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Abstract

It is known that two general form factors depending on energy loss and
momentum transfer characterize inelastic electron scattering from nuclei
in first Born approximation in Q& = 1/137. The same two form factors appear
in all electrodynamic processes connected by one photon exchange with nu-
clei. This observation is used to compute cross sections and to discuss
experiments which are aimed at probing electrodynamics by scattering a pair

producing electrons or muons from nuclear targets.



I. INTRODUCTION

It is well recogriizedl that the nuclear part of elastic electron-nucleon
scattering in first Born approximation in Q@ = l/i37.can be summarized in
terms of two scalar form factors, Fl and F2 depending on the‘invariant
momentum transfer gZ. This is a consequence of the vector nature of the
exchanged virtual photon in Fig. 1 and of electromagnetic current conserva-
tion. . fhe nuclear part of this interaction can be isclated from whatever
goes on at the other end of the photon line and therefore the same conclu-~
sion with the same form factors Fl and Fz can be drawn no matter what
electrodynamic interactions occur at the lepton end 5f the photon line, be
it scattering, bremsstrahlung, or pair production for electfons Qr‘muons
as illustrated in Fig; 2. It was on the basis of this observation that
various high energy tests of quantum eléctrbdynamicé were proposed.®

More recently it has been realized and emphasized® that there is an -
analogous general form for the single virtual photon exchange betwéen in-
elastically scattered electrons and a nucleon or.nucleus, leading to any
final state as in Fig. 3. The two inelastic form factors Fl and F2 are
néw functioné of two variables which may be taken as the invariant momen-

tum transfer g? and the energy transfer

g P=3(q® +7/E§ - 7/..§)

where 7nf is the invariant mass of the final nuclear "anything" emerging
from the lower vertex in Fig. 3.

The anglogous extepsion to inelastic nuclear processes of the relation
between the c¢ross sections for Figs. 1 and 2 is the main point of the
present note.* 1In reporting it here and presenting cross section calcula-

tions we wish to further emphasize its very great utility in planning and



aﬁalyzing experiments at high energy electron éccelerators. For éxperi-
mental studies of electrodynamic behaviour of photons, electrons, and
muons of high energies it frees one from both the limitatiqns to proton
targets and the difficult requirements of very high energy resolutions
to assure that only elastic processes occur on the target. The same two
general inelastic form factors appear in the pair production or bremsstrah-
iung.events in Fig. 4 as in inelastic electron scattering (Fig. 3) for the
same target. Therefore, for example, between measurements of inelastic
eléctron scattering and of large angle lepton pair formation from the

same targets with arbitrary nuclear excitation apd pion formation, the
nuclear unknowns 77;(q2,q . P) and Zﬁ;(qe,q . P) can be removed. All
regions of the two dimensional plane in the phase space of the variables

q2 and q * P that are accessible in the pair prbduction or bremsstrah-

. lung experiments can be covered by inelastic scattering studies of Fig. 3.

Moreover, if there are corrections to these assertions which we expeét to
be valid to order ~ zl& = z/137 where 2z 1s the nuclear charge, they can
be detected by measuring any deviations from the Rosenbluth straight
iines in tﬁe scattering analysis and by an anglogous test given in the
following for £he Bethe-Heitler events of Fig. 4. It is expected that
the present results will permit experimental tests of quantum electro-
dynamics to probe to regions of smaller distances because experiments
can be performed
a) with taréets of low 2z that are "easier" to work with
than hydrogen, and
b) with more comfértable energy resolutions; comparison of
different experiments permits 7Vl, and 7V2 t0 be removed
even though inelastic nuclear states are excited or pions

are produced.



IT. CALCULATICN

A. DNuclear Form Factors

We adopt the following notations/: P denotes the initial four mo=-
mentum of the target, P° = -J}3. q is the four momentum of the virtual
photon and P' = P - g is the final four momentum of the target; We
shall assume that the target is initially unoriented and that experiment-

ally all fihal nuclear states consistent with the given kinematic condi-

tions (give q and P) are summed over. In this case, the contribution

of the nuclear part of the process indicated in Fig. 3 is given by

(20)%0 = V ‘
Wy = T }: }i 5(4) (2 - P - o) <P13,(0)[ 2|9, (0)] B ()
initial final '
states states

where § is the normalization volume, E is the initial energy of the
target, ¥ indicates an average over the initial target states (i.e.,
M; of the target), |BS and IP£> are the Heisenberg state vectors of the
initial and final nuclear states (that is they afe eigenstates of the
nuclear four momentum operator iPH) and JH(O) is the electromagnetic
current operator of the nucleus atithe .space time point x = 0. The

. four-dimensional delta function summarizes the translational invariance
of the theory. Lorentz invariance tells us that 77:v must be a second
rank tensor since the current operator is a h-vector. Because of the

sum over initial and final states, there are only two four vectors on-

which this tensor can depend, P and q. Since PP = -ZQ;,-there are

%We use a metric such that 8, = (a, iao) and a -b=a°b-8ab_.

