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It has been recently proposed by Maldacena and Qi that an eternal traversable wormhole in a two-
dimensional anti–de Sitter space is the gravity dual of the low temperature limit of two Sachdev-Ye-Kitaev
(SYK) models coupled by a relevant interaction (which we will refer to as spin operator). We study spectral
and eigenstate properties of this coupled SYK model. We find that level statistics in the tail of the spectrum,
and for a sufficiently weak coupling, show substantial deviations from random matrix theory, which
suggests that traversable wormholes are not quantum chaotic. By contrast, for sufficiently strong coupling,
corresponding to the black hole phase, level statistics are well described by random matrix theory. This
transition in level statistics coincides approximately with a previously reported Hawking-Page transition
for weak coupling. We show explicitly that this thermodynamic transition turns into a sharp crossover as
the coupling increases. Likewise, this critical coupling also corresponds to the one at which the overlap
between the ground state and the thermofield double state (TFD) is smallest. In the range of sizes we can
reach by exact diagonalization, the ground state is well approximated by the TFD only in the strong
coupling limit. This is due to the fact that the ground state is close to the eigenstate of the spin operator
corresponding to the lowest eigenvalue which is an exact TFD at infinite temperature. In this region, the
spectral density is separated into blobs centered around the eigenvalues of the spin operator. For weaker
couplings, the exponential decay of coefficients in a tensor product basis, typical of the TFD, becomes
power law. Finally, we also find that the total Hamiltonian has an additional discrete symmetry which has
not been reported previously.
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I. INTRODUCTION

The dynamics of quantum many-body systems is very
rich and, in general, highly dependent of the details of both
initial conditions and the Hamiltonian that governs its time
evolution. However, there are situations where the time
evolution has universal features. A paradigmatic example is
that of a quantum system whose classical counterpart is
chaotic for timescales of the order of the inverse of the
mean level spacing, the so-called Heisenberg time. In that
region, where the discreteness of the spectrum is relevant,

and therefore quantum effects are always strong, quantum
chaotic systems, assuming localization effects are negli-
gible, relax to a fully ergodic state that only depends on the
global symmetries of the system. Level statistics are a
powerful tool to detect and classify universal features in this
region, because it is expected that the predictions of random
matrix theory will apply in this case. Indeed, agreement
with random matrix theory results has been found in a
broad variety of systems: highly excited states of nuclei [1],
weakly disordered systems with [2] and without inter-
actions [3], deterministic quantum chaotic systems [4] or
the low energy limit of QCD in a box [5,6].
The field of quantum chaos received an important boost

after it was claimed [7] that quantum black holes in the
semiclassical limit are quantum chaotic. More specifically,
it was proposed [7] that the growth of certain out-of-time-
ordered correlation functions in the semiclassical limit, and
for intermediate times of the order of the Ehrenfest time, is
exponential as for quantum chaotic systems [8]. Moreover,
the growth rate, given by the Lyapunov exponent, obeys a
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universal bound which is saturated for field theories with a
gravity dual. Later this feature was also observed [9,10] in
the strong coupling limit of the Sachdev-Ye-Kitaev (SYK)
model [9,11–20], a zero-dimensional fermionic model with
infinite-range random interactions. This simple quantum
mechanical model has attracted a great deal of attention
because, despite being quantum chaotic and strongly
interacting, it can be tackled analytically [9,10,21–29]
and has all the features expected for a system with a
gravity dual [9,10,27,30]: it does saturate the bound on
chaos mentioned above, it also has a finite zero temperature
entropy [18], a linear specific heat in the low temperature
limit [9,10,21,31] and a density of low energy excitations
[10,21,31] that increases exponentially. Level statistics
of the SYK model were shown to be well described by
random matrix theory [21,29,31–33] in the spectral region
where the SYK model is expected to have a gravity dual,
which confirms that it is also quantum chaotic for long
times. Based on the same pattern of conformal symmetry
breaking [34,35], the gravity dual of the SYK model has
been identified to be the Jackiw-Teitelboim model [36–38].
A natural question to ask, assuming that the holographic

duality applies for sufficiently long times, is whether these
quantum chaotic features are exclusive to quantum black
hole geometries, such as the Jackiw-Teitelboim model, or
also apply to other backgrounds. Recently, Maldacena and
Qi [39], see also [40,41], constructed a near two-dimensional
anti–de Sitter space (AdS2) background representing an
eternal traversable wormhole. The quantum feasibility of a
traversable wormhole was previously suggested [42] by
showing that a double trace deformation could make the
quantum matter stress tensor to have a negative average null
energy without violating causality. An example of such
construction for AdS2 geometries was worked out in [43]
and for higher dimensions, and other backgrounds, in
[44–47]. Out of equilibrium features for intermediate times
were investigated in Ref. [48] and entanglement and other
quantum information observables were studied in Ref. [49].
Returning to eternal traversable wormholes, it was

conjectured [39] that its ground state is well approximated
by a thermofield double state (TFD) and that its field theory
dual is a two-site SYK model coupled by a relevant
interaction in the limit of weak coupling and low temper-
ature. It was found that for sufficiently high temperatures,
or stronger coupling, the system undergoes a thermody-
namic Hawking-Page transition from the wormhole phase
to a two black hole phase. By increasing the strength of the
coupling, the transition takes place at higher temperatures
and finally, after reaching the critical coupling, this first
order transition terminates. Intriguingly, the wormhole
phase is still controlled by a generalized Schwarzian action
when the residual SL(2) symmetry of the standard SYK
model is broken [39]. The associated Liouville quantum
mechanics problem [25] has graviton bound states which
are interpreted as excited states of the quantum wormhole
background. A nonrandom SYK model with the same large

N limit was investigated previously in Ref. [50] with
similar conclusions.
In this paper, we study different aspects of this coupled

SYK model. Our motivation is twofold. First, we aim to
investigate the longtime dynamics of this two-site coupled
SYK model by level statistics in order to clarify whether
quantum chaos and random matrix theory are generic in
quantum gravity backgrounds or are restricted to black
holes. Second, we would like to gain a more detailed
understanding of the phase diagram of the system. More
specifically, we aim to determine the range of validity of the
TFD as a ground state of the system and also the exact
nature of the termination of the first order Hawking-Page
transition at finite coupling. We have found that indeed
these two main goals are closely related. We show that the
first order transition suddenly becomes a sharp crossover
above the critical coupling. Around the same coupling
strength, the number of nonzero coefficients, in a tensor
product basis of the two independent SYK models, that
contribute substantially to the ground state of the system
increases sharply. This is typical of chaotic-integrable
transitions. More specifically, except for strong coupling
and in the range of sizes we can explore numerically, we
have observed that the energy dependence of these coef-
ficients is power law rather than the exponential decay
typical of the TFD.
Level statistics are also sensitive to the value of the

coupling constant. In the tail of the spectrum, and couplings
weaker than the critical one, corresponding to the worm-
hole phase, level statistics are not described by random
matrix theory. However, well above the critical coupling,
spectral correlations in the full spectrum are well described
by random matrix theory.
The organization of the paper is as follows. First, we

introduce the model with a special emphasis on the
description of its symmetries and its ground state. In
particular, we identify a global spin symmetry in the
combined system that has an important effect on spectral
statistics and thermodynamic properties. In Sec. III, we
investigate the ground state of the system. For the number
of Majoranas we can simulate by exact diagonalization,
the ground state is well approximated by TFD only in the
limit of strong coupling between the two SYK models.
Thermodynamic properties are investigated in Sec. IV. We
have found that the first order transition at a finite coupling,
reported in Ref. [39], is followed by a sharp crossover
for stronger coupling. At the critical coupling the overlap
between the ground state and TFD is smallest. In the strong
coupling limit, the spectral density develops well separated
blobs centered around the spin eigenvalues that control the
free energy. Section V is devoted to the analysis of level
statistics. For weak coupling, and in the infrared region of
the spectrum, corresponding to the traversable wormhole
phase, we did not find agreement with the random matrix
theory, thus suggesting that the gravitational bound states
in this phase are not quantum chaotic. However, for
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sufficiently large coupling, corresponding to the black hole
phase, level statistics are well described by random matrix
theory. Finally, in Sec. VI, devoted to outlook and con-
clusions, we speculate that the termination of the observed
transition at strong coupling is reminiscent of a Gross-
Witten transition [51], induced by the gradual reduction of
the effect of interactions by increasing the coupling
between the two SYK models.

II. THE MODEL AND ITS SYMMETRIES

We study N Majorana fermions in (0þ 1) dimensions
where the first N=2 fermions, ψL, are labeled by left (L),
and the remaining N=2, labeled by R, ψR, will be called the
right (R) fermions. In each of these two subspaces, the
dynamics is governed by the SYK model,

HL ¼ 1

4!

XN=2

i;j;k;l¼1

JijklψL;iψL;jψL;kψL;l;

HR ¼ 1

4!

