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Cyneprpynmna 0Sp(1,4) u knaccuueckue peweuns momenn DBecca-
3ymuno

Haydens! TpaHCpopmaunoHHBIe CBOHCTBA KIACCHYECKHX pelweHult Geamac-
copoi Monenu Becca-3yMHHO OTHOCHTeNbHO CynepkoH¢opMHON rpynmbui, [Toxa-
3aHO, 4TO 3TH CBOlICTBa onpeaenslTcs AByms noarpynmamu 0Sp(1.,4)
CynepkoH¢OpMHOH TI'pyMmnbl, Nepecekawuumucs no noarpynne 0(2,3). Orme-
YaeTcs BO3MOXHAS CBA3b MOJYyYeHHBIX Pe3yNbLTATOB C BO3HUKHOBE HHEM
0Sp(1,4) -cTpyKTypel B CHOHTAHHO HAPYWEHHOR CyNeprpaBHTAallid.

Paﬁora BoitollHeHa B JlaGopaTopu# TeOpeTHYeCKOR (H3MKH Olr‘iﬂlr‘l.

Npenprur O6GbeanHeHHOro HHCTHTYTa saepHbIX HcclemoBaunfi. [ly6ua 1978

Ivanov E.A., Sorin A.S. E2 - 11610

Supergroup 0Sp(14) and Classical
Solutions of the Wess-Zumino Model

We study the superconformal transformation proper-
ties of recently constructed 0(2,3) -invariant classical
solutions of the massless Wess-Zumino model., These pro-
perties are shown to be completely determined by two
graded subgroups 0Sp(1,4) of the superconformal group
with 0@2,3) as the common even subgroup. One of these
0Sp(1,4)’s is the maximal stability group of the solu-
tions, The other is spontaneously broken down to 0(2.,3).
Its odd transformations generate the correct. Grassmann
parameter dependence of solutions. Our results admit
the straightforward. extension to theories with the
Euclidean supersymmetry.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.
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1. In recent papers’!=3/, supersymmetry was succes-

sfully used for construction of non-trivial classical solu-
tions to theories where both the fermionic and bosonic
sectors are present. For the 4-dimensional case, the
simplest possibility along this line was considered by
Baaklini'1/ who constructed a family of the 0(2,3)-inva-
riant solutions to the massless Wess-Zumino model’4/
This family is degenerated with respect to supertransla-
tions and, as a consequence, exhibits an explicit depen-
dence on the Grassmann parameters (along with the stan-
dard dependence on bosonic parameters of translations
and dilatations). Its fermionic component is treated as

a classical solution for the fermion field in the back-
ground field of the bosonic solution.

Bearing in mind that the whole group of invariance
of the massless Wess-Zumino model is the superconfor-
mal group’5.6/ it is natural to ask how many independent
parameters are needed in order to specify completely
the solutions of the type treated in ref/!/ The answer can
be obtained by examining the transformation properties
of the solutions under the superconformal group. The full
number of parameters coincides with the number of those
generators of the superconformal group which are not
in the maximal stationary subgroup of solutions (the sta-
bility subgroup). Such an analysis is carried out in the
present paper.

We show that superconformal properties of the 0(2,3)-
invariant solutions to the Wess-Zumino model are comple-
tely characterized by two graded orthosimplectic sub-
groups 0Sp(1,4) of the superconformal group. They con-
tain 0(2,3) as the common even subgroup and have as



a closure the superconformal group itself. One of these
0Sp(1,4)’ s is just the stability subgroup of solutions in
question. The other is spontaneously broken by them
down to 0(2,3). Its odd transformations generate the cor-
rect Grassmann parameter dependence of solutions. The
full number of Grassmann parameters is equal to four
just as in ref.”!’, but dependence on them is essentially
different. Bosonic degeneracies are connected with trans-
lations, dilatations, and chiral (y;—) transformations. Our
analysis can be readily extended to the more interesting
(and more complicated) case of the massless theories
with the Euclidean supersymmetry where the instanton-
type solutions exist’?/. We discuss also a possible
relation of the 0Sp(1,4)-structure of the massless Wess-
Zumino model to the analogous structure emerging in the
spontaneously broken supergravity /7.8

