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FOREWORD

The International Centre for Theoretical Physics has maintained an
interdisciplinary character in its research and training program as far as
different branches of theoretical physics are concerned. In pursuance of
this aim the Centre has organized extended research courses with a
comprehensive and synoptic coverage in varying disciplines. The first of
these — on plasma physics — was held in 1964; the second, in 1965, was
concerned with the physics of particles; the third, in 1966, covered nuclear
theory; the fourth, -in 1867, and the sixth, in 1970, dealt with condensed
matter and imperfect crystalline solids; the fifth, in 1969, and the seventh,
in 1971, were courses on nuclear structure. The proceedings of all these
courses were published by the International Atomic Energy Agency. The
present volume records the proceedings of the eighth course, held from
2 to 20 August 1871, which dealt with computing as a language of physics.
Grants from the United Nations Development Programme, the Organization
of American States, the International Bureau for Informatics-International
Computation Centre and the Digital Equipment Corporation made it possible
for the Centre to increase the participation of scientists from developing
countries.

The program of lectures was organized by Professors L. Bertocchi
(Trieste, Italy), L. Kowarski (CERN), S.J. Lindenbaum (Brookhaven and
New York, USA) and K. V. Roberts (Culham, UK).

Abdus Salam



EDITORIAL NOTE

The papers and discussions incorporated in the proceedings published
by the International Atomic Energy Agency are edited by the Agency's edi-
torial staff to the extent considered necessary for the reader's assistance.
The views expressed and the general style adopted remain, however, the
responsibility of the named authors or participants.

For the sake of speed of publication the present Proceedings have been
printed by composition typing and photo-offset lithography. Within the limi-
tations imposed by this method, every effort has been made to maintain a
high editorial standard; in particular, the units and symbols employed are
to the fullest practicable extent those standardized or recommended by the
competent international scientific bodies.

The affiliations of authors are those given at the time of nomination.

The use in these Proceedings of particular designations of countries or
territories does not imply any judgement by the Agency as to the legal status
of such countries or territories, of their authorities and institutions or of
the delimitation of their boundaries.

The mention of specific companies or of their products or brand-names
does not imply any endorsement or recommendation on the part of the
International Atomic Energy Agency.
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COMPUTERS AND PHYSICS

K. V. ROBERTS

UKAEA Research Group,
Culham Laboratory,
Abingdon, Berks,
United Kingdom

Abstract

COMPUTERS AND PHYSICS.

This introductory paper begins by discussing from a fairly fundamental point of view what computers
really do and why they should be important to physics. For example, how significant has their impact been
in the quarter of a century which has elapsed since the electronic digital computer was invented, and what
may be expected of them in the futuré? How can we ensure that they realize their true seientific potential
and that massive programming effort is used to maximum effect? Does computational physics have something
to contribute to computer science and software engineering? A brief ook is then taken at one particular
field of computational physics, namely the numerical solution of sets of coupled partial differential equations
which describe the time evolution of classical systems,

1. INTRODUCTION

I shall begin this introductory paper by discussing from a fairly funda-
mental point of view what computers really do and why they should be im-
portant to physics. How significant has their impact been in the quarter of
a century which has elapsed since the electronic digital computer was
invented, and what may be expected of them in the future? How can we
ensure that they realize their true scientific potential and that massive
programming effort is used to maximum effect? Does computational physics
have something to contribute to computer science and software engineering?

- 1 shall then take a brief look at one particular field of computational physics,
namely the numerical solution of sets of coupled partial differential equations
which describe the time evolution of classical systems.

An excellent review of the subject is given in the book Computers and
their Role in the Physical Sciences, edited by Fernbach and Taub (1970).
This describes the origin of the electronic digital computer (in which compu-
tational physics played a considerable part) and gives many references. More
specialized papers can be found in the Journal of Computational Physics
(Academic Press), Computer Physics Communications (North-Holland) and

"the annual review series Methods in Computational Physics (Academic Press).
The International Physics Program Library, operated by Queen’'s University,
Belfast, in association with Computer Physics Communications, has recently
been established to publish the programs themselves in digital form,

Figure 1 indicates the main branches of computational physics, together
with certain fields which might more properly be regarded as part of com-
puter science (languages and translators) or software engineering (operating
systems). The relation between these fields and computational physics may
be compared to the relation between mathematics and theoretical physics,
or between engineering and experimental physics (Fig. 2). Good languages
and good operating systems are vital to the proper growth of computational
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FIG.1. Some of the areas in which computing has an impact on physics.

physics and therefore physicists can be expected to play a part in their
development just as they have always done in many branches of mathematics
and engineering.

Figure 3 represents the interplay between the three main ways of
approaching a physical problem: experimental, theoreticdl and computa-
tional. Each has its characteristic methods of approach, its advantages
and limitations, some of which will be mentioned below.

1.1. Theoretical physics

Theoretical physics makes considerable use of analogies, many of
which are geometrical in character; for example, the calculus was ori-
ginally based on the idea of gradients and areas. Familiar concepts in
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In the past, mathematics and theoretical physics have been closely associated with one another
and similarly for experimental physics and engineering. Computational physics requires advanced techniques
in computer science and software engineering and in turn may be expected to contribute to these disciplines.
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Interplay between the three main ways of approaching a physical problem,
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three dimensions are generalized to n or to an infinite number of dimensions.
Theoretical physics relies heavily on the use of symbolism, enabling many
actual cases to be described by a single algebraic formula; it is position-free,
since it can survey any portion of space-time with equal ease, for example,
the inside of a neutron star at some distant epoch; and it is scale-free,
ranging at will from the scale of a quark to that of the whole universe, and
from 102 seconds to 101° years. It is universal, in the sense that one

piece of theory, such as Coulomb's law or Laplace's equation, can be

applied to innumerable actual situations.

Theory makes extensive use of linearization, There is almost a motto,
"When in doubt, linearize', Any linear process is relatively easy to solve
by analytic techniques, and weakly non-linear processes by perturbation
theory. Strongly non-linear processes are much more difficult, Symmetry
and conservation laws are related to one another and play an essential role,
not only in basic theory but also in the solution of practical problems, as by
the method of separation of variables, Complex function theory has a
similar dual role; it appears to be fundamental to high-energy physics
and to the theory of ordinary differential equations and at the same time is
of great practical use in the solution of two-dimensional problems because
of its relation to Laplace's equation, Many of the mathematical methods
used in theoretical physics have been summarized by Morse and Feshbach
(1953). _

Approximation techniques are essential, Sometimes this means separat-
ing out a few of the many degrees of freedom of a large system, or dis-
tinguishing between widely different time-scales as in the method of adia-
batic invariants. In other cases such as statistical mechanics the number
of degrees of freedom is treated as infinite since this makes the formulae
much simpler,

These are some of the mathematical tools; practical tools include pencil
and paper, chalk and blackboard, books, journals and meetings, Theoretical
physics is cheap but it requires high IQ. Another important feature is that
theory is self-enhancing; by practicing it, one becomes a better theoretician.
This is not necessarily true of experimental physics (which requires the
organization of staff and finance, the building of apparatus and the manage-
ment of contracts), nor of computational physics (which involves struggling
with awkward and unreliable computing systems, much handling of cards
and paper, and a continual search for errors in the programs). A major
task will be to build this feature of 'self-enhancement’' into computational
physics by improving the techniques.

1, 2. Experimental physics

Experimental physics provides the ultimate test and source of informa-
tion for theory, just as theory provides the equations to be solved by compu-
tation, With great ingenuity the scope of experiments and observations
has gradually extended both ways from human scale of the range 10™%® em
to 1030 light years in length, and 10°2 seconds to 1010 years in time, But
experimental physics is neither position-free nor scale-free, and the cost
of an experiment depends very much on the scale of the phenomenon which
is under investigation. Where the expense is high, it may be preferable
to use theory or computation, although experimental modelling is often also
of great use.
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No experiment is exact and the potehtial sources of error must always
be carefully examined.

1. 3. Computational physics

Computational physics combines some of the features of both theory
and experiment. Like theoretical physics it is position-free and scale-free,
and it can survey phenomena in phase-space just as easily as real space.

It is symbolic in the sense that a program, like an algebraic formula, can
handle any number of actual calculations, but each individual calculation

is more nearly analogous to a single experiment or observation and provides
only numerical or graphical results.

To some extent it is possible to solve the equations on a computer
without understanding them, just as one can carry out an exploratory
experiment, With more complicated phenomena involving a considerable
range of length and time scales it is, however, essential to make analytic
approximations before putting the problem on to the computer, otherwise
impossibly large amounts of machine time or storage space may be needed.
Not more than about 10¢ degrees of freedom can be handled on present-day
computers, or 10% if they all interact with one another. Thus computational
physics can fill in the range between few-particle dynamics and statistical
mechanics,

Diagnostic measurements are relatively easy compared to their counter-
parts in experiments, This enables one to obtain many-particle correlations,
for éxample, which can be checked against theory. On the other hand, there
must be a constant search for 'computational errors!' introduced by finite
mesh sizes, finite time steps, etc., and it is preferable to think of a large-
scale calculation as a numerical experiment, with the program as the
apparatus, and to employ all the methodology which has previously been
established for real experiments (notebooks, control experiments, error
estimates and so on).

Computational physics is particularly suitable for non-linear, non-
symmetrical phenomena where the usual theoretical methods do not apply
(such as in weather calculations), -but often the programs are easier to
write and the calculations go much faster in simple situations such as
rectangular Cartesian geometry with rigid,perfectly conducting walls,

It is often possible to take situations that normally are only handled
algebraically and to display them in pictorial form. Thus computing can
put life into somewhat abstract subjects and might be of great help, for
example, in the teaching of complex variable theory.

Finally, there is great danger if computational physicists become too
preoccupied with mundane details of computing at the expense of the physics
itself, but the only solution here seems to be to get the details right once
for all, just as at one stage it was necessary to introduce rigorous limiting
processes into mathematics.

1.4. Examples

Sometimes one method of approach will be more appropriate and some-
times another; frequently they will work in pairs and at times all three
methods must be used together., An example where computational techniques
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are particularly appropriate is in the solution of equations which describe
the internal structure and evolution of stars (Iben, 1970). The equations
are complicated and non-linear but they are well-defined, and provided that
spherical symmetry can be assumed, they are well within the range that
computers are able to handle. On the other hand, analytic methods have
difficulty because of the non-linearity, while it is clearly awkward to do
experiments or even to make observations (except with neutrinos) in the
interior of a star.

The book by Betcher and Criminale (1967) on Stability of Parallel
Flows gives a good account of the way in which analytic and computational
techniques can support one another in one branch of fluid dynamics.

Harlow (1970) has provided a general bibliography of papers dealing with
numerical techniques for solving two- and three-dimensional time-dependent
problems in fluid flow.

1.5. Physics and information

The purpose of a computer is to process information. Physicists
do spend a great deal of time handling information of one kind or another
and any impact that computers have on physics must eventually result
from this fact. Many of the techniquesused for handling scientific informa-
tion have reached a high degree of sophistication, particularly in theoretical
physics, and here it is likely to take a long time before computers can
compete on equal terms; for example, the developments in the physical
sciences which occurred within 5 years due to the discovery of Schrddinger's
equation can hardly be paralleled by those which have occurred within
25 years due to the invention of the electronic digital computer. But in
cases where conditions have been more suitable for the introduction of com-
puters, such as the processing of large amounts of digital data from measur-
ing devices and the automatic control of experimental equipment, their im-
pact has been more obvious.

2. HARDWARE

Let us therefore go right back to the beginning and try to see what
computers can in principle do, Basically, an electronic computer is a
device for handling binary information or data contained in a fast memory
or store. The data is conventionally represented as an ordered set of
O's and 1's (bits), grouped into bytes and words. In processing this data
the computer obeys a sequence of instructions which are themselves re-
presented by binary information and are drawn from the same store (Fig. 4).
The sequence of instructions is called a program,

It is preferable to think of the program as fixed information, while the
data will in general vary during the course of the computation. There is
in fact an interesting analogy between a data processor and a dynamical
system, in which the program corresponds to the Hamiltonian H(q,p) while
the data values correspond to the complete set of canonical co-ordinates
and momenta {q,p} which between them define the current state of the
system, As the computation proceeds, the progressive modification of
the data by the program corresponds to the time evolution of the dynamical
system,
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FIG.4. The computer processes data by means of a sequence of instructions, both being drawn from the
same store,

The data values can be made to control:

(a) The action of the current instruction.
(b) The location of the next instruction to be obeyed.

