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1 Introduction and summary

Throughout the last decades, the topic of black holes in higher dimensional spacetime with

D > 4 attracted a lot of attention. Special focus was devoted to the study of D-dimensional

black objects in spacetimes with one periodic dimension, called Kaluza-Klein black holes.

In this context there are various solutions to Einstein’s vacuum equations with different

horizon topologies, such as black strings and localized black holes. The former are extended

along the entire compact dimension while the latter are localized there.

Uniform black strings are unstable below a certain mass [1, 2]. From this instability

the branch of non-uniform black strings arises, which a number of authors have constructed

in different dimensions using perturbative and numerical techniques [3–12]. However, ther-

modynamic arguments show that localized black holes are a more stable configuration for

small masses. Such solutions have been constructed perturbatively and numerically only

in D = 5, 6 [8, 13–21] and recently in D = 10 [12]. Altogether this leads to an interest-

ing and rather involved phase diagram of static Kaluza-Klein black holes. Good reviews

summarizing the scientific progress in this realm can be found in references [22–25].

In particular, recent work shed new light on this topic, showing that the solution

branches of non-uniform black strings and localized black holes converge towards each

other and that this transition is controlled by complex critical exponents [10, 11, 21].

Interestingly, this critical behavior can be deduced from the so-called double-cone metric,
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which Kol proposed as a local model of the transit solution between non-uniform black

strings and localized black holes [26, 27].

While these recent results only concern the dimensions D = 5, 6, the present work

concentrates on the construction of localized black holes in D = 10 based on the methods

presented in [21]. Special attention is devoted to the critical regime, where the poles of

the horizons are about to merge along the compact dimension. In particular, we show

that the critical regime in D = 10 is approached in a qualitatively different manner than

for D = 5, 6, i.e. without oscillations. Moreover, the obtained value of the real critical

exponent is in excellent agreement with the value that was predicted by Kol [26, 27].

In a second strand of the paper we investigate the phase diagram of maximally su-

persymmetric, two-dimensional super Yang-Mills theory (SYM) on a spatial circle S1 at

strong coupling by the virtue of the AdS/CFT correspondence [28, 29]. Due to the relation

of the D = 10 dimensional black hole and black string solutions to thermal states of the

SYM [12, 30, 31], we are able to determine the phase diagram of the dual quantum field

theory. While black strings correspond to spatially confined phases, the localized black

hole solution is dual to a deconfined phase. We locate the first order phase transition be-

tween deconfined and confined phases in the microcanonical and canonical ensemble with

extraordinary accuracy. In addition, we calculate the latent the heat of the phase transition

and find a critical behavior where the two meta-stable branches merge. All together, these

quantities provide valuable predictions for calculations within lattice quantum field theory

(see e.g. [32–34]).

The paper is structured as follows: we review the physical setup for localized black

holes in ten-dimensional asymptotically flat spacetimes in section 2. As in reference [21],

the heart of our numerical implementation is a multi-domain pseudo-spectral method. In

section 2.2 we present our main results and compare the extracted critical exponent with

the theoretical predictions. As a second strand of the paper we study two-dimensional

maximally supersymmetric Yang-Mills theory using the conjectured gauge/gravity duality

in section 3. In particular, we determine its phase diagram in 3.1, and investigate the

critical regime in the dual SYM in section 3.2.

We provide supplementary material in appendix A concerning the numerical imple-

mentation and the calculation of the phase transition points. Moreover, in appendix B

we review the supergravity description of the two-dimensional maximally supersymmetric

Yang-Mills theory and its regime of validity.

Note added: while this paper was being completed we became aware of upcoming work

discussing similar issues [35].

2 Localized black holes in ten dimensions

This section is devoted to localized black hole solutions arising from pure general relativity

in ten dimensions with one compact spatial dimension. The ansatz for their numerical

construction is outlined in subsection 2.1, while we postpone a more detailed description of

the numerics to appendix A. We utilized the numerical scheme developed in reference [21]
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and only made some minor adaptions. We present the results of our computations in the

localized black hole context in subsection 2.2.

2.1 Ansatz for the metric

We consider ten-dimensional solutions of Einstein’s vacuum field equations Rµν = 0, where

one of the spatial dimensions is curled up to a circle of size L. The simplest solution reads

ds2 = −dt2 + dx2 + x2 dΩ2
7 + dy2 . (2.1)

Obviously, there is a spherical symmetry on the spatially extended dimensions with the

radial coordinate x ∈ [0,∞]. The additional coordinate y is compact, y ∈ [0, L], and

periodically identified, i.e. y ' y + L. This metric is a direct product of nine-dimensional

Minkowski spacetime and a circle S1. Therefore, it serves as the background metric, which

all other solutions shall approach in the asymptotic limit x→∞.