2. The Wess-Zumino model /4/ is the simplest supersym-
metric theory.It describes two interacting Hermitean con-
jugate chiral superfields D, (x,0, )-Ai(x)+5illli(x)»,;—ﬁtOtFt(x)
which are equivalent to the set of four Hermitean boson
fields A, B , F , G and Majorana spinor p

1 .
A -«—(A+iB), F
+ \/2

1 . 1 .

The massless version of the model is completely deter-
mined by the action:

* We are using the Majorana formalism: 0, = -;—(11 iy5 )9 .

Conventions on metric and y -matrices are the same
as in ref./9/:

=(1,-1,-1,-1), {y ,y i=2p ,y2=-1,
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supplemented with the equations for the auxiliary fields
F,G:

Fe-g(A®—B%)

(2)
G =2 gA B.

The action (1) in combination with eqs. (2) is invariant
under the superconformal graded group. It contains as
a subgroup the ordinary conformal group with generators
L P K D and, besides, involves the transforma-

ILV ’ p b p. ’
tions’%/: -

BA, =B¥, tirA,

1+ . i " _i
5Y, -_é._lﬁ_[(—]y#a#Ai_+Fi )B- ALy a#B].+ A+

8F, =—iByH a‘u‘vt $20AF 3)
where
- —ix# a ’ 4
B a, y# 2 ( )

and a, , a, are constant Grassman spinor parameters
associated, respectively, with the supertranslation gene-
rator S, and the generator T, of special superconformal
transformations. Bosonic parameter A is connected with
the chiral transformation generator Il . In what follows,
we will need the following (anti) commutation relations
from the superconformal algebra/6/ *:

"""""""""" : /10/
* Our generators D,K, differ from those of ref.

by factor -1. The generator Tl; is related to the gene-
rator [I used in ref.”®/ as M, =-2II.



(8,81 =B . (T, T}apfk, @)
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The massless Wess-Zumino model is the supersym-
metric generalization of the massless ¢%-theory *. There-
fore any classical solution of the latter * is simultane-
ously a particular solution to the equations of motion cor-
responding to the action (1) (the reverse is not true of
course). We are interested here in the solutions’!/;

A)=Sax)=m 2 G =B =¥ =0
0 g @) € 1 4+m?x? 0o o

(6)

2

Fo(x>--%a2(x> !

[ml=L"", m#£0

which generalize solutions found by Fubini’!%in the
p* -theory. They are invariant under the anti de Sitter
subgroup 0(2,3) of the conformal group, with the gene-
rators L, ,R ~-1(P —nfK ).At the same time, transla-
tions, dilatations, and chiral transformations take the
system (6) into the six parameter continuous family:

(A, 1h) i

AP el me * A pa(pxan)

A .,p,h) - 2iA ™
WP 1 F i

F - = Mg Ra ? h

- 75 e pa“(px +h)

For the standard sign of the coupling constant, i.e.,
for £, . =-x¢%, A>0.
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(solutions (6) correspond to a particular choice of para-
meters p=1 ,h,=0, A=0 (27n) therein). Note that the
scale degree of freedom (associated with p ) merely
reflects an arbitrariness in parameter m. The chiral
transformation with A=r is equivalent to the change
m-»-m in formulas (6).
The main observation by Baaklini is that solu-
tions (6) (or, equally (7)) are not invariant with respect
to supertranslations and therefore, acting on (6) by a fi-
nite supertransformation with parameter a; . one may
obtain non-zero solutions for the spinor ¥ (x) which
describe a motion of the fermion in the bosonic solution
field. The arising set is represented by the superfield

/1/

aq ia_]_S 0 -
(I)t (x,Ot)xe (I>ir(x,Gt)-d)iO(x+1a1y01_1—L

1_
T Y5 ,0 £+ t)' (8)

where <D2 (x,0 ) is the superfield having (6) as compo-
nents.

