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I. INTRODUCTION 

The bremsstrahlung produced in positron-electron collisions is of interest 

for the estimation of background in various processes: for positron annihilation 

in flight to produce a gamma ray beam’ and for colliding beam experiments. 

This work was originally undertaken as part of a calculation of the photon 

spectrum in the process e’ + e---r 2y which has been suggested as a means of 

producing a high energy, nearly monochromatic photon source with the Stanford 

two mile linear accelerator. 2 The complete spectrum requires calculation of 

two and three quantum annihilation, radiative corrections, and bremsstrahlung 

from the nucleus used to localize the target electrons. 3 Such an analysis 

indicates that the optimum photon production angles are near 90’ in the c. m. system 

(but only 0.008 rad in the laboratory for 15 BeV positrons). The results of this 

work are also of use in the analysis of wide angle e+ - e’ scattering experiments 

in the c .m. system which have been proposed as tests of quantum electrodynamics 

at small distances. 

For relativistic particles at forward angles, very satisfactory approximations 

to the bremsstrahlung spectrum can be made by analytically integrating only two 

of the eight lowest-order Feynman graphs, but it was not apparent that this would 

work at wide angles. Instead we did numerical phase space integrals of the exact, 

lowest-order differential cross section. Although the traces involved in the square 

of the matrix element (2 /Mi2) f or this process have been evaluated before, once 

by Votruba for pair production in the field of an electron4 and again by Hodes for 

electron-electron bremsstrahlung, 5 the application of the substitution rule to such 

long expressions is tedious and subject to error. Hence we started anew, using 

a computer program to reduce the Dirac traces algebraically to invariants and 

eventually to further simplify them. 



The results of the numerical integration over the phase space of the unobserved 

+ e - e- pair show that the small angle formulas are remarkably good even at 90°c m . . 

and that a simple empirical modification will give a 1 to 5% numerical fit to the 

exact spectrum except near the high energy end where other diagrams introduce 

a peak. Some numerical results are given to illustrate the accuracy of this and 

other approximation schemes; more extensive cross section tables are avail- 

able elsewhere. 6 The interest of this paper lies also in indicating some of the 

problems encountered in doing the numerical phase space integrals in the ultra- 

relativistic region, so the technical details and some general remarks about the 

use of computer programs in quantum electrodynamics are given in the Appendix. 

II. PERTURBATION CALCULATION 

In lowest order (cr3), the eight Feynman diagrams of Fig. 1 define the matrix 

element for positron-electron bremsstrahlung. We denote the initial electron and 

positron four-momenta by pl and p2 respectively, the final photon by k and 

the final electron and positron by p3 and p4 respectively. There are three 
1 

distinct types of traces in 2 JMI 2 ; once these are reduced to dot products, all 

other traces may be obtained by substitutions among the invariants. 

Before specifying these traces we introduce a shorthand notation. Let the 

particle propagators and projection operators be S(q) = (q’ y - m) -I and 

A(‘Pi) = (m*Pi ’ Y)/2 m, and the four possible internal electron momenta: 

ql = PI-k, q2 = k-p3, q3 = k + p3, and 44 = -k-p4. Then define the symbol 

Cicljl = [e’ YS(qi)3;, + YpS(clj)e* Y] 3 (1) 

where e is the polarization vector of the external photon. When the photon 

polarization sum is taken, . . . e . y . . . e l y . . . is replaced by . . . (-7,) . . . (r,) . . . . 
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Denote by A, B, and C, the three parts of E IM I2 arising from the two graphs of 

Fig. l(a) combined with those of Figs. l(a), l(b), and l(c), respectively: 

-4 
m A = (~2-~4) -4 trace(h(p3)13~ll~(Pl)[1~31 /trace/ h(-P2YY~A(-P4YYv) y (2) 

111% = (PZ-P~)-~ (~1-P3)-~ trace ] A (P,) I3Gl A (P&, WP~~~WP~)[~~~I 
i 

, (3) 

md4C = -(p2-p4)-2(p3+-p4)-2 trace 
I 
A (p,) [ 31.11 -1 A (P,) [ lLJ 21 fJ ~(-p2)Y~h(-Pq)Y, l 