XN=2

i;j;k;l¼1

JijklψR;iψR;jψR;kψR;l; ð1Þ

where ψL;i;ψR;i are Majorana fermions fψA;i;ψB;jg ¼
δABδijðA;B ¼ L;RÞ and Jijkl are Gaussian distributed
random variables with hJijkli ¼ 0 and standard deviationffiffiffiffiffiffiffiffiffiffiffiffi
hJ2ijkli

q
¼ 4

ffiffiffi
6

p
J=N3=2 [9,10]. From now on we set J ¼ 1.

The two SYK models are coupled by the following
interaction,

Hint ¼ ik
XN=2

j¼1

ψL;jψR;j; ð2Þ

so that the total Hamiltonian is simply given by

Htotal ¼ HL þ αHR þHint: ð3Þ
For the moment we set α ¼ 1 in which case the

Hamiltonian has an extra global spin symmetry that we
will discuss in detail shortly. For the study of level statistics
we will find it computationally advantageous to break this
symmetry by setting α ≠ 1 to a slightly different value
which does not affect qualitatively most of the key features
of the model [39], like, for example, the observed gap
between the ground state and the first excited state.
The anticommutation relations of ψL;i, ψR;i can be

realized by introducing N gamma matrices Γi as

ψL;i ¼
1ffiffiffi
2

p Γi; ψR;i ¼
1ffiffiffi
2

p ΓN=2þi: ð4Þ

Since each term in the full Hamiltonian is an even power
of the gamma matrices, the full Hamiltonian preserves
chirality, defined as the eigenvalue of Γc ¼ Γ1Γ2 � � �ΓN .

We have summarized the notation for the gamma matrices
and related symmetries in Appendix A.

A. S mod 4 symmetry

Let us define the spin operator S as

S ¼ i
XN=2

j¼1

ψL;jψR;j ¼
i
2

XN=2

j¼1

ΓjΓN=2þj; ð5Þ

that is, Hint ¼ kS. Below, we show that S has the discrete
spectrum S¼−N=4;−N=4þ1;…;N=4 and that, if α ¼ 1,
the full Hamiltonian (3) preserves S mod 4 in addition to
the chirality (S mod 2). We shall call S the spin operator.
First, let us deduce the spectrum of S. If we define Γ�

i as

Γ�
i ¼ ΓN=2þi � iΓi; ð6Þ

then S can be written as

S ¼ 1

4

XN=2

i¼1

Γþ
i Γ−

i −
N
4
: ð7Þ

The operators Γ�
i also satisfy the following (anti)commu-

tation relations

fΓ�
i ;Γ�0

j g ¼ 0 ði ≠ jÞ;
fΓ�

i ;Γ�
i g ¼ 0 ðwith no contractionÞ;

½S;Γ�
i � ¼ �Γ�

i ; ð8Þ
from which we can derive the following spectrum:

eigenvalue of S eigenstates degeneracy

−N
4

jS¼−N=4i 1

−N
4
þ1 Γþ

i jS¼−N=4i N=2

−N
4
þ2 Γþ

½iΓ
þ
j� jS¼−N=4i ðN=2

2
Þ

..

. ..
. ..

.

−N
4
þp Γþ

½i1Γ
þ
i2
���Γþ

ip�jS¼−N=4i ðN=2
p Þ

..

. ..
. ..

.

N
4

Γþ
1 Γ

þ
2 ���Γþ

N=2jS¼−N=4i 1

ð9Þ

where jS ¼ −N=4i is the lowest spin state satisfying

Γ−
i jS ¼ −N=4i ¼ 0: ð10Þ

Next we discuss the S mod 4 symmetry. If we define

Pij ¼ 2ðψL;iψL;j þ ψR;iψR;jÞ ¼ ΓiΓj þ ΓN=2þiΓN=2þj;

Qij ¼ 2ðψL;iψL;j − ψR;iψR;jÞ ¼ ΓiΓj − ΓN=2þiΓN=2þj;

ð11Þ
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the full Hamiltonian (3) with α ¼ 1 can be written as

H ¼ 1

8

XN=2

i<j<k<l

JijklðPijPkl þQijQklÞ þ kS: ð12Þ

The Pij and Qij operators satisfy the following commu-
tation relations with S

½S; Pij� ¼ 0; ½S; ½S;Qij�� − 4Qij ¼ 0: ð13Þ
That is, Pij preserves the spin S. To interpret the commu-
tation relation for Qij it is convenient to act Eq. (13) on an
eigenstate of S, with the spin eigenvalue s, which we shall
call jϕi. One easily derives

ðS2 − 2sSþ s2 − 4ÞQijjϕi ¼ 0: ð14Þ

This implies that an expansion ofQijjϕi contains only spin
eigenstates with S ¼ s� 2. Hence, S mod 4 is a symmetry
ofQijQkl. Putting the above computations together we find
that the full Hamiltonian equation (3) preserves also the
S mod 4 symmetry.
It is instructive to express the exponent of the spin

operator as a product

eiθS ¼
YN=2

i¼1

�
cos

θ

2
− sin

θ

2
ΓiΓN=2þi

�
: ð15Þ

For θ ¼ π we recover the chirality operator, while θ ¼ π=2
gives the S mod 4 symmetry,

½eπiS=2; H� ¼ 0: ð16Þ
This also shows that the chirality symmetry operator is the
square of the S mod 4 operator. In Appendix B, we give
an alternative proof of the S mod 4 symmetry based on the
product form equation (15).
This S mod 4 symmetry plays an important role when

we analyze the level correlations. For α ¼ 1, the full
Hamiltonian splits into four blocks labeled by S mod 4,
regardless of the value of the random coupling Jijkl. When
analyzing level correlations, unitary symmetries have to be
taken into account exactly and we have to focus on a single
block. We revisit this issue in Sec. V. For α ≠ 1, the full
Hamiltonian only preserves chirality and there is no
S mod 4 symmetry.

III. COMPARISON OF THE TFD
WITH THE GROUND STATE

Here we consider the case with identical L and R
systems, i.e., α ¼ 1. For k ¼ 0 (and N ¼ 0 mod 4 so that
N=2 is even), the system we are considering is H ¼
HSYK ⊗ 1þ 1 ⊗ HSYK. That is, the system consists of
two decoupled SYK systems with N=2 fermions, the L and
R systems, which are identical to each other. It was already
pointed out in [39] that when the interaction between L
system and R system is turned on the ground state has a
large overlap with the TFD of HSYK ⊗ 1þ 1 ⊗ HSYK. In
this section, we shall study this similarity in more detail.
Because the left and right systems are identical, the left

and right Γ matrices can be represented as

ΓL
k ¼ γk ⊗ 1;

ΓR
k ¼ γc ⊗ UγkU−1; ð17Þ

where U is a unitary matrix (we use the notation that the
lowercase gamma matrices γk are of size 2N=4 × 2N=4 and
uppercase gamma matrices ΓL

k , ΓR
k are of size 2N=2 × 2N=2).

The factor γc ensures that the left Γ matrices anticom-
mute with the right Γ matrices. Below, we will call this
basis the tensor basis. If the eigenvalues and eigenstates
of HL are given by

HLjniL ¼ EnjniL; ð18Þ

then

HRjniR ¼ EnUjniR; with jniR ¼ UjniL: ð19Þ

Let us define the TFD,

jTFDi ¼
X
n

e−2βEnþiϕn jniLeiπ4γcCKjniR; ð20Þ

where we have included a phase factor, exp iϕn, and CK is
the charge conjugation operator. We will next show that

jIi≡ jS ¼ −N=4i ¼
X
n

jniL ⊗ ei
π
4
γcCKjniR ð21Þ

is the ground state of the spin operator. To this end we
calculate the expectation value

hIjSjIi ¼ 2−N=4
X
n;m

ðhnjL ⊗ heiπ4γcCKnjRÞSðjmiL ⊗ ei
π
4
γcCKjmiRÞ

¼ 2−N=4 i
2

X
n;m

X
k

hnjLγkγcjmiLheiπ4γcCKnjRγkeiπ4γcCKjmiR

¼ 2−N=4i
X
n;m

X
k

χmhnjLγkjmiL
i
2
χmhmjRγkjniR; ð22Þ
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where χm is the chirality of the state jmi,

γcjmi ¼ χmjmi: ð23Þ

Choosing jmiR ¼ jmiL [i.e., U ¼ 1 in Eq. (17)] the sum
over m can be eliminated by completeness.

rhs of Eq: ð22Þ ¼ −2−N=4 1

2

X
n

X
k

hnjRγ2kjniR

¼ −
N
4
; ð24Þ

which is the desired result. Therefore, jIi is the state with
the lowest spin. A similar prove can be used to show that
jjΓ−

i jS ¼ −N=4ijj2 ¼ 0 (no sum over i). This shows
that the state jIi is annihilated by all lowering operators
Γ−

i. The details of the ground state which depend on
N=2 mod 8 are worked out in Appendix D for
N=2 mod 8 ¼ 4, in Appendix C for N=2 mod 8 ¼ 2 and
in Appendix E for N=2 mod 8 ¼ 0.
At finite temperature, we define the TFD jTFDiβ as

jTFDiβ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ZðN; βÞp e−βðHSYK⊗1þ1⊗HSYKÞjS ¼ −N=4i;

ð25Þ

where ZðN; βÞ is a normalization factor such that
hTFDjβTFDiβ ¼ 1. As confirmed by numerical calcula-
tions for N up to 32, the complex phase factor of the jni ⊗
jni components of the ground state at finite coupling k does
not depend on k. This is a nontrivial result which we only
understand perturbatively.