-

In this metric q2 > 0 for both scattering and pair prdduction.
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'only two 1ndependent scaiars which can be formed from these four vectors,

q> and g + P. Thus the most general form of the tensor h/’ is

o 2 . =y = . 2 .
/r‘*uv = A(q®, q P)Bp.v + B(q%, g P)qH q, * c(e®, q P>PHPV

(2)
+D(e®, a - P)(gP, + )+ B(e® a - P)qP - qf) -

No term in Euv quc can appear since the current operator is a polar
po

vector under spatial reflections. We know further that the nuclear

current operator must satisfy the continuity equation

~

=3, =0 | (3)
1

which implies that qﬁﬁ; —7<1qu 0. These relations are sufficient

to eliminate three of the invariant functions and one can thus write a

symmetric tensor, with 77; and 77; both > 0 according to the definition

in Eq. (1)

% = “)'zf]_/(qz,q - P){® - %%)

v : .LLV qg
4 > 1 ]/ P q P q
v . ‘P - - 4
+ 1, (a%,q )/;72'\u )i W)

This theorem is due to von Gehlen, Gourdin, and Bjorken.3
Some special cases of the above result will be interesting to us later

and we include them for completeness. In the case that we have only elas-

tic scattering from the nucleus, P'Z = -Z?é and 2g + P = g%, and a spin



- zero target we have with the aid of Eq. (3)

i

1 1 !JH(O) 2 ( P 9 .
 QPEE E’=P-qi =F(q%) %-_TF—%

7 \
ze \

with F(0) = 1. By substituting in the equation for 7V;v one finds

7’71 =0
S TilE
7 = {9(®)® L 8k - B - q)
El

Iu : case of a spin 1/2 target, and elastic scattering one finds

13 (0)

ze

in the usual Dirac notation with Fl(O) =1, FZ(O) = 5%7 the anomalous
T
magnetic moment. Again inserting in the equation for 7/ Ly and carrying

out the required sums one finds

)

| o
W = @37 (@) + 7 F ()| 27 8(8 - B' - q

3
i

1
I F78(E - E' - q)

o 7 7+ )

Calculations of the contributions to 7?1 and 77; coming from nuclear

excitation to discrete levels, quasi-elastic scattering from nucleons in

the nucleus, and the production of a pion can be found in references 5.

B. Electron (Muon)Scattering

In terms of 7@? and 7?; the electron or muon scattering cross section

for fixed electron energy and angle but summing over all else can be

-5-
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(5)

(6)

(7)
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computed in standard fashion:

202 w2 7 - (9)
- .
do = 2z et o /i uv v . %

=4 (p * P)® - mP/03

where
72;” =-3 Tryp(m - iﬁ)yv(m - ig")
(10)
=2 pup",+pvptl - 8MV(P - p' +m2)]‘.
Combining gives
. . ‘
' dp' 1 1 )
do = 2z%a2 — — T JVE(QE - .21112),%l
2z' q l:(p . P)2 - 27723.!2 L
) | T
[2(p - B)(p'+ @) - P) !
+2, — - 3% (11)
L . /I/L/ T—‘ J

The three independent scalar functions in electron scattering can be taken as

NN

, £', 6 in the laboratory system or as the three scalar variables g¢2, q - P,
and p - P. Measurements at fixed q2 and gq + P can separate 7/1 and \,{/2
. and check the one photon exchange form.

The cross section can be written in the laboratory frame as

da 222'052 Pl2 1 . e >y
' — = — | — LZ(EE'— ;pigp’lcos 6 - 2n®) ) + E€'+|p||p'| cos 6 + m®) )}]
aa'dp’ o \gfg e 1 2

where

9..'_12 = £ - g
Mo (12)
Q% = 2¢¢" - alaip'lcos o - 2m”. ‘

These formula simplify 1f one can neglect the mass of the electron

d%0 4hzBeR &2 6 }' ) '
= —— ——cos® — |} (¢%,q - P) + 20, (a®,q - P) ten® - (13)
d'ag’ . o* 7, 2 2 2] |

Q2 = L Eg! sineg.