Keeping the spherical symmetry and, moreover, restricting ourselves to static solutions,

a general metric ansatz which incorporates the required symmetries reads

ds2 = −Ta dt2 +Aa dx2 +Ba dy2 + 2Fa dx dy + x2Sa dΩ2
7 . (2.2)

The five metric functions Ta, Aa, Ba, Fa and Sa depend on x and y. We obtain two

asymptotic charges, the mass M and the relative tension n, from the subleading behavior

of the metric (2.2) at infinity. In fact, these two quantities are related to the coefficients ct
and cy defined by

Ta ' 1− ct
L6

x6
, Ba ' 1 + cy

L6

x6
, (2.3)

in the following way

M =
L7 Ω7

16πG10
(7ct − cy) , n =

ct − 7 cy
7 ct − cy

. (2.4)

Note that the relative tension describes the force by which an object tries to compress the

compact dimension.

There are at least two types of static black hole solutions in Kaluza-Klein theory:

black strings, which are extended all over the compact dimension and localized black holes,

which are smaller than the compact dimension. For the latter ones, being the subject of

this work, the coordinates used in the metric (2.2) are not appropriate to describe their

near horizon behavior, since the horizon is some curved contour in the (x, y)-plane. For

this reason, we introduce polar coordinates (%, ϕ) via x = % sinϕ and y = % cosϕ, and

rewrite the metric as

ds2 = −κ2 (%− %0)2 Th dt2 +Ah d%2 + %2Bh dϕ2 + 2 %Fh d% dϕ+ %2 sin2 ϕSh dΩ2
7 . (2.5)

The functions Th, Ah, Bh, Fh and Sh depend on % and ϕ, and are connected with their

counterparts of the metric (2.2) in a linear way. By the extraction of the term κ2(%− %0)2
from the tt-component of the metric we ensure that the horizon is located at x2 + y2 =

%2 = %20. In fact, this is only a gauge choice in a sense that we want the horizon to have
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Figure 1. Phase diagram of 10-dimensional localized black holes in the microcanonical (left) and

canonical (right) ensemble. We plot the difference of entropy and free energy, respectively, to the

corresponding values of the uniform black string, which is thus represented as the blue zero line in

these diagrams with the black circle indicating the solution where the Gregory-Laflamme instability

arises. The branch of localized black holes, represented by the red line, is thermodynamically favored

over the uniform black strings for small masses or high temperatures.

a spherical shape in the (x, y) chart but the ‘true’ horizon shape will not necessarily be

exactly spherical. Thus, the parameter %0 does not have a specific physical meaning. In

contrast, the surface gravity κ determines physically inequivalent solutions.

Our numerical approach to find localized black hole solutions relies both on the met-

ric (2.2) and the metric (2.5), which we call the asymptotic and the near horizon chart,

respectively. This has the advantage of having coordinates and metric functions that are

well suited to different regions of the spacetime. We postpone an outline of the numerical

scheme to appendix A.

Besides the asymptotic charges there are some more physical quantities of interest, in

particular the temperature T and the entropy S of the black hole. While the temperature

is simply related to the surface gravity via T = κ/(2π), the entropy is proportional to

the surface area of the horizon. In what follows we consider the following dimensionless

normalization of the physical quantities:

M̃ =
G10M

L7
, T̃ = TL , S̃ =

G10 S

L8
. (2.6)

2.2 Thermodynamics and critical behavior

We show the phase diagram of localized black holes in ten dimensions in figure 1 for

the microcanonical and canonical ensemble. The comparison with uniform black strings

reveals that localized black holes are thermodynamically favored for small masses and

large temperatures. Note that reference [12] did already show this picture qualitatively

and, moreover, included the non-uniform black string results into the diagram.1 However,

we were able to extend the localized black hole solutions much closer to the end point of

this branch, where a transition to non-uniform black strings is expected. Moreover, we are

1In ten dimensions the non-uniform black string branch is at no point thermodynamically favored. This

changes in higher dimensions, see references [5, 9, 36].
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Figure 2. Local convergence towards the double-cone horizon shape. We embed the horizons of

different localized black holes solutions into nine-dimensional flat space and display two-dimensional

cross-sections disregarding the seven-dimensional spherical symmetry. The non-trivial directions X

and Y correspond to our spacetime coordinates x and y. In the region close to the edge of the

compact dimension, Y . YL/2, we see that the shape predicted by the double-cone metric (dashed

line) is nicely approached by localized black hole horizons (green lines) for increasing mass or

decreasing temperature, respectively.

