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Abstract We argue that the well-known problem of the instabilities that are
associated with the self-forces (radiation reaction forces) in classical electrody-
namics are possibly stabilized by the introduction of gravitational forces via gen-
eral relativity.
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1 Introduction

The problems and difficulties associated with the motion of charged particles
interacting with both an external electromagnetic field and its own self-field have
not been resolved even after over a century of investigation [1; 2; 3; 4; 5]. The
problems arise in many different contexts: the difficulties in giving appropriate ini-
tial conditions,
infinite self-energy problems, model building, Lorentz invariance difficulties and
perhaps the most serious, the instabilities (or pre-acceleration) in the solutions to
the equations of motion.

The best known equations of motion, coming from a point structureless parti-
cle,
are the Abraham–Lorentz equations and the relativist generalization the
Abraham–Lorentz–Dirac equations. They are given, respectively, by [3]

m
−→̇
v = q

−→
E +q

−→
B ×−→v +

2q2

3c3
−→̈
v , (1)
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and [2]

mv̇a = qFabvb +
2q2

3c3

(
v̈a +

1
c2 vav̇bv̇b

)
, (2)

where Fab (or
−→
E ,
−→
B ) are an external field and are derived by a variety of means,

but always with severe approximations.
It is generally acknowledged that there are fundamental difficulties with this

issue. And there seems to be a variety of different reasons, explanations and sug-
gested remedies for these difficulties. They range from: quantum theory is the
resolution, to the approximations leading to these equations are wrong or even
that there is no real problem. The author, Jackson [1], summarizes the situation in
his well known graduate text as:

“The difficulties presented by this problem touch one of the most fundamental
aspects of physics, the nature of the elementary particle. Although partial solu-
tions, workable within limited areas, can be given, the basic problem remains
unsolved. One might hope that the transition from classical to quantum-mechanical
treatments would remove the difficulties. While there is still hope that this may
eventually occur, the present quantum-mechanical discussions are beset with even
more elaborate troubles than the classical ones. It is one of the triumphs of com-
paratively recent years (˜ 1948 - 1950) that the concepts of Lorentz covariance
and gauge invariance were exploited sufficiently cleverly to circumvent these dif-
ficulties in quantum electrodynamics and so allow the calculation of very small
radiative effects to extremely high precision, in full agreement with experiment.
From a fundamental point of view, however, the difficulties remain.”

The purpose of this note is to describe what is basically a new point of view
towards this problem. (There had been earlier attempts along the lines of this work
[6; 7] but some of the essential new insights were missing.) This view is com-
pletely classical, with no reliance on quantum theory. It however does rely heavily
on the Einstein–Maxwell equations of general relativity.

The basic situation that we address is to first consider an arbitrary compact
gravitating-electromagnetic system which is taken to be the ‘particle’ whose motion
we want to describe. The system is given by local mass and charge densities and
currents. There are no external fields acting on it. It is an isolated system with arbi-
trary internal degrees of freedom. The program is to solve the Einstein–Maxwell
equations in the future null asymptotic region and, from the asymptotic field (the
asymptotic Weyl and Maxwell tensors), determine a center of mass and center of
charge and their laws of motion. Aside from the conditions that the total charge Q
be non-vanishing and the important requirement that the complex centers of mass
and charge should coincide, there is no further model building. This latter condi-
tion is a severe restriction on the source distribution: the local mass and charge
densities and currents.

Since our detailed calculations, which were done in the language of the spin-
coefficient formalism, are long and complicated and have appeared elsewhere [8],
we will just summarize the ideas and results. Basically the calculations are done
to 2nd order in deviations from Reissner–Nordstrom. The nature of our approx-
imations is essentially heuristic and informal: we have no small parameter with
a related truncated power series. Instead we have the zero order mass and charge
(from the Reissner–Nordstrom metric) with all further variables treated as small,
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i.e., as first order quantities. More specifically, the Bondi shear, σ(u), the complex
electromagnetic dipole moment, φ 0

0i(u), the stereographic angle field, L(u), are all
first order. A parametrized complex world-line, za = ξ a(τ), is introduced which
has the form, ξ a(τ) = τδ a

0 for Reissner–Nordstrom; we treat deviations from this
as first order. Quadratic products of first order quantities are retained while higher
order products are ignored.

In the spherical harmonic expansions, with frequent use of Clebsch-Gordon
products, only terms up to the l = 2 harmonics are kept.

Later for comparison with conventional physical notation we change the time
variable from the Bondi u to the conventional retarded time, w, via w =

√
2uc−1.

Derivatives with respect to w are denoted by prime, (′).