We next, for completeness and convenience, give cross sections in some
special cases, using Egs. (6) and (8):
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l.a) Elastic scattering, spin O target, laboratory system

>
do /gp’l\ezaoF 2 i 1 ‘
Rl |7(e2)|* €2+ 33 cos 6 + v?) g - (1)
an! Pi/ q .——+—=— - ,cos)
/ 4 Hig g A 1B
1.b) Relativistic limit (m = O)
2 2 8
do 222 cos 5 | | 1 ( , |
— = F(qe) [ 15
an 4¢2 sin* g /l +2_c sin® -9-\
v 2 \ g 2
. \ J
2.a) Elastic scattering, spin 1/2 target, laboratory system
> r .
o [ 2aer [ o2 N
— = = (= R, () + 27y E, (q2)| €c'~1p|p'| cos 6 - 2n®)
ae' \pl; o 243
L
2 . 1
v (5, (0)]7 + @JE, ()] ee+ B3] cos 6+ w8) ) gr—pr Ty
= e -l cos Q
o U
My My 1]
(16)
b) Relativistic 1limit «(m = O) — Rosenbluth Cross Section
2.2 ( : ]
dog 222 29'0 2 2‘ ,2) q® I o 1
— = cos® = Fi +qF ) +— +2/I/Fltan
an' Le2 sin4g 2) "l 2! 277? l T 2 /l+2—£sin2_g
J\ M

It is also interesting to see what one would get if only the Coulomb inter-

action is kept in the laboratory system.

3.a) Coulomb scattering in the laboratory system

: r

a%¢ 22202 1 qa
C A beq Beg

.= €'+ P!P" cos 6 + m®)_— | H - — W

d'l-ﬁ' !dﬂ' q4 | l 777T i__ 2 71(

ot

(18)

&fd

.



3.b) Relativistic limit (m = 0)

o o]

dzcc L7202 6 £12 ! Q® 5
2 ST o

= [e301 - {¢ - — 7’/ )
d‘g'ldﬂ' q4 5 ﬁ:T | 2, 'az 1

- pat

¢) Relativistic limit (m = 0) and (qi/ia) <1

a@q 42202 6 o2 T
= c = Z C052 - T ‘ oo 77’/
dfp"dﬂ' q o WiplL 2 1

C. Electron (Muon) Pair Production

We now turn to the central problem of calculating electron or muon
pair production in terms of the two general nuclear form factors 77: and
7;;. First let us say a few words abouﬁ some general properties of the
prbcess as pictured in Fig. 5. p_ and p_are the outgoing four-momenta
of the lepton pair and k 1is the incident photon four momentum. For the

top part of the process, the production of a pair by a real and a virtual

photon, there are three independent scalars. These can be taken as

2o (p -k3B L =-(p

L L k)?, and ¢®. In computing the cross

‘section for this process, the upper part of this diagram will again enter
as a tensor, Mﬁv’ Just as does the nuclear part. There are three inde-
pendent four vectors for constructing this tensor, which we take to be

) . Only the symmetric part of the tensor will

k and & = -
w B (2. P

contribute since ﬁVLV is symmetric. Also, any term which goes as a4,
. . . 7, ~ _ f/f - . . .
will give zero since qp7yhv__fﬁuqu 0. Thus the most general form of

Mﬁv is (assuming parity conservation)

M, =0 (23 8, g2, + (AT, kw1 (20 A%, Rhn A

2 92 2 »
+ M, (£, 4 ,q )(Akav + Avk“)

(29)

(20)

(21)



. For the over-all process of pair production there are six independent
. |-)| /l

scalars which may be thought of as k! E+,<;_, cos e+, cos 6_, and @

- “+ -+
in the lab where 9+ and 6_ are the angles P, and p_. make with k
and ¢ is the angle between the (§+§), (5_%) planes. (See Fig. 6) Alter-

' 2 = .

natively, one can work with q?,%?,éf,k P, q P, and. L P. For sim-

plicity, we will rename them

x, =4 -
1
2
x, =4 -nof
2 —
x_ =k + P/
> T (22)
x, =48 B/nl; .
xg = q * B/Wg
_ 2
Xs—q

The other variables in the problem can be expressed in terms of these by

the relations: .
2
2p k=4 -n® = X,
2p, * k = PP - = x
L = 2
2
2p, ' P._= @+ 4+ L o=x +x, +x_+ om?

