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Abstract 

An extensive macrovariable X of a system of a large size ~ may 

have an extensive property of its probability distribution; namely the 

time-dependent probability function has the form 

P(x,t) = C exp ~(x,t), x = X/~. 

This ansatz has been proved by assuming a Markoffian process with tran- 

sition probability satisfying a homogeneity condition. The function 

~(x,t) can be identified with the action integral and the problem can 

be formulated by the Hamilton-Jacobi method, which is naturally related 

to a path-integral formalism. In normal cases, the distribution is 

Gaussian corresponding to a central limit theorem. Evolution of the 

mean value and the variance is determined by simple equations which 

contains the first and second moments of the basic transition probabil- 

ity. 

Let X be an extensive macrovariable or a set of such variables in 

a large system with a size ~, and x the corresponding density defined 

by 

x = X/~ = cX, c = ~-i (i) 

Examples are the numbers of molecules of certain species in a reaction 

vessel, the total spin in a magnetic (Ising spin) system, the popula- 

tion of certain class of people in a city and so on. The variable x is 

considered to make a stochastic process for which a time-dependent prob- 

ability function P(x,t) is defined. Some time ago, the author conjec- 

tured that this has an extensive property in the sense that it has the 

asymptotic form 

P(x,t) = C exp Q~(x,t) (2) 

for a large ~i) This Ansatz was proved to be true under the assumption 

that the process X(t) is Markoffian and its transition probability sat- 

isfies a certain condition of homogeneity to be given later. Recently, 
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Suzuki has proved the Ansatz to hold under more general conditions 2) . 

If the Ansatz (2) is valid, the deterministic path x = y(t) will be 

determined by 

~(x,t) = max. for x = y(t) (3) 

and the fluctuation 

z = x - y(t) 

is governed by the function ~. In normal cases, where ~ is regular at 

x = y, the distribution is nearly Gaussian with the variance 

<(x - y(t)) 2> = -e¢" (y)-i ~ £a(t)° (4) 

This corresponds to a central limit theorem for such a extensive macro- 

varialbe X. 

Limiting ourselves to Markoffian cases, we assume that the process 

is described by the Chapman-Kolmogorov equation 

P(X,t) = -I dr W(X+X+r,t) P(X,t) 

(5) 

+| dr W(X-r + X,t) P (X-r,t), 
J 

where the transition probability W is assumed to be of the form 

W(X X+r, t) = ~ w(x, r, t); (6) 

in other words, the elementary jump of the state is essentially depend- 

ent on the density x and the magnitude of jump, the size ~ appearing 

only as the proportionality factor. This is a reasonable assumption 

realized in a great many cases of birth and death processes in physical 

and non-physical problems. Equation (5) can be written as 

8 t) P (x,t) (7) P(x,t) = - H(x, £~, 

with the operator H defined by 

= ~ dr (i - e -rp) w(x,r,t) H(x, p, t) 
J 

(8) 

or 

where 

(_) n-lpn 
H(x, p, t) = [ n! Cn(X't) (9) 

n=l 

Cn(X't) = I dr r n w(x,r,t) (i0) 
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is the n-th moment of the transition probability. 

We immediately notice that Eq. (7) is similar to a Schr6dinger 

equation so that the asymptotic properties of the solution P(x,t) for 

+ 0 may be treated in an analogous way. Referring to our paper 3) 

published about a year ago for the details, we summarize in the follow- 

ing some of the main points. 

Propagation of the extensive property 

The characteristic function Q(~,t) is defined by 

Q(~, t) = I P(x,t) eiX~ dx 

It is shown that Q(~,t) keeps the form 

Q(~, t) exp [~%(ie~, e, t)] 

if it is of this form at an initial time t O . 

(li) 

(12) 

By using the steepest descent evaluation, we have P(x,t) in the 

form, Eq. (2). In particular, the extensivity holds for the initial 

condition P(x,t 0) = 6(x-x0), so that the transition probability 

P(x0t01x,t) is extensive. 

The proof assumes the convergence of cumulants of all orders and 

the analyticity of 4. The propagation of extensivity may break down 

if these assumptions cease to be valid at some t. 

Evolution e~uations 

In normal cases, P(x,t) is approximated by a Gaussian distrubution 

1 
P(x, t) ~ C exp[ 2ea(t) (x - y(t))2] (13) 

It is easily proved that y(t) and a(t) obey the evolution equations, 

y(t) = cl(Y, t), (14) 
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~c 1 
6(t) = 2-~y ~ + c2(Y, t), (15) 

which have been obtained by van Kampen from a different point of view. 4) 

These equations can easily be generalized to a many variable case; 

Yk(t) = Clk(Y,t), (16) 

. ~Clk 
~jk(t) = [(~j~ ..... + + i ~Yz ~Y£ °£k) c2j k. (17) 

These equations can be applied to a number of problems and lead to some 

important consequences. The standard Brownian motion corresponds to 

the assumption, 

cl(Y ) = - yy , c 2 = const. (18) 

The evolution equations then give immediately the well-known basic 

formulae for a Brownian motion. If y < 0 in Eq. (18), y = 0 is un- 

stable; the variance ~ increases exponentially as y grows. An anoma- 

lous enhancement of fluctuation is seen to be a general phenomenon 

when a system departs from an unstable situation to reach a new stable 

equilibrium. 