I 

(4) 

With the following indicated substitutions, these three traces suffice to evaluate 

Z 1M12 (to verify this requires the fact that the trace of a string of Dirac matrices 

is equal to the trace of the string written in reverse order): 

m4 
c 

) Ml2 = A + A(pl+*- p4,p2-- P,) + A(P~++- P,) + A(Pl+‘- P,) 

pol. 
spins + 2B + 2B(pl+- - p,) + 2C + 2C(pl+-+ - P,) + 2C(Pl++P3, P2++P4, kHmk) 

+ 2c(p,-- p2, p3+--+- p4> k---k) . (5) 

The actual reduction of the three basic traces to dot products was done on an 

IBM 7090 computer by a machine language program written to do Dirac algebra 

symbolically. 7 With the conditions pi” = m2 and k2 = 0 imposed, the computation 

time was about 5 seconds per trace. In this case, A had 48 terms, and B and C 

about 120 terms apiece, resulting in almost 900 terms for the full expression of 

Eq. (5). Each term is a product of three dot products, divided by four propagator 

denominators. Using other identities, it was possible to combine or cancel (by 

hand) about 30% of the terms. The end result in Table I was achieved after the 

algebra program was rewritten to allow substitutions of linear combinations of 

invariants for individual dot products. 
-4 - 



A cross section is obtained by multiplying 2 1M12 by the phase space factor 

and dividing by the flux; to get the photon spectrum, we must integrate over the 

possible momenta of the unobserved final particles. 

d(cos 0) Pm4 ZlM12 (6) 

Note that the remaining phase space of the photon, w dwd CQ is separately 

invariant and can be evaluated in that frame in which the spectrum is desired. 

Since the kinematical constraints on p3 and p4 take a complicated form in the 

laboratory frame, we have chosen to do this integration in the frame where the 

3-vector part of p3 + p4 is zero. We shall call this the “special frame. ” In 

the special frame, the direction of 24 is arbitrary, and the energies of the 

final electron and positron are equal and are determined once the photon energy 

and angle and the incident energies are fixed in some system. We have chosen the 

z-axis of the special frame to be along & and 8 to be the angle between k - 

and &4 (see Fig. 2), so that d Q4 = d(cos O)d$. A straight -forward application 

of Lorentz kinematics gives the dot products in terms of m, 8, $, and the 

initial system quantities E , w, X (see Table II). Some numerical integrals of 

the exact expression for Z ]M12 (Eq. (5)) are shown in Table III in the column 

labeled “Exact , ” and the technical details of the integration are given in the 

Appendix. The accuracy of the numerical integrals is believed to be better than 

1% except in a few low energy (y << I), small angle cases marked by “*” which 

are probably 3 to 6% lower than the correct values. 
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III. DISCUSSION 

The numerical calculation of the exact cross section values in Table III is 

somewhat complicated and time consuming, so it was deemed desirable to develop 

fairly accurate approximate formulas for interpolation and extrapolation to nearby 

points in the spectrum. Two approximations were investigated: the first depends 

on the dominance of the propagators in determining the behavior of the integrand 

and the second on an empirical modification of a small angle formula. 

Perhaps the most striking feature of 22 [ Ml2 in the ultra-relativistic region 

is an extreme peakedness in directions near the minima of the quantities k l p3 , 

k* p4> m2-p2. p4, and m2 -pl . p3 which appear as propagator denominators. 