This facility enables the program to make decisions which depend on the
current data values and is nowadays usually implemented by first trans-
ferring the necessary control information from the main store into
subsidiary fast storage devices called registers, one or more of which
can be consulted while an instruction is being interpreted.

2,1. Dynamic program modification

Because the program instructions can also be regarded as data it is
possible, in principle, for a computer to process its own instructions
during the course of a run. This is quite a fundamental idea because it
means that the program itself can evolve dynamically, as well as the data
values. At one time this property was regarded as essential (Goldstine
and Von Neumann, 1963; Elgot and Robinson, 1964; Goldstine, 1970), but
it seems that the essential tasks have now been taken over by the use of
registers, and self-modifying programs are currently regarded as bad
practice because they are so difficult to understand. For example, no
legal FORTRAN or ALGOL program can modify itself.

In mathematics, one sometimes finds that a generalization is remarkably
productive and leads to a host of new results (reai - complex numbers);
at other times, it almost seems to kill progress altogether (time-dependent
Hamiltonians H (g, p, t) or non-Hamiltonian systems; groups - semi-groups).
We do not know on which side of the fence these dynamically, self-evolving
programs are likely to lie. I shall not discuss them further here but it
may be that this is an area where substantial advances in computational
physics will be made one day.
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Universality of hardware

There is a sense in which all computers are the same (Pasta, 1970):

"As an example of the kind of thing we are talking about, consider
the Turing machine, a model invented in the 1930's by the mathe-
matician A, M. Turing. This abstract model is very simple, In

one form it is a device with a finite number of internal states and a
tape of arbitrary length marked into squares, At any moment it can
read a symbol on the tape. Based on that symbol and on the internal
state, the machine can initiate actions to change the symbol and to
move the tape one square left or right.

One would expect such a machine to be limited in the kinds of
things it could do and yet Turing showed that any effective computation
performed on any computer can be performed on a Turing machine,
The universality of this machine allows us to establish truths about
it which will apply to all other machines and consideration of this and
other equivalent models has increased our understanding of computers,
programs and computations, all of which can be fitted into this simple
model, "

Turing's theorem suggests that any fundamental advances in computational
physics are much more likely to come from better theoretical techniques,
from improved algorithms and languages or from software engineering
than from improved hardware. During the past 25 years there have been
steady quantitative improvements in the architecture of computers and

in their speed, storage size, reliability, versatility and convenience,
together with a parallel decrease in the cost per unit of computation,

but there have been no radical changes of principle.

2.

3.

Some practical improvements

There are, however, a number of potential improvements of a practical

kind whose combined effect might be so dramatic as to appear fundamental,
These include:

(a) Networks of computers linked together via the communications
system

(b) Massive direct-access storage devices

(c) Ultra-high-speed character and vector displays

(d) An extended character set, including the Greek alphabet and
mathematical symbols .

(e) Improved ergonomics of man-machine interaction

{f) Further decreases in cost, and improvements in reliability of
on-line systems

These developments might make it practicable for a 'power-assisted!
algebra facility to be introduced, by which a theoretical physicist working
at a console could automatically and almost instantaneously manipulate
analytic expressions appearing on the screen by issuing commands to the
system to perform standard transformations and integrals, This has
already been partly implemented at Stanford University in an exf»er‘irnent



IAEA-SMR-9/26 11

on the teaching of elementary algebra in schools, but in order to compete
with pencil and paper it is important to get the practical details right.

Very fast, powerful and selective information -retrieval facilities
might also become possible, enablinga scientist working in one field to
familiarize himself rapidly with the state of the art in another, -In this
connection, a fundamental technique that has been developed in computer
science might well be applied to reduce the bulk of the regular scientific
literature, namely that of the subroutine or macro. Theorems, diagrams,
formulae, definitions, conventions, etc., which are constantly being
reproduced in full, could be stored in one place and automatically
called into use when required, simply by naming them, At the same time,
the notation could be automatically changed to fit that of the paper in which
they were called.

Another possibility is to have a dynamic style of publication, containing
not only algebraic formulae but programs for evaluating them numerically
or displaying them graphically on a screen as a function of parameters
selected by the 'reader'.

3. DATA TRANSFORMATIONS

So far, we have only considered binary strings of 0's and 1's. These
are not in themselves very interesting and their importance lies in the ease
with which they can be transferred to and from other types of data format
(Fig.5). Binary or 'digital' data is freely interchangeable between electri-
cal signals, magnetic recording media and holes in punched cards or paper
tape, although at different speeds. Electrical information can readily be
converted from analogue to digital form and vice versa, although with
some loss of content. Apart from this, it should be emphasized that output
by the computer is usually much faster, cheaper and more convenient than
input as illustrated by the dashed lines in Fig. 5. It is relatively easy for
a computer to display a table, draw a graph or make a movie film or even
to talk, but much harder to get this information back into digital form.
Therefore, so far as computers are concerned, digital information ought
to be regarded as the primary form, while printed output, graphs, speech,

.etc., are temporary forms intended only for communication with people.

3.1. Digital information

Digital information has a number of important advantages., It can be
transmitted almost instantaneously from point to point, updated, duplicated,
stored and retrieved, automatically manipulated in different ways and
displayed to people in a variety of forms. We can in fact regard a set of
data as an operand D and a display program as an operator P;, various forms
of display A, being generated as products

A= P, D (1)

1 1

If, for example, a calculation leaves its output in a random access file,
then not only can a physicist working at a console cause the results of the
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MAGNETIC
RECORDS

FIG.5. All forms of digital data are freely convertible into one another (full lines). Printing and display
are also straightforward, Analogue-digital conversion can be carried out without difficulty and a computer
can be made to talk (long dashes). Those transformations which are represented by short dashes are much
more difficult to carry out and should be avoided where possible by storing all data in digital form.

. calculation to be displayed in various ways so that he can understand their
meaning, but he can also use the same file as input for a further series
of calculations. These advantages are lost if the output file is simply
printed and then destroyed.

Digital information does, however, have a number of grave disadvantages
which must be carefully taken into account if it is to serve as a medium for
scientific communication. It is extremely fragile, and on many computer
systems even minor damage to an index can cause all the data on a storage
device to be lost. Few of the scientific discoveries of antiquity would have
survived if their recording media had suffered from this disability. And
digital information does rely heavily on good indexing; compare browsing

through a magnetic disc file with browsing through a library of scientific
books,

4. ALGORITHMS, PROGRAMS AND SOFTWARE

Computers can carry out any process which we know how to reduce
to algorithmic form; that is any process for which we can prescribe a
definite set of rules no matter how complicated. Ultimately this process
must be reduced to the manipulation of a binary bit pattern and the algorithm
itself must be expressed in a similar form (Fig. 4), but in practice we can
develop our algorithms in a more convenient language and then use a second
algorithm to carry out the conversion automatically (Fig. 6). In fact, a
primary input device such as a teletype usually performs a preliminary
conversion to binary form, and this is then subsequently transferred by
one or more system programs such as compilers, link editors, etc, until
the binary instruction code of the machine is finally reached.
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(Transla!or proqrum)
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FIG.6. An algorithm can be expressed in any *source language’, a second algorithm or sequence of algorithms
being used to convert this automatically into binary machine code.

Three requirements are:

A, It must be possible to find an algorithm to carry out the required

process.

The algorithm must be coded for a specific machine.

. The number of computer operations required for the process must
not be too large.

0w

Much of the effort in computational physics at the present time is occupied
by requirement B, and since this is rather a mechanical task it tends to
divert attention from the physics proper. However, just because it is a
mechanical task it should itself be automated. The ultimate solution is one
in which the languages which are most suitable for people who are investi-
gating and expressing the algorithms are also intelligible to computers
and can be automatically converted by them into efficient binary code.

Some comments on how this may be achieved will be made in Section 8,

in connection with Symbolic ALGOL.,

Algorithms for some of the processes used in physics have existed for
many years, for example, arithmetic, and the solution of sets of coupled
ordinary differential equations by finite difference methods. Here the computer
was able to make an immediate impact. In high-energy physics a great deal
of effort has been put into algorithms for pattern recognition in connection
with the processing of bubble chamber data, and with considerable success
{(Snyder, 1970; Kowarski, 1970). Some success has been achieved with
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automatic theorem .proving and with the automatic solution of elementary
integrals by analytic methods, but neither have influenced physics as yet.
In other cases where theoretical physicists have no algorithms and must
proceed intuitively, as in the formulation of new concepts, computers have
also naturally had little influence.

4.1. Algorithmic and programming languages

In order to satisfy requirements A and B it will be necessary to
develop:

D. Powerful, intelligible algorithmic languages.

E. A substantial body of algorithms expressed in these languages, for the
solution of physical problems. .

F. Means for converting these algorithms into efficient binary machine
code for the various types of computer system.

A high-level programming language such as FORTRAN or ALGOL
enables algorithms to be expressed in a form which is relatively convenient
for people to use, while at the same time allowing them to be translated
without too much difficulty into reasonably efficient machine code. Algorithms
are in many ways similar to mathematical theorems and need to be made
intelligible and universal for the same reasons. Unfortunately the existing
languages cannot be compared in scope to mathematical notations such as
non-commutative algebra and the tensor calculus. Furthermore, it is
nowadays very difficult to introduce a new programming language because
of the cost of developing and maintaining the necessary translators or
compilers for a variety of different computer systems., The result has
been that for physicists the state of the art has remained frozen for many
years; although many research languages have been developed by individual
computer scientists during the last two decades, only FORTRAN (introduced
in 1957) and ALGOL (introduced in 1960) are of major importance in physics.
These have awkward deficiencies which in principle could be easily put
right, but which remain uncorrected because of the difficulty of reaching
international agreement and then modifying all the existing compilers., The
restriction to six-character identifiers in FORTRAN and the omission of
complex numbers, COMMON and EQUIVALENCE declarations and standard
input-output facilities from AL.GOL are typical examples.

It was hard for mathematics to progress until a good notation had been
introduced in order to express the operations of arithmetic and algebra
(Ball, 1908); try calculating in Roman numerals! It has also been said
that the development of English mathematics was held up for more than a
century by reliance on the methods and notation of Newton rather than those
of Leibnitz, Computational physics is likely to remain equally constrained
until it becomes a straightforward matter to introduce powerful new notations
in which algorithms can be expressed. Even the hardware restriction
to upper-case letters, numerals and a few special characters constitutes
a severe limitation, compared to the great variety of symbol types, sizes
and positions which are exploited in mathematics.

The solution appears to be for scientists themselves to develop and
publish machine-independent or portable compilers, program generators
and macro-processors in addition to the growing literature of application
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programs and packages. If these are written in modular form and well
documented it should be relatively straightforward to extend them to meet
new situations in the same way that mathematical theorems are continually
generalized and extended.

5., A SCIENTIFIC SOFTWARE LITERATURE

Clearly, theoretical physics would hardly progress at all if every
worker had to build up all the mathematics that he needed right from the
beginning, and it will not be practicable to develop the enormously complex
algorithms and programs that will be required in computational physics
unless each individual is able to stand on the shoulders of his predecessors.

5.1. Coding problem

It might be argued that although the algorithms themselves should be
published in the regular scientific journals, coding them for a specific
application should be left to the individual worker. This, however, is
unrealistic because of the very high cost of coding and because of the long
delays involved.

