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For the purpose of clarifying a new approach to understanding quantum entanglement using
thermofield dynamics (TFD), entanglement entropies of non-equilibrium finite-spin systems are
examined for both traditional and extended cases. The extended entanglement entropy, Ŝ, is
derived, and it is found that the conditions for the maximum entangled state can be obtained
through this approach. The capacity of the TFD-based method to distinguish between states in
quantum systems is confirmed.
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Recently, a new approach to understanding quantum entanglement using thermofield dynamics
(TFD) [1–3] has been proposed in Ref. [4]. In this new treatment of quantum entanglement with
TFD, extended density matrices have been formulated on the double Hilbert space (ordinary and
tilde Hilbert spaces), and the entanglement states show a quantum-mechanically complicated behav-
ior. The new TFD-based method allows the entanglement states to be easily understood, because the
states in the TFD tilde space play the role of tracers of the initial states. In the new analysis, a general
formulation of the extended density matrices has been constructed and applied to some simple cases.
Consequently, it has been found that intrinsic quantum entanglement can be distinguished from the
thermal fluctuations included in the definition of ordinary quantum entanglement at finite tempera-
tures. Based on the analysis presented in Ref. [4], it has been argued that the new TFD-based method
is applicable not only to equilibrium states but also to non-equilibrium states. However, analysis of
the entanglement entropies of non-equilibrium systems was not conducted in Ref. [4] and, therefore,
examination of the entanglement entropies of non-equilibrium systems with the use of TFD is of
current interest. In the present communication, therefore, the “extended” entanglement entropies of
non-equilibrium spin systems are intensively investigated in both the dissipative and non-dissipative
cases, based upon a TFD algorithm.

Let us consider the S = 1/2 spin system described by the Hamiltonian

H = −JSA · SB, (1)

incorporating the spin operators SA = (
Sx

A, Sy
A, Sz

A

)
and SB = (

Sx
B, Sy

B, Sz
B

)
of the subsystems A

and B, respectively. The state, |s〉, of the total system is then denoted by the direct product,
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|s〉 = |sA, sB〉 = |sA〉|sB〉. Using the base {| + +〉, | + −〉, | − +〉, | − −〉} the matrix form of the
Hamiltonian (1) is then expressed as

H =
∑

sA,sB,s′
A,s′

B

hsA,sB,s′
A,s′

B

∣∣sA, sB
〉 〈

s′
A, s′

B

∣∣

= − J

4
(| + +〉〈+ + | + | − −〉〈− − |) + J

4
(| + −〉〈+ − | + | − +〉〈− + |)

− J

2
(| + −〉〈− + | + | − +〉〈+ − |) . (2)

For the equilibrium states in terms of the Hamiltonian expressed in Eq. (2) , the ordinary density
matrix, ρeq, of this system can be obtained as

ρeq := e−βH

Z(β)
= e−β J/4

Z(β)

(
eβ J/2 (| + +〉〈+ + | + | − −〉〈− − |)

+ cosh
β J

2
(| + −〉〈+ − | + | − +〉〈− + |)

+ sinh
β J

2
(| − +〉〈+ − | + | + −〉〈− + |)

)
, (3)

where β is the inverse temperature and the partition function, Z(β), is defined as

Z(β) := Tre−βH = 2e−β J/4
(

eβ J/2 + cosh
β J

2

)
. (4)

Let us turn our attention to a non-equilibrium system with dissipation, which is described by the
Hamiltonian of Eq. (2). The time dependence of the ordinary density matrix, ρ(t), of this system is
given by the dissipative von Neumann equation [5–7], where

i�
∂

∂t
ρ(t) = [H, ρ(t)

]− ε
(
ρ(t) − ρeq

)
, (5)

with ε being a dissipation parameter. The solution of Eq. (5) is expressed as

ρ(t) = e−εtU †(t)ρ0U (t) + (
1 − e−εt)ρeq, (6)

for any initial density matrix, ρ0, where the unitary operator, U (t), denotes

U (t) := eiHt/� = eiωt/4
(

e−iωt/2 (| + +〉〈+ + | + | − −〉〈− − |)

+ cos
ωt

2
(| + −〉〈+ − | + | − +〉〈− + |)

− i sin
ωt

2
(| − +〉〈+ − | + | + −〉〈− + |)