A-k=2(£ /&)
A g = z(ﬁf {,)

i -
z(xl X2)

i -
2(X2 Xl)

22 = - (om® + ¢® + 25 ﬁf) = - (x + X, + X+ Lm® )

2
- 2' _ 2 - -
M2 = N2 - xg + 20y %g



. The prediction of quantum electrodyrnamics for the cross section for pair

production can again be evaluated by standard technigues.

Feynman diagrams to be considered. One finds/
2 -> - ‘ .
28a® dp, dp_ 1 o 1

M
2 2z 27 ot VR [(x - P)?)

where

(

There are two

l\)[)—'

Plx"

1
7}6 15)+m v IR - B+

e is the polarization of the incident photon. [Note M

symmetric.] The result for Mpv can be written in the general form dis-

cussed above with

r i
h- .2 imz ‘} >
M, = <x6 + x6(xl + x2) T (xl + x2) + 1+ 2(x + X )
12; le
J+ - _2-
i
M2 =xx ¥t X, X (xl - x2> >
1z | J
. - .
e e b x )2
Sl2 12 2 ?
- J
)-l- m2 2
M, = x \xx (xi - X2)/

%One can immediately obtain the cross section for electron bremsstrahlung

from Eqs. (25,26) by use of the substitution rule,

2203 dk ap' { 1
do’ = . — - —
brem. 7 71 27/
2 2. 2¢'|| (p - B - wEUG 12 vy
| G 1L

where p' and p are the final and initial electron four-momentum and k

becomes the outgoing photon four momentum.

- 10 -
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M \T L i(g_ - K) Ta T TS p,) +m ? L

v is already

k - -k

(24)

(25)



‘and Egs. (21) and (4) can be contracted tggether to form ,/pvw vy i

rq. (23). More directly we form the product of Eg. (4) with Eq. (2%),

7%

observing that the terms in 7‘;‘:;v proportional to qp or q,. vanish

by current conservation, and obtain

4

L~ 7:- ? =
W v vy X X
3 3% 2

/ o 21\ o :
1+ [% - 2m.J ,,l(xsxs)

- )
4-{-m? !(xi + x2)(- x_ - xi + x5+ xi)+(x§-—x§)(2x3x4ﬂ

- (x  + xe)(x X, + X+ 2w ) - 2(x2 + x2) X, (xl + xa)

2 2 2 2\ \ v
+ x4x5(x - xz)-+x3(x6-2m )+-x4(x64-2m ) hé(xsxs)

The dependence on Xy and x4 comes from Jjoining the electrodynamic and
nuclear parts of the process together and can be used to experimgntally
establish the validity of the one photon exchange mechanism just as in
electron scattering. It is.most concisely exhibited by re-expressing

Eq. (26) in terms of the Mo M, constructed in Eq. (25) and which
aepend only on the energy, momentum trénsfer, and virtual photon mass

in the Compton scattering at the upper vertex through the variables

xl, xa, and x :
r

2

(x + xz)

C
: _ 2
WM JSM -2t = M ,x +X  +X -1-J+m+(X X)
1 T 2 6
L.

N |

wv uv e ‘> 1 i M

)

| F—

]
|
-
—

l x + X,
+ (x -x, )1+ ——=

. 2 -
J / xg\ xs(xl + xa)\ ( x (x - x )
- ; —_—— M +iXx, + =i =

+7¢; 14— M +ix, - M M,
xsj "‘.\ / 2x6 /; 2x
ool xs(x_ + x_) x(x-x)
\*s - —E- | |x, + k2N,
\ 2X6 2x6

/7Although some of the individual factors are dlmenSlonal their product
IV’ M is dimensionless.

- 1] -
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The invariant scalér products can be evaluated in the laboratory

system to give

N T
x, =-28_|k| |1 - cosEi}
l - -
\ T
! \
- 2 lﬁ;l ;
X, = -'2r+lk| 1- p cos 6'*';!
N v+ /
P>
Xy = - [k|
(27)
x, = ( t+ - 5_)
e
- - - £
X5 = (.ki E; < ) r 7
: L e
- L RgR : L
x_ = - 2n =X - 2-2E+5_ %l-—:——g—-—-(cose_i_cos 6_+sin® sin_cos o).
i -4 Co

These varizbles are illustrated in Fig. 6.