Some figures have recently been published on the costs of computer
software and the effort needed to write it, For IBM-360 software the cost
of each instruction has been estimated at $50-60, with 0.2 instructions
produced per man-hour (Bemer, 1970), Figure 7 shows the growth in
software requirements in terms of lines of code for successive machines
(McClure, 1969), while Fig, 8 expresses it in terms of millions of man-
hours spent (Bemer, 1970), Both increase exponentially with time, by
a factor of about 200 in 10 years, and it seems that both Parkinson's law
and the Peter Principle must surely be in operation (David, 1969). Bemer
remarks: ''My nightmares come from imagining a new system scheduled
for 1972. 1If the McClure chart holds true to give 25 million instructions,
then the best figures we have say it will cost a billion and a quarter dollars
produced by 15 000 programmers.' Yet,according to Barbe (1970),only 2%
of the $36 billions' worth of software in operation in the United States is
transferable from one computer to another; the rest is doomed to die with
the hardware,

Physicists may be doing a little better, since Snyder (1970) estimates
that a 60 000-word bubble-chamber analysis program written in FORTRAN
might require 10 man-years of programming effort which would represent
a coding rate some 15 times faster,

s

5.2. Publication, portability and modularity

Since computational physicists do not generally have this amount of
money to spend, the operating systems, compilers and applications programs
which they need will not get written unless some better method is found. It
does appear, however, that three techniques which have worked well in
science and mathematics in the past could go a long way towards solving
the problem,
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The first technique is that of open publication. The new journal
Computer Physics Communications (North-Holland) has recently been
founded to publish details of well-documented, refereed, tested physics
programs. Associated with this is the International Physics Program
Library at Queen's University, Belfast, which publishes the programs
themselves in digital form. I have argued elsewhere the advantages of
such a scheme (Roberts, 1969). One important advantage is that by 'exposing'
the program listings to public criticism the standards are likely to be forced
up. A primary reason why the standards in software engineering are so
low is that there are so few models to work from, because programs are
regarded as commercially valuable and are not therefore seen by more
than a few people. The existence of a high-quality open scientific program
literature should serve as a stimulus to the whole computing industry,
just as the regular scientific and mathematical literature of books and
journals does for technology.

The next technique is that of portability, which is the same as 'uni-
versality' in science and mathematics, Once a new program, subroutine
package, compiler or scientific operating system has been developed and
published, it should be possible to run it at any scientific laboratory or
university throughout the world, just as one can read any journal article
or textbook. There are two basic requirements for this:

(a) Scientific libraries must be persuaded to subscribe to the journal
tapes, in the same way that they do to the regular scientific journals,
and to make their contents as readily available as are books and papers.
(b) The published programs must be written in universally available
languages.

At present, only the universal high-level languages FORTRAN and
ALGOL are accepted by Computer Physics Communications. An important
further requirement is a lower-level universal language in which compilers
can be written and in which they can generate their output (Fig.9). As soon
as this is available, a single implementation of each new language will
make it available on all machines, thus saving excessive duplication of
effort and averting the danger of different implementations being out of
step, as happens with FORTRAN and ALGOL at the present time,.

This idea was proposed many years ago, in connection with the so-
called Universal Computer Oriented Language or UNCOL (Mock et al.,
1958). It enables N languages to be implemented on M machines with a
total amount of effort N + M instead of NM, Another possible way of
implementing the idea is by means of macro-processors (Poole and Waite,
1970), It seems unlikely that new scientific languages can be un1versally
introduced except in some such way as this.

Figure 10 illustrates what I believe the structure of the scientific
software literature I should eventually be; it has been drawn to parallel
Fig. 1 which shows the structure of computational physics itself, Note
that it includes the regular scientific literature, since I have assumed
that in due course books and journals (or at least automatic indexes to them)
will be made available in digital form. There is a significant danger here.
In the past, the scientific literature has always been completely 'visible!,
even though it has been published, in large part, by commercial firms,
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FIG.9. It is now difficult to introduce new scientific programming languages because of the need to
reach agreement on standardization and the cost of constructing a new compiler for each type of computer
system, A better solution would be to construct just one compiler which would then be published, Both
the compiler itself and its target code must be expressed in a suitable universal language so that they can
be used on any system. : ) '

If it ever gets transferred to proprietary data banks which can be automati-
cally consulted, for a fee, but can never be openly inspected by the scientific
community as a whole, then there is a great danger that.it will become
corrupted. .Even the standard FORTRAN library functions often contain
mistakes, v '

Once established, L may be expected to increase steadily with time
like the regular scientific literature and to be equally permanent; there
are already programs that have been in use for more than 10 years and
which have been run on a whole series of machines. At any given epoch,
L will be run on a variety of different hardware types H;, Hy, Hy....
As I expands, it will be less and less economically practicable to recode
even major portions of it for each new hardware system H,, and this is
why portability is essential, The most that can be done will be to recode
certain replacement modules R;, Ry, Ry. ... (Fig. 10) which are executed
with very high frequency and so occupy a substantial fraction of the computer
time,
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F1G.10. Programs and data of significance to science should be published in digital form to ensure that
they are freely available and that their efficiency and reliability can be checked, This ®digital literature’
= should include not only scientific applications programs but also operating systems and compilers, Most
of it should be expressed in universal form so that it can be used on any machine. Replacement modules R;
written in assembly language are used in the interests of efficiency for those modules which have a high
execution frequency,

The third impoxrtant technique is modularity, which is the same as the
'"Principle of -Abstraction' in mathematics. Theoretical physics works by
developing a number of separate tools, e, g, vector algebra, tensor calculus,
group theory, Green's functions, Laplace's equation, and then combining
them together in many different ways. This means that when a new branch
of theoretical physics has to be mapped out, much of the necessary mathe-
_matics is already available (as with Schrédinger's equation-and quantum
mechanics in- 1926). It also means that theoreticians can often move

.freely from one field to another because they recognize the language.
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Suppose that we build a set of program modules of n different types,
with m modules of each type. Then, by combining these together in all
possible ways, the number of complete programs we can form is of order
m", while the work required is only of order mn. Even allowing for many
non-viable combinations, this is still a considerable advantage. To put it
in another way, suppose that a single new module is developed of one
particular type; then m™? new programs can in principle be constructed
from it, an amplification factor of Nm™1,

Typical examples might be the introduction of a new type of co-ordinate
system (e. g. spherical polars), or a new graphical display package. Pro-
vided that the existing programs are properly constructed, many of them
can quickly make use of these with little further effort.

6. THE POWER AND LIMITATIONS OF COMPUTERS

I have stressed the organizational problem at some length because this
is the single most important practical task facing computational physics
at the present time, There are many algorithms in the literature which are
not being exploited because of the effort needed to code them., There are
many good programs that can only be used in one or two major laboratories
(notably the Los Alamos hydrodynamics codes), and others which have gone
out of use because their originators moved on to other work, Also, there
are large numbers of significant research languages which have not moved
very far from the computer science departments where they were developed;
meanwhile, FORTRAN has been frozen since 1964, However, these are
all problems which can be solved by persuasion and good planning, along the
lines I have already indicated. A more basic problem is whether or not
there are any fundamental limitations on the use of computers in physics.

It is sometimes thought that computers will eventually kill theoretical
physics; all that one will need to do is to program the equations and press
the button in order to get a numerical answer., This is very far from being
the case, Consider an assembly of N particles, interacting via Newton's
laws of motion and gravitation. If N is small (say equal to the number of
planets together with the sun), then it is indeed possible to solve the equa-
tions rather accurately over long epochs using the computer, and in this
sense one might say that much of the analytic work done in the 18th and
19th centuries on the classical few-body problem in astronomy was not
strictly necessary. Fortunately, computers were not available then
because the modules developed during the course of this work (e. g.
Lagrangian and Hamiltonian mechanics and perturbation theory) turned
out to be of great use in other fields such as gquantum mechanics and
statistical mechanics.

Because the number of elementary interactions between N particles
increases as N2, straightforward computational techniques become im-
practicable as soon as the number of particles greatly exceeds 100 or,
at most, 1000. Statistical mechanics is difficult to apply because of the
infinite potential energy that can be released when two gravitating particles
approach each other, and the two lines of attack, theoretical and computational,
must support one another,
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Theoretical physics relies to a large extent on finding adequate ap-
proximations. Often this is a question of separating the various time-
scalesin a problem. For example, the Born-Oppenheimer method used
in molecular theory treats the nuclei as fixed when calculating the electron
energies and wave-functions from which one obtains a potential function
to be used in solving the motion of the nuclei themselves, Time-scales
are equally important in computational physics because if a naive approach
is adopted, the cost of the calculation will be determined by the shortest
time-scale t g, of the problem and will rise to astronomical values if the
ratio of this to the largest time-scale t,,, becomes too great.

In the case of an assembly of N gravitating stars the shortest time-
scale is likely to be determined by the orbital periods of close binaries
which can decrease without limit, These must somehow be decoupled from
the problem, e.g. by treating the motion analytically until the perturbations
due to nearby stars become too great. The N2 difficulty might be removed
by replacing the effect of the interactions outside a given distance by that
of a mean field, so that the amount of calculation increases only as N,

Research of this type often proceeds in one of two ways:

(a) Theoretical approximations are devised to remove difficulties en-
countered in the computation, and then these approximations are
verified using the computer.

(b) The numerical calculations turn up unexpected and striking results,
which can then be given a simple analytic explanation,

Thus the theoretical and computational approaches are complementary
to one another,

One instance where computers could have been of great assistance
during the 19th century is in the solution of the Navier-Stokes equations
for viscous flow, If these equations had been solved numerically in two
dimensions at moderate Reynolds numbers, boundary layers of finite
thickness would have automatically developed in the neighbourhood of solid
surfaces, and the interpretation of this phenomenon should have led to the
discovery of boundary layer theory and an understanding of the problem
of flight much earlier than actually occurred. Shocks and Karman vortex
streets would have automatically turned up in a similar way.

It is interesting to notice another complementarity between the theoretical
and computational approaches, since theory finds it easier to deal with thin
boundary layers, while computers find it easier to deal with thick ones
(covering several space steps).

6.1. Partial differential equations

When we turn to partial differential equations the limitations of com-
puters become even more apparent, Excluding high-energy physics for
which the equations themselves are not well defined but their number seems
to be infinite, we find three situations in decreasing order of complexity,
as indicated below,
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‘Numbers of dimensions

Schrédinger Configuration space 3N
Vlasov Classical phése space . 6
Navier-Stokes ~ Real space 3

Vlasov's equation describing the phase space motion of particles interacting
via long-range fields is important in plasma physics, while the Navier-
Stokes equations of hydrodynamics are a prototype for many similar sets

of coupled partial differential equations in magnetohydrodynamics, astro-
physics, geophysics and other fields.

Assuming that we need at least 100 space points in each direction to
achieve good accuracy (i.e. 25 Fourier modes with z 4 points_/mode), the
amount of storage needed is 1008N for Schrddinger's equation, 100% for
Vlasov's equation, and 1002 for hydrodynamics.

It is now just becoming practicable to compute with 10® mesh points
using machines such as the CDC STAR-100 so that three-dimensional
hydrodynamics problems should shortly be fairly routine provided that the
Reynolds number is not too high. To achieve the same accuracy with Vlasov's
equation requires a further factor of 108 in storage -capacity and speed which
is difficult to envisage at the present time, although a factor of 10° can
perhaps be anticipated. But this method of solving Schrddinger's equation
is out of the question for all but the simplest situations.

One is again led to the need for making adequate approximations before
putting a problem on to the computer and this of course is done in quantum
mechanics, for example, by the method of molecular orbitals (Clementi,
1970). In general, insight is likely to come not only from the numerical
results themselves but also from studying the accuracy of the various
approximations and trying to understand why they work as they do.

6.2. Turbulence problem

It has recently been pointed out by Emmons (1970) that a straightfor--.
ward numerical attack on the problem of hydrodynamic turbulence in three
dimensions is doomed to failure, since to solve the simplest turbulent pipe
flow problem would require 101° mesh points and 10'* operations altogether
for a Reynolds number R, = 5 X 103, occupying perhaps 100 years on existing
computers (or 1022 opérations and the full age of the universe at R, = 107),
Here again one must look for a combination of more subtle computational
techniques combined with physical insight and good theoretical approximations.

