet
in Misner space. (b) The same wave packet in a wormhole spacetime where
CTCs are forming.

piling up on itself in spacetime and producing a divergent energy density just before the
chronology horizon forms.

Until a few years ago, it was widely thought that such instabilities always occur at
future chronology horizons, thereby protecting chronology. However, wormhole space—
times provide a. counterexample [l], and generalizing this result, Hawking [2] has shown
that a generic subset of all compactly generated chronology horizons are counterexam—
ples: they are all classically stable.

A wormhole counterexample is depicted in Figure 6b. This wormhole spacetime is
identical to Misner space (Fig. 6a), except that Misner’s identified flat walls are converted
into spherical “walls” (the wormhole’s mouths). The high—frequency wave packet still gets
blue shifted by a factor 6 E (1 + fl) / (1 — 5) with each circuit through the wormhole,
and still tries to pile up on itse fat the fountain. However, the wormhole’s ANEC-induced
diverging—lens action causes the wave packet to spread laterally, driving its amplitude
down by a factor b/2D with each circuit (where b is the wormhole radius and D the
distance between the mouths, as seen in the left mouth’s reference frame, when the
horizon forms). If (b/2D)E < 1, Le. if the distance between the mouths is large enough,
then the packet’s energy density decreases with each circuit, and the total energy density
at the horizon remains finite, despite the pileup. Chronology is not protected—at least
not by this mechanism.

3.3. Quantum-field instability of future chronology horizons

Our greatest hope—indeed, it seems, a very realistic hope—for universal chronology
protection lies in a quantum field instability of all future chronology horizons. This
instability was first discovered in 1982, in the context of Misner space, by Hiscock and
Konkowski [22]. After Morris, Yurtsever, and I discovered that Misner space‘s classical
instability is removed by curving its walls (i.e. by going to a wormhole spacetime) [1],
we presumed the same would be true of the quantum instability. We were wrong, as
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Figure 7. (a) Heuristic explanation of the quantum-field instability of the
chronology horizon. (b) Geometric construction for point-splitting computa—
tion of the renormalized stress-energy tensor, which induces the instability.

Kim and I [23], Frolov [24], and Gnedin and Kompaneets [26] all independently realized
in 1989. The quantum instability is universal; it must arise at every location on every
future chronology horizon in any spacetime.

This instability can be described heuristically as due to a piling up of the vacuum
fluctuations of any quantum field in the vicinity of any chronology horizon. This pile up
causes the fluctuations to have a nonzero renormalized energy density (nonzero vacuum
polarization) that diverges as one approaches the horizon. The diverging energy density
in turn, via the semiclassical Einstein equation, might distort the spacetime geometry in
such a way as to protect chronology. I shall return to the “might” in the next subsection.

To understand this heuristic explanation in greater detail, consider an arbitrary
location on any future chronology horizon 71+. Since the horizon is the dividing line
between a region with CTCs and one with none, arbitrarily close to H+, on its nonchronal
side, there is an event Q through which passes a CTC. As one pushes Q closer to 71+,
the CTC through Q becomes more nearly null, then null, and then a null geodesic that
I shall call QQ; see Figure 7a. This gQ travels from Q around a closed loop and back to
Q, but in general does not return pointing in the same direction as it started; for this
reason it is sometimes called a self-intersecting null geodesic.

Now, let P be an event very close to Q, but on the chronal side of 71+. There will
be an almost closed null geodesic 9,: that starts out at P, travels along nearly the same
route as go, and returns very near P, but cannot quite close itself up at P because P is
in the chronal region. High-frequency wave—packet modes of any massless quantum field
can travel along this Gp; the world tube of such a mode is shown as a dark strip in Figure
7a. The closer P is to the chronology horizon ’H+, the closer will gp come to closing up
on itself, and if it comes close enough, then the wave packet, with its finite size, will pile
up on itself in spacetime near P, and its piled-up vacuum fluctuations will interfere with
themselves in such a way as to produce a nonzero energy density after renormalization.

As P is pushed closer and closer to 71,. (and thence to Q), gp comes closer and
closer to closing up on itself, and correspondingly modes of higher and higher frequency
manage to pile up on themselves, with each contributing a nonzero amount to the vacuum
polarization. With more and more modes of higher and higher frequency contributing,
the renormalized energy density grows larger and larger in magnitude, as P is pushed
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fluctuations of any quantum field in the vicinity of any chronology horizon. This pile up
causes the fluctuations to have a nonzero renormalized energy density (nonzero vacuum
polarization) that diverges as one approaches the horizon. The diverging energy density
in turn, via the semiclassical Einstein equation, might distort the spacetime geometry in
such a way as to protect chronology. I shall return to the “might” in the next subsection.

To understand this heuristic explanation in greater detail, consider an arbitrary
location on any future chronology horizon 71+. Since the horizon is the dividing line
between a region with CTCs and one with none, arbitrarily close to H+, on its nonchronal
side, there is an event Q through which passes a CTC. As one pushes Q closer to 71+,
the CTC through Q becomes more nearly null, then null, and then a null geodesic that
I shall call QQ; see Figure 7a. This gQ travels from Q around a closed loop and back to
Q, but in general does not return pointing in the same direction as it started; for this
reason it is sometimes called a self-intersecting null geodesic.

Now, let P be an event very close to Q, but on the chronal side of 71+. There will
be an almost closed null geodesic 9,: that starts out at P, travels along nearly the same
route as go, and returns very near P, but cannot quite close itself up at P because P is
in the chronal region. High-frequency wave—packet modes of any massless quantum field
can travel along this Gp; the world tube of such a mode is shown as a dark strip in Figure
7a. The closer P is to the chronology horizon ’H+, the closer will gp come to closing up
on itself, and if it comes close enough, then the wave packet, with its finite size, will pile
up on itself in spacetime near P, and its piled-up vacuum fluctuations will interfere with
themselves in such a way as to produce a nonzero energy density after renormalization.

As P is pushed closer and closer to 71,. (and thence to Q), gp comes closer and
closer to closing up on itself, and correspondingly modes of higher and higher frequency
manage to pile up on themselves, with each contributing a nonzero amount to the vacuum
polarization. With more and more modes of higher and higher frequency contributing,
the renormalized energy density grows larger and larger in magnitude, as P is pushed
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up to 71+.
This heuristic picture has been justified by a point-splitting calculation of the renor—

malized stress—energy tensor T” for a quantized, noninteracting, massless scalar field q;
[23, 24]. The single point P is split into two pAointsAP andAP/ (Rig. 7b), and the field’s
regularized Hadamard function G[:;(P, P’) = (¢(P)¢(P’)+¢J(P’)¢(P)) is evaluated. The
dominant contributioneone due to vacuum fluctuations and therefore independent of the
state of the fieldficomes from scalar-wave propagation of (15(P) and thence 0(1) around
routes close to the null geodesic GP (see Refs. [23] and [24] for careful justifications); it
has the usual Hadamard normal form

AV? 1 i00>:—( + ). (2)“g 4W2 UPI“ UP’P
Here A is the Van Vleck—Morette determinant, which measures the amount of focusing
(A > 1) or defocusing (A < i) that occurs around Qp or equally well around 9Q; UP]?!
is the geodetic interval along the spacelike (but nearly null) geodesic gm): (Fig. 71)) that
leads from P to P’ by a route that is very close to the null geodesic Qp; and O'Ptp is
the interval along the similar route that begins at P' and ends at P, More specifically,
app : jg P, {tag(tia'a/d()(dmfl/d()d{, with C an affine parameter that goes from 0 at P
to l at P, and similarly for Uppt. The closer is P (and thus also I”) to Q (which was
arbitrarily close to the horizon), the closer will the 0’s be to zero, and thus the larger
will be the Iladamard function.

The renormalized stress—energy tensor is computed from the Hadamard function
by the standard point—splitting relation

1, 2 1 ,T,“ : 25,, [Jr/Tip (5mm g Evy, , —g,wv,,vo ) (1:13,, (3)6
Where In is the Planck length and G : c : 1 so dpl : fl. The dominant contribution to
Tim comes from differentiating twice the nearly~zero and sharply varying 0’s; the result
is Al/Z [£27]

Tn : e 6n? Emmi, + 2M” + Amt“ + 1,1,, + hula/c“) . (/1)
Here 13,, : —liiii;»_,p qP]?! is the outgoing tangent to Qpp or equally well to the
self—intersecting null geodesic QQ, and la : +limp/_.p Vaappt is the returning tangent;
see Figure 7b. For Q arbitrarily close to the horizon (as we have assumed), 0 becomes
arbitrarily small as P approaches the horizon, while A, l“, and it” remain finite; and
therefore the renormalized stress energy tensor becomes arbitrarily large.

The divergence is actually a little more complicated than this, because there is an
infinite sequence of events Q1, Q2, Q3, in the nonchronal region that asymptote to
any chosen event on ’H+, and each of which is connected to itself by a self—intersecting
null geodesic 9Q”. Each of these events C2,, with its own Q’Q" gives rise to a term of the
form (4) in the renormalized stress—energy tensor, and the total stress-energy tensor is a
sum over all these contributions

iw [Xi A11/261231 it u it u it 1/ ti 1/ nu aT =—:“:1magflkninJr-Wnkn—t—knkn+1,,l,,+g Ina/c”). (5)

One can see that there is such an infinite sequence of Q’s by the following argument
[23]: Take the original Q, and construct a new causal curve that connects this Q to itself
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mouth 1

Figure 8. The future chronology horizon ’H+ and polarized hypersurfaces
H" for the simple wormhole spacetime of Figure 6b. The kink in the left edge
of ’H+ is due to a caustic there.

by traveling around the original QQ twice. That curve (call it Q'Q2) has a kink in its
middle (a discontinuous jump from the null direction l,x to kn). By moving Q nearer the
horizon (and giving it the new name Q2), while keeping QQ, null, one forces the kink to
smooth out and converts n into a null geodesic. Repeating the process indefinitely,
one obtains a subsequence of the infinite sequence of Q’s alluded to above.

Each Qn lies on a distinct hypersurface 'Hn made of events that are connected to
themselves by self-intersecting null geodesics; and these ”H", which are called polarized
hypersurfaces, asymptote to the future chronology horizon 71+ in the limit n —v 00.
We can regard the order-n term in the vacuum-polarization stress-energy tensor (5) as
produced by the presence nearby of the nth polarized hypersurface H", with its specific
event Q" and associated self—intersecting null geodesic 9Q”.

The wormhole spacetime of Figure 8 provides an example [23]. The polarized
hypersurfaces H1, H2, H3, H4, . . . are nested, one inside the next, within the chronology
horizon. The event Q,I on 'Hfl is connected to itself by a null geodesic go, that traverses
the wormhole n times, and that gives rise to the order-n term in the stress-energy tensor
(5) at the event P.

Explicit evaluations of the vacuum fiuctuational stress—energy tensor (5) have been
carried out near the fountain of the wormhole spacetime of Figure 8 by Kim and Thorne
[23] (and for arbitrarily slow wormhole motions, [3 —. 0, by Visser [18]), near the fountain
of other wormhole spacetimes by Frolov [24], near the fountain of a generic, compactly
generated horizon by Klinkhammer [25], and near the non-compactly-generated horizon
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Figure 9. The vacuum-polarization—induced stress—energy tensor, and the
metric perturbations it produces as one passes through 'H+ or H".

of the Grant/Gott spacetime by Grant [12]. A central issue in these and all other cases
is this:

3.4. Does the back-action of the vacuum-polarization energy protect chronology?

By inserting the TM of Eq. (3) into the semiclassical Einstein equation and performing a
rough order—of-magnitude integration, one obtains an estimate for the metric perturba—
tions created by the vacuum—polarization energy of the quantized scalar field (and also
of any other nongravitational field):

a,69;” ~ at; ~ 2A3,”- - (6)n an

Although these metric perturbations diverge at the chronology horizon and at each
subsequent polarized hypersurface, the divergences can be remarkably slowiso slow
that it is conceivable, under some circumstances, that quantum gravity will invalidate
the above analysis before the spacetime has been altered substantially [23]. Note that, as
one passes through the n’th polarized hypersurface, 0,, passes through zero and reverses
sign. Correspondingly, if quantum gravity were simply to smooth out the divergences in
Eqs. (5) and (6), one would see the vacuum polarization produce, on the nonchronal side
of 'H+ and H", a T,” equal in magnitude but opposite in sign to that on the chronal side.
Therefore, as observers approach and then pass through 71+ or H", they might see this
T,” first distort the spacetime geometry, and then undo the distortions it had produced,
as illustrated in Figure 9.

Such a scenario is highly speculative, but seems to me plausible if the divergence
is sufliciently weak.

Just how strong is the divergence? The most important place to ask this question
is at the chronology horizon H+ rather than at a polarized hypersurface 71", because
that is where CTCs first arise. For a compactly generated 71+, the divergence is much
stronger at the horizon’s fountains than away from the fountains. This is because the
polarized hypersurfaces 71,, (at which the 0,, = 0) are all tangent to 7-1,. at any fountain
7-", but each 71.1 is finitely separated from 71+ away from the fountains [23]; see Figure 8
for an example. If, as I have conjectured in Section 2.2, almost all the horizon generators
originate on fountains, then a divergence that is strong enough at the fountains to distort
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the spacetime geometry significantly there will have its influence propagate over the
entire horizon and perhaps thereby protect chronology everywhere. Conversely, if the
divergence is too weak to protect chronology at the fountains, it probably is too weak to
protect chronology elsewhere.

As an example, consider the wormhole spacetime of Figure 8, as examined by an
observer who sits on the left mouth and on the z-axis, where the fountain .7: arises.
Assuming the mouth speed fl is not too close to zero or one, at a time At before crossing
the horizon this observer sees a value 0,, ~ DAt for the geodetic interval along the closed,
spacelike geodesic that traverses the wormhole n times, and he sees A},/2 ~ (b/2D)"‘1
for the amount of defocusing around that geodesic [23]. (There is no net defocusing
on the geodesic's first trip because it first passes through the wormhole—the “diverging
lens”lonly at the end of that trip; however, the first wormhole passage produces a
net defocusing of b/2D during the second trip, the second wormhole passage produces
another defocusing b/2D during the third trip, etc.) Correspondingly, the spacetime
distortion measured on the wormhole throat is

VP egl b "—1

69“ N DAt Z ('25) ' (7)7|

When Kim and I first computed this back—action of the vacuum polarization, it
seemed to me to be extremely weak. “Surely,” I said to myself, “the analysis will break
down during a time interval At ~ 8p] around the passage through the horizon (the ‘Planck
region’ of Fig. 9), since ‘time’ does not make classical sense on such short scales.” If this
were true, and quantum gravity were to smooth out the divergence, then the metric
distortion just before smooth-out would be much too small, ME; ~ €p1/D ~ 10—35 for
D ~ 1 meter, to protect Chronology.

Hawking [2] has convinced me that this assessment is wrong [23, 27]. The distance
D between the mouths and the time At until the Chronology horizon depend on the
observer’s reference frame, he points out, but the product DAt does not (as one can see
from the fact that 0,, ~ DAt is an invariant). Therefore, he conjectures, it may well be
that the spacetime remains classical, near the chronology horizon, and the computed (5n
of Eq. (7) remains correct, until the product DAt gets as small as 13%,, and correspondingly
65);]: reaches unity. The resulting distortion of the classical spacetime geometry might
then be sufficient to protect chronology, Hawking speculates.

If Hawking were right, and the relevant Planck region were DAt ~ gl, then there
is a strategy that an arbitrarily advanced civilization could use to circumvent chronology
protection. The civilization need only make sure that the fountain encounters two or more
widely separated regions of defocusing, instead of only one as in Figure 8. This could
be done, for example, by using two wormholes to make CTCs, with time through each
wormhole synchronously identified in the wormhole’s rest frame, and the two wormholes
moving in the manner of Figure 10. (Such a spacetime was suggested to Mike Morris and
me several years ago by Tom Roman.) The fountain would have the indicated form, the
defocusing as measured on a wormhole mouth would be A3,” ~ (b/2D)2"‘1 rather than
the (b/2D)"’1 of Figure 8, and thus for a large wormhole separation, D > b, the resulting
metric perturbation on the month (which is dominated by n = 1) would be (5n ~
(b/2D)(€]2,l/DAt) [28]. By making b/2D arbitrarily small, the advanced civilization could
force (5n to be arbitrarily small at the beginning of Hawking’s conjectured Planck
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for the amount of defocusing around that geodesic [23]. (There is no net defocusing
on the geodesic's first trip because it first passes through the wormhole—the “diverging
lens”lonly at the end of that trip; however, the first wormhole passage produces a
net defocusing of b/2D during the second trip, the second wormhole passage produces
another defocusing b/2D during the third trip, etc.) Correspondingly, the spacetime
distortion measured on the wormhole throat is
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When Kim and I first computed this back—action of the vacuum polarization, it
seemed to me to be extremely weak. “Surely,” I said to myself, “the analysis will break
down during a time interval At ~ 8p] around the passage through the horizon (the ‘Planck
region’ of Fig. 9), since ‘time’ does not make classical sense on such short scales.” If this
were true, and quantum gravity were to smooth out the divergence, then the metric
distortion just before smooth-out would be much too small, ME; ~ €p1/D ~ 10—35 for
D ~ 1 meter, to protect Chronology.

Hawking [2] has convinced me that this assessment is wrong [23, 27]. The distance
D between the mouths and the time At until the Chronology horizon depend on the
observer’s reference frame, he points out, but the product DAt does not (as one can see
from the fact that 0,, ~ DAt is an invariant). Therefore, he conjectures, it may well be
that the spacetime remains classical, near the chronology horizon, and the computed (5n
of Eq. (7) remains correct, until the product DAt gets as small as 13%,, and correspondingly
65);]: reaches unity. The resulting distortion of the classical spacetime geometry might
then be sufficient to protect chronology, Hawking speculates.

If Hawking were right, and the relevant Planck region were DAt ~ gl, then there
is a strategy that an arbitrarily advanced civilization could use to circumvent chronology
protection. The civilization need only make sure that the fountain encounters two or more
widely separated regions of defocusing, instead of only one as in Figure 8. This could
be done, for example, by using two wormholes to make CTCs, with time through each
wormhole synchronously identified in the wormhole’s rest frame, and the two wormholes
moving in the manner of Figure 10. (Such a spacetime was suggested to Mike Morris and
me several years ago by Tom Roman.) The fountain would have the indicated form, the
defocusing as measured on a wormhole mouth would be A3,” ~ (b/2D)2"‘1 rather than
the (b/2D)"’1 of Figure 8, and thus for a large wormhole separation, D > b, the resulting
metric perturbation on the month (which is dominated by n = 1) would be (5n ~
(b/2D)(€]2,l/DAt) [28]. By making b/2D arbitrarily small, the advanced civilization could
force (5n to be arbitrarily small at the beginning of Hawking’s conjectured Planck
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region, DAt ~ 6%,. If quantum gravity were then to provide a cutoff and smooth-out,
chronology would not be protected.

Even weaker is the vacuum-polarization divergence in Gott/Grant spacetime, as
computed by Grant [12]. Since the chronology horizon is non—compactly generated, it
has no fountains, and every polarized hypersurface is everywhere separated from the
horizon by a finite distance. (More specifically, in the covering space of Figure 4b,
the n’th polarized hypersurface H" consists of events connected to themselves by self-
intersecting null geodesics such as 010 of the figure, that circle around the i-dircction
of the universe 11 times; this 7%,, is the hyperbola i2 — l2 = a2n2§_"(1 — {_")_2, where
E = ‘/(1 + fl)/(1 — ,6) is the blue shift produced by each propagation around the universe
and a is the y—translation that makes the horizon non—compactly generated.) When Grant
sums over the vacuum polarization contributions from all the polarized hypersurfaces,
each one finitely displaced from the horizon but approaching the horizon in the limit
n —. 00, and when he then computes the resulting back action on the spacetime metric,
he obtains 62 P — e2VP Pl6W4 ,. ). (8)
Although this metric perturbation diverges as one approaches the horizon, 5—» i, the
divergence, being logarithmic in time with a coefficient €%1/a2 that can be made arbi—
trarily small, is extremely weak. It is even harder here than in the Roman spacetime to
see how such a divergence can protect chronology.

Nevertheless, I suspect that it may do so. It may well be that quantum gravity
invalidates the semiclassical analysis only when metric fluctuations, treated as a spin-two
field on the classical background, develop mean-square fluctuations of order unity as a
result of the same pileup process as induces the vacuum polarization of nongmm’tational
fields. If so, then the semiclassical analysis, just before every chronology horizon, might
remain valid up to the location where £5n ~ 1, and only then fail.

To determine whether this is so, and to determine the nature of the subsequent
evolution of spacetime, will require an understanding of quantum gravity. Indeed, it
may be that efforts to decipher these issues will teach us useful things about quantum
gravity.

4. Physics in the presence of closed timelike curves

It may turn out that on macroscopic lengthscales chronology is not always protected,
and even if chronology is protected macroscopically, quantum gravity may well give
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finite probability amplitudes for microscopic spacetime histories with CTCs [29]. For
these reasons, some effort has been devoted recently to exploring whether and how the
laws of physics might adapt themselves to CTCs [7]. In this concluding section, I shall
summarize very sketchily what has been learned.

The cleanest of such explorations are carried out in spacetimes, such as Figure 3c,
that have a chronal “IN” region, followed by a compact nonchronal region, followed by a
chronal “OUT” region. Initial data are posed in the IN region for some physical system,
and the system is then evolved from the IN region through the nonchronal region and into
the OUT region. The evolutionary laws are generally chosen to be the most conservative
possible——the same laws, at least locally, in the nonchronal region as one is accustomed
to in everyday, chronal physics—and one asks whether the evolution problem is well
posed, i.e. whether standard initial data in the IN region produce a unique evolution
through the chronal region and into the OUT region.

For nonintemcting, classical systems (particles [7] and fields [30]) the answer ap-
pears to be yes; there does exist a unique evolution. However, just as interactions
produce evolutionary problems in science fiction (e.g., one can go back in time and kill
one’s younger self), so also interactions produce trouble for classical particles [31] and
presumably also for classical fields: One finds that a large number of classical evolutions
can follow from a single, standard set of initial data. It was thought, at first, that for
some initial data there might be no self-consistent evolutions; but thus far no clean ex-
amples of such a thing have been exhibited in classical, continuum physics [31, 32]. (On
the other hand, there are examples in simple, highly idealized, discrete models [33].)

Of course, physics is quantum mechanical at heart, not classical, and it is in the
quantum domain that these studies become especially fruitful. Just as in quantum
cosmology, where there is no a priom' notion of “time", so also in nonchronal spacetimes,
where CTCs alter the nature of time, the only viable approach to quantum mechanics
seems to be Feynman’s sum over histories. Indeed, spacetimes with CTCs have become a
useful testbed for the sum—over-histories formulations of quantum theory that are being
developed for use in quantum cosmology [34].

It turns out that for nonrelativistic particles [35] and also for relativistic fields
[37], the sum-ovcr—histories formalism enables one to compute unique probabilities for
the outcomes of all measurements that one might reasonably try to make, even in the
nonchronal region of spacetime. However, when the particles or fields are self—interacting,
their interactions produce peculiar phenomena: (i) the propagators from the IN region
to the OUT region are not unitary—but nevertheless, there is no loss of probability
[35, 36, 37]; and (ii) although one recovers standard Hamiltonian quantum mechanics in
the chronal OUT region, one does not recover it in the chronal IN region, and the fact
that CTCs exist to the future of the IN region influences probabilities in the IN region
itself [37]. The strength of this influence, and how it grows as one approaches the future
chronology horizon, are not as yet understood.

In summary, these studies are giving us glimpses of how CTCS influence physics;
but whether those glimpses are teaching us something deep and important, or we are
just playing fun mental games, is far from clear.
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The present status of general relativity

Robert M. Wald

Enrico Fermi Institute and Department of Physics, University of Chicago,
5640 S. Ellis Ave, Chicago, IL 60637, USA

Abstract. The present status of research in classical general relativity,
cosmology, and quantum gravity is discussed, and some prospects for future
developments in these fields are indicated.

1. Introductory Remarks

It is customary at the end of a meeting of this sort to have a “Conference Summary”
talk, to aid the participants in distilling the key new ideas that have been presented
here. To give a comprehensive, balanced Conference Summary is an extremely difficult
task. Fortunately, I have the advantage at this meeting that my presentation does
not even pretend to be a Conference Summary. Rather, this contribution represents
my best attempt to summarize the current status and trends of research in the broad
subject area covered by this meeting. This will be done from my own personal per—
spective. I state this obvious fact to emphasize that, although none of my comments
are intended to be frivilous, there is no reason for anyone else to take them seriously.
In particular, if I felt it likely that any of my remarks would be used to give a stamp of
approval (or disapproval) to any given line of research, I probably would have refused
to give this talk.

At least one other disclaimer should be made before I begin. I cannot pretend
to keep up with all developments even in the areas in which I have done substantial
research, no less the very broad area I am attempting to review here. My intention is to
review only the basic trends, with an eye toward developments in the field which may
be expected in the not too distant future. Names of individual researchers will be kept
to an absolute minimum, and references will be limited to other plenary talks at this
meeting. The reader who wishes to obtain a comprehensive survey of recent research
results in general relativity would be much better served by systematically browsing
through all the other contributions to this volume than by reading this contribution.

For the purposes of this talk, I define the term “general relativity” to mean the
topics that the people who come to a GR meeting do research on. This probably is
best reflected by the subjects covered in the workshops at this meeting. I shall organize
this review by dividing it into three main categories: (1) Classical general relativity,
(2) Cosmology, and (3) Quantum gravitational physics.
.-—.-. Ilh’i‘ YIEI'I ‘H .l.‘.‘ I..'_. . 1 A
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2. Classical General Relativity

General relativity has had a rather strange history. It was formulated more than 75
years ago, and was immediately recognized as being both “beautiful” and “deep”.
Within a very short time after its formulation, some of its key predictions were con-
firmed; specifically, the 1919 eclipse expedition confirmed the “light—bending” predic—
tion, and the calculation of the perihelion precession of Mercury accounted for the
previously observed “residual” precession of that planet. Furthermore, some key exact
solutions (particularly, the Schwarzschild solution) were discovered almost immediately,
which could have enabled researchers to investigate some of the new “strong field” phe-
nomena predicted by the theory. With all of these factors working in its favor, it seems
remarkable, in retrospect, that so little attention was paid to the theory over the next
forty years or so. There were, of course, several notable investigations concerning
gravitational collapse and the nature of (homogeneous, isotropic) cosmology, but there
appears to have been very little attempt to really take the theory seriously by working
out its predictions and consequences in a systematic way. Indeed, general relativity
appears to have had more the status of a mathematical curiosity than of a theory of
the physical world during this period, and vestiges of this attitude persist even today.

One of the reasons contributing to the unusual status of general relativity in
physics is the unusual relationship general relativity has had throughout most of its
history between theory and experiment/observations. Most of the dramatic and ex—
citing advances in physics occur when the experimentalists are one step ahead of the
theorists, finding new phenomena that challenge the theorists either to find an expla-
nation within existing theory (thereby probing its structure more deeply) or to modify
the existing theory. Such a relationship between theory and experiment is particu—
larly healthy when the existing theory is only a partial one, since experiments and
observations then serve to define the limits of the theory and suggest appropriate gen—
eralizations. The decades of research in particle physics preceding the formulation of
the presenteday “standard model” of electroweak and strong interactions provides an
excellent example of this kind of vigorous interplay.

However, general relativity was “born whole” and 7 unless it is wrong 7 its limits,
presumably, are defined by the Planck scale, which is entirely inaccessible to direct
observation. Throughout most of its history, the contact of general relativity with ex—
periment and observation (apart from cosmology, to be discussed in the next section)
has been limited to “solar system77 tests: light bending, Mercury’s precession, the grav-
itational redshift, and (within the past 20 years) the gravitational time delay, These
tests have been extremely important for validating the theory. The ever increasing pre-
cision of these observations — such as the confirmation of the light bending prediction
of general relativity to within .370 achieved with long baseline interferometry — should
be appreciated and applauded by all general relativists. New experiments planned for
the future — such as the measurement of geodetic precession — will provide further
tests. However, these “solar system tests” have not, as yet, posed any significant chal-
lenges to the theorists: The approximation schemes needed to derive the predictions
are quite straightforward, and the data has been in beautiful accord with the theory.
Unless they eventually demonstrate that general relativity is wrong, I do not believe
that these tests are likely to have much impact upon the direction and progress of the
field in the foreseeable future.
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However, in other arenas, there is a good chance that theorists will be challenged
by experiments and observations in the not to distant future, even assuming that all
future experiments and observations will yield results consistent with the predictions
of general relativity. To some extent, this is happening already with the high preci-
sion observations of binary pulsar systems. Observations of the original Hulse—Taylor
binary pulsar system dramatically confirmed the existence of gravitational radiation
as predicted by general relativity. Perhaps even more significantly for the interplay
of theory and observation, the effects being measured for these systems are of a suf-
ficiently “strong field” nature that the approximation schemes needed to derive them
are not straightforward. Indeed, even the approximation which leads to the standard
“quadrupole formula” for gravitational radiation (and corresponding back-reaction) is
nontrivial to justify rigorously in the case of self-gravitating systems. The binary pul—
sar observations should continue to provide a stimulus to theorists to develop better
and more rigorously justified approximation schemes.

Observations of millisecond pulsars also may result in significant interplay with
general relativity theory in the foreseeable future. Already, the rotation rates of the
fastest pulsars , when interpreted within the framework of general relativity 7 are not
far from providing significant restrictions on the equation of state of matter composing
neutron stars. It is quite possible that with better statistics afforded by observation
of more millisecond pulsars, an upper limit on rotation rates (as expected from the

instability of rotating stars in general relativity) will be deduced. When combined
with additional information about neutron stars obtained from other observations, we
stand a good chance of learning new things about the strong field behavior of general
relativity, as well as about the properties of matter at nuclear densities.

As I shall comment further upon in the next section, observational astronomy
has undergone a revolution in the past decade, and new and higher quality informar
tion about astrophysical systems is likely to continue to be obtained at a rapid rate.
In particular, it seems safe to predict that in the foreseeable future, important new
observations will be made of binary Xeray sources within our galaxy, of the central
regions of the nucleus of our galaxy and nearby galaxies, and/or of quasars and other
active galactic nuclei. Such observations may yield some stringent tests to the models
for these systems which involve black holes. The discovery of some strikingly new phe—
nomenon in these systems would probably afford us the best opportunity we have of
learning more about phenomena occurring in the strong field regime of general relativ~

ity. Indeed, it was the original discovery of quasars in the early 1960’s that provided
the first real stimulus to systematically study the strong field predictions of general
relativity. This stimulus probably was largely responsible for what I consider to be
the “golden era” of classical general relativity ~ the period from the mid-1960’s to the
early 1970’s when “global methods” were formulated, the singularity theorems were
proven, and the theory of black holes was developed.

Perhaps the best opportunity of all for vigorous interaction of general relativity
theory with experiment will be attained if the new generation of gravitational wave de-

tectors — presently under construction — succeed in achieving the sensitivity for which

they are ultimately designed. The goal of obtaining an unambiguous detection of grav—

itational radiation would then easily be met. However, for the same reason as the solar

sytem tests, by itself this probably would not have a much impact upon the field — un-

less, of course, the observed characteristics of the radiation differ measureably from the
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ity. Indeed, it was the original discovery of quasars in the early 1960’s that provided
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tectors — presently under construction — succeed in achieving the sensitivity for which

they are ultimately designed. The goal of obtaining an unambiguous detection of grav—

itational radiation would then easily be met. However, for the same reason as the solar

sytem tests, by itself this probably would not have a much impact upon the field — un-

less, of course, the observed characteristics of the radiation differ measureably from the



320 General Relativity and Gravz'tarion 1992

predictions of general relativity. Indeed, the binary pulsar observations have already
confirmed the existence of gravitational radiation as predicted by general relativity,
with a quantitative precision much greater than any direct detection is likely to attain.
Rather, the true potential impact upon the field arises from the possibility of doing
“gravitational wave astronomy”. Observations of the wave forms of gravitational ra-
diation signals — possibly in conjunction with observations of electromagnetic signals
emitted by the same sources — would provide the kind of challenges and stimuli to the—
orists that could lead to major advances in our understanding of phenomena involving
strong gravitational fields.

However, despite the above remarks, it would be quite optimistic to believe that
any significant interplay between general relativity theory and experiments and obser-
vations will occur within this decade. Thus, for the foreseeable future, the development
of classical general relativity is likely to continue to be driven mainly by the study of
“old problems", as well as by new developments in cosmology and quantum gravity.

Of the “old problems”, there is one which, in my View, stands out as dominant
both on account of its fundamental importance and because of the possibility that some
significant progress can be made within the coming decade: the nature of singularities.
During the “golden era” of classical general relativity alluded to above, mathematical
techniques of differential geometry were used to establish the existence of singularities
in solutions to Einstein’s equations in a wide variety of circumstances relevant to grav—
itational collapse phenomena and to cosmology. In these theorems, Einstein’s equation
(together with energy conditions on matter) is used only to obtain inequalities on the
Ricci curvature. The fact that the detailed properties of Einstein’s equation do not play
much role in the singularity theorems is largely responsible for their great power and
generality: The occurrence of singularities cannot be evaded by modifying the matter
content (provided that the energy conditions are still satisfied) or even by a wide class
of modifications of Einstein’s equation itself. However, this generality is probably the
root cause of the one significant deficiency of the singularity theorems: For the most
part, they say nothing about the nature of the singularities they predict apart from
the fact that some inextendible causal geodesic must be incomplete.

The study of the nature of singularities in classical general relativity is of fun—
damental importance for at least two reasons. First, it is crucial for understanding
strong field behavior. The physical relevance of black holes is entirely premised upon
the hypothesis that the singularities resulting from gravitational collapse are confined
to black holes, i.e., that “naked singularities” do not occur. If this “cosmic censor
hypothesis” should turn out to be false, our present beliefs concerning strong field
phenomena in general relativity would undergo drastic modifications; indeed, even my
statement above that Planck scale phenomena are inaccessible to direct observation
probably would be wrong. It should be recalled that at the present time, support for
belief in the validity of the cosmic censor hypothesis comes entirely from some linear
perturbation analyses and from the beauty and internal consistency of the theory of
black holes, rather than from analysis of the general behavior of solutions to Einstein’s
equation in situations corresponding to gravitational collapse. Similarly, in cosmology
one would like to understand whether initial singularities generically have a “spacelike
character” (so that horizons are present in the early universe) and the manner in which
the Ricci and/or Weyl curvatures diverge near an initial cosmological singularity.

Secondly, an analysis of the nature of singularities would provide a major step
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toward our understanding of the manner in which classical general relativity breaks
down. It could provide some important clues as to the kinds of new phenomena that
might occur in a quantum theory of gravitation.

Singularities are present and can be studied in detail in some of the simplest and
most basic solutions in general relativity, such as the Schwarzschild solution and the
Robertson-Walker models. However, it is quite possible that these simple solutions may
give a very misleading picture of the general properties of singularities. Clearly, what is
required is a very general analysis of properties of solutions to Einstein’s equation. As
already indicated above, it does not appear that the “global methods” used to prove
the singularity theorems can be pushed much further to enable a detailed description
of their properties. However, I believe it likely that progress can be made on this issue
on two broad fronts.