This corresponds to the tendency of electromagnetic processes to peak in the 

forward direction at these energies; most of the radiation occurs lvhen one of the 

final particles is only slightly deviated from its initial motion, or comes away 

near the photon direction. These peaks have made the numerical integration 

difficult, but have suggested an effective approximation motivated by the Schiff 

approximation to the Bethe-Heitler cross section for electron bremsstrahlung in 

the Coulomb field of a nucleus. 8 

The approximation consists of evaluating all the invariants, except the one 

whose minimum produces the peak, at the peak center and integrating the resulting 

function of the single invariant. In addition we make a small energy approximation, 

with 

y=t~k/(&t2+t.k)=w/wm,(lab)= w/E(c.m.)<<l * (7) 
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Consider the peak in q2 
2 =m -p2. p4 for the trace A. At q2 

I I 
min we have 

k-p3 M k 9 ~~(1 +k . p,/t 0 p2) which introduces considerable simplification for 

small y . Under these conditions the peak shape is 

A a q* (q2+ (l-k*P2/t*P2) 1q21min ) l (8) 

Instead of the q 
-4 behavior of potential scattering, there has been a cancellation 

in the numerator to produce a q 
-2 peak with still further cancellation at the center 

which introduces a J’crater” of several orders of magnitude. 
9 Such cancellation 

may be understood qualitatively on the basis of helicity conservation in the 

electron-photon interaction. 10 Doing the same thing for __k.m-F3Y--md 

by symmetrizing the formula to include the other two propagators, we obtain 

From the numerical values of Eq. (9) in column “Wide” of Table III, we see that 

the approximation is remarkably good as y approaches 1 and that the major con- 

tribution to the cross section comes from only a few of the traces in c/M12. 

Strictly speaking, this +pproximation does not include interference terms from 

trace B so that the close agreement with the exact values at 90,” m indicates an . . 

overestimate. The overestimate worsens at small angles since the peaks are 

treated independently, whereas in fact the electron and photon propagator peaks 

coalesce. 

In small angle, small momentum transfer bremsstrahlung, the process is 

dominated by radiation from the incident lepton. This is described by neglecting 

all but the two graphs of Fig. l(b), leading to a trace of type A. Theoretical 
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arguments that the contributions from other terms should be less than a few per- 

cent for 
11 

X,, < 0.1 have been given by Altarelli and Buccella. The integrals 

involved for the trace A are elementary but tedious and there is a large cancel- 

lation between the integrals coming from terms containing q4. What is sur- 

prising is that the result, when symmetrized to include the graphs of Fig. l(a) 

but not the interference term (see Table III, column ” s AA”), should come so 

close to the exact result at all angles. The effect of including the interference 

term (trace B) in a numerical integration is given under “JABA” in Table III, 

showing that the annihilation graphs (Fig. l(c, cl)) can be neglected for y < 0.8 = 

to an accuracy of a few percent. However, for w very close to wmax , the 

graphs of Fig. l(c) dominate the cross section; this will be discussed below. 

At forward angles, the analytic integral of the trace A (Eq. (2)) can be con- 

siderably simplified. This has been done by Altarelli and Buccella: 
11 

and by Tsai: 1 

d2a ar2 m20 0 
dwdi;2= 

27@* P2)2 
(1-+(1-~)~) + 8(1-y) (2-Y12 

10, ;g + (l-y) l-5 
( 

-9 , 
t2 5 )I 

The parameter [ = k a p2(t2+ 2t. k)/ m2t. k approaches 1 as y and x both 

(11) 

approach 0. The discrepancy between the two formulas is as high as 7% at 
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small angles; a numerical comparison with the unapproximated integral indicates 

that Eq. (10) is probably correct. The formula of Altarelli and Buccella is 

identical to Schiff’s approximation when the effect of screening is omitted in the 

latter. 12 At wide angles these formulas must be symmetrized (pl- p,) to include 

the backward angle peak and both formulas give essentially identical values (see 

Table III, column “Small”). They give an overestimate near 90°c ,when compared . 

t0 ~‘JAA”, since negative contributions from terms in (k * p4)-‘and (m2-pl*p3) -1 have 

been ignored in the small angle approximation. The neglected terms and the contribution of the 

interference trace proved difficult to estimate for large y; it was felt better to 

devise a fudge factor to apply to the symmetrized Eq. (10) in order to reproduce 

the exact integral, rather than to take a selection of the neglected terms from 

SAA. One possible form is 

d2c 
dwdSl= 1 - 0.09 (l+y) sin X c 113, (lo), symmetrized plW p2 (12) . 