A. jTFDiβ versus ground state of coupled SYK

In [39] it has been argued that the ground state jgsi of
the coupled system at finite coupling k is close to the TFD
state jTFDiβ by studying the overlap hTFDjβgsi. Here the
inverse temperature β is a function of k determined by
maximizing the overlap. However, it should be stressed that
a large value of this overlap does not necessarily imply that
the coefficients ðhnj ⊗ hnjÞjgsi, taken as a function of the
energy levels of the single SYK system, behave like e−2βEn .
The reason is that for small coupling most of the strength
of the wave function can be localized in one or a few
components of the wave function. In this section we will
show numerically that, at finite N ≤ 28, this is actually the
case and that for sufficiently small values of the coupling k
the coefficients display large deviations from the exponen-
tial behavior typical of the TFD.
Before moving to a detailed analysis, let us first consider

the results in some limiting cases. In the limit k → ∞,
since H is dominated by Hint ¼ kS, the ground state jgsi
coincides with jTFDiβ¼0, see Eqs. (22), (24) and (25). In
the limit k → 0, on the other hand, the tensor product states

jm�iL ⊗ jn�0iR are the exact eigenstates of H with the
eigenvalues Em þ En, where the En are the eigenvalues of
a single SYK, HSYKjnχiL;R ¼ EnjnχiL;R, and the index
χ ¼ � denotes the chirality of the state. The ground state is
j1χiL ⊗ j1χ0 iR, which may be degenerate depending on the
value of N. Hence, the ground state in the k → 0 limit is
given by the jTFDi state for β ¼ ∞. Note that this does not
necessarily imply that the ground state is close to a TFD for
small but nonzero k.
Let us compare the ground state of the Hamiltonian

equation (3) with the TFD at finite temperature jTFDiβ for
varying k. It can be expanded in the complete set jmi ⊗ jni

jgsi ¼
X
n

cnjni ⊗ jni þ
X
m≠n

bmnjmi ⊗ jni: ð26Þ

Numerically, the phases of the cn do not depend on the
coupling constant and are thus given by the phases of the
ground state of S (perturbed by a ϵðHL þHRÞ with ϵ a
small constant). This is not the case for the phases of the
coefficients bmn. We can understand this fact to first order
in perturbation theory in 1=k with S as the zeroth order
Hamiltonian,

jgsi ¼ jIi þ
X
m

jSmi
hSmjðHL þHRÞjIi

S0 − Sm
; ð27Þ

with jSmi an eigenstate of S with eigenvalue Sm and S0 the
spin of the ground state. Inserting a complete set of
eigenstates of HL þHR,

P
m;n jmi ⊗ jnihmj ⊗ hnj, and

noticing that ðhmj ⊗ hnjÞðHL þHRÞjIi ¼ 0 for m ≠ n, the
matrix element can be written as

hSmjðHL þHRÞjIi ¼
X
n

hSmjðjni ⊗ jniÞ

× ðhnj ⊗ hnjÞðHL þHRÞjIi: ð28Þ

Only those states with the same S mod 4 spin as the ground
state contribute to the sum over n. It turns out that the
complex phase of the matrix elements hSmjðjni ⊗ jniÞ does
not depend onm apart from an overall phase which cancels
with the contribution to the matrix element

hSmjðjni ⊗ jniÞðhnj ⊗ hnjÞðHL þHRÞjIi
¼ 2hSmjðjni ⊗ jniÞEnðhnj ⊗ hnjÞjIi; ð29Þ

which is therefore real. The complex phase of the first order
correction is therefore due to the phase of ðhnj ⊗ hnjÞjSmi
which is the same as the phase of ðhnj ⊗ hnjÞjIi (up to a
minus sign). The same argument cannot be made for third
and higher order perturbative corrections because off-
diagonal states, jmi ⊗ jni (with m ≠ n) contribute to the
intermediate state sums. We conclude that at first and
second order in perturbation theory the complex phase of
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the ground state does not depend on k, up to a value of k for
which the perturbative contributions are larger than the
jni ⊗ jni components of the ground state. At that point one
or more components of the ground state change sign.
In the numerical studies below we will only consider

the cases N ¼ 20 and N ¼ 28, where jTFDiβ is defined as,
see Eq. (25),

jTFDiβ ¼
1ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X2N=4−1

n¼1

e−2βEnðjnþiL ⊗ jn−iR

þ jn−iL ⊗ jnþiRÞ; ð30Þ

and ZðβÞ ¼ 2
P

2N=4−1

n¼1 e−4βEn is the normalization factor.
Since k is the parameter of the Hamiltonian that inter-

polates between a ground state jTFDiβ¼∞ and jTFDiβ¼0

which also corresponds to the ground state of the spin
operator, we expect that the effective inverse temperature
βðkÞ monotonically decreases as k increases. Furthermore,
we have computed jhS ¼ −N=4jgsij2 and found that this
overlap is almost 1 already around k ∼ 1 (see Fig. 1).
Hence, we expect the effective temperature changes sub-
stantially only in the regime 0 < k < 1.
Below, to be self-contained, we first redo the comparison

of the ground state and the TFD by maximization of their
overlap. This computation was already performed in [39].
We have checked numerically, for N ¼ 20 and N ¼ 28,

that the maximized overlap with respect to β, between the
TFD and the ground state, is close to 1. For this purpose,
we have considered the ansatz equation (30) for the ground
state, in which the En are the energy levels of a single
SYK model and β is the fitting parameter determined
by maximizing the overlap. We normalize this state as
hTFDjβTFDiβ ¼ 1 by choosing ZðβÞ as

ZðβÞ ¼ 2
X2N=4−1

n¼1

e−4βEn ; ð31Þ

which therefore has not been considered as an independent
fitting parameter. We proceed as follows:
(1) Generate an ensemble of 2N=4 × 2N=4 matrices

HSYK ¼ 1
2

P
i<j<k<lJijklγiγjγkγl with Gaussian ran-

dom Jijkl, and compute their eigenvalues fEng
and eigenvectors fjn�ig through exact numerical
diagonalization. Then construct the tensor product
jn�iL ⊗ jn∓iR.

(2) For the same ensemble of random couplings,
generate 2N=2 × 2N=2 matrices representing the
Hamiltonian equation (3) with α ¼ 1 using the
tensor basis (17) and compute the ground state
jgsi through the exact diagonalization.

(3) Compute c�n ¼ ðhn�jL ⊗ hn∓jRÞjgsi. We have
observed that cþn ¼ c−n and cþn > 0 for all n ¼ 1;
2;…2N=4=2, up to an overall phase provided that we
define the phase of jn�iL;R such that Eq. (30) holds
without any extra phase (see Appendix D for de-
tails). Hence, we shall denote cþn ¼ c−n simply by cn.

(4) For each ensemble realization determine β by
maximizing the overlap hTFDjβgsi:

hTFDjβgsi ¼
2ffiffiffiffiffiffiffiffiffiffi
ZðβÞp X2N=4−1

n¼1

cne−2βEn: ð32Þ

(5) Take the average of both β and hTFDjβgsi over the
ensemble.

Following this procedure we obtained both the effective
inverse temperature βðkÞ and the overlap hTFDjβgsi. The
results are displayed in Fig. 2. As we can see, the inverse
temperature is indeed growing for small k and it tends
to zero at strong coupling as expected. In agreement with
[39], we confirm that hTFDjβgsi is pretty close to 1 with
relatively large deviations around k ∼ 0.1. Note that the
effective inverse temperature βðkÞ was determined in [39]
by equating the expectation value of the TFD and the exact
ground state rather than maximizing the overlap. We have
checked that within numerical inaccuracies the two meth-
ods give the same results. More quantitatively, for small k,
the inverse effective temperature depends on k roughly as
1=k1=6 while at k ≈ 0.1, there is a transition to a 1=k
dependence. We have also checked (not shown) that the
overlap between the TFD and the low-lying excited states is

N 12, all

N 20, all

N 28, first 1

0.2 0.4 0.6 0.8 1.0
k

0.2

0.4

0.6

0.8

1.0

S
N

4
gs 2

FIG. 1. Overlap between the ground state of the spin operator
and the ground state of the coupled SYK model as a function
of the coupling k. Here the results for N ¼ 12 and N ¼ 20
are obtained by diagonalizing the full Hamiltonian and then
extracting the eigenvector with the lowest energy eigenvalue,
while for N ¼ 28 we have obtained only the ground state
eigenvector by applying the so-called Arnoldi method to the
Hamiltonian shifted by a constant matrix H − diagð100;
100;…; 100Þ. Here the shift is required technically so that the
eigenvalue of the ground state has the largest absolute value
among the full spectrum. Only for large k is the ground state of
the spin operator a good description of the ground state of the
coupled SYK model.
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much smaller, ≤ 0.01, which confirms that only the ground
state is similar to a TFD.
As was already mentioned, the large overlap between the

ground state and the TFD does not necessarily imply that
the coefficients cn have an exponential behavior in energy.
Indeed, it could be simply that one or a few coefficients in
Eq. (26) are much larger than the others. In this case, the

overlap hTFDjβgsi would be very close to be 1, even
though all the other coefficients could behave in a com-
pletely different way.
Hence, to check whether the coefficients of the ground

state have an exponential profile, we have studied their
average on a logarithmic scale versus the ensemble average
of each of the En (for the case N ¼ 28 only). Results

N=20

N=28

10–4 0.001 0.010 0.100 1
k

0.1

1

10

100

N=20

N=28

0.001 0.010 0.100 1
k0.970

0.975

0.980

0.985

0.990

0.995

1.000

overlap

FIG. 2. (Left panel) Inverse temperature β as a function of the coupling k. (Right panel) Overlap hTFDjβgsi as a function of k.