able to extract the position of the first order phase transition (the point where the uniform

black string branch and the localized black hole branch cross each other) from our data

with high accuracy by distributing the data points around this intersection on a Lobatto

grid, see appendix section A.4 for more details. In the microcanonical ensemble we obtain

M̃PT = 0.01369926356406(1) , (2.7)

whereas in the canonical ensemble we get

T̃PT = 1.267669090870(1) . (2.8)

We now turn our attention to the end point of the localized black hole branch. Follow-

ing this branch it turns out that the black hole horizon spreads more and more along the

compact dimension. The transition to non-uniform black strings is believed to be controlled

by the so-called double-cone metric [26], which is a local model of the spacetime at the

point where the poles of the localized black hole touch each other. Indeed, figure 2 shows

how the localized black hole horizon approaches the double-cone locally. These horizon

shapes were obtained by embedding the horizons of different localized black hole solutions

into flat space, cf. references [21, 25] for more details.

Another interesting conjecture in the context of the double-cone metric is the occur-

rence of critical exponents that control the thermodynamics when the black hole/black

string transition is approached [26, 27]. More concretely, we expect a certain physical

quantity p in this regime to scale as

f − fc = AQ−s+ +BQ−s− , with s± = −D − 2

2

(
−1± i

√
8

D − 2
− 1

)
, (2.9)

where Q is a typical length scale controlling the transition, a and b are constants and

fc is the value of the quantity f at the transition.2 While for dimensions D < 10 the

2Note that this result can be obtained by perturbing the double-cone metric and solving the correspond-

ing ordinary differential equations [26].
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f fc b a1 a2

M̃ 0.020404622 4.0009 0.2125 -1.1380

n 0.019873805 3.9999 -7.8223 -6.1737

T̃ 1.205852954 4.0006 -0.5245 10.8728

S̃ 0.014764118 4.0009 0.1757 -0.9440

Table 1. Fit parameters for the function f(Q) = fc−Qb (a1 +a2 logQ) where f stands for different

physical quantities and Q = LA/L. The fit parameters were determined using all data points with

Q . 0.02.
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Figure 3. Scaling of mass. We show the rescaled mass M̃ as a function of the normalized proper

distance between the poles Q = LA/L (left). To illustrate the remarkable agreement of data points

and fit, we plot the mass difference ∆M̃ = M̃0 − M̃ divided by g(Q) = a1 + a2 logQ against Q in

a double logarithmic diagram (right).

exponents s± are complex and hence lead to damped oscillations of physical quantities, they

become purely real for D ≥ 10. For D = 5, 6 this expectation was explicitly confirmed in

reference [21]. In the case considered here, D = 10, the exponents s± degenerate, s− = s+,

and hence the scaling law (2.9) has to be modified as follows

f(Q) = fc −Qb(a1 + a2 logQ) , (2.10)

with b = 4. Moreover, a1 and a2 are constants.3

In order to check this conjecture we follow reference [21] and fit our data for the ten-

dimensional localized black holes with the ansatz (2.10) leaving fc, b, a1 and a2 as free

parameters to be determined by the fit routine. We use the proper distance between the

poles LA as the length scale to describe the transition, as LA = 0 when the transition is

reached. Accordingly, we set Q = LA/L. Table 1 shows the obtained fit parameter values

for different physical quantities. Most importantly, the theoretical predicted value b = 4 is

confirmed to great accuracy. Moreover, we display the good agreement of data points and

fit exemplarily for the mass in figure 3.

3Note that the term logQ is a consequence of the degeneracy of the solution of the corresponding

ordinary differential equation.
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3 Thermal states of N = (8, 8) SYM and localized black holes

Via the renowned gauge/gravity duality conjecture, Kaluza-Klein black holes in D = 10

are related to thermal states of a two-dimensional N = (8, 8) supersymmetric Yang-Mills

(SYM) theory compactified to a circle S1 with gauge group SU(N) in the large N limit.

In particular, localized black holes correspond to a spatially deconfined phase within the

SYM, while black strings are related to spatially confined phases.

Note that the aforementioned SYM can be characterized by three dimensionless quan-

tities: the rank of the gauge group N , the dimensionless ’t Hooft coupling constant4

λ = Ng2YML
2 and the dimensionless temperature T given by the product of the ordinary

temperature and the length of the circle L. In the following, we denote the (dimensionless)

thermodynamic quantities of the SYM by U for the energy, T for the temperature and S
for the entropy.

According to [12, 30, 31], the localized black holes and black strings in D = 10 di-

mensional asymptotically flat spacetime with one compact periodic dimension discussed in

section 2 can be related to the gravitational dual solution of SYM states by employing the

following solution generating technique:

(i) First, we lift the D = 10 dimensional solutions of vacuum Einstein equations discussed

in section 2 to D = 11 dimensions and perform a boost in the new coordinate, followed

by a subsequent Kaluza-Klein reduction.