The agreement between the values of this numerical fit and the exact integral 

(compare “Fudge” and “Exact” in Table IIIa) is typical of that obtained for laboratory 

energies between 2 and 30 BeV; the worse fit in Table IIIb,c suggests that the 

numerical coefficient of sin Xc m is energy dependent. . 

Near the tip of the bremsstrahlung spectrum (for y> 0.999), the process is 

dominated by the annihilation graphs of Fig. l(c) whose photon propagator t2 

is approaching 4m2. This gives a spike of the same (l-y) -1 shape as the two 

and three quantum annihilation spectrum with its radiative corrections, 3 but 

- whose.integrated contribution ” is several orders of magnitude below the annihila- 

tion cross section. The phase space integrals in this case are . 
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SA(P2*-P3) da4 = 3 (z+;)(1+;)+&t.2pl 

I 

f t4 
s(k.Q2 

Bl 

: 

where z = km p2/k. pl and x = t2/2m2. Near the tip, the bremsstrahlung spec- 

trum is well approximated by 

d2a 
ii7zmM 3T(P1* P,) 

0 (14) 
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APPENDIX 

The historical development of this work has been in a somewhat anti-logical 

order, as refinements were added to surmount various difficulties which appeared. 

It had been originally hoped that we could simply grind out numerical integrals of 

the traces produced by the computer program, giving numerical values for the 

photon spectrum in the regions where the small angle approximations were not 

expected to hold. This was frustrated by round-off errors and the extreme 

variation of the integrand which caused poor numerical and temporal convergence 

of the integrals until parts of the calculation were done in daxble precision and a 

change of variables devised which smoothed out the integrand. The first expres- 

sions for the basic traces of ClMl’ remained an unintelligible jumble of terms 

until the capacity of the trace program was increased to allow substitutions of 

linear combinations of terms for invariants. Then the traces could be reduced 

to functions of a minimal set of invariants, and after considerable juggling, in 

which guesses for simplified forms were subtracted from the traces and then 

refined by analyzing the residue, the expressions of Table I were produced. The 

substitutional symmetries of the traces helped to suggest which variables and 

forms to use for the guesses. It is a simple matter to produce arithmetic 

expressions automatically from the output of the trace program which are then 

acceptable compiler input for subsequent numerical calculations. 

A computer is ideally suited for the bookkeeping involved in the analytic 

evaluation of matrix elements. One might therefore expect that it could-be used 

to evaluate many higher order quantities in quantum electrodynamics. Aside from 

the inordinate complexity of the intermediate results, one further trouble is that 

we have no algorithms for handling graphs with multiple, closed, internal loops. 

- 11 - 



Such graphs, even if they are first obtained analytically, will probably have to 

be evaluated numerically. Thus the following discussion of the details of our 

. numerical work may have some general interest if the singularities encountered 

in the general graphs are similar to those in our problem, and it will be of 

particular interest to anyone who might wish to compute other points in the 

bremsstrahlung spectrum. 

There are two principal sources of computational errors. (1) The numbers 

are represented by finite strings of digits; if the final answer is the result of a 

near cancellation of several terms, there can be appreciable round-off error. 

(2) A numerical integration of a rapidly varying function such as C[MI 2 may be 

inaccurate because the mesh points miss important regions of variation of the 

integrand. 

We have estimated the errors of type (1) by calculating CM I I 
2 at various 

points (0, 4 in special frame) in double precision and comparing this to ,$‘I1 2 

calculated at the same point, but in single precision. 
14 Our conclusion is that 

the “single precision” calculation gives at least one or two significant decimal 

digits in the worst case (in the depressions near the center of the peaks, in 

regions contributing about 8% to the total integral), and that the round-off error 

in the final answers is less than 0.1%. 