First, as described in the contribution of Evans, it appears that “numerical rel;
ativity77 is finally coming of age. It now is feasible to reliably study via numerical
simulation the dynamical evolution of nonspherical spacetimes in which gravitational
collapse to a singularity occurs. Some interesting examples already have been obtained
by Shapiro and Teukolsky, as reported in Teukolsky’s contribution. The study of the
evolution of spacetimes without any symmetries imposed (i.e., with “4-dimensional
codes”) may be possible in the foreseeable future. Of course, numerical codes tend to
break down near singularities at a much earlier stage than the breakdown of classi—
cal general relativity itself, so it is not likely that we will be able to learn about the
detailed structure of singularities from numerical experiments. However, at the very
least, numerical experiments should be able to provide strong hints concerning strong
field behavior near singularities. They also should be able to stringently probe the
validity of the cosmic censor hypothesis.

Secondly, the global properties of solutions to Einstein’s equation are now being
studied with modern methods of partial differential equations. As discussed further in
the contribution of Klainerman, the main results obtained thus far are “nonsingular-
ity theorems” 7 in particular, a proof that globally nonsingular solutions to Einstein’s
equation exist for all initial data sufficiently close to flat spacetime (i.e., that singu—
larities cannot be created starting with weak gravitational waves). These methods
will have to be developed considerably further in order to have a chance at obtaining
general results on the properties of singularities in general relativity. However, the
advances in this area which have been made in the past decade are quite encouraging,
and they hold out hope that analysis of such issues as the validity of cosmic censorship
may be possible in the not too distant future.

My extended discussion of the issue of the nature of singularities should not be
interpreted as indicating a belief that there are no other issues in classical general
relativity worthy of intensive study. However, I do not have space here to discuss these
issues, and I fear that any short list of problems which I might attempt to compile
would end up being most notable for its inadvertant omissions. Thus, I will simply

remark that a substantial portion of my own recent research has been on other issues

in classical general relativity, and I have every expectation that this will continue in

the future.
The most promising source of new ideas and issues in classical general relativity

is the research efforts in the “border areas” of cosmology and quantum gravity. I now

turn to a discussion of the first of these topics.

The present status ofgeneral relativity 321

toward our understanding of the manner in which classical general relativity breaks
down. It could provide some important clues as to the kinds of new phenomena that
might occur in a quantum theory of gravitation.

Singularities are present and can be studied in detail in some of the simplest and
most basic solutions in general relativity, such as the Schwarzschild solution and the
Robertson-Walker models. However, it is quite possible that these simple solutions may
give a very misleading picture of the general properties of singularities. Clearly, what is
required is a very general analysis of properties of solutions to Einstein’s equation. As
already indicated above, it does not appear that the “global methods” used to prove
the singularity theorems can be pushed much further to enable a detailed description
of their properties. However, I believe it likely that progress can be made on this issue
on two broad fronts.

First, as described in the contribution of Evans, it appears that “numerical rel;
ativity77 is finally coming of age. It now is feasible to reliably study via numerical
simulation the dynamical evolution of nonspherical spacetimes in which gravitational
collapse to a singularity occurs. Some interesting examples already have been obtained
by Shapiro and Teukolsky, as reported in Teukolsky’s contribution. The study of the
evolution of spacetimes without any symmetries imposed (i.e., with “4-dimensional
codes”) may be possible in the foreseeable future. Of course, numerical codes tend to
break down near singularities at a much earlier stage than the breakdown of classi—
cal general relativity itself, so it is not likely that we will be able to learn about the
detailed structure of singularities from numerical experiments. However, at the very
least, numerical experiments should be able to provide strong hints concerning strong
field behavior near singularities. They also should be able to stringently probe the
validity of the cosmic censor hypothesis.

Secondly, the global properties of solutions to Einstein’s equation are now being
studied with modern methods of partial differential equations. As discussed further in
the contribution of Klainerman, the main results obtained thus far are “nonsingular-
ity theorems” 7 in particular, a proof that globally nonsingular solutions to Einstein’s
equation exist for all initial data sufficiently close to flat spacetime (i.e., that singu—
larities cannot be created starting with weak gravitational waves). These methods
will have to be developed considerably further in order to have a chance at obtaining
general results on the properties of singularities in general relativity. However, the
advances in this area which have been made in the past decade are quite encouraging,
and they hold out hope that analysis of such issues as the validity of cosmic censorship
may be possible in the not too distant future.

My extended discussion of the issue of the nature of singularities should not be
interpreted as indicating a belief that there are no other issues in classical general
relativity worthy of intensive study. However, I do not have space here to discuss these
issues, and I fear that any short list of problems which I might attempt to compile
would end up being most notable for its inadvertant omissions. Thus, I will simply

remark that a substantial portion of my own recent research has been on other issues

in classical general relativity, and I have every expectation that this will continue in

the future.
The most promising source of new ideas and issues in classical general relativity

is the research efforts in the “border areas” of cosmology and quantum gravity. I now

turn to a discussion of the first of these topics.

The present status ofgeneral relativity 321

toward our understanding of the manner in which classical general relativity breaks
down. It could provide some important clues as to the kinds of new phenomena that
might occur in a quantum theory of gravitation.

Singularities are present and can be studied in detail in some of the simplest and
most basic solutions in general relativity, such as the Schwarzschild solution and the
Robertson-Walker models. However, it is quite possible that these simple solutions may
give a very misleading picture of the general properties of singularities. Clearly, what is
required is a very general analysis of properties of solutions to Einstein’s equation. As
already indicated above, it does not appear that the “global methods” used to prove
the singularity theorems can be pushed much further to enable a detailed description
of their properties. However, I believe it likely that progress can be made on this issue
on two broad fronts.

First, as described in the contribution of Evans, it appears that “numerical rel;
ativity77 is finally coming of age. It now is feasible to reliably study via numerical
simulation the dynamical evolution of nonspherical spacetimes in which gravitational
collapse to a singularity occurs. Some interesting examples already have been obtained
by Shapiro and Teukolsky, as reported in Teukolsky’s contribution. The study of the
evolution of spacetimes without any symmetries imposed (i.e., with “4-dimensional
codes”) may be possible in the foreseeable future. Of course, numerical codes tend to
break down near singularities at a much earlier stage than the breakdown of classi—
cal general relativity itself, so it is not likely that we will be able to learn about the
detailed structure of singularities from numerical experiments. However, at the very
least, numerical experiments should be able to provide strong hints concerning strong
field behavior near singularities. They also should be able to stringently probe the
validity of the cosmic censor hypothesis.

Secondly, the global properties of solutions to Einstein’s equation are now being
studied with modern methods of partial differential equations. As discussed further in
the contribution of Klainerman, the main results obtained thus far are “nonsingular-
ity theorems” 7 in particular, a proof that globally nonsingular solutions to Einstein’s
equation exist for all initial data sufficiently close to flat spacetime (i.e., that singu—
larities cannot be created starting with weak gravitational waves). These methods
will have to be developed considerably further in order to have a chance at obtaining
general results on the properties of singularities in general relativity. However, the
advances in this area which have been made in the past decade are quite encouraging,
and they hold out hope that analysis of such issues as the validity of cosmic censorship
may be possible in the not too distant future.

My extended discussion of the issue of the nature of singularities should not be
interpreted as indicating a belief that there are no other issues in classical general
relativity worthy of intensive study. However, I do not have space here to discuss these
issues, and I fear that any short list of problems which I might attempt to compile
would end up being most notable for its inadvertant omissions. Thus, I will simply

remark that a substantial portion of my own recent research has been on other issues

in classical general relativity, and I have every expectation that this will continue in

the future.
The most promising source of new ideas and issues in classical general relativity

is the research efforts in the “border areas” of cosmology and quantum gravity. I now

turn to a discussion of the first of these topics.



322 General Relativity and Graviralimz 1992

3. Cosmology

The field of cosmology has undergone very significant development in the past two
decades. In my view, the most remarkable — and certainly the most solid ~ of its
achievements has been the (in my opinion, convincing) demonstration of the success
of the “standard cosmological model” — i.e., the Friedman-Robertson—Walker (FRW)
solution with matter in thermal equilibrium in the early universe — in accounting for
the basic features of our universe from the era of nucleosynthesis onwards. Thirty years
ago, the main reasons for believing in the validity of the “standard model” were the
following: (1) Its assumed homogeneity and isotropy appeared to be in good (rough)
agreement with the observed distribution of the galaxies. (2) It accounted nicely for
the Hubble expansion. (3) The relationships between the observed values of Hubble’s
constant, the “deceleration parameter”, the age of the universe, and the mass density
of the universe were in (very rough) accord with the predictions of the model 7 at least,
after serious errors in the determination of Hubble’s constant were corrected.

The discovery of the cosmic microwave background in 1965 provided dramatic
further evidence in favor of the “standard model.” Such “relic” radiation is naturally
predicted by the model, and it is very difficult to find other plausible explanations for
its existence, Planckian spectrum, and isotropy.

Another strong piece of evidence in favor of the standard model became evident
by the late 1960’s. The standard model predicts that a substantial amount of He4
should have been synthesized in nuclear reactions beginning several seconds after the
“big bang” singularity of the model, and ending about 15 minutes later. The predicted
abundance of He4 produced in this manner is in excellent agreement with observations.
Since far more He’1 is produced in this manner than plausibly could have been produced
in stars, the agreement of the predictions with observed helium abundance is not
something that could be easily accounted for in other ways.

Today, we probably have, if anything, less grounds than thirty years ago for
advancing reason (1) above in support of the FRW models. As discussed further below,
redshift surveys during the past decade have enabled the determination of the “three
dimensional” distribution of galaxies, and very significant departures from homogeneity
have been observed on much larger scales (at least ~50 megaparsees) than anticipated
thirty years ago. The status of the observational support for reasons (2) and (3) above
has not changed significantly in the past thirty years.

Nevertheless as already indicated, evidence in support of the standard model
has been enormously strengthened in the past two decades. One reason is the greatly
improved precision of the measurements of the microwave background radiation. As far
as can be determined by COBE, the spectrum of the microwave background radiation
is exactly Planckian, and only very recently has COBE finally has detected some tiny
departures from exact isotropy. This has provided strong support for believing that
this radiation is, indeed, the “relic radiation” predicted by the standard model.

However, perhaps the strongest new evidence for the standard model has come
from new observations (and experiments!) related to nucleosynthesis occurring in the
early universe. In addition to He“, trace amounts of H2, Hes, and Li7 also are predicted
to be synthesized. The predicted abundance of these elements depends sensitively
on the baryon density, and the first measurements of deuterium abundance twenty
years ago were used primarily to estimate the baryon density — yielding the result
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that baryons provide about 5% of the mass density that a flat FRVV model would have.

However, the measurement of additional light element abundances provides a test of the

model itself. The fact that the primordial abundances of these elements inferred from

observations during the past decade also agree with the predictions of nucleosynthetic

calculations is strong support for the standard model (as well as for baryon density

~5% of the “closure density”, i.e., QB~.05) . Second, the percentage of He4 which is

synthesized is not very sensitive to the baryon density but is sensitive to the expansion

rate of the universe during the era of nucleosynthesis. This expansion rate, in turn,

depends upon the matter content, and calculations within the standard model showed

that the presence of more than 3 light neutrino species in thermal equilibrium in the

early universe would yield too high a helium abundance. The existence of only 3 light

neutrino species has now been confirmed by the experiments on the decay of the Z0

conducted at CERN.
Of course, if some discrepancies between calculations and observations had been

found, the theorists surely would have found plausible ways of modifying the standard

model so as to reproduce the observations (or would have found plausible reasons

for rejecting or refinterprcting the observations). However, the fact that the model

now has stood up to quite a number of nontrivial. quantitatively precise tests with

little or no “fudging” should be taken very seriously. Any present or future difficulties

associated with supplmnentary hypotheses to the standard model 7 particularly with

regard to the origin of the departures from homogeneity 7 should not be confused with

the remarkable success of the essential features of the model. To repeat the advice of

a particle experimentalist who had just paid off his wager with a cosmologist 011 the

number of neutrino species: “Don’t bet against the big bang!”

It is worth mentioning that the success of the standard cosmological model has

had an unfortunate side effect for general rclativists. It does not require much knowl—

edge of general relativity to write down the RobcrtsoneVVallcer line element. Had dif—

ficulties with the standard model arisen, the possibility of curing them by going to

anisotropic or inhomogeneous models would have been explored, and general relw

tivists undoubtedly would have played a leading role in these efforts. Since such efforts

have not been necessary, general relativists have stayed largely on the sidelines, and not

much stimulation to the field of general relativity has resulted from these developments

in cosmology.
Given the success of the standard model, it is only natural that attempts would
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ical issue” I mean simply an issue lying outside the nature and scope of present—day
theories of physics; I do not intend the negative connotation usually implicit in the
use of that term by physicists.) To illustrate this point, consider the following two
widely discussed problems which often are discussed as though they were on the same
footing: the “monopole problem” and the “flatness problem.” The “monopole prob-
lem” refers to the prediction of grossly overabundant monopole production in the early
universe, assuming that matter is described by a grand unified field theory. It is very
much a “physical problem”, i.e., from well defined initial assumptions and well de—
fined physical laws, one obtains a prediction inconsistent with observation. Its solution
must be sought in abandonment or modification of the grand unified model, or in a
mechanism to dilute the monopole density (such as inflation), or in the modification
of other cosmological assumptions. On the other hand, the “flatness problem” refers
to the fact that in standard FRVV models, in the early universe the spatial curvature
must have been enormously smaller than the energy density of matter; equivalently,
the lifetime of our universe is enormously larger than the Planck time or any of the
fundamental timescales of elementary particle theory. This problem has much more of
a metaphysical character. It is not at all clear that there is any “problem” at all, except
possibly “naturalness” (and the creator of the universe might well have a rather differ—
ent concept of “naturalncss” than we dol). A “solution” to this “problem” presumably
consists of a model where the conditions of the early universe arise in a manner which
seems less artificial to us. Many of the other widely discussed problems of cosmol—
ogy also have a similar metaphysical component. Our civilization has made enormous
progress in the development of physical theories, but I am not at all confident that we
are better equipped than the ancient Greek philosophers or medieval scholars to deal
with metaphysical issues. It is very important to the progress and direction of science
to raise metaphysical issues; important breakthroughs can be made by attempting to
address issues which lie outside the scope of present physical laws. Furthermore, the
distinction between physical and metaphysical issues is not always entirely clear cut.
However, in my View, a serious effort to draw these distinctions as sharply as possible
would be very helpful for clarifying the goals and aims of research in cosmology.

Without question, the area of research in cosmology which presently is undergo—
ing the most active development and Where many further exciting developments can
be anticipated in the near future concerns the “origin of structure”, i.e., the processes
which led to the formation of galaxies and clusters of galaxies. These developments
have been fueled by what can best be termed a revolution in observational astron-
omy. Without question, the most important single technological advance involved in
this revolution was the replacement of the photographic plate by charge-coupled de-
vices (CCD’S), which came into wide use beginning about a decade ago. Present day
CCD’s have a photon detection efficiency of order 75% (as compared with ~1% for
photographic plates), and their digital character makes it possible to do accurate and
efficient subtractions of the night sky background. As a direct consequence of the ad-
vent of CCD’s, several orders of magnitude less observing time is required to obtain
galactic redshifts than was possible using photographic plates. This has made it pos-
sible to take redshift surveys which are much more complete, much deeper, and not
nearly as subject to selection effects as prior surveys. As already mentioned above, this
enables one to obtain reliable “3-dimensional” maps of the distribution of galaxies, and
the surveys taken thus far have shown significant departures from homogeneity and the
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presence of coherent structures in galactic clustering on much larger scales than had
been anticipated. A large number of very ambitious new redshift surveys are currently
in progress or planned for the near future, so in the coming decade, we will obtain a
great deal of new information concerning the large scale clustering of galaxies.

Other major advances also are occurring in our ability to make observations rele-
vant to cosmology. A new generation of telescopes is being built with adaptive optics,
which will greatly improve resolution and could enable phenomena like supernovae in
progenitor galaxies to be studied. A large number of satellites have been launched or
will soon be launched, giving us a capacity to probe the universe much more fully and
in more detail in the microwave, infra-red, visible, ultraviolet, X—ray, and gamma ray
regimes. It would be rather surprising if some dramatic new discoveries do not arise
from the wealth of information we will obtain from these sources in the coming decade.

This new observational data undoubtedly will provide stringent tests for theories
of the origin of structure. The two major new theoretical ideas of the past decade -
inflation and cosmic strings ~ presently provide competing explanations for the origin
of structure. Inflationary models provide a simple mechanism for amplifying quantum
fluctuations to a magnitude and power and fluctuation spectrum suitable for formation
of the observed large scale structure. Strings (or other topological defects) could pro—
vide seeds for structure formation either directly through gravitational attraction or
via “wakes’7 resulting from their motion. Models based upon these ideas have provided
us with valuable theoretical lampposts under which to search for the keys to the origin
of structure. It is certain that much will be learned from the confrontation between
these models and new observations, such as the microwave temperature anisotropy
observations recently reported by COBE.

The wealth of new observational data also is likely to finally provide convincing
evidence as to whether our universe is closed (as had traditionally been favored by

theorists prior to inflationary models), very nearly flat (as predicted by inflationary
models), or open (as favored by some present observational evidence and as indicated
by the observed light element abundances arising from “big bang nucleosynthesis” 7
unless the present mass density of the universe is dominated by matter in non—baryonic
form).

In summary, it seems likely that we are in the midst of a “golden age” in cosmol—
ogy.

4. Quantum Gravity

Without question, the key issue in quantum gravity is the determination of the fun-
damental character of the formulation of the theory itself. In all non-gravitational
theories, the causal and metrical structure of spacetime are fixed in advance. The
notion of an “instant of time” is represented by a spacelike hypersurface in a given,
background spacetime. In an ordinary quantum field theory, the fundamental observ-
ables of the theory are the values of the field and its correlation functions — modulo
gauge if the field is a gauge field — at any instant of time. Methods exist for calcu-
lating these field correlation functions in perturbation theory. Although many of the
formal expressions for terms occurring in the perturbative expansion are infinite, for
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renormalizable theories well defined rules exist for extracting finite results without in-
troducing any new parameters into the theory. Furthermore, it should be noted that in
most applications, one is interested only in the behavior of the field at asymptotically
early and late times, when it can be treated as “free.” A particle interpretation of the
states is available in these asymptotic regimes, and, in most applications, the relevant
information is encoded in the S—matrix, for which (in renormalizable theories) a well
defined perturbative expansion exists.

The key phrase in the preceding paragraph is “the field . . . modulo gauge .
, at any instant of time.” In general relativity or other gravitational theories based

upon a spacetime metric, the gauge group is (or includes) the diffeomorphism group
of the spacetime manifold. Unlike other gauge theories, this gauge group includes
all “time translations,” so in order for a quantity defined at an “instant of time”
to be “gauge invariant”, it is necessary for it to be “time independent”. However,
quantities of this sort 7 referred to as “perennials” in Kuchar’s contribution — would
appear to be essentially trivial, and do not encompass the usual dynamical variables
of general relativity, such as the induced metric and extrinsic curvature of a spacelike
hypersurface. Thus, we have what appears to be an essential conflict between general
relativity and quantum theory: General relativity demands that only “histories” are
well defined (i.e., “gauge invariant”), whereas the fundamental structure of quantum
theory requires that only observables defined at an instant of time be well defined, (i.e.,
“histories” are ill defined in quantum theory — except in an idealized limit of perfect
decohcrence).

Parametrized theories of particles or fields have formal properties very similar to
general relativity. A well defined quantum theory of these systems can be obtained
by “dc—parametrization”, i.c., by explicitly identifying the variable which (secretly, in
the initial formulation) plays the role of time in these theories and interpreting the
constraint equation as a time evolution equation in this variable. A sensible Hilbert
space structure on states also can be defined by making use of this distinction between
the “time variable” and the “true dynamical degrees of freedom”. However, although
the issues involved have been discussed for more than two decades, very little, if any,
progress has been made in the direction of “de—parametrizing” general relativity, or,
for that matter, in precisely defining the states and observables of the theory by any
other means. This is the “problem of time”.

There are additional difficulties which any proposed quantum theory of gravity
must overcome. One difficulty (undoubtedly closely related to the “problem of time”)
has to do with the lack of a background causal structure of spacetime. The fact
that quantum fields commute (or anticommute) at spacelike separated events is a
fundamental property of all non-gravitational quantum field theories, but it is far from
clear whether a similar idea can even be expressed in quantum gravity, since the notion
of whether two points on the spacetime manifold are “spacelike related” depends upon
the (quantum) metric and is not sharply defined (and also is state-dependent). An
additional serious difficulty (whose exact relationship, if any, to the “problem of time” is
unclear) is that a simple dimensional argument indicates that even if a quantum theory
of gravity could be written down, it would be nonrenormalizable. Hence, either each
term in its perturbative expansion would have to be finite or (presumably, infinitely
many) new parameters would have to be introduced to define the quantum theory.

Two decades ago, the (rather small number of) researchers in quantum gravity
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“histories” are ill defined in quantum theory — except in an idealized limit of perfect
decohcrence).

Parametrized theories of particles or fields have formal properties very similar to
general relativity. A well defined quantum theory of these systems can be obtained
by “dc—parametrization”, i.c., by explicitly identifying the variable which (secretly, in
the initial formulation) plays the role of time in these theories and interpreting the
constraint equation as a time evolution equation in this variable. A sensible Hilbert
space structure on states also can be defined by making use of this distinction between
the “time variable” and the “true dynamical degrees of freedom”. However, although
the issues involved have been discussed for more than two decades, very little, if any,
progress has been made in the direction of “de—parametrizing” general relativity, or,
for that matter, in precisely defining the states and observables of the theory by any
other means. This is the “problem of time”.

There are additional difficulties which any proposed quantum theory of gravity
must overcome. One difficulty (undoubtedly closely related to the “problem of time”)
has to do with the lack of a background causal structure of spacetime. The fact
that quantum fields commute (or anticommute) at spacelike separated events is a
fundamental property of all non-gravitational quantum field theories, but it is far from
clear whether a similar idea can even be expressed in quantum gravity, since the notion
of whether two points on the spacetime manifold are “spacelike related” depends upon
the (quantum) metric and is not sharply defined (and also is state-dependent). An
additional serious difficulty (whose exact relationship, if any, to the “problem of time” is
unclear) is that a simple dimensional argument indicates that even if a quantum theory
of gravity could be written down, it would be nonrenormalizable. Hence, either each
term in its perturbative expansion would have to be finite or (presumably, infinitely
many) new parameters would have to be introduced to define the quantum theory.

Two decades ago, the (rather small number of) researchers in quantum gravity
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divided into two main groups. The first group — comprised largely of theorists with
substantial background in particle theory — favored the ”covariant approach” to for—
mulating a quantum theory of general relativity. In this approach, one writes the
spacetime metric, gab, as a flat metric, nab, plus a remainder, hub, and treats hub as a
quantum “nonlinear spin-2 field” in a flat spacetime. One makes free use of the causal
structure of am, in the formulation of the theory, and treats the theory as though the
fundamental observables were the correlation functions of hub (or the S-matrix ele-
ments for graviton-graviton scattering). Eventually, in this approach, one should have
to confront the fact that the causal structure of nab should play no role in the theory,
and that mg, and hub should not have any physical significance as separate entities,
since the theory should depend only upon gab. In other words, initially one does not
attempt to impose the condition that the theory one obtains should be independent
of the choice of the (artificially introduced, physically unmeasurable) flat metric, nab,
and that hub is not an observable. In this manner, one can postpone dealing directly
with some of the difficult formulational issues of quantum gravity, and focus attention
upon issues involving the nonrenormalizability of the theory. One then immediately

confronts the difficulty that, although S—matrix elements are finite at one—loop order

in perturbation theory, they are infinite at two—loop order (and, presumably, all higher
orders); S-matrix elements for typical theories of gravity coupled to matter are infinite
at one loop order.

The second group of quantum gravity researchers of twenty years ago , comprised
largely by theorists with a substantial background in classical general relativity 7 fa-
vored the “canonical” approach to formulating a quantum theory of general relativity.
As discussed further in the contribution of Kuchar, the idea here is to express classical

general relativity in Hamiltonian form (with constraints), write down the fundamental
canonical commutation relations for the configuration and momentum observables, and
then impose the constraints as conditions on the state vector. The quantum version

of the classical Hamiltonian constraint equation yields the Wheeler—DeWitt equation.
Since this equation enforces the gauge invariance of the state vector under time trans—
lation diffeomorphisms, the problem of time is confronted head—011 in this approach,
and has caused severe difficulties in the definition of the Hilbert space of states and

the observables of the theory. Even if these difficulties can be overcome, the difficulties
associated with the nonrenormalizability of the theory presumably would remain to be
confronted.

Today, there still are two rather distinct groups of researchers investigating the
formulation of quantum gravity; one — comprised mainly by particle physicists 7 tak—
ing an approach in much the same spirit as the covariant approach, and the other —
comprised mainly by general relativists — taking the canonical approach. Many of the
fundamental issues in both approaches remain unresolved. Nevertheless, some inter-
esting new ideas have been introduced, and some notable progress has been made.

The covariant approach has evolved through higher derivative gravity theories
(which cure nonrenormalizability but introduce new serious problems), supergravity
theories (which yield finite scattering amplitudes to higher loop order in perturbation
theory than ordinary general relativity, but apparently yield no fundamental advan-
tages), and on to superstring theory. Superstring theory has the substantial achieve—
ment of providing us with a finite theory of gravity in the following sense: It is “finite”

in that there is every expectation that the scattering amplitudes for (“first quantized”)
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strings in a background fiat (lo-dimensional) spacetime are finite at each order in per-
turbation theory. It is a “theory of gravity” in the sense that one of the modes of
oscillation of the string corresponds to a massless, spin-2 field, and there are argu-
ments indicating that the theory can be reinterpreted as a theory involving a metric
field which satisfies Einstein’s equation in the “low energy limit.” Nevertheless, many
significant (and, undoubtedly, fundamental) difficulties remain regarding the interpre—
tation of the theory and how to extract predictions from it for quantities other than
string scattering amplitudes. In particular, it is not clear what local observables (as
opposed to S-matrix quantities) are defined in the theory or how they are to be cal-
culated. Some attempts have been made to formulate a “string field theory” (which,
however, would appear to involve “local observables” on an abstract loop space, not
on spacetime), but I am not aware of much progress in this direction. The initial surge
of optimism in the mid-1980’s that superstrings could provide the ultimate “theory of
everything” appears to have been replaced in the past several years by a compensating
pessimism , based primarily on the non—uniqueness of string theory and the difficulty
of doing calculations rather than the uncovering of any inconsistency or wrong predice
tions of the theory. I have not followed developments in superstring theory closely and,
thus, am not in a position even to speculate upon the future directions of research in
this area. However, it is clear that the wealth of new ideas and mathematical tools
introduced by superstring theory will have a lasting impact upon research in quantum
gravity.

Research in canonical quantum gravity has gotten a significant boost in the past
five years from Ashtekar’s introduction of new Hamiltonian variables for general rela—
tivity. Instead of using the induced metric and extrinsic curvature of a hypersurface
as the fundamental, canonically conjugate variables on phase space, Ashtekar takes
a (complex) SU(2) connection and a “soldering form” as the fundamental variables.
The constraint equations of general relativity simplify considerably in terms of these
variables, and take a form closely analogous to that of Yang—Mills theory. Probably
the most promising new idea toward formulating a quantum theory of gravity to arise
from this approach is the “loop quantization” program, reviewed in the contribution
of Smolin. This approach has not, as yet, provided a solution to the “problem of
time” and issues related to regularization and renormalization of the theory remain
to be confronted. However, this approach is still very much in its developing phase,
and considerable further progress can be anticipated. At the very least, the “Ashtekar
variables” have provided some new life to an approach to quantum gravity that for
nearly 20 years had contributed very little in the way of new ideas toward solving the
fundamental problems of the quantum gravity.

The direct attacks upon the problem of formulating a quantum theory of gravi-
tation discussed above are by no means the only research activity related to quantum
gravity presently being pursued. The theory of linear quantum fields in curved space—
time has been developed to a mathematically complete and precise theory, though some
issues with regard to treating “back-reaction” remain to be resolved. Some additional
insights into quantum phenomena occurring in strong gravitational fields - in particu-
lar, in the early universe — can be expected to result from further research in this area.
Research continues in “quantum cosmology”, i.e., quantum gravity with all but finitely
many degrees of freedom eliminated by symmetry restrictions. Quantum cosmology
provides an excellent testing ground for ideas related to the interpretation of quantum
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gravity, since the usual infinities of quantum field theory are absent, lm1 the “problem

of time” remains present. Proposals for selecting a preferred "w:i\‘x"l'niiin-t.i:an of tlu- uni-

verse” also can be formulated and tested in the context of quantum cosmology. Such

proposals make a serious attempt ~ for the first time in the era of modern physics — to

provide us with a theory of initial conditions.
Some of the most penetrating insights into the nature of quantum gravity have

come from the analysis of particle creation near black holes and its implications for

black hole thermodynamics and the loss of quantum coherence. In the past year,

research in this area has been revitalized by the study of a two-dimensional (“string-
inspired”) field theory which appears to have the necessary properties to model a.

situation corresponding to the gravitational collapse of a body which subsequently

emits Hawking radiation. The model is sufficiently tractable that, in the semiclassical

approximation, it should be possible to study in detail the nature of singularities pro—

duced by the collapse and quantum back—reaction, as well as issues related to the loss

of quantum coherence. Unless the model turns out to be seriously flawed, it is likely

that some new insights into the nature of the black hole formation and evaporation

process will be achieved.
In summary, it undoubtedly is much too early to assess how far down the road

we have come toward obtaining a quantum theory of gravitation. However, at least it
is encouraging that some progress down that road presently seems to be taking place.
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Large-scale structure
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Abstract.
Recent observational surveys have made substantial progress in quantifying
the structure of the Universe on large scales. Galaxy density and galaxy
velocity fields show deviations from the predictions of a homogeneous and
isotropic world model on scales approaching one percent of the current hori—
zon scale. A comparison of the amplitudes in density and in velocity provides
the first direct dynamical evidence in favour of a high mean density similar
to that required for closure. The fluctuations observed on these scales have
the amplitude predicted by the standard Cold Dark Matter (CDM) model
when this model is normalised to agree with the microwave background fluc-
tuations measured on much larger scales by the COBE satellite. However,
a CDM model with this amplitude appears inconsistent with observational
data on smaller scales. In addition it predicts a scale dependence of fluctua—
tion amplitude which disagrees with that observed for galaxies in the APM
survey of two million faint galaxies. The COBE measurement also strongly
excludes the standard neutrino-dominated Hot Dark Matter model. Finally,
the baryon fraction in rich clusters of galaxies appears much larger than the
baryon fraction allowed in an Einstein—de Sitter universe by the theory of Big
Bang nucleosynthesis, and so conflicts with both models. Several modifica—
tions of these standard models have been proposed in order to avoid some of
these difficulties, but none avoids all of them.

1. Introduction

Current theories for the formation of structure in the Universe embrace aspects of quan-
tum gravity, of high energy particle physics, and of nonlinear gravitational collapse,
together with a lot of rather messy astrophysics. The global geometry of space-time pre-
sumably finds its origin at the Planck time, either as an initial condition, or as a result
of some consistency requirement in quantum gravity. The very large (possibly infinite)
length-scale characterising the curvature of the universe may reflect an initial phase of
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chaotic inflation, or may arise from a later inflationary phase occurring, for example, at
the symmetry breaking epoch of a Grand Unified Theory. The latter phase—transition
could also produce the baryon asymmetry of the Universe, as could processes at later
times. Quantum fluctuations present in the gravitationally dominant field during either
inflationary phase could create small-scale structure on the world model which might
ultimately develop into present-day galaxies and larger structures. As an alternative,
breaking of the symmetry of some non-dominant field to a state with non—trivial local
orientation properties might lead to topological defects, regions of space where topo-
logical constraints force the field to remain in its unbroken state. The energy density
associated with these defects could then induce gravitational perturbations in the dom—
inant component of the Universe and so lead to galaxy formation. Thus well before
the end of the first second, the structure and the particle and radiation content of the
Universe may all be determined [1].

A minute or so later the temperature drops to the point where atomic nuclei can
bind. The abundances of the light elements (2H, ”He, 'lHe and 7Li) produced at this time
can compared with observation. Good agreement is found for a simple model where the
early universe is effectively homogeneous and its baryon content is a few percent of that
required for closure. This has long been taken as one of the main pieces of evidence
in favour of the Hot Big Bang [1, 5]. The techniques needed for calculating the linear
evolution of fluctuations on an FRVV background are now well developed and can be used
to predict the statistical properties of angular fluctuations in the microwave background
[2]. The detection of such fluctuations by the COBE satellite has opened up what should
prove to be a very rich source of information about the contents and structure of the early
universe [3] However, comparison with observations of structure in the present universe
requires some treatment of the nonlinear evolution of structure, and in particular of
galaxy formation (since it is galaxies that we are able to observe). This has been done
most effectively through largeescale computer simulations, although such work has so far
treated only a subset of the relevant physical processes [4, 2].

2. The Standard Model

The complex of ideas briefly sketched in the last section has led to a. “standard” model for
the content and structure of the Universe. This model, in variety of forms, is currently
the subject of intensive exploration and testing. Its major elements may be enumerated
as follows:

1. The inflationary model indicates that the present Universe should be flat to a very
good approximation. Thus in the absence of a cosmological constant, the present
density parameter, 90 z 1 [1].

2. Comparison of light element abundances with cosmic nucleosynthesis calculations
leads to the conclusion that Oh, the mean baryon density in units of the critical
density, and h, Hubble’s constant in units of 100 km/s/Mpc, must satisfy, (1t =
00125 d: 0.0025 [5].

3. The bulk of the present matter content of the Universe must therefore be in some
nonbaryonic form, for example neutrinos with a mass of ~ 30 eV (Hot Dark Matter
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or HDM), or more exotic particles with smaller thermal motions, such as axions or

the lightest supersymmetric partner of known particles (generically such particles

are termed Cold Dark Matter, CDM).
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5. Observed structure grows primarily through gravitational instability, and the

galaxy distribution reflects the underlying mass distribution in the simple way

suggested by schematic models for galaxy formation [7]

In the absence of a cosmological constant, a flat universe can only approach consistency

with the inferred ages of globular star clusters if Hubble’s constant is small, h, N 0.5.

The evolution of structure has so far been studied most thoroughly in the gaussian case,

4a, for which a HDM model seems unable to produce the observed structure [4].

Recent progress in assessing the viability of this picture has come from a variety

of directions. Surveys of galaxy motions are now providing the first direct dynamical

evidence in favour of 90 ~ 1, but other observational developments sit less Well with these

ideas. Although the COBE fluctuation measurement appears to confirm that structure

grew through gravitational instability, the art Hal llm'tnntinn amplitude measured is not

in agreement with prior expectations for the simplest models“. l‘hr standard CDM the

result is a factor of two larger than predicted lmsml on the :41 i‘t‘ngth of galaxy clustering,

while for standard HDM it gives such a low amplitude that the model develops almost no

structure at all and can therefore be ruled out. (Neutrino dark matter may still be viable

if structure originates through cosmic strings or textures.) Another discrepancy comes

from measurements of galaxy clustering which imply a scaling of fluctuation amplitude

with spatial scale which is inconsistent with a standard CDM model. Finally, new

estimates of the baryon fraction in rich clusters of galaxies appear much too large to be

compatible with the baryon fraction allowed by nucleosynthesis constraints in an $20 : 1

universe The rest of this contribution amplifies these points.