The result is a solution in type IIA supergravity. Concretely, the localized black hole

solutions in D = 10 with R1,8 × S1 asymptotics correspond to localized D0-branes in

type IIA supergravity.

(ii) As a next step a T-duality transformation is applied, which converts the type IIA

supergravity solution into a type IIB supergravity solution.

(iii) As a last step we take the decoupling limit between the string and gravitational length

scales on the type IIB gravity side, which corresponds to taking the limit N → ∞
with λ fixed on the SYM side, and to consider the large λ limit in a second step.

The details of the decoupling limit are rather complicated and we refer the reader to the

references [12, 30, 31] and appendix B for a thorough description of the underlying limits

and an analysis on the validity of the supergravity description of the SYM states.

We determine the phase diagram of the N = (8, 8) SYM compactified to a circle S1 in

section 3.1 by applying the solution generating to the ten-dimensional localized black holes

in asymptotically flat spacetime. In particular we locate the first order phase transition

to very high accuracy. Moreover, in 3.2 we interpret the critical regime between localized

black holes and non-uniform black strings as an emergent critical scaling behavior related

to the first order phase transition where the two meta-stable branches merge.

4Note that the Yang-Mills coupling constant gY M has the dimension of energy in two-dimensions.
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Figure 4. Phase diagram of N = (8, 8) SYM on a circle with length L in the microcanonical (left)

and canonical (right) ensemble. We plot the difference of entropy and free energy, respectively, to

the corresponding values of the uniform branch, which is thus represented as the blue zero line in

these diagrams with the black circle indicating the solution where the Gregory-Laflamme instability

arises. The localized branch, represented by the red line, is thermodynamically favored over the

uniform branch for small masses or small temperatures.

3.1 Thermodynamic quantities

As a result of the solution generating procedure, we can relate the thermodynamic quanti-

ties of the SYM to the thermodynamic properties of the Kaluza-Klein black holes. In partic-

ular, considering the normalized quantities Ũ = U ·λ2/N2, T̃ = T ·λ1/2 and S̃ = S·λ3/2/N2,

we obtain (cf. reference [12])

Ũ = 64π4
(

2M̃ − S̃T̃
)
, T̃ = 4

√
2πS̃1/2T̃ 3/2 , S̃ = 16

√
2π3

√
S̃

T̃
. (3.1)

The free energy F of the canonical ensemble and its normalized version F̃ = F ·λ2/N2 are

given by F = U − ST and F̃ = Ũ − S̃T̃ .

Figure 4 shows the phase diagrams of the microcanonical and canonical ensembles of

the uniform and localized phases of the N = (8, 8) SYM. For the microcanonical ensemble,

we see that the localized phase is thermodynamically preferred over the uniform phase up

to some threshold value of the normalized internal energy ŨPT , where the uniform phase

starts to dominate. There is a first order phase transition, where the entropy of the

uniform phase exceeds the entropy of the localized branch. We have a similar picture when

considering the canonical phase diagram. Here, lower values of the free energy F̃ correspond

to the thermodynamically preferred phase. Accordingly, we see that the localized phase

is dominating for small values of the normalized temperature T̃ . As before, the uniform

phase becomes thermodynamically preferred at some threshold value T̃PT . We remark that

including the SYM phases corresponding to non-uniform black strings will not alter this

picture of thermodynamic stability, since the related branch is thermodynamically inferior

for all configurations, as can be seen from the data presented in reference [12].

With the procedure described in appendix section A.4 we determine the first order

phase transition between the localized and the uniform phase in the microcanonical en-
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f fc b a1 a2

Ũ 143.42290 4.0009 1362 -8100

T̃ 2.8593686 4.0008 15.46 -52.60

S̃ 77.632071 4.0008 480.1 -2831

F̃ -78.555803 4.0010 -1188 4088

Table 2. Fit parameters for the function f(Q) = fc−Qb (a1 +a2 logQ) where f stands for different

physical quantities and Q = LA/L. The fit parameters were determined using all data points with

Q . 0.02.

semble to be at

ŨPT = 96.9053906163(1) . (3.2)

For the canonical ensemble we find

T̃PT = 2.451118333749(1) . (3.3)

Both values are in good agreement with reference [12] which determines ŨPT ≈ 97.067 and

T̃PT ≈ 2.451. Moreover, the latent heat associated with the first order phase transition

between localized black holes and uniform black strings (UBS) is given by

∆Q̃ = T̃PT ·
(
S̃UBS − S̃

) ∣∣∣
T̃ =T̃PT

(3.4a)

= T̃PT ·
∂
(
F̃ − F̃UBS

)

∂T̃

∣∣∣
T̃ =T̃PT

(3.4b)

where S̃(T̃ ) is the normalized entropy associated with the localized black holes. Utilizing

again the procedure described in appendix section A.4 we determine the latent heat to be

∆Q̃ = 9.47738683316(1) . (3.5)

Note that this value was obtained from equation (3.4a). We also evaluated equation (3.4b)

and only found deviations within the last two digits compared to the value given in equa-

tion (3.5), which is completely expected since in this case we have to perform a numerical

derivative of the free energy.

