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ABSTRACT 

.-- We compute the scalar glueball mass m(O++) in units of the square-root of 

the string tension fi, for SU(N) gauge theories on the lattice, with N = 2,3,5,6. 

We identify a general-scaling window in which the glueball mass is approximately 

independent of the lattice spacing, yielding an estimate of m(O++) in the contin- 

uum. The estimate is corroborate’d by the excellent agreement between Hamilto- 

nian and Lagrangian results for N = 2,3. The continuum values of m(O++) thus _ . .=- 
- .- obtained for various values of N are remarkably close to each.other, indicating a 

_- rapid convergence of the l/N expansion. 
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I 

-. .= The 1/N expansion”-31 provides an appe&ng conceptual framework for 

understanding many qualitative features of hadronic physics as consequences of 

&CD. The most notable of these are 131 . . 

(a) the suppression of quark loop effects in hadronic physics and the absence of 

exotic mesons; (b) Zweig’s rule; (c) the approximate validity of Regge description 

of hadronic S-matrix as sum over tree diagrams involving exchange of physical 

hadrons only; (d) th e relative importance of resonant two-body final states in 

multiparticle decays of unstable mesons. In addition, the large-N picture of QCD 

provides a basis for understanding the phenomenological success of Skyrmion 

physics in describing the static and dynamic properties of baryons[41 . 

- 

U.-e . 

- 

__ 

The qualitative arguments in favor of the large-N approximation are therefore 

very compelling. On the other hand, the question whether the l/N expansion 

can become a practical calculational tool remains open. The two main reasons for 

this are: first, although SU(N) gauge theory is greatly simplified in the large-N 

limit, it is still very difficult to solve for physical observables in 3 + 1 dimensions. * 

Second, even if the solution of the large-N theory were known, one would still 

need to determine whether for physical observables the l/N-expansion converges 

fast enough to make large-N a quantitatively reliable approximation to the real 

world, with N = 3. The most straightforward way of answering this question 

would be to compute the coefficients of some l/N terms in the large-N expansion. 

_ ._-. This has proven to be exceedingly difficult, since such corrections involve all the 
- ._ i---- L. 

complexity of summing non-planar diagrams. 
_- 

In this work we estimate the importance of l/N corrections by a different 

* For one promising approach see however Ref. 5 and references therein. 
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i ,K- approach:- we numerically evaluate the scalar glueball mass as a function of N, 
. 

thus providing the first direct evidence that these corrections are small. Our 

strategy is as follows. G iven some physical observable (0), for a family of 

SU(N) theories, N = 2,3,. . . we first require that (O), converges to a definite 

value: 

(Oh Ny+m (OLJ - (1) 

In the leading order in l/N expansion the various observables typically scale like 

some power of N; for example, pion-nucleon cross-section - No, fir - N 4, gn - 

N1, etc.“’ Eq. (1) is trivially satisfied if (0)N - No. If (0)N - Na, with Q  # 0, 

- 

then one can always form a ratio in which the leading dependence on N cancels 

-out. As an example, consider fir and gA. These quantities have been calculated16’ 

- 

-.-.- . 
- 

in the Skyrme model, which can be thought of as a rough approximation to 

the effective low-energy Lagrangian of large-N QCD’“’ . While both fir and g, 

differ substantially from experiment (by 30% and SO%, respectively), their ratio 

-__ 
is independent of N: to the leading order, ft/gA 

experiment to 3%. [‘I 

In order for (0), to serve as a fairly accurate 

require the convergence to be fast: 

for N >> 3. (2) t, 

- No, and agrees with the 

estimate of (0),, we further 

In practice, for SU(N) in four dimensions, there is no rigorous way of testing the 

validity of (2)) since we have no way of calculating (0), analytically, nor do we 

know how to compute the l/N corrections explicitly. We can, however, calculate 

3 



i ,c- (0) N -approximately for several values of N. If .(2) is valid for the approximants 
. 

to (Oh and (0),, then we have at least a good indication that it m ight be true 

for the exact solution of the theory as well. 