We would like to emphasize that the Grassmann para-
meter dependence given by the formula (8) is not most
general. Indeed, one readily verifies that the system (6)
is not invariant also under the special superconformal
transformations (with parameter ay ). Hence, performing
in (6) such a transformation it is possible to set up one
more non-trivial family of solutions including, like (8),
the fermionic components as well as bosonic ones. Thus
we are facing with the problem of how to extract the
complete set of independent solutions to the massless
Wess-Zumino model. This problem obviously reduces to
determining what is the full stability subgroup of the sys-
tem (6). As the maximal even subgroup leaving (6) inva-
riant is known and it is just 0(2,3), it remains only to
examine which combinations of odd generators S, , T,
annihilate the system (6) (if exist).

We show that such combinations may be really
found. Let us pass, in relations (3), (4), to the new set
of Grassmann parameters '81 Bt
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or, equivalently, to the new spinorial basis in the super-
conformal algebra:

1 1

(10)

(@8 +a,T=p,Q +8Q ).
It is not hard to see that solutions (6) are invariant with
respect to supertransformations with parameter BI
At the same time supertransformations depending on B
displace (6) (68, Yo #0). Thus the generator Q; should
be included into the stability subgroup whereas QH ser-
ves to introduce Grassmann degrees of freedom. Clearly
the full number of independent Grassmann parameters is
equal to four.

To clarify the meaning of these results we prove the
following Theorem.

Each of generators Q| ,Q;; enlarges the algebra of
the group 0(2,3) to that of the supergroup 0Sp(1,4). The
closure of thus obtained supergroups 0Sp(1,4) is the super-
conformal group itself.

Using the anticommutation relations (5a,b) and com-
mutation ones (5¢) we find:

- 1
(Q_.Q_t=y"R +=—ms"”L
1%
II II u 2 (11)

[Q

1
II'Ru]'" 2—m QII .

Relations (11) coincide with those of the 0Sp(1,4)-super-
algebra given, for instance, in ref.”1!/ (when comparing
with’11/ it should be remembered that we use different
representation for y -matrices). As m-0, the algebra
(11) goes into the standard supersymmetry algebra (this
can be observed of course directly from the definition

—

(10)). The algebra of generators Q , R# » Ly is also
closed and isomorphic to (11). Indeed, we may cast it

into the form (11) by passing to the generator Q‘=),Q,.
All the remaining generators of the superconforhxal group
are contained in the cross anticommutator:

= 1 SN
{Qy .Q, -2—y“(Pu + 1 Ku)-lm(D y5H5)

that completes the proof of the Theorem.

Thus we arrive at the conclusion that the crucial role
in specifying superconformal properties of the 0(2,3)-
invariant classical solutions to the model under conside-
ration is played by two subgroups_ 08Sp(1,4) of the super-
conformal group. One of them , 0Sp (1,4) with generators
Q,,Ruy,Luw is the stability subgroup of solutions. The
otl!xer, 0851(1,4) generated by Q,, Ru , Ly 1s broken on
these solutions down to 0(2,3) C (R# Ly ). Its finite odd
transformations project the system (6 ) onto the quotient
(super) space OSp”(l,4)/0(2,3) and fix thereby the Grass-
mann parameter structure of solutions:

iBQ

o (x g ywe TR0 (x 0 ). 12)
Acting on the superfield (12) by group elements with gene-
rators D | F,, 5 one may include bosonic degrees of
freedom and so construct the complete set of solutions.