7. DISPERSION RELATIONS

When a partial differential equation is solved on a computef, one effect
is to change the dispersion relations of linearized perturbations or small-
amplitude waves. This happens because derivatives are replaced by
differences, so that,for example,

f(x+AXx)-f(x-Ax)
2Ax

df/dx -
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fx+Ax)-2f(x)+f(x - Ax)
(Aax)*

a?t/dx?® - @

The r-esult is that algebraic dispersion relat1ons are replaced by more
complex trigonometric ones, since

- sin kAx

k-7 Ax - @)
_ 2(cos KAx - 1) v
e HOTS | (5)

and so on. ) :
. Depending on the difference scheme, on the equations themselves
and on the ratio of the 'mesh speed' Ax/At to the various characteristic
" speeds of the problem (where At is the time-step), this replacemert can
cause stable waves to become unstable or damped, and non-dispersive
waves (e. g. sound-waves) to become dispersive. A good part of the
papers of these Proceedings is concerned with such problems, the situation
being quite analogous to the replacement of a continuum by a discrete
lattice in solid-state physics.
' This analogy with solid-state physics might usefully be exploited further,
‘In partmular since there is a maximum wave-number k; .. that can be re- )
presented on a 1att1ce w1th finite spacing Ax, when two waves kl, k2 interact
-to give a new wave k= k + k2 with ]kl > Knaxe this energy must be diverted
~ to some other mode |k'| < Kpax by @ type of umklapp process which is known
‘in computational physics as 'aliasing'. This leads to errors in turbulence
investigations, and the energy at high wave numbers must be removed by
‘some form of artificial damping before it can cause damage
" The simplest example of numerical dispersion is given in the solution
of the one-dimensional advective equation

—+v—xf0 : ‘ (6)

where v is a constant. This evidently describes a wave moving with uniform
velocity v, thus preserving its shape unchanged, and the dispersion relation
L is !

w= kv ’ (7)

. Making the.replacement, (4') but keeping At small, we find

_(sin kAx ), .
o= (Skae) ®

‘This means that disturbances of short wavelength propagate more slowly
and that for

. kAx =7 (9)
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there is no propagation at all, A pulse can leave a train of waves behind
it which may be misinterpreted as a real physical phenomenon, and a
function (such as the density or temperature), which according to the
differential equations must remain everywhere positive, can take negative
values in the numerical calculation. N

Equation (6) is significant because it is the prototype of all the hydro-
dynamic equations, in which the left-hand side occurs as the Eulerian
derivative. It is also closely associated with Vlasov's equation. Advective
errors are of importance in meteorology where v represents the speed with
which disturbances are carried by the wind.

8, SYMBOLIC PROGRAMMING

I discussed earlier the possibility of finding a generalized language
which would be suitable not only for the formulation and discussion of
algorithms, but also for programming the computer itself. I should like
to finish this paper by mentioning how this has been very largely achieved
for one particular field, namely the solution of classical field equations
for initial-value problems (Robertsand Boris, 1971; Roberts and Peckover,
1971; Kuo-Petravit, Petravit and Roberts, 1871), The method is known
as Symbolic ALGOL and is described in detail in papers SMR-9/22 and
SMR-9/24 in these Proceedings,

FORTRAN, and more particularly, ALGOL 60, were designed for
this dual purpose but have two major weaknesses; firstly, they do not in-
clude much of the notation that theoretical physicists normally use, and
secondly, they have no power of extension other than through the use of
subroutines or procedures.

We have, however, been able to show that by writing ALGOL programs
in a particular way, they can be brought into very close correspondence
with the notation of vector analysis. For example, the magnetic diffusion
equation

% = Curl (V X B) - Curl(n CurlB) (10)

can be programmed in Symbolic ALGOL I as

AB[C1,Q] := B+DT*(CURL (CROSS(V, B)) - CURL (ETA*CURL(B))); (11)

independently of the co-ordinate system and of the number of dimensions.
Most of the notation is obvious but it should be explained that the prefix
'A' denotes 'array', Cl stands for the current component (or the first
component of a tensor), while Q represents the local mesh point at which
B is being evaluated,

Modularity has been achieved because the same statement (11) will
work just as well for spherical polars as for a Cartesian system, if one
simply 'plugs in' or 'switches on' a different definition of the CURL
operator. The definition of CURL in Cartesian co-ordinates is
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real procedure CURL(A); real A;

CURL := RP(DEL{(RP(A)))-RM(DEL(RM(A))); (12)

which gives some idea of the conciseness of Symbolic ALGOL I as well as
of its similarity to the notation of theoretical physics, Here RP, RM are
mutually inverse rotation operators, permuting the vector components (123)
in the positive (231) and negative (312) directions respectively, while DEL
is a vector finite difference operator,

Symbolic ALGOL 1 executes quite slowly because of a large number of
nested procedure calls, To get around this problem, we have shown that
statements such as (11) can be converted either automatically or by hand
into an equivalent form called Symbolic ALGOL II, which when executed
will automatically generate an optimized program in axiy desired output
language. For this purpose they are plugged in to an ALGOL program called
the Petravit Generator which is supplied with modules analogous to (12)
in order to define the difference scheme, co-ordinate system, target
language and so on,which are required for the particular job.,.

The target code is about as fast as well-written FORTRAN, and an
added advantage is likely to be that code can equally well be produced for
computers for which no compiler is yet available, or even for which FORTRAN
is not particularly suitable, such as the new CDC STAR-100 which is able
to process complete vectors in one operation without using a DO loop.

What we are doing here is to use the computer itself to write the pro-
gram, instead of writing it by hand., Since much of the work is tedious and
mechanical, this is a very natural development, but the interesting point
is that the instructions which must be fed to the computer to make it carry
out this task are in virtual one-to-one correspondence with the original
mathematical statement of the problem. This is a situation which is
reminiscent of both quantization and second quantization, in which the
equations always seem to remain the same but get interpreted in different
ways. If it can be exploited further, we may be able to use much of the
formalism of mathematical physics itself as the algorithmic language for
programming computers.

In this sense I believe that one of our immediate aims should be to weld
mathematical and computational physics into a coherent whole.
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Abstract

THE IMPACT OF COMPUTERS ON NUCLEAR SCIENCE. . »

Nuclear physicists were the first large-scale scientific users of computers. 'As computer techniques
developed in the 1950s and 1960s, they became indispensable in an ever growing variety of tasks of pure -
and applied nuclear science. The following categories of tasks are consideréd: . (1) Theory and mathematical
preparation of experiments; '(2) Experimentation at its various stages — be_fore,_,duﬁng,and after the collection
of data; (8) Simulation and "computer experiments”; (4) Operation and control of nuclear machines;
(5) Documentation, This survey is given ina historical perspective with some emphasis on initial difficulties :
and gradual adéptation. Near-future prospects, especiaily in high-energy physics; are discussed, leading to
the formulation of a conflict between the threat of dehumanization and a humanistic hope. .

1. DEFINITION OF A COLLISION

) Ahy'kind of physical research,. whether pure or applied, is today’
largely a computer-aided activity, but this is essentially a very recent
state of things, hardly half a generation old, Physics, of course, is a
much older activity, with its established way of life and thinking, And
established ways do not always combine very kindly with new ways. That
is why the intrusion of computers into physics was so much of a sudden
-event, best described in terms of a collision,and that is the meaning of
the word "'impact' in the title of this paper.

Nowhere has the impact been as dramatic as in nuclear physics and
in its spectacular applications, first military and later on industrial.

This whole domain of knowledge should be called nuclear science, because

it is not only physics. But there the physicists played a dominant role, and
also they were the first and the most important users of computers, so -

in this paper, there is not much d1fference between talking of nuclear science
or of nuclear physics.

To describe the impact and 1ts consequences, I shall proceed in a
historical way. I come before you as a witness, as one who was active
in nuclear science before the computers came and who was well situated
to watch what happened when they did come. And as an observer of this .
sequence of events I may perhaps allow myself to make a few guesses as
to how it is going to develop. Also, as a witness, I may be forgiven for
talking at some length about things I know a little better and skipping briefly
over those of which I know less.

2. DOMAINS OF PENETRATION

2. 1. Introductory survey

Let us start at a definite time-point, say 1950. In the public mind this
is the "atomic age', still at the zenith of its glory. We nuclear scientists
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are the scientific wizards, ours is the most prominent science. We have
heard that ''electronic calculators' are being developed somewhere. They
may be important for statistics or finance, but not for us, except perhaps
for certain unusually intricate things like some particularly messy partial
differential equations. Anyhow, radio tubes are clumsy, memories are
even clumsier, it all will take time, it does not concern us at present.

Yet, we were drawn in pretty quickly. One simple reason: the computer
development took money. It started in Princeton, then it was taken up
by Remington Rand (not IBM yet at that time!) but "'the atom'" was the weal-
thiest prospective user and so the first user-motivated computers were
built in places like Argonne, and in particular in Los Alamos, where Stanislas
Ulam and his pupils played a considerable role in these early beginnings.

Occasions for using computers gradually spread all over nuclear science,
At first, they arose only in the nuclear scientist's office, at his blackboard,
where theories are made and leisurely calculations performed before and
after the experiment — not yet at the moment when the scientist is in actual
contact with the nuclear phenomenon, not actually in the laboratory or at the
nuclear factory. At this stage, the computers are useful for what might
in army use be called staff work, not for field work.

Then the computers began to get closer to experimentation and to the
laboratory itself. Historically, this happened first in connection with
handling the data left after the actual contact with the nuclear phenomenon
(data analysis); at a later stage, computers became involved directly in
this contact itself, and thus completed the invasion of another domain of
nuclear science — the research laboratory.

After the laboratory study of nuclear phenomena comes the application —
nuclear machines and factories. This constitutes the third domain. Com-
puters came finally even to the library, ''no place to hide', so to speak.
After we have gone through this picture of a complete encirclement of
nuclear scientists by computers, we shall try to see how the nuclear
scientist reacted to this increasing involvement, what made him happy
or unhappy and how this, not always easy, relationship may be expected
to evolve.

2.2. At the blackboard: mathematics and theories

Let us now look again at a scientist in 1950 at his blackboard, away
from the nuclear phenomenon, He may have been using a desk calculator,
the cog-wheel type; if the infant electronic computers can provide only
the same kind of service, then they are hardly necessary and if they can
do something else — but the nuclear scientist sees no need for anything
else, This is the usual vicious circle which, at first, is very effective
in keeping the atom and the computer apart.

Yet gradually it dawns on our scientist that there may have been
cases in his past when an attempt to solve a problem with a desk calculator
had to be abandoned because of the sheer volume of work. Electronic
computation, being faster, can go further in this direction, and so the
realization comes that fast arithmetic can help in solving algebraic equa-
tions, differential equations, partial differential equations (a whole new
world opens there), matrix problems, complicated functions, etc., etc.
The computer then becomes the indispensable tool in a spreading diversity
of uses.
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Through the arithmetic of Cartesian co-ordinates, the way is open
to the use of computers for handling geometry — first through the printing
plotters and more recently on the cathode-ray displays. A physicist could
hardly appreciate this roundabout way as long as he had to stay away from
the computer operation. But once it became possible to put the computer
on-line to the physicist's mental approaches to the problem, computerized
geometry was recognized as a valuable technique, known nowadays under
the name of "interactive graphics''.

We have just had the first glimpse of the on-line concept — a computer
timed to operate in step with another operation outside itself, in this case
a human thinking process. We shall return to this many times and in
various contexts. The first problem here is that of mismatched speeds:

a computer working as sluggishly as the human mind is a computer largely
wasted, and only when computers became cheaper per unit of operation,
this waste became economically possible; that is why this particular on-line
use is such a recent development,

I mention only for the sake of completeness such extensions of the
computer use as formal logic, non-numerical algebra, games theory,
artificial intelligence, etc. They have so far had rather little relation to
anything nuclear, except perhaps the recognition of visual patterns, on which
we shall comment below, and some very recent applications of symbolic
algebra, reported in paper SMR-9/27 in these Proceedings, In particular,
the symbolic treatment of Feynman diagrams is relevant to all of high-
energy physics.

All this can be seen as generalized mathematics and to all this can be
applied the remark made some ten years ago by J. T. Schwartz of the New
York university: ''Mathematics has always sought to reduce the unlimited
natural complexity of facts and ideas to a humanly manageable size; it
is like mining of diamonds from the surrounding rocks. But the increasingly
chea{p power of machines enables us to manage far greater masses of
irreducible complexity; it is still an extraction process, but it is more
comparable to the other useful form of carbon — the mining of coal''. This
analogy illustrates the difference between the spirit of mathematics and
that of computer science and helps us to realize that being a computational
physicist, or a computational nuclear chemist, or what not, is not at all
the same thing as being a mathematical physicist and so on, so that, in fact,
a new way of life in nuclear science has been opened. So much for the
impact at the blackboard.