3. S10 estimates from streaming motions

For the growing mode of linear density fluctuations in a dust-tilled FRW universe, the

present peculiar velocity of matter relative to the local fundamental (unperturbed) frame

is related to a quasi-Newtonian gravitational potential through:

2 _V(X> = gHO lgtfiolw
where x is a comoving spatial coordinate, HO and 00 are the present values of Hubble’s

constant and the density parameter, g is a dimensionless function well approximated by
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Recent improvements in observational techniques have made it possible to measure
distances to large numbers of galaxies. Subtracting H0 times the distance from the
observed recession velocity of an object gives the projection along the line—of-sight of the
difference beween the values of v at its position and at our own. Since V(x) is curl—free,
estimates of this quantity for a dense enough sample of galaxies suflice to reconstruct
the whole field up to a constant value. This constant is the peculiar motion of our
own Galaxy which can be measured directly through the dipole asymmetry it induces
in the apparent temperature of the microwave background. Hence the Observational
data permit the reconstruction of the full peculiar velocity field. Its divergence is then
009(Qo)6(x) % 98'66.

A galaxy overdensity field, 69(X), can be estimated quite independently by mea—
suring the spatial density of objects directly in a suitable (different) sample of galaxies.
Clearly, if the structures seen in the field, 69, correspond well to those seen in the field,
$2366, this suggests that the observed peculiar motions are indeed induced gravitation»
ally, that the measurements are not dominated by observational error, and that the
observable galaxy density field is closely related to the invisible mass density field. This
programme was first suggested and applied by [8]. There really does seem to be quite a
good correspondance between the density field measured by counting galaxies, and that
inferred from peculiar velocities. Furthermore, if complete samples of galaxies from cat—
alogues constructed using the Infrared Astronomical Satellite (IRAS) are used to define
the galaxy density field, the amplitudes also agree approximately i.c. (50(x) % 98'66(x).
Thus if IRAS galaxies trace the mass distribution (so that 69 m 6) we infer that (20 z 1.

In this subject it is often assumed that the galaxies are biased relative to the mass
in the sense that the contrast of their density field is enhanced; in the simplest model
6!, : ()6, where the bias constant is taken to be I) > 1 in order to account for the small
mass to luminosity ratios measured for galaxy clusters. In this model the comparison
of peculiar velocity and galaxy density fields leads to the estimate, (1 m 98“, for the
IRAS galaxy samples. Hence mass would need to be substantially more clustered than
the observed IRAS galaxies in order to produce the observed peculiar velocities in a
low density universe (mg. 90 ~ 0.2). This is difficult to reconcile with our present,
admittedly poor understanding of how galaxies form, and so the current situation is
usually taken as a positive indication in favour of S20 : 1. At present a number of long—
term projects are acquiring larger and more accurate datasets to carry out this test, so
the conclusions should become much more solid over the next few years.

4. The COBE amplitude measurement

The Differential Microwave Radiometer on board COBE has detected fluctuations on
all angular scales larger than the instrument’s resolution of 7°. Smoothed to 10° the
rms temperature fluctuation on the sky is 30 :l: ShK in the first year’s data, or one part
in 105 [9]. The spatial scale corresponding to 10° is considerably larger than any scale
for which we have an estimate of fluctuation amplitude from studies of clustering in the
present universe. Comparison of the COBE result with such data therefore requires not
only an assumption about the evolution of fluctuation amplitudes (so that the present
amplitude on the COBE scale can be inferred from the observed amplitude on the surface
where the radiation was last scattered, at a redshift between 30 and 103) but also an
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present universe. Comparison of the COBE result with such data therefore requires not
only an assumption about the evolution of fluctuation amplitudes (so that the present
amplitude on the COBE scale can be inferred from the observed amplitude on the surface
where the radiation was last scattered, at a redshift between 30 and 103) but also an
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assumption about the scaling of fluctuation amplitude with spatial scale. The time
evolution depends only on the global cosmological parameters, 90 and the cosmological
constant, A, but the spatial scaling depends in addition on the details of the fluctuation
generation mechanism, on the nature of the dark matter, and on the baryon density,
(19,. A further complication is that the COBE measurements could contain a significant
contribution from gravitational wave modes which would have no effect on structure
formation and hence would not be reflected in measurements of galaxy clustering.

In one of the announcement papers [9] the COBE team discussed the consequences
of their fluctuation measurement for the models of §2. For standard CDM models in
which inflation—generated gaussian fluctuations have the Harrison-Zel’dovich scaling of
amplitude with spatial scale, the COBE measurement implies that the rms amplitude
of mass fluctuations on small scales is about equal to the observed amplitude of galaxy
fluctuations, i.c. that the bias parameter, b ~ 1. This amplitude is almost exactly
that required in a CDM universe to produce the observed peculiar motions discussed in
the last section. However, it has generally been argued that substantially larger values
of b, (and hence smaller fluctuation amplitudes) are required for a flat universe to be
consistent with the observed dynamics of galaxy clustering on smaller scales and with
the observed, relatively low abundance of massive objects such as galaxy clusters [7, 10].
A dissenting opinion that 5 ~ 1 is actually required to explain the observed properties of
galaxy clustering was expressed in [11] and the situation is still somewhat controversial.
If it is accepted that CDM with I) ~ 1 is unacceptable, then a variety of possibilities have
been suggested which might reconcile the COBE observations with observed clustering
within a CDM—like model (see, for example [12]).

For the standard HDM model with H0 : 50 km/s/Mpc, with 90 : 1 contributed
predominantly by a single species of massive neutrino, and with the HarrisoneZel’dovich
spectrum of inflationary perturbations, the COBE amplitude implies an rms neutrino
density fluctuation from point to point in the present universe of only (62)”2 m 0.7
[13]. For such a small amplitude only a few percent of all the matter in the universe
is predicted to be in nonlinear collapsed objects by the present day, and virtually no
nonlinear objects should exist at redshifts of one or greater. This is clearly inconsistent
with the substantial structures seen in the present universe and with the existence of
quasars at redshifts approaching five.

In universes where fluctuations result from the presence of topological defects or
the realignment of oriental)le random fields (5.9. cosmic strings or textures) the present
nonlinear structure of the mass distribution is considerably more difficult to calculate
than in the gaussian fluctuation models just discussed. As a result it has not yet been
possible to compare their predictions for galaxy clustering and for the COBE data to
observation at the same level of precision as for the other models. At present it still
appears that these models may be viable [6].

5. The shape of the galaxy correlation function

The amplitude of fluctuations as a function of spatial scale can be estimated for the galaxy
distribution by measuring its spatial autocorrelation function. So far the most sensitive
estimate of this two—point statistic has come from the Automated Plate-measuring Ma-
chine (APM) survey which catalogued the positions of more than 2 X 106 galaxies over a
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large area of the southern sky [14]. Individual distances to these galaxies are not known.
However, the very large number of objects means that estimates of galaxy clustering
from their projected positions are still more precise than those obtained from the much
smaller samples for which complete three-dimensional information is available. The scal-
ing of fluctuation amplitude with spatial scale found from this survey is not consistent
with that predicted for the mass in a standard CDM model [14]. If the model is matched
to the data on scales where the amplitude is of order unity (~ 5h‘1Mpc), it predicts
fluctuations which are too weak on somewhat larger scales (~ ZOh‘IMpc). This is of—
ten stated as showing that standard CDM has too little power on large scales. In fact,
however, if the overall level of mass fluctuations is taken to be fixed by COBE, then the
problem seems rather to be that standard CDM predicts too much smallescale power.

The APM result has survived a number of challenges and seems to be supported
by similar results for a number of threedimensional catalogues. At present the latter
are less statistically significant than the original, and in addition their interpretation is
complicated by the distortion of the distribution which results from the peculiar velocities
of galaxies. Extensions of the CDM model which reconcile the CODE amplitude with the
dynamics of galaxy clustering generally change the scaling of fluctuation amplitude in a
way which makes it more compatible with the APM data [12]. An alternative resolution
of the difficulty may lie in the physics of galaxy formation. The assumption that 6” : [)6,
and thus that the shape of the galaxy correlation function should parallel that of the
mass7 is based on a. rather simple and schematic model for galaxy formation [7]. This
assumption does not hold in models where the formation of galaxies is modulated by
seine longerange nongravitational effect (for example, is inhibited or is stimulated by
radiation from nearby quasars). Such models can reproduce the shape of the APM
galaxy correlations Within a standard CDM universe [15].

6. The baryon fraction in rich clusters of galaxies

If the first two assumptions of the standard model of §2 are correct, then the fraction of
the matter in the universe which is baryonic is,

Fb : fl : 0.0125 i 0.0025 I262.
Q0

The largest objects for which it is possible to get reliable estimates both of total mass
and of baryon content are rich clusters of galaxies. These are the most massive quasi
equilibrium systems known, and baryons are observed within them both in the form of
stars within the individual galaxies, and in the form of a pervasive intergalactic medium
which is sufficiently hot that it emits X-rays. The total mass of a cluster can be obtained
using the virial theorem, or by applying the equations of hydrostatic equilibrium either
to the gas or to the galaxy population. The baryonic mass in stars can be estimated
from the Optical luminosity of the cluster. and the baryonic mass in hot gas from X—ray
imaging and spectroscopy. For the best observed rich cluster, the nearby Coma cluster,
the results found by applying standard techniques are,

MW = 7.4 x 101411—1MQ, M. = 3.2 x 101311-1Mg, My“. 2 5.6 x 101311-2-5MQ,
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where all three masses are estimated within a radius of 1.5h'1 Mpc and have errors of

20 to 30% [16]. Since some of the unseen dark matter might be made of baryons, we

then get a lower limit to the baryon fraction in the Coma cluster:

w. W a. _
FWD”... 2 Lil—9 = 0.043 + 0.07612 1'5.

1 lot

Although the observational uncertainties in this limit are substantial, it is clearly much

too high to be compatible with the baryon fraction in the standard model. Retaining

the standard model requires the total mass of the Coma cluster to be much larger than

is usually believed and the gas and star masses to be much smaller. Since Coma does

not appear to be in any way atypical, similar systematic errors would have to apply to

mass estimates in other clusters. One might hope to resolve this paradox by arguing

that baryons are preferentially concentrated into the centres of rich clusters during clus-

ter formation. Numerical simulations of cluster formation can put upper limits on the

enhancement attainable, and, for a region as large as that used above, the maximum

possible enhancement is a few tens of percent; indeed, most simulations of cluster for

mation conclude that the gas should end up slightly less concentrated than the galaxies,

thus making the discrepancy worse [17].

7. Conclusions

While the observational data reported in §3 tend to support the standard picture outlined

in §2, those discussed in §§4 , 6 disagree with various parts of it. The fluctuation amplr

tude measured by COBE rules out a standard HDM model with a Harrison—Zel’dovich

spectrum of gaussian initial fluctuations. A priori this is, of course, the most attractive

of all the models dominated by nonbaryonic dark matter. The corresponding standard

CDM model is also in trouble because CODE requires a higher normalisation of the flue

tuation amplitude than seems consistent with the abundance of rich galaxy clusters and

with the dynamics of galaxy clustering on scales of a few Mpc. The shape of the APM

galaxy correlation function also suggests the need for initial density fluctuations with

less smallescale power than the standard CDM model, and several modifications of the

model have been suggested which accomplish this (for example, replacing some of the

CDM by HDM, or adding an additional relativistic component such as nonthermalised

neutrinos [12]).
Unfortunately the difficulty highlighted in §6 applies in any Einsteinvde Sitter unr

verse and so to these modifications of the standard CDM model. Unless some flaw can

be found in the interpretation of the observational data, it forces the abandonment of:

1. the Einstein—de Sitter model, or

2. the standard theory of cosmic nucleosynthesis, or

3. the growth of structure through hierarchical clustering driven by gravity.

An example of the first way out is the introduction of a cosmological constant. In

an otherwise standard flat CDM model this allows a large value of F5 2 (lb/(20, a

correlation function shape consistent with the APM survey, and an age for the Universe

consistent with those of globular star Clusters despite a high value of Hubble’s constant.
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However, such a model does not produce large enough peculiar velocities to be consistent
with the data described in §3. An example of the third way out is explosive galaxy
formation. A first generation of objects (early quasars?) might produce hydrodynamic
flows which pile the baryonic gas into large-scale structures. These could then act as
accretion nuclei for the dark matter. Such a model is unattractive because it decouples
the properties of present large-scale structure from primordial density fluctuations. In
addition, the energetic shocks it requires are almost certainly inconsistent with the very
precise black—body spectrum and the relative weak angular fluctuations measured by
COBE. No current model appears consistent with a straightforward interpretation of all
the observational data.
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Exact solutions and their interpretation

G. Neugebauer

MaxePlanck»Gesellsehatt, Arbeitsgruppe “Gravitationstheorie” an der
FriedricheSchillereUniversitat, MawW'iereplatz l, DeGQOO Jena, Germany

Sometimes the search for exact solutions resembles the attempt to set up a record in
sports: The more Free parameters the better the solution (the more famous the author).
This review article is not meant to report on new records born or published at GRl3. The
chairperson rather wants to emphasize the contriluitions to new methods, interpretations
and interesting mathematical structures of Lorentzian manifolds,

61 authors contributed to the Workshop, lti of them were asked to give an oral
presentation (01' 10 or 20 minutes), the other ones had the opportunity to display posters.

1. New techniques and solutions

The classical Kcrr-Schild ansalz

Midi/Xi : rim/t + Allow? w

where 710/; is flat and the perturbation hm is the square ot a null vector, is an example
of a pencil of metrics that is a, solution to the lielrl equations for all values ol‘ the para,
meter A. R.P. KERR (speaker). Z. PERJE/S and C. HOENSELAILRS (l99‘2) considered a,
generalisation of Kerr—Scliild by investigating all yeah), where the base metric ’iafi must
be itself an Einstein space, but need not be flat, and obtained the following theorem:
A necessary and sufficient condition for the determinant of a pencil to be independent of
A,

l Una , Mm? l : l was l
is that the matrix H : (hunt/0(3) should satisfy I]3 : 0. When [I2 : 0 they get the usual
KS Ansatz. Otherwise, the metric and its inverse can be oppressed (is

flan = 7705 — Micang + nohg)

906 = 7,0,3 + Misting + nah/3) + Virgil-‘3

where 11.11 = 1.16.10 = 16.71 = 0.
A typical example of a metric close to this type is the Goldberg—Kerr type III space (Kerr
and Goldberg 1961), which can be thought of as such a perturbation of a flat space, but
only if quadratic perturbations are allowed.

(152 = QdQ: —- ‘Zdudu + 2/\kn + AZHQL‘E.
.ux tnnn n'xn n |.I:_I_:._ . r . 1
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The authors think it unlikely that there are any significant examples of linear perturba—
tions that are not Kerr—Schild. There are two simple Ansatze where the perturbations
are functions of two independent orthogonal vectors. For the first there exists a pair pa
and qa such that

shall) = 77M + MPaqsa + 40116) + VWWHPOW ,
WW = 72“” — Mfr/l + 4°19”) + A"'(zf’inakzaqa .

This has been studied by Bonanos (1991), but there do not appear to be any nontrivial
Einstein spaces of that type known. For the second,

gag“) nay; + Micanfi + Tia/Cg) + A2A(n”na)kakfi,
ga’glA) : 77‘”; W Mkanfi + rig/9’3) + /\2(1 7 A)(n”n,,)kak3 ,

where k.k : n.k : 0 and A is arbitrary. Using Reduce on a Sparcstation they estab-
lished the following theorem:
Given any quadratic pencil of the type in the last equation, when: the base space 77M? is
flat, one of the following is true: (i) A : 0, (ii) A : 1, 07' (iii) k is a geodesic principal
null vector of the curvature for all values of the pencil parameter. The authors emphar
sized that they did not know whether the cases (i) and (ii) allow [0 to be non geodesic
or whether there are any interesting solutions of these types. Any metric in the third
class must either be one of those considered by Newman and Tamburino, 0r algebraically
special, in which case it must be of the Kundt class.

A modification of an integration formalism was presentes by SB. EDGAR (1992),
who analysed the different stages of fields integration procedure (Held 1974) in the
G.H.P. formalism and effected some improvements.

In order to describe compact objects in astrophysics more effort must be made
to analyse the structure of the Einstein equations with (more or less) realistic source
terms. For nearly 25 years the welleknown Wahlquist solution (Wahlquist 1968) for a
rotating perfect fluid waits for interpretation, i.e. for a matching to an exterior vacuum
field. M. TINTO and H.D. WAHLQUIST (speaker) did not solve this problem (Tinto
and Wahlquist 1992), but they presented, in computcrgeneratcd imbedding diagrams,
configurations of rotating rigid bodies encompassed by the VVahlquist solution. The coir
figurations include single bodies with simple, approximately spheroidal, exterior surfaces
(1) : 0) having either oblate or prolate intrinsic geometry. For certain values of the solu—
tion parameters, the body becomes stretched along the axis of rotation into more bizarre,
dumbbell—like shapes with regions of negative Gaussian curvature. As the parameters
are varied further, these solutions develop into configurations with an arbitrary number
of disjoint bodies symmetrically distributed on the rotation axis.

There was only one contribution to wormholes in our workshop. E.E. DONETS
and D.V. GAL’TSOV (1992) showed that for some value of the cosmological constant the
negative semi-definite action wormhole solutions of the self-consistent Einstein—Yang-
Mills SU(2) system form a continuous family, i.e. the separation constant is allowed
to take an arbitrary value on the interval [0,1]. Their considerations complement the
discrete wormhole family found by Hosoya.~Ogura, Verbin—Davidson and S. Rey. For
each member of the new family the period of the square of the scale factor coincides
exactly with the period of the Yang—Mills function.
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F.J. CHINEA (1992) presented a new formalism (developped by himself and
L.M. GONZALEZ—ROMERO) (Chinea and Gonzales-Romero 1992) for treating the grav—
itational fields of stationary, axially symmetric differentially rotating perfect fluids.
Among the new solutions there is an interior metric of a rotating fluid in irrotational
motion (Chinea and Gonzales-Romero 1990).

A radiating body with heat flow was considered by D. KRAMER (1992). He
matched a spherically symmetric time-dependent interior metric to the (exterior) Vaidya
solution. The regular bounded source consists of a shearfree fluid with radial heat flow.
In the remote past the solution coincides with the interior Schwarzschild solution, the
mass parameter of which is now taken as a function of time. The evolution as deter-
mined by the junction conditions (Santos 1985) leads to a collapsing model; the area of
the boundary surface decreases monotonically. Finally, the model runs into a physical
singularity.

The gravitational fields of rigidly rotating perfect fluids with nonlinear Born-Infeld
electromagnetism were investigated by H. SALAZAR (speaker) and R. CORDERO (1992).
They found two type D solutions for the equation of state 6 + 3p : constant (Salazar et
al. 1987).

The collapse of a charged body with vanishing radial pressure was studied by
C.H.A. BECERRA and CA. LOPEZ (speaker) (1992).

J. GRIFFITHS (speaker) and P.C. ASHBY (1992) reported on colliding plane wave
solutions. In the colinear case the main equation is linear but the subsidiary equations
are not. GRIFFITHS, HOENSEIAERS and ASHBY adopted an unconventional coordinate
system in which an explicit integral of the subsidiary equations can be obtained for a
general solution of the main equation. Further exact solutions for colliding nonrcolinear
gravitational waves coupled with fluid motions have been obtained by GRIFFITHS and
ASHBY by relating the potential of Chandrasekhar and Xanthopoulos t0 the solution-
generating potential of Wainwright, lnce and Marshman (1979).

Soliton methods are still used to generate asymptotically flat gravitational fields
and to interprete the source afterwards. Using Alekseev’s Inverse Scattering Method
A.D. DAGOTTO, RJ. GLEISER (speaker) and 0.0. NICASIO (1992) obtained a two
soliton solution to the Einstein-Maxwell equations representing an isolated cosmic string
in the presence of a pair of solitonic pulses of electro—gravitational radiation. The gravi~
tational field of a rotating mass endowed with a magnetic dipole moment was presented
by V.S. MANKO (speaker) and NR. SIBGATULLIN (1992).

2. Mathematical structures

The study of symmetries in General Relativity is often done on an ad hoc basis. The
idea of G. HALL’S (1992) lecture was to show how the study of symmetry in General
Relativity can be accomplished in quite general terms and, whilst on a more systematic
mathematical basis, can be very useful in establishing direct results for use in the study
of exact solutions of Einstein’s equations. lsometries, homotheties, conformal and affine
symmetries as well as curvature collineations were all covered and attention was paid to
the orbit structure, the isotropy structure and the algebraic consequences for the energy—
momentum and Weyl tensors. In particular, the precise nature of the metrics that admit
certain symmetries can be established in many cases (Hall and da Costa 1991). The
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maximum dimension of the algebra of each of the above symmetry vector fields can also
be found by these techniques. A more precise statement of the Bilyalov—Defrise—Carter
theorem regarding the conformal reduction of conformal vector fields to Killing vector
fields also results.

A wide variety of exact solutions (e.g. all the solutions admitting a group G3 of
motions acting on 2—dimensional orbits, Robertson-Walker, de Sitter etc.) belong to the
Warped space-time familyl. J. CAROT (speaker) and J. DA COSTA (1992) provided
invariant characterisation of Warped space—times in terms of the existence of vector
fields with special properties, and put forward a classification scheme based on such
properties. Thus, they defined three classes; Class A1, formed by all spaceetimes which
admit a global, nowhere zero, unit vector field that is geodesic, shearfree, hypersurface
orthogonal and such that the gradient. of its expansion is orthogonal to it. Class A2
consists of all those spaceetimes which also admit a global, nowhere zero, unit vector field
that is shearfree, noneexpanding, hypersurface orthogonal and such that its acceleration
is a gradient. Finally, Class B contains all those space—times admitting two global null,
nowhere zero, linearly independent vector fields whose covariant derivatives take on a
precise and well defined form. The curvature structure was looked into showing that
all Petrov and Segre types may occur in general, but that they are highly restricted
and easily charaterizable in most cases. They also studied the problem of the isometry
group that each class of warped spaceetirne may admit. giving expressions for the Killing
vector fields (KV‘s) in terms of the KV’s of (MI, M) and the conformal Killing vectors
of (Mg, hg). The maximal dimension of the Lie algebra of motions was studied, showing
that it is 10 for class A1 (de Sitter models), 7 for class A; (either the static Einstein
Universe, or a pure radiation field (Petrov)), and 6 for class B.

A group of projective collineations is a continuous group of mappings that map
geodesic curves to geodesic curves without necessarily preserving affine parameterisa—
tion. A. BA RNES (1992) showed that the only fourdimensional proper Einstein spaces
admitting a. proper projective collineation are Petrov Type N or have constant curvae
ture. Furthermore the vector field {1' generating the collineation is (up to the addition
of a Killing vector field) the principal null vector of the VVeyl tensor and is a gradient
vector field. For the vacuum case a projective ('ollineation is obviously both a curvature
and a Ricci collineation (Katzin 1969). In this case the spaceetirne admits a constant
vector field and so is a pp wave or is flat.

The scalar invariants of the Riemann tensor are important in general relativity
since they allow a manifestly coordinate invariant characterization of many geometrical
properties of space—times in particular the existence of curvature singularities and the
question whether two space-time metrics are equivalent. Most attention has been directed
to the fourteen second—order invariants. Two contributions were devoted to this set of
problems. J. CARMINATI, R.G. MCLENAGHAN (speaker) and PE. WIEBE (1992)
reported on one of their recent papers (Carminati and McLenaghan 1991), in which they
constructed a set of invariants satisfying the following properties:

(i) The set consists of invariants of lowest possible degree and
(ii) it contains a minimal independent set for any Petrov type and for any specific choice

1 Given two manifolds (one Lorentzian and one Riemannian) (1M1,h1) and (M2,h2) and given a
smooth function 0 : Ail—QR; one can build a new Lorentz manifold (NI, 9) by setting M = M1 >< M2 and
g : h1 EB e20h2. If dim M’ = 4, (1W. 9) is called a “\Varped space-time”
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of Rieci tensor type.

This was possible by adding a new complex mixed invariant of degree five to the set of
Géhéniau and Debever including a real invariant of degree four that they had excluded.
The resulting set contains the equivalent of sixteen real invariants. The lengthy algebra
required to obtain the new invariant was performed using the npspinor package (Czapor,
McLenaghan and Carminati 1993) in the Maple computer algebra system. The procedure
used leads naturally to invariants of lowest possible degree. The authors establish that
the set of invariants contains complete minimal sets for the Einstein—Maxwell and perfect
fluid eases.

C.B.G. MCIN’I'OSH’S (1992) main purpose was to discuss the geometrical signifi—
cance of the three mixed invariants of the Riemann tensor. Furthermore, he was able to
show that the fourteen invariants can all be written in the form trace{A.transpose{B))
where A and B are 3 X 3 complex matrices formed from the spinor components of the
Riemann tensor; thus the invariants are easily calculated using a computer algebra pro,
gram. Further comments were made about (a) the situation in degenerate cases, (b) the
invariants when the metric is complex and (c) the general problem of classifying metrics.
Finally, some examples were given.

The author of this review article gave a brief report on a global exact solution
describing the gravitational field of a rotating disc of dust. R. Meinel and he found this
solution by applying the inverse scattering method. it contains the BardeeneWagoner
approximative solution.
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Complex methods/twistors/new Hamiltonian variables

Carlos N. Kozameh

FaMAF, Laprida 854
Universidad Nacional de Cordoba
5000 Cordoba, Argentina

Abstract.
Papers presented at this session were divided in two areas; one covering com-
plex methods and Twistor theory and the other devoted to new hamiltonian
variables in general relativity. The topics discussed ranged from new so-
lutions in classical relativity to degeneracy states in the loop variables for
quantum gravity.

The use of complex methods, and in particular the concept of self—duality, plays
a very important role in different areas of general relativity. Using fundamentally com—
plex theories one obtains the general solution of the self—dual (or anti self—dual) vacuum
equationsfl7 2]. Self-dual SL(2,C) connections are the basic variables in the Ashtekar
formulation of canonical gravity[3]. The list of applications of these methods is extensive
and this review does not aim to cover the subject exhaustively. Rather, the focus will
be on the topics presented at the A2 workshop.

The talks given at this session reflected a growth in the range of applications of
complex methods in general relativity, both at the classical and quantum level. Since
papers on new hamiltonian variables did not have a direct connection to other papers
presented, the workshop was split in two parts. This review reflects this fact.
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1. Complex Methods and Twistors

R. Penrose presented a new twistorial approach to the Einstein vacuum equations[4].
One of the main goals of twistor theory has been to obtain the general solution of the
full vacuum equations. Although it was shown in 1976 that twistors describe the self-dual
solutions of these equations[5], the general solution has remained elusive.

As an introduction, a brief review of the main results of twistor theory, a com-
plex, non-local, and mathematically sophisticated theory, was given. In particular, a
description of null geodesics, momentum, angular momentum, and charges for helicity %
massless fields was presented.

The Rarita-Schwinger equation, the field equation for helicity g massless fields,
written in terms of a two spinor valued connection was used as the starting point for
the new ideas relating twistors to the Einstein vacuum equations. Using the following
results:

1. Twistors describe the ch_arges for helicity % massless fields in M space—times.

2. The Einstein vacuum equations are the consistency conditions for the Rarita—
Schwinger equation in curved space—times.

R. Penrose suggested the construction of the twistor space for vacuum space-times as the
space of of spin % charges. The second step would be the reconstruction of the underlying
space—time in terms of the twistor geometry.

Although details of this construction were not presented, the main idea is to gen-
eralize the spin g fields to self—dual connections on SL(3,C) bundles and then to define
the twistors as source charges for those connections.

L. Mason presented a broad review of twistor theory and its main goal - to refor—
mulate the laws of basic physics in terms of twistor geometry.

Part of this review covered an area where twistor theory has been very successful;
integrable systems. It is well known that the general solutions of self—dual Yang—Mills
and Einstein equations can be described in terms of twistors[6]. By imposing symmetry
reductions on the self—dual Yang-Mills equations one obtains almost all integrable equa-
tions in two dimensionsm. Thus, twistors play an active role in the study of integrable
systems providing a geometric generalization of the inverse scattering transform for these
equations.

The review also included some of the various approaches to the study of the full
Einstein vacuum equations. The main idea here is to obtain the general solution for
General relativity in terms of these non-local, complex variables. Although none of the
several approaches presented (Hypersurface Twistors, Space of Complex Null Geodesics
and Light Cone Cuts) have yet solved the problem, there is work in progress.

T. Newman presented an outline of the basic ideas an results of the Theory of Light
Cone Cuts of Null Infinity[8]. The goal of this formalism is to reformulate the vacuum
Einstein equations in terms of these new variables. The main motivation is to find the
general solution of these equations which represent regular, radiative space—times. It is
worth mentioning that a solution of this class is yet to be obtained.

After a brief review of the kinematical properties of the light cone cuts (LCC), T.
Newman showed that the reformulation of the Einstein vacuum equations in terms of
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the holonomy operator does not yield meaningful results unless the LCC are treated as
basic variables in the theory[9]. Thus, one is forced to find field equations for the LCC
which should reflect the conformal invariance of these variables.

An explicit relationship between the LCC and the holonomy operator was pre-
sented. This relation is then used in the field equations for the holonorny operator to
yield, after involved calculations, the sought for equations for the LCC[10]. Although
at present the equations are only known as a perturbative series, up to second order
they are equivalent to the Bach equations. It is worth mentioning that the vanishing of
the Bach tensor is essentially the conformal Einstein equations[ll]. Thus, the formalism
seems to provide a natural splitting of the vacuum equations into a conformal invariant
equation for the LCC and an equation for the conformal factor.

Another complex object which has played a relevant role in general relativity is the
self—dual spin connection. First introduced by J. Plevanski to be used as a primary field
variable[12], it was later rediscovered by others[l3] and applied in different formalisms[3,
14, 15]. In this session R. Capovilla presented, in collaboration with J. Plevanski, a very
simple ansatz on the self-dual spin connection to construct a space—time of the Kasner
type. This result is a first step to produce explicit solutions of the field equations using
this connection as the basic variable[16].

Other results on complex methods were reported by F. Estabrook, E.Wilson and
C. Sobczyk.

F. Estabrook, in collaboration with H. Wahlquist, showed that the immersion of
four dimensional Riemannian geometries in a lO—dim euclidean space produce twistor
like bundles. Cartan analyses for Ricci fiat spaces, Einstein-Maxwell theory, as well as
other immersed geometries were presented[17].

E. Wilson showed[l8] that, given a CR geometry with an integrable distribution
of two—spaces, one can construct an associated family of space times with a null, shear-
free congruence. E. Wilson and l. Robinson considered space—times arising from Cauchy
Riemann geometries of maximal symmetry. The class of solutions so obtained contains
the Taub—NUT geometry and the Hauser twisting type N solutions as a limiting case.

Finally, G. Sobczyk showed that using Clifford’s geometric algebra one can have
an unambiguous geometric interpretation of quantum field theory[19].

2. New Hamiltonian variables

In the Ashtekar formalism for canonical relativity the usual energy and diffeomorphic
constraints are supplemented by three SU(2) gauge conditions, thus yielding seven con-
straint equations. C. Rovelli reported work with T. Newman on a new set of canonical
variables that solve six of the seven constraints[20]. This result arises as an application
of a powerful method developed to obtain “the true degrees offreedom” for Hamiltonian
systems with first class constraints[21].

The essential idea is, for these systems, to solve the constraint equations via a
Hamilton - Jacobi technique. The formulation provides both the algebraic solution to
the constraint equations and the complete set of canonical variables that have vanishing
Poisson brackets with the constraints.

When the formalism is applied to Maxwell theory, the gauge invariant observables
obtained are two scalar functions that define a congruence of curves. These lines have a
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straightforward physical meaning: they are the Faraday electric lines of force. For SU(2)
Yang-Mills theory one obtains three non-abelian generalizations of Faraday’s lines. They
are three congruences of pairs of lines which capture the degrees of freedom of the theory.

Since the constraint equations in the Ashtekar formulation are the SU(2) Yang-
Mills plus the Hamiltonian constraint, the same three congruences automatically solve
the diffeomorphic and gauge constraints for general relativity.

One should point out that if the energy constraint could also be solved, one could
obtain the general solution of the Einstein equations.

J. Frauendiener reported on a characteristic initial value formulation of general
relativity using a formalism developed by R. Penrose[22]. It is known that the “heart”
of the Einstein vacuum equations in the N-P formalism are the spin-2, zero rest mass
equation VfiAIJABCD : 0. In 1966, R. Penrose showed how to obtain a formal solution of
this equation from data given on an initial null cone. At the workshop, J. Frauendiener
presented a new formulation of this problem together with an algorithm to obtain the
solution which can be implemented on an algebraic manipulation program. Apart from
its own relevance, these new results could also be useful to recent work on canonical
formalism on null surfaces using the new variablesl23].

Properties of the holonomy group for SL(2,C) Yang » Mills connection were ad—
dressed by J. Golberg and T. Jacobson at their respective presentations.

The parallel propagator of SL(2,C) (or SU(2)) Yang—Mills connections associated
with closed paths plays an important role in the hamiltonian formulation of general
relativity using the Ashtekar variables. The collection of these propagators for arbitrary
loops form the holonomy group. Denoting each element by h7(a:) with a: the starting point
of the loop '7, one can show that h, transforms covariantly under a gauge transformation.
Moreover, one can also show that the trace of h.Y is a gauge invariant operator. Thus,
these variables automatically solve the gauge constraints of the Ashtekar formalism.

C. Rovelli and L. Smolinl24] proposed to use the pair tT‘ULY) and tr(a“h) with a“
the spinorial triad, as new coordinates on the phase space instead of the usual triad and
SL(2,C) connection. A natural question then arises. Is there a one to one correspondence
between the two set of variables?

J. Goldberg reported on work together with J, Lewandowski and Stornaiolo ad-
dressing this questionl25]. They showed that this correspondence is unique for generic
connections. Degeneracies can only occur if the holonomy group is in the subgroup of
null rotations of SL(2,C). By degeneracies the authors mean either 1) a lack of unique-
ness in determining a gauge inequivalent connection and triad, or 2) when at a point in
phase space there is a direction orthogonal to the gradients of the tr(h7) and tr(a”h)
functionals and this direction is transverse to the orbits of the gauge group,

In addition, the authors showed that the holonomy group based at a given point
2:0 is time-independent in vacuum general relativity. They also pointed out that the
holonomy group is invariant under spatial diffeomorphisms and SL(2,C) gauge transfor—
mations that are the identity at 930. Thus, the holonomy group qualifies as an observable
in general relativity.

T. Jacobson presented work done in collaboration with J. Romano providing further
analyses of observables in GR. They gave an alternate proof of the results of J. Goldberg
et at using the 4-dim self-dual connection.
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It is known that if this connection corresponds to a vacuum space-time then the

vanishing of the trace free part of the Ricci tensor implies that its curvature two form is

self-dual. Writing these equations in a suitable gauge one shows that if the connection

belongs to a. given subalgebra at some initial time, then the subalgebra will be preserved
under time evolution. Since only the vanishing of the trace free part of the Ricci tensor
is used in the proof, as a bonus, these results extend those given in [25] to include
space—times with cosmological constant.

(The same analysis also shows that in the presence of matter the given subalgebra
will not be preserved under time evolution.)

HoWever, since the self-dual connection is not gauge invariant, it does not qualify
as an observable. Following J. Goldberg et al and using the reduction theorem for a.
connection on a principal fiber bundle they also showed that the holonomy associated
with this connection is preserved under time evolution.