)
, (7)
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and ω := J/�. Because the explicit expression of ρ(t) in Eq. (6) is complicated for any initial condi-
tion, hereafter, let us confine ourselves to the initial condition ρ0 = | + −〉〈+ − |. Inserting Eqs. (3)
and (7), along with the initial condition, into Eq. (6), we then obtain

ρ(t) = e−εt

2

(
2
(
eεt − 1

)
3 + e−βω�

(| + +〉〈+ + | + | − −〉〈− − |)

+ cos ωt + eεt + eβω�
(
3 cos ωt + eεt + 2

)
1 + 3eβω�

| + −〉〈+ − |

+ − cos ωt + eεt + eβω�
(−3 cos ωt + eεt + 2

)
1 + 3eβω�

| − +〉〈− + |

+
((

eεt − 1
) (−1 + eβω�

)
1 + 3eβω�

− i sin ωt

)
| + −〉〈− + |

+
((

eεt − 1
) (−1 + eβω�

)
1 + 3eβω�

+ i sin ωt

)
| − +〉〈+ − |

)
. (8)

The ordinary entanglement entropy, S, is defined by

S := −kBTrA [ρA log ρA] , (9)

with ρA := TrBρ(t), where TrA and TrB represent traces over the variables of subsystems A and B,
respectively. The insertion of Eq. (8) into Eq. (9) yields

S = −kB

(
1 + e−εt cos ωt

2
log

1 + e−εt cos ωt

2
+ 1 − e−εt cos ωt

2
log

1 − e−εt cos ωt

2

)
. (10)

It is also possible to argue that S in Eq. (10) is directly proportional to an entanglement, E(C), which
is a function of the “concurrence”, C := √

1 − e−2εt cos2 ωt [8]. The time dependence of S and C is
displayed in Fig. 1 (in units of kB = 1). In the dissipative system, S and C converge to the constants
kB log 2 and 1, respectively, at t → ∞, so it is reasonable to think that S and C include not only
the contribution of the quantum fluctuation, but also the contribution of the classical and thermal
fluctuations. However, this fact is not manifest in the above expressions of S and C .

We are now in a position to investigate the extended density matrix, ρ̂, in the TFD double Hilbert
space. Note that ρ̂ has been defined in Ref. [4] as follows:

ρ̂ := |�〉 〈�∣∣, ∣∣�〉 := ρ(t)1/2
∑

s

∣∣s, s̃
〉 = ρ(t)1/2

∑
s

∣∣s〉∣∣s̃〉, (11)

using the ordinary density matrix, ρ(t), in Eq. (6), where {|s〉} is the orthogonal complete set in
the original Hilbert space and {|s̃〉} is the same set in the tilde Hilbert space of the TFD [9,10]. If
entanglement subsystems A and B are being examined, each of the |s〉 and |s̃〉 states are represented
as the direct products |sA, sB〉 = |sA〉|sB〉 and |s̃A, s̃B〉 = |s̃A〉|s̃B〉, respectively. We are then led to
the renormalized extended density matrix, ρ̂A, as

ρ̂A := TrBρ̂ :=
∑
sB,s̃′

B

〈
sB, s̃′

B

∣∣ρ̂∣∣sB, s̃′
B

〉

= bd1
∣∣+ 〉 〈+ ∣∣∣∣+̃〉 〈+̃∣∣+ bd2

∣∣− 〉 〈− ∣∣∣∣−̃〉 〈−̃∣∣+ bcf
(∣∣+ 〉 〈− ∣∣∣∣+̃〉 〈−̃∣∣+ ∣∣− 〉 〈+ ∣∣∣∣−̃〉 〈+̃∣∣)

+ bqe
(∣∣+ 〉 〈+ ∣∣∣∣−̃〉 〈−̃∣∣+ ∣∣− 〉 〈− ∣∣∣∣+̃〉 〈+̃∣∣) , (12)
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(a) (b)

(c) (d)

Fig. 1. Time dependence of entropies C, S, Ŝ, and Ŝqe, along with parameter bqe, in dissipative and non-dissi-
pative systems with scaled temperature, T/J = 0.7. Parts (a), (b), and (c) show cases with a scaled dissipation
rate of ε/ω = 0.2, 0.1, and 0.01, respectively. The dotted and dashed lines in parts (a), (b), and (c) represent
the asymptotes of the S and Ŝ curves, respectively. Part (d) is the non-dissipation case (ε = 0).