2 The complex center of charge: its identification

The basic starting idea in this work is essentially simple. It is in the generalizations
and implementations where difficulties arise.

Starting in Minkowski space in a given Lorentzian frame with spatial origin,
the electric dipole moment

−→
D E is calculated from an integral over the (localized)

charge distribution. If there is a shift,
−→
R , in the origin, the dipole transforms as

−→
D∗

E =
−→
D E −Q

−→
R . (3)

If
−→
D E is time dependent, we obtain the center of charge world-line by taking−→

D∗
E = 0, i.e., from

−→
R =

−→
D E/Q. It is this idea that we want to generalize and

extend to gravitational fields.
First, however, we want to discuss other dipole issues in flat-space.
On the time-like world-line at the spatial origin, we construct the family of

future directed light-cones, Cu, each labeled by the time at the origin, u. On each
cone the null generators (null geodesics), g are labeled by the complex stereo-
graphic coordinate at the apex, (ζ ,ζ ). The affine parameter, r, ‘measures’ the dis-
tance along g from the apex. The natural tetrad (l,n,m,m), associated with Cu,
is chosen. The vector field la is the tangent field to the null geodesic generators
of the null cones Cu. At I+, nb is the tangent field to the null generators of I+

while (ma,mb) are (the complex conjugate pair) tangent to the two surface, S2, the
intersection of each Cu with I+ and parallel propagated backwards along g.

Using this coordinate-tetrad system we investigate behavior of the Maxwell
field in the limit as null infinity is approached, i.e., at Penrose’s I+. Using the null
tetrad formalism and where the Maxwell pair (

−→
E ,
−→
B or Fab) is replaced by the

complex vector
−→
E + i

−→
B , we define their tetrad components, (φ0,φ1,φ2), by [9]

φ0 = Fa′b′ l
a′mb′

φ1 =
1
2

Fa′b′(l
a′nb′ +ma′mb′) (4)

φ2 = Fa′b′m
a′nb′ .
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(The indices, both here and later, with primes, e.g., la′ ,Fa′b′ , are to be treated as
abstract indices just describing the tensor character of the object.)

The asymptotic (peeling) behavior of these fields for a compact source is given
by

φ0 =
φ 0

0
r3 +O(r−4)

φ1 =
φ 0

1
r2 +O(r−3) (5)

φ2 =
φ 0

2
r

+O(r−2).

The r independent quantities (φ 0
0 ,φ 0

1 ,φ 0
2 , ...) are functions ‘living’ on I+, i.e.,

functions of the retarded time, u, and (ζ ,ζ ), the complex stereographic coordi-
nates of I+. The components of their spherical harmonic decomposition,

φ
0
0 = φ

0i
0 Y 1

1i +φ
0i j
0 Y 1

2i j + · · · , (6)

φ
0
1 = Q+φ

0i
1 Y 0

1i +φ
0i j
1 Y 0

2i j + · · · , (7)

φ
0
2 = φ

0i
2 Y−1

1i +φ
0i j
2 Y−1

2i j + · · · , (8)

are the asymptotically defined multipole moments and their time derivatives.

For example, the l = 0 harmonic component of φ 0
1 is proportional to the total

source charge, Q. For us the important quantity is φ 0i
0 , the l = 1 component of φ 0

0 :
φ 0i

0
is proportional to the (asymptotically defined) complex dipole moment, EDC =
EDE + iEDM, where EDM is the magnetic dipole moment.

The problem now is: how does the EDC transform under an origin shift to an
arbitrary world-line? With an origin shift there will be new light-cones and a new
null vector field, l∗a, obtained from the old one, la, by a null rotation at I+. This
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can be expressed explicitly by [10]

l∗ = l +
L
r

m+
L
r

m+O(r−2)

m∗ = m+O(r−1) (9)

n∗ = n

where L = L(u,ζ ,ζ ) is a stereographic angle field given on I+ (still to be described)
that determines the new null geodesic field, l∗.