In addition, T. Jacobson presented new observables that arise when the structure
of the holonomy group is not equal to all of SL(2,C). The local forms of the solutions for
those reduced holonomy groups were also given[28].

Further results on the loop representation were given by J. Pullin reporting on work
together with B. Brugmann[26]. The authors presented a simple and novel version of the
constraint equations in the loop representation. To construct this constraint operator
they introduced the area derivative in loop space. The action of this operator is obtained
by first building wavefunctions based on analytic knot invariants and then applying the
area derivative on each knot. The method presented provides another tool to search for
physical states of the quantum theory of gravity[27].

The last talk, given by G. lmmirzi, addressed the issue of reality conditions for
degenerate metrics. The author argued that when degeneracy does occur, one cannot in
general impose consistently those conditions. Thus, the theory describes complex general
relativity [29].

References

[1] K0 M, Ludvigsen M, Newman E T, and Tod K P 1981 Phys. Rep. 71, 53.

[2] Penrose R and McCallum M A H 1973 Phys. Rep. 6C, 242.

[3] Ashtekar A 1991 Lectures on Non-pertarbative Canonical Gravity, (Singapore: World

Scientific).
[4] Penrose R 1991 Gravitation and Modern Cosmology (London: Plenum)

[5] Penrose R 1976 Gen. Rel. Grav. 7, 31-52.

[6] Ward R S 1981 Comm. Math. Phys. 80, 563-74; 1983 Gen. Rel. Grav. 15, 105-9; 1984
Nucl. Phys. B 236, 381-396; 1985 Phil. Trans. R. Soc. A 315, 451—7.

Woodhouse N M J 1987, Class. Quantum Grav. ,4, 799-814.

[7] Mason L and Sparling G 1992 J. Geom. Phys. 8, 243-271; 1989 Phys. Lett. A 137 (1,2),

29-33.
Woodhouse N and Mason L 1988 Nonlinearity 1, 73-114.

[8] Kozameh C N and Newman E T 1986 Topological Properties and Global Structure of

Space-Time, Plenum, 121‘, 1983 J. Math. Phys. 24, 2481.

[9] Kozameh C N, Lamberti P W, and Newman E T 1991 Ann. Phys. 206, 193.

Complex melhods/lwistors/new Hamiltonian variables 351

It is known that if this connection corresponds to a vacuum space-time then the

vanishing of the trace free part of the Ricci tensor implies that its curvature two form is

self-dual. Writing these equations in a suitable gauge one shows that if the connection

belongs to a. given subalgebra at some initial time, then the subalgebra will be preserved
under time evolution. Since only the vanishing of the trace free part of the Ricci tensor
is used in the proof, as a bonus, these results extend those given in [25] to include
space—times with cosmological constant.

(The same analysis also shows that in the presence of matter the given subalgebra
will not be preserved under time evolution.)

HoWever, since the self-dual connection is not gauge invariant, it does not qualify
as an observable. Following J. Goldberg et al and using the reduction theorem for a.
connection on a principal fiber bundle they also showed that the holonomy associated
with this connection is preserved under time evolution.

In addition, T. Jacobson presented new observables that arise when the structure
of the holonomy group is not equal to all of SL(2,C). The local forms of the solutions for
those reduced holonomy groups were also given[28].

Further results on the loop representation were given by J. Pullin reporting on work
together with B. Brugmann[26]. The authors presented a simple and novel version of the
constraint equations in the loop representation. To construct this constraint operator
they introduced the area derivative in loop space. The action of this operator is obtained
by first building wavefunctions based on analytic knot invariants and then applying the
area derivative on each knot. The method presented provides another tool to search for
physical states of the quantum theory of gravity[27].

The last talk, given by G. lmmirzi, addressed the issue of reality conditions for
degenerate metrics. The author argued that when degeneracy does occur, one cannot in
general impose consistently those conditions. Thus, the theory describes complex general
relativity [29].

References

[1] K0 M, Ludvigsen M, Newman E T, and Tod K P 1981 Phys. Rep. 71, 53.

[2] Penrose R and McCallum M A H 1973 Phys. Rep. 6C, 242.

[3] Ashtekar A 1991 Lectures on Non-pertarbative Canonical Gravity, (Singapore: World

Scientific).
[4] Penrose R 1991 Gravitation and Modern Cosmology (London: Plenum)

[5] Penrose R 1976 Gen. Rel. Grav. 7, 31-52.

[6] Ward R S 1981 Comm. Math. Phys. 80, 563-74; 1983 Gen. Rel. Grav. 15, 105-9; 1984
Nucl. Phys. B 236, 381-396; 1985 Phil. Trans. R. Soc. A 315, 451—7.

Woodhouse N M J 1987, Class. Quantum Grav. ,4, 799-814.

[7] Mason L and Sparling G 1992 J. Geom. Phys. 8, 243-271; 1989 Phys. Lett. A 137 (1,2),

29-33.
Woodhouse N and Mason L 1988 Nonlinearity 1, 73-114.

[8] Kozameh C N and Newman E T 1986 Topological Properties and Global Structure of

Space-Time, Plenum, 121‘, 1983 J. Math. Phys. 24, 2481.

[9] Kozameh C N, Lamberti P W, and Newman E T 1991 Ann. Phys. 206, 193.

Complex melhods/lwistors/new Hamiltonian variables 351

It is known that if this connection corresponds to a vacuum space-time then the

vanishing of the trace free part of the Ricci tensor implies that its curvature two form is

self-dual. Writing these equations in a suitable gauge one shows that if the connection

belongs to a. given subalgebra at some initial time, then the subalgebra will be preserved
under time evolution. Since only the vanishing of the trace free part of the Ricci tensor
is used in the proof, as a bonus, these results extend those given in [25] to include
space—times with cosmological constant.

(The same analysis also shows that in the presence of matter the given subalgebra
will not be preserved under time evolution.)

HoWever, since the self-dual connection is not gauge invariant, it does not qualify
as an observable. Following J. Goldberg et al and using the reduction theorem for a.
connection on a principal fiber bundle they also showed that the holonomy associated
with this connection is preserved under time evolution.

In addition, T. Jacobson presented new observables that arise when the structure
of the holonomy group is not equal to all of SL(2,C). The local forms of the solutions for
those reduced holonomy groups were also given[28].

Further results on the loop representation were given by J. Pullin reporting on work
together with B. Brugmann[26]. The authors presented a simple and novel version of the
constraint equations in the loop representation. To construct this constraint operator
they introduced the area derivative in loop space. The action of this operator is obtained
by first building wavefunctions based on analytic knot invariants and then applying the
area derivative on each knot. The method presented provides another tool to search for
physical states of the quantum theory of gravity[27].

The last talk, given by G. lmmirzi, addressed the issue of reality conditions for
degenerate metrics. The author argued that when degeneracy does occur, one cannot in
general impose consistently those conditions. Thus, the theory describes complex general
relativity [29].

References

[1] K0 M, Ludvigsen M, Newman E T, and Tod K P 1981 Phys. Rep. 71, 53.

[2] Penrose R and McCallum M A H 1973 Phys. Rep. 6C, 242.

[3] Ashtekar A 1991 Lectures on Non-pertarbative Canonical Gravity, (Singapore: World

Scientific).
[4] Penrose R 1991 Gravitation and Modern Cosmology (London: Plenum)

[5] Penrose R 1976 Gen. Rel. Grav. 7, 31-52.

[6] Ward R S 1981 Comm. Math. Phys. 80, 563-74; 1983 Gen. Rel. Grav. 15, 105-9; 1984
Nucl. Phys. B 236, 381-396; 1985 Phil. Trans. R. Soc. A 315, 451—7.

Woodhouse N M J 1987, Class. Quantum Grav. ,4, 799-814.

[7] Mason L and Sparling G 1992 J. Geom. Phys. 8, 243-271; 1989 Phys. Lett. A 137 (1,2),

29-33.
Woodhouse N and Mason L 1988 Nonlinearity 1, 73-114.

[8] Kozameh C N and Newman E T 1986 Topological Properties and Global Structure of

Space-Time, Plenum, 121‘, 1983 J. Math. Phys. 24, 2481.

[9] Kozameh C N, Lamberti P W, and Newman E T 1991 Ann. Phys. 206, 193.



352

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]

General Relativity and Gravitation Z 992

Iyer S, Kozameh C N, and Newman E T 1992, J. Geom. Phys. 8,195-209.
Kozameh C N, Newman E T, and Tod K P 1985 Gen. Rel. Grav. 17, 343.
Plebafiski J F 1977 J. Math. Phys 18, 2511; J. Math. Phys 18, 2395.
Samuel J 1987 Pramana 28, L429.
Jacobson T and Smolin L 1987 Phys. Lett. B 196, 39; 1988 Class. Quantum Grav. 5, 583
Capovilla R, Dell J, and Jacobson T 1991 Class. Quantum Grav. 8, 59; 1989 Phys. Rev.

Lett. 63, 2325.
Kozameh C N and Newman E T 1991, Gen.Rel. Grav. 23, 87.
Capovilla. R and Plebanski J F 1993; J. Math. Phys 34, 130.
Estabrook F and Wahlquist H 1991, Class. Quantum Grav. 8, L151; 1989, Class. Q. Grav

6, 263.
Yang, K. 1992, Exterior Differential Systems and Equivalence Problems, Kluwer.
Wilson E and Robinson 1 1992, University of Dallas preprint.
Sobczyk G 1990 Clifford ALgebras and their Applications in Mathematical Physics, eds.

J Chisholm and A Common (Reidel Pub Co.) pp 227-244.
Newman E T and Rovelli C 1992 Hamilton Jacobi theory for constrained systems and gauge

invariant degrees of freedom in general relativity and Yang—Mills theory, University of
Pittsburgh preprint; 1992 to appear in Phys. Rev. Lett..

Goldberg J N, Newman E T, and Rovelli C 1991 J. Math. Phys. 32, 2739.
Komar A 1978 Phys. Rev. D 18, 1881.
Kuchar K 1972 J. Math. Phys. 13, 758.
Penrose R 1966 Perspectives in Geometry and Relativity, ed. B. Hoffman (Indiana. Univ.

Press).

Goldberg J N, Robinson D C, and Soterou C 1992 Class. Quantum Grav. , to appear.
Rovelli C and Smolin L 1990 Nucl. Phys. B 331, 80.
Goldberg J N, Lewandowski J, and Stornaiolo C 1991 Degeneracy in Loop Variables,

Syracuse University preprint.
Briigmann B and Pullin J 1991 On the constraints of quantum gravity in the loop repre-

sentation, Syracuse University preprint.

Briigmann B, Gambini R, and Pullin J 1992 Phys. Rev. Lett. 68, 431.
Jacobson T and Romano J 1992 The spin holonomy group in general relativity, University

of Maryland preprint.

Immirzi G 1992 The reality conditions for the new canonical variables of general relativity,
Universita di Perugia preprint.

352

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]

General Relativity and Gravitation Z 992

Iyer S, Kozameh C N, and Newman E T 1992, J. Geom. Phys. 8,195-209.
Kozameh C N, Newman E T, and Tod K P 1985 Gen. Rel. Grav. 17, 343.
Plebafiski J F 1977 J. Math. Phys 18, 2511; J. Math. Phys 18, 2395.
Samuel J 1987 Pramana 28, L429.
Jacobson T and Smolin L 1987 Phys. Lett. B 196, 39; 1988 Class. Quantum Grav. 5, 583
Capovilla R, Dell J, and Jacobson T 1991 Class. Quantum Grav. 8, 59; 1989 Phys. Rev.

Lett. 63, 2325.
Kozameh C N and Newman E T 1991, Gen.Rel. Grav. 23, 87.
Capovilla. R and Plebanski J F 1993; J. Math. Phys 34, 130.
Estabrook F and Wahlquist H 1991, Class. Quantum Grav. 8, L151; 1989, Class. Q. Grav

6, 263.
Yang, K. 1992, Exterior Differential Systems and Equivalence Problems, Kluwer.
Wilson E and Robinson 1 1992, University of Dallas preprint.
Sobczyk G 1990 Clifford ALgebras and their Applications in Mathematical Physics, eds.

J Chisholm and A Common (Reidel Pub Co.) pp 227-244.
Newman E T and Rovelli C 1992 Hamilton Jacobi theory for constrained systems and gauge

invariant degrees of freedom in general relativity and Yang—Mills theory, University of
Pittsburgh preprint; 1992 to appear in Phys. Rev. Lett..

Goldberg J N, Newman E T, and Rovelli C 1991 J. Math. Phys. 32, 2739.
Komar A 1978 Phys. Rev. D 18, 1881.
Kuchar K 1972 J. Math. Phys. 13, 758.
Penrose R 1966 Perspectives in Geometry and Relativity, ed. B. Hoffman (Indiana. Univ.

Press).

Goldberg J N, Robinson D C, and Soterou C 1992 Class. Quantum Grav. , to appear.
Rovelli C and Smolin L 1990 Nucl. Phys. B 331, 80.
Goldberg J N, Lewandowski J, and Stornaiolo C 1991 Degeneracy in Loop Variables,

Syracuse University preprint.
Briigmann B and Pullin J 1991 On the constraints of quantum gravity in the loop repre-

sentation, Syracuse University preprint.

Briigmann B, Gambini R, and Pullin J 1992 Phys. Rev. Lett. 68, 431.
Jacobson T and Romano J 1992 The spin holonomy group in general relativity, University

of Maryland preprint.

Immirzi G 1992 The reality conditions for the new canonical variables of general relativity,
Universita di Perugia preprint.

352

[10]
[11]
[12]
[13]

[14]

[15]
[16]
[17]

[18]
[19]

General Relativity and Gravitation Z 992

Iyer S, Kozameh C N, and Newman E T 1992, J. Geom. Phys. 8,195-209.
Kozameh C N, Newman E T, and Tod K P 1985 Gen. Rel. Grav. 17, 343.
Plebafiski J F 1977 J. Math. Phys 18, 2511; J. Math. Phys 18, 2395.
Samuel J 1987 Pramana 28, L429.
Jacobson T and Smolin L 1987 Phys. Lett. B 196, 39; 1988 Class. Quantum Grav. 5, 583
Capovilla R, Dell J, and Jacobson T 1991 Class. Quantum Grav. 8, 59; 1989 Phys. Rev.

Lett. 63, 2325.
Kozameh C N and Newman E T 1991, Gen.Rel. Grav. 23, 87.
Capovilla. R and Plebanski J F 1993; J. Math. Phys 34, 130.
Estabrook F and Wahlquist H 1991, Class. Quantum Grav. 8, L151; 1989, Class. Q. Grav

6, 263.
Yang, K. 1992, Exterior Differential Systems and Equivalence Problems, Kluwer.
Wilson E and Robinson 1 1992, University of Dallas preprint.
Sobczyk G 1990 Clifford ALgebras and their Applications in Mathematical Physics, eds.

J Chisholm and A Common (Reidel Pub Co.) pp 227-244.
Newman E T and Rovelli C 1992 Hamilton Jacobi theory for constrained systems and gauge

invariant degrees of freedom in general relativity and Yang—Mills theory, University of
Pittsburgh preprint; 1992 to appear in Phys. Rev. Lett..

Goldberg J N, Newman E T, and Rovelli C 1991 J. Math. Phys. 32, 2739.
Komar A 1978 Phys. Rev. D 18, 1881.
Kuchar K 1972 J. Math. Phys. 13, 758.
Penrose R 1966 Perspectives in Geometry and Relativity, ed. B. Hoffman (Indiana. Univ.

Press).

Goldberg J N, Robinson D C, and Soterou C 1992 Class. Quantum Grav. , to appear.
Rovelli C and Smolin L 1990 Nucl. Phys. B 331, 80.
Goldberg J N, Lewandowski J, and Stornaiolo C 1991 Degeneracy in Loop Variables,

Syracuse University preprint.
Briigmann B and Pullin J 1991 On the constraints of quantum gravity in the loop repre-

sentation, Syracuse University preprint.

Briigmann B, Gambini R, and Pullin J 1992 Phys. Rev. Lett. 68, 431.
Jacobson T and Romano J 1992 The spin holonomy group in general relativity, University

of Maryland preprint.

Immirzi G 1992 The reality conditions for the new canonical variables of general relativity,
Universita di Perugia preprint.



Paperpresented at the 13th Int. Conf. on General Relativity and Gravitation 353

Cordoba, Argentina, 1992: Part 2, Workshop Summaries

Mathematical studies of Einstein’s and other relativistic

equations/alternative gravity theories

Rafael D, Sorlcin

Department of Physics,
Syracuse University,
Syracuse NY 13244—1130

Abstract.
The topics represented in this workshop spanned a wide range, reflecting the

diversity of the very large number of abstracts submitted (nearly 100). In
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354 General Relativity and Gravitalion 1992

The first session began with a presentation by Daniel Sudarsky (co-author Robert
Wald) devoted mainly to the understanding of some old exact solutions of pure gravity
and some new ones of gravity plus gauge fields. The basic ideas involve the extremal
properties of the total energy-functional E on the space of field configurations. It is
known in general that, when the field equations derive from an Action-principle, a so-
lution extremizes E if it is stationary. Now for a black hole, stationarity represents a
kind of thermal equilibrium, and this strongly suggests the following analogous assertion,
special cases of which have long been known: the region outside a horizon of area A is
stationary 4=> one has dE = TdA—l—QdJ for appropriate constants T and Q and for arbi-
trary variations of the exterior field configuration. Under the assumption of a ”bifurcate
Killing horizon”, Sudarsky quoted a theorem which is essentially the assertion’s “=>”
part, a strong form of the so-called first law of black hole thermodynamics. Under the
additional assumption of a maximal slicing, he quoted a theorem which is a strengthened
form of a special case of the assertion’s “¢” part, namely that initial data which extrem—
ize E at fixed A are actually static. Together these results show that stationary implies
static for non-rotating holes, thereby filling a gap in the black—hole uniqueness theorems.
Moreover the theorems still apply when gauge—fields are present, and for non—abelian
gauge groups, there exist disconnected minima of the energy differing from each other
by "large” gauge transformations (ones disconnected from the identity). A differential
topology argument then implies the existence between these minima of saddle points
of the energy, and therefore of unstable static solutions. In this way several types of
recently found “colored” black hole solutions can be understood, and analogous “colored
excitations” of the Kerr metric can also be predicted.

The next pair of presentations, by David Meyer and Alan Daughton, reported on
work inspired by the “causal set" approach to quantum gravity. In his brief summary of
this approach, which is based on the hypothesis that the Lorentzian manifold of General
Relativity is only an approximation to a discrete substratum whose basic structure is that
of a causal set (: locally finite partial order), Meyer pointed out that, although significant
progress has been made in understanding the kinematics of causal sets, there is as yet
no convincing candidate for the quantum amplitude [the discrete analog of exp(i5)]
on which the theory of causal set dynamics would be based. Invoking recent string—
theoretic work on discretized “Euclidean” two—dimensional gravity coupled to statistical
mechanical models, Meyer introduced the analogous study of Ising models on causal sets.
Remarkably, one is able to solve these models exactly in several different cases. In the
most interesting of these, both the Ising “spins” and the causal set itself are summed over
(the latter sum being restricted to causal sets generated by random sprinkling into 2—
dimensional Minkowski space) and the “partition function” turns out, for certain critical
values of the parameters, to be a modified Bessel function. In this model (because
2-dimensional metrics are conformally fiat) one is effectively summing over all (1+1)-
dimensional causal sets, and in that sense is dealing with a full quantum gravity coupled
to a particular kind of “matter”. However the amplitude being used is not very realistic,
in part because of its likely non-locality, a general difficulty highlighted in Daughton’s
talk. In this connection, Meyer suggested that putting the Ising model at a critical point
might lead to a more satisfactory form of “induced gravity”, though perhaps one still
limited to the very special subclass of two-dimensional causal sets.

Daughton’s presentation (co-authors Jorge Pullin, Rafael Sorkin and Eric Woolgar)
also was concerned with a kind of “matter” living on “flat” causal sets, specifically with
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a scalar field on a background causal set generated by sprinkling N points randomly into

a so-called interval-subset of Minkowski space. As contrasted with Meyer’s work, the

additional motivation here — beyond the same ones of learning how to couple matter to

a causal set, and the possibility of thereby producing a theory of “induced gravity” — was

to investigate whether it is possible to recover effective locality in theories based on causal

sets. (That this is not easy, is due to the inherent contradiction among discreteness,

locality, and Lorentz invariance, these being three properties which any successful discrete

theory must combine. For regular spacetime “lattices” locality proves easy to implement

but Lorentz invariance difficult; for random “lattices” such as a sprinkled causal set, the

situation is reversed. The promise of a successful combination would be great however,

as locality in the presence of local Lorentz invariance is very restrictive, leading almost

inevitably to an effective Lagrangian of the Einstein-Hilbert form.) Daughton presented

several approaches to defining a scalar field Action which would reduce to the the usual

one in the (naive) continuum limit, but he concentrated on a scheme which is based

on thinking of the d’Alembertian as the inverse of a Green’s function rather than vice

versa. This scheme is most natural in two and four dimensions, and Daughton discussed

mainly the lower—dimensional case, offering both analytic and numerical evidence for its

feasibility there. Specifically, he showed that the inverse of the retarded Green’s function

on the (perfectly regular) “trellis-causal—set” is precisely a discretized d’Alembertian; and

he described preliminary computer simulaticns which indicate a similar relationship ! on

average — for the half—retarded half—advanced Green’s function on a randomly sprinkled

causal set.
The presentation by John Friedman (co—authors Nicolas Papastamatiou and Jona-

than Simon) concerned a possibility in a sense opposite to that animating the two pre-

vious talks, namely the possibility that spacetime might contain causality violations in

the form of closed timelike curves. Such a possibility (reviewed in Kip Thorne’s ple-

nary lecture) is of interest, not only for its own intrinsic fascination, but because it

provides one way for the spacetime topology to change without forsaking the globally

regular Lorentzian metric mandated by the “equivalence principle”. However there is

grave doubt whether closed timelike curves are physically consistent, and in particular

whether quantum fields can consistently propagate in spacetimes containing them. The

difficulty raised by Friedman (citing also similar conclusions by David Boulware) was

that of unitarity, in a situation where the causality violation is confined to a compact

spacetime region. He explained that, even though free fields experience no problem, it

is quite otherwise when interactions are present. Then perturbative unitarity reduces to

a set of spacetime “cutting identities” whose validity relies on the Feynman propagator

taking the form of a “time-ordered two-point function”, a form which loses its sense in

the absence of a consistent causal ordering of events. Given this destruction of unitarity

by interactions, Friedman considered whether a more general sum-over-histories inter-

pretation could salvage quantum field theory. He argued that such an interpretation does

allow a consistent assignment of probabilities to histories, but at a price: the results of

present experiments would depend on whether closed timelike curves form in the future.

If it is only recently that the possibility of causality violations has begun to be

taken seriously, then the desire to localize gravitational energy is as old as General

Relativity itself. Having pretty much abandoned the hope of defining a true energy-

momentum current, people would now settle for a “quasi-local” expression giving the

energy, angular momentum, etcetera, contained within some 2-surface. A particularly
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natural approach to finding such an expression is to seek it as the variation of some
corresponding quasilocal Action, and this is the approach adopted by David Brown,
whose presentation inaugurated the second session. Defining an Action appropriate for
a spatially bounded region, and varying the lapse-part of the metric on the timelike
boundary led him to an energy given in terms of the extrinsic curvature of the 2-surface
(with respect to the hypersurface in which it lies). This energy behaves favorably at
spatial infinity and in the Newtonian limit, but has the drawback (in my opinion) that
it appears difficult to generalize to a full lO-parameter set of conserved quantities.

The contributions by Brian Edgar and Graham Hall (co-author B.M. Haddow)
were in the realm of pure differential geometry, but have obvious implications for the
possibility — in either standard Relativity or one of its generalizations like Weyl’s theory
— of taking a connection (or possibly a curvature tensor) to be the fundamental physical
field, rather than, for example, a metric. A series of related results was presented,
but the focus was on the case of so—called Weyl connections, i.e. ones which preserve
a compatible metric up to a conformal factor in the sense that cab : gab/\C. The
main result of Edgar asserted that a given symmetric connection Va is Weyl iff there
exists a putative curvature tensor and a putative metric tensor such that the former has
the correct algebraic symmetries and fulfills the Bianchi identity, and the latter yields
a symmetric index-pair when used to lower the raised index of the former. (Here a
genericity condition has been assumed; in its absence conditions on the derivatives of
the curvature enter as well.)

The main result of Hall was somewhat more global in character, being couched in
terms of the holonomy group of the connection rather than its curvature tensor. It asserts
that a connection in an n—manifold is Weyl iff its holonomy group is a Lie subgroup of
some conformal group (rotations plus scalings) in n—dimensions. A companion result
characterizes the ambiguity in the pairs (gum/k) which “fit” a given connection. In
addition to the conformal ambiguity from which “gauge transformations” in the original
sense got their name, there can be further ambiguities only in the non—generic case where
the holonomy group at a point (by definition a group of linear transformations of the
tangent space) is reducible in the sense of admitting an invariant subspace; moreover
there will be such ambiguities if the subspace is not null. However, even in these special
cases, Weyl’s “electromagnetic field”, curl A, remains unique.

Closely related to the Weyl “unified field theory” are the scalar—tensor gravity
theories, and in particular the so-called Brans—Dicke alternative gravity theory, which
is distinguished by a special choice for the coupling between ordinary matter and the
scalar field. Although this theory allows in principle for an additional “scalar charge”,
in addition to the mass, the electric charge, etcetera, it is known that, as with Einstein
gravity, the only spherically symmetric “vacuum” solution with a horizon is again the
Schwarzschild metric, this being especially evident when the scalar field is constant, in
which case the field equations reduce to the vacuum Einstein equations. In his contri-
bution to the second session, however, Carlos Lousto (co—author Manuela Campanelli)
presented a family of non-Ricci-fiat spherically-symmetric solutions of the Brans-Dicke
field equations, which remain non-Ricci-fiat even in a certain w —> oo limit in which
the scalar field becomes constant. In a certain formal sense these solutions do have a
horizon, but that “surface” has infinite area, and is perhaps better interpreted as a kind
of internal infinity of the spacetime. For certain values of their parameters the solutions
presented are supposed to be astrophysically viable, and What is also interesting, it is
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claimed that their “surface-gravity” vanishes, apparently lending them a zero horizon
temperature. What seems needed now is a better understanding of the global structure
of these solutions.

Another set of unified field theories in which extra scalar fields play a prominent
role are those named for Kaluza and Klein. This approach to unification was represented
in the workshop by the talk of Alfredo Macias (co-author H. Dehnen), who considered
an 8-dimensional spacetime with “internal” dimensions in the form of a SU(2) >< U(1)
group-manifold. In order to provide explicit fermionic degrees of freedom, a Dirac field
is introduced to complement the 8-dimensional metric. With the Higgs-like modes (the
dilaton, etc.) frozen out by hand, and with a prescribed dependence of the spinor field
on the internal coordinates, one obtains a dimensionally reduced Lagrangian resembling
the electro—weak sector of the standard model. However, the fermions, including the
neutrino, all have large masses, and of course, no Higgs fields are present. In addition
the neutrino acquires an anomalous electromagnetic moment.

The third and last session of the workshop commenced with a talk by James Isen-
berg (co—authors Vincent Moncrief and Yvonne Choquet—Bruhat), who reported on a new
theorem guaranteeing under certain conditions the existence of vacuum initial data with
non—constant mean curvature. He began, however, by reviewing the rather satisfactory
understanding which we have of those solutions of the initial-value constraints which do
possess constant mean curvature. In that case, one specifies certain free hypersurface
data (the conformal metric, Aab, the “conformal extrinsic curvature”, U“ (a symmetric
tensor with zero trace and divergence), and a number, 7', giving the mean curvature)
and solves an elliptic equation for the conformal factor relating this data to the true
metric and extrinsic curvature. The question of when this equation has a solution is
fully understood, the answer depending on which of 12 cases the free data falls into, as
determined by the Yamabe class of the conformal metric and by the vanishing or not
of 'r and 0‘“. Unfortunately, not all solutions of the Einstein equations admit constant
mean curvature slices, and so one is forced to consider a more complicated scheme in
which 7' is non-constant and one has a pair of coupled equations to solve, rather than a

single one. As a first step in sorting out necessary and sufficient conditions for this set
to be soluble, Isenberg presented a sufficient condition which requires roughly that An],
be in the negative Yamabe class and that 7' be sufficiently close to a non—zero constant.
The method of proof is one which he expects to yield existence for a much more general
class of data, as well.

The final two presentations to be discussed were connected more or less closely with
string theory. That by Robert Mann, dealt more generally with 2-dimcnsional gravity,
or rather with what he called “dilaton gravity”, in which a scalar field multiplies the
scalar-curvature term in the Lagrangian, and may couple also to the “matter fields” if
such are present (there is of course no “Einstein-Hilbert gravity” in 2-dimensions, at least
classically, since the unadorned scalar curvature is a total divergence there). Working
with a rather general class of such theories, Mann introduced a certain vector field 5" for
which he could show, in many cases, that J“ :2 Tt‘Vfiu is conserved, even though {“ itself
is not in general a Killing vector. Interpreting the potential for this current as a “mass
function”, he illustrated the relations found on some “black-hole” solutions, ending with
the provocative conclusion that the same black-hole metric can be associated with two
very different entropies, depending on which theory one interprets it within.

Finally Tevian Dray (reporting on behalf of Corinne Manogue) described a group-
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theoretic result of interest for octonionic string theory, as well as more generally. The
relevant mathematical coincidences here are that 50(9, 1) is isomorphic to SL(2,0)
(0 being the octonions), and that correspondingly vectors in lO-dimensional Minkowski
space can be represented in terms of octonions analogously to how 4-vectors can be
represented as 2 X 2 complex matrices. Now, however, there is a puzzle. If X is the
2 x 2 octonionic-valued matrix representing a lO-vector, and M a matrix in SL(2, 0),
then X —» MXMl does not yield all possible Lorentz transforms on X, despite the
isomorphism we began with. The resolution is that one obtains the missing transfor-
mations by iterating the simple ones, the former not collapsing to the latter precisely
because octonions are non-associative. Dray showed explicitly how this works in a. simple
example.
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1. Asymptotia

A dominant theme in the study of asymptotic properties of space—time has been that
of d: the null boundary attached ‘at infinity” to certain asymtoticaly flat space-times
by embedding them in a larger space-time with a conformally related metric called the
unphysical metric (Geroch, 1976). When d was first introduced, there was a spate of
activity in exploring its geometrical structure, leading to the establishment of concepts
such as Bondi mass, peeling, conserved quantities and news functions. Subsequently
activity turned to the complex extensions of § and many attempts to incorporate
angular momentum along with the Bondi mass (e.g. Bramson, 1975). All this early
work depended on assuming that d was “decent”: the unphysical metric being required
to be smooth and to satisfy causal properties such as strong causality. More recently
this has been called into question as it was realised that such apparently innocuous
properties represented subtle and highly non—obvious global properties of the physical
space—time. Consequently Newman (1989) was able to show, by relaxing the causality
requirements in the unphysical space—time (but not in the physical) that the global
topology of it could be Very far from the simple 53 X IR1 usually assumed.

An increasing worry became the question of the existence of the traditional 5?, in
generic cases (or, more specifically, radiative eases) other than the Well—known sta-
tionary examples and minor modifications of these: the work of Christodoulou and
O’Murchadha (1981), which investigated existence in a neighbourhood of i0 which did
not extend as far as ?, indicated that the sort of asymptotic flatness conditions that
seemed appropriate to an initial hypersurface did not lead to a smooth 5?. The first
existence theorems for f were due to Friedrich (1986,1988), but while establishing the
existence of some genuinely radiative space—times with a traditional f, they reinforced
the view that strong restrictions were required for this.

The one paper on asymptotia in the workshop was important, therefore, for an-
nouncing the development of techniques for showing the existence of 5‘ more generally,
and for advancing the question of differentiahility. Anderson [1] showed that if data
is prescribed on a spacelike hypersurface intersecting fl then in general the solution
obtained will be C"2 but not 03 in the unphysical space. This suggests that many of
the properties traditionally associated with asymptotia (peeling, the Penrose conserved
quantities and so on) may well not obtain, in general.

2. Singularities

2.1. Strong cosmic censorship

It has become abundantly clear that some singularities (ideal points where a smooth
solution to Einstein’s equations breaks down) are censored — hidden behind event
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horizons — While others are not. The key question is how to characterize which is
which. Strong cosmic censorship holds that, under conditions yet to be determined,
singularities are not only censored in being invisible from infinity, but also are censored
“locally”; roughly speaking, they cannot be timelike.

The main area of exploration recently has been that of a distribution of collisionless
particles, either having a distribution of velocities at each point (the Einstein-Vlasov
equations) or comoving with a single velocity at each point (pressureless fluid or ‘dust’).
Much of the work has concerned spherically symmetric situations, although exciting
numerical work by Teukolsky (this volume) has simulated a naked singularity for the
axisymmetric Einstein-Vlasov case. Naked singularities also appear in the Vaidya
metrics, which can be regarded as a limiting case of the dust solutions in which the
flow vector becomes null. A useful survey unifying these various metrics was provided
by P Lemos [7].

So far it has been possible to argue that these naked singularities are either “special”,
or are not really singularities. Their specialness lies partly in their exceptional equation
of state, considered in the next paragraph, and partly in their high degree of symmetry.
The Teukolsky example just quoted certainly weakens spherical symmetry, which is
highly sigi’lificant, but it is still nonrgeneric even within the class of axially symmetric
Einstein—Vlasov spaces because the initial distribution of velocities is degenerate (the
particles start from rest). The idea that some of the examples (those called shell-
crossing singularities) are not singularities lies in the fact that in is possible to extend
through the apparent singularity into a larger space—time in which Einstein’s equations
are satisfied distrilmtionally (Clarke, 1992).

The obvious question then becomes, whether these singularities are still naked if
pressure is included. P Szekeres [12] gave a very interesting presentation in which
null coordinates were used to examine the singularity asymptotically, from which he
concluded that gei’ierically the pressure had to be negative in order to achieve a naked
singularity. More work is needed to understand the relation of this to the work of
Ori and Piran (1988) which demonstrated naked singularities with positive pressure
for self—similar solutions; though this (loos not contradict Szekeres whose genericness
condition rules out self similarity.

2.2. Week cosmic censors/Lip

This is the idea that singularities, though perhaps locally naked, are at least shielded
from infinity by a horizon. Since horizons are implied by trapped surfaces (though this
is only part of the story) the question then becomes, when does a trapped surfce
form? There is a large gap between the unproved, and even unformulated, “hoop
conjecture” (Teukolsky, this volume) and the only proved criterion (Schoen and Yau,
1983) which is so strong as to be practically unattainable. ln spherical symmetry,
however, considerable progress has been made by Bizon et a1 (1989); work which was
extended to the cosmological context in a presentation of a paper by Brauer and Malec
[2]. The conditions in this latter paper were unfortunately not so clean as in the earlier
one, but they still provide useful criteria as to whether or not there is a trapped surface
in the spherically symmetric case.
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2.3. Stability arguments

These enter both forms of cosmic censorship. The original arguments for strong cos—

mic censorship was that the singularity structure of the Reissner-Nordstrom solution

was unstable, linearised perturbation theory suggesting that the horizon became sin-

gular, thus turning the “timelike” singularity into one compatible with strong cosmic

censorship. Krolak presented a non—perturbative proof [6] that the horizon was indeed

unstable: specifically, he and Rudnicki had showed the instability of the compactness

of the intersection of the past of a point on the horizon with the partial Cauchy surface.