2.3. Computers in the laboratory: before the run

Now comes the laboratory, the contact with the nuclear phenomena.
I would like to mention here that our forefathers seem to have been more
careful about describing our various ways of dealing with the phenomena,
When a physicist measures, using a known technique, some third decimal
in the lifetime of a nucleus or a particle, which otherwise is well familiar
and well behaved, he hardly should be called an experimenter. And when
a junior physicist looks at a bubble film from a chamber built years ago
and from a run recording the overall effects of a given beam on a given
target, he does not experiment, he observes. Yet, all this is now called
experimentation, so we shall have to use that word a little loosely,
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In any nuclear "experiment', the crucial moment is that when the animal
is actually being killed, I mean when the nucleus or the photon or whatnot
is actually striking the detector. That is the phase of data collection;
before it comes the preparation, the setting-up of the apparatus, and after
it comes the handling of data and the arrival at meaningful scientific con-
clusions. Computers are now essential to all of these three stages —
before, during and after, which I have once called Class 1, 2 and 3 of com~ °
puter use in experimentation, My next remarks apply chiefly to a vast
variety of nuclear experiments using the electronic kind of detection which
is now current in high-energy physics as well as in low-energy physics,
nuclear chemistry, etc., and — as you will see — a closer look at these
applications will lead us to some slight changes in the definition of:these
three classes, . : '
The setting-up of an experiment r-eally starts with some thmkmg at
the blackboard (we have already dealt with that) and, nowadays, increasingly

'~ often with preliminary computations which try to simulate the future experi-

mental situation — we shall return to that below. After this more or less
theoretical preamble, the experimenter may need the computer for such
Class-1 work as checking the apparatus, testing its performance on blank
runs and trial runs, adjusting the electronic logic, etc. =
Let me quote here two’ fairly recent opinions from eminent physmlsts .
on the relevance of Class-1 computer use. . An opinion from M.I. T.:
" "If more than 30-40 counters are used in-the samé experiment, then a
computer is necessary in the setting-up stage'. Another, from Princeton:
'We try to , choose our experiments so that the apparatus is simple enough
. to be set without using a computer. If it is not, then there are too many
interfaces, the flexibility is lost'. The prevailing trend seems to be away
from this happily austere ideal.

"~ A computer in Class 1 must be fast enough to follow the fast working
of the apparatus in ''real time'". This is another kind of on-line use —
on-line to the apparatus. It.may require a rather large computer, ‘e. g.

a PDP-6 or -10, but in most cases a smaller size (such as PDP-9) seems
to be adequate; still smaller computers, like the PDP-~8, are hardly use-
ful anymore in this connection. The same not too big computer may be
useful when the experiment is actually going on, for-the purpose of collec-
" ting the incoming data and to put them on a single record such as a magnetic
tape. It is convenient to consider this particular function as belonging still
to the Class 1, although it already takes place during the actual k_ill'.

'2.4. During the run

Class 2 is the most modern and the hottest problem, because it raises
all sorts of issues about the required minimum size of the computer, its
location and the wasteful use of its available time. The kill, usually called
the run, may sometimes go on for days or weeks, - The scientist wants to
know if his incoming results are worthwhile; therefore he has to-extract
the meaning from the data.as they arrive, if not all of thefn, at least from
samples. This extraction very often requires the active intervention of the
scientist's mental processes, if any;. therefore the computer must be
available on-line both to the nanoseconds timescale of the apparatus and
to the seconds timescale of the thinker. Also, full processing up to the
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physics-meaningful conclusion often requires definitely a large computer -
a 6400, a 360/65 or more — to be made available to every interested user
right on the site where his experiment is actually taking place. Class 2 is
essential: according to its results the physicist may have to modify the
~ experimental run or even to stop it altogether,
It is amusing to see how modest were the experimentalist's Class-2

" requirements only a few years ago. A leading Columbia low-energy physicist,
Dr. Lidofsky, reported in 1964 that the currently used system involved re-
cording the output of his multichannel analyser on paper tape, then sending
the tape by méssenger to a distant small computer which would produce
.magnetic tape, then using another messenger to bring that tape to a 7090
computer., The elimination of the first messenger -~ that is, putting a
PDP-4 on-line to the analyser — was at that time in progress. The
possibility of using a large computer on-line, via data links, was mentioned
as a utopian-ideal., ‘To-day the tendency.isto build in a not too small
computer, such as a PDP-9 (the same as in Class 1), and if this is not

" enough for Class 2, to have a practically on-line access, via data links and

-time-sharing, to a really big computer. How necessary this is going to

be will be seen from two illustrations: according to P. Egelstaff (Harwell)
a typical analyser of 1956 had 100 channels. By 1960 he got to a few )

- thousand. Much more recently, a report-on Dr. Ghiorso's radiochermical
investigations in Berkeley mentioned an analysing set-up involving three
variables (the chemical nature of the sample, time intervals, the height

" of the pulse) and a total of several hundred thousand channels.

2.5, After the run

And now, the run is over and we are left with the bulk of the recorded
data, already partly processed through the Class-1 and -2 computers,
already sampled as to their physical meaning, What comes now is Class 3.
For a large category of experiments, mostly in high-energy physics (all
of bubble chamber experiments.and several kinds of those with spark
chambers), all computer use is Class 3, because the results of the detec-
ting run are at “at first recorded visually on film without any recourse to a
computer, But then visual data have to be processed through film-measuring
and pattern-recognizing stages before they are reduced to a set of computable
numerical data. On the whole, it can be said that the use of a film-measuring
machine re-introduces all the headaches which have been avoided during
the initial detection, that is the film-taking stage. Now, to handle the film
information, we face again the need for a smallish computer on-line to the
measuring machine, a bigger computer on-line to a monitoring physicist,
etc. There is also the problem of insertion of human help to overcome
the occasional weaknesses of the information processing by machine,

The final domain of data handling, or the Class 3 proper, consists in_
the Ifeductlon of the .raw computable data to their meaningful scientific
conclusion. Dr. Lidofsky (Columbia university) quoted, as a typical example
.of the 1964 era, an experiment on gamma rays from some excited levels
of a nucleus; there the computable data amounted to over two million bits
and the final conclugion was expressed in about 100 bits.  In 1970,

Dr. Macleod (CERN) mentioned in a lecture cases of nearly 10 000 recorded
‘bits per second of effective run. We are progressing, aren't we!
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The last reduction stage in bubble experiments is the SUMX program,
about which Lohrmann reports in paper SMR-9/28 in these Proceedings,
The closer you get to the intelligent conclusion, the more important is
the active participation of the scientist; all the problems of interactive
operation, properly planned time-sharing, on-line access to a big computer
and so on, have to be tackled as an increasingly accepted part of a physi-
cist's life,

About ten years ago this was not foreseen at all, Data collection and
reduction, recognition of visual patterns, etc., were thought to be amenable
to a complete automation; the scientist would only come in to muse over
the final print-out.

Systems of bubble film analysis invented around 1960, such as HPD
and PEPR, were inspired by this "'ideal" but did not succeed in achieving
it fully. In the much simpler task of analysing spark-chamber film, the
elimination of human intervention has been pushed farther, but even there
not to the very end. Since the mid-1960s the style of using computers
in nuclear experiments began to shift towards a proper combination of the
human operator with the machine, instead of trying to do away with the
human altogether; older bubble-film processing devices began to be ex-
ploited in a systematically interactive mode,and newer devices (e. g. those
known as Polly and Sweepnik) explicitly embodied the principle of man-
machine symbiosis.

2.6. Simulation

We are now going to take the scientist out of his laboratory and let him
proceed further, but before that we must return him once more to the
blackboard. Having got used to the computer in connection with the in-
coming physical data, he noticed that he can learn a lot about the pheno-
menon without taking any data at all, Instead of using experimental data
as input, he can use an inflow of random numbers — and let the computer
process them according to all the rules he already knows to be valid for
that particular category of physical phenomena, This kind of study is
known as simulation, Strictly speaking, it is not a branch of experimental
science at all, and yet it looks very much like one, and one often hears now-
-adays of ""computer experiments'', In its purest form computer simulation
studies problems which are fully known in their basic principles but too
complex to allow the derivation of concrete numerical results from such
principles — a situation which often occurs when dealing with many-body
problems, liquids, plasmas., Then there is the mixed form which takes
in actually observed data and then uses them as input for computer simulation
of their subsequent evolution; meteorology and astrophysics, in particular,
make use of this method, ''Computer experiments' are mentioned in the
papers by Hockney and by Roberts in these Proceedings.

Simulation is also useful in Class-1 work as a means of studying the
performance of instruments from an input of random numbers rather than
the physical data, Design and trial of electronics; testing of photographic
optics and their distortions in the new, very complex bubble chambers; :
testing of bubble processing programs by trying them on simulated track
co-ordinates — all'these are suitable domains for simulation by computer.
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2. 7. Computers in nuclear factories and machines

After this excursion back to the blackboard, we now can turn to the
scientist who has proceeded from the laboratory to the application, where
his scientific work is concerned with actually running a definite device
or machine, In the history of introduction of computers into nuclear
sciences and their applications, one of the first domains considered was
the control of nuclear reactors. Reactors are fairly quiet and steady
devices, but if not enough attention is given to the evolution of radioactivity
or of neutron fluxes within them, they may tend to get astray from the
equilibrium position chosen for their functioning, Therefore, the operator
in charge of the reactor has at his disposal various sensor devices which
show the neutronic state inside the reactor. According to these indications,
he takes his decisions and intervenes, if necessary, to change the working
conditions of the reactor, so as to bring the chain reaction to a desired
level of intensity.

All this, in principle, could be done by a computer. The sensors could
transmit their readings to the computer which would digest the data, arrive
at a logical decision and intervene according to this decision, This could
be done with a speed and an accuracy far greater than those obtainable
from a human operator, which would be useful for ensuring a safety feature
that may yet prove to be very valuable for some reactor types in some
critical stages of their functioning,

These prospects have been aired in many theoretical discussions;

I was involved in some of them back in 1963. Five years later, at a con-
ference held in Norway, I could see that the discussions had remained
largely theoretical and not much use was made of them in practice. Some
beginnings in this respect were reported from Canada and Japan; I do not
know how much has been done since then.

Another field of nuclear technology where computers can make effective
decisions, is the running of particle accelerators which is of direct interest
to us in high-energy physics. In the experimental equipment around the
accelerator there are many more tasks for controlling computers; they are
now used extensively for handling the primary and secondary beams and,
increasingly, in the functioning of very big bubble chambers or electronic
experimental set-ups (the latter also in low-energy nuclear experiments).
All these computers act as a switch-board mechanism which becomes
necessary when the logic of switching is enormously complex and/or has
often to be changed. :

2. 8. Computerized documentation

As the last domain in which computers have invaded the nuclear scien-
tist's life, we have to mention the library, documentation and scientific
information in a larger sense. The first way of using computers in these
activities was the computerized production of catalogues., Instead of in-
scribing catalogue entries in time-honoured folios or card files, they can
be put on computer-readable tape. The computer canthen perform certain
standard operations suitable for arranging the catalogue data in a desired
form, and print out the results so that the printed catalogue can be made
available in as many copies as required and not just one card file in the
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central library. If the catalogue entry contains not only the classical
indications such as the authors' names, the title of the document, the

year of its publication and so on, but also a few keywords or other ''descrip-
tors' to give an idea of what the subject matter is about, then the computer
can be used to make searches through large sets of entries and to print

out a list of documents in a given collection which, by their content, cor-
respond to some formulated demand. For a precise characterization of a
document by keywords, help from a human documentalist has so far been
necessary. Schemes have been proposed for the computerized extraction
of keywords from a given text by making it optically accessible to the
computer, which would single out the keywords on the basis of their fre-
quency in the document or of their appearance in some specified context.
Many theoretical studies and experiments of this sort have been performed,
but the practical results have, so far, been rather meagre; as in bubble-
chamber analysis, the '"ideal' of eliminating all human intervention may
soon be replaced by the deliberate development of an optimum combination
of man and machine,

3. RESPONSE TO THE INVASION

I have said enough about what tasks the nuclear scientists are now
considering as legitimate fields for using computers, and how the growing
importance of computers and of their on-line interaction with scientific
thinking has induced the nuclear scientist — has forced him — to become
at least a computer technician if not always a computer scientist. In terms
of a well-worn piece of political wit, those of the atomic era have been
dragged into the computer era screaming and kicking. After the complete
aloofness of 1950 they gradually came to view the computer as an occasion-
ally useful blackbox, almost impossible to understand and not much worth
the effort of understanding, accessible only through an esoteric language —
there was no practical FORTRAN in those early years, because computer
time was too precious to be wasted in such crude ways, Only professional
applied mathematicians could approach the blackbox and with these, for
the next ten years or so, the nuclear scientist had to co-operate willy-
nilly, most often nilly.