The final state integration was initially attempted with respect to d(cos 0) d$ , 

using a recursive Simpson’s rule. This algorithm refined the mesh in regions of 

rapid variation of the integrand until a specified agreement was obtained between 

two successive approximations. 15 Blind application of this routine gave very poor 

accuracy; apparently sometimes one of the peaks was completely missed. By 

requiring that the initial trial mesh contain several points in the vicinity of each 

maximum, we obtained more accurate answers, but excessive computation time 
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was needed to get better than 10% accuracy for small angle, small photon energy 

points. At such points, the convergence of our integral routine was not completely 

satisfactory because of the extreme variation ofZ/MI 2 near a maximum. It was 

suggested to us that by a transformation of variables, equal intervals of integration 

could be made to have approximately equal contributions to the final answer. 161n 

other words, by introducing a variable change of scale, the integrand can be made 

much smoother and better convergence results. In principle, the recursive mesh 

refinement also spends approximately equal times sampling the integrand in 

regions of equal contribution to the integral; it turned out to be less efficient in 

practice under conditions of extreme variation. The numerical answers obtained 

by using this change of variables are extimated to be accurate to 1% except for a 

few points at small X and small y (these points are marked by a ‘I * I’ in Table III, 

and are probably 3-6s low). This estimate of accuracy is based on a comparison 

of the numerical and analytic integrals of the part of xiM12 used in the approximations 

discussed in the article (s AA). Since this truncated integrand closely resembles ’ 

the exact expression, we assume that the exact integral is also accurate to 1% when 

the comparison on the truncated integrals shows this accuracy. 

We now indicate the exact nature of the change of variables used to smooth out 

the integrand. Bear in mind that the integrand is approximately proportional to an 

appropriate q -2 near a peak. For the electron propagators, k-p3 and k.p4, the 

maxima occur at 0=0, r and the integrand is approximately constant in $. The 

substitution is 

q2 = ai b cos 6’ = be” 

b d(cos 6) d+ = f q2 dud+ . (16) 

In the photon propagators, the peak is associated with Q = 0 and 

c0se = a 
1 -(t*pl-t2k*pl/t*k) ((t.p1)2-m2t2)-- 

(15) 

(17) 
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cos e2 % = (t*p2-t2k.p2/t.k)((t~p2)2-m2t2)-SM , (18) 

We put 

q2 = a-b(cos ei cos 8 + sin ei sin 8 cos $) = a’-b’ cos $ (1% 

tan 8 $I = (al-b’)’ (a’+b’) 
-3 

tan v (20) 

tan 4 (O-Oi) = (a-b) ’ (a+b)-’ sinh u (21) 

d(cos 6’) d 4 = -4c12(a+b)-* (a’+b’)-* sin8 cos 4 (0-0, ) dvdu . 

(22) 

The integration was done by iteration of single integrals, with Jd$ or Jdv 

performed first. Note that since the integrand depends only on cos Q , 

Jb”” d$ = 2 ./Id+ . 

Because of the difficulty in obtaining convergent, accurate numerical integrals, 

our conclusion is that any computer evaluation of complicated matrix elements 

cannot ignore physical insights about possible singularities. In particular, a 

17 program designed to evaluate any arbitrary (lowest-order) process is feasible, 

but if it is to be useful over the range of energies presently available experimentally, 

it will probably have to perform arithmetical operations in double precision and 

include some means of locating and treating carefully the near zeroes of propagator 

denominators. Perhaps bremsstrahlung is a hard test case, since photon 

propagators are generally much more singular than electron propagators. 
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TABLE I 

The computer generated traces from Eq. (2-4). Note that twice the interference 

traces (2B, 2C) are given and that the m -4 from the particle projection operators 

has been factored out in the definitions of A, B, and C. We use the abbreviated 
symbols: Kl = k.pl, K2 = k. p2, K3 = k.p3, K4 = k,p4, Q = m2 

Q1 = m2 - pl.p3, S = pl*p2, U = 4 t2, V = p3*p4 . 
- P2’p4~ . 

