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11nauoa E.A., Copi!H A.C. E2 · 11610 
CynepPpynna OS p(1,4) H Knaccu'leCKHe peweiiJHI MOnenu Decca-
3yMHHO 

l13y'leHbl TpAHC<j>OpM8UHOHIIbie CBOiicTBa KnacCH'IeCKHX peWeiiHll 6e3M8C­
COBOli MOnenu Becca-3yMHHO OTHOCHTenbHO cynepKOH<j>OpMHOll I'pynnbi, noKa­

aauo, 'ITO 3TH caorlcTna onpenenmoTCSI llBYMSI nonl'pynnaMH OS p(1,4) 
cynepKOH<j>OpMIIOli l'pynnbi, nepeCeK810WHMHCSI no IIOili'pynne 0(2,3), 0TMe­

'18eTCSI B03MOlKII8SI CBSI3b nony'leHIIbiX peaynbT8TOB C B03HHKHOBeHHeM 
OS p(1,4) -CTpyKTypbl B CUOHTBIIHO napyweHHOli cynepi'p8BHT8UI!H. 

Pa60T8 BbliiOnHeHa B na6opaTOpHH TeopeTH'IeCKOli <j>H3HKH 0115111. 

npenpHHT 06'beAHHeHHOI'O HHCTHTyTa SlllepHbiX HCcneaOB8HHA. fiy6Ha 1978 

Ivanov E.A., Sorin A.S. 

Supergroup OSpUA) and Classical 
Solutions of the Wess-Zumino Model 

E2 - 11610 

We study the superconformal transformation proper­
ties of recently constructed 0(2,3) -invariant classical 
solutions of the massless Wess-Zumino model. These pro­
perties are shown to be completely determined by two 
graded subgroups 0Sp(1,4) of the superconformal group 
with 0~,3) as the common even subgroup. One of these 
0Sp(1,4) 's is the maximal stability group of the solu­
tions. The other is spontaneously broken down to 0~.3). 
Its odd transformations generate the correct. Grassmann 
parameter dependence of solutions. Our results admit 
the straightforward. extension to theories with the 
Euclidean supersymmetry. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 
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1. In recent papers11 - 31 , super symmetry was succes­
sfully used for construction of non-trivial classical solu­
tions to theories where both the fermionic and bosonic 
sectors are present. For the 4-dimensional case, the 
simplest possibility along this line was considered by 
Baaklinfll who constructed a family of t))e 0(2,3)-inva­
riant solutions to the massless Wess-Zumino model14 ~ 
This family is degenerated with respect to supertransla­
tions and, as a consequence, exhibits an explicit depen­
dence on the Grassmann parameters (along with the stan­
dard dependence on bosonic parameters of translations 
and dilatations). Its fermionic component is treated as 
a classical solution for the fermion field in the back­
ground field of the bosonic solution. 

Bearing in mind that the whole group of invariance 
of the massless Wess-Zumino model is the superconfor­
mal group/5,6/ it is natural to ask how many independent 
parameters are needed in order to specify completely 
the solutions of the type treated in ref! 1/. The answer can 
be obtained by examining the transformation properties 
of the solutions under the superconformal group. The full 
number of parameters coincides with the number of those 
generators of the superconformal group which are not 
in the maximal stationary subgroup of solutions (the sta­
bility subgroup). Such an analysis is carried out in the 
present paper. 

We show that superconformal properties of the 0(2,3)­
invariant solutions to the Wess-Zumino model are comple­
tely characterized by two graded orthosimplectic sub­
groups 0Sp(1,4) of the superconformal group. They con­
tain 0(2,3) as the common even subgroup and have as 
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a closure the superconformal group itself. One of these 
0Sp(1,4)' s is just the stability subgroup of solutions in 
question. The other is spontaneously broken by them 
down to 0(2,3). Its odd transformations generate the cor­
rect Grassmann parameter dependence of solutions. The 
full number of Grassmann parameters is equal to four 
just as in ref/ 11 , but dependence on them is essentially 
different. Bosonic degeneracies are connected with trans­
lations, dilatations, and chiral (y5-) transformations. Our 
analysis can be readily extended to the more interesting 
(and more complicated) case of the massless theories 
with the Euclidean supersymmetry where the instanton­
type solutions exist 121 . We discuss also a possible 
relation of the OSp(l ,4)-structure of the massless Wess­
Zumino model to the analogous structure emerging in the 
spontaneously broken supergravity /7,8/. 