The invasion of the laboratory was probably started around 1955 by
Luis Alvarez and his group, with computerized measuring machines for
bubble-chamber pictures. A new kind of interface had to be designed,
placed between the film-recorded data and the computer; soon afterwards,
another such interface appeared in low-energy physics between the pulse
analyser and the computer. The nuclear scientist tended to design and
build these intermediate devices all by himself, helped only by his faithful,
modest electronic technicians, They sometimes would build a whole
custom-built specialized computer, without even realizing it. It was the
time of what I used to call tricky hardware — very ingenious, very rigid.
Equivalent tricks by software were already thinkable, but nuclear men were
shy of them.,

Not for long. Nuclear physicists began to learn FORTRAN, Since
physics is defined as what physicists do (it is quite official, not just
my joke), computers did duly become a part of physics. It seems almost
incredible today that only eight years ago, on the highest directing level
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of CERN, I was told (in full view of an approaching crisis of CERN computing
facilities) that a "crash effort' could be approved only in physics but not in
computers, Today such a deliberate opposition would sound rather unnatural.
As scientists get used not only to writing their own programs, but also
to sitting on-line to an operating computer, as the new kind of nuclear
scientist develops — neither a theoretician, nor a data-taker, but a data-
processor specialized in using computers — they become too impatient to
sit and wait while their job is being attended to by computer managers and
operators. Turn-around time vexations can ultimately be solved only in
two ways: one is to provide each experimental group: with its own computer,
available for on-line inclusion into its experimental set-up or for its process-
ing operations; and the other is time-sharing of bigger computers, with re-
mote consoles. Both of these solutions have been adopted in the current
practice.

4, PROSPECTS AND VALUES

4,1, Liberation in space

Storage of raw data for subsequent processing begins to be noticeable
as a means of resolving some contradictions imposed by geographical
separation between the accelerator and its average user, A university
physicist can then perform a very significant part of his experimental
work without leaving his own campus, especially if data transmission by
telephonic links is available to supplement the conveyance of data by mail
or messenger, Perhaps, when links as comprehensive as those used in
television become available at long distance, there will be even less reason
for the user to spend a lot of his time on the site where his physical events
are being produced. This may even abolish the kind of snobbery which de-
crees today that only those may be considered as physicists who are bodily
present at the kill, that is at the place and time when the particle is actually
coming out of the accelerator and hitting the detector.

Today the campus user tends to use his own computer only in Class 1
and 3 of his activities, in terms of the classification explained above, and
to commute for the Class 2 of his processing work., As the remaining de-
pendence on site facilities diminishes, this almost complete liberation from
the geographical dilemma can acquire a direct political significance, We can
envisage a state of things when there will be only one biggest machine in the
whole world available for some problems in high-energy physics or in high-
flux lower-energy nuclear research. ‘It will be unthinkable to concentrate
all the leading experimentalists of the world around this machine: decentra-
lization of experimentation is necessary in order to keep alive the teaching
by prominent scientists,

4,2, Liberation in time

. In addition to this increasing liberation in space, computers can already
give freedom from several kinds of time limitations. We are no longer
obliged to conform ourselves to the nanosecond region of speeds in which
the events are actually happening: we can record them in their real time,
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and then process and study the records in our own timescale. The other
form of time liberation is the possibility of reprocessing an event in some
new ways long after its original handling, The events can be stored in
archives, where we can return and browse, and now and then, perhaps,
extract some new meaning from an old record.

The third way is the liberation from the tyranny of the Big Machine's
time schedule. Because the physicist is no longer compelled to be present
when the physical event is actually happening, he can organize his work in
a better equilibrium with his teaching duties,

4,3. Dangers and hopes

The vision of these huge and costly machines, spitting their particles
into almost as huge and no less costly assemblies of detecting apparatus,
every day of the year and every millisecond of the day — the yield has to
justify the investment, you know! — is in a way terrifying, The era of the
ingenious scientist, who sets up his apparatus to catch Nature behaving
this or that way, seems to be past. The machine will have to run just
"because it is there', and according to its own rules. And from each
run — there will be not much sense in calling them experiments any
more — there will be a rich harvest of recorded data, like a deep-sea
dredge coming up with its load of pebbles and fishes. A nuclear scientist
will prepare the run and sift the harvest, following the example of today's
oceanographers, selenologists and archeologists.,

There will be a lot of attempts to judge such new situations by old
value criteria., What is a physicist? What is an experimenter? Is simula-
tion an experiment? Is the man who accumulates print-outs of solved equa-
tions a mathematical physicist? And the ultimate worry: are we not going
to use computers as a substitute for thinking? There is an interesting recent
precedent for this increased reliance on computers, In the early 1950s
hydrogen bombs were developed simultaneously in the Soviet Union and in
the United States of America, and a little later in the United Kingdom. They
were successfully brought to the point where they could really work, I mean
explode. The French scientists, attacking the same problem in the 1960s,
felt that they needed access to the biggest scientific computers available
at that time and which certainly were not available in the 1950s to their
American, Soviet or British colleagues. The United States government
embargoed some of the biggest American computers when it learned that
they were to be used in a French hydrogen-bomb project. The French
scientists protested that this made their work as good as impossible. We
are led to believe that with their methods as they had developed by that time,
this work did indeed become impossible in the absence of very big computers,
and to take this episode as a striking illustration of the irreversible evolu-
tion of working habits in nuclear science, due to the advent of computers.

It is, of course, only fair to assume that the standards of desirable accuracy
had gone up in the intervening decade so as to ensure more completely
reliable predictions of performance than those which were available in the
early 1950s,

In high-energy physics itself it is noticeable that bubble-chamber tech-
nique has got further towards what we might call too much dependence on
computers than its other branches of experimentation. The contemplation
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of this and other such trends leads us to the formulation of a dehumanized
utopia in which nuclear scientists will produce very fine measurements

and will make no discoveries. In some sense we may be obliged to say

that this situation is already largely prevailing in high-energy physics,
especially in Europe. But, of course, the full dehumanization is only an
extrapolation limit. Moreover, we must never forget that the computers

are also available for constructing a humanistic utopia: they offer us

the possibility of browsing over stored data with all intact human ingenuity
to give a new sense to the already processed events; the overall direction
of experimentation by a creative human; the fruitful symbiosis between man
and machine., William Miller formulated in 1964 an ideal: "We must decide
what to do and the machine will maybe tell us how to do it''. I might add:
how to do it by operating the machine, But as long as we decide, and not the
machine, there is hope.
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Abstract

OCCURRENCE OF PARTIAL DIFFERENTIAL EQUATIONS IN PHYSICS AND THE MATHEMATICAL
NATURE OF THE EQUATIONS.

This paper is introductory in discussing how partial differential equations arise in physics and in
reviewing some simple properties which are nevertheless important when considering methods of solution
on the computer. The importance of principles of conservation in physics, and in particular in classical
physics, is stressed and they are used to derive some important examples of partial differential equations,
The use of Fourier analysis and the derivation of dispersion relations is reviewed for waves, advection,
diffusion and potential problems. The time-scales of interest in initial-value problems are isolated, as
a preamble to the concepts of stability and accuracy in difference solutions, The essential non-linearity
of the few- and many-body problem is discussed. The general initial-value problem is defined and the
concepts of a discrete mesh in space and time are introduced, A comparison is made between a continuous
function and a mesh vector by Fourier analysis, illustrating that the essential approximation on a difference
mesh is the limitation to long-wavelength modes, Integration of the initial-value problem in time over
finite time-steps is introduced.

1. INTRODUCTION

The power of differential calculus has led to the very wide application
of the concepts of continuous media and continuous fields, In using such
concepts, continuous functions in space and time are defined which describe
the properties of the medium, and on applying the quantitative principle of
physics, partial differential equations are obtained which couple the proper-
ties of the medium in space and time,

To illustrate the very wide application of this concept, and consequently
the very wide occurrence of partial differential equations, a few fields which
rely on such a concept are listed: in classical electrodynamics, Maxwell's
equations are formulated by defining continuous electromagnetic fields and
continuous source functions; solids are frequently treated for simplicity
as a continuum, though we know otherwise; a great variety of fluids (liquids,
gases, plasmas, the galactic fluid) may be treated with most ease as a con-
tinuum; other examples are phase fluids and ''continuous fields of force"
in classical and quantum mechanics,

Although it is clear that the partial differential equations of physics
arise in a great variety of ways, and from very different problems, never-
theless such equations and systems of equations repeatedly take the same
form or similar ones. This is essentially because a great deal of the philo-
sophy of physics and in particular classical physics has been formulated in

41



42 POTTER

Energy

density el(F¢)

Volume V

Surface
S

FIG.1. Conservation of energy.
The heat conduction (diffusion) equation is obtained by applying the principle of the conservation of

energy to an arbitrary volume, V. The energy in the volume V may only alter by a flux of energy q across
the surface S of V.

terms of principles of conservation. Some simple but vital examples come
readily to mind: mass cannot be created or destroyed; momentum is con-
served; total electric charge is an invariant; etc. To stress this point
and to develop some systems of partial differential equations with which
we will be concerned, some particular examples may be considered [1].

1. 1. Conservation of energy in a solid

Classically, energy is transported in a solid by conduction., Since the
solid is a rigid stationary body, the variable energy density (e} in the solid
is given by the thermal energy or temperature. Hence the principle of
conservation of energy is invoked and must be satisfied when considering
the energy in a finite volume V of the solid of surface S (Fig.1). By the
principle of the conservation of energy, the rate of change of energy in V
must be equal to the flux of energy d across the surface S of V:

Energy in volume V =ff/€(?,t)d7

Flux across S = - ﬁc—f ds

d
537{ fffe(?,t)d7+gq. & =0
v

Applying the divergence theorem to the second term and for a constant
volume V,
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2 o [[[ o5 ar -
fffatd'r+ V-qdr=0
v v

The energy density is proportional to the temperature T, and experimentally
it is found that the heat flux 4 depends on the gradient of the temperature,
Hence, defining a proportionality constant, the conductivity K,

5T _
s -V KVT =0

The essential principle described by the diffusion equation in this case is
then the principle of the conservation of energy.

1.2, Conservation of electric charge

Another informative example, in electromagnetic theory, is the principle
of the conservation of electric charge. Again, therefore, in a volume V
of surface S, the change rate of charge in V must be equal to the flux of
charge (current 5’) across the surface. If p is the charge density p(?,t) then,

%fvffpd'r=-5§%- a8 (1)

and applying the divergence theorem,

@
=

+v-7=0 (2)

Q

t

This is of course just one of Maxwell's equations, since using Gauss'
law (V * D = p, where D is the electric field),

v @10

and on integrating and noting that V- (curl }?) =0,

o

8

+7=vxX (3)

[+5)

t
where X = H is the magnetic field by Ampere's law,

1,3, Conservation of magnetic flux

Similarly, Faraday's law is an expression of the conservation of
magnetic flux: magnetic flux cannot be created or destroyed, since the
change rate of the total flux through a surface S is related only to the
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surface
S

FIG.2. Conservation of magnetic flux,
Faraday's law is a statement of the conservation of magnetic flux,

electric field around the boundary £ of S (Fig. 2),

3% B:dS=-9E-d¢
s 1

- and applying Stoke's theorem,

1,4, Conservation of mass and momentum in a fluid

In a fluid, the basic classical principles of the conservation of mass,
the conservation of momentum (Newton's third law) and the conservation
of energy are used to derive equations to describe the dynamics of a fluid,
Defining a variable p(?%,t), the density of the fluid, we invoke the first
principle to state that the change rate of mass in the volume V must equal
the mass flux crossing the surface S of V (Fig,3). The mass flux through
any surface element dS is just p¥v- d$. Hence,

&Sl oG- s
51 pdr = - pv. dS
v s

and using the divergence theorem, a differential equation for the conserva-
tion of mass is obtained,

z;9—,(p+v-p;;=0 (5)
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Mass Tt
density pLTY

Volume V

FIG.3., Conservation of mass.
The continuity:equation in hydrodynamics is obtained by applying the principle of the conservation
of mass. The total mass in the volume V may only be altered by the existence of a net mass flux across
the surface S of Vv,

Similarly, by demanding that momentum be conserved, an equation of
motion in the fluid is obtained. Consider the conservation of momentum
in the X-direction (Fig.4). The total X-momentum in the volume V is

[l

The X-component of momentum of the fluid in the volume V is increased
in time, by momentum being convected across the surface S,

- ﬂpvx—G- das

S

and by the sum of the pressures (p) in the X-direction on the surface S,
- ﬁpé’x . d§
s
Hence conservation of X-momentum yields the equation

[} - 3 =1
a—fffpvx&' = -ﬁ(pvxv +pe,)- ds
v S

45



46 POTTER

X-momentum
flux

PVx ¥ + pey

X-momentum

density o )

N

surface
S

FIG.4. Conservation of momentum,

The vector momentum equations in hydrodynamics are obtained by applying the classical principle
of the conservation of momentum. Both the thermal pressure and the centre-of-mass kinetic momentum
contribute to the flux across the surface,

By the divergence theorem,

e} — >
?ff_/pvxd’l':-f\/v- (pVxV+pex)dT
- \% v

therefore, *

9 > =
37 PVx + V. (pv,v+pé,) =0 (6)

Similarly, the equations of motion are obtained for the y and z directions.
We summarize these three equations as

:-t pV+ V. (pVT+pT)=0 1)
where ? is the unit tensor. These equations are the hydrodynamic equa-
tions describing the motion of a compressible fluid.