FIG. 3. The agreement between the average ground state coefficients cn (black points) and the TFD obtained by fitting the jcnj
configuration by configuration (green curve), or by fitting to the logarithm of the ensemble average of the jcnj (red and black curves).
The power law ansatz (black curve) gives much better fit especially for small k. Note that the green curve has one fitting parameter (β),
while the red (exponential) and black (power law) curves are two-parameter fits, c and β with c the normalization constant, and c and e0,
respectively. The value of the power in the latter case is p ¼ 2.178.
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depicted in Fig. 3 clearly show that an exponential form is
not a good fit to the jcnj coefficients. For comparison, we
have also included the coefficients of the TFD with β
determined by maximizing the overlap (green curves) as
described before, and fitting the logarithm of the ensemble
average of jcnj to the TFD form also leaving the normali-
zation constant as a free parameter (red curve). None of
these fitting to the TFD give good results. By contrast, a
power law ansatz (black line),

cn ∼
c

ðEn − e0Þp
; ð33Þ

provides an excellent fitting. In order to compare the two
parameter fits, we fix p at p ¼ 2.178. The fitted value of e0
is somewhat smaller than the ground state energy E1 for
small k and decreasing for increasing values of k. The value
of c is in principle determined by the normalization, but
leaving it as a free parameter gives a better fit. For small
coupling k < 0.5 the value of c is quite different from the
one obtained from the normalization. The reason is that
most of the strength of the wave function is in c1, which
does not contribute much to the χ2 when you fit the
logarithm of the jcnj. One could also take p as a k-
dependent fitting parameter which gives slightly better fits.
In any case, except in the regime of strong coupling, power
law fits provide a much better description of the numerical
results than exponential fits related to the TFD. For k ≥ 1
the TFD ansatz is a good description of the ground state
though. This is consistent with the expectation that at large
coupling the system is dominated by the spin operator
and the TFD (with β → 0) is the ground state of the
Hamiltonian equation (3).
For k > 0.2 the energy dependence of the coefficients

can also be described by the sum of two exponentials with a
χ2 that is comparable to the power law fit, but it has one
more parameter. A Gaussian dependence, expð−βx − αx2Þ,
first introduced in the context of a nuclear many-body
system [52], also gives a reasonable fit in this parameter
region.

Once again, we stress that the deviation from the TFD
form is not in contradiction with the good overlap between
the TFD and the ground state, since the dominant coef-
ficients are well reproduced by the TFD at least for small k,
as can be seen from Fig. 3.
These numerical results suggest that the coefficients of

the ground state are not well approximated by the TFD
ansatz, and that instead they are very close to a power law
ansatz. However, we should note that N ¼ 28 may not be
close to the large N limit of this system where analytical
arguments [39] show that the ground state is well approxi-
mated by a TFD. This indicates that the convergence to the
large N limit is slow and most likely nonuniform. Inter-
estingly, it has been observed in [53], that the Hamiltonian
equation (3) is just an approximation of a Hamiltonian
whose exact ground state is the TFD.
In Fig. 4 we show the ratio jc2=c1j (left panel) and the

inverse participation ratio (IPR) (right panel) defined as [54]

IPR ¼ ðPnjcnj2Þ2P
njcnj4

: ð34Þ

We observe a crossover at k ≈ 0.1 where βðkÞ ≈ E2 − E1.
Around the same value of k, the inverse participation ratio
increases dramatically. This is a feature typical in metal-
insulator and integrable-chaotic transitions.
The results of this section suggest that the ground

state of the model undergoes a qualitative change around
k ∼ 0.1–0.2. We shall see in the next section that precisely
in this region the first order transition mentioned in the
Introduction turns into a sharp crossover. We turn now to
the study of low energy excitations by the analysis of
thermodynamic properties and spectral correlations.

IV. THERMODYNAMIC PROPERTIES

In the first subsection, we study thermodynamic proper-
ties of Hamiltonian equation (3) for α ¼ 1 and N ≤ 34 by
exact diagonalization techniques. In the second subsection,
we repeat this analysis in the large N limit by solving the
Schwinger-Dyson equations to study the Hawking-Page
phase transition, first reported in Ref. [39], in more detail.

N = 28, q = 4
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FIG. 4. (Left panel) The ratio of jc2=c1j and (right panel) the inverse participation ratio versus k.
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A. Numerical study

In order to investigate the thermodynamic properties
of the Hamiltonian equation (3), we compute its spectrum
by exact diagonalization techniques for up to N ¼ 34
Majoranas. We are mostly interested in the low temperature
limit where, according to the results of Ref. [39], a first
order Hawking-Page transition occurs at a finite value of
the coupling k. The transition, according to Ref. [39],
seems to terminate for k ≥ kc though it is not clear whether
it becomes second order or just a crossover.
We study the free energy as a function of k and N. For

any N ≫ 1 we have found, see Fig. 5, that for sufficiently
large k and low temperature, the free energy, computed in
the chiral sector containing the ground state, is constant,
which signals the existence of a gap in the spectrum, one
of the distinctive features of the AdS graviton gas.
Interestingly, unlike the standard SYK model, the chirality
of the ground state depends on N, namely, for N ¼ 26 it is
positive but for N ¼ 28 and N ¼ 30 it is negative. This is
related to the fact that γ5 ∼ ð−1ÞS.
At higher temperature, the free energy, corresponding to

the chiral block that includes the ground state, starts to
decrease and becomes increasingly close to the one
corresponding to the other chiral block. The temperature

at which the two becomes close gives a rough estimation of
the critical temperature of the Hawking-Page transition
from the graviton gas to the black hole background. A more
accurate estimation of the critical temperature can be
obtained from the specific heat. For a first order phase
transition, the specific heat diverges at the transition, for a
second order transition it shows a finite jump and for higher
order phase transitions, the specific heat is smooth.
In Fig. 6, we show results for the size dependence of

the specific heat for different values of k. We note that
thermodynamic phase transitions only occur in the N → ∞
limit, so information about the size dependence is neces-
sary for a correct understanding of the transition. For
large couplings, the specific heat has a broad maximum
around the value of the gap, with a weak size dependence.
Although the range of sizes is rather limited, this is a strong
indication of a crossover, not a transition. For very weak
coupling k ¼ 0.05, the maximum is almost unnoticeable
for N ¼ 28, which suggests that larger couplings or larger
sizes are necessary for the wormhole phase to occur. Even
for a larger N ¼ 34, there is only a slight indication of a gap
in the spectrum and no clear signature of the transition.
Larger values of N are necessary to reach any firm
conclusion. For a coupling strength of k ≈ 0.2 around

FIG. 5. Free energy as a function of temperature for N ¼ 30 and 34 Majoranas with positive and negative parity and different values
of k. The observed temperature independent part of the free energy has its physical origin in the gap between the ground state and the
first excited state.

FIG. 6. Specific heat as a function of temperature for different values of N. (Center panel) For kc ¼ 0.175 we observe that as N
increases, the observed peak becomes increasingly narrow, which suggests the existence of the phase transition. (Right panel) For larger
k the peak is broad, which suggests a crossover. (Left panel) For small k, finite size effects seems to be stronger and we cannot reach any
firm conclusion.
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the one for which we have observed a qualitative change in
the ground state, there is a sharp jump of the specific heat
for temperatures of the order of the gap. The jump in the
specific heat is noticeably sharper as N increases, which
strongly suggests a phase transition takes place.