The transformation law for φ 0i
0 , which is [8; 10]

φ
∗0i
0 = (φ 0

0 −2Lφ
0
1 +L2

φ
0
2 )|i,

becomes (small origin shift, with the cubic term omitted1)

φ
∗0i
0 ' (φ 0

0 −2Lφ
0
1 )|i (10)

If we are given a Minkowski space world-line, xa = ξ a(s), for the apex of the
new light cones, then L = L(u,ζ ,ζ ) is given in the parametric form

L(u,ζ ,ζ ) = ξ
a(s)ma(ζ ,ζ ),

(11)
u = ξ

a(s)la(ζ ,ζ ),

with

la(ζ ,ζ ) =
√

2
2

(
1,

ζ +ζ

1+ζ ζ
,−i

ζ −ζ

1+ζ ζ
,
−1+ζ ζ

1+ζ ζ

)

=
√

2
2
(
Y 0

0 ,0,0,0
)
− 1

2
(0,Y 0

1i), (12)

ma(ζ ,ζ ) =
√

2

2(1+ζ ζ )
(0,1−ζ

2
,−i(1+ζ

2
), 2ζ ) = (0,Y 1

1i(ζ ,ζ )), (13)

By the appropriate choice of ξ a(s), from Eq. (10), with the use of Eq. (11),
one can force the real part of φ ∗0i

0 to vanish, thereby making xa = ξ a(s) the (real)
center of charge. If however we generalized the choice of L(u,ζ ,ζ ) and allowed
it to be defined parametrically by

L(u,ζ ,ζ ) = ξ
a
C(τ)ma(ζ ,ζ ),

(14)
u = ξ

a
C(τ)la(ζ ,ζ ),

where za = ξ a
C is a complex analytic world in complex Minkowski space, then by

setting φ ∗0i
0 = 0, in Eq. (10 ) the complex world-line is determined. This complex

curve (which is purely formal) defines the complex center of charge. Using this
“curve” as the origin, both the electric and magnetic dipoles vanish.

1 The description of the finite transformation is considerably more complicated and is post-
poned for a later publication.
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Remark We stress, for later use, that this formal construction has a deeper geo-
metric meaning. Null vector fields, la, constructed as tangent fields to the null
cones with apex on a real world-line have three characteristics, they are tangent to
null geodesic congruences, they are twist-free (i.e., null-surface forming) and are
shear-free. More generally, null geodesic congruences and their null tangent fields,
that are shear-free but are twisting can be (formally) constructed in the following
fashion: choose a one-complex parameter family of complex light cones with apex
on a complex (analytic) curve in complex Minkowski space and then project the
complex tangent vectors of the cone into the (real) Minkowski space. They form
a twisting, shear-free null geodesic congruence. In other words, congruences of
this type are generated by complex analytic curves [11]. This construction is fur-
ther generalized to asymptotically flat space-times by considering asymptotically
shear-free null geodesic congruences, where again they are generated by complex
analytic curves [12; 13].

3 The complex center of mass

For asymptotically flat Einstein–Maxwell space-times the situation is totally anal-
ogous: the shear-free null geodesics originating from light-cones from world-lines
(real or complex) are replaced by (regular) asymptotically shear-free null geodesic
congruences generated by a complex world-line [12], in the space of the complex
Poincare translation subgroup of the BMS group. The Maxwell asymptotic dipole
transforms exactly as in the flat space case, i.e., as in Eq. (10) with however a
slight change in the parametric description of the function L(u,ζ ,ζ ):

L = ξ
i(τ)Y 1

1i(ζ ,ζ )−6ξ
i j(τ)Y 1

2i j(ζ ,ζ ), (15)

u =
1√
2

ξ
0(τ)− 1

2
ξ

i(τ)Y 0
1i(ζ ,ζ )+ξ

i j(τ)Y 0
2i j(ζ ,ζ )+ · · · , (16)

where the extra terms come from the existence of a non-vanishing Bondi shear,
given up to l = 2 terms, by

σ = 24ξ
i j(u)Y 2

2i j + · · · (17)

Note: Both ξ i(τ) and ξ i j(τ) are first-order quantities.
For later use we define (ξ i

R,ξ i
I ,v

i
R,vi

I) by

ξ
i = ξ

i
R + iξ i

I ,

vi = vi
R + ivi

I ≡ ξ
i ′.

Turning to the gravitational behavior, the relevant (for us) tetrad components
of the Weyl tensor [8; 9; 14]

ψ1 = −Ca′b′c′d′ l
a′mb′ lc′nd′ ,

ψ2 = −Ca′b′c′d′m
a′nb′ lc′md′ ,
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have the asymptotic form (the peeling theorem)

ψ1 =
ψ0

1 (u,ζ ,ζ )
r4 +O(r−5),

ψ2 =
ψ0

2 (u,ζ ,ζ )
r3 +O(r−4).