2. The Wess-Zumino model/4
/ is the simplest supersym­

metric theory.It describes two interacting Hermitean con­
jugate chiral superfields <I>+ (x.e+ )-A+(x)+O +'I' +(x)+l.e+o +F +(x) 

--- -- 2---
which are equivalent to the set of four Hermitean boson 
fields A , B , F , G and Majorana spinor 'I';* 

A - -
1
- (A + i B) F '"' - 1- (F + iG ) 'I' - !_ (1 + i y ) 'I' ± v2 - . ± ...; 2 - . ± 2 - 5 . 

The massless version of the model is completely deter­
mined by the action: 

--------------------
*We are using the Majorana formalism: (} ~ 1....(1± iy )0. 

± 2 5 
Conventions on metric and y -matrices are the same 
as in ref./91: 

TJ "' (1 , -1, -1 . -1) . I y , y ! -2 TJ 
!1V 1:1 V /lV 

2 
• y5 - -1 . 

a __ 2i-[y ,y l. 
!1V 1:1 V 

4 

~-. 

1 2 . 
S- fd 4x [.:..la11 A a A+all Ba" B+iWylla 'I')- 11.:(A 

2 
+B

2
)
2 

-
2' 11 r 1:1 2 

-g'I'(A- By
5 

)'I'] (1) 

supplemented with the equations for the auxiliary fields 
F,G: 

2 2 
F--g(A -B) 

G.2gAB. 
(2) 

The action (1) in combination with eqs. (2) is invariant 
under the superconformal graded group. It contains as 
a subgroup the ordinary conformal group with generators 
Lp.v , PP ,K 11 , D and, besides, involves the transforma-
tions15 I: · 

oA±.jj'l'± ±iAA± 

o'l' • .!....}2.r.L[(-iylla A +F+ )(3-
2
i A+ylla (3]+ 

2
i A'l'+ 

± 2 11±- -11. -

o F + -- i i3 yll a 'I' + 2 iA F , 
11 ± ± 

where 

(3 - a 1 - i xll y a 2 , 
11 

(3) 

(4) 

and a 1 , a 2 are constant Grassman spinor parameters 
associated, respectively, with the supertranslation gene­
rator Sa and the generator Ta of special superconformal 
transformations. Bosonic parameter A is connected with 
the chiral transformation generator TI 5. In what follows, 
we will need the following (anti) commutation relations 
from the superconformal algebra'61 *: 

---*-()~-;_-~;~;;;;~;;-;, K differ from those of ref/ 101 
by factor -1. The generafor n5 is related to the gene­
rator n used in ref/61 as n 5--2 II. 
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IS .s I -yll P
11 

• IT,TI--fK
11 (a) 

1 s . T 1 - i c D - y n ) + _!._ Jl~-' L (b) 
5 5 2 JlV 

[S, ( P11 )]--( 0 ). [T, ( Pll)]. ( y11 S J (c) 
K" yT K 0 ,.. J1 J1 

(5) 

[ n ( S ) ] 3 . -S ) [ S ] i S 
5 ' T • 2 1y5 ( T ' D' ( T ) • 2- ( -T ). (d) 

The massless Wess-Zumino model is the supersym­
metric generalization of the massless ¢ 4 -theory *. There­
fore any classical solution of the latter* is simultane­
ously a particular solution to the equations of motion cor­
responding to the action (1) (the reverse is not true of 
course). We are interested here in the solutions It!. 

A
0
(x)- _llla(x)"'.!!!. __ 2 __ , G

0
-B

0
-'1'

0
-0 

g g 1 +m 2 x 2 

(6) 
m2 

F (x) -- -a 2 (x) 
0 g 

[m]-L-t, m~O 

which generalize solutions found by Fubini 1101 in the 
¢ 4 -theory. They are invariant under the anti de Sitter 
subgroup 0(2,3) of the conformal group, with the gene­
rators L JlV , R11 - ~(PI-\ -IifK ).At the same time, transla­
tions, dilatations, and chilal transformations take the 
system (6) into the six parameter continuous family: 

(A,p,h) ..l. +t.\ 
A+ - -= ..m. e - p a ( p x + h ) - y2 g 

(7) 
(A,p,h) ___ 1_~e"'f-2iA p2a2(pX+h) 

F± {2 g 

--------------------
* For the standard sign of the coupling constant, i.e., 

for ~int•-A¢4, A>O. 
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... 

(solutions (6) correspond to a particular choice of para­
meters p-1 , h11 -o, A.-0 (2rrn) therein). Note that the 
scale degree of freedom (associated with p ) merely 
reflects an arbitrariness in parameter m. The chiral 
transformation with A- rr is equivalent to the change 
m-+-m in formulas (6). 