This is in itself interesting: this compactness property is one that would naturally be

expected if the singularity arose from data on a finite region of the initial surface,
and so the result may call into question the picture one sometimes has of singularity
formation as an event arising from a finite region of collapse.

Stability also enters one program for proving weak cosmic censorship. The program
involves showing that (i) generically singularities are in some sense “strong”; and then

(ii) that strong singularities have to be censored from infinity. The first step is sup,

ported by results such as that of Brauer [2] on Newtonian fluids, described below, but

in general genericness seems to be crucial: one has to show that the weak singularities

(such as those where all scalars constructed from the Riemann tensor I'vnmin lnmndwl')

are in some way unstable, either disappearing or becoming strung mule-r pt-rt urlmiirsns.

A series of results by Konkowski and Helliwwll lmw supported this Vit‘W. and the lat—

est, giving evidence that the singularity in Type V cosmological solutions was unstable
against becoming a scalar curvature singularity, was presented to the workshop [5].

2.4. Global Solutions

The only cast»iron results on naked singularities, one suspects, come from global

existence theory of the. sort discussed by Klainerman (this volume). Here there was

a contribution from Rein and Randall [10], showing that the spherically symmetric
Einstein Vlasov system, with bounded momenta for the particles, remained singularity

free for all time provided the initial data were sufficiently small.
Further infcn'mation about global solutions came from Newtonian Work presented by

Brauer [2], showing that for the Euler~Poisson system (gravitating compressible fluid)

a breakdown in the global solution has to be related to uuboundedness of physical
quantities. While this is no surprise (unlike the case of general relativity where many
singularities are known in which physical quantities are bounded) it is striking that a
proof in the Newtonian case has only just emerged. The main technical feature was the
introduction of a new variable to cope with the loss of differentiability at the boundary
of the compact region occupied by the matter (the edge of the “star”).

2.5. Boundaries

At one time a popular approach to singularities was through the provision of
a boundary to space—time whose points could be characterised either as inessential
(through which extension was possible) or singularities. This fell into disfavour because
of the wide variety of possible boundaries and the difficulty of actually constructing
any of them. Recently Scott [11] has revived the idea, in collaboration with Szekeres,
in a radically new form by defining an abstract boundary based purely on the topology
of the manifold, in a way that is both very general and reasonably computable. This

Asymplolia, singularities and global structure 361

2.3. Stability arguments

These enter both forms of cosmic censorship. The original arguments for strong cos—

mic censorship was that the singularity structure of the Reissner-Nordstrom solution

was unstable, linearised perturbation theory suggesting that the horizon became sin-

gular, thus turning the “timelike” singularity into one compatible with strong cosmic

censorship. Krolak presented a non—perturbative proof [6] that the horizon was indeed

unstable: specifically, he and Rudnicki had showed the instability of the compactness

of the intersection of the past of a point on the horizon with the partial Cauchy surface.

This is in itself interesting: this compactness property is one that would naturally be

expected if the singularity arose from data on a finite region of the initial surface,
and so the result may call into question the picture one sometimes has of singularity
formation as an event arising from a finite region of collapse.

Stability also enters one program for proving weak cosmic censorship. The program
involves showing that (i) generically singularities are in some sense “strong”; and then

(ii) that strong singularities have to be censored from infinity. The first step is sup,

ported by results such as that of Brauer [2] on Newtonian fluids, described below, but

in general genericness seems to be crucial: one has to show that the weak singularities

(such as those where all scalars constructed from the Riemann tensor I'vnmin lnmndwl')

are in some way unstable, either disappearing or becoming strung mule-r pt-rt urlmiirsns.

A series of results by Konkowski and Helliwwll lmw supported this Vit‘W. and the lat—

est, giving evidence that the singularity in Type V cosmological solutions was unstable
against becoming a scalar curvature singularity, was presented to the workshop [5].

2.4. Global Solutions

The only cast»iron results on naked singularities, one suspects, come from global

existence theory of the. sort discussed by Klainerman (this volume). Here there was

a contribution from Rein and Randall [10], showing that the spherically symmetric
Einstein Vlasov system, with bounded momenta for the particles, remained singularity

free for all time provided the initial data were sufficiently small.
Further infcn'mation about global solutions came from Newtonian Work presented by

Brauer [2], showing that for the Euler~Poisson system (gravitating compressible fluid)

a breakdown in the global solution has to be related to uuboundedness of physical
quantities. While this is no surprise (unlike the case of general relativity where many
singularities are known in which physical quantities are bounded) it is striking that a
proof in the Newtonian case has only just emerged. The main technical feature was the
introduction of a new variable to cope with the loss of differentiability at the boundary
of the compact region occupied by the matter (the edge of the “star”).

2.5. Boundaries

At one time a popular approach to singularities was through the provision of
a boundary to space—time whose points could be characterised either as inessential
(through which extension was possible) or singularities. This fell into disfavour because
of the wide variety of possible boundaries and the difficulty of actually constructing
any of them. Recently Scott [11] has revived the idea, in collaboration with Szekeres,
in a radically new form by defining an abstract boundary based purely on the topology
of the manifold, in a way that is both very general and reasonably computable. This

Asymplolia, singularities and global structure 361

2.3. Stability arguments

These enter both forms of cosmic censorship. The original arguments for strong cos—

mic censorship was that the singularity structure of the Reissner-Nordstrom solution

was unstable, linearised perturbation theory suggesting that the horizon became sin-

gular, thus turning the “timelike” singularity into one compatible with strong cosmic

censorship. Krolak presented a non—perturbative proof [6] that the horizon was indeed

unstable: specifically, he and Rudnicki had showed the instability of the compactness

of the intersection of the past of a point on the horizon with the partial Cauchy surface.

This is in itself interesting: this compactness property is one that would naturally be

expected if the singularity arose from data on a finite region of the initial surface,
and so the result may call into question the picture one sometimes has of singularity
formation as an event arising from a finite region of collapse.

Stability also enters one program for proving weak cosmic censorship. The program
involves showing that (i) generically singularities are in some sense “strong”; and then

(ii) that strong singularities have to be censored from infinity. The first step is sup,

ported by results such as that of Brauer [2] on Newtonian fluids, described below, but

in general genericness seems to be crucial: one has to show that the weak singularities

(such as those where all scalars constructed from the Riemann tensor I'vnmin lnmndwl')

are in some way unstable, either disappearing or becoming strung mule-r pt-rt urlmiirsns.

A series of results by Konkowski and Helliwwll lmw supported this Vit‘W. and the lat—

est, giving evidence that the singularity in Type V cosmological solutions was unstable
against becoming a scalar curvature singularity, was presented to the workshop [5].

2.4. Global Solutions

The only cast»iron results on naked singularities, one suspects, come from global

existence theory of the. sort discussed by Klainerman (this volume). Here there was

a contribution from Rein and Randall [10], showing that the spherically symmetric
Einstein Vlasov system, with bounded momenta for the particles, remained singularity

free for all time provided the initial data were sufficiently small.
Further infcn'mation about global solutions came from Newtonian Work presented by

Brauer [2], showing that for the Euler~Poisson system (gravitating compressible fluid)

a breakdown in the global solution has to be related to uuboundedness of physical
quantities. While this is no surprise (unlike the case of general relativity where many
singularities are known in which physical quantities are bounded) it is striking that a
proof in the Newtonian case has only just emerged. The main technical feature was the
introduction of a new variable to cope with the loss of differentiability at the boundary
of the compact region occupied by the matter (the edge of the “star”).

2.5. Boundaries

At one time a popular approach to singularities was through the provision of
a boundary to space—time whose points could be characterised either as inessential
(through which extension was possible) or singularities. This fell into disfavour because
of the wide variety of possible boundaries and the difficulty of actually constructing
any of them. Recently Scott [11] has revived the idea, in collaboration with Szekeres,
in a radically new form by defining an abstract boundary based purely on the topology
of the manifold, in a way that is both very general and reasonably computable. This
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then provides a framework within which a variety of specific properties of singularities
can be discussed. The idea is certainly elegant and free from many of the objections
raised against previous uses of the idea; but it remains to be seen Whether any really
new results can be obtained by its use.

3. Global Structure

3,1. Causality Violation

This has always been a major topic of global analysis, and has recently become
fashionable (Thorne, this volume). The workshop received one contribution to this
topic from S M Carroll [3], who showed that the presence of Gott—style string time-
maehines in an open (2+1)—dimensional universe required the total momentum to be
spacelike, which he argued was unphysical. For me the attraction of the paper was not
so much its physical implications, which remain uncertain, but the elegance of handling
the group theory associated with the Lorentz transformations generated by the strings.
This was done by regarding the Lorentz group as itself a space—time, and then using
techniques of global relativity on it.

3.2. Horizons

Two papers discussed the properties of horizons. Wald and Racz [9] considered
Killing horizons, and showed that the only physically relevant ones were either bifurcate
or had the surface gravity n‘ equal to zero (thus making rigorous an argument suggested
by de Felice and Clarke, 1990). This allows one to use the uniqueness theorems for
stationary space—times, which require the existence of a bifurcate horizon.

The second paper was by P Chrusciel, who examined extensions through the Cauchy
horizon of Robinson—Trautman space—times. By definition, predictability breaks down
and not surprisingly, therefore, an infinite number of differentiable solutions are possible
which extend the space—time through the horizon. An amusing curiosity of the result
is that the extension can be chosen to have differentiability CH7 but not more than
0122!

3.3. Caustics

Null surfaces propagating in curved space-time generically develop caustics, a feature
that imposes a major complication of some approaches to numerical relativity. The
general form of these is known in the generic case from the work of Arnol’d (1970),
and has been taken into relativity by Friedrich and Stewart (1983). The one poster
displayed in the workshop, by V Perlick [8], extended this work by considering null
cones specifically and giving examples of explicit metrics that produced the various
singularity types for caustics.

4. Conclusions

The workshop exhibited well the need for bringing together a broad range of tech-
niques in order to make progress on the outstanding problems of global structure. The
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cleanness and elegance of some of the early work may be fading as we get to grips more

closely with real astrophysical problems, and realise that the classical i? may be an ide-

alisation; that very sophisticated boundary constructions have nothing to tell us; and

that topological methods fail to make contact with real physics. All these approaches

are none the less essential as tools to be used in conjunction with each other.

By the next GR meeting I would expect that Work on asymptutia will have fixed on

a broad class of smoothness—conditions for .“i' which :m- mm'h \vz‘nlivr than those used in

the past, thereby cutting out a lot of the classical work in thi- subject. But at the same

time there could well be a move away from an increasing refinement of the conditions

for asymptotic flatness, and a start being made on asking what such concepts mean

in terms of real observations at finite distances from the source, Within a cosmological

context.
Continuing this futuristic speculation, on singularities We might expect to be obtain—

ing a more realistic grasp of which singularities might be observable, from the point of

view of the classical theory, and what this might mean in reality. There is still astonish-

ingly little real geometrical/physical understanding of what is going on in singularity

formation, even in simple cases. It is not sufficient to dismiss examples like that of Ori

and Piran (1988) as non—generic: we need to understand precisely what aspect of the

nongenericness is responsible for singularity formation in what is apparently a very

realistic model. The way forward here will certainly involve much more numerical sim—

ulation, to supply more hypotheses and physical hunches in an area where new ideas

are urgently needed.
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Approximation and perturbation methods
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Few problems in nature are amenable to an exact solution and hence when one
proceeds from elegant problems of theory to messy complicated problems of practice one
is forced to recourse to methods of approximation and perturbation. The development of
such techniques has been natural in attempts to extract physically verifiable consequences
from either exact solutions of general relativity or from specific astrophysical systems for
which an exact solution is impossible to find. However, this should not be taken to imply
giving up of mathematical rigour and an appeal to only physical intuition.

1. Approximation Methods

Though the topic of approximation methods have been with us since the inception of the
theory of general relativity it received a fresh impetus with the observation of the secular
acceleration in the mean orbital motion of the Binary Pulsar. Suddenly, the observations
were getting to be accurate enough to make measurable higher order effects coming from
general relativity and the theorist had also to update his tools and make more precise the
conceptual foundations that formed the paradigm for matching the increasingly accurate
observations to a theoretical model. The main class of approximation schemes that
have been developed so far are the Post Newtonian Approximation(PNA) and the Post
Minkowskian Approximation(PMA). Originally developed in the context of the solar
system these old approximation schemes used a global coordinate system, a global weak

field assumption and a single asymptotic expansion. The need to treat binary systems
containing two neutron stars or black holes requires looking at regimes where strong field
effects come into play. A more detailed description incorporating the clumpiness of the
universe is also called for in cosmology. These new problems require new approximation

methods characterised by the use of several coordinate systems and several asymptotic
expansions[1].

What is the relation between the approximation methods and the exact theory?
How do we go about investigating this? This was the theme of Alan Rendall’s talk on

‘Approximation methods in theory and practice’. It was concerned with the passage from
practical use of approximations which are heuristically defined to rigorous theorems on

how well and in what sense, the results of calculations of this kind, approximate solutions

of the exact equations. A possible programme for such an undertaking could be : First,

find a definition which on the one hand looks likely to provide a basis for rigorous

theorems and on the other hand is relevant to practical calculations. Next, use this
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definition to prove that the approximations are qualitatively good in some sense. Finally,
obtain quantitative estimates of the difference between exact and approximate solutions.
For PMA a definition was given by Blanchet and Damour [2] which was tailored to their
practical calculations and proved useful for questions of rigorous justification. Damour
and Schmidt[3] showed on the basis of these definitions that in general circumstances
PMA are asymptotic to solutions of Einstein’s equation. That this is essentially optimal
follows from the fact that the series obtained does not converge[4]. Quantitative estimates
seem out of reach at present and is a challenge to the theory of partial differential
equations which rarely yield quantitative information. On the other hand though a good
definition of the newtonian limit of general relativity has existed for some time[5] its
relation to PNA was unclear( however, seelfil). Recently, a definition of PNA has been
given[7] which appears to have a good chance of linking theory and practice. Work is in
progress towards justification of the PNA. The first step is the proof that the spherically
symmetric Vlasov—Einstein system has a regular newtonian limit[8]. A comparison of
the new definition of PNA with the traditional approach e.g. Chandrasekhar[9] shows
that the most obvious difference is that in the former case all the variables including
the matter variables are expanded in powers of cAil whereas in the latter case only
the variables describing the gravitational field are expanded. This leads to problems in
regard to secular effects and quantitative information seems absolutely necessary to pin
down good properties of PNA.

The new approximation methods are used mainly to investigate problems of motion
and the generation problem in gravitational radiation theory. They are also used in prob—
lems of relativistic celestial mechanics as explained by Chongming Xu. He summarized
the new formalism of Damour7 Soffel and XullO] for studying general relativistic celes—
tial mechanics of systems of N arbitrary7 weakly self» gravitating, rotating bodies using
a sophisticated version of the first PNA. It is characterised by use of a multi—reference
system; a global one for describing overall dynamics of N bodies and N local systems
to describe the internal structure of each body. The special features of the scheme are
that the field equation and transformation laws are linear; the structure of the energy-
momentum tensor is left open; each body is characterised by the Blanchet-Damour PN
multipole moment[lll and external PN tidal moments. This allows one to obtain com—
plete and explicit results for laws of translational motion at lPN level for bodies with
arbitrary composition and shapes. One can obtain an expression for the tidal moment
in terms of PN multipole moments of other bodies. The discussion of PN spin motion
requires in addition the Damour-lyer[12] spin moments.

Moreschi talked about approximation methods around stationary systems. He ar-
gued that since the asymptotic symmetry group is the infinite dimensional BMS group
and not the ten dimensional Poincare group it led to an arbitrariness both in the defini—
tion of physical concepts associated with the system and also the best fiat background
to expand around. Consequently, approximation methods around a fixed stationary
background metric can give a consistent description of the system at a fixed time at
most[13].

Cutler commented briefly on their recent work[l4] on calculation of inspiral wave-
forms using the Regge-Wheeler-Teukolsky perturbation formalism. The relevant equa-
tions were solved numerically to very high accuracy and a post newtonian expansion was
fit to the numerical results. This lead to the surprising result that higher order terms
were not getting smaller causing the template waveform to go out of phase with the
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general relativity waveform very quickly.
Will presented the recent results of Iyer and Will[l5] on gravitation radiation re-

action in equation of motion of binary systems at PN order beyond the quadrupole

approximation. The method is based on PN expression for energy and angular momen-

tum flux to infinity and an assumption of energy and angular rnm‘nentm'n balance. The

arbitrariness in the formula is related to the coordinate system dependence of the radia-

tion reaction formula. As mentioned earlier it is important to know this secular damping

very accurately so that the theoretical template not lose phase with the observed signal.

2. Perturbations

The subject of perturbations in general relativity has developed into a specialized dis-

cipline on its own. Bulk of the work in this area has been in one of the following two

topics: Cosmological Pertubations and Black Hole Perturbations.

2.1. Cosmological Perturbations

The basic questions that started these investigations was the attempt to understand the

formation of structure in Cosmology and the growth of inhomogeneities in the expanding

universe. Recently, a new covariant approach has been given to study the perturbations

and this was summarized by George Ellis in his presentationThe gauge problem of per-

turbations in cosmology is the arbitrariness in the perturbed quantities arising from the

arbitrariness in the choice of the map between the background spacetime and the real

spacetime. The gauge problem in perturbed Robertson—Walker cosmologies has not been

resolved in a satisfactory way. Bardeen’s[16] introduction of gauge invariant variables

was a major triumph. However, the formalism and method are not geometrically trans-

parent, the split into scalar, vector and tensors is nonlocal/nonunique, it is not easily

related to observations and cannot be easily extended beyond linear order because it is

linearized ab initio. Moreover, the analysis is not invariant under general gauge trans—

formations but only under a restricted set that respects the harmonic splitting. A more

transparent gauge invariant formalism has been set up using fully covariant methods in

terms of variables that are both gauge invariant and covariantly defined, leading to co—

variant evolution equations. The basic variables are spatial gradients of density, pressure

and expansion of the cosmological fluid taken orthogonal to the fluid flow vector. Since

they vanish in a RobertsonNValker universe they are gauge invariant and characterise

inhomogeneities in the universe. The basic formalism is set up and applied to pressure

free matter[17], perfect fluid [18], scalar field[19], multi—fiuids and imperfect fluids[20].

Subtle effects due to rotation[21], relation to the Bardeen’s approach[22], density waves

in cosmology [23] and applications to newtonian cosmology[24l have also been investi-

gated. The main advantages of this formalism is that the geometrical definition is clear,

it is defined in an arbitrary spacetime(no background is needed), nonlinear equations can

be obtained, the variables are observable in principle and finally there exist newtonian

analogues of all equations. The effect of this programme has so far been to rederive

standard results in a more transparent gauge invariant way as also more generally valid

equations before linearizing about Robertson-Walker. The idea of density waves in cos-

mology is new. The formalism is also being used to study the Sachs-Wolfe effect[25] and
clarify the gauge invariance of these calculations.
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2.2. Black Hole Perturbations

The issues that led to the development of this subject were the following: Are black
holes stable against small changes? Can one compute what happens when a test particle
or radiation scatters off the black hole? What are the frequencies in which the black
hole rings and how do the notes die off? The studies were made with all the analytically
known black hole solutions: Schwarzschild, Reissner-Nordstrom, Kerr and Kerr-Newman
e.g[26]. A variety of methods have been used in these investigations: scalar, vector and
tensor harmonics, Newman-Penrose formalism, Debye—Hertz potentials, gauge invariant
approaches e.g[27].

2.2.1. Separability of Wave Equations in Curved Backgrounds. One of the most remark-
able results was the separability of the perturbation equations of Hamilton Jacobi, scalar,
electromagnetic, gravitational, neutrino and electron fields in the background of the
Kerr—Newman black hole. The miracle continues and some time back the separability of
a Nambu—Goto string configuration in the Kerr background was also cstablished[28]. All
this led on to a more critical investigation of the question of separability, the operators
commuting with the wave operator and operators whose eigenvalues the separation con-
stants are. The status of issues related to the separability of wave equations on curved
backgrounds was the subject of Ray McLenaghan’s presentation. A symmetry opera—
tor of the equations satisfied by the variables of a physical system is a linear differential
operator that maps the space of solutions into itself. The most familiar examples of sym-
metry operators are operators which commute with the differential operator appearing
in the field equations. They are called constants of the motion and their eigenvalues are
interpretable as quantum numbers of the system[29]. A remarkable example of such an
operator is given by Carter and McLenaghan’s[30] discovery of a first order commuting
operator for the Dirac operator on Kerr spacetime by an analysis of the separation of
variables procedure devised by Chandrasekhar[3l]. They showed that these operators
admit the separable solutions as eigenfunctions with the corresponding eigenvalues as
separation constants and characterised one of them in terms of a valence two Killing
spinor satisfying a skew—hermiticity condition. McLenaghan and Spindel[32] gave a ten—
sorial expression for the most general first order commuting operator with the charged
Dirac operator on a general curved background in terms of Killing—Yano tensors of va—
lence one, two and three. A different situation arises when dealing with the conformally
invariant Klein—Gordon, Dirac and Maxwell equations for zero rest mass particles where
symmetry operators which are not necessarily commuting operators must be considered.
In the case of the conformally invariant Klein-Gordon equation and the Dirac equation
for the neutrino, the symmetry operators appear in the form of R—commuting operators
that is operators whose commutators with the wave operator are proportional to it. All
such operators up to the second order for the Klein-Gordon equation and up to first
order for the Dirac equation have been characterised by Kamran and McLenaghan[33]
in terms of conformal Killing vectors and conformal Killing tensors of valence two and
conformal Killing-Yano tensors of valence one, two and three respectively. A correspond-
ing analysis for Maxwell’s equations has proved more elusive. However, Kalnins, Miller
and Williams[34] recently found a second order symmetry operator for Maxwell’s equa-
tions in the Kerr solution which characterises the separable solutions found previously by
Teukolsky. The most general second order symmetry operator for Maxwell’s equations
on a general curved spacetime has been constructed[35]. This uses a conformal Killing
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vector, a conformal Killing tensor of valence two and a new valence frmr tensnr with the

same algebraic symmetries as the Weyl tensor which satisfies a fir‘sl rirrlr-r differential

equation which has similarities to both the conformal Killing equatiim and tlw contor—

mal Killing-Yano equation. This tensor corresponds to a valence imir Killing .«apimir; its

properties and integrability conditions for its existence have been studied.

2.2.2. Quasi-Normal Modes. At late times, all perturbations of the black hole are ra-

diated away like the last pure dying tones of a ringing bell. To describe this ‘ringing’

the notion of quasinormal modes (QNM) was introduced around 1970. QNM’s are the

sourceless perturbations of spacetime and in the case of the time-evolution of small per-

turbations of a Schwarzschild black hole are governed by a one—dimensional wave equa—

tion. The QNM frequencies are characteristic of the black hole, and (in the Schwarzschild

case) depend only on its mass. QNM’s excited (luring for maiiiple a gravitational col—

lapse may be eventually detected. Thus the (leterminative; ni' QNM‘s ul‘ black holes is

an important problem on which considerable c.:lTn1i and progress has; been made in the

last three years. Nils Andersson summarized the: i‘m'rrmi. status of Lliesr: calculations as

follows. Recently, Nollert and Schmidt [36] proved that the QNM’S should be properly

defined as poles of the Green’s function to the Laplace transformed wave equation. In

a simplified picture, the desired solutions correspond to boundary conditions of purely

outgoing waves arriving at spatial infinity, and purely ingoing waves crossing the event

horizon. The desired solutions to the radial problem increase exponentially towards

spatial infinity and the event horizon. To identify a QNM solution an exponentially

decreasing solution must be singled out from the exponentially increasing one in the

asymptotic region. Hence, the determination of QNM frequencies is a delicate prob-

lem. During the last ten years several attempts to determine the QNM frequencies have

been made. Leaver[37] determined accurate values for them using a continued fraction

approach. Recently Leaver’s results have been confirmed as reliable using numerical in—

tegration in the complex coordinate plane [38]. For gravitational perturbations, recent

double-precision calculations by Leaver (unpublished) agree to nine decimal places with

the numerical integration results. Nollert and Schmidt have also verified Leaver’s results.

These three independent investigations of the problem yield results that agree perfectly
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3. Open Questions

We conclude with a list of important open questions that remain in these areas[42, 43].
(i) Characterisation of the Teukolsky parameter for gravitational perturbations in Kerr
background by a symmetry operator. (ii) Solve the perturbation problem for Kerr-
Newman i.e exhibit the relevant symmetry operator and its solutions. (iii) Extend the
results of separability to other backgrounds like Cosmological and String backgrounds.
Do generalized Hertz potentials exist? And if they do, how do we find them? (iv) What
can we say about the completeness of QNM’s in the neighbourhood of the black hole?
(v) Investigate the relation between Einstein’s Theory and PNA. (vi) Prove existence
theorems for various sources since validity of approximation methods cannot be judged
otherwise. (vii) Put procedures used to relate near zone approximations with far fields on
a sound basis since they are always used in most applications to astrophysical systems.
Normally one relates a higher order PN description of sources to PMA of higher order.
(viii) Are different PNA schemes like Chandrasekhar’s, Damour— Sofiel— Xu and Rendall’s
equivalent? (ix) Do PNA methods have a fundamental limitation? Can their convergence
be improved using better numerical techniques? Are some variables better than others?
Or do we need a very different approximation scheme?
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Numerical relativity

Takashi Nakamura
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In GR13 we heard many reports on recent. progress as well as future plans of

detection of gravitational waves. According to these reports (see the report of the

workshop on the detection of gravitational waves by Paik in this volume), it is

highly probable that the sensitivity of detectors such as laser interferometers and

ultra low temperature resonant bars will reach the level of h ~ 10—21 by 1998. in

this level we may expect the detection of the gravitational waves from astrophysical

sources such as coalescing binary neutron stars once a year or so. Therefore the

progress in numerical relativity is urgently required to predict the wave pattern

and amplitude of the gravitational waves from realistic astrophysical sources. The

time left for numerical relativists is only six years or so although there are so many

difficulties in principle as well as in practice.

Apart from detection of gravitational waves, numerical relativity itself has a

final goal:

Solve the Einstein equations numerically for (my initial data as accurately as

possible and clarify physics in strong gravity.

in GRIIS there were six oral presentations and ll poster papers on recent

progress in numerical relativity. i will make a brief review of six oral presenta—

tions. The Regge calculus is one of methods to investigate spacetimes numerically.

Brewin from Monash University Australia presented a paper Particle Paths in a

Schwarzshild Spacetime via. the Reyye Calculus. One of the merits in the Regge

Calculus is that the metric interior to each pair of adjacent blocks is Minkowskian

so that the computations of particle or photon orbits can be performed using only

the rules of special relativity. Williams and Ellis” formulated how to compute

(A 1nn') YA“ n-ukl:nL:u~ 1 4A
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particle paths in the Regge spacetime. Unfortunately the value they obtained for
the precession of the perihelia of Mercury was at best 1800 times larger than the
correct one. Brewin argued how to recover the correct value by developing the
approach in the context of the Regge spacetime. The first point is that he uses the
continuous time 3+1 approach, that is, he discritizes space while retaining a. con
tinuous time Next he argues the convergence properties for several Schwarzschild
geodesics in his method. The question here is : if the number of blocks (N) is
increased (ie N —> oo )} will we obtain the correct geodesics? The answer is NO.
If the error in each block is of order OUL) where. it is a linear size of a block the
global error is of order unity because the total number of blocks is proportional to
l/lr. it became clear from this that the only way in which accurate paths could be
obtained from the liegge calculus is to modil‘y the Regge equations, lle used a lin—
ear interpolation of the original equations so that the error in each block becomes
001,2). This guarantees that a global error is ()(lr) which implies the convergence.
As for advance of the periherion of Mercury he obtained the correct value.

Clarke from Southampton UK presented a paper entitled Nmnerica/ Relativ—
ity in a 'I'I'anspiiter Army by A (’7 \V (Jarret, R A ('l’lnverno and C J 9 Clarke.
They are now rising a parallel processor in characteristic initial value problem with
compactified equations in which 1' : oe corresponds to the iinite value of a new
coordinate z ,where 7‘ is the luminosity distance, For an axisymmetric problem all
the quantity q is a function of qtn, 3, 1/ = cos H) where u is a time coordinate. Each
processor corresponds to each value ot 3/ and they are linked by last conimunication
link. At present they are using (‘2 commercial (T’arsy) array. The performance for
vacuum problem with 500 time levels is 52 sec and in near future they will have
10 times taster array, "l‘hey are also testing a code with ii’iatter. in this case
they are working with Bishoplz] from University of South Africa who explained the
method. The characteristic initial value problem is appropriate in vacuum but in
the presence of matter it loses the advantage because the characteristics of matter
do not coincide with those of the gravitational lields. So he uses usual 3+1 Cauchy
problem within some distance [6+ which is larger than Rm where matter exists
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Numerical relativity

only for R S Rm. For the development of the gravitational fields outside R+ the

characteristic method will be adopted. So one must (1) construct the coordinate

and metric for R 2 R4,. from Cauchy data and (2) obtain the boundary condi—

tion at R... for the Cauchy evolution from the results of the characteristic initial

value problem. The scheme has difficulty at the start up stage. To calculate the

null geodesics from It : 0 to R : 11+) Cauchy data at t:0 is not enough. The

numerical implementation of the scheme is now developing.

Suen from Washington StLouis reported the paper Horizon Boundary Condi-

tions in Numerical Relativity with Seidel . One of the major problems in numerical

relativity has been how to avoid the space-time singularities which exist from the

beginning like. in collisions ol‘ black holes or which are formed from the horn sine

gular initial data. Many ditl‘erent types of singularity avoiding sliciugs have been

proposed since in general relativity we have a freedom to choose time c<,>ordinate.

llowever the question to the capability of long time integration ol the space—time

has not been answered. Suen and Seidel proposed a. horizon locking coordinate

to answer this problem. They choose a. spatial coordinate in spherical symmetric

space time such that the location ol‘ the ammrent horizon has the constant ctr

ordinate value in time. After the horizon is locked all grid points are tied to it

by requiring the radial metric function to be ccmstant in time, hi this case the

problem is that the shift vector becomes so large that 3:2:constant line may not

be time like in an extreme case‘ which causes numerical instabilities. To avoid this

instability they propose causal finite (lill‘erence such that l) Return to the zero shill.

coordinate and make the finite dill'erence. 2) Transform the finite (lill‘erence version

of equations to coordinates with large shitt vector. The final results are similar to

the rip-wind finite difference method in hydrodynamics which is numerically stable.

They demonstrated the ability of long time integration ol- their method by evolving

the Schwarzschild geometry with initial data. of Einstein—Rosen bridge.

Numerical simulations of dynamical black hole systems (oscillating black holes

and head-on two black hole collisions) were presented by D. Hobill and El Seidelm

Both simulations are aXi—symmetric and utilize maximal slicing conditions to
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calculate the lapse function. A two component shift vector is introduced to control
axis instabilities. The conditions imposed on the shift vector are: i) the three-
metric is diagonal and ii) the shift vector components are determined from partial
derivatives of a scalar function that is obtained from solving a linear second-order
elliptic equation. The evolution is calculated using a leapfrog (with half time
step extrapolation) finite difference technique and the elliptic equations for the
lapse and shift are solved with a multigrid method. Essentially the codes are the
same modulo initial d ata. and boundary conditions, although a number of different
gauge and coordinate choices have been tried for the 2 black hole collision. For the
oscillating black hole, a Brill wave is superposed with a black hole and for the two
black hole collision7 Misner initial data is used.

The codes have been run on (lray—Ylyll’y Cray—2 and Nl‘lC SX—3 supercom—
puters. The standard resolution involves 200 radial Zones and 56 angular zones
to cover one quadrant (equatorial symmetry is maintained in addition to axial
symmetry). Various methods for analyzing these spacetimes have been developed.
The Zerilli function (for the E : 2 and 5 : '«1 modes) can be extracted and its
propagation compared to analytic perturbation theory for quasirnormal mode gen
eration. For low amplitude Brill waves the agreement is good to a percent or
better. All of the Newman—Peurose spin coefficients and Weyl tensor components
can be constructed as can various Bel—Robinson quantities. The mass loss rates
can be calculated from the above quantities and they all agree to Within numerical
errors. The (quasielocal) ADM mass is measured at the outer boundary of the grid
and the black hole mass can be measured by calculating the area of the apparent
horizon or alternatively from measurements of the wavelength and damping factor
of the quasi—norn'ial mode wave functions. These black hole mass measurements
are consistent with each other to within a few per cent. Furthermore, the differ—
ence between the ADM mass and the black hole mass can be accounted for in the
energy loss associated with the emission of gravitational waves.

Computer graphics animations were presented for the simulations. For both
large and small amplitude distortions of a single black hole the values of We and
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\I/4 were tracked until late times (of order 100M'). The standard quadrupole waves

were seen to dominate the perturbation case where a pure Z = 2 Brill wave was

introduced in the initial data. Nonlinear interactions between the Z = 2 and Z = 4

modes were evident in the high amplitude wave case. The two metric induced on

the apparent horizon was embedded into a 3D flat space and a color map showing

the local Gaussian curvature of the surface was used to track the incoming waves.

The geometry of the horizon surface oscillates with the quasinormal frequency of

the black hole. In the two black hole collision, it was shown where and when a

second outer most trapped surface forms as the holes collide. This surface sur—

rounds the original separated trapped surfaces associated with each hole, and then

oscillates as in the case of a single, distorted black hole. It was also shown that for

the parameters studied in the two black hole collision, that the nonlinearities were

not as strong as those generated from highly distorted black holes. In fact all sim—

ulations to date seem to have gravitational waveforms that are clearly dominated

by quasi—normal mode waveforms.

Schutz from Cardiff UK reported papers An AD] Scheme for" a Black Hole

Problem with Allen and Time—Symmetric AD] and Causal Reconnection with Al—

cubierre. He first pointed out various difficulties in calculating coalescing binary

black hole in 3D. 1)One needs a quasi—rectangular 3D grid which can remain fixed

at infinity and through which the holes move. This makes stringent requirement on

the gauge and slicing conditions. 2) If black holes move through the grid, then grid

points go down into a hole and then pop back out the other side. This popping out

requires that the grid move faster than light, which causes numerical instability.

3)Coalescing black hole may begin with the holes relatively far apart so that it will

take much longer time—steps compared with dynamical time. Since conventional

explicit integration schemes are restricted by the Courant condition, one may like

to use implicit method, which is less well known.

As for 2) they propose causal reconnection of grids. When a grid is moving

faster than light, the grid point at the desired time-steps is outside the light cones

of grid points at previous time steps. For a simple wave equation, the standard
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numerical schemes go unstable in such a situation. Their remedy for this is that
they simply reformulate the computational grid so that its members are within
each others’s light cones. As for 3) they argue ADltAlternating Direction Implicit)
method on moving grids. They have found that all the standard ADI schemes
for the simple wave equation go unstable on grids that move. They also noticed
that none of the standard methods preserve the fundamental time—symmetry of the
original equation. lteqniring that the tiinc—symmetry be maintained, they found a
stable scheme for all grid speeds up to the speed of light. For grids moving faster
than light, one can perform causal reconnection of the grids.