The leading terms have the harmonic expansion:

ψ
0
2 = ϒ +ψ

0i
2 Y 0

1i +ψ
0i j
2 Y 0

2i j + · · · , (18)

ψ
0
1 = ψ

0i
1 Y 1

1i +ψ
0i j
1 Y 1

2i j + · · · (19)

The mass aspect, defined by

is real and has the expansion

Ψ = Ψ = Ψ
0 +Ψ

iY 0
1i +Ψ

i jY 0
2i j + · · ·

The Bondi mass and linear momentum (four-momentum) is obtained from the
l = (0,1) harmonic components of Ψ by:

Ψ
0 = −2

√
2G

c2 M (20)

Ψ
i = −6G

c3 Pi. (21)

The complex gravitational dipole moment (roughly, mass-dipole + iangular-
momentum) is identified as being proportional to the l = 1 harmonic of ψ0

1 , i.e.,
as ψ0i

1 . (Many authors add further terms that are quadratic in the shear and its
derivatives to ψ0i

1 for this identification and we might have expected an ambiguity.
However because of our harmonic expansion assumptions they all agree with our
identification [8].)

The transformation (to second order) of ψ0i
1 to an arbitrary (complex) world-

line, analogous to Eq. (10), using Eq. (15), is [8]

ψ
∗0i
1 = (ψ0

1 −3Lψ
0
2 +3L2

ψ
0
3 .−L3

ψ
0
4 )|i (22)

ψ
∗0i
1 ' (ψ0

1 −3Lψ
0
2 )|i. (23)
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Setting ψ∗0i
1 = 0, thereby defining the complex center or mass, ξ i(u), yields

after a lengthy calculation,

ψ
0i
1 =−6

√
2G

c2 M
[

ξ
i(w)+ i

1
2

εk jlδ
ilvk

ξ
j
]
+Gi, (24)

where Gi is a known non-linear function of quadrupole terms.
At this point we make our only assumption on the physical system being con-

sidered. We saw that we could determine a complex center of charge or a complex
gravitational center of mass by setting either ϕ∗0i

0 or ψ∗0i
1 to zero. We now assume,

for the rest of this work, that the two complex world-lines coincide, i.e., the L, used
in Eqs. (23) and the Einstein–Maxwell version of the flat-space Eq. (10), are the
same. As we said earlier, this is a restriction on the source distribution. An exam-
ple of this occurs in the Kerr–Newman metric. Aside from taking Q 6= 0, there are
no other conditions on the internal structure of our source (particle).

We now turn to the dynamics, which are contained in the asymptotic Bianchi
identities which can be written as:

(25)

Ψ
· = σ

·
σ
·+ kφ

0
2 φ

0
2 (26)

k = 2Gc−4 (27)

From these two equations, (25) and (26), we extract the equations of motion
with the radiation reaction term. Rather than going through the details (long with
rather unattractive calculations) we will describe what we did in words and then
give the results.

We first extract from Eq. (25) its l = 1 part and then decompose it into its
real and imaginary parts. This yields two results: the imaginary part determines
the dynamics of the total angular momentum, i.e., the conservation of angular
momentum. Other than remarking that we identify Si = Mcξ i

I as the intrinsic spin
(with ξ i

I the imaginary part of ξ i), this is not our interest here and will not be
discussed any further. The real l = 1 part can be solved for the linear momentum
Pi that was sitting in the l = 1 part of Ψ :

Pk = Mvk
R−

2Q2

3c3 vk ′
R +W k. (28)

This is a major result that comes from our identification of the complex centers
of mass and charge. First of all we see kinematical expressions for the Bondi
3-momentum, the mv term and then the radiation reaction contribution to the
momentum. The W contains further kinematical terms involving spin and quadrupole
interactions that are known but not displayed here [8].

Extracting the l = (0,1) harmonics from Eq. (26) yields the Bondi mass and
momentum loss equations [8]:
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M ′ = − G
5c7 (Qi j ′′′

MassQ
i j ′′′
Mass +Qi j ′′′

SpinQi j ′′′
Spin)−

2Q2

3c5 (vi ′
Rvi ′

R + vi ′
I vi ′

I )

− 1
180c7 (Di j ′′′

E Di j ′′′
E +Di j ′′′

M Di j ′′′
M ) (29)

Pk ′ = Fk ≡ 2G
15c6 (Ql j ′′′

SpinQi j ′′′
Mass−Ql j ′′′

MassQ
i j ′′′
Spin)εilk

− Q2

3c4 (vl ′
I vi ′

R − vl ′
R vi ′

I )εilk +
Q

15c5 (v j ′
R D jk ′′′

E + v j ′
I D jk ′′′

M )

+
1

540c6 (Dl j ′′′
E Di j ′′′

M −Dl j ′′′
M Di j ′′′

E )εilk (30)

with the mass and spin quadrupoles related to the ξ i j by

ξ
i j = (ξ i j

R + iξ i j
I ) =

G
12
√

2c4
(Qi j′′

Mass + iQi j′′
Spin). (31)

The mass loss equation is thus exactly the usual quadrupole energy loss plus the
classical dipole and quadrupole electromagnetic energy loss.