Of special interest is the "symmetric case" where ﬁ; =4%_ and
8 =6 since interference terms with two photon exchange corrections

-+ -

identically vanish for this condition.®

In terms of the general scalars this situation is characterized by

symmetric case (28)

or

symmetric case

- 12 -



. The formulas simplify considerably in this case and one has

4 - -
2
x—; [xi + 2x6xl + xs(x6.+ L' )}

M =
1
1+x6
M, = —
x2 ’ _
' (29)
L .
M = — (x_+ km®)
202
1
M =0
4
v " 2 2 )
v Mav = —xz— K2(x, - am )(x6 tax o+ m?) + 2% /;}’1(sz6)
1

' 1y
i

L | o , (30)

+ [— (x4 +x§)(2xl+x6+ hma)-xf— 2>§ix3x5+ x6x§ 77/é(xsx6)

L

For fixed g2 and q + P (xS and xs) SO0 that the nuclear physics

doesn't change, the entire dependence on incident energy k - P (x__s)' is
/’ X, % , '
contained in the term « Xy - ) 777 . This dependence can be .used
§ g 2
x

to test the wvalidity of the one pioton exchange mechanism and to separate

the form factors 7’,"“: and 7;';'. In order to test electrodynamics one again
2

programs experiments at fixed X and x6 but with variable xl = £ -m2 »

which is just the mass of either virtual intermediate. lepton line in the

symmetric case. The kinematic variables in the lab in the symmetric case

are:

2 . SR
x =4 -m® = - 2[-12,'~ 1 - 2L aos e)
1 A 5
Xy = Pt X/My = - |k |

. TS (31)
Xg =P+ /N, =k - 28 -
:/ - ' .

x =q% = - 4p2sin0 sin® 2 4 LklE 1 - Apl cos 6}~ Lm®
© 2 -

- 13 -



We again discuss some special cases of the symmetric case:

1. Relativistic limit (m = 0), lab system

"
il

T ain2
- Lix{¢ sin® =

1
+-
Xy = - 3
x_= |kl - 28 _ -
= in2 & 1R - 2¢ cos? & sin? QJ = g2
xg = 8¢ sin > Lgk[ — 28 cos® 2 sin® 3 q
| 220 €2 1 i, 6 ] (32)
= af : : — k% - ¢© ctn® — sin® L1’
do = dg ‘+d£—dn+dn- 2 4 1‘};137\9 , L 5 2,
a= QT ik /‘T L A
o / T - '
Tl e-0?y 0, Tea 1]
W - [l Y+ K - A
1 ! 92742 | 2, . il _q® LE sin® 9 2
LA /) i g 2)

_2.a) Flastic scattering from Fixed Spin Zero Target — Bethe-Heitler
Cross Section

In this case, from our previous discussion

7, =0
R i
g = [F@)TPpCE] - £, -£)
and we have for a fixed target ]—1;‘ = 2E and x, =P q=0:
.r ) ->. ->, 2
e T ot dg e 2%’ p? |F(g?)]
dop =18(g++g_..‘_]k )dz;_i_c};_aQerQ_ oz = =
: A ik T (33)
4 -
_— e 2 . 2 :
B = [ X - 2x X, x (xg + ®) + x6x§ ,?
s 1 "Ji?
i 5 o 2 P
a }s(g £--1kl)ag af ¢ e #(e)]
. = . .- ds G 0 4aq - 7 g
s B S8 00— g
- - vooE ) (34)
;! P2 .2 5 r’)'g > —i\
. L2—C—251n i q (1L - cos @) + K2(1 + cos chl(
b) Relativistic limit (m = 0) /
r
: 2
L 2207 [F($)| cos® £
dog =86 +&_ - lk[ag ai dn an_ =
SHe ) , 6l |k |3 sin® 2 \
-~ ~t
. P : ) i
Léos‘ 4y sin? 512 2 ./1 - cos2 & gin2 C-D_)f
. = 2" 2| e 25Y (%)
: - cos® 2512 22
i 2 5 3

- 14 -



¢) Relativistic limit (m = 0) @ =«

220 cos?