Nalcairrura reported the present status of the construction of a 3l) code in Kye
oto University) Japan. To construct fully GR 3D code is highly difficult. So his
group divided the problem into easier problems, l)ln 1988 they constructed a
fully 3D GR code in which only metric part of the Einstein equations is included
(see T. Nakamura and K Oohara in Proceedings of CIR/12 p (it). They used the
Cartesian grids of 803 and showed that they could trace propagation of the l:m=2
quadrupole linear localized gravitational wave within a. few percent error. 2) In
1989 Oohara and Nakamuram succeeded in determining initial data for coalesc-
ing binary neutron stars using the Cartesian Coordinate and lGCG ( lrrcorrrplete
Cholesky decomposition and Conjugate Gradient) method to solve coupled Poise
son equations. 3) From 1989, Ooliar‘a, Shibata and Nakamura started the Post
Newtonian SD simulations of coalescing binary neutron stars including radiation
reaction by gravitational waves for various initial datais] lf one can combine all
these three numerical codes, a frilly (1ft code will be completed, For this purpose
we need the good gauge condition and the time slice. For the time being, they
are using the quasi eminima/ shear conditions and the conformal time slicing. In
the minimal Shear condition all the equations are coupled so that one need too
much computing time. in the quastminimal shear conditions one uses the shift
vector one time step before or changes the basic equations so that this coupling
is resolved. In the conformal time slicingm, the lapse function is determined as a
function of conformal factor of the 3—space metric. They are now using 473 grids
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Cartesian grids of 803 and showed that they could trace propagation of the l:m=2
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these three numerical codes, a frilly (1ft code will be completed, For this purpose
we need the good gauge condition and the time slice. For the time being, they
are using the quasi eminima/ shear conditions and the conformal time slicing. In
the minimal Shear condition all the equations are coupled so that one need too
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and developing their code for coalescing binary neutron stars running on FACOM
VP2600.

There were so many good papers in the workshop but the space is limited. So

Ijust show the list of papers that I could not mention.

Bishop, N. T. The Numerical Calculation of Grauitational Radiation on a Bondi
Sphere

Dubal M.R., Oliveira S. R. and Matzncr R. A., Three Dimensional Initial Data

for the TutorBlaclc—Hole collision problem

Gorgoulhon 19., Bonazmla S. and Marck J. A. A High Precision Numerical

code for Spherically Symmetricalli/ Gravitational Collapse Basca’. on a Chebysheii
Spectral Method

Ilarleston, DH. Numerical Solution of the EinsteineBoltzmann Equations in

Spherical Symmetry: Results and Perspectives

Shinkai 1'1. and Maeda K. G'rauitational Waves in a Planar Universe with C03—

mological Constant

RICP‘ERJQNC[CS

1. Williams R, M and Ellis G l“ R 1981 Gen.Rcl.Grav.13 361,

1984 Gen.Rel.Grav.1G 1003.

2. Bishop N 'l‘ ,Preprint of Univ. South Africa, 116/92(2).

3. A. Abrahams, D. Bernstein, l). Hobill, E. Seidel and L. Smarr, 1992 Phys.

lien, D45, 3544.

4. Oohara K and Nakamura T 1989 Prog. 'l‘hem'. Phys. 81 360.

5. Oohara K and Nakamura T 1992 Frog. Theorl’hys. 88 307. and references
therein

6. Shibata M and Nakamura T 1992 Frog. Theor.Pliys. 88 317.
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o The first presentation in this session was Finding isometry groups in theory and
practice by Araujo, Dray, and Skea. They summarized their work as follows:

Karlhede & MacCallum [1] gave a procedure for determining the Lie algebra of the
isometry group of an arbitrary pseudo-Riemannian manifold, which they intended to im-
plement using the symbolic manipulation package SHEEP but never did. We have recently
finished making this procedure explicit by giving an algorithm suitable for implemen-
tation on a computer [2]. Specifically, we have written an algorithm for determining
the isometry group of a spacetime (in four dimensions), and partially implemented this
algorithm using the symbolic manipulation package CLASSI, which is an extension of SHEEP.

Our procedure is the following: Apply the classification algorithm built into CLASSI
to determine the isotropy group and the set {Jt‘} consisting of the functionally indepen-
dent quantities in the frame components of the curvature tensor of M and its covariant
derivatives. By construction, the J“ are constant on each orbit of the isometry group.
Let (22‘ be the frame in standard form produced by CLASSI as being appropriate to the
isotropy, and let to" be the corresponding frame on the isotropy bundle I(M) (the frame
bundle restricted to the isotropy group). Calculate the connection 1-forms 01'], and note
that {it}, wjk} is a basis for the cotangent space of HM). From this point onwards, there
are at least three possible approaches which will produce a basis for the orbits of the
isometry group in the frame bundle, namely

1) Find the dual vectors, take the subbasis orthogonal to the dJ“ (which are there-
fore a basis in the orbit), and take their commutators (see MacCallum & Skea [3]).
Though conceptually the most intuitive method, it has the disadvantage, for a computer

Summary compiled by Steven M. Christensen, Session Chair
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algebra system, of involving the calculation of a determinant to obtain the vectors dual
to the basis one—forms, and this is not necessary as we shall see.

2) The “functional independence” of {J“} means that the l-forms (1.1" are indepen-
dent on M (and hence also on I(M)); extend them to a basis on M by adding as many a)"
as possible and then extend this to a basis on [(M) by adding the independent w‘j. Call
this basis {0“}, and take its exterior derivative. We can now further restrict ourselves
to a particular orbit of the isometry group in M by solving the equations dJ" = 0, then
substituting appropriately on both sides of the remaining equations obtained by exterior
differentiation. We thus obtain a basis of the cotangent space of the restriction of I(M)
to an isometry group orbit in M. This method has the disadvantage that the calculation
of the structure constants is done from a basis which spans a space larger than that of
the orbits of the isometry groupy and so requires more computation than necessary.

3) use the relations dJ“ : 0 to rewrite the remaining l—forms in terms of a reduced
set of variables and calculate their exterior derivatives. This method has the disadvantage
that dependencies on the reduced set of variables need to be calculated.

The method adopted in the examples presented in [2] is method (3), though which of
the methods will eventually be adopted in CLASSI remains to be seen. In any case, since the
{0“} form a basis, their exterior algebra closes. But from the Cartan structure equations,
the structure constants involve only ii, the Riemann tensor of (M,g), and its covariant
derivatives, whereas by the construction of the isotropy group given by Karlhede &
MacCallum [1], the Riemann tensor and all of its covariant derivatives are constant on
each orbit. Thus, the structure constants are constant on each orbit. As pointed out by
Karlhede & MacCallum, they are therefore precisely the structure constants of the Lie
algebra of the isometry group.

Most of our algorithm has been implemented using CLASSI although the restriction
of the l—forms to a basis in the orbit has not yet been fully automated and thus needs to
be done by hand. Automating this part of the algorithm is a reasonably straightforward
programming task which when completed will mean that the structure constants for the
isometry Lie algebra can be automatically determined from any metric for which CLASSI
earl compute the isotropy group.
a The second paper was An algorithm for determining whether a space-time
admits a homothety given by Andreas Koutras and James E. F. Skea who said:

As part of the equivalence problem, and as a problem in its own right, it is useful
to have an algorithm which decides whether or not a spacetime admits a homothety. For
such a spacetime there exists a vector field :10, such that any geometrical quantity q obeys
the relation

£ 4 = 04
I

for some constant c (the weight of q).
To do so, we use a result of Defrise—Carter (later refined by Hall) that a space-

time which admits a homothety group H" is conformal to a spacetime which admits an
isometry group G", together with the scaling properties of geometrical quantities in a.
homothetic spacetime.

[,From CLASSI we can determine a canonical set, {112“}, of frame components of (the
spin decomposition of) the Riemann tensor and its covariant derivatives to an order k
which completely determines the local character of the spacetime. As a byproduct, CLASSI
gives us the dimension of the isometry group.
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We construct a set {5“} of the independent ratios of members of {13"} such that
each member of {3“} has zero weight. For a homothetic spacetime there exists a (pseu-
docanonical) basis related to the canonical basis for {12“} by a pure boost in which the
number of functionally independent functions of the coordinates in {3“} is one less than
that in {13“}.

The problem is now reduced to the determination of the pseudocanonical basis of a
homothetic spacetime. This problem parallels the determination of the canonical basis,
requiring an analysis of all the possible isotropy groups which can arise at each stage of
derivation of the Riemann tensor, and has been solved for all Weyl spinors and physical
Segre types.
0 Andrzej Krasinski presented The program Orthocartan:

The program Ortocartan is written in Lisp and designed for automatic calculation
of curvature tensors (Riemann, Ricci, Einstein and Weyl) from a given metric tensor. The
input data are the components of an orthonormal tetrad of exterior forms representing
the metric, the output are the tetrad components (and, on request, also the coordinate
components) of all the quantities calculated at intermediate stages. An ”abacus” pro—
gram Calculate is provided together with Ortocartan for performing simple algebraic
Operations on expressions defined by the user. The program is presently available on the
Atari Mega STE computers, and is being implemented on an iPSC—SYMI parallel com-
puter by M. Perkowski and his student. Unlike most other programs, Ortocartan was
never extended into an elaborate system allowing many kinds of specialized procedures
to be carried out automatically (like e.g. determining the Petrov type of a metric or the
Segre type of its energy—momentum tensor, or calculation in other tetrads). However,
much effort was invested into making its algorithms efficient (in the sense of speed and
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subsequent translation into high level computer languages difficult due mainly to the
large number of terms that must be manipulated. Computer algebra software packages
have long been used to provide relief from the tedium associated with keeping track
of the hundreds to thousands of terms associated with analytic calculations in general
relativity theory and now it is being used to pre- and post-process numerical codes that
model black hole dynamics, stellar collapse and gravitational wave generation.

For the most part numerical relativity uses variables that are quite different from the
variables used in most symbolic tensor packages for general relativity. Therefore a new
relativity package has been written that produces the ADM or 3+1 form of the Einstein
equations in order that a numerical evolution of Cauchy data may be performed. The
package presently sits on top of MACSYMA and accepts as input the lapse function, shift
vector, three-metric, and extrinsic curvature components to be used in a numerical code.
In addition the dependency of these objects upon the spacetime coordinates needs to be
specified, but only implicitly. The package then calculates the connection coefficients,
Ricci tensor components and the scalar curvature associated with the t:const. spacelike
slices. The evolution equations for the three-metric and extrinsic curvature components
as well as the scalar and vector constraint equations are then calculated as are other
expressions that are important for 3+1 numerical relativity (eg. the trace of the extrinsic
curvature, the trace-free part of the extrinsic curvature, etc).

As numerical simulations progress to two and three spatial dimensions and as one
experiments with different coordinate and gauge conditions, the need to quickly derive
new forms of the 3+1 equations becomes evident. In addition these equations must be
transcribed into a high level computer language used by the numerical code. In order to
avoid typographic and transcription errors another package has been written that receives
the output from the 3+1 equation generation package, allows the modeller to replace the
partial derivatives appearing in the Einstein equations with Fortran expressions, and
then breaks a complicated expression into simple expressions that can be summed over
in a Fortran DO loop. The code produced is readable to both humans and machines in
order to facilitate the eventual debugging process.

While these examples demonstrated the use of symbolic manipulation for the pre—
processing of numerical codes, examples of post-processing were provided. In particular
it was shown how a Newman—Penrose formalism packages written specifically for 3+1
variables was used to determine the spin coefficients and Weyl curvatures in terms of
hypersurface information. This package also was written to run on top of MACSYMA
and interfaces with the 3+1 equation generator.

Examples of the use of Mathematica for producing graphical images from numerical
data and for fitting the hole quasi-normal mode parameters to the extracted wave forms
from numerical simulations were also demonstrated.
0 R.G. McLenaghan gave the fifth talk, General relativity calculations in Maple:

A collection of packages and procedures for performing calculations in general rel-
ativity and differential geometry that have been written in the Maple computer algebra
system was described. Maple is an interactive system for symbolic mathematical com-
putation currently supported by the following operating systems: UNIX and various
UNIX-like systems, 386 DOS, Macintosh Finder, DEC VMS, IBM VM/CMS, NeXT and
Amiga DOS.

Packages and/or procedures have been written to perform the following tasks: (i)
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computation of the connection and curvature, in the natural basis, in a general moving

frame and in a complex null frame; (ii) determination of the Petrov type of the Weyl

tensor and the Segré type of the Ricci tensor; (iii) computer aided integration of the

field equations both in the Newman—Penrose (NP) formalism and in the Ellis-MacCallum

formalism. The NP package has been extended [4] to include the transformation of spinor

equations into NP form. (iv) calculations with differential forms; (v) determination of the
Bianchi-type of a three-dimensional Lie algebra for a given set of structure constants.

Most of these packages and procedures are contained in the library of the currently

distributed version of Maple (Maple V). Descriptions of these packages and procedures

are given in [5] and [6] A Maple version of the muTENSOR system of Harper and Dyer
[7] is also available.

The power of the NPspinor package was illustrated by a description of its use to

obtain the following new results in the theory of second order differential invariants of the

metric tensor [8]. The spinor equivalent of the Géhéniau—Debever (GD) [9] invariants D(5)
andD(5) contains the spinor expression m6 :: \IIABKLQBCMNQKLAB¢MNBC<I>CA¢A. By

means of the NPspinor functions contract and dyad and the Maple commands expand and

factor it may be shown that me : (1/6)Ir2, where I :; QABCDQJABCD, is the complex

quadratic Weyl invariant and r2 2: @ABABQL'p“(yl'fl’u’lfl, is the: cubic :[tiiitfl invariaail._

It follows that the GD invariants 08)), E(3)> [7(5) and 0(5) are related by the algebraic

equation 12(D(5) 7-D(5)) + C((ZlgEm : 0. It ii'iiiy thus be concluded that their sci. of

fourteen invariants contains at most thirteen independent. invariants. rI‘hc- package was

subsequently used to obtain a new complex invariant of fifth degree which when arljriinml

to the GH set yields a set that contains complete minimal sets in the Einstein—Maxwell

and perfect fluid cases The package has also been used to obtain some new results on

Huygens’ principle [10].
o The final talk was A practical application of MathTenSOI‘ by Steven M. Chris—

tensen:
MathTensor [11] is a Mathematica—based [12] system with over 250 functions and

objects added into Mathematica for the purpose of doing both abstract and concrete

tensor analysis. One of the earliest reasons for producing MathTensor was to perform

coincidence limit computations in quantum field theory in curved spacetimes. These

calculations involve tensor equations with thousands and ultimately millions of terms or

more. The answers are in terms of complicated products of Riemann tensors and their

derivatives or contractions.
The basic object we study first is the bi-scalar of geodetic interval, 0(cc, 1’), which

measures the square of the distance along a geodesic between to spacetime points. The

defining equations for a are:

l . .
U _ 50”,c : 023,13: ”in = Oigglm Uiafi : gafi'

In some applications, we need to determine the coincidence limit of as many as

twelve derivatives of 0’. Some test computations show that this might involve equations

with more than a billion termsl Clearly, a computer program will be needed to generate

the terms and then simplify and combine them into a more usable form.

With Matensor it is very easy to set up the equations above and automate

taking the derivatives and then substituting in lower covariant derivative coincidence
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limits. The only problem that remains is that the products of Riemann tensors that
appear may not be independent of each other. Using a program now under development
called Schur, Lie group analysis tools like Young Tableau can be used to determine the
number and structure of a linearly independent set of Riemann tensor invariants so that
the coincidence limits can be put into a canonical form.

Once the computation of the 0' coincidence limits is done, then these results can be
put into the Schwinger-DeWitt recursion relation formula so that the coincidence limits
of the famous Hamidew coefficients can be computed. These are then used in things like
the computation of stress tensors, anomalies, point-splitting algorithms, divergences, and
so forth. All this can be done with MathTensor.

A brief discussion of the functionality of MathTensor in general relativity, mathe—
matics, and engineering was also given.
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Abstract. Work reported in the workshop on relativistic astrophysics

spanned a wide varicy of topics. Two specific areas seemed of particular in—

terest. Much attention was focussed on gravitational wave sources, especially

on the waveforms they produce, and progress was reported in theoretical and
observational aspects of accretion disks.

The title “relativistic astrophysics” is rather broad, and has illedeiined boundaries

separating it from the concerns of other branches of relativity, and of other workshops
at the conference. As l interpret it, the subject should be driven (although sometimes

indirectly) by observations.
On this basis the following topics would seem to be some of the interesting devel»

opnients in the past year or so: (i) The discovery of the isotropy of y—i‘ay burst sources
suggests a cosmologicalorigin. (ii) The identification of blaclehole candidates in compact

systems, systems with signatures rather different from Cygnus Xel, is a sign of matu—

ration ol. the field. (iii) There is increasing evidence that our own galaxy has a mass
concentration near its center, suggesting a central black hole, and/or other strongefield

phenomena. (iv) Data from the llubble telscope confirm the longstanding belief that
there is a mass cusp at the center of M87. (v) Recent work, especially the numerical
simulations by Shapiro and Teukolsky [1], reported at this conference, presagc the down,
{all of cosmic censorhip. What are the astrophysical consequences of Shapiro-'l‘eukolsky
spindle singularities?

Along with these new, or reactivated, problems there remain some venerable issues,
problems on which progress continues, and on which further work is needed. We are still
far from having an adequate understanding the physics of accretion disks around black
holes. Perhaps related to this is one of the Classic question of relativistic astrophysics:

the central structure of active galactic nuclei.
The range of subjects covered was broad and somewhat scattered. I shall review

here two subjects, which were well represented: sources of gravitational radiation, and

accretion disks/toroids. Both, are questions the “long-standing problem” variety.

The first of these, gravitational wave sources, was a subject of marked concentration

in the workshop, and was the focus of five of the thirteen oral presentations. The focus,
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in fact, was rather narrow. The great interest in details of source waveforms leaves no
doubt that the anticipated advent of laser interferometer gravitational wave detectors is
having a considerable impact.

One presentation holds out an interesting hope of tying together observations of
gravitational waves and the recent discoveries about 7-ray bursts. Perhaps the reason
these bursts have not created the same flurry among relativists as among astrophysicists
is that in the 20 or so years since they were first discovered the bursts have been assumed
to be dramatic, but not relativistic, events involving strongly magnetized neutron stars.
All this has changed with the findings of BATSE (Burst and Transient Source Experi-
ment) on the Compton GRO (Gamma Ray Observatory) [2]. There are two important
features of bursts that it has discovered: (i) the bursts are distributed isotropically, and
(ii) plots of number of bursts vs. burst strength show a fall off at low strength. These
results almost certainly point to sources at z N 1. At this point the field is open for
much speculation, and the data leave room for some differences of interpretation. For
one thing, the PVC (Pioneer Venus Orbiter) which has higher threshold (and different
energy range) than BATSE has been monitoring strong 7»ray bursts since 1978. A com~
parison of the strong burst data of PVC with the extensive statistics of weak bursts
from BATSE suggests a deficiency of weak bursts that points to evolution of the source
population and rules out early universe sources [3].

The way the data are to be interpreted is an open question. There might, for
example, be two different classes of phenomena contributing to the observations. The
nature of the source is a question that is open even wider. Exotic possibilities, such as
stars made of strange matter, have been suggested [4], as has the tidal disruption of an
ordinary star by a massive ( 1W ~ 108MB) black hole [5]. Perhaps the favored modeleat
least the most conservative modeleis that of the coalescence of two compact objects,
either a neutron star binary as suggested by Piran [6] and others, or a neutron star—
black hole binary, as suggested by Paczynski [7]. The expected frequency of neutron—star
coalescences is on the order of 10—6 year“1 per galaxy) which would be compatible with
the rate at which bursts are being detected. The energy requirement for a 2 ~ 1 burst
is around 1050 ergs, and would be compatible with the expected 1053 ergs for a binary
coalescence.

This all should, of course, means that 7—1‘ay bursts are of great potential interest
to relativists, since coalescence of compact binaries is also the presently favored source
of detectable gravitational waves. At the workshop David Nicholson reported on work
with Schutz that points out how this can be exploited for gravitational wave (GW)
observations. In particular, the 7—ray burst and the GW burst for the coalescence should
coincide within 1 sec The pattern matching necessary for the search for GW bursts would
be simplified by searches limited to the data within 1 sec of an observed 7-ray burst.
This allows, for example, the use of a finer mesh of filters and improved sensitivity.
The detection of a burst by BATSE would provide directional information on the burst
source, and would therefore constrain the form of the signal arriving in GW detectors.
Monte Carlo simulations were used by Nicholson and Schutz to explore the magnitude
of the improvement to be gained from a search for coincident bursts. They find (for an
optimally configured detectors) that 2 GVV detectors would be able to detect a binary
neutron star coalescence out to z = 0.4.

Other work reported at the workshop was also motivated by the problem of the
pattern matching necessary to find GW signals from coalescing binaries. Very recent
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results by the CalTech group [8] show that much improved detailed understanding of
the final inspiral of compact binaries will be needed if astrophysical information is to be
efficiently extracted from GW waveforms. Larry Kidder reported on work with Will and

Wiseman [9] on one facet of the progress that will be needed. They study the existence of

innermost stable orbits for compact binary systems. The approach is a hybrid of (post)2-

Newtonian analysis [so that (post)5/2 radiation damping is omitted] and test body effects

from the Schwarzschild geometry. The results show that, for a given mass of the binary
pair, the radius of the innermost stable orbit is 20% larger for an equal mass binary than
for the test body case.

The need for more precise predictions of source waveforms was part of the motiva-
tion for the presentation, by Alan Wiseman, of a study with Will of “heredity effects”
in GW phenomena. These are nonlinear effects that in general require integration over
the past history of the system. Another motivation was the relation of this work to
the “Christodoulou nonlinear memory” [10]. A gravitational wave train is said to have
“memory’7 if the strain hU-(t) is different after the the passage of the waves than it was
before the arrival of the waves. In principle, this would leave the free masses of a GW de-
tector in positions different from their positions before the waves arrived, and the shifted
positions would constitue a souvenir of the burst, the “memory.” In practice this DC
offset of the burst would be swamped by noise, but it can be inferred by measurement of
the low frequency content of the burst, the components of the burst at frequencies below
any characteristic frequency of the source.

A major reason for the interest in GW memory is the recent correction of a
widespread and longstanding conceptual error concerning its calculation. Only 1/1" con-
tributions to hi, are radiative; for the memory only the initial and filial values of h;, are
needed; before and after the strong accelerations producing the fat middle of the burst,
the stress energy is simply that of “particles” moving at uniform velocity; the 1/r fields
of these particles is just the Coulomb fields due to their masses, and those contributions
are completely within the scope of linear theory. It was therefore the common wisdom
that the calculation of the memory produced by an astrophysical event required only
linearized gravity theory, even for a strong field events like black hole collisions. As long
as the waves were weak at the detectors, it was thought, linearized theory should suffice
for calculations of the memory.

Christodoulou [10], with a rigorous mathematical analysis, showed that this was
wrong, that there are in fact nonlinear contributions to the memory that are of the same
order as the linear contributions. It was quickly shown to be equivalent, for waves from
astrophysical sources, to including the emerging GWs themselves as part of the source
[11][12]. Though this nonlinear part of the memory is present in principle, it is a separate
question whether it could be detected. Preliminary model calculations [12] suggest that
detection with laser interferometers will be very difficult, but may be possible.

A presentation by Viqar Husain dealt with an aspect of GW waveforms not directly
related to binary coalescences. Model calculations of GWS from strong-field sources,
black holes or relativistic stars, have shown that GW wavetrains tend to be dominated by
“quasinormal” (QN) ringing, oscillations at complex (i.e., damped) frequencies which are
characteristics of the spacetime of the black hole or relativistic star. This QN dominance
has some apparent parallels with normal mode phenomena. In Newtonian theory, for
example, a stellar model with no fluid dissipation would have hydrodynamical motions
consisting of a superpostion of the normal modes of the star. Given the initial conditions
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black holes or relativistic stars, have shown that GW wavetrains tend to be dominated by
“quasinormal” (QN) ringing, oscillations at complex (i.e., damped) frequencies which are
characteristics of the spacetime of the black hole or relativistic star. This QN dominance
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example, a stellar model with no fluid dissipation would have hydrodynamical motions
consisting of a superpostion of the normal modes of the star. Given the initial conditions
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of the system one can calculate the amplitude of excitation of each mode, and subsequent
motions of the system are always the same superposition of these normal modes. The
dynamics of the system is in this way relatively easily extracted from the initial data.
The damping of the modes could then be calculated to find the imaginary part of the
damped normal mode frequency. These simplifications of calculation and understanding
follow from the propery of “completeness” normal modes. Intuition suggests that the
same sort of picture, in some sense, must apply for QN dominated sources, at least for
not-very—relativistic stars described with general relativity. There is, however, a crucial
mathematical difference between normal modes and QN modes.

Completeness and other useful properties of normal modes follow from the fact that
they are solutions of a self—adjoint problem. For QN modes the causal boundary condi—
tion of outgoing waves gives a problem which is not self»adjoint (the complex frequency
eigenvalues are a sure sign of this) and for which none of the familiar features of normal
mode systems are guaranteed to be valid. There is then no guarantee of completeness,
but neither is there a prohibition against it, and consideration of not—very—relativistic
stars argues for some sort of completeness [l3]. But what sort?

Hnsain[l/l] uses a model problem of mechanical system with radiative damping.
Special features of the system make a complete analysis straightforward and allows some
insights to be gained about the sense in which QN modes can be complete. The results
show that, for the model, the QN modes are complete for initial data that is “purely
outgoing,” that is, initial data that. generate no ingoing waves at large distances. For
such data the excitation of the QN modes, and the subsequent motions of the system
can be extracteda from the initial data. It is likely that this result can be extended to
an approximate description of a relativistic stellar model.

One presentation at the workshop dealt with aspects of GVVS much broader than
that ol' waveforms. An analysis of the exterior Schwarzschild geometry by Kundu had led
him to claim [15] that when propagating in the neighborhood of a body of mass M, the
amplitude of GWs of frequency w is smaller by a factor V/l + Lo2G'2M2/4eG than what
would have been expected on the basis of the qn.’nlrnpoln formula. This would mean,
for example, that waves from a binary coalescence with w : 103 Hz at the center of a
galaxy with a mass of 1011M.) will be suppressed by nine orders of magnitude.

Knndu’s analysis assumes that the quadrupole moment of the radiating source is
described by 1/)8, the coefficient of the 7"5 part of the Newmanel’cnrose quantity ‘Ilo.
This is known to be the case for stationary spacetimes, and for linearized gravity, but
on the basis of a scalar model calculation Kozamch 6! (1] [l6] have argued that 1/)8
does not describe the source quadrupole; rather, in the scalar model the analog of $8
is “enhanced” with respect to the quadrupole, and this enhancement cancels Kundu’s
calculated suppression.

A gravitational source calculation [17] has been done to show that for GWs from a
source at the center of a galaxy the only effects due to the mildly curved background are
those small effects that are expected. On the other hand, Kundu has presented the basic
formalism for a source calculation of $8, and finds no enhancement [18]. At the workshop
Jorge Pullin reported that all results are now reconciled. For quadrupole-dominated
sources there is indeed an enhancement of $8 which cancels Kundu’s suppression. Thus,
long wavelength sources deep inside a massive galaxy will be detectable on the outside
with negligible suppression. Sources far (many wavelengths) from the center of the
galaxy will suffer a strong suppression of the radiation in the “quadrupole mode,” if by
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“quadrupole” is meant the formal (,7 = 2 mode with respect to the center of of the galaxy.
But sources far from the center, even if they are slow motion sources, will have their

radiation dominated by high order E—pole moments. The mathematics of the suppression
is therefore correct, but if does not affect any sources of astrophysical interest.

The second topic of concentrated interest at the workshop was accretion disks.
Studies of disks around holes has, so far, always featured some approximations. In
particular, Abramowicz 61‘. a] [19] studied self-gravitating disks around pseudo—Newtonian
black holes and found evidence that massive disks would be unstable; Wilson [20] studied
non—self—gravitating disks around Kerr holes and found no evidence on instability.

At the workshop Shogo Nishida reported work, with Eriguchi and Lanza, on a nu—
merical code that is able to handle a rotating black hole and toroid in equilibrium. The
numerical approach uses the full equations of general relativity and is not limited in the
range of masses or angular velocities. The particular results reported assume that the
toroid is made of a perfect fluid obeying a polytropic equation of state and having a
uniform distribution of angular momentum. Studies were reported on several interesting
strong—field phenomena such as the appearance of ergotoroids, and the absence of evir

dence for prolate black holes. But the results which were probably ()f most immediate

astrophysical interest were those on stability. By considering sequences of models with

fixed total angular momentum Nishida et a! conclude that selfegravitating disks are in
fact unstable if (for their model assumptions) the toroid mass is greater than 10% of the
hole mass.

It is generally thought that massive black holes play a crucial role in the energetics

of active galactic nuclei, though the nature of the mechanism is not Clear. A conservative

model assumes that the angular momentum of infalling matter leads to the formation
of an accretion disk, and uses “staudaidl7 accretion disk theory to produce the AGN

energy and the high energy part of its observed spectrum. The predicted spectra depend
on details of the disk (thick vs. thin, source of viscosity) and of the dominant radiative
processes. A careful and extensive study was made by Sun and lV’ialkan [21] of what
kind of agreement with observation could be achieved by such a conservative approach.
They assumed physically thin and Optically thick disks around both Schwarzschild and
rapidly rotating ((1 : 0.998) Kerr holes, and included the general relativistic effects on
the emerging radiation (gravitational and Doppler boosting, focussing) and inclination
effects. The results were compared with 60 quasars and AGNs selected for well deter—
mined spectra, and the spectra were corrected for reddening, intergalactic absorption and
other observational effects, to arrive at an estimate of the inherent spectrum generated
directly by the energy source. For each object the black hole mass, the accretion rate
and the inclination angle were varied to achieve a best fit. Sandip Chakrabarti, reporting
at the workshop on work with Wiita, noted that the overall results were quite good but
that in several cases (he concentrates on 1202+281 and 2130+099) the models predict
too little emission in the far UV. (It should be noted, however, that the Sun-Malkan
models even more clearly predict too much UV emission in other cases, in particular
1421+330.) Chakrabarti has argued that the conditions necessary for the formation of
standing shocks will often be present in accretion disks, and that these shocks can have
significant observational effects [22]. At the workshop he pointed out that such shocks
will result in a hotter inner disk region with the potential to produce greater UV than
the Sun—Malkan models. He presented results for geometrically thin, optically thick disks
around Schwarzschild holes. General relativistic effects on boosting and focussing emis—
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sion were omitted (and were found to be important by Sun and Malkan only for rapidly
rotating Kerr models). The results [23] do indeed show better agreement in the UV than
the Sun-Malkan models7 and suggest that standing shocks may indeed play some role in
some AGNs and quasars.
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Abstract. Many topics were covered in the submitted papers, showing much
life in this subject at present. They ranged from rzcmvm'iti<_mal calculations
in specific (:osniul-Jgical models to provcmatively speculative work. Space and

time restrictirms required selecting from them, [or sumrrlarisatiun here; the

book of Abstracts should be consulted for a full overview.

There is continuing interest in various forms of imperfect fluid solution; for ex-

ample M. L. Bedran and M. O. Calvao [Feederal Univeristy of Rio de Janeiro] discuss

universe models where imperfect fluids evolve reversibly owing to the presence of a con-

formal Killing vector field, and L. P. Chimento and A. S. Jakubi [University of Buenos

Aires] consider stability of solutions with causal viscous fluids, concluding that qualita-

tive asymptotic behaviour in the future is not altered by relaxation processes but that

in the past it is significantly changed.
The ongoing study of Mixmaster universe dynamics was represented by two papers

based on numerical simulations of its dynamical behaviour. The problem is that the

standard indicators of chaotic behaviour, such as Lyaponov exponents, give different

results when applied on the one hand to the one—dimensional Return Map, characterising

the evolution as a change of parameters in a series of Kasner epochs, and on the other

hand to the exact field equations, represented in terms of evolution of parameters in

a two-dimensional anisotropy plane. A. Burd and R. Tavakol [Queen Mary College,

London] argue that the gauge freedom in general relativity makes all such standard

indicators of chaotic behaviour problematical, and that indeed chaos is an inherently

gauge-dependent phenomenon. B. Berger [Oakland University, Michigan] however argues
that use of Minisuperspace proper time gives a definitive answer, showing that there is

chaotic behaviour in the full solutions, in agreement with analyses based on the Return

Map.
More general dynamics of homogeneous models is studied in papers by K. Rosquist

[Stockholm University], discussing the nature of the symplectic structure needed in order

to represent Bianchi Class B dynamics in Hamiltonian form, and by C. Uggla [Syracuse

University] and R. Jantzen [Villanova University], indicating a hierarchical structure

emerging from the study of invariant manifolds in the space of solutions. Thus ”simpler
models constitute building blocks for the construction of the dynamical structure of more
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complicated ones”, A similar theme emerges in the paper by C. Hewitt [University of
Waterloo], showing how self-similar solutions appear to be asymptotic states at late time
for more general (diagonal G2) inhomogeneous cosmologies. These approaches seem to
be very helpful in obtaining an overview of the kinds of dynamics possible in cosmological
models.

The use of piecewise Friedmann-Tolman models for the expanding universe (gen-
eralised ”Swiss-Cheese” models) is discussed by A. Chamorro [Bilbao], in a paper rep-
resentative of studies by a number of authors. Overdense or underdense regions can be
imbedded in external expanding universes, provided they are surrounded by compen-
sating intervening Tolman zones. One can thus construct a model of an intermediate
scale inhomogeneous universe made up of Friedmann underdense and overdense spheri-
cal regions surrounded by compensating thick Tolman shells imbedded in a Friedmann
expanding background, in line with current ideas about the cell structure of the universe.

The study of inhomogeneous models will be considerably helped by a survey project
reported on by A, Krasinski [Copernicam Astronomical Centre, Warsaw], who empha-
sizes that while in the old days there was a view that solutions of the Einstein Field
Equations are so difficult to come by that any new solution was worth having, now the
situation is different. There are so many published solutions (most discovered many
times) that the first thing to do when looking for exact solutions is to see if what you
are planning has already been done, for there is a good chance it will already be in the
literature; and the need is to understand the solutions obtained and their relations to
each other, rather than just to find new solutions.

The project assembles and classifies exact inhomogeneous solutions of the Einstein
equations that contain the FLRW (Friedmann~Lemaitre?Robertson»Walker) universes as
limiting cases, and so can be understood as inhomogeneous cosmological models; results
of 247 papers have been included in this compilation so far. The relationships between the
models (in particular, specialisations that lead from one to another) have been examined,
leading to a broad classification into five main types, and characterising which models
are subcases of others; in many cases, multiple discoveries of the same model have been
catalogued.

Krasinski points out that many interesting inhomogeneous models were already
studied in the 1930’s and 1940’s, particularly papers by R. C. Tolman [1] and by N. R.
Sen [2] contain proposals that are still attractive today. Sen showed that the Lemaitre [3]
solution predicts a behaviour of density distribution that today would be called forma—
tion of voids, also implying that the Einstein-Strauss ”swiss-cheese” model is unstable to
velocity perturbations (ie. to perturbations that allow non-comoving walls). Krasinski
also comments that despite all the work done to the present day, no rotating generalisa-
tion of the expanding FLRW models are explicitly known; we also lack explicit shearing
and accelerating FLRW generalisations.

Given the special nature of exact solutions, perturbation solutions are inevitable;
two important issues arise.