Write down the components of the superfield <I)+BI(x 0,)
explicitly: - -

A:ill (x)-\T_;]_—ga(X)[l—ma(x)Bi—zi_)/_s—ﬁ+7ﬂgiaz(x)(ﬁﬁ)2]

lI'f“(x) -~ ﬁ_gia@ @[t- Bapa] l—iziﬁ—ﬁ

F?“(x) -— -m_La2(x)[1-2ma(x) B 1_’_‘_1_&,3 +
- 2g 2
m2 2. . & .\2
t 352 ®(BR)T. (13)



Here now = —1:[ 1-imx* y #1 Bi1and the function a(x) is
defined by eqs\./2(6).The dependence of the solutions (13)
on the fermionic degrees of freedom essentially differs
from that found in ref.”!” and does not reduce to it by

any change of parameter 3; .Note, however, that, acting

on (12) successively by chiral and scale transformations
with nilpotent parameters in a certain manner composed -
from the spinor B;; . we may arrive at the superfield

(8) (in which a, is replaced by 8By ). To be convinced
of this one may proceed as follows: to represent generator

as Qg -\/-éS--QI then split the exponent eiﬁngn

in eq. (13) by the Baker- Haussdorf formula with making
use of relations (5) and finally take into account the con-
dition Q; ¢? (x,6,)=0. The analogous connection can be
established between ®F11 (x,6.) and the set of solutions
generated from ¢®% (x,8, ) Dy finite special superconfor-
mal trt_msformatio?ls (the relevant substitution is

Qp =v2 mT+Q; ). These arguments indicate that it is
possible, in principle, to choose as the basis set the fa-
mily (8) as well. However, from the group theory point

of view it is most natural to do in terms of the set (12)
because just this set corresponds to the choice of the
basis in the superconformal algebra which is orthonormal,
in the sense of the Cartan inner product, Iwith respect to
the algebra of the stability subgroup 05p (1,4).

It is worth noting that the structure of the subgroup

0Sp(1,4) leaving solutions invariant and, respectively,

the structure of the other subgroup 0Sp(1,4) generating
their Grassmann parameter dependence are fixed up to
"rotations in the group space of the superconformal group.
In other words, the stability subgroup of solutions rotated
from (6) by some finite supgrconformal transformation is

7 *

rotated with respect to  0Spi(1,4) by the same ”angle”

- - A = W on G = s

* The analogous situation takes place in standard theo-
ries of spontaneously broken internal symmetries where
to the continuous orbit of vacua continuum of stability
subgroups corresponds.
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To illustrate this point we consider a solution shifted
from (6) by the chiral transformation with parameter A :

A iH5

A
0
¢i(x,6+)

A’\i(x) -\721- e*h A ()

2iA A
F‘O(x), L4 N

A -
F, (X)z-l:e+ =0.
+ V3

Its stability subgroup is osb"‘) (1,4)C(QI’\ ’Ru ,L V),where
Q/\ eil]5/\ Q e—iﬂs/\ 3 3 #
- =C i
I . os('2 /\)QI +sm(2—/\ )ysQII (14)

(chiral transformations do not affect the subgroup 0(2,3)
bgcause II; commutes with all bosonic generators).Like-
wise:

A 1T\ ~illgA 5
QII =€ QHe -cos(-g-/\)QII +sin(%/\)y5QI, (15)
Fixing parameter A specifies the stability subgroup
of the solution characterized by given A. For instance the
s.tapility subgroup of the solution corresponding t0 A=z
(it is given by formulas (6) up to the change m- -m ) is
OSp.II (1,4) while 08f (1,4 turns out now to be broken.

An ;nteresting feature of the model under consideration
having no analogue in the massless ¢* -theory is that
the same 05p(1,4) serves to be the stability subgroup
simultaneously for several solutions. More specifically
08{1(1,4) leaves invariant not only solutions given by ’
formulas (6) (A=0) but also those with A=2Zp (nal,2)
'_I‘hu.s, even after the stability subgroup of a given solﬁtibn
is fixed, there remains some discrete degeneracy associa-
?ed with chiral invariance. In the quantum casé, we may
in principle expect a tunneling between sectors characte-
rozed by values of n=0,1,2 (if the interpretation of
classical solutions as anomalous vacuum averages of
corresponding fields 719/ is acceptable). This could result

11



in breaking P- and CP-symmetries due to non-zero ground
values of pseudoscalar fields B and G in sectors with
n=1,2.This point requires of course more detailed treat-
ment. Note that the uncertainty we have mentioned here

is specific only for chiral rotations. Solutions generated
from ®0(x,6,) by other transformations of the super-

conformal group are in the one-to-one correspondence
with their stability subgroups.