< bl ”~ ) 2
do, ., = 0(¢, +& -lki)dé_d5 dn an . |p(3)]
B2 ¥ T T 1620k sin®

(3¢)

oo

D. Regions of Kinematic Variables

Since the main argument of the present paper i1s that one can use the
generél inelastic form factors as measured in electron‘scattering to elimi-
nate the nuclear physics in pair production experiments, one must face the

2

question of what regions of kinematic variables ¢~ and g * P are covered

in each of these experiments. It turns out that exactly the same regions of

kinematic variables can be covered in both experiments.' This is indicated

in Fig. 7.
We have used the fact that 2q - P = g% + 75? - Iﬁ;. Elastic scattering
-is a straight line P - g =é§q2. There will be a series of discrete lines

corresponding to the excited bound states of the nuclear system with dis-
crete 7%? and then a continuum of values corresponding to particle emission
from the nucleus. To see thaé the above is the allowed region, one can ask
what values of Aq? are accessible for a given W}? - Wﬁé. In both electron
scattering and pair broduction q® is space-like s0 ¢ > 0. In both
cases, q? can go to infinity merely by fixing all angles at finite values
and letting the incidgnt energy go to.infinity. The only question then is
what is the minimum Valué of qz. In electron scattering q2 goes to

zero if one looks in the forward direction and lets the incident energy

go to infinity. In pair production one can also have q2 going to zero

in the case where all the particles come off in the forward direction and

the incident energy goes to infinity.

- 15 -



III. PHOTO ABSORPTION ON THE NUCLEUS

The same general nuclear tensor %V;v can be used to calculate the
cross section for the absorption of a real photon. This process is
indicated in Fig. 8. k 1is the incoming four momentum of the incident
photon and corresponds to -q with our previous definitions. Thus, in

this case, the form factors are evaluated for 'q2 =%% = 0 and

= 1%

P-g_ -P-k
7

i

¥4
Lm
CL

@zl is the polarization of the incident photon. The cross section is

) it | (37)
= i e e B>
7 &~ [k - p)3? Fa wo R T, »
p 1
(2x)?zaa ;
=71 3 ¥, (38)

. 2)2)

The guestion now is what is ?ﬁﬁl under the conditions g% = O,'P_t g = TKL
//(T .
We recall
: -/ k k_\ ) / (P-k)k\/ (P-k)k\
= R m) e, Y e, p e - [ T (o)
b \** k2 ) \ K2 / \ k2

There are no singularities when one sets k% = 0 as can be seen from Eq. (1),
since the matrix elements are just the physical amplitudes for phdto-
absorption to individual final states. The apparent singularities in Eg. (39)
must then cancel as k% — 0 which gives the following relations on the |

inelastic form factors

: ' (. %2
”/'f:(kz,-k + P) - 3 T (KR,-k B) = 0(k®)
k2 -0
(L0)
77,(%,=k + P) = 0(x®)
k? -0

- 16 -



Therefore one finds
| (- k)2
K2

\ .
70, (8, -k P) = 307 (k3%, -k + B) + Y (kB,-k - P) (- Mg - ) (W)
k2 0 |

or
7,4,:“(0,-k - P) = 2:',‘1’(0,-1{ - P)

Tnis leads to

(2x)3z2x (ATE\ o
o, = ————z "(0,-k - P)

[x - 29" <My

(%]

I {mp

tion together with Eq. (U40) above gives a useful approximation to the form

Photo absorption thus measures the form factor "”;('O,if:*i??? ). This rela-

Tactors which includes all the inelastic processes contained in the photo-

absorption process. This is:u")

1
r o2 .
7 (q® ) i_(q-P)_l ’bq‘P\\ (a2)
7, d +P) = ——— g, ?""Qq
. (2x)2z2 7 /T J _
e 2 q2 7 “\ 77?‘.'[‘ 4 |
'.’J’a(q ;) Q- P)‘= + 0 (g%)

I

The exact range of validity of these formulas is not so easily established.

- 17 -
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FIGURE CAPTIONS

Electron-nucleon scattering (in first Born approximation).
Lepton pair production and bremsstrahlung from nucleons. .
Electron scattering from a nucleus leading to arbitréry final nuclear
states.

Iepton pair production and bremsstrahlung from a nucleus leading to
arbitrary final nuclear states.

General diagram for pair production with siﬁgle photon exchange to the
nucleus.

Kinematic variables in the laboratory system.

Ranges of invariant kinematic variables in scattering and pair pro-

duction experiments.

Photo-absorption on a nucleus.
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