A=-% ’ m2 (l/K: + l/I$) + l/Kl-1/K3- (S + V + Q + m2) /KlK3 -m2QN2 (S/K3-V&-l) 2 

-Q-l [m2(1/K3-l/Kl)(m2(1/K3-l/Kl) + 1 f S/K3-V&) + V/K3-S/K1 

+ (s2 + VT /KlK3 + f (K3/Kl+Kl/K3) (1 f m”/Q)] 

2B = (l/Q&‘) &KlK2” 1/K3K4)(S+V) [(S+v)(S+V+Q+Q7) +Q2+Q12+2m2 ($+&‘)I 
.I 

-&‘K~K~+~~K~K~)(s+v+Q t-&r) [(S+v+Q +Q7)2+ 2S2+2V2+4m2(Q+Q’)] 

+;~s+v+Q+B’) + &JXl/K4+K4/Kl+ K2/K3+K3/K2)(S+V-Q-Q') 

1 2 --m 2 
(Q+Q’i-2s+2v)(1/K3+1/K4-1/Kl - 1/K,, 

+ c2+Kq)(l/Kl+l/K3) + CKl+K3)(l/KZ+l/K4) 
Ii 

2C = (l/QU) ((Q+q2 - m4)[-m2/Kf+2/K2-2/K3+V/KlK2- (Q -m2)/K1K3 ! 
1 

-I- (m2-Q-U - 3Kl) /K 2 K 31 +v[ (3&+ 3U - K4) /Kl - 3 
3 

+ f (l/K2 - 1/K3) [ (Q+U)(5Kl+3K4)+Kl(2Kl+K4)+K4(K4+m2-2m2(Q+U+m 

+!j (U/K2-Q/K3) [(2Q+2U-m~(l+Kq/Kl)+Kl+K~/Kl] 

- (Kl/K2K3) Kl (3Q+3U+Kl) - 3m2 
- 



. 

TABLE II 

Dot products and related kinem;ittical quantities as functions of m, 0, E, X ,Q, Cp . 

In the laboratory frame, the incident positron @3 has energy E and the incident 

electron (pl) is at rest with energy m, whereas in the center-of-mass frame, 

both incident particles have energy E. In either frame, a final photon of energy 

0 is emitted at an angle X from x2; urnaX is the maximum possible photon energy. 

The spatial direction of the final positron (p4) is given by the angles 8, @ in the 

special frame. The quantities t, P, /3 are auxiliary variables, introduced only 

for convenient e. 

tp = @3 + P,) 
P 

/3 = (1 -4m2tW2)$ 

Laboratory frame quantities: 

Pl’P2 = mE k-p1 = ma k*p2 = w(E -P cosx) 

u max= m(E-m)/(m+E -P cosx) 

Center-of-mass system quantities: 

pl.p2 = E2 +P2 k.pl = w(E+P cosx) k.p2= w(E-P co&) 

urnax= E - (m2/E) 

Other dot products: 

t-k= k-p1 + k.p2 

12 2 p3.p4=Tt -m 

t 2 = 2(m 2 -t= pl*p2 -t-k) 

2 
tmp2= m + pl*p2 - k.p2 

k*p3= +k(l +/?cos@ k-p4 = t. k - 1~. p3 
- 

+iBsini?cos Q(t.k)-’ 
( 
t2(t2 + 2t* k)km pl(k* p,) - m2t2(t* k)2 - :. 

pl.p3=+t2+k*p3 - P2’ P3 

p2.p4 = pl.p3 + k .pl- k-p3 

p1’p4=+t2+k.p4 - P2’P4 
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TABLE IV 

Additional parameters for each of the photon laboratory angles X of Table IIIa. 

The lowest order annihilation cross section da/dQ(e+ + e-+27) is given in 

millibarns/sr in the laboratory for an incident positron ener,v of 15 BeV (the 

corresponding c. m. energy is 126 MeV) . Radiative corrections depend on the 

experimental resolution and so are omitted. The monochromatic photon energy 

wy is essentially equal to amax for the bremsstrahlung process. The cor- 

responding center-of-mass angle is Xc m . . and z = km p2/k’p1 is a convenient 

dimensionless parameter to express the angular dependence in the wide angle 

range. 

X 

P-G 
.002 

.003 13.25 239. .697 .132 

* 005 

.008 

.012 4.820 10.6 1.94 2.11 

9 
(Bev 
14.17 

10.97 

7.734 

d a/d9 

@Wsr) 
605. 

X c. m. 2 

Wcr, 
.475 .059 

65.7 1.09 . 367 

21.2 1.54 .939 