One is their linearisation stability, that is, how well the linearised solution represents
the behaviour of the exact solutions. An interesting study by J. Frauendiener and B.
G. Schmidt [Max Planck Institute for Astrophysics, Garching] looks at this issue in the
case of spherically symmetric spacetimes, comparing the linearised and exact solutions
with each other. Not surprisingly, the linear and exact solutions deviate from each other
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more and more as the density contrast grows. Such studies are invaluable in analysing

the reliability of perturbation theory.
The second issue is the averaging problem in cosmology, raised in a survey talk on

cosmology at the GRlO meeting and now gradually becoming a focus of activity. The

point is that practical cosmological models, being patently unable to represent all the
structure in the universe down to the finest details, represent the universe averaged over

some suitable scale; and different models represent it at different averaging scales (for

example some may contain perturbations representing clusters of galaxies but others
only a smoothed out cosmological substratum). There are two implications. Firstly, it is
clear that cosmological models should state explicitly state the averaging scale envisioned

in their application, for this is crucial to their interpretation. The issue then is that

averaging does not commute with process of working out the Einstein field equations [4].
Consequently the field equations in cosmology at smoothed out scales should include an
effective polarisation term resulting from the averaging process (as in the well—known

Isaacson term in the case of gravitational radiation).
Various authors have examined this issue in an interesting manner, for example

Bildhauer and Futamase [5] claim that the effect could be large enough to seriously
change the relation between the Hubble constant and the age of the universe. Now in a
series of papers summarised in a poster presented to the meeting (being unable to give

an oral presentation for financial reasons), R. Zalaletdinov [Uzbek Academy of Sciences,
Tashkent] gives a systematic way of tackling the problem by use of bitensors that enable
averaging of tensor fields over a finite volume. He works out the consequences for averag—
ing covariant derivatives, and so the effect on the field equations, in terms of structural

functions and a series of correlation tensors, the latter determining splitting rules for

averages. The result is a scheme for averaging out a Riemann space resulting in the ap—
pearance of an averaged space with a metric and two equi—affine symmetric connections.
He obtains the averaged Einstein equations and contracted Bianchi identities. The result
is a very promising scheme for tackling this fundamental problem from the foundations;
its implications, and its relation to other proposals such as those of Futamase and Kasai,

have still to be determined.
To broaden the scope of the discussion , some studies considered more general issues

in cosmology. D. H. King [Vancounver] and C. Klein and H. Pfister [Tubingen] consider
Machian properties of rotating universe from different viewpoints, both claiming (in
different contexts) that a FLRW universe cannot rotate with respect to its inertial frame,
in agreement with previous work by D. J. Raine. In a different spirit, R. Tavakol [Queen
Mary College, London] asks the questions ”ls general relativity fragile”, examining its
stability under various possible changes both in terms of imposing symmetries on models
(which are never truly satisfied) and in terms of various ways of generalising General
Relativity. Various examples show that in general structural stability will not held. In
the long term this kind of issue will become important in determining the questions
we ask and the models we use. This kind of issue underlies some of the other papers
presented, for instance that by Chimento and Jakubi mentioned above.

Finally, the most speculative paper of the session, by L. Smolin [Syracuse Univer-
sity], considered the possibility of natural selection in cosmology. The issue here is that,
as emphasized by Dawkins and others, Darwinian selection is a powerful mechanism

for creating apparently purposeful structure and order Where none existed before, and

indeed is the only mechanism known that can do so. The issue then is whether this
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might be introduced as an explanatory principle in cosmology, explaining some of the
coincidences that are otherwise inexplicable (except perhaps on an anthropic basis, that
many people reject). This becomes a possibility if one conceives of situations where col-
lapse of a black hole gives rise to new expansion phase (a ”daughter universe”), with the
possibility of the constants of physics being different in the new expansion phase than in
the old universe. Thus there is a source of variation of conditions, one of the necessities
for evolution. One also needs some mechanism for selection: here the proposal is that
it is simply numbers of progeny universes that is the mechanism acting, leading eventu-
ally to an overwhelming likelihood of universe models existing with a maximal creation
of daughter universes. The issue is to show that the constants realised around us are
indeed such as to maximise black hole production and consequent creation of daughter
universes.

This is highly speculative, but certainly in the spirit of much modern theoretical
cosmology. Smolin presents a detailed argument for his proposal [6]. It can be criticised
in detail, as was shown by the workshop discussion, and there is room for development
and testing of the proposal; however it provides an exciting prospect of uniting two of
the major paradigms of scientific understanding (evolution through natural selection,
and the expanding and evolving universe) into a new way of understanding cosmology.
Smolin proposes to explain in this way why many of the dimensionless numbers which
characterise particle physics and cosmology take unnatural values. This will be regarded
with skepticism by many, but is certainly an interesting idea.

Overall there is much interesting activity in this area. It was a pleasure to have
Charles Misner, one of the pioneers in much innovative work in theoretical cosmology,
join us for some of the discussions; we wish him well on the occasion of his 60th birthday.
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cosmology. Smolin presents a detailed argument for his proposal [6]. It can be criticised
in detail, as was shown by the workshop discussion, and there is room for development
and testing of the proposal; however it provides an exciting prospect of uniting two of
the major paradigms of scientific understanding (evolution through natural selection,
and the expanding and evolving universe) into a new way of understanding cosmology.
Smolin proposes to explain in this way why many of the dimensionless numbers which
characterise particle physics and cosmology take unnatural values. This will be regarded
with skepticism by many, but is certainly an interesting idea.

Overall there is much interesting activity in this area. It was a pleasure to have
Charles Misner, one of the pioneers in much innovative work in theoretical cosmology,
join us for some of the discussions; we wish him well on the occasion of his 60th birthday.

References

[1] R. C. Tolman 1934 Proc Nat Acad Sci 20 169
[2] N. R. Sen 1934 ZAstrophys 9 2157 1935 Z Astrophys 10 291
[3] Lemaitre 1933 Ann Soc Sci Bruzelles A53 51
[4] G. Ellis 1983 GRJO conference proceedings, Ed. B. Bertotti et al, Plenum Press
[5] Bildhauer and Futamase 1991 CEO 23 1251
[6] Smolin 1992 Class. Qu. Grav. 9 173



Paper presented at the 13th Int. Conf. on General Relativity and Gravitation 397

Cordoba, Argentina, 1992: Part 2, Workshop Summaries

Early Universe phenomena

Alexander Vilenkin

Tufts Institute of Cosmology,
Physics Department,
Tufts University,
Medford, MA 02155, USA

Abstract.
In this review I will be able to give only a brief summary of the talks presented

at the Workshop. The topics discussed can be divided into three categories:

(i) inflation, (ii) cosmic strings, and (iii) misellaneous.

1. Inflation

The opening talk was given by Leonid Grishchuk who disussed the generation of grav-

itational waves during inflation. He pointed out that the waves are not generated with

totally random phases, as it was usually assumed. The gravitational field after infla-

tion is in a “squeezed” quantum state with strong correlations between waves having

the same frequency but travelling in opposite directions [1]. The resulting gravitational

wave background can be thought of as a stochastic ensemble of standing waves. The

same conclusions apply to scalar field perturbations which can evolve into cosmological

density fluctuations and later lead to structure formation in the Universe. It is not clear,

at present, what will be the effect of “squeezing" on structure formation scenarios and

on the pattern of the microwave background fluctuations observed by COBB [2]. But

this is an interesting question which deserves further investigation.

The implications of COBE for various versions of inflationary scenario were dis-

cussed by Andrew Liddle [3] He focussed in particular on extended inflation, which

is based on a Brans-Dicke—type theory of gravity and in which inflation ends through

bubble nucleation. The spectrum of density fluctuations produced in this scenario has

a power-law form, 6p/p o< k", where k is the wave number and the spectral index n

depends on the Brans-Dicke parameter. The index n cannot exceed 0.75, since otherwise

the large bubbles formed early during inflation would be seen on the microwave sky. On

the other hand, Liddle argued that the spectrum has insufficient power on small scales

unless n > 0.82. The reason is that, for values of n in the allowed range (n < 0.75), the
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microwave background anisotropies are dominated not by the scalar density fluctuations,
but by the gravitational waves generated during inflation. The amplitude of density fluc-
tuations should therefore be smaller than a direct comparison with COBE would suggest.
The conclusion is that the structure formation scenario based on extended inflation is
inconsistent with observations. This version of inflation may still provide a viable model
explaining the homogeneity and flatness of the universe, but the origin of cosmological
density fluctuations will have to be explained by another mechanism.

As observations are beginning to catch up with models of structure formation, the
theorists come up with more complicated models having a larger number of adjustable
parameters. In the case of extended inflation, a possible modification is to allow the
Brans—Dicke parameter to be a function of the “inflaton” scalar field ([5. The correspond-
ing model is called “hyperextended inflation”. At the Workshop, Franco Occhionero [4]
discussed an inflationary model with ordinary (not Brans—Dicke) gravity in which the
scalar field (15 is coupled to the curvature through the interaction term Lg,“ oc (#2132. It
can be shown that the phase space of this model has an attractor trajectory with two
consecutive periods of inflation. With a judicious choice of parameters, the transition
between the two periods will fall into the observable range of scales and will introduce a
“break” into the otherwise featureless spectrum of density fluctuations.

The calculation of bubble nucleation rate in a false vacuum is a problem of con-
siderable importance for inflationary scenarios. William Hiscock [5] presented a detailed
numerical study of this problem, extending the original work of Coleman and de Luc—
cia [6] He showed in particular that the thin-Wall approximation, which gives a simple
analytic estimate for the decay rate, has a very limited range of validity. As the wall
thickness is increased, the Coleman-De Luccia instanton approaches the homogeneous
Hawking-Moss instanton. The instanton method has also been used to calculate the rate
of bubble nucleation in the presence of compact objects, such as black holes.

2. Cosmic Strings

A general review of string evolution was given by Tom Kibble. Strings can be produced
as linear defects at a phase trnsition in the early universe. They form a stochastic net—
work with most of the string length, about 80%, in the form of infinite strings which
have the shape of random walks, and the remaining 20% in closed loops. As the strings
start moving under the action of their tension, they intersect, the wiggles on long strings
get chopped off in the form of closed loops, the loops fragment into smaller loops, which
oscillate and eventually decay into gravitational waves. This is a very complicated sys-
tem, and despite a tremendous amount of work, both analytic and numerical, the string
evolution is not yet fully understood.

It is generally expected that, after some transition period, the strings will get into
a scaling regime of evolution, in which all the characteristic length scales of the network
grow proportionally to the horizon, t. This expectation is supported by numerical simu-
lations which show a few long strings in each horizon-size volume at any time, indicating
that the persistence length of strings and the typical string separation are always com-
parable to 15. However, the simulations also revealed that long strings have a substantial
small-scale structure in the form of kinks and wiggles propagating along the strings at
the speed of light, The scale of the smallest wiggles and the size of the loops produced
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by the network were not observed to grow proportionally to 15, thus casting doubt on the

scaling hypothesis. It should be noted that the dynamical range of the simulations is

not large, and the observed deviation from scaling could well be a transient behavior.

In any case, scaling is expected to establish eventually, when gravitational damping of

small-scale wiggles becomes important.
The most promising line of attack in the quantitative study of string evolution

appears to be a combination of analytic and numerical techniques. Kibble outlined the

approach he developed with Ed Copeland, in which the string network is characterized by

three distinct length scales: the first is related to the average string density, the second

is the persistence length along the strings, and the third characterizes the small-scale

structure. The system of equations for the three scales contains unknown parameters

which are to be determined from numerical simulations. Work on this project is still in

progress.
Strings formed at a phase trnsition can survive until present only if the phase

transition occured after or near the end of inflation. However, it has been recently shown

[7] that circular loops of string can spontaneously nucleate in de Sitter space. These loops

are expanded by the subsequent inflation, and by the end of the inflationary era they

have a spectrum of sizes extending well beyond the present Hubble length. if the loops

were exactly circular, they would all collapse to form black holes. However, quantum

fluctuations cause some deviation from circular shapee. To estimate the amplitude of

these fluctuations and the corresponding probability of black hole formation, one has

to develop a quantum field theory of linearized perturbations on strings in de Sitter

space. This was discussed by Jaurne Garriga [8]. The unperturbed world sheet of a

nucleating loop is itself a l+1-dimensional de Sitter space, and it can be shown that the

perturbations are described by a set of two tachyonic scalar fields in this background.

Garriga estimated the number density of black holes resulting from nucleating strings

and used the observational bound on the wray emission by evaporating black holes to

impose constraints on the parameters of the model. The excluded region of the parameter

space comes close to, but does not overlap with the region where the loops may serve as

seeds for structure formation.

3. Miscellaneous

Diego Harari [9] discussed possible observational consequences of a light pseudoscalar fiels

43 coupled to electromagnetism through the Lagrangian Lm, : 94513 - B with g : const.

As electromagnetic waves propagate in an inhomogeneous o-background, the direction

of polarization is rotated by an angle A6 = %gA¢, where Ad) is the change of 45 along

the wave trajectory. If e is a Goldstone boson field resulting from a global symmetry

breaking at energy scale U, then <25 can be expected to vary by Aqi ~ 7) on the horizon scale.

One can then use the observed polarization properties of distant galaxies and quasars

to impose a constraint on the coupling constant 9. The constraint is circumvented in

models where the symmetry breaking occurs before inflation. The field q}: is then nearly

homogeneous and A9 is negligible.
The workshop was closed, quite appropriately, with the talk by Charles Misner

about the future of the universe. He suggested the possibility that inflation, which

presumably occured in the early universe, was one episode in a sequence of successive
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inflationary periods at ever decreasing energy scales. According to this viewpoint, we
are now living in a false vacuum with a very small eenergy density (that is, a small,
positive cosmological constant). At some point in the future, when the temperature and
density of the universe become sufficiently low, this vacuum will be destabilized, and
after a period of inflation the universe will enter a new era characterized by much lower
temperatures, slower processes, and weaker interactions. In the discussion that followed,
voices from the audience called for an immediate ban of low—temperature experiments,
which could trigger the fateful vacuum decay.
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1. Introduction

The subject has witnessed much advances, both in its observational and theoretical

aspects. Some of the most important recent. developments were covered by the invited

speakers and are given elsewhere in this book. The single most exciting recent result has

been the detection and implications of the microwave background fluctuations. In recent

years a body of evidence pointing to the presence of ever larger structures has grown.

The largest observed galaxy aglomerates reach a size of order 100 Mpc and it is likely we

have not reached the limit. Some unexpected results on the large scale structure await

confirmation, like the detection of periodicities in the redshift distribution of distant

galaxies. Most of these results have been reported in other recent conferences. For this

reason and also due to the time and geograp: nical proximity of other astronomical related

conferences, only a few results were presented here. We review the observational results

first and follow with the theoretical presentations.

2. OBSERVATIONAL RESULTS

A review of the current status of faint galaxy evolution, galaxy counts and color distri—

butions was presented by L. lnfante (P.Universidad Catolica de Chile). In the past 15

years several groups have obtained galaxy counts, initially from photographic plates and

more recently from deep CCD images. An excellent mean relation for galaxy counts as

a function of blue (J) magnitude over the sky was obtained by lnfante by combining UK
Schmidt telescope galaxy counts of Maddox et al (MNRAS 247, 1p, 1991), 3.6m CFH
telescope counts of lnfante and Pritchet (Ap.J. 1992, in press) and faint CCD counts

either from Tyson (AJ. 96,1, 1988) or Lilly et al (Ap.J. 369, 79, 1991). These counts
span over a factor of 105 in brightness. Analysis of the data show that significant galaxy
evolution is needed to model observations. However, redshift surveys are not compatible
with evolution. Color distributions of faint galaxies may help to understand the above
apparent contradiction.
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D. Garcia—Lambas (Observatorio Astronomico, cordoba) and coworkers presented
work on the statistical properties of the large scale distribution of galaxies based on
numerical simulations of biased cold dark matter (CDM) 9:1, A=0 cosmologies. They
used different schemes for biased galaxy formation assuming a local nature (0.5h‘2 Mpc)
for the processes that segregate luminous and dark mass. Biased and antibiased models
for galaxy formation were consider by using simple prescriptions for the assignment of
the galaxies, as well as models were galaxy luminosity depend on local density. For all
the models where galaxies are more clustered than the mass they found that the angular
two point correlation function has not enough power on large angular separations as
compared with APM measurements. In antibiased models good agreement between the
angular correlation function of simulations and the observations were observed. However,
the galaxy peculiar velocities in the simulations exceeded by a factor 21.5—2 the observed
values. Similar results were obtained for the velocity dispersions of clusters of galaxies.
In spite of these major problems, the cosmic Mach number, that is the ratio of systematic
to rms Velocity dispersion of large volumes (sphere of radius ElBh‘l Mpc), was in better
agreement with observations that the standard biased model. Antibiased CDM models
could be reconciled with observations it astrophysical processes that reduce the peculiar
velocities of galactic halos were involved in galaxy formation.

The peculiar motion of the Local Group was analized in work presented by H. .lerjen
and G. A. Tammann (Basel, Switzerland). The motion was determined from 15 clusters
whose relative distances are known with minimum bias. ’l‘he resulting local motion is
735il8/l km/s towards [ 2 274°, (I : 3°. This 40 signal is in perfect statistical agreement
with the motion inferred from the dipole of the cosmic microwave background (CMB).
The median distance of 6/100 kin/s of the 15 clusters sets an upper limit to the co—moving
volume. The solution leaves so small velocity residuals that the peculiar velocities of the
individual clusters must, be small (3 200 km/s). 'l‘he data imply a local slowrdown of
the expansion field due to the Virgo cluster of c : 24] j: (14 l(111/S. An almost identical
value, i.e. ”W: = 233 i 411 kin/s, is independently determined using the relative distances
of the Virgo, UMa, and Fornax cluster and of eight nearby supernovae of type la. These
results do not require the adoption of any Zero»p0int of the extragalactic distance scale.

Unusually large mass—toilight ratios in two groups dominated by a pair of interact—
ing elliptical galaxies were reported by ll. Quintana. The central members are dumb-
bell galaxies with typical signs of tidal interactions, surrounded by many satellites. Both
groups studied in detail have high relative velocity of the dumbbell components (500900
km/s). The group velocity dispersions are also exceedingly high for such poor agglom—
erates. lf traditional virial methods are applied, large M/L ratios are deduced, implying
dark matter proportions comparable to that present in the outer parts of galaxies. Al-
ternative interpretations in terms of a finely tuned merger of two groups of galaxies,
following the ellipticals which form the dumb-bell, could be also consistent with present
data.

Radio observations at 1435 Mhz of the variability in flux density and polarization of
the blazar PKS 0521—365 were presented by H. Luna and coworkers (Instituto Argentine
de Radioastronomia). A periodic behaviour was observed, in correspondence with a
quasilinear rotation of the polarization angle. The observations were interpreted using
the model of Konigl-Choudhouri. The equilibrium configurations of relativistic magnetic
pression-dominated jets were studied by the use of a shock wave that accounts for the
variability, obtaining a value for the radius of the jet and the distance from the emission
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zone to the nucleus.

3. THEORETICAL RESULTS

B. Carter (Observatoire de Meudon, France) presentation on Superconducting Cosmic

Strings provided an introductory overview of a new unified mathematical framework for

the description of a wide range of macroscopic string and membrane type phenomena.

It also described provisional conclusions that can be drawn from its application to the

particular phenomenon of superconductivity in cosmic strings.

The subject of cosmic strings was originally founded by Kibble, who initiated a body

of work whose most important conclusions are derivable from a simple gauge coupled

(lliggs type) scalar field theory proposed as a useful toy prototype for more realistic

theories involving the relevant kind of spontaneous symmetry breaking, leading to a,

topologically circular family of degenerate vacuum (ground) states with local vortex

defects describable in the macroscopic limit as thin strings. Such a model gives rise to

strings of the 24limensionally Lorentz covariant GotoeNambu type in which (in units

h:c:l) the resulting string mass-energy density U and string tension T are equal to the

square of a fixed mass scale m characterising the scalar lliggs field: U : T : m’l. l’opular

applications of this simple model were based on the supposition that it represented an

approximation to a CUT in which the Higgs mass scale was given by s % 10’“, which

implied that the gravitational field of the ensuing strings would have been sulhciently

strong to be envisaged as possible seeds for galaxy formation.

The foregoing scenario has lost much of its original popularity for diverse observa—

tional reasons, but Carter pointed out that there are other, purely tl’ieoretical, reasons

for thinking that ii cosmic strings occur at all in nature, then the most likely scenario

is characterized by a very much lower Higgs mass scale, in the range commonly envisr

aged for the various electrowcak unification theories currently subject to experimental

investigation, corresponding to Gm2 % 10—32. The reason for this radical reassessment

is that whereas longitudinally Lorentz invariant Kibble type string loops must radiate

away all their energy in the long run, it is becoming clear that in generic cosmic string

models the Lorentz invariance will be broken by a mechanism tirst suggested by Witten,

which allows the existence of stationary equilibrium states (Davis and Shellard, Phys.

Lett. B207, 404, 1988). The ensuing distribution of (centrifugally supported) loop states

would give catastrophic cosmological mass density excess it (11112 were anywhere near the

Order Of magnitude of it) “. Although the efficiency of the process envisaged by Davis

and Shellard is hard to evaluate, it would still be suflicient, even if it were very low, to

undermine the viability of string forming theories with s large enough for structure

formation by individual strings to be significant. On the other hand if the efficiency is

high, relic loops with Gm2 % 10‘32 might collectively constitute a significant or even
cosmologically dominant CHUMP type CDM constituent (Ann. NY. Acad, Sci., 1992,

in press).
In order to obtain a more detailed understanding of the processes involved and,

in particular, to tackle the stability problem whose solution will be needed before a

conclusive picture appears, Carter has been developing a general purpose formalism for

the mechanical description of p-branes of any dimension (using a nomenclature in which

p=0 designates point particles, p=1 designates strings, and p=2 designates membranes
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such as cosmic domain walls). The fundamental equation governing the extrinsic motion
of any such system in the absence of external forces is always expressible (Class. Quantum
Grav. 1992, in press) in the simple form TWK5U= 0, where TW is the relevant surface
stress momentum energy tensor and w is the second fundamental tensor of the support
surface, as defined in terms of the first fundamental tensor 72”“ by Kg” 2 71:77:) VA 7):. The
simplest example of the application of this formalism is to a point particle trajectory with
unit tangent vector u“ for which one has 77““ = —u“u" and hence Kg” 2 7],“,12", where
12" is the ordinary acceleration vector. In this case TW = mu‘m" and m is the mass
parameter. The general dynamic equation written above just gives the familiar geodesic
equation mil” = 0 together with mass conservation, u“ V“ m = 0. In the case of a string
world sheet, instead of a uniquely defined tangent vector uM one has a uniquely defined
antisymmetric unit surface element tensor 5““ in terms of which 7],? : ($65. For a simple
Kibble type cosmic string one gets that the curvature vector K“ : KS" should vanish
since in this case TW : emzn‘”. This particular dynamic equation, K” : 0, is a covariant
expression for the equations commonly obtained in coordinate dependent form from the
Goto—Nambu (surface measure) action. In the more complicated generic situation when
currents are present the surface stress momentum energy density tensor will be given in
terms of its timelike and spacelike eigenvectors u" and i)", say, by T’“’ : Uu"u" e Tv‘tv"
with T < U. The propagation speed CH of extrinsic (transverse) perturbations is then
given (Phys. Lett. 228B, 446, 1989) by C1; : T/U, and it can be shown as a general
theorem (Phys. Lett. 238b, 166, 1990; Class. Quantum Grav. 8, 135, 1991) that a
string loop achieves stationary equilibrium when its longitudinal velocity is given by this
same value CE. The problem of stability of such equilibrium states has not yet been
fully solved and its treatment will require knowledge of the speed CL of longitudinal
perturbations which is given by (1% = —dT/dU. The linear approximation used in most
earlier work implied C1, > 0,5, but more accurate work by Peter (Phys. Rev. D45,
1091, 1992) shows that in fact C,, < CE in VVitten’s superconducting string model. In a
different context (Phys. Rev. D41, 3038 and 3886, 1990) allowance for thermal or other
noise (in the form of microscopic wiggles) leads to an intermediate model with CL : C];
whose dynamic equations are exactly integrable in flat space.

B.J. Carr presented work with J.H. MacGibbon (Queen Mary & Westiield College,
London) on the quantum emission from primordial black holes (PBH) which may have
formed from initial density fluctuations or phase transitions in the early Universe. in
contrast to previous approaches to this problem, they assumed that fundamental quarks,
gluons and leptons are emitted rather than composite particles, once the black hole
temperature exceeds a few hundred MeV. The quark and gluon jets then fragment into
the stable photons, leptons and hadrons. This radically changes previous estimates of the
contribution of evaporating black holes to the observed cosmic-ray backgrounds. They
find that the black hole density required to explain the observed gamma-ray, electron,
positron and antiproton fluxes at around 0.1—1 GeV are all comparable providing the
holes cluster inside the Galactic halo (as expected). This provides some support for
the possible existence of PBH from the Galactic centre and their final explosions are
also likely to be undetectable. Nevertheless, the possibility that cosmic ray observations
could provide information about high energy particle physics and the early Universe is
very attractive.

An analysis on the effects on cosmological large-scale structure (LSS) of adding
non-Newtonian corrections to the usual cosmological fluid was presented by Caroline
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Lewis (Center for Relativity, Austin). This work was done by making the anisotropic

stress term in an imperfect fluid time-dependent and then computing the solutions to

the density perturbation evolution equations that result from using the gauge-invariant,

scalar perturbation formalism suitable for nonlinear dynamics set up by Bardeen (PhyS.

Rev. D 22, 1882, 1980). The non—Newtonian terms cause a nonlinear relation between

stress and velocity gradients that causes an amplification of the density perturbations

over the standard Hot Big Bang result. These fluctuations can then act as seeds for

galaxy formation.
The motivation for this unusual viscosity treatment comes from the Einstein sta-

tistical mechanical result that the effective viscosity for a suspension of spheres in an

otherwise uniform fluid medium is proportional to the concentration of the spheres. Bub-

ble nucleation theory for a generic early universe, first order phase transition leads to an

estimate for the anisotropic stress that acts as a source for the superhorizon sized den—

sity fluctuations in the Bardeen formalism. Depending on the equation of state, density

contrast. growth rates going as conformal time to the 17th power and more are observed

during the bubble nucleation time. This amplification could lead to structure formation

(the bubbles are n_0t the LSS!) and is noh'uvorthy in two 1't‘:-i[H‘(‘l.h: if) h-lit‘ropliysics is

affecting superhorizon-sized fluctuations. Lewis lir-lh-w-s this unusual result t.- lm clue to

the nonlinear and nonequilibrium nature of the situation. (‘2) Viscosity has been [mm]

to build up structure contrary to standard rmiuoliigrir'nI viscosity usage. Lewis thought

this were dissipative structures. A covariant formulation of complexity theory would be

a useful tool to investigate these matters in Inore detail.

S. Gottlober (Potsdam) discussed nonflat perturbation spectra and Microwave

Background (MB) temperature fluctuations (S. Gottliiber et al. Phys. Rev. D43, 2510,

199l.) Simple inflationary cosmological models predict a quasieflat perturbation spec-

trum, whereas observations indicate extra. power in the spectrum on scales larger than

about 50 Mpc. Such non-flat spectra are predicted by models with two subsequent quasi—

de Sitter stages with an intermediate powerelaw expansion of the scale factor a o( t2/3.

Vacuum polarisation effects described by highertorder correction terms in the gravita—

tional Lagrangian may drive a first inflationary stage. The amplitude of the perturbations

then depends on the coupling constant 01 in the gravitational Lagrangian R + (MR2. A

coherent scalar field (which could be created during this first inflation) may drive a sec—

ond inflationary stage. The height of the resulting step in the spectrum depends on the

ratio of the effective masses of the scalaron 1W 2 l/\/6—a and the scalar field. The scale

of the break is determined by the energy density of the scalar field at the end of the first

inflation. A rapid transition from the first to the second inflationary stage leads to a

steep step typically accompanied by additional small oscillations in the spectrum. In a

smooth transition a major part of the spectrum shows decreasing power for increasing

wave numbers. Then the Harrison-Zeldovich spectrum is typical for very large scales

(outside the horizon) and it is reached again after the transition to the second inflation,

i.e. for scales smaller than 50 Mpc. Transfer functions describe how the initial fluctu-

ation spectrum changes during the cosmological evolution up to recombination, when

it gives an imprint on the temperature angular distribution of the MB radiation. The

break in the initial perturbation spectra changes drastically the angular distribution of

the temperature described by the multipole moments < (1%", >. In particular, for I < 40

the product [(1 + 1) < 0,2", > rapidly decreases with increasing 1 whereas it is approxi-

mately constant in the flat perturbation spectrum. Also, small oscillations of the initial
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perturbation spectrum lead to effects in the calculated temperature fluctuations at the
corresponding moments and scales. The angular correlation functions calculated for dif-
ferent spectra nearly coincide at large angles. At small and intermediate angles non-fiat
perturbation spectra lead to much smaller correlation functions than the flat spectrum.
The temperature fluctuations are expected to be on the verge of detection, which could
decide between different initial spectra and inflationary models.

A comparison of three orthogonally crossed wakes with the CfA large~scale struc-
tures was presented by T. Hara and S. Miyoshi (Kyoto Sangyo University, Japan). They
performed a numerical simulation of the evolution of three wakes which cross each other
in a flat universe dominated by CDM with open cosmic strings. The results of the
simulation were compared with the CfA observations in cone diagrams. They showed
good agreement between simulations and the chosen data; three filaments cross in the
observed angles and a wallilike distribution of galaxies appears. It was claimed that
the resemblance between the oberved and simulated distributions could be improved by
considering more complex situations.

Ideas on a connection of an oscillating gravitational constant and biological effects
were presented by P. Sisterna and H. Vucetich (Universidad Nacional de La Plata, Ar—
gentina). A periodicity in the galaxy distribution of 128 it” Mpc has been suggested.
Soon afterwards it was noted that this apparent spatial periodicity could be naturally
explained by a time oscillation of the gravitational constant G or the Rydberg constant.
On the other hand, periodic growth features of bivalve and coral fossiles show a peri—
odic component in the time dependence of the number of days per year. They propose
that a time oscillating gravitational constant can explain such a feature. T. Hara, P.
Mahohen and S. Miyoshi (Kyoto Sangyo University7 Japan) also reported investigations
on the inhomegenity of DM and luminous objects due to the wake formed by open cos~
mic string and on the anisotropies of cosmic MB radiation due to open cosmic strings.
S.K. Chakrabarti argued that in the early epoch of galaxy formation non—electrical forces
in radiation pressure supported tori can drive a poloidal electric current and generate
primordial magnetic fields.

The author gratefully acknowledges support from FONDECYT Grant 90—371. Miss
Lewis presentation was partially supported by the International Physics Forum of the
American Physics Society.
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1. Introduction

There were three oral sessions and one poster session for Workshop C1 on Gravitational

Wave Experiments. There was also an informal experimental roundtable held one after-

noon. The first two oral sessions were devoted mainly to progress reports from various

interferometric and bar detector groups. A total of 15 papers were presented in these

two sessions. The third session of Workshop C1 was devoted primarily to theoretical

and experimental investigations associated with the proposed interferometric detectors.

Ten papers were presented in this session. In addition, there were a total of 13 papers

presented in the poster session. There was some overlap between the presentations in

the third oral session and the posters since only two of the serious posters were devoted

to technology not pertinent to interferometers.

In general, the papers showed the increasing maturity of the experimental aspects of

the field since most presented the results of completed investigations rather than making

promises of wonderful results some time in the future. Unfortunately, the limited time

allotted to experimental reports made the session more like a session of contributed

papers at a very large national meeting rather than a session where work could be

presented and the merits of various approaches debated and discussed. Hopefully future

GR meetings will have more time devoted to experimental aspects of General Relativity

research.

2. Sessions I and II

The first paper in Session I was a report by Whitcomb on the status of the LIGO project.

The five-year project received first-year funding in 1992 to begin design and construction

of a two-facility observatory for the detection and study of gravitational waves from

astrophysical sources. Sites have been selected (Hanford, Washington, and Livingston,

Louisiana) and detailed design will begin soon. Under the present schedule, the facilities

will be completed by 1997 and initial observations will begin in 1998. Abramovici followed

1 E-mail: PHMLTN©LSUVM (BITNET) or 7620::HAMILTON (SPAN)
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of a two-facility observatory for the detection and study of gravitational waves from

astrophysical sources. Sites have been selected (Hanford, Washington, and Livingston,

Louisiana) and detailed design will begin soon. Under the present schedule, the facilities

will be completed by 1997 and initial observations will begin in 1998. Abramovici followed
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with a second paper which reported on the sensitivity of the LIGO 40 m prototype
interferometer at Caltech. The lowest noise measured is 1.2 x 10—18 m/JI-E at 1 kHz in
displacement sensitivity. The noise spectrum is dominated by seismic noise below 120
Hz and by shot noise above 1.5 kHz.

After these two reports on the laser detectors, there were a series of reports on
the progress of cryogenic bar detectors. First, there were reports on the detectors in
operation. Hamilton discussed the ongoing experiment at LSU. The LSU 4 K detector
has been in continuous operation since April 1991. Its noise level corresponds to an rms
strain of 5 x 10‘19 . This is the best noise level that anybody has ever reported, albeit by
a small margin. The data is extraordinarily clean, showing fewer than 20 events per day
which lie above the expected exponential distribution. He stressed the need for multiple
detectors operating in conincidence, regardless of the sensitivity of individual detectors.
Looking into the future, Hamilton discussed an interesting possibility of constructing a
large 50 mK sphere antenna. This idea is being studied jointly by the bar groups in
the U.S. The sphere is omni—directional and may reach a sensitivity of h < 10‘21 due
to its large mass and multimode nature. Ricci discussed the experience obtained from
long-term operation of the 4 K EXPLORER detector at CERN. After being upgraded,
EXPLORER was in continuous operation from July 1990 until December 1991. Its noise
temperature has been better than 10 mK and the duty cycle of data taking larger than
70%. The 6 months of coincidence data between the Rome and LSU detectors is still
being analyzed.

Then there were reports on ongoing construction work for ultralow temperature bar
detectors. Coccia reported the progress on the construction of the ultralow temperature
detector NAUTILUS. A 2350 kg Al 5056 bar was successfully cooled to 95 mK at CERN
in 1991. After this cryogenic test, the detector was moved to Frascati in the spring of
1992. NAUTILUS is being reassembled and is expected to go into operation at the end
of 1992. A progress report on a second ultralow temperature detector, being assembled
at Stanford, was given by Mann. The cryostat has been extensively redesigned and
modified to cool a 1800 kg A1 5056 antenna to 50 mK. Work is nearly complete on
the Paik transducer and associated commercial dc SQUID for the first phase of the
detector operation. This detector is expected to go into operation in the first half of
1993. The senstivity goal of both the Rome and Stanford ultralow temperature detectors
is h : 10720.

Session I ended with Schutz’s reassessment of the reported correlations between
gravitational waves and neutrinos associated with SN1987a. He pointed out that one
of the statistical tests used to establish the reported correlations between the room
temperature gravitational wave antennas and the neutrino detectors is seriously flawed,
and most other were devised a posteriori and contain considerable freedom to make
choices that strengthen the correlations. Schutz concludes that the claimed gravitational
wave-neutrino correlations are likely to be due, not to any physical effects, but simply
to chance. There was disagreement expressed during the discussion but it was decided
to postpone the argument until everything had been published.