The main observation by Baaklini /t/ is that solu­
tions (6) (or, equally (7)) are not invariant with respect 
to supertranslations and therefore, acting on (6) by a fi­
nite supertransformation with parameter at . one may 
obtain non-zero solutions for the spinor 'I' (x) which 
describe a motion of the fermion in the bosonic solution 
field. The arising set is represented by the superfield 

a iatS 
<IJ ± t (X , 0 ± ) ~ e <IJ ~ (X , 0 ± ) • <IJ ~ (X + i a tY 8 ± ::j:" 

1 
+-atyy5 at .e ++at+). (8) 4 - -

where <I>~ (x, () ± ) is the superfield having (6) as compo-
nents. 

We would like to emphasize that the Grassmann para­
meter dependence given by the formula (8) is not most 
general. Indeed, one readily verifies that the system (6) 
is not invariant also under the special superconformal 
transformations (with parameter a2 ). Hence, performing 
in (6) such a transformation it is possible to set up one 
more non-trivial family of solutions including, like (8), 
the fermionic components as well as bosonic ones. Thus 
we are facing with the problem of how to extract the 
complete set of independent solutions to the massless 
Wess-Zumino model. This problem obviously reduces to 
determining what is the full stability subgroup of the sys­
tem (6). As the maximal even subgroup leaving (6) inva­
riant is known and it is just 0(2,3), it remains only to 
examine which combinations of odd generators Sa , Ta 
annihilate the system (6) (if exist). 

We show that such combinations may be really 
found. Let us pass, in relations (3), (4), to the new set 
of Grassmann parameters {3 1 • {311: 

7 



f3• 1 
(1+imxlly ){3 +-1-(1-imxlly ){3 

y2 IL I -J2 /l II 
(9) 

or, equivalently, to the new spinorial basis in the super­
conformal algebra: 

1 1 
Q • -=(8-mT), Q

11
• -(S+mT) 

I y2 j2 
(10) 

(al S + a2T • iJIQI + i3IIQII) · 

It is not hard to see that solutions (6) are invariant with 
respect to supertransformations with parameter f3I . 
At the same time supertransformations depending on {3 11 
displace (6) (of3 11 'Po 1- 0). Thus the generator Q I should 
be included into the stability subgroup whereas Q11 ser­
ves to introduce Grassmann degrees of freedom. Clearly 
the full number of independent Grassmann parameters is 
equal to four. 

To clarify the meaning of these results we prove the 
following Theorem. 

Each of generators Q I ,Q11 enlarges the algebra of 
the group 0(2,3) to that of the supergroup OSP(1,4). The 
closure of thus obtained supergroups OSP(1,4) is the super­
conformal group itself. 

Using the anticommutation relations (5a,b) and com­
mutation ones (5c) we find: 

- /l 1 JW IQ
11

,Q
11 

1-y R
11

+ 2 ma L
11

v 

1 
[QII ,R /l ]. -2m QII 

(11) 

Relations (11) coincide with those of the 0Sp(1,4)-Jsuper­
algebra given, for instance, in ref/111 (when comparing 
with1111 it should be remembered that we use different 
representation for y -matrices). As m-.0, the algebra 
(11) goes into the standard supersymmetry algebra (this 
can be observed of course directly from the definition 
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1. 

' 

! 

(10)). The algebra of generators Q I , R IL , L /LV is also 
closed and isomorphic to (11). Indeed, we may cast it 
into the form (11) by passing to the generator Q '-y5 Q 1 . 

All the remaining generators of the superconforlnal group 
are contained in the cross anticommutator: 

- 1 2 
IQ11 ,QI I - 2 yll(PIL +mKIL)-im(D-y

5
TI

5
) 

that completes the proof of the Theorem. 
Thus we arrive at the conclusion that the crucial role 

in specifying superconformal properties of the 0(2,3)­
invariant classical solutions to the model under conside­
ration is played by two subgroups OSp (1,4) of the super­
conformal group. One of them , odp (1,4) with generators 
Q 

1 
, R It , L 11v is the stability subgroup of solutions. The 

other, osp1
( 1,4) generated by Q II, R IL , L f:LV is broken on 

these solutions down to 0(2,3) c (R 11 • L 11v ). Its finite odd 
transformations project the system (6 ) onto the quotient 
(super) space 0Spn(1,4)/0(2,3) and fix thereby the Grass­
mann parameter structure of solutions: 

f3 '{3 Q 
<I>±II(x,()±).,e

1 
II !I<I>~(x,()±). (12) 

Acting on the superfield (12) by group elements with gene­
rators D , PIL , II 5 one may include bosonic degrees of 
freedom and so construct the complete set of solutions. 