B. Solution of Schwinger-Dyson equations

The above analysis, though illustrative, is not conclusive
because of the limited size we can study by exact
diagonalization. In order to gain a more quantitative
understanding, we have computed the free energy and
specific heat in the large N limit by solving the Schwinger-
Dyson equations numerically. The details of this calcula-
tion have already been explained in great detail in [39], to
which we refer. The purpose of this section is to perform a
more precise analysis around the critical coupling kc.
We have found that up to k ¼ kc ≈ 0.175 the system

undergoes a first order phase transition. In order to reach this
conclusion we have carried out a careful analysis of the
dependence of the derivative of the free energy on the
temperature step: the first order phase transition is clearly
visible by noticing that, up to k ¼ kc, the free energy shows a
hysteresis curve as a function of the temperature, see Fig. 7.
The critical value of kc ∼ 0.175 is consistent with the

one, obtained in the previous section, at which the ground
state changes qualitatively. We have also observed, see
Fig. 8, that for slightly larger values of k ≥ 0.177, this first
order phase transition turns out to be a sharp but smooth
crossover, which becomes broader with increasing k. To
reach this conclusion, it has been necessary to study how
the peak in the specific heat behaves when decreasing the
temperature step: as shown in Fig. 8, by further decreasing

the temperature step to the very small value of dT ¼
5 × 10−7, the peak turns out to be a sharp, but smooth,
crossover. We therefore conclude that the window for a
hypothetical second order phase transition must be very
narrow, 0.175 ≤ k ≤ 0.177. We note that our results are
in perfect agreement with those of [50], where a detailed
analysis of the Schwinger-Dyson equations associated with
a very similar model without disorder was carried out.
We have also computed, see Fig. 9, the energy gap Eg

between the ground state and the first excited state as

increasing T with dT=5*10–6

decreasing T with dT=5*10–6
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–0.165141

–0.165140

–0.165139

–0.165138
F

FIG. 7. Free energy F of the model equation (3) versus
temperature T. The two free energies, computed by solving
the Schwinger-Dyson equations by raising and lowering the
temperature, with a temperature step of dT ¼ 5 × 10−6, intersect
at an angle. The full free energy then develops a kink, which
signals the existence of a first order phase transition for
k ≤ kc ¼ 0.175. We shall see that for larger k the system transits
to sharp crossover with no intermediate second order phase
transition.
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FIG. 8. Specific heat of the Hamiltonian equation (3) versus
temperature. The first order phase transition suddenly turns to
a sharp but smooth crossover slightly above the critical value,
k ¼ 0.177. By taking a very small temperature step dT ¼
5 × 10−7, the peak in the specific heat turns out to be
finite and smooth. We note that a similar calculation for
k ≤ 0.177 shows a peak several orders of magnitude larger fully
consistent with the expected singularity in a first order phase
transition.
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FIG. 9. The energy gap, computed at fixed low temperature, as
a function of the coupling k. We see a crossover from the power
law dependence Egap ∼ k2=3 to the linear dependence Egap ∼ k.
This change of behavior was first reported in Ref. [39].
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function k for a fixed low temperature by a careful fitting
of the exponential decay of the relevant Green’s function.
The same computation has been already performed and
explained in [39]. Here we just reproduce the result for
completeness. The dependence of the gap on the coupling k
is a further confirmation of the existence of a transition.
Around k ∼ kc we observe a change of behavior from Eg ∝
k2=3 for k ≪ kc to Eg ∝ k for k ≫ kc. The latter linear
behavior is expected if the gap is due to direct hopping
induced by the coupling term in the Hamiltonian which is
one body (two Majoranas) and therefore noninteracting.
Physically, by increasing the coupling k, we are effec-

tively reducing the many-body interaction inside each
SYK model in favor of a direct coupling between the
two SYK models which is a diagonalizable one-body
(two Majoranas) interaction. This is vaguely reminiscent
of a Gross-Witten transition [54], or a Bose-Einstein
condensation–BCS crossover [55], where the reduction
of the interaction strength induces a higher order transition
or just a crossover.
For larger k > 1, we have found, see Fig. 10, that the

spectral density starts to split into different regions. There is
a simple explanation of this phenomenon. The interaction
term in the Hamiltonian, which becomes dominant in the
large k limit, is proportional to the spin operator which has
a discrete spectrum with large degeneracies, see Eq. (9).
Therefore, we expect that, in this region, the spectral
properties are largely controlled by this coupling term

and the interactions inside each of the SYK models spread
out the degenerate states. Since the eigenvalues of the
coupling term range from −kN=4 to kN=4, we expect the
full spectrum of the model to cluster around these few
eigenvalues which leads to the appearance of the above
mentioned blobs in the spectral density. This is exactly
what we observe in the large k limit (see Fig. 10).
The free energy can be computed analytically in the limit

k → ∞ as follows. If we ignore the SYK terms, we are
left with the discrete spectrum just given by Eq. (9), for
which the free energy is given by

F ¼ −
1

β
log

XN=2

p¼0

� N
2

p

�
e−βkð−N=4þpÞ

¼ −
k
4
−

1

2β
logð1þ e−βkÞ: ð35Þ

In Fig. 11, we compare the numerical free energy for
k ¼ 1, 2 and 5 with this analytical approximation and find
that the agreement becomes excellent around k ∼ 5.
All these results indicate that the physical reason for

the termination of the Hawking-Page transition is just the
gradual reduction of the interaction strength. This is a
strong indication that a gravity interpretation is restricted to
low temperatures and weak coupling where the first order
transition takes place.

FIG. 10. Density of states as a function of the coupling k. For sufficiently large k the spectral density splits into separate blobs centered
around the eigenvalues of the spin operator. In this region of parameters, no Hawking-Page transition occurs, and the interactions
becomes increasingly weak with respect to the hopping between the left and right SYK models.
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V. LEVEL STATISTICS

We now turn to the study of level statistics, with the main
aim to characterize the dynamics in the traversable worm-
hole phase observed in the low temperature limit of the free
energy. For that purpose, we obtain the exact spectrum of
the model by exact diagonalization techniques for up to
N ¼ 34 Majoranas. We are especially interested in the
spectral correlations of the smallest eigenvalues above the
ground state, which are likely to be closely related to
gravitational modes of the wormhole phase.
For a meaningful analysis of spectral correlations it is in

general necessary to unfold the spectrum so that the mean
level spacing is the same across the spectrum. For that
purpose, we employ the splines method that fits locally
consecutive subsets of many (>10) eigenvalues with low
order polynomials. Results are insensitive to the degree of
the fitting polynomials.
We aim to study the evolution for long times, of the order

of the Heisenberg time, in order to find the range of
applicability of random matrix results, a feature of quantum
chaotic systems, rather than finite size deviations from it.
Hence, we will focus on short-range spectral correlators,
such as the level spacing distribution, PðsÞ, and the
adjacent gap ratio. The former is defined as the probability
to find two consecutive eigenvalues Ei, Eiþ1 at a distance
s ¼ ðEiþ1 − EiÞ=Δ (with Δ the average local level spac-
ing). For a fully quantum chaotic system it is given by
Wigner-Dyson statistics [56] which are well approximated
by the so-called Wigner surmise, which depends on the
universality class [57]. For the Gaussian orthogonal ensem-
ble (GOE), corresponding to systems with time reversal
invariance, it is given by: PW;GOEðsÞ ≈ π

2
s expð−πs2=4Þ.

For an insulator, or a generic integrable system, it is given
by Poisson statistics, PPðsÞ ¼ e−s. The adjacent gap ratio
is defined as [2,58,59]

ri ¼
minðδi; δiþ1Þ
maxðδi; δiþ1Þ

ð36Þ

for the ordered spectrum Ei−1 < Ei < Eiþ1 where
δi ¼ Ei − Ei−1. For a Poisson distribution it is equal to

hriP ≈ 0.386, while for a random matrix ensemble it
depends on the symmetry class, with hri ≈ 0.530 for the
GOE [60]. The advantage of hri over PðsÞ is that it does not
require one to unfold the spectrum. The adjacent gap ratio
was also studied in [61] for another model related to the
traversable wormhole [62].
We note that for a correct analysis of spectral correlations

it is necessary to consider only eigenvalues with the same
(good) quantum number. This means that we have to
consider eigenvalues only of a given spin and parity sector.
Due to the block structure of the Hamiltonian, it is
straightforward to select eigenvalues of the same parity.
For the spin symmetry, we could not find a numerically
inexpensive method to go beyond comparatively small
sizes N ¼ 28. We avoid this problem by introducing an
asymmetry in the couplings [α ¼ 1.15 in Eq. (3)] between
the left and right SYK models. It has been argued [39] that
the main features of the model, including the existence of a
gapped phase, though with a smaller gap, for low temper-
ature, which is a signature of the wormhole phase, are
robust to a small interaction strength asymmetry which
breaks the spin symmetry. We start our analysis of level
correlations with the case of very small coupling.