Session II started with Blair and Tobar’s progress report on the niobium bar an-
tenna at Perth. The highest Q achieved with the niobium antenna at 4 K is 2.3 x 108.
The vibration isolation system for the Perth antenna has been completely rebuilt and the
detector is undergoing reassembly. Blair then discussed the status of the AIGO project.
It is undergoing a second review in Australia following a previous recommendation by
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ASTEC that the observatory be 50% Australian funded if international funding could be
secured for the balance. Nicholson presented a coincidence analysis between the two pro—
totype interferometric detectors at Glasgow and the Max Planck Institute in Garching.
The 100 hours of coincidence data was used to test automatic data analysis algorithms
which search for signals of astrophysical origin. Progress on the intermediate size laser
interferometer in Japan was reported by Kawashima. The construction of TENKO-lOO,
a 100m 100 bounce delayline interferometer, will be completed by the end of the summer
of 1992. The hard work of attaining high sensitivity will follow.

Attention was then shifted again to real data. Astone presented a new upper
limit on gravitational waves obtained from the long-term operation of EXPLORER.
The detector noise temperature was 10 mK and corresponded to h = 6 x 10’19 for short
bursts of gravitational waves. The new limit ( less than 0.1 events per day for bursts with
h larger than 4 x 10’”) represents an improvement by an order of magnitude over the
previous limit obtained with the Stanford detector in 1982. In the next paper, Bertotti
described the search for low-frequency gravitational waves from the tracking data for the
interplanetary spacecraft ULYSSES. The data was taken in a four—week period starting
February 20, 1992 but unfortunately the data analysis has not been completed.

The final two papers in Session II were on improvements on the laser interferom-
eters. Newton reported some improvements to the Glasgow prototype interferometer.
There was a lengthy discussion about the effects of relatively poor vacuum on the per—
formance of mirrors. Drever then discussed an idea of the late Brian Meers, an “ul—
trasensitive configuration” for laser interferometers, using a double sideband recycling
technique.

3. Roundtable

An informal experimental roundtable was held during one afternoon. The intent was to
allow discussion, unconstrained by formal structure, about the experimental problems
and the future direction of the field. One question, posed by Blair, occupied much of the
discussion. Blair asked: “If we were to start anew with bar detectors, for what frequency
should we build them?” Thorne answered immediately that they should be designed for
the lowest possible frequency, whereupon Will suggested that 1.4 kHz would be a good
place. Considerable discussion ensued with the final advice to the experimentalists being
that no one really knows the answer so they should build what they can do best. We all
will then wait to see what is found.

Pizzella also announced, for the Rome and LSU groups, that the first result of the
joint coincidence analysis is that for the 6 months studied there were no coincidences
with an energy greater than 200 mK. This corresponds to h = 3X10‘13.

4. Session III

The first paper in Session III was presented by Cutler for the Caltech relativity group.
He presented their estimates for the frequencies and the duration for the inspiraling of
coalescing neutron star binaries. They have also estimated the parameters for neutron
star-black hole and black hole-black hole binaries. Monte Carlo simulations show that
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if such signals are detected, using undescribed pattern matching techniques, that the
signal to noise ratio will be relatively high, enabling the masses and the distances of the
sources to be measured. Lobo then presented a paper with Krolak and Meers which set
a formidable technological challenge, showing that if an interferometer were to be run
using dual recycling and if the recycling tuning could be dynamically tuned as the signal
from the binary was detected, the signal to noise would be greatly improved. How such
detection and dynamic tuning could be accomplished was left as an exercise for the audi-
ence. Krolak then discussed the reverse problem: How well can one determine the mass,
range, and phase of a detected binary system? He used a network of 3 interferometers,
the two LIGO detectors in the US and the VIRGO detector near Pisa. The results show
that range is the most uncertain of the parameters, but the signals may be detectable at
ranges as large as 200 Mpc.

Bender discussed the possibility of massive black holes at the center of galaxies and
the gravitational radiation signature from neutron stars spiraling into such objects. Such
signals are inaccessible to anything but a space—based system.

Passive and active seismic isolation systems occupied the remainder of the session.
Several of the papers on seismic isolators seemed to revisit much of the territory pre—
viously explored by those designing resonant bar detectors. Shoemaker discussed the
design, at MIT, of a passive seismic isolator for LIGO. He pointed out the limits to the
performance of such isolators caused by internal resonances in the components of the
isolation stack. Gonzalez discussed the work for LIGO of the Syracuse group and the
new theoretical approach she has used to investigate the old problem of thermal noise
in a pendulum. Her work does not directly involve a normal mode expansion and seems
to give reasonable results. Saulson continued with a discussion of the effects, on a LIGO
pendulum isolator, of the stored tensile energy in highly stressed wires. Since the stored
energy is so large, he asked if its release could be a noise source which is much larger
than the thermal noise. This is a problem which still doesn’t have an answer, either the-
oretical or experimental. The question centers about whether the energy is released all
at once or in small increments. Barone gave the results of a computer program designed
to optimize the performance of a static steel and rubber stack and pendulum support.
Its optimization criteria led to successively smaller masses as one goes up the stack.

Newell gave a progress report on the Colorado program to develop an active iso-
lation system for the mirrors of a LIGO system. As with all experiments, the meeting
came at an inconvenient time, and he had not been able to close all of the feedback
loops before he had to leave to report on his results. The vertical motion loops had
been closed,however, and the prototype system performed as expected. Notcutt then
spoke about the seismic isolators at Perth which eliminate steel and rubber stacks and
replace them with star shaped plates in flexure. Magnets are used on the plates to pro-
vide damping. These have been already installed in the redesigned Perth resonant bar
detector which is set for a cryogenic run Real Soon New and are also being used in the
Perth laboratory interferometer prototype. Their isolation seems to be quite good and
isolators of this type should also perform well if cooled.

5. Conclusions

With the emergence of the long-baseline laser interferometers, the number of papers
presented in the Gravitational Wave Experiments Workshop has exploded. The future
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of gravitational wave astronomy looks bright. The construction of ultralow temperature
bar detectors is nearly complete. The LIGO project is moving ahead with the design
and construction of two 4 km baseline interferometers in the U.S. and the VIRGO group
will build at least one in Europe. These sensitive antennas should be operational by
the turn of the century. By that time there may even be a few very massive sphere
antennas carrying out an all-sky search for gravitational waves in coincidence with the
laser interferometers.

It appears that another decade of hard work is ahead of us. But the payoff may
not be that far away. The new detectors are now beginning to reach very interesting
sensitivity levels. If Nature cooperates, who knows? One of us may be reporting a clear
detection of gravitational waves before the turn of the century, perhaps at one of these
GRG meetings.
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Report on the Workshop ‘Other gravitational experiments and
observations’

Bruno Bertotti

Dipartimento di Fisica Nucleare e 'l‘eorica, Universita di Pavia.

The scene of Experimental Gravity has changed much since the beginning of this
discipline in the 60’s (sec. e.g.‘ [Caper/inanial Grunt/,(itiorr. Proc. lnt. School of Phys.
F). Fermi, Course LVl (B. Bertotti, ed), Academic Press (1974).) Until a few years ago
extensive experimental programmes were undertaken] in a precise theoretical contest: to
test well defined relativistic theories of gravity which had in common a metric framework
and were precisely classified in a parametric scheme. the l’arametrized PostrNewtonian
(PPN) formalism; among them, of course, l‘linstein’s theory of relativity, which corree
sponds to a particular point in this parameter space. had the a priori privilege of great
simplicity and long tradition. Since the net result of this work was the falsification of
most alternative theories of gravity much of its motivation and impact is now on the,
wane; at the workshop only three papers (‘2 3, and 5.) were explicitely devoted to
measurements of the PPN parameters.

Among the current work of this kind in progress in liixperimental (lravity, the
Gravity l’robe B (paper 5.) stands out not only because its main purpose is to measure
directly a new force of nature, the "grayitoemagnetic force” (which has never been done
so far)7 but especially because the sophistication and the ingenuity involved in this space
experiment7 consisting in a gyroscope in an lilarth orbit. is stunning. The paper is
devoted to a problem which is crucial in every space experiment aimed at measuring a
single, or a few parameters: since usually the measurement requires the whole mission
and is performed only once. it is in principle impossible to assess the statistical error, and
great care nmst be faced to avoid and to evaluate the systematic errors. For the (lravity
Probe this will be done with a careful (L prim'i analysis and by splitting the [6.5 months
duration of the experiment in three phases. each characterized by different experimental
conditions. The paper concludes “A demonstrated absence of systematic experimental
error would allow an overall accuracy of the drift rate of 0.22 ntar‘csec/y”. which is an
outstanding perforn‘rance. especially if compared with the main effects on the spin axis
of the gyroscope to be measured, the geodetic precession and the frame dragging; they
amount, respectively. to 6.6”/y and 42 nmresec/y.

The other 11 papers address different questions; among them the most important7
in my View, is the verification of the Principle of Equivalence in all its forms and impli-
cations. Since the mass of a body includes the contributions to the binding energy from
all the relevant interactions (\\’ill in Al. lists nine of them). the statement of equality of
inertial and gravitational masses implies the equality of each contribution (albeit with
less accuracy). Therefore the Principle of Equivalence is a very complex (and, in my
view, a priori unlikely) statement, with hearings on all the forces of nature and their
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quantum properties; any increase in the accuracy of its verification may lead to surprises.
This general theme has been recently made more interesting by the proposal — and the
extensive experimental programmes related to it - that in nature there is a new force (the
“Fifth Force”) between baryons; since the rest mass of a body is not quite proportional
to its baryonic content, a violation. of the \Veak Equivalence Principle would ensue.

Unfortunately, contrary to the PPN related experimental research, we have at
present no viable and complete theory outside the metric framework which violates this
principle and we cannot predict definite thresholds for its violations, which makes the
planning of these experiments difficult and moot. The main contribution along this line
is the old work by Al). Lightman and 131.. Lee (Phys. Rev. D8 3647376 (1973)), where
they have constructed a generalized electromagnetism in which the dielectric constant c
and the magnetic permeability n depend on the gravitation potential; then the electro
magnetic interactions change from place to place and violate the Equivalence Principle.
rl‘his theory, however. holds only for slow motion. In the paper 11., an interesting coir
tribution along this line, the formalism of Lightman and Lee is extended to quantum
mechanics and applied to a quark model of a nucleon.

To illustrate the gist of the problem, consider the electrostatic binding energy,
which contributcs to the mass of an ordinary body by z 0.1% and therefore is found
to obey the Equivalence Principle to within a. part in z lOE. 1n the ordinary theory
the formal reason for this is that electromagnctism is coupled to gravity only through
the metric field mm which takes up in an freely falling frame the Minkowsky form
(”Hf/(1,7 l,~ 1,71) . rtherefore this coupling is universal, and so is the corresponding
binding energy. Dillcrcnt couplings and their cll'ect. on the motion may provide interesting
insights and possible violations; for example, an additional term in the Lagrangean
function for the electromagnctic field 1””, proportional to

ttlfl/I Fl” [TU/)7

where HIM/0,, is the Riemann tensor, seems to be the simplest interaction, alter the ordi-
nary one

7;”) W0,gar/W 1' 1' .
it contributes to the binding energy a new term which depends on the place, the nature of
the body (and its orientation with respect to the l‘larth if it electrically polarized!) Hovw
ever, the propagation of electromagnetic waves would be also allected and will subject.
the new interaction to experimental constraints.

These questions are. of course, related to the validity of Lorentz trasformation and
special relativity, and, again. we have no complete, alternative theory with which to
confront experiments. Interesting advances along this line have been presented at the
Workshop by 1-1. Vucetich and his group (paper 10.). 011 general terms, one can perhaps
remark that, while excellent verifications of special relativity are available for laboratory
conditions, we are in great ignorance when cosmic bodies are involved, in particular the
Universe itself. Violations of local Lorentz invariance of the order of the ratio of the mass
of the body to the mass of the Universe would certainly escape the present tests; and
since cosmology provides a natural standard of rest one could certainly imagine models
in which the Universe as a whole evolves as a threedimensional, riemannian manifold
without being embedded in a pseudo-riemannian spacetime. In this case one should, of
course, ensure the local validity of the traditional spacetime picture. One could recall
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here that the full Lagrangean of general relativity is indeed uniquely recovered from the
hamiltonian dynamics of a. threedimensional metric provided an embedding spacetime
with the appropriate signature is assumed (see 8. A. Hojman et (ti , Ann. Phys, NY ,
96 88—135(1976).)

It seems difficult to achieve in the laboratory a verification of the Weak Equiv-
alence Principle with better accuracy than in the experiments carried out in the past
by Dicke and Braginsky; space experiments seem to be the next step. The paper 4.,
presented by C.M. Will, was an interesting discussion of the theoretical implications of
the great project STETJ (Satellite Test of the Equivalence Principle), at present under
consideration by the European Space Agency. STEP will consist of a drag—free satellite
in a circular Earth orbit, carrying three pairs of accelerometers of a new type. They will
use test masses coated with superconducting Niobium, suspended on magnetic bearings
and coupled to SQUID detectors. At frequencies 2 0.1 ne they will measure relative
accelerations with an accuracy of 10"”1 cm/scc2. The Final accuracy in the difference
between inertial and (passive) gravitational masses is expected to reach one part in 10171
As Will has noted, such an accuracy will enable, among other things, to test the equal

ity between the inertial and the gravitational contributions due to other interactions, in
particular the part of the weak force which violates parity.

Laboratory tests of the Equivalence Principle are certainly much less accurate,
but available now. in the paper 14. 13.11. lleckel, from the University 01‘ Washington in
Seattle, has reported the new results of their torsion balance: for Be and A1, for example,
the two masses are equal to within 4010'”, similar to the negative outcome 01' liraginsky
and Panov’s experiment with 171. and A1, with an error 01' 0.9 10’].2 at 95% conlidencc

level (Soviet Physics .lE'J'P 34 46334166 (1972)). One should also mention an improvement
by one order of 111agnitudc in the verification of the l‘lquivalencc Principle for photons,
which, as well known, leads to the prediction of the gravitational frequency shift; this was

done in a, long experiment lasted ten years by means of Mossbauer effect and presented
in 12. 11' spacetirne is endowed with a non symmetric fundamental tensor, like in M()1lat,’s

theory (Phys. lieu. D19 3554 (1979)), light deflection due to a gravitational field would
be dependent upon its polarization ~ an example of gmintatiO‘tttil bi'rif't‘ingencc. This,

of course, would also violate the Equivalence Principle tor photons. ln 6. a new limit.
on the critical parameter 01' Moil'att’s theory has been deduced from the depolarizatioir
that this effect would produce on the Zecman components of spectral lines emitted by
magnetically active regions near the limb of the Sun (where the gravitational deflection
is not negligible). For a criticism ()1. Motlattls theory, see, however, the recent paper by
T. Damour, S. Deser and J. McCarthy Nonsymmcz‘ric gravity theories: inconsistencies
and a cure, to appear in Phys. Rev. D.

Many people have speculated on particular violations of the Equivalence Principle
based on anomalous spin-dependent effects in long range interactions, which can be tested
in the laboratory. At the workshop. after a general introduction on these problems (paper
8.), new upper limits on a long range (2 3 cm) interaction between polarized electrons
and nucleons have been presented.

The paper 14. is also related, in a way, to the Equivalence Principle. Its naive
interpretation suggests that a charge l'r‘eely falling in a gravitational field should not
emit electromagnetic radiation. just like a charge at rest in a flat spacetime; however,
since radiation is a. non local phenomenon. extending all the way to infinity through
the future light cone, the application of the principle is not warranted. Indeed, theory
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shows that the freely falling charge should radiate following ordinary electromagnetism,
with the appropriate value of the acceleration. The paper 141. considers the radiation
emitted by bunches of relativistic, freely falling charges, like one will have in the LEI)
of LHC machines, and addresses the problem of its detection. The main obstacle is the
acceleration due to the magnetic field of te Earth, several orders of magnitude greater.

The extensive and interesting experimental work on the “Fifth Force” did not lead
so far to any substantiated claim (see E. Fischbach and C. Talmadge, Nature 356 2071
215 (1992)), but, of course, at some level Newton’s law of gravity must be violatedl
A very interesting experimental technique in this field is provided by three pairs of ace
celerometers placed along three orthogonal axes. Since a. pair of accelerometers measures
the second derivative of the Newtonian potential U, if U fulfils haplace’s equation, the
readings of the three pairs must sum up to zero. This is the theoretical basis of the
experiment 13., where superconductive gradiometers are used to test this feature over
a range of a few meters. The paper gave a progress report, concentrated on the main
remaining problem, removing the error due to misalignments of the acceleronieters. The
final accuracy in the Yukawa coupling constant o is expected to reach 10”.

in a poster paper A. Spallicci presented, also on behalf of six other authors, the
plans of the COLUMBUS Metrology Science Team for gravitational experiments for
Spacelal), the EURECA programme and the International Space Station l,t‘1’(:(,§(l()lll. The
main projects are two:

Flying two clocks based upon a hydrogen maser, a very accurate microwave fie
quency standard, as a test for future space experiments (in particular the Solar Probe,
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Quantum field theory in curved space—time

Mario Castagnino
Instituto do, Astronoinia y Fisica clel Espacio

Casilla do (lorrco 67- Sncursal '28, l1128 Bileuos Aires- Argentina

When we began to study, in the seventies, Quantum Field Theory in Curved Space

time (QFTCST), we thought that WV were count Hu'ling a fundnnu-Jltul llu‘m'y. r‘n-‘mn—

passing General Relativity and Quantum Field 'l‘lum)‘ ((Ql'firlflt lt was soon evident

that QFTCST is only the ixl'lilif‘lilhr-ilt‘fll :i]nprmunmtinn to (Quantum (iiraviiy {QC} :1

yet unknown the<’>ry. After ‘20 years, normally a physical theory, it it is not fundamen-

tal, decays and dies. On the contrary, QFTCH'I‘ is wry much alive, as it is pi‘ln'ml by

the almost 50 abstracts submitted to this workshop, This is so because many people

are trying to define and develope QFTCST in very interesting and important cases,

such as Gott’s space or non globally hyperbolic spaces etc. (as we shall see in section

1), because QFTCST is useful to study the quantum nature of Black Holes (BH) (as

we shall see in section 2) and because this fm‘nialism is an esential tool for Quantum

Cosmology; like in inflationary models (as we shall see in section 3).

So let us review the main topics of the “'orltshop, where We will find interesting

contributions to all this of these lines of research.

1. The General Theory

In his talk, David Boulwarc proposed a QFT in Spaces with closed time—like curves,

the Gott’s spacetinie, whith no anmnalous stress? energy tensor. In the special case

of a, total deficit angle of %, it is possible to find a complete orthonormal set of eigcnr

functions of the wave operator. From these, the QFT is constructed. The resultant

interacting QFT is not unitary, because the field operators can create real, on»shell,

particles, in the acausal region, which propagate for finite proper time accumulating

an arbitrary phase, before being annihilated at the same spacetime point. As a re

sult, the effective potential within the acausal region is complex and probability is not

conserved.
VVai— M0 Suen posed the following question: “are perturbative constraints necessary

in semi-classical g;l'71‘.'i1}",lll In tum. rm-mnly Simon and Parker proposed that those

solutions of thr- Hl‘lllll‘lilh‘J-llt‘ill Iiimiviu equation, which are not perturbatively expand—

able in powers of the Planck's l'|'.)llhlilllt. should be disregarded. This would then avoid

the instability of Hal swim, and V‘X“Illll(' pathological solutions of the semi—classical

Einstein equation. Suen argued that such a restriction might not be necessary (at

least for models involving only free quantum fields in which the semi-classical theory

is exact to all matter loops),based on: (i) although an exact flat space is unstable with

respect to infinitesimal perturbations, Robertson—VValker spacetimes with arbitrarily

small(but finite) Hubble expansion are stable in semi—classical gravity, and (ii) for a

A 4nnn YA“ “..L‘:nl§:nn T «A
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range of renormalization parameters, solutions of the semi—classical equation starting
out dominated by the higher derivative terms in the equations (hence locally not per—
turbations of classical solutions) are automatically driven towards classical solutions
by the backreaction from quantum fields. Hence the existence of our present universe
is not necessarily in contradiction to the “ unrestricted semi—Classical theory”.

Juan Pablo Paz raised some criticisms about this talk because, he said7 Simon and
Parker proposal was not well interpreted by Suen.

Sung—Won Kim introduced another question about stability: “are time machines
unstable by the particle production?” Kim and Thorne tried to calculate the vacuum
fluctuation of quantized fields [1]. It was shown that the vacuum fluctuations produce
a renormalized strcs energy tensor (SET) that diverges as one approaches the Cauchy
horizon, which will be cut off by QC. However, there is a controversy. Hawking [2]
conjectures an oliscrvervindeymndent location for the breakdown in the scrniclassical
theory. In his talk, Kim studied this quantum stability problem using another method,
namely particle production by an arbitrary gravitational field. When the wormhole
forms in the infinit past, the result is finite, while it is divergent near the Cauchy horizon
when the wormhole forms at a finite time. If we adopt Kim? Thornels conjecture, then
the divergence can be cut off by QC ; therefore the total energy cannot prevent the
formation of the closed timelike curves when one is within a Planck length.

Finally, cian Dray, Corinne Manogue and Robin W. Tucker studied an inter
esting problem both related to QFTCST and QC. They consider the metric (1.92 :
f(t)dt2 +Aq(t)(/.ri2 where g is everywhere positive and f has two roots, at both of which
it changes sign, and where furthermore ftf) <fi 0 for ltl sufficiently large. This corre—
sponds to a spatially symmetric spacwtime which is initially and finally Lorentzian,
with a Euclidean region in between. Since the masslcss scalar wave equation is confor—
mally invariant in tvvo dimensions, and since all ldimensional surfaces are conformally
flat, it is easy (in principle) to solve the wave equation in any region of constant sigr
nature. The issue is how to match solutions when the signature changes. Specificaly,
is there a physically reasonable prescription for matching solutions of the wave equa—
tion to solutions of Laplace‘s equation so that the resulting picture can be reasonably
described as propagation?

A basic property of the usual theory of the scalar field, related to unitarity, is the
existence of a conserved product on solutions, namely the Klein , Gordon product.
Choosing the, wave equation, so that there is a conserved Klein — Gordon product,implicitly determines the junction conditions one needs to impose in order to obtain
global solutions. The resulting mix of positive and negative frequencies produced by
the presence of Euclidean regions depends only on the total conformal width of the
regions, and not on the detailed form of the metric. Calculating the change of basis
(Bogolubov relations) between in and out plane-wave basis functions and ignoring some
unimportant phase factors one finds that the resulting solutions satisfy [3].

112'” = cos/ZM‘ATML” + i%sinhtkAr)fli_"k

where AT is the difference in conformal time 7' between the two roots of f. It isinteresting to note that this relation extends without modification to the case wherethere are several Euclidean regions; A7- then denotes the total conformal width of the
Euclidean regions.
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when the wormhole forms at a finite time. If we adopt Kim? Thornels conjecture, then
the divergence can be cut off by QC ; therefore the total energy cannot prevent the
formation of the closed timelike curves when one is within a Planck length.

Finally, cian Dray, Corinne Manogue and Robin W. Tucker studied an inter
esting problem both related to QFTCST and QC. They consider the metric (1.92 :
f(t)dt2 +Aq(t)(/.ri2 where g is everywhere positive and f has two roots, at both of which
it changes sign, and where furthermore ftf) <fi 0 for ltl sufficiently large. This corre—
sponds to a spatially symmetric spacwtime which is initially and finally Lorentzian,
with a Euclidean region in between. Since the masslcss scalar wave equation is confor—
mally invariant in tvvo dimensions, and since all ldimensional surfaces are conformally
flat, it is easy (in principle) to solve the wave equation in any region of constant sigr
nature. The issue is how to match solutions when the signature changes. Specificaly,
is there a physically reasonable prescription for matching solutions of the wave equa—
tion to solutions of Laplace‘s equation so that the resulting picture can be reasonably
described as propagation?

A basic property of the usual theory of the scalar field, related to unitarity, is the
existence of a conserved product on solutions, namely the Klein , Gordon product.
Choosing the, wave equation, so that there is a conserved Klein — Gordon product,implicitly determines the junction conditions one needs to impose in order to obtain
global solutions. The resulting mix of positive and negative frequencies produced by
the presence of Euclidean regions depends only on the total conformal width of the
regions, and not on the detailed form of the metric. Calculating the change of basis
(Bogolubov relations) between in and out plane-wave basis functions and ignoring some
unimportant phase factors one finds that the resulting solutions satisfy [3].
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where AT is the difference in conformal time 7' between the two roots of f. It isinteresting to note that this relation extends without modification to the case wherethere are several Euclidean regions; A7- then denotes the total conformal width of the
Euclidean regions.
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The authors further show [4] that solutions and their canonical mtnnenta are well

behaved at (each side of) the boundaries between rein-Iii:- ul' min-inn! --i;-.Iialiii'w wven

though the wave equation is not. so they propose a prognurm ion title on iiiati'iiing the

canonical data at each boundary. The solutions obtained mi lii‘l ml i.-.I'_v 'his condition,

and therefore solve the wave equation everywhere. '1 his problem i‘ I"'i'r||1'l|. with the

famous De Witt problem [5] and some related exan’iples with the turnneling models

MW»
111 the poster section M. Ale and L. P. Chimento [8] presented an exact solution

of the semiclassical Einstein equations and L. Rodriguez and F. D. Mazitelli stud

ied the Quantum instability of Minkowsky spacetime. Both can be also considered

contributions to the General Theory.

2. Stress - Energy Tensor and Black Holes

Paul Anderson, William Hiscock and David Samuel developed a method which at

lows for the computation of the exact expectation value of the quantum stressrenergy

tensor for free scalar fields in static spherically symmetric spacetimes. They presented

some of their results for massless scalar fields with various couplings to the scalar cup

vature for Schwarzschild B Hs and various ReissnereNordstrom B Hs. The ability to

compute the exact expectation value of the quantum SET in arbitrary static spherically

symmetric spacetimcs allows then to address the semiclassical backrreaction problem

in these spacetimcs. The authors present a method for solving this problem for extreme

ReissnerrNordstrom B H and a Schwarmchild B H in a box.
Larry Ford and Thomas Roman talked about constraints on negative energy fluxes

seen by inertial ol,)servers falling into an evaporating B H. lt is known that QFT at

lows violations of the classical energy conditions. in the form of locally negative energy

densities and fluxes. if they are produced by quantum coherence effects. They must be

followed by a more than compensating positive tux. Then QFT imposes restrictions

on the magnitude and duration of the negative energy flux. in flat space time they

obey “uncertaintyvprinciple" type inequalities [10] of the form: lEltAT) g h. Here

IE] is the magnitude of the negative energy which can be absorbed in a time AT.

More recently it has been shown by the authors [ll] that similar inequalities hold for

negative energy fluxes propagating on a Q : AM extreme. fourdimensional7 Reissnerr

Nordstrom B H background. These inequalities prevent the unambiguous observation

of the limited duration violation of Cosmic Censorship (“Cosmic Flashing"), which

would otherwise occur before the arrival of the subsequent positive energy flux. An

apparent counterroxaniplc to these "quantum inequalities" is the constant negative flux

seen by a stationary observer near the B H. But such observer should also see acceleu

ation (Unruh) radiation which mask the negative energy. For this reason. the authors

choose to examine the negative energy flux seen by various inertial observes falling

into a. two—dimensional evaporating Sclnvarzschild B H. If there are no constraints on

these fluxes, then the observers could (in principle) use them to produce. for example.

gross violations of the second law of thermodynamics. A numerical analysis of the flux

as a function of proper time indicates that here there exist quantum inequality—type

restrictions on the magnitude and duration of the negative fluxes seen by inertial ob—

servers. That is. IFIT2 3 II. where lFl is the magnitude of the negative flux and 7'

is its typical duration in proper time. In this case at least. quantum inequalities are
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satisfied by inertial observes in curved spacetime.Consequently. such observers should
not see gross. macroscopic effects due to negative energy.

Ted Jacobson proposed to use B H as microscopes. In fact, when we look at Hawking
radiation emerging from the vicinity of a B H. We are registering quanta in outoing
quantum field modes. If we assume with Hawking [12] that the field is non—interacting,
then these modes can be traced backwards in time to ingoing modes far from the
hole at frequency ~ wee/‘ZrQ in the asymptotic rest frame of the hole. Here at
is the outgoing frequencya‘s is the Schwarzschild radius. and t is roughly the time
interval between formation of the hole and reception of the quantum. After a. time
t ~ 27’5177/(UJp1m1Ck/W), these corresponding ingoing modes exceed Planck frequency.
He presented an alternative derivation for Hawking radiation, which avoids the role
played by superePlanck frequency modes , imposing, in the frame of observers freely
falling from asymptotic rest into the B H, that the Planck frequency modes are in the
vacuum state. No assumption is made about the state of any other modes. Unruh [13]
pointed out that this condition suffices to deduce the existence of Hawking radiation.
It is shown that the emitted radiation is approximately thermal. The condition that
the Planck frequency modes are in their ground state cannot be derived from any
assumption regarding subePlanckian physics in the free—falling frame. Thus Hawking
radiation is a descendent of very short distance physics.

Roberto Camporcsi and Atsushi Higuchi computed the SET for scalar and spinor
fields with arbitrary mass in antiede Sitter spacetimc using the { —function technique.
The results agree with those obtained by Pauli—Villars regularization. Also the trace
anomaly for the VVesseZumino model is studied in this space time and takes the “corr
vcncional” value. The same authors also calculated the spectral function /1,(/\) and the
zeta, function {(3) for a field of integer spin s on a Nwlimensional (simply ccmnected)
hyperbolic space.

Finally M. Dorca and E. Verdagucr studied a Quantum Field in a Colliding wave
Space~ti1nc.They study the quantization of a massless scalar field on a spaeetirne repro
senting the head on collision of two plane fronted gravitational waves. They consider a
vacuum solution of Einstein‘s equations in which the two waves focus on a. nonesingular
Killinnauchy horizon. The interaction region of the two waves is locally isometric to
a region of the interior of a Schwarzschild black hole. with the Killing—Cauchy horizon
corresponding to the event horizon of the black hole. In this case the colliding wave
solution can be maximally extended through the Cauchy horizon7 provided one of the
transverse coordinates is made cyclic. The resulting spacetimc represents the creation
of a Schwarzschild B H by the collision of two plane waves propagating on a cylindrical
universe [14]. That extension is, however. not essential for quantization of the scalar
field.

In the colliding region two unambiguous and physically meaningful vacua can be
defined. The“in” vacuum is defined through the positive mode solutions associated to
the timelike Killing field in the flat region between the two plane waves before their
collision, i.e. the ordinary fiat spacetime vacuum. Also an “out” vacuum can be defined
at the Cauchy horizon with the modes associated to the two null Killing fields of that
horizon. These are easily identified by using a kind of Kruskal-Szekeres like coordinates
to describe the interaction region; in these coordinates the metric looks flat at the
Cauchy horizon. A particle detector in free fall near the horizon would not react if the
quantum state is in the “out”vacuum. That vacuum corresponds to the Unruh vacuum
[15] defined at the past horizon of the maximally extended Schwarzschild metric.
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‘I‘lu- Hiltlllll‘h pmpngnil- Ilu- “in" I|](Hl(‘:~ through — out the flat, plane Wave and inter—

;u'iinrl 'I"',L"lUl| :ilirl r'unilbiil'l' Witll tlil' "(min Iliuilt‘h in the Cauchy horizon by Computing

the t‘nrl‘I-‘Hlmmliug lingulililmv li'lllVit‘lHfi. It is found that particles are created Wlth

n tin-rum! H!)l"t‘l]'ll|.1|. with n tcnipi-ramnv that is proportional to the inverse of the fo—

cusing iinw ul’ Iii: plum w:i\cm--.. which is n invasure of the energy of the waves. That

is Eh:""in" vm'uuni contains a ihz-rnml ilistiibution of “out‘7 particles . The spectrum

is nul madly flu-rural. in the swiiw that it depends on the momentum of the modes in

(”IV “I i]j{' H‘:—||[.-§\N‘[':-‘:|l (lii'réi‘tiuns filth-‘1‘ than the frequency of the modes. This can be

understood when comparing with B H radiation, in the sense that in the Schwarzsehild

B H the responsible for Hawking’s radiation [12] is the infinite redshift at the horizon,

whereas in the colliding wave problem it is due to the collapse of one of the transversal

directions of the waves. The main result is exact even though the solution for the

modes cannot be found exactly.
In the poster section a. result on charged noneabelian BH solutions of the Einstein—

Yang‘eMills equations was also presented by D. V. Gal’tsov and M. S. Volkov [16].

3. Particle Production

Esteban Calzetta and Maria Sakellariadou showed how particle creation processes,

that are normally used to explain the isotropy of the Universe, and the dissipation of its

inhomogeneity, make also that inflationary models can be considered more natural than

their Standard counterpart [17]. While the Standard Cosmological Model provides an

appealing and so far Iinvlmllvngwl zlr-si'i'igtion of the evolution of the Universe from

the Big Bang Ian its present configuration. ii also raises the issue of the origin of the

highly special initial conditions l'(‘([llll'l‘(l for (his kind of evolution. Inflationary models

of the Universe haw lu-‘vn silggestml as an explanation for these initial conditions, but

they too depend upon a kind of fine tuning of the initial conditions. Concretely, recent

work has established that Inflation requires initial conditions to be hoinogr-‘iu-‘mrs on

scales in excess of one horizon length. This homogeneity cannot lw explained through

classical physical processes, and therefore, as far as classical cosmology is (Zulll't‘l'l‘if‘t’l.

Inflationary models do not seem to be more “natural” than their Standard counterpart.

The possibility remains, that the picture changes when quantum cosmological effects

are taken into account. For example, it is known that quantum particle creation

processes could afford an explanation of the isotropy of the Universe, and in general

would tend to favour dissipation of inhomogeneities. Thefore the authors explore the

relevance of quantum effects to the onset of inflation, foeussing on inhomogeneous but

isotropic models with respect to a preferred point, and showed that these effects relax

the requirements for succesful Inflation to the point where they become compatible

with generic cosmic initial conditions.
Several contibutions were related to particle production in the poster section: L.

P. Chimento, A.E. Cossarini and F. G. Pensa [18] studied a Spin 1 Field in Rindler

Space and found a non—Planckian spectrum for the Rindler observer, A.Higuchi, A.
Matsas and D. Sudarsky [19] presented a contribution about the Breinsstrahlung and

Zero-energy Rindler Photons and U.Percoco, V.M.Villalba and P.Pujol [20] analyzed

the vacuum effects asociated with the scalar and Dirac particles in non uniformly

accelerated frames of reference.
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Finally C. Lousto, J. .1. Wheeler and G. Dornenech, M. Levinas and N. Umérezpresented interesting results in their posters [21], [‘22] and [23].

4. Conclusion

liul'nrrumlln'ly many [IllliltH'J-~ rhiu «In! hlIStI‘EtCt’S were absent at the meeting. Any—how inh‘rmuiuu milijwu: xvi-u- :umlimwl and many interesting contributions were pre«m‘tllwrl, llul \w- wru- iizlrtivulmy illlllh'HrHWi by three contributions, that we considerHuh-'1'imporluur: Tl]!'.~:l‘.|l(1}'Hl'DHVlLl Boulware, about QFT in Gott’s space time, wasan excellent exploration of a new, difficult, and promising subject. The contributionof Paul Anderson, W’illianr Hiscock and David Samuel, about. the exm't (‘lllIJlliJ-itinllof the expectation value of the SET, was a. solution of an old and WT” known Jll'f)1\11"111.The report of Esteban Calzctta. and Maria Sakellnriadou wan ml :‘iuhitn.1)<li1ru, z‘xnnuileof how QFTCST can help us to improve the inflationary model in thr- [um Irmlildmiof this theory.
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