Write down the components of the superfield <I> f3qx ,() +) 
explicitly: .±: -

f3u m - 1 ± i Y5 m2 2 - 2 
A (x). -=-a(x)[l-ma(x)f3---f3+-a (x)(/3{3)] 

± y2 g 2 72 

'1'{3 11( x) = - v2 m a2 (x) [ 1 - J!! a (x) p f3 ] 1 ± ~ f3 
± g 3 2 

f3II 2 - 1 + . 
F (x) - - m a 2 (x)[1- 2m a (x) f3 __ IJ:.A. f3 + 

± y2 g 2 

m2 2 + 36 a (x)(iJ {3)2] . (13) 
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Here now f3 = 
1 

f 1- im x
11 

Y 11
1 f3 n and the function a (x) is 

defined by eqsY2(6). The dependence of the solutions (13) 
on the fermionic degrees of freedom essentially differs 
from that found in ref/11 and does not reduce to it by 
any change of parameter f3u .Note, however, that, acting 
on (12) successively by chiral and scale transformations 
with nilpotent parameters in a certain manner composed 
from the spinor f3II • we may arrive at the superfield 
(8) (in which a 1 is replaced by f3n ). To be convinced 
of this one may proceed as follows: to repre~ent generator 

- i{3 Q 
~ as Q 11 -v2 s -Q I then split the exponent e II II 
in eq. (1~) by the Baker- Haussdorf formula with making 
use of relations (5) and finally take into account the con­
dition Q I CIJ~ (x, e +)- O.f3r.The analogous connection can be 
established l>etwe-en ct + I ( x, () + ) and the set of solutions 
generated from ciJIQ_ (x , 0 + ) by finite special superconfor­
mal transformations (the relevant substitution is 
QII -.J2 mT+QI ). These arguments indicate that it is 
possible, in principle, to choose as the basis set the fa­
mily (8) as well. However, from the group theory point 
of view it is most natural to do in terms of the set (12) 
because just this set corresponds to the choice of the 
basis in the superconformal algebra which is orthonormal, 
in the sense of the Cartan inner product, with respect to 
the algebra of the stability subgroup osl> (1,4). · 

It is worth noting that the structure of the subgroup 
0Sp(1,4) leaving solutions invariant and, respectively, 
the structure of the other subgroup 0Sp(1,4) generating 
their Grassmann parameter dependence are fixed up to 
rotations in the group space of the superconformal group. 
In other words, the stability subgroup of solutions rotated 
from (6) by some finite sullfrconformal transformation is 
rotated with respect to O$pi(1,4) by the same "angle": 

---------------------* The analogous situation takes place in standard theo­
ries of spontaneously broken internal symmetries where 
to the continuous orbit of vacua continuum of stability 
subgroups corresponds. 

10 

To illustrate this point we consider a solution shifted 
from (6) by the chiral transformation with parameter A: 

A ill5 ,\ 
<I> (x.e+)-e <f>D(x.e) 

± - ± ± 

A,\ ( x) "' ..!_ e ± i ,\ A (x) 
± ~ 0 

F ,\ ( ) ,.,_1_ t-2iA F ( ) +x _e 
0

x, - y2 
A 

'I' ± "'0. 

Its stability subgroup is OSp(A) (1,4)C(Qt, R
11

, L 
11

,_, ),where 
,\ ill,\ -illA 

QI.e 5 Q e 5 -cos(...a.,\)Q +Bin(a_,\)y Q 
I 2 I 2 5II 

(14) 

(chiral transformations do not affect the subgroup 0(2,3) 
because ll5 commutes with all bosonic generators).Like­
wise: 

,\ i ll5,\ 
QII -e 

-ill 5,\ 

Q11 e -cos(~A)Q 11 +sin(~A)y5 QI. (15) 

Fixing parameter ,\ specifies the stability subgroup 
of the solution characterized by given A. For instance the 
stability subgroup of the solution corresponding to ,\ arr 