3. We have shown that the structure of the massless
Wess-Zumino model after allowing for its 0(2,3)-invariant
classical solutions is described most adequately in terms
_of two supergroups 0Sp(1,4), one of which being sponta-
neously broken. On the other hand, Deser and Zumino
have pointed out recently/7.11/ the particular role of
the spontaneously broken 0Sp(l,4)-supersymmetry in
supergravity as providing most suitable framework to
describe the spontaneous breakdown of the local super-
symmetry.It is tempting to assume that this analogy is not
accidental and 0Sp(1,4)-structures in both theories have
a common origin. In other words, local supersymmetry
may happen to be broken mainly due to 0(2,3)-invariant
classical solutions to the supergravity- matter equations.
For instance, the system where the supergravity fields
couple to massless scalar supermultiplet certainly admits
solutions of the type (6). As a preliminary step along
this line, it would be interesting to analyse in more detail
the structure of the spontaneous breakdown of the 0Sp(1,4)-
supersymmetry in the Wess-Zumino model and, particu-
larly, to compare it with the non-linear realization of
0Sp(1,4) considered recently by Zumino’!!/ Such a study
is carried out in our forthcoming paper. There we re-
write the action (1) in terms of anti de Sitter space, i.e.,
pass to manifestly 0(2,3)-invariant notation. In the 0(2,3)-
" formalism, solutions (6) reduce to constants minimizing
the related ”potential” just as it occurs in the massless
¢* _theory’/1%/ Thereby the massless Wess-Zumino model
gets interpretation as the simplest linear ¢ -model of
spontaneously broken 0Sp(1,4)-supersymmetry (and

12

simultaneously of the superconformal one). The role of
the Goldstone fermion accompanying this breakdown turns
out to be played by the spinor ¥(x). After extracting
ground values from boson fields, ¥(x) acquires a “mass”
equal to the inverse radius of anti de Sitter space m
which is in agreement with the general result by Zumino/l_l/
Throughout this paper we were concerned with solu-
tions in Minkowski space. To conclude, we make some
comments on how it is possible to continue our study
to Euclidean space. A direct ”euclidezation” of solutions
of the type (8), (13) is not possible as after transition
to Euclidean space the action (1) loses its supersymmetry
and, consequently, any supersymmetric degeneracy of
relevant solutions disappears. The matter here is that
Euclidean space possesses no Majorana spinors and
therefore there exists no direct Euclidean analogue of
the Minkowski supersymmetry 2/ The simplest super-
group in Euclidean space includes Dirac bispinor comp-
lex generators/z/ and as a result leads to larger super-
multiplets in comparison with the conventional case. In
particular, the model which is the supersymmetric exten-
sion of the Euclidean massless ¢* -theory involves a grea-
ter number of independent fields than the Wess-Zumino
model. Clearly, to extract a whole set of its classical
solutions, a special analysis is needed. It will reduce, of
course, as in the case we have considered, to studying the
behaviour of some particular solution under relevant
superconformal group. Euclidean analogues of solutions
(6) respect the group 0(5), therefore it is plausible that
their full invariance group is the Euclidean analogue of

the supergroup 0Sp(1,4), i.e., the minimal enlargement
of 0(5) by Dirac generators. The Grassmann parameter
dependence of solutions will be then given by action of
the remaining spinor generator of the Euclidean super-
conformal group (these parameters comprise complex
bispinor, i.e., their number amounts eight).

We are grateful to Professor V.I.Ogievetsky for
interest in the work and useful critical remarks.
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