To summarize, I have illustrated how partial differential non-linear
equations governing a variety of physical systems are obtained from simple
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fundamental principles of conservation., The differential equations are
"conservative'' and they take the general form

a_u +V.?=

0
ot

-
e d

where ¥ is a vector of the dependent variables and = f(u).

2, FOURIER ANALYSIS AND THE DISPERSION RELATION

Partial differential equations couple points in space and time and
many of the essential and simple properties of a partial differential
equation or a system of partial differential equations can be described
by the behaviour of a wave in space and time. When considering such
simple or general properties of an equation it is useful to assume periodic
boundary conditions and to apply the techniques of Fourier analysis., If
u(x,t) is periodic over X, then, provided u satisfies simple conditions
(Dirichelet conditions) (Ref.[2], Vol.1), u can be expanded as an infinite
Fourier series: ‘

u(x,t) = 2 ﬁk(t)exp <%> (8)
k=0
where
ft) = fu(x,t)exp <—1%’2—ki dx (9)
. X

It is stressed that for a continuous medium the function u must be described
by an infinite set of modes.

Let us coasider four types of processes which may be described by
rather simple partial differential equations but which in more complex
forms keep recurring in interesting physical problems. In particular,
we shall be interested in the time-scales T of these processes,

2,1, Waves and the wave equation

The phenomenon of waves and wave motions occurs so frequently that
it is not necessary to enumerate some examples. Consider the particular
case of a wave on a stretched string, where the displacement £(x,t) of the
string is described by a wave equation

2% g 928
a1z = Vs pxz "~ 0

The parameter V; is in this case given by the tension T in the string and

the mass per unit length m of the string, V; = ¥T/m, If L is a characteristic
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length along the string, then we can define a characteristic time 7 as the
time for a travelling wave to propagate over the length L,

L

T ~—

v

N

In a more sophisticated way, we consider a Fourier mode on the string
£ (x,t) = € exp (i(wt - kx)) (10)

Inserting the mode in the wave equation, for a given wave number Kk,
w must satisfy

-w2+ k2vZ =0 (11)

where w is the angular frequency associated with the wave, k is'the wave
number, k = 27r/7\, and X is the wavelength, Thus a characteristic time-
scale T may be associated with the wave

.

Equation (11) is the dispersion relation of the partial differential equation,
In obtaining difference solutions to such equations we will be interested

in the characteristic times which may be associated with the physical
process. It is also noteworthy that, if a velocity v = 8£/8t of the displace-
ment and the angular displacement 6 = as/ax are defined, the second-
order wave equation may be written as two coupled first-order equations

3t Vs Py =0 (12)
26 AV _
Fyalie Vi % 0 (13)

2,2, Advective equation

The advective equation is reiated to the wave equation and arises when
properties of a fluid are advected (or convected) by the fluid, The term
has already come up in the equations of hydrodynamics (Eqs 5, 7). The
conservation of fluid mass may be written as

ap , - -
—=+4+v.Vp+ pV.-v=0
ot M pre v

dp -
3t +pVev=0
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where d/dt = 3/8t + ¥V is the total time derivative or Lagrangian derivative,
The property of fluid density is a local property of a fluid element, and as
the element moves in the fluid, its density is advected with it, In the in-
compressible case but with a variable-density fluid, the conservation-of-
mass equation is

g_esa—p-f-_)- =
at stV Vp=0 (14)

the advective equation, It is clear that when obtaining equations for any
intensive property of any fluid in the initial-value problem, the advective
terms will arise in the equation describing that property.
Again it is important to assign a time-scale to the process of advection:
" obviously the time-scale of interest in this case is simply the time for a
point in the fluid to move over the characteristic distance L,

L
T

¥ is now the centre-of-mass velocity and not a phase velocity. More pre-
cisely, we obtain the dispersion relation for the advective equation for a
Fourier mode

p = p exp (i(wt - kx))
Consequently,

iw-K-v)=0 (15)

2.3, Diffusion equation

The diffusion equation is very familiar and arises in a multitude of.
problems in physics. In one dimension and in the simplest case the equation
takes the form -

Bu 2 . 0w

5t xS oax (16)

where u{x,t) is a dependent variable and K is a diffusion coefficient. In
more complex forms the equation can include inhomogeneous or source
terms on the right-hand side and it becomes non-linear when the conductivity
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or diffusion coefficient is a function of the dependent variable K = K(u). The
time-scale of interest here is the diffusion time

-
n
=[5

More specifically, we can consider again the effect of the diffusion equation
on a Fourier mode

u= ﬁkexp (i(wt - kx))
and consequently, for a constant conductivity K,
iw+ Kk? =0
w = iKk? (1)
The dispersion relation for the simple diffusion equation is obtained.

The angular frequency w is now imaginary and hence the mode decays
in time. The time-scale for this decay is

7=l (18)

2.4. Elliptic equations

Finally, the elliptic equation, arising from boundary value problems,
might be included as a fourth example., Again, such equations are common
and familiar in physics: Laplace's equation and Poisson's equation are
examples,

R vi=0 (19)

V% =-p ' (20)

The dependent variable ¢ might be an electrostatic or gravitational potential,
while the inhomogeneous term or known ''source function', p, might be a
charge or mass density. These equations result from considering static
solutions or alternatively in cases where it has been assumed that information
is transported instantaneously. If the analogy with the previous three pro-
cesses of wave propagation, advection and diffusion is maintained, in the

case of the elliptic equation the angular frequency of a Fourier mode is
effectively infinite, and the time-scale for information to propagate over

a scale length L is effectively zero.

T 0
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3. FORMAL CLASSIFICATION OF PARTIAL DIFFERENTIAL
EQUATIONS

We have considered four types of commonly occurring partial differential

equations in physics. In their linear forms we see that three of them are
each a special case of the general second-order two-dimensional equation

9%¢ 9%¢ 32¢

28, L09 -
a3z baxay +c——-2—ay +dax+ ay+f<1>+g 0 (21)

a, b, ¢, d, e, f, g may be functions of t.he independent variables x, y and
of ¢ (non-linear), We classify formally second-order partial differential
equations as:

hyperbolic: when b? - 4ac> 0
parabolicv: when b?- 4ac=0

elliptic: when b2 - 42c<0

For a detailed discussion of the properties of partial differential equations
and analytic methods of solution, see Ref.[2], Vol. 2.

4, NON-LINEAR PHENOMENA

In Sections 1-3, the occurrence of partial differential equations in
physics and some simple linear properties of those equations have been
surveyed. These properties are familiar since analytic theory is particu-
larly successful in describing linear phenomena, However, apart from
the simplest problems, analytic mathematics breaks dQWn in describing
non-linear phenomena, while computational physics relies on no such property,
and the subject can therefore give us a considerable understanding of such
properties., Particularly in the few- and many-body problems the essential
property with which we must deal is the non-linear coupling between the
force field and the particles. As an example, though a general one, if we
describe a classical many-particle distribution by the distribution in phase
space f(B, q,t), then the distribution of particles in phase space might satisfy
the tlme dependent equation

af }
Rt H)=0

where J is a Jacobian with respect to f;, a, and H is the Hamiltonian of the
system, which depends on the particular force law between the particles.
Since the Hamiltonian will in general be a function of the distribution, the
problem is non-linear. As an example of such a problem, we could describe
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a galaxy of stars by the distribution of stars in phase space, f, which satis-
fies the Vlasov equation

SX 4TV -V L =0

+ o0

v2% = 47Gm | dv

-0

¢ is the gravitational potential, G the gravitational constant and m the mass
of a star, In this problem the distribution defines the potential, while the
potential between the stars defines the time-evolution of the distribution and
the problem is strongly non-linear, It is this essential coupling between
the Hamiltonian and the distribution which ensures that all few- or many-
body problems, in whatever particular assembly they arise, are non-linear:
examples occur in Vlasov systems in hydrodynamics, in atomic and mole-
cular physics (c.f. Hartree-Fock approach) [3], in meteorology, in oceano-
graphy, and in the structure of stars or galaxies.

As a particular example of a non-linear phenomenon, the case of
shocks in a compressible gas may be considered.

We frequently analyse small-amplitude disturbances or waves on some
equilibrium configuration (for example, sound waves in the atmosphere),
and the question arises, ''what is the effect when the waves no longer have
a small amplitude relative to the equilibrium?'", In this instance,
long-wavelength modes tend to dissipate their energies to shorter
wavelengths, We might ask the question then, ""what is the final distribution
of energies among the modes?'. Such a problem arises in describing shocks
or large-amplitude disturbances in compressible hydrodynamics or plasmas,
and it would seem that simulation on the computer would provide a valuable
approach to the problem,

5. INITIAL-VALUE PROBLEM

Many systems of partial differential equations of interest are time-
dependent, and it is useful, before considering methods of solution on the
computer, to define the general initial-value problem. This problem occurs
in every branch of physics, and, involving as it does the idea of prediction,
it is of prime interest in computational physics. It is particularly applicable
to solution on the computer, since we can evolve the solution in the real
time of the computer.

Given a system defined by the state vector U, in the space domain R,
if 4 is defined at time t =0 in R, U=4", and if U is defined on the surface
S of R for all t 1"1’R, we wish to determine U for all't in R. Such a specification
of d is obtained as solution to the initial-value equation

d - _ -
Eu—Lu (22)
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where L is an algebraic operator for ordinary differential equa:c)i(?ns or a
spatial differential operator for partial differential equations; u are the
initial conditions and iy are the boundary conditions.

As implied by this formulation, any high-order (in the time derivative)
partial differential equation (say of order n) may be written as n first-order
(in the time derivative) partial differential equation. Such an example is
illustrated in the case of waves on a stretched string (Section 2.1), where
by defining two dependent variables of translational velocity of displacement
and the local angle to the equilibrium position of the string, two coupled
first-order equations are obtained from the wave equation. Another simple
example for illustrating the approach is the equation of motion of particles
in, say, a gravitational field. The position of a star in space may be deter-
mined from Newton's second law of motion

d“x - -
e -Vé(x,t)

where ¢ is the gravitational potential through which the star moves. The
equation is reduced to two first-order equations by defining the velocity
V(t) of the particle

& 3

dt
dV_ <=
dt = -V¢(x:t)

6. DISCRETE ARITHMETIC ON THE COMPUTER:
INTEGRATION OF THE INITIAL-VALUE PROBLEM ON A TIME MESH

The essential property of the description of physical systems on the
computer is that they be discrete and finite, This is demanded in the first
instance because the memory bank of a computer is finite: only a finite
number of variables may be stored in the machine (typically, on large
present-day machines, the central memory may have variable storage
locations of the order of 128000 "words'). However, there is a further
limitation; since the computer performs arithmetic in a finite amount of
time, only a finite number of arithmetic operations may be performed
(e. g. on the CDC 6600, of the order of 107 operations may be performed
per second).

Thus we may not describe a continuum in its entirety. Approximations
must be employéd to discretize continuous functions, and the partial dif-
ferential equations of physics. Let us consider the initial-value problem
and atiempt to obtain a discrete representation of the solution in time. This
may be achieved most readily by defining a mesh or lattice in time, by
dividing the time dimension into a set of small time intervals At®, and
by describing the evolution of the system in time by a representatlve set
of solutions at edch point in time between the time intervals

n

th= ZAtm

m=0
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Given the state of the system at time t", U", the solutions may be obtained
at the next time-step t"*1 over the interval At1*1by integrating the time-
dependent equations (Eq. (22))

n+1 tI'A+Zl
- dt = f Ly dt
th t
Consequently, @+l
ERAEIERTL R f Lu dt
tl'l

The integral on the right-hand side may not be evaluated exactly since
the state u is not known for all times t in the intervals t® st = t™?,

The essential approximation is now employed. We assume that if the
time interval At™! is small, the integral may be approx1mated by some
time average between t"and t"*!