(it is given by formulas (6) up to the change m-+ -m ) is 
0Sp11 (1 ,4) while osb (1,4) turns out now to be broken. 
An interesting feature of the model under consideration 
having no analogue in the massless ¢ 4 -theory is that 
the same OS p (1,4) serves to be the stability subgroup 
simultaneously for several solutions. More specifically, 
ogp(1,4) leaves invariant not only solutions given by 
formulas (6) (A- 0) but also those with A-~n (n-1,2). 
Thus, even after the stability subgroup of a g1ven solution 
is fixed, there remains some discrete degene:racy associa­
ted with chiral invariance. In the quantum case, we may 
in principle expect a tunneling between sectors characte-
rozed by values of n-0.1 ,2 (if the interpretation of 
classical solutions as anomalous vacuum averages of 
corresponding fields 11°1 is acceptable). This could result 
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in breaking P- and CP-symmetries due to non-zero ground 
values of pseudoscalar fields B and G in sectors with 
n-1,2. This point requires of course more detailed treat­
ment. Note that the uncertainty we have mentioned here 
is specific only for chiral rotations. Solutions generated 
from c:I> f<x , 0 ± ) by other transformations of the super-

conformal group are in the one-to-one correspondence 
with their stability subgroups. 

3. We have shown that the structure of the massless 
Wess-Zumino model after allowing for its 0(2,3)-invariant 
classical solutions is described most adequately in terms 
of two supergroups 0Sp(1 ,4), one of which being sponta­
neously broken. On the other hand, Oeser and Zumino 
have pointed out recently 17 ,11/ the particular role of 
the spontaneously broken 0Sp(1 ,4)-supersymmetry in 
supergravity as providing most suitable framework to 
describe the spontaneous breakdown of the local super­
symmetry .It is tempting to assume that this analogy is not 
accidental and 0Sp(1,4)-structures in both theories have 
a common origin. In other words, local supersymmetry 
may happen to be broken mainly due to 0(2,3)-invariant 
classical solutions to the supergravity-:rnatter equations. 
For instance, the system where the supergravity fields 
couple to massless scalar supermultiplet certainly admits 
solutions of the type (6). As a preliminary step along 
this line, it would be interesting to analyse in more detail 
the structure of the spontaneous breakdown of the 0Sp(1,4)­
supersymmetry in the Wess-Zumino model and, particu­
larly, to compare it with the non-linear realization of 
0Sp(1,4) considered recently by Zumino111 ~ Such a study 
is carried out in our forthcoming paper. There we re­
write the action (1) in terms of anti de Sitter space, i.e., 
pass to manifestly 0(2,3)-invariant notation. In the 0(2,3)­
formalism, solutions (6) reduce to constants minimizing 
the related "potential" just as it occurs in the massless 
¢ 4 -theory 110<Thereby the massless Wess-Zumino model 
gets interpretation as the simplest linear a -model of 
spontaneously broken 0Sp(1,4)-supersymmetry (and 
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simultaneously of the superconformal one). The role of 
the Goldstone fermion accompanying this breakdown turns 
out to be played by the spinor 'I' (x ). After extracting 
ground values from boson fields, 'l'(x) acquires a "mass" 
equal to the inverse radius of anti de Sitter space m 
which is in agreement with the general result by Zumino1 ~ 11 

Throughout this paper we were concerned with solu­
tions in Minkowski space. To conclude, we make some 
comments on how it is possible to continue our study 
to Euclidean space. A direct "euclidezation" of solutions 
of the type (8), (13) is not possible as after transition 
to Euclidean space the action (1) loses its supersymmetry 
and, consequently, any super symmetric degeneracy of 
relevant solutions disappears. The matter here is that 
Euclidean space possesses no Majorana spinors and 
therefore there exists no direct Euclidean analogue of 
the Minkowski super symmetry /2/. The simplest super­
group in Euclidean space includes Dirac bispinor comp­
lex generators 121 and as a result leads to larger super­
multiplets in comparison with the conventional case. In 
particular, the model which is the super symmetric exten­
sion of the Euclidean massless c/J4 -theory involves a grea­
ter number of independent fields than the Wess-Zumino 
model. Clearly, to extract a whole set of its classical 
solutions, a special analysis is needed. It will reduce, of 
course, as in the case we have considered, to studying the 
behaviour of some particular solution under relevant 
superconformal group. Euclidean analogues of solutions 
(6) respect the group 0(5), therefore it is plausible that 
their full invariance group is the Euclidean analogue of 

the supergroup 0Sp(1,4), i.e., the minimal enlargement 
of 0(5) by Dirac generators. The Grassmann parameter 
dependence of solutions will be then given by action of 
the remaining spinor generator of the Euclidean super­
conformal group (these parameters comprise complex 
bispinor, i.e., their number amounts eight). 

We are grateful to Professor V .I.Ogievetsky for 
interest in the work and useful critical remarks. 
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