Again, when approaching the end point of the localized branch, the physical quantities

show a scaling behavior, reminiscent of the one for the localized black holes in ten dimen-

sional Kaluza-Klein geometries. While this is expected from the gravitational point of view,

cf. reference [27], this is surprising from the field theory perspective. To our best knowl-

edge, we are not aware of results in the literature concerning an emergent scaling behaviour

with real critical exponents when the two meta-stable branches merge into each other.

In table 2 we list these unexpected critical exponents (see third column) which were

obtained by fitting our data with the same ansatz (2.10) as we used for the localized

black holes.
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3.2 Lessons for the dual SYM

We obtained the phase diagrams of the localized and uniform phases of the two-dimensional

N = (8, 8) supersymmetric SYM theory compactified to a circle S1 with gauge group SU(N)

in the large N limit from the corresponding localized black hole and uniform black string

solutions. The localized branch was found to be predominating for small energies or temper-

atures, whereas the uniform phase becomes thermodynamically favored at some threshold

values of the energy ŨPT or temperature T̃PT . We obtained the threshold values with

unprecedented accuracy and additionally computed the latent heat ∆Q̃ of the related first

order phase transition.

Especially the values ŨPT , T̃PT and ∆Q̃ are the basis for a comparison of our results

with regarding data from quantum lattice calculations. We refer the reader to the ref-

erences [32–34] for lattice results that show indications of a first-order phase transition.

We remark, that possible phase transitions within this theory, are detected within lattice

calculations by considering the Polyakov loop PL for a closed curve CL along the periodic

spatial direction

PL =
1

N

〈
TrP exp

(
i

˛
CL
A

)〉
, (3.6)

where P indicates the usual ordering prescription for Polyakov and Wilson loops. PL is

an order parameter for a spatial confinement/deconfinement phase transition: PL 6= 0 in-

dicates a deconfined spatial behavior, while PL = 0 signals a confined spatial behavior.

Within the dual supergravity theory, the localized black hole phase corresponds to a spa-

tially deconfined phase with non-zero Polyakov loop PL 6= 0 while the black string solutions

are related to a spatially confined phases with PL = 0.

A more refined observable is the eigenvalue distribution of the Polyakov loop PL [30]

on the complex unit circle. Note that the eigenvalue distribution is continuous in the large

N limit. This observable allows us to distinguish between states dual to localized black

holes as well as non-uniform and uniform black strings. While uniform black strings are

dual to a state with a homogeneous eigenvalue distribution on the complex unit circle,

the non-uniform black strings correspond to a non-uniform eigenvalue distribution which

is spread over the entire unit circle, i.e. for black strings we have the eigenvalues exp(iϕ)

for all ϕ ∈ [−π, π].

In contrast, for the state dual to the localized black hole, we only have eigenvalues for

ϕ ∈ [−ϕ0, ϕ0], where ϕ0 < π. In other words, the eigenvalue distribution is only nonzero

for |ϕ| ≤ ϕ0. Hence, the state corresponding to the limiting case ϕ0 → π is dual to the

merger solution in the gravitational theory, approached from the branch of the localized

black holes. We expect that the scaling law (2.10), with Q ∼ π − ϕ0 and the critical

exponents as reported in table 2, should emerge while interpolating between the localized

and non-homogeneous eigenvalue distributions.

Acknowledgments

MK and SM acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG)

GRK 1523/2.

– 10 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
0

A Numerical details and convergence

Reference [21] gives a comprehensive discussion of how to construct localized black hole

solutions in five and six spacetime dimensions very accurately. The setup that we utilized

for the ten-dimensional case heavily relies on this approach. In subsection A.1 we only want

to emphasize the corner stones of our numerical implementation while referring to refer-

ence [21] for more details. However, to extract the asymptotic charges accurately, we had

to introduce some new techniques, which we explain in subsection A.2. In subsection A.3

we discuss the accuracy and the convergence of the numerical solutions. Finally, subsec-

tion A.4 shows how we obtained the highly accurate values regarding the phase transition

from our data.