The validity of (2) h as b een previously studied analytically, in the context of 

two-dimensional field theories,“’ and numerically for the plaquette determinant 

det U(p) in four-dimensional lattice gauge theory.[” As far as we know, in the 

existing literature there is no direct test of (2) for continuum observables with 

direct physical significance in 3 + 1 dimensions. In the following we provide such 

a test by demonstrating that (2) is indeed valid for the approximate mass of the 

scalar glueball in pure-gauge SU(N) theories. 

- 

The standard method for calculating glueball masses in QCD is lattice gauge 

- 

_._.- . 
- 

theory, which can be defined either in the Lagrangian form on a Euclidean space- 

time lattice,[lol or in the Hamiltonian form with continuous time and a three- 

dimensional spatial lattice. Our work will mainly concentrate on the latter and 

is based on the Kogut-Susskind SU(N) Hamiltonian:[“’ 

(3) 

where EP is the chromoelectric field on the link 1 and Up is the gauge invariant, 

oriented product of the link field variables Ul taken around a plaquette p. ; 
_ _ ._-. 

--- The masses calculated from 4.3) are functions of the dimensionless coupling 

constant g2, expressed in physical units by means of the inverse lattice constant 

-_ l/a. In order for any dimensional observable rni to have a fixed value in the 

continuum lim it, g2 must vary with a in a well defined manner governed by the 
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i ” 

/?-function. When the continuum is approach& by letting a + 0, asymptotic 
. 

freedom requires that g2 + 0 as well. Consequently, the p-function in the weak 

coupling limit is determined by the continuum perturbation theory. Up to two 

loops, it gives the scaling of the lattice scale parameter AL as[121 : 

- 

*Lx i[$(]51’121exp [-!.!$(I. (‘4 

where E z 1/Ng2 and AL can be perturbatively related to the usual QCD scale 

parameter A.[131 If (4) h Id f o s or a certain range of [, usually referred to as 

the (asymptotic) scaling window, the lattice theory is said to exhibit asymptotic 

scaling. All masses, and all observables with dimensions of mass mi, must scale 

in the same fashion and be proportional to AL with coefficients G& which are 

independent of e in the weak coupling limit: 

- 

..-.- . 
- 

mi(l) = &AL(~). (5) 

As an obvious consequence of (5), d imensionless ratios of physical observables 

evaluated inside the scaling window do not depend on g2, nor on the lattice 

spacing and reproduce the mass ratios in the continuum: 

_ 
._T.  

--*-p- 

miw 6 _ R,, . -=-- 
mj(c) i?$ - ‘3’ (6) : 

It is important to point out that a lattice theory can exhibit a more general 
-_ 

scaling in a wider scaling window, for which (5) remains valid but for which AL 

is not given by (4). In that regime, scaling is governed by a non-perturbative p 
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function, which differs substantially from the continuum one* but mass ratios 

(6) are still independent of I, and reproduce continuum physics. [17,181 

Whether or not (5) is true in the intermediate coupling regime is an empirical 

question for a given lattice calculation. One should plot the appropriate ratios Rij 

as functions of the lattice spacing (or lattice coupling constant) and see whether 

they are approximately constant over a range of values of a or g2. A generic case 

exhibiting such a “scaling window” is schematically depicted in Figure 1: the 

ratio R starts from the strong coupling regime (no scaling), exhibits a scaling 

window and eventually diverges. The absence of scaling in the extreme weak 

coupling limit is usually due to the breakdown of various approximation methods, 

resulting from dominance of finite size effects. 