A. Small k

For k ¼ 0, the eigenvalues of the full Hamiltonian for a
given chirality have degeneracies that depend on the value
of N. For example, we find a twofold or fourfold degen-
eracy N ¼ 20, and a twofold degeneracy for N ¼ 24 and
N ¼ 32. Once the degeneracy is removed, we have found,
see Fig. 12, spectral correlations in the bulk are well
described by Poisson statistics. This is the expected
behavior for a system which is defined as the tensor
product of two many-body quantum chaotic systems whose
spectral correlations are described by random matrix
theory. For very small k ≪ 2−N=2, the spectral degeneracy
is barely lifted. As a consequence, the distance between
eigenvalues that were degenerate for k ¼ 0 is much smaller
than that between neighboring eigenvalues, which makes
the analysis of level statistics difficult. For k ⪅ 2−N=4, the
degeneracy is already lifted, so the statistical analysis does
not require any artificial pruning of the spectrum. In this
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FIG. 11. Comparison of the free energy, numerically obtained from the Schwinger-Dyson equation (light blue curve), with the analytic
expression equation (35) for large k (red curve). Here the free energy is normalized such that the plateau value coincides with −k=4.
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region, the level statistics in the tail and in the bulk of the
spectrum are qualitatively different.
In Fig. 13, we plot the nearest neighbor spacing

distribution in the bulk of the spectrum for small k and
different values of N. Level repulsion is observed in all
cases, but for N ¼ 26 and N ¼ 28 the decay for large
distances is clearly exponential with an exponent close to
the one corresponding to a Poisson distribution. However,
for N ¼ 32 and N ¼ 34 we find good agreement with
random matrix correlations. Although a careful finite size
scaling analysis would be necessary to reach a final
conclusion, the latter is a strong suggestion that in the

bulk of the spectrum, corresponding to high temperatures,
even a small coupling kmakes the system quantum chaotic.
However, see Fig. 13, it seems that the lowest eigenvalues
in the same region of small k, for N ¼ 32 and N ¼ 34, are
correlated to Poisson statistics like for k ¼ 0. Rather than a
metal-insulator transition at a certain value of k, this
behavior suggests that for sufficiently weak coupling the
two SYK models, each of them quantum chaotic, are
effectively disconnected systems for low energies (tail)
while for sufficiently high energies (bulk) the behavior is
similar to a single quantum chaotic system whose levels are
correlated according to randommatrix theory. It is tempting
to speculate that this indicates a transition from two black
holes to one black hole for sufficiently high temperatures.
However, the fact that we do not have a clear geometrical
understanding on how this transition can occur, together
with the limited range of N values which we could
study numerically, prevents us from reaching any firm
conclusion.
Summarizing, our results show that, while in the bulk

of the spectrum a very small value of k is sufficient
to induce the transition from Poisson statistics to random
matrix theory spectral correlations, in the tail of the
spectrum, Poisson statistics are robust, and a larger cou-
pling is necessary to induce the transition to level statistics
described by random matrix theory. We investigate this
case next.

B. Critical k

As k increases, the bulk of the spectrum is still correlated
according to random matrix theory with no qualitative
change from the region of small k investigated previously.

FIG. 12. Nearest neighbor spacing distribution PðsÞ forN ¼ 26
and different k’s in the bulk of the spectrum. As k increases, we
observe a crossover from Poisson statistics to the GOE prediction
typical of a quantum chaotic system.

FIG. 13. (Left panel) The nearest neighbor spacing distribution, PðsÞ, for small k and different values of N in the bulk of the spectrum.
The agreement with the random matrix prediction becomes better as N increases. This is a strong indication that, in the bulk of the
spectrum, Poisson statistics for k ¼ 0 are not robust to a small coupling between the left and right SYK models, namely, the system is
always quantum chaotic in the high temperature limit. (Right panel) The nearest spacing distribution, PðsÞ, for small k and N ¼ 32 or
N ¼ 34 for approximately the lowest 0.1% of the eigenvalues. Agreement with Poisson statistics is very good. This is a strong indication
that the infrared limit of the spectrum for sufficiently small k is similar to that for k ¼ 0 corresponding to two black holes.
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For this reason, we will focus exclusively on the spectral
correlations in the tail of the spectrum.
In Fig. 14 we depict results for the average adjacent gap

ratio hri with different values of k for the chiral block that
includes the ground state. In the tail of the spectrum we do
observe clear deviations from the GOE prediction that
become gradually smaller as k increases. Interestingly, for
k ≈ 0.14, the ratio for the lowest eigenvalues becomes
suddenly very close to the GOE value, while the sub-
sequent eigenvalues still deviate substantially from it.
A further increase of the coupling k leads to more of the
lowest eigenvalues becoming correlated according to the
GOE, while the subsequent ones still show deviations.
Finally, for k ∼ 1, all eigenvalues in the spectrum are GOE
correlated. We stress that the value of k for which the lowest
eigenvalue becomes GOE correlated is very similar to the
one at which the termination of the Hawking-Page tran-
sition, between the traversable wormhole and the black hole
phase, takes place. This is a strong suggestion that devia-
tions from random matrix theory in the tail, with values
close to Poisson statistics, may be related to the wormhole
phase and that the sudden appearance of the GOE corre-
lated eigenvalues deep in the infrared may signal an
instability of the wormhole phase. This instability might
be expected close to the transition to a black hole phase.
As a further check that random matrix theory describes

the level statistics of the lowest eigenvalues for k > 0.14,
we compare the level spacing distribution PðsÞ of these
eigenvalues with the Wigner surmise. Results depicted in
Fig. 14 confirm that for k ∼ 0.5, the level spacing distri-
bution for the lowest eigenvalues is in excellent agreement
with the Wigner surmise PW;GOEðsÞ.
The coupling between the left and right sites is a relevant

perturbation which we expect to become dominant in the
tail of the spectrum. Interestingly, in Ref. [39] it was

reported that, assuming N fixed and k sufficiently large,
some of the lowest energy excitations of the effective
Hamiltonian are of gravitational origin and not related to
the breaking of conformal symmetry. Physically, this
corresponds to excited states of the wormhole geometry.
It is tempting to speculate that there is a connection
between these excitations of the wormhole geometry and
the deviations from random matrix theory in the tail of the
spectrum below the critical coupling. If this picture applies,
these gravitational modes related to the wormhole phase are
not quantum chaotic and the sudden transition to random
matrix theory in level statistics is a dynamical aspect of the
thermodynamic Hawking-Page transition. That would
imply that random matrix theory, and therefore quantum
ergodicity, is only a signature of quantum black holes but
not of an AdS graviton gas. In other words, the Hawking-
Page transition can be dynamically characterized as a
chaotic-integrable transition.
In order to test this hypothesis, we compare explicitly the

number of eigenvalues with random matrix–like correla-
tions with the spectral density (one point function) in that
region. For that purpose, we employ again the adjacent gap
ratio hri, but with a largerN ¼ 34, so that more eigenvalues
show the anticipated anomalous behavior. Regarding the
spectral density, for which the prediction of gravitational
excitations of Ref. [39] applies, we employ the local
spectral density and hdi≡ hEiþ1 − Eii. Results depicted
in Fig. 15 clearly show that the number of eigenvalues with
random matrix correlations is in good agreement with the
number of eigenvalues whose hdi shows a pronounced
dependence on k for sufficiently large k. Although further
research is required to confirm this point, this quantitative
agreement is encouraging. It strongly suggests that full
quantum ergodicity is typical only of black holes, while
other geometries like quantum wormholes may be closer to

FIG. 14. (Left panel) Adjacent gap ratio hri, Eq. (36), for N ¼ 26 and different values of k for the infrared part of the spectrum. We
observe that, as k increases, some of the lowest eigenvalues become correlated according to the random matrix theory. Except for k ≈ 0,
the bulk of the spectrum is correlated according to the random matrix prediction. (Right panel) Results for the level spacing distribution
PðsÞ fully confirm the agreement with the Wigner surmise typical of random matrix spectral correlations.
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Poisson statistics typical of integrable dynamics. We now
move to study level statistics for α ¼ 1 in order to confirm
that these findings are not particular to the value of α ∼ 1
used in previous sections.

C. Dependence of level correlations on α= 1

To study level correlations in this case, the additional
global spin symmetry for equal couplings makes it neces-
sary to only consider eigenvalues with the same spin mod 4

eigenvalue, in this case the block containing S ¼ −N=4
which includes the ground state. This requires an explicit
calculation of eigenvectors which further limits the maxi-
mum N which we can reach numerically to N ¼ 28 also
taking into account that we need at least 500 disorder
realizations to have relatively good statistics. Results for
hri, shown in Fig. 16, clearly show similar features as in
the slightly asymmetric case: deviation from GOE for
small k followed by the sudden appearance of the lowest

FIG. 15. (Left panel) Adjacent gap ratio hri, Eq. (36), for N ¼ 34 and k ¼ 0.35. (Right panel) Local average spacing hdii ¼
hEiþ1 − Eii for N ¼ 34, k ¼ 0.35 rescaled by the total average mean level spacing. Roughly speaking, only the local spacing involving
the lowest 25 eigenvalues is k dependent. This is also the number of eigenvalues which are correlated according to the random matrix
figure in the left figure.

FIG. 16. Adjacent gap ratio hri, Eq. (36) for N ¼ 28, α ¼ 1 in Eq. (3) and different values of the coupling parameter k. We employ
only eigenvalues corresponding to the sector of lowest spin S ¼ −N=4 that includes the ground state. Results are qualitatively similar to
those of α ≠ 1. Deviations from GOE random matrix results (orange line) are observed for small k which gradually disappear as k
approaches the critical point kc ∼ 0.17 where the Hawking-Page transition terminates.
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eigenvalues correlated according to random matrix theory
at around the same value kc ∼ 0.15. However, for N ¼ 28,
the crossover region is very narrow, only the two lowest
eigenvalues become GOE correlated before the full spec-
trum becomes GOE correlated, and the distinction between
the tail and the bulk of the spectrum becomes more difficult
to identify.
The spin symmetry is broken by the coupling asymme-

try. However, as mentioned previously, a small asymmetry
does not change the physics of the model but makes it
technically easier to study the level statistics. In order to
confirm this point more explicitly, we investigate the
dependence of level statistics on the asymmetry parameter
α in Eq. (3). In Fig. 17, we depict results for the adjacent
gap ratio and different values of α. As α increases, the
differences between the tail and bulk of the spectrum
become increasingly small. Eventually, the full spectrum
becomes correlated according to random matrix theory
even with a comparatively weak coupling. Physically, this
is an indication that the wormhole phase related to the
graviton gas disappears if the asymmetry between left and
right is sufficiently strong. This is consistent with the
results of Ref. [39], where it was found that both the ground
state energy gap and the left-right correlation decreases
as the asymmetry increases. However, further research is
required to determine whether there is a sharp maximum
value of the asymmetry for the wormhole phase to occur.