—n+l _ =n n+l

T = %% (1 - ) At AP rent™ (LY) (23)

where the parameter € is an interpolation parameter, 0 = € = 1, Therefore,

n

(- eat™ Lo 1™ = 14 (1-€)at™™ LYy

I is the unit operator and, in a non-linear problem,

Lr=1L(E"., In general a matrix equation is obtained at each time-step
relating the solution, u", at the old time,t", to the solutlon at the new
time-step, ™. Initial conditions define the state 4° at t = t°. Hence

we may proceed over many successive time-steps obtaining the solutions
i" successively. In the case where € = 0, the method is said to be explicit,
since the new state 4™ is defined expllcltly by the equations; otherwise,
the method is said to be implicit. The requirements, properties and
examples of such difference solutions are dealt with in paper SMR-9/14b
in these Proceedings.

7. SPACE MESH

The concept of a time mesh has been introduced to discretize the time
dimension. It is clear that the space dimensions must be discretized as
well, and a space mesh or lattice is introduced to approximate continuous
functions., If x is a spatial independent variable, it is divided by a set of
lattice points j, 1 £j = J,
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j-1

X = ZAXR

k=1

Given a continuous function f(x), the function f may be represented by a
vector {fj} such that

f] = f(XJ )

A continuous function f*(x), which approximates f(x), may be obtained by
interpolation,

For x; =x £x;,,

(X431 - X) (x-%)

£*(x) = X,y - %)) £, + jo1-%)

) fi11
j*1

Clearly, for the case where f(x) is a slowly varying function of x, *(x)

is a good approximation for f(x). This idea of a '"good'’ or ''poor' approxi-
mation to the function f(x) may be established quantitatively by expanding
the function f(x) and the vector {f;}in Fourier series. The application of
Fourier series is discussed in Section 2 where it is stressed that, in
general, a continuous function, f(x), may be expanded over a periodic
interval X into an infinite set of Fourier modes of wavelengths

X/n - for n = 0. The vector representation {fj} is of finite dimension J,
and {fj} may only be expanded by the finite Fourier series of J modes

J-1
i27kj\
fe ) mew (25
k=0
where

J
_1 Z <-127rkj>
&k J fj €xp T
j=1

Thus, the representation {f;} includes only the long-wavelength modes
belonging to the function f. The difference approximation therefore is a
long-wavelength approximation, When the function f is rapidly varying
(the amplitudes of the short-wavelength modes are large), the errors in
a difference approximation will be very large and vice versa,

Having defined a space mesh, difference approximations to continuous
derivatives may be formulated. Consider the first derivative df/dx. Clearly,
a consistent approximation on the mesh to the first derivative is the dif-
ference derivative (Fig. 5)

fije1-15-1
Alg =—ix1- 2ji-1
x4 ij+1 +ij_1
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FIG.5. (a) The conventionally used difference derivative (fj41 - f j-1)/24) as an approximation to the
differential derivative df/dx at the point x;. The difference method is a "good" approximation if functions
are slowly varying (the amplitudes of the long-wavelength modes are large).
(b) The difference method is a "poor” approximation if functions are rapidly varying (the amplitudes
of the short-wavelength modes are large).

Similarly, the second-space derivative is usually approximated by the
difference derivative

fiv1 - 2f5 + fj-1
X"j A2

if A= Ax; = Axj.;. Again, these approximations are "good", in some

sense, in the case where f is a slowly varying function. These ideas are
quantified in paper SMR-9/14Db in these Proceedings, where the extent of
the difference approximation is evaluated and where particular difference
schemes and algorithms for important systems of partial differential equa-
tions are developed.
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Abstract /

DIFFERENCE SCHEMES AND NUMERICAL ALGORITHMS.

The methods of numerical analysis as applied to the differential equations and systems of partial differen-
tial equations in physics are introduced, The techniques of Fourier analysis are used to analyse difference
algorithms. The initial-value problem is introduced and the requirements of a numerical integration
scheme are discussed with particular reference to the consistency, stability, accuracy and efficiency
of various methods. By considering time-dependent ordinary differential equations, the Euler, leapfrog,
two-step, and implicit methods are introduced and subsequently applied to partial differential equations.
The von Neumann stability condition is discussed with the aid of Fourier analysis and is applied, for
various difference methods, to the diffusion and advective equations. The conditions for stability are
related to the physical times of interest discussed in paper SMR-9/14a, Dispersion and diffusion on a
difference mesh are illustrated and conservative schemes considered. Finally, methods of solving systems
of parabolic equations and systems of hyperbolic equations are summarized.

1. INTRODUCTION

In paper SMR-9/14a in these Proceedings, the occurrence, the form
and the simple properties of partial differential equations in physics are
surveyed and it is shown how equations, continuous in space and time, must
necessgarily be formulated for the computer by finite representations on
discrete lattices or meshes in space and time. It is suggested that the
essential approximation of such difference methods is a long-wavelength
approximation. In this paper, it is illustrated how the extent ofthe difference
approximation may be evaluated quantitatively, and from this knowledge a
variety of important numerical schemes and their properties may be
enumerated.

First, the difference calculus is considered; subsequently, by considering
ordinary differential equations, a number of important integration schemes
for the initial-value problem are listed which are also essential for the
solution of partial differential equations. Then, with the aid of Fourier
techniques, an analysis of difference solutions to systems of partial differen-
tial equations is given.

2. DIFFERENCE CALCULUS AND THE EXTENT OF THE DIFFERENCE
APPROXIMATION

A continuous function f(x) may be represented by a vector {fj} on a dif-
ference mesh 1sj=J,1 and, while for periodic boundary conditions f(x) may

! Ppaper SMR-9/14a, these Proceedings.
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be expanded by an infinite Fourier series, the vector {fj} may only be re-
presented by a finite Fourier series in the long-wavelength modes. The
first difference derivative may be compared with the first differential deriva-
tive by considering the effect of each operator, respectively, on a Fourier
mode

u =4 elkx
The first differential derivative is
du _ .
ax = iku (1)

The first difference derivative has the form!

1 Yie1” Y1
S L2 S L |
&j A

R ' (2)
i ik(x;+ &) i elk(xj— A)>
2A

A~k
ue . i
= =5 <% elkd 1o 1kA>

ﬁeikxj isin kA
A

_1isin kA
A ; (3)

Clearly, in the limit of long wavelengths where kA is small, the difference
derivative Al is a good approximation to the differential derivative d/dx. The
right-hand side of Eq.(3) may be expanded in small kA

2
Au = ik {1 - (AL, O(k4A4)} u
1 _fq. (ka)? gy L 4
A_{l e+ Ok

For the short wavelengths, where kA approaches one, the difference approxi-
mation is a poor one and the errors are large.

Similarly, we may compare the second difference derivative with the
second differential derivative and estimate the approximation

11 uj+1— 2uj +uj+1
A].u = T (4)

! paper SMR-9/14a, these Proceedings.
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For a Fourier mode u =ﬁelkx, of wave number k,

d%u 2

while

1 1 ik(x; + 4) ikx ik(x;j - £)
— e 1 T-2e Jie

i T A2
2 . i
= -uy 35 {1 -1 <e’kA+e 1kA>}
2
=-uj§(1-cos kA) (5)

For long wavelengths, where kA is small, we may expand the cosine,

then, -

11 ) _ 6 ’

4 { < U5+ ona ’>}
thus, ) ) '
' 2,2

A = -kz{l- klAz +O(k4A4)}u

or

k%A%
4115{ - -+ oAt )} o (6)

. Again, for long wavelengths (small k) the approximation is a good one. The
procedure illustrated here for first and second differences shows the general
approach used in determining the accuracy of a difference algorithm and it
may be applied readily to more complex schemes. Particularly for boundary
value problems, the method may be applied in many dimensions and the

~sufficiency of the matrix representation of a differential operator may be
determined.” We shall not be concerned here further with the elliptic equa-
tion and boundary value problems, since these are analysed in some detail
in papers SMR-9/13a, b, c in these Proceedings.

3. REQUIREMENTS OF A DIFFERENCE SOLUTION TO THE
INITIAL-VALUE PROBLEM '

The initial-value problem is formulated in Section 5 of paper SMR-9/14a
in these Proceedings. The state of a system in some region R may be defined
by the set of dependent variables which, written as a vector, U, satisfy a
set of first-order differential equations

- = Lu . (7
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where L in general is a spatial differential operator., Representing 4 on a
difference mesh, L becomes a matrix operator and we could integrate this
equation over small time-steps, At, to obtain solutions U™ at the new time-
step n+1

(I - eAtL)T™! = (I+ (1 - ) AtL)T" (8)

where 0 se= 1. Thus a difference scheme may be described by a difference
operator C

—-n+l

T = (1- e AtLy (I+(1 - ) AtL) T (9)

= gt (10)

where the operator C is a function of the time-step and space-step, C(At, A).
In choosing the operator C we must question what criteria must be satisfied
for a particular difference scheme. The important properties of a difference
approximation with which we shall be concerned may be summarized under
the headings

consistency
accuracy
stability
efficiency

Clearly, the first requirement to be demanded is that in some manner our
difference system approximates the differential system. Formally, the
requirement of consistency may be specified as

Lt. Lt.
At-0 A= C(at, ) - T _
At L (11)
At
~ B

where B is some finite number; if this condition were not satisfied, the
difference scheme would in no manner simulate the initial-value problem
of interest.

Beyond this requirement, however, two sources of errors which affect
the accuracy of the solution exist. The first of these is termed the truncation
error which is caused by the approximation involved insimulating the differen-
tial equations by the difference equations. The essence of this approximation
has been pointed out previously (Section 2), where we have seen that it
arises from representing a continuous variable by a set of discrete points.
We have seen that such errors are dependent on the mesh intervals in time
and space, At, A, and we may readily determine the magnitude of the error.
In choosing a difference scheme, we are required to minimize the truncation
error.
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A second source of errors (round-off) occurs because of the finite ac-
curacy with which a particular variable is described in the memory of the
computer. The arithmetic of the computer is not perfect. Obviously, if the
calculation is pursued with i decimal places it will be less accurate than if
it were executed with i +1 decimal places. The error depends on how a
number is "rounded off'" in the computer, and to determine the total round-
off error, a statistical analysis would have to be carried out. With modern
digital machines, however, many decimal figures are or can be used and
the cumulative round-off error is usually not serious.

It is nevertheless important to note that the arithmetic in the computer
is not exact. This consideration leads us to the vital property of the stability
of the difference method. A numerical method is stable if a small error at
any step produces a smaller cumulative error. If this property were not
demanded of a numerical method, an error occurring at any stage would
grow without bound. For example, consider the case of a simple first-
order ordinary differential equation and suppose that an error €® occurs at
step n: we are interested in the amplification g of this error at stepn + 1

€n*l= gen - (12)

where g is the amplification factor which depends on the particular difference
scheme, and we require for stability

'€n+1| < |€n‘
consequently, lge™| = |7
|g| s1

(13)

Hence for a difference scheme, the condition (13) must be satisfied if the
scheme is to be stable. This condition will be considered in more detail
for partial differential equations.

The fourth property of the difference method which must be taken into
account is the efficiency of the method. This may be defined as the total
number of arithmetic and logical operations performed by the central proces-
sor of the computer to obtain a solution. On the one hand, the efficiency
decreases with greater complexity of the particular difference method being
applied. On the other hand, the accuracy of the solution can be increased
with increasing complexity, and a compromise must be reached to obtain a
viable method which is both accurate and efficient.

To illustrate these basic properties and to define four important methods
of integrating in time, the case of a simple ordinary differential equation may
be taken,

du _
at +f(u,t) =0
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As the simplest interesting example of such an equation, the decay equation
may be given, :

du  u
+_

wtr; 70

3.1. Euler method

If u is given at step n, namely u“(uo is defined by initial conditions), we
wish to determine u at step n+1. The simplest method is the Euler explicit
first-order method (Fig. 1)

u*l=® - ofa®, tY At (14)

In the Euler method, the function f is evaluated only at time t®, and hence
the method is explicit and first-order accurate in the time-step At only. To
investigate the stability of