A.1 Overall scheme

We utilize the DeTurck method [8] in order to find numerical solutions to Einstein’s vacuum

equations in the given context, see references [37, 38] for reviews. Hence, rather than solving

these equations directly, we want to find solutions to the Einstein-DeTurck equations

Rµν −∇(µξν) = 0 , (A.1)

with the DeTurck vector field ξ defined by

ξµ = gαβ
(

Γµαβ − Γ̄µαβ

)
. (A.2)

While Γ is the usual Christoffel connection obtained from the desired spacetime metric g,

Γ̄ is the Christoffel connection associated with an unphysical reference metric ḡ that only

needs to exhibit the same causal structure and boundary conditions as g. If this is the case,

a solution g of the Einstein-DeTurck equations also satisfies Einstein’s vacuum equations,

at least in the static case considered here [39]. Nevertheless, for a numerical solution g

it is always a good idea to check if the DeTurck vector is sufficiently close to zero, which

ensures that the additional term in the Einstein-DeTurck equations vanishes.

To construct an appropriate reference metric we follow the lines of reference [21]:

observing that the background metric (2.1) already satisfies the right boundary conditions

on all boundaries except the horizon, we simply take this metric as reference but only

for x2 + y2 = %2 ≥ %21, see also reference [8]. Within %0 ≤ % ≤ %1 we construct the

reference by matching it with the background metric at % = %1 and with a ten-dimensional

Schwarzschild-Tangherlini metric at % = %0, see reference [21] for more details.

Our numerical approach relies on a pseudo-spectral method. In particular, we approxi-

mate all functions with a truncated series of Chebyshev polynomials of the first kind, while

we demand that this approximation is exact on Lobatto grid points. With this we are able

to utilize the Newton-Raphson method in order to solve the differential equations on the

grid. The rate of convergence of a Chebyshev series heavily relies on smoothness properties

of the underlying function. For this reason we decompose the domain of integration into

several subdomains and perform appropriate coordinate transformations. The resulting

grid setup is discussed in figure 5 but we refer to reference [21] for more details.

– 11 –
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Figure 5. Grid structure for the construction of localized black hole solutions. For x ≤ L/2 the

computations are carried out with respect to the near horizon chart (2.5) (indicated by red grid

lines) while for x ≥ L/2 the asymptotic chart (2.2) is used (indicated by blue grid lines). For

% ≤ %1 (green shaded region) we define a ϕ-independent reference metric that only contains powers

of % by matching with the ten-dimensional Schwarzschild-Tangherlini metric at the horizon % = %0

and with the Kaluza-Klein background metric at % = %1. Consequently, for % > %1 (yellow shaded

region) we simply use the Kaluza-Klein background as a reference. We introduce additional inner

boundaries along % = %i, ϕ = ϕi, x = x1 and x = x2 in order to be able to increase the numerical

resolution especially near the horizon % = %0, the exposed axis ϕ = 0 and infinity x → ∞. For

the majority of our calculations we used the following parameter values: L = 8, %0 = 2, %i = 2.5,

%1 = 3, ϕ = 0.1, x1 = L and x2 = 5L. The reference metric itself can be used to construct an

initial guess for the Newton-Raphson scheme with the above parameter values and κ = 1.4. Once

a first solution is found, different solutions are obtained by slightly perturbing κ and using the old

solution as an initial guess.

The domain of integration consists of five outer boundaries: the asymptotic boundary

(x→∞), start and mid point of the compact dimension (y = 0 and y = L/2), the symmetry

axis (x = 0) and the horizon (x2 + y2 = %20). We divide the domain of integration into

an asymptotic region (x ≥ L/2) and a near horizon region (x ≤ L/2). In the former we

consider the metric functions of the asymptotic chart (2.2), while in the latter it is more

convenient to work with the polar coordinates in the near horizon chart (2.5).

The numerical method requires boundary conditions for all functions in each subdo-

main. On inner boundaries we simply demand equality of the metric function values and

their normal derivatives with respect to neighboring subdomains. Conditions on the five

outer boundaries mentioned above are obtained from regularity and symmetry requirements

of the metric and are derived from the field equations itself, see reference [21] for the explicit

conditions or reference [38] for a more general discussion of boundary conditions in the con-

text of the DeTurck method. However, an exception is the asymptotic boundary, where the

metric shall approach the background and therefore Dirichlet conditions are usually em-

ployed. As mentioned before, since we want to extract the asymptotic charges quite accu-

rately, we use a more sophisticated approach here, which we explain in the next subsection.