In a more than two variable case, there may arise a limit cycle 

for the motion y(t). By a change of a parameter of the system, this 

may appear as a kind of phase transition. 5) 

Hamilton-Jacobi formalism 

Equation (7) gives 

, = - n ( x ,  g- i f ,  t )  

to determine the function ~. 

then 
dx ~H 
- -  = 

dt ~ ' 

(19) 

The equations for the characteristics are 

d_~ = ~H 
dt - ~ , (20) 

dJ ~H dq = ~H (21) 
dt - -H + p~ = L , dt ~t " 

To solve the Cauchy problem of Eq. (19) for a given initial function 

(x, t o ) = f(x) , 

we impose the initial condition 

x(t 0) = ~ , P(t 0) = f, (~), J(t 0) = f(~) 

q(t 0) = - H(~, f' (6), t o ) (22) 
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and find the solutions 

x = x(t,~), p = p(t,~), J = J(t,~), 

This gives a parametric representation of ~(x,t) as 

~(x,t) = J(t,~), x = x(t,~) ° 

This method is more general than using the evolution 

(15); 

q = q(t,~). 

(23) 

equations (14), 

it can be used even when the variance ~ does not exist. 

Path-integral formulation 

The asymptotic solution of Eq. 

path integral 

f 1 t P ( x 0 t 0 ] x  t )  = d ~ ( x ( t ) )  exp[~- I ds g ( x , ~ : , s ) l ,  (24) 
Jt 0 

where t he  Bagrang ian  L i s  t h a t  d e f i n e d  by Eq. (21) .  
The action integral 

I tL  (x " = (S), x(S), S) ds (25) 

~t 0 

is maximized for the path which satisfies the Hamilton equation of 

motion, (20) . 

(7) may also be represented by a 

The Gaussian form (13) corresponds to the approximation 

• 1 {x(t) - Cl(X,t)} 2 L(x, x, t) = 2c2(x,t) . (26) 

If c 2 is a constant, the process is easily seen to be that described 

by the Langevin equation 

X=Cl(X,t) ÷ R(t) (27) 

with a Gaussian white random noise 

<R(t) R(t')> = c 2 ~(t - t'). 

The stochastic equation (27) is interpreted in 

in accord with the Eq. 

(28) 

Ito's sense, which is 

(24) with the Lagrangian as given by (26). 
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Generalization to a field variable 

So far we have confined ourselves to a single or a finite number 

of macrovariables. This<is allowed for uniform systems. In non-uniform 

systems, we have to consider a field of macrovariab!es. The generaliza- 

tion of the asymptotic evaluation of fluctuations to such a case is not 

so direct. A scaling theory has been proposed by Mori in this connec- 

tion. 6) 

Here we only remark that it is possible to extend our formalism 

to a field function ~(~,t) which follows the Langevin equation 

~(f,t) = Cl(~,r,t) + R(~,~,t), (29) 

where R is a white noise. If R is characterized by its cumulants, 

I .... I <R (~' rltl) 

r < rj < r+Ar, 

= Cn(~,~,t)Ar At, 

.... R (~,rntn) cdrldtl 

t < t. < t+At 
3 

n > 2 , 

the characteristic function of ~/~t is given by 

ft0+t [ ~ ~ 
< exp[-~ dt ] dr ~(r,t) ~-~ ]> 

Jt 0 

s2 s = exp [- dt dr N(~,~,r,t) ] 

0 

with the "Hamiltonian" 

(_) n-i n ($,,r, t) . 

n=l 

.... dF dt 
n n 

(30) 

(31) 

(32) 

If the volume ~ is large, an asymptotic evaluation can be made to obtain 

the distribution function of the field ~(~,t) in a path-integral form 

with the Lagrangian function 

~ (~,~,r,t) = - ~(~,~,r,t) + z(r,t)~ (33) 

This approach may be useful to treat non-uniform systems, but it has 

not been fully developed as yet. 
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Relaxation Spectra 

Writing Eq. (7) as 

= - FP , (34) 

we consider the eigenvalue problem 

£~ = ~ .  (35) 

We ask the asymptotic behavior of the eigenvalue spectrum for e ÷ 0. 

It is seen that the eigenmodes are classified into two types. Normally, 

the first type of eigenmodes have eigenvalues independent of e and 

corresponds to fluctuations around an equilibrium. The second type of 
-i 

eigenmodes have eigenvalues of the order of e and describe the decay 

of large deviations from equilibrium. 

If the equilibrium is critical or marginal, the relaxation equa- 

tion (14) becomes 

= _¥yk k > 1 . (36) 
) 

In such a case, there occurs an accumulation of eigenvalues at 

= 0, which corresponds to the phenomena of critical slowing down. 

If Eq. (5) is a difference equation with the symmetry of detailed 

balance condition, the spectral density can be easily obtained with 

the use of the method of large perturbation introduced by Bethe many 

years ago. This treatment has also been described briefly in our pre- 

vious paper. 
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