where the matrix elements bd1, bd2, bcf, and bqe are respectively obtained as analytic functions of
t , β, ε, and ω, and correspond to the two diagonal components (d1 and d2), the classical fluctua-
tions (cf), and the quantum entanglements (qe) of ρ̂A, respectively. The parameter bqe in Eq. (12)
expresses the quantum entanglement effect. This quantum fluctuation plays a crucial role in vari-
ous quantum systems, and it has been used as an order parameter of 2D quantum systems [11,12].
The time dependences of the parameter bqe in several cases are shown in Fig. 1. As can be seen
from Eq. (12), only the intrinsic quantum entanglement is extracted clearly in the TFD formulation.
In particular, it can be understood that the entangled state of the system emerges through a single
product, such as

∣∣+ 〉〈+ ∣∣∣∣−̃〉 〈−̃∣∣, in ρ̂A.
The “extended” entanglement entropy is defined as

Ŝ := −kBTrA
[
ρ̂A log ρ̂A

]
, (13)

using the renormalized ρ̂A in Eq. (12) [4]. The insertion of Eq. (12) into Eq. (13) and subsequent
simplification eventually yield

Ŝ = Ŝcl + Ŝqe, (14)
where

Ŝcl := −kB

⎛
⎝√4b2

cf + (
bd1 − bd2

)2 arccoth
bd1 + bd2√

4b2
cf + (

bd1 − bd2
)2

+ bd1 + bd2

2
log

(
bd1bd2 − b2

cf

)⎞⎠ , (15)
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and

Ŝqe := −2kBbqe log bqe, (16)

respectively. In Eqs. (14), (15), and (16), the expressions of Ŝ, the classical and thermal fluctua-
tion parts, Ŝcl, and the quantum entanglement part, Ŝqe, also incorporate analytic functions of t ,
β, ε, and ω, respectively; however, the full calculation is quite tedious. So, we show the numer-
ical behavior of C, S, Ŝ, Ŝqe, and bqe for a few cases in Figs. 1(a)–(c) (in units of kB = 1). As
can be seen from these figures, at t → ∞, Ŝ converges to the value 0.113 51 · · · , and both Ŝqe

and bqe vanish, respectively. As a consequence, the traditional entanglement entropy, S, becomes
larger than the extended entanglement entropies, Ŝ and Ŝqe, at t → ∞. Ŝqe is then smaller than
S when ε is relatively larger. As ε becomes smaller, Ŝqe becomes compatible with S and, at ε = 0,
Ŝqe � S. These results suggest that the quantum entanglement is enhanced as the dissipation becomes
weaker.

For non-dissipative systems, Ŝ in Eq. (14) and Ŝqe in Eq. (16) reduce to

Ŝ = −kB

(
cos4 ωt

2
· log

(
cos4 ωt

2

)
+ sin4 ωt

2
· log

(
sin4 ωt

2

)
+ 1

2
sin2 ωt · log

(
sin2 ωt

4

))
,

(17)
and

Ŝqe = −kB

2
sin2 ωt · log

(
sin2 ωt

4

)
, (18)

respectively, at ε = 0. The time dependence of Ŝ and Ŝqe at ε = 0 is shown in Fig. 1(d) (in units
of kB = 1). It is apparent in this figure that all the curves (C, S, Ŝ, Ŝqe, and bqe) showing the
entanglement have the same phase; however, their amplitudes differ. Specifically, Ŝ is larger than S
and Ŝqe ≈ S at ε = 0, a result that differs from that of Ref. [4] and that can be seen in Eqs. (17) and
(18). It appears that a mistake was made in Ref. [4] in counting the non-zero eigenvalues of ρ̂A.

In this communication, we have examined the extended entanglement entropies of non-equilibrium
spin systems in both the dissipative and non-dissipative cases, based upon the TFD formulation. In
the dissipative case in particular, the extended entanglement entropy is derived using the extended
density matrix and is proven to separate into the classical and thermal fluctuation parts and the quan-
tum entanglement part. These quantities are compared to the traditional entanglement entropy, the
concurrence, and bqe in ρ̂A. These results are summarized in Fig. 1 and show that the conditions
yielding the maximum entangled state can be obtained using these five quantities.

We have clearly indicated that, in the TFD formulation, the extended quantum entanglement
entropy part and the parameter bqe are recognized as effective quantities for measurement of the quan-
tum entanglement. It is apparent that the new TFD-based method enables us to clearly distinguish
between the various states of quantum systems.
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