In equations (29) and (30), to avoid too many new symbols, we have slightly
cheated on the notation: the repeated indices are to be treated as Euclidian scalar
products.

It is however Eq. (30) that is of most interest to us. By substituting the kine-
matical expression for the momentum, Eq. (28) into Eq. (30) we obtain our gen-
eralized Abraham–Lorentz equations of motion:

Mvk′
R + vk

RM′− 2Q2

3c3 vk ′′
R +Rk = Fk. (32)

Note that though it is similar to the Abraham–Lorentz equations there are
many differences that are hidden in the known but complicated expressions for M′,
Rk and Fk. The Fk is the Bondi recoil (or rocket) force due to the momentum loss,
while Rk can be considered to be a gravitational radiation reaction force depend-
ing on internal degrees of freedom spin and quadrupole moments. M′ has exactly
the classical dipole energy loss term plus two additional terms from quadrupole
energy losses. Though it is very hard to directly see if the solutions to Eq. (32) are
well behaved, in the conclusion we will discuss this issue in more general terms.
To even talk about solutions, one must assume that ξ i j is an arbitrary but known
function different from zero only on a finite range of u.

4 Conclusions

We have considered the situation of a gravitating - electromagnetic source of com-
pact support viewed from future null infinity. The only restriction made on the
distributions is that the total charge is non-vanishing and that the complex centers
of charge and mass coincide. Though it is not clear how severe this condition is, it
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certainly is a serious restriction. It has been shown that for this situation the gyro-
magnetic ratio, the ratio of the spin-angular momentum to the magnetic moment,
is that of Dirac’s, namely g = 2. We showed that in a manner completely analo-
gous to the flat space Maxwell case, one could determine the transformation laws
for the two dipole moments and thereby go to the center of mass/charge, determin-
ing a unique complex world-line. Then, using the Bianchi Identities, which play
the role of dynamical equations, we were able to give kinematical significance to
the Bondi linear momentum, in the sense that we had

−→
P = M−→v − 2Q2

3c3 Ev′+ · · · (33)

Remark The Bondi momentum
−→
P can be compared with the conjugate momen-

tum
−→
P = M−→v +q

−→
A arising from a Lagrangian formulation of particle dynamics.

If one computes the asymptotic value of the Lienard-Wiechert potential, it gives
− 2Q

3c3Ev′. Thus, our asymptotic formulation agrees with the Lagrangian or Hamilto-
nian formulation of a charged radiating particle.

From the Bondi momentum loss equation it immediately follows that we have
a generalized version of the Abraham–Lorentz equations of motion for an isolated
massive charged particle. It should be emphasized that the quadrupole quantity,
ξ i j(u), is arbitrary and in most cases it is taken as non-vanishing in a finite interval
so that the gravitational radiation exists also in a finite interval. If, however, the
motion, from Eq. (32), is unstable, the particle acceleration will be unbounded
and there will be an infinite energy loss via the electromagnetic dipole radiation.
This would be a physically unacceptable situation, indicating that something is
seriously wrong with the Einstein–Maxwell equations.

The question then is: does the general relativity (gravitational) contributions
to the equations of motion stabilize the equations? Though we do not see any
immediate prospects for a direct proof, we make a few comments. Looking at
Eq. (32), we see that the term M′v has the same form as in the Abraham–Lorentz
equation but now is more negative because of the extra radiation terms (electro-
magnetic and gravitational quadrupoles) and has the correct sign to try to stabilize
the motion. Whether or not it does stabilize is an open question and probably can
not be directly answered, even if the omitted higher order terms were included.

However there is an alternative approach to the issue: it is known that the
vacuum Einstein equations are stable in the neighborhood of Minkowski space.
If the same were true of the Einstein–Maxwell equations with compact sources,
that would constitute a proof that our physical system was indeed stable and the
run-away behavior was prevented by the inclusion of classical general relativity.
The reason for this is that runaway behavior would force infinite electromagnetic
dipole radiation and hence an infinite Bondi energy loss. Stable Einstein–Maxwell
solutions would not allow this.

Unfortunately, the stability of the Einstein–Maxwell equations with compact
sources is a difficult question and, to our understanding, the answer is unknown.
For either case, however, the results would be of potential physical significance.
In some sense, the issue of the stability of the Abraham–Lorentz equation is turned
into the stability of the Einstein–Maxwell equations.
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