– 12 –
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A.2 Extraction of asymptotic charges

To obtain the asymptotic charges, mass and tension, we need to extract the coefficients ct
and cy from the functions Ta and Ba, cf. equation (2.3). Of course, we cover the integration

domain up to infinity with an appropriate coordinate transformation that compactifies the

asymptotic boundary to a finite coordinate value. This coordinate transformation reads

x(s) = L/(1 − s) where s ∈ [−1, 1] covers the whole asymptotic region x ∈ [L/2,∞].

Consequently, in principle it is possible to get the asymptotic coefficients ct and cy from

the sixth derivative of the functions Ta and Ba with respect to s. However, since each

numerical derivative is accompanied with some small errors, we cannot expect the sixth

derivative to be reasonable accurate.

This is in contrast to the five- or six-dimensional approach, where only the first or

second derivatives are involved and an accurate determination of the asymptotic coefficients

is possible, see reference [21].

Therefore, in the ten-dimensional case we employ the following approach: we write the

functions in the asymptotic chart Xa = {Ta, Aa, Ba, Sa} and Fa as

Xa = 1 +
(1− s)5

32
X̃a and Fa =

(1− s)5
32

F̃a , (A.3)

and now solve for the new functions X̃a and F̃a. In this way we obtain the asymptotic

coefficients ct and cy only from the first derivatives of the functions T̃a and B̃a at s = 1.

Note that the ansatz (A.3) incorporates the leading asymptotic behavior, namely that the

spacetime approaches the Kaluza-Klein background at s = 1 where Xa = 1 and Fa = 0.

The boundary conditions on the newly defined functions are X̃a = F̃a = 0.

Let us make a few technical comments on the above described trick. First, one could

ask why we do not extract one more power of (1 − s) from the functions leading to a

scenario where we can read off the asymptotic coefficients directly from the values of the

redefined functions at s = 1 without performing any derivative. The reason is that this

may lead to some more complicated conditions on the functions at s = 1 as it is the case in

five and six dimensions, see reference [11] where in the black string setup a rather involved

decomposition of the functions near infinity was utilized. With the approach described

here we circumvent these technical obstacles.

The second question one could ask is why do we extract the appropriate powers of

(1− s) from all metric functions and not only from Ta and Ba, since we are only interested

in their sixth derivatives. If we would do so, this would probably worsen the accuracy of

the extracted values of the asymptotic coefficients because near the asymptotic boundary

s = 1 the functions T̃a and B̃a would be suppressed in the field equations by a factor of

(1− s)5. As a result, conditions involving the asymptotic coefficients would be suppressed

considerably. This is a problem in numerical calculations due to finite machine precision

and we thus cannot expect the extracted values of the asymptotic coefficients to be very

accurate. However, with the ansatz (A.3) we ensure that we can extract an appropriate

power of (1− s) from each field equation avoiding the suppression of the crucial terms.

Finally, we note that the factors of 32 appearing in the ansatz (A.3) are chosen in

order to normalize the functions and field equations at s = −1.
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Figure 6. Convergence of the numerical solutions for a localized black hole with inter polar

distance LA/L ≈ 0.00703. For different resolutions N̄ we show the maximal difference RN̄ to a

reference solution with high resolution (left) and the deviation from Smarr’s relation ∆Smarr =

|(D − 2)T̃ S̃ − (D − 3 − n)M̃ | (right). The mean resolution N̄ is averaged over all domains and

directions.

A.3 Test of numerical results

As usual, in order to assess the reliability of the numerical solutions, we need to study

the convergence of the numerical solution scheme in dependence of the grid resolution.

In particular, we compare the values of the solution functions for increasing resolution

with a reference solution at high resolution, where we denote the difference as the resid-

ual. Furthermore, for all solutions we display the deviation from Smarr’s relation, cf.

references [40, 41], with the relevant physical quantities obtained from the corresponding

numerical data. In theory, the resulting errors should decrease as the resolution increases

at least up to some remaining round-off error.

Exemplary, in figure 6 we show the convergence of the residual for the configuration

with inter polar distance LA/L ≈ 0.00703, which is the solution closest to the transition

that we presented here.5 As expected, we see a nice convergence of the respective errors.

Finally, we note that the maximum of the non-trivial components of the DeTurck

vector ξ, cf. equation (A.2), always remained below 10−10 for all solutions we constructed.