We have tested the convergence of l/N expansion by computing the ratio 

RN([) = m(O++)/+ of th e scalar glueball mass m(O++) to the square-root of 

the string tension @, for SU(N) th eories on the lattice with N = 2,3,5,6. It is 

interesting to note that m2(O++)/ Q is not just an arbitrary ratio of two masses: 

it is the intercept of the Regge trajectory corresponding to the O++ state. For 

N > 3 there are no results from Lagrangian Monte Carlo calculations because of 

the prohibitively large amount of computer time required. Instead, we base our 

work on some recent Hamiltonian calculations. For N 2 3, we use the variational 

estimates of m(O++) obtained in Ref. 19. The variational method employed 

there gives an excellent estimate of the exact ground state energy for SU(3) and 

reproduces the critical value of e at which a phase transition in the N + 00 limit 

* For a clear discussion of this point see Refs. 14 and 15. For some recent results on the 
non-perturbative p function see Ref. 16. 
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,c- takes place. The corresponding expressions for 0 up to 0 ( r8) are taken from the 
. 

strong coupling expansion of Ref. 20. Where higher order terms are available, 

they have little effect on RN(~) in the region of interest. For N = 2 the ratio 

m(O++)/,/Z has been computed directly, using the t-expansion. [“I For N = 3 a 

recently obtained t-expansion result for this ratio1211 is in good agreement with 

the variational calculation, thus providing a valuable consistency test for the 

various approximation methods. 

The curves showing RN(~) are shown in Fig. 2. They all exhibit the behavior 

schematically depicted in Fig. 1; thus provide a good indication of the onset of 

a “scaling window” as required by eq. (5) and (6). Further evidence that the 

results shown in Fig. 2 do indeed represent continuum physics is supplied by 

- 

_..._ . 
- 

Euclidean Monte Carlo results for SU(2) and SU(3), for which extensive numer- 

ical simulations have been performed (see Refs. 22-26 for the most recent Monte 

Carlo results). If one assumes JZ w 0.4 GeV then all these different calculations 

predict m(O++) = 1.2 GeV, provided that the effect of the fermion loops is small. 

_ ._T. 

Since R is a ratio of two physical masses, for a given N its value should be 

the same, independent of the details of lattice regularization. Indeed, Euclidean 

Monte Carlo results for R2 and R 3, as bracketed by the two horizontal lines 

in Fig. 2, are in excellent agreement with the Hamiltonian calculation, both 

variational and t-expansion.* We find it especially gratifying that very different 

- w approximation methods do indeed yield the same continuum.physics. 

* The Monte Carlo estimates of R were obtained as functions of the Euclidean coupling 
constant g$ and therefore cannot be compared to the Hamiltonian results on a coupling by 
coupling basis. On the other hand, the continuum values of R are the same in both cases. 
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i ,c- The most interesting physical result in Fig..: 2 is that the continuum values 
. 

of RN are remarkably close to one another+ for all N and that the large-N lim it 

is effectively reached for N 2 5. To our knowledge, this provides the first direct 

evidence, in the sense of eq. (2), for the rapid convergence of l/N expansion 

for physical observables in SU(N) . A caveat is however also necessary at that 

this point: Figure 2 shows a ratio of two physical quantities. It is possible (as 

would be suggested from two dimensions by Ref. 8) that the l/N corrections to 

the glueball mass and string tension taken separately are not very small. Their 

values may be very close however, so that in the ratio the l/N terms cancel 

out. It would very interesting to find out whether this is indeed the case in four 

dimensions and why such l/N corrections m ight be close. 

- There are a large number of observables which are independent of N in the 

large-N lim it. 131 If the fast convergence of the large-N expansion is true not 

only for glueball masses, but for the latter physical observables as well, then 

an approximate solution of the large-N theory m ight reasonably be expected to 

yield a good quantitative estimate of N = 3 physics. 
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Fig. 1. A generic case illustrating the different regimes in a typical calculation 
of mass ratios on the lattice. 
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Fig. 2. ‘l’l~c ratio 712(Ot+)/J, for SU(N) lattice gauge theories, N=2’17’ and 
3 5 6 “D~2”‘2” , > * SU(3) t-expansion curve is an average of several Pad4 approximants 
in ref. 21. The two thin horizontal lines bracket recent Euclidean Monte-Carlo 
results for SU(2) and SU(3)‘22-*G’ . 