VI. OUTLOOK AND CONCLUSIONS

We have studied a coupled two-site SYK model whose
gravity dual is conjectured to be [39] a traversable worm-
hole geometry in the low temperature, small coupling, limit
and dual to a black hole geometry for sufficiently strong

coupling or high temperature. We have analyzed the
spectral and thermodynamic properties of this model and
have found that it has a previously unknown discrete spin
symmetry which among other things is important for the
analysis of level correlations.
In Ref. [39], it was shown that the phase transition of

this model is first order for weak coupling and seems to
terminate for stronger coupling. An important point in the
analysis of [39] is that the ground state in the wormhole
phase is well approximated by a TFD. In this paper we have
found that except in the limit of strong coupling between
the two SYK models, a TFD is never a good approximation
of the ground state for the number of Majoranas (N ≤ 34)
that we can investigate by exact diagonalization. For
weaker coupling, coefficients of the expansion of the
ground state in a tensor product of the two separate
SYK models have a slower power law decay, in contrast
to the fast exponential decay with the energy expected in a
TFD. This raises questions about the exact nature of the
ground state of the eternal transversable wormhole. As the
coupling k increases, the overlap of the ground state with
the TFD decreases with a minimum at kc ∼ 0.1. For
stronger coupling, the ground state becomes increasingly
well approximated by the TFD. In this large coupling limit,
eigenstates of the associated spin operator with the lowest
eigenvalues are close to the ground state of the system and
to a TFD at infinite temperature. Note that the deviations
from the TFD at weak coupling mentioned above do not
implicate that the overlap between the ground state and the
TFD is small. The reason is that for small coupling the
strength of the wave function in a tensor basis of HSYK ⊗
HSYK is concentrated in only one or a few components
of the eigenvectors which determine the overlap with the
TFD independently of the distribution in energy of the
components.
We have also studied thermodynamic properties and

level statistics that provide valuable information on the
longtime dynamics of the model. Regarding thermody-
namic properties, we have fully confirmed [39] that the
transition is of first order for weak coupling and it
terminates at kc ∼ 0.2. A careful analysis of the free energy
and specific heat shows that for stronger coupling, at fixed
temperature, there is no second order transition but just a
sharp crossover. To a good approximation, this is also the
value of the coupling where the k dependence of the energy
gap changes from a power law to a linear dependence
which is typical of a noninteracting system. In the strong
coupling limit, the spectral density develops well separated
blobs centered around the eigenvalues of the spin operator.
Level statistics are also affected by the coupling strength.

For k < kc, we observe in the tail of the spectrum important
deviations from the random matrix prediction, which we
speculate is an indication that gravitational bound states
related to the wormhole geometry are not quantum chaotic.
Around the transition we have observed that, suddenly, the

FIG. 17. Adjacent gap ratio hri, Eq. (36), for N ¼ 26 and
different values of the asymmetry parameter. We observe that, as
the asymmetry increases, differences between the spectral corre-
lations of the low-lying eigenvalues and eigenvalues in the bulk of
the spectrum gradually disappear.
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lowest eigenvalues become correlated according to random
matrix theory. This quantum chaotic behavior is an
expected feature [32] of quantum black hole backgrounds.
For larger k, the number of eigenvalues in the tail of the
spectrum, which is well described by randommatrix theory,
increases. Eventually, for k ∼ 1, the full spectrum is
correlated according to the random matrix theory predic-
tion. Physically, random matrix spectral correlations are an
indication of quantum chaotic features and full quantum
ergodicity, which is believed to be a distinctive feature of
quantum black holes. Therefore, the sudden appearance of
random matrix correlations deep in the infrared may be an
indication of the instability of the wormhole phase towards
the black hole phase. On the (quantum) gravity side, the
exact meaning of a sharp crossover between the two
geometries is unclear.
In the opposite limit of very small k, well below the

transition k ¼ kc, we observe Poisson statistics for very
small coupling strength kc ⪅ 0.03 (once the degeneracies
are removed), which suggests that, at least in the range of
finite N we can explore, a minimum coupling is necessary
to access the wormhole phase. For larger coupling, the bulk
of the spectrum becomes quickly correlated according to
random matrix theory while deviations in the tail, very
likely related to the wormhole phase, are still present until
the transition occurs. We did not manage to quantitatively
understand these deviations. The limited range of sizes we
can explore numerically prevent us to perform a finite size
scaling analysis. Additional research is required to clarify
whether this limit of very small k or the region of sudden
appearance of random matrix correlations mentioned above
broadens the phase diagram of the system.
Interesting problems for further research include, the

universality of these results for nonminimal couplings
between the two sites or to clarify whether similar physics
is observed in supersymmetric analogues of this problem.
Another still unresolved problem is the gravity dual inter-
pretation, if any, of the sharp crossover that we observed
around the transition. More specifically, it would be
interesting to clarify whether both geometries can some-
how coexist in this region or simply the system ceases to
have a gravity dual interpretation. Another point which
would be nice to investigate further is the study of the
level statistics for the case of equal couplings: in
particular, it would be important to push the numerical
studies to larger N to see if the distinction between the
bulk and the tail of the spectrum becomes more promi-
nent. To reach this goal, we believe that the method of
[63] could be useful. The exact nature of the ground state
for weak coupling, characterized by a power law decay of
the coefficients in a tensor product basis, which therefore
deviates from the TFD, deserves further investigation
as well. Does this power law dependence have a gravity
dual interpretation? We plan to address some of these
problems in the near future.

ACKNOWLEDGMENTS

D. R. wants to thank Frank Ferrari for discussions and
Shanghai Jiao Tong University for hospitality during the
completion of this work. T. N. and D. R. thank Korea
Institute for Advanced Study for providing computing
resources (KIAS Center for Advanced Computation
Abacus System) for this work. J. J. M. V. was partially
supported by U.S. DOE Grant No. DE-FAG-88FR40388
and performed part of this work at the Aspen Center
for Physics, which is supported by National Science
Foundation Grant No. PHY-1607611. A. M. G.-G. was
partially supported by the National Natural Science
Foundation of China (NSFC) (Grant No. 11874259).

APPENDIX A: NOTATIONS FOR
GAMMA MATRICES

The gamma matrices in Eq. (4) are defined as usual,

fΓi;Γjg ¼ 2δij: ðA1Þ

For each SYK we have a chiral operator

ΓR
5 ¼ i−N=4

YN=2

k¼1

Γk; ΓL
5 ¼ i−N=4

YN=2

k¼1

ΓkþN=2; ðA2Þ

the charge conjugation symmetry operators are defined as

CR ¼
YN=4

k¼1

Γ2kK; CL ¼
YN=4

k¼1

Γ2kþN=2K; ðA3Þ

with K the complex conjugation operator. They satisfy the
commutation relations

½HR;ΓR
5 � ¼ 0; ½HL;ΓL

5 � ¼ 0; ðA4Þ

½HR;ΓL
5 � ¼ 0; ½HL;ΓR

5 � ¼ 0; ðA5Þ

fS;ΓL
5g ¼ 0; fS;ΓR

5 g ¼ 0; ðA6Þ

½HR;CR� ¼ 0; ½HL;CL� ¼ 0: ðA7Þ

We also define

Γ5 ¼ ΓR
5ΓL

5 ; ðA8Þ

which is a symmetry of the total Hamiltonian. The chiral
projectors are given by

PR ¼ 1

2
ð1þ ΓR

5 Þ; PL ¼ 1

2
ð1þ ΓL

5 Þ: ðA9Þ

If N=4 is even, the charge conjugation operator commutes
with the corresponding projection operator, but this is not
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the case when N=4 is odd. Then fΓR
5 ; C

Rg ¼ 0 and if we
have an eigenstate of HR,

HRjni ¼ λjni; with Γ5jni ¼ g5jni; ðA10Þ
then also

HRCRjni ¼ λCRjni; ðA11Þ
but now

ΓR
5C

Rjni ¼ −g5CRjni: ðA12Þ

APPENDIX B: ALTERNATIVE DERIVATION
OF S mod 4 SYMMETRY

The coupled model has an additional spin symmetry

½eiπ2S; HR þHL þ kS� ¼ 0; ðB1Þ

with

e
πi
2
S ¼

YN=2

k¼1

1ffiffiffi
2

p ð1þ ΓkþN=2ΓkÞ: ðB2Þ

To see that a product of the four factors

ð1þ ΓlþN=2ΓlÞð1þ ΓlþN=2ΓlÞ
× ð1þ ΓmþN=2ΓmÞð1þ ΓnþN=2ΓnÞ ðB3Þ

also commutes with terms from the Hamiltonian that
contain these indices k, i.e., terms of the form

ΓkþN=2ΓlþN=2ΓmþN=2ΓnþN2 þ ΓkΓlΓmΓn; ðB4Þ

it is simplest to use the decomposition

ΓkþN=2ΓlþN=2ΓmþN=2ΓnþN=2 þ ΓkΓlΓmΓn

¼ 1

2
ðPklPmn þQklQmnÞ ðB5Þ

with

Pkl ¼ ΓkΓl þ ΓkþN=2ΓlþN=2; ðB6Þ
Qkl ¼ ΓkΓl − ΓkþN=2ΓlþN=2: ðB7Þ

It is clear that each of the factors in Eq. (B3) commutes with
the Pkl. They do not commute separately or even pairwise
with the Qkl term. The commutator can be rewritten as

½FklFmn;QklQmn� ¼ ½Qkl;Fkl�FmnQmn þQklFkl½Qmn;Fmn�
ðB8Þ

with Fkl ¼ −ð1þ ΓkþN=2ΓkÞð1þ ΓlþN=2ΓlÞ=2. We have
that

½Qkl; Fkl� ¼ 2ðΓkΓlþN
2
− ΓlΓkþN

2
Þ;

FklQkl ¼ ΓlΓkþN
2
− ΓkΓlþN

2
;

QklFkl ¼ ΓkΓlþN
2
− ΓlΓkþN

2
; ðB9Þ

so that the commutator vanishes. This proves the S mod 4
symmetry.

APPENDIX C: GROUND STATE OF THE SPIN
OPERATOR FOR N=2 mod 8 = 2

In this appendix we derive that the ground state of the
spin operator N=2 mod 8 ¼ 2 is given by

jS ¼ −N=4i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðN=2Þp X

n;�
jn�iL ⊗ jn∓iR ðC1Þ

for an appropriate choice of the phases of the states jn�iL;R.
Letusconsider thecaseN ¼ 20; 28;… (N=2 mod 8 ¼ 2).

In this case the charge conjugation matrix anticommutes
with the chiral γ matrix

fγc; Cg ðC2Þ

withγc ¼ i−
N
4γ1γ2 � � � γN=2.Bothγc andCK commutewith the

Hamiltonian of a single SYK system (K is the complex
conjugation operator)

½HSYK; γc� ¼ 0; ½HSYK; CK� ¼ 0: ðC3Þ

In a chiral basis with eigenvectors ṽn;� ofHSYK we thus have
thatCKṽn;� is also an eigenvector ofHSYK but with opposite
chirality because of the anticommutation relations (C2).
We now define the left/right states above as

jnþiL ¼ ṽn;þ; jn−iL ¼ Cðṽn;þÞ�;
jnþiR ¼ e−

πi
4 ṽn;þ; jn−iR ¼ e

πi
4Cðṽn;þÞ�: ðC4Þ

With this convention we obtain

hm�jRγijn∓iR ¼ �ihm�jLγijn∓iL;
hn∓jLγijm�iL ¼ ðhn�jLγijm∓iLÞ�; ðC5Þ

where the first equation holds due to the prefactor exp ∓ πi
4

in jn�iR, and the second equation is a consequence of the
relation ṽn;− ¼ Cðṽn;þÞ�. Combining these two equations
we find

hm�jRγijn∓iR ¼ �ihn�jLγijm∓iL: ðC6Þ

To show that the state (C12) is the ground state of the
spin operator we calculate the expectation value
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hS ¼ −N=4jSjS ¼ −N=4i ¼ i

2N=4þ1

XN=2

i¼1

X
m;n;�;�0

hm�jL ⊗ hm∓jRΓiΓN=2þijn�0iL ⊗ jn∓0 iR

¼ i

2N=4þ1

XN=2

i¼1

X
m;n;�;�0

hm�jLγiγcjn�0iLhm∓jRγijn∓0 iR: ðC7Þ

Since γi flips the chirality, only terms with �0 ¼∓ contribute:

hS ¼ −N=4jSjS ¼ −N=4i ¼ i

2N=4þ1

XN=2

i¼1

X
m;n;�

ðhm�jLγiγcjn∓iLÞðhm∓jRγijn�iRÞ

¼ −
1

2N=4þ1

XN=2

i¼1

X
m;n;�

ðhm�jLγijn∓iLÞðhn∓jLγijm�iLÞ; ðC8Þ

where we have used γcjn�i ¼ �jn�i and Eq. (C6). Now again noticing the fact that γi flips chirality, we can safely replaceP
n jn∓iLhn∓jL →

P
nðjnþiLhnþjL þ jn−iLhnþjLÞ ¼ 1 in the last line

hS ¼ −N=4jSjS ¼ −N=4i ¼ −
1

2N=4þ1

XN=2

i¼1

X
m;�

hm�jLγiγijm�iL

¼ −
N
4
; ðC9Þ

which is the lowest eigenvalue of the spin operator.
From Eq. (C4) we can derive

jn−iR ¼ e
πi
4
γcCKjnþiL; ðC10Þ

jnþiR ¼ e
πi
4
γcCKjn−iL; ðC11Þ

which allows us to rewrite the TFD as

jS ¼ −N=4i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðN=2Þp X

n;�
jn�iL ⊗ e

πi
4
γcCKjn∓iL:

ðC12Þ

This is exactly the structure that was used in the general
proof (20).

APPENDIX D: LOWEST SPIN STATE
AND jTFDiβ= 0 FOR N=2 mod 8 = 4

We now construct explicitly the lowest eigenstate of the
spin operator for N=2 mod 8 ¼ 4. In this case, the spec-
trum of HSYK with N=2 fermions is twofold degenerate in
both blocks, while there are no degeneracies between the
upper block and the lower block.
In this case, HSYK, the charge conjugation operator CK

and the chiral matrix γc are a set of commuting operators
that can be diagonalized simultaneously. However, we
have that

ðCKÞ2 ¼ −1; ðD1Þ

so that a state ϕ and a state Cϕ are linearly independent,
which explains the twofold degeneracy of the states (which
is the Kramers degeneracy). Let us introduce an extra index
a ¼ 1, 2 for this degeneracy and denote the eigenvectors of
HSYK as ṽn;�;a. They satisfy the orthogonality relations

ðṽm;�;aÞ†ṽn;�0;b ¼ δmnδ�;�0δab: ðD2Þ

To define the TFD we choose the left/right states jn�;aiL,
jn�;aiR as

jn�;1iL ¼ ṽn;�;1; ðD3Þ

jn�;2iL ¼ Cðṽn;�;1Þ�; ðD4Þ

jn�;1iR ¼ e�πi
4 jn�;1iL ¼ −eπi

4
γcCKjn�;2iL; ðD5Þ

jn�;2iR ¼ −e�πi
4 jn�;2iL ¼ −eπi

4
γcCKjn�;1iL: ðD6Þ

Then we can show

ϕ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LðN=2Þp X

n;�
ðjn�;1iL ⊗ jn�;2iR

þ jn�;2iL ⊗ jn�;1iRÞ ðD7Þ

is the ground state of the spin operator. This follows by
using Eqs. (D5) and (D6) to rewrite ϕ as
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ϕ ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LðN=2Þp X
n;�;a

ðjn�;aiL ⊗ e
πi
4
γcCKjn�;aiL: ðD8Þ

This is exactly the structure of the state (20), so that the
proof applies that it is the ground state of the spin operator.

APPENDIX E: GROUND STATE OF SPIN
OPERATOR FOR N=2 mod 8 = 0

In this case, ðKCÞ2 ¼ 1 and it is always possible to
choose a basis for which

CKjniR:L ¼ jniR;L: ðE1Þ

The phases of the right states will be chosen as

jn�iR ¼ e
πi
4
γc jn�iL: ðE2Þ

Then the TFD is given by

jϕi ¼
X
n;�

jn�iLeπi
4
γc jn�iL: ðE3Þ

The expectation values of the spin operator are given by

hϕjSjϕi ¼ i
2
2−N=4

XN=2

k¼1

X
mn��0

hn�jLγkγcjm�0iLhn�jRγkjm�0iR

¼ i
2
2−N=4

XN=2

k¼1

X
mn�

hn�jLγkγcjm∓iL

× hn�jLe−πi
4
γcγke

πi
4
γc jm∓iL

¼ i
2
2−N=4

XN=2

k¼1

X
mn�

e∓πi
2 ð∓Þhn�jLγkjm∓iL

× hn�jLγkjm∓iL

¼−
1

2
2−N=4

XN=2

k¼1

X
mn�

hn�jLγkjm∓iLhm∓jLγkjn�iL

¼−
N
4
: ðE4Þ

For the last equality we have used that the γ matrices for
N=2 mod 8 ¼ 0 can be chosen real symmetric.
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