A.4 Obtaining the phase transition

In order to obtain a highly-accurate value for the position of the first order phase transition,

we have to find the intersection point of the localized and the uniform branch in the phase

5We note that we were able to construct solutions with smaller LA/L, but the accuracy of these solutions

dropped down considerably.
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Figure 7. Convergence of the numerically obtained values of the first order phase transition between

the localized and the uniform phase. We show the differences to the values of the regarding quantity

obtained with Nκ = 20 Lobatto points normalized by this value.

diagrams, cf. figure 1 and figure 4. For this purpose, we compute a series of localized black

hole solutions with values of the control parameter κ that are distributed on a Lobatto

grid around the intersection, i.e. for

κj =
κend + κstart

2
− κend − κstart

2
cos

(
πj

Nκ

)
, j = 0, . . . , Nκ . (A.4)

An interval κ ∈ [κstart, κend] in which the corresponding phase transition is located can

be easily identified once the data for producing the phase diagrams is at hand. We took

κstart = 0.98 and κend = 1.02 (recall that we set L = 8 in our computations). At each of

the Lobatto points we calculate the relevant physical quantities (mass and entropy). By

using standard pseudo-spectral techniques we are able to express these quantities in the

given interval as a truncated Chebyshev series depending on κ with expansion order Nκ.

Finally, we identify the phase transition point by determining the root of the difference of

these functions and the analytically known uniform branch.

Due to the high accuracy of our localized black hole solutions this procedure will give

highly accurate values for the intersection points as well, at least if the resolution Nκ is high

enough, but since we chose a rather small interval [κstart, κend], comparably small values

of Nκ suffice. Moreover, this approach provides a natural estimation of accuracy for the

phase transition values, simply by comparing the values obtained for different resolutions,

similarly to the procedure described above. The result of this convergence analysis is shown

in figure 7.

– 15 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
0

Moreover, this procedure even gives a straightforward way to calculate derivatives of

the thermodynamic quantities in the corresponding interval [κstart, κend] by using stan-

dard spectral algorithms, which can be employed for obtaining the latent heat, cf. equa-

tion (3.4b). Besides that, we are able to check the first law of thermodynamics dM = T dS

in this interval as an additional consistency check of the numerical results. Indeed, the

deviation from this law rapidly drops down as the resolution is increased and saturates at

values of 10−12.

B Review: N = (8, 8) SYM on S1 and its supergravity description

Strongly coupled N = (8, 8) SYM in the large-N limit is conjectured to be equivalent to

type II superstring theory, with string length ls =
√
α′ and string coupling constant gs.

As discussed in [28, 29], this duality may be motivated within string theory by consid-

ering N coincident (non-extremal) D1-branes in type IIB superstring theory. This duality

becomes tractable in the limit 1 � λ � N4/7 which we assume to hold from now on. In

this regime, curvature scales are much larger than the string scale and the effective string

coupling constant is small. Hence, we can approximate superstring theory by type IIB

supergravity, and the N coincident D1-branes correspond to a particular (non-extremal)

supergravity solution, known as a 1-brane. Finally, taking the decoupling limit

ls → 0 with gsl
−2
s and r/l2s fixed , (B.1)

we arrive at the conjectured duality between N = (8, 8) SYM and type IIB supergravity.

Since we also keep r/l2s fixed, where r represents any physical length, we effectively zoom

into the near-horizon part of the supergravity solution.

In addition, to describe N = (8, 8) SYM on a circle S1, the spatial coordinate of D1-

branes has to be compactified on a circle with circumference L. Due to the compactified

spatial direction we have to ensure that the curvature scale has to be small enough such that

stringy excitations winding around the S1 are suppressed. In addition, momentum carrying

excitations along the circle should not excite string oscillations. In the large N limit and

strong coupling limit, this is ensured if λ−1/6 � T �
√
λ. Here T is the dimensionless

temperature associated with the type IIB supergravity solution and may be identified with

the dimensionless temperature on the field theory side.

Note that the type IIB supergravity solution breaks down for small enough temper-

atures. However, for temperatures of order λ−1/6 or below, we may perform a T-duality

along the compactified spatial direction of the type IIB supergravity solution by using the

Buscher rules [28, 30]. In particular, the T-duality transforms the length of the circle L

into L̃ = 4π2l2s/L. The resulting type IIA supergravity solution is valid for dimensionless

temperatures T � λ−1/6.
In this paper, we are only interested in the type IIA supergravity description. This

supergravity solution may be viewed as D0-branes uniformly smeared along the spatial

circle S1. However, for low enough temperatures, the D0-branes tend to be non-uniformly

smeared along this direction. This instability is reminiscent of the well-known Gregory-

Laflamme instability in asymptotically flat Kaluza-Klein geometries and was found in [30].
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In particular, the onset of the instability occurs for [1, 12, 30]

T̃GL = TGL

√
λ ≈ 2.243 . (B.2)

In [12], the authors construct the associated non-uniform black string solutions. It is

expected that these non-uniform black string solutions with horizon topology S1 × S7 will

merge into the localized black holes with horizon topology S8. The latter ones correspond

to D0-branes localized on the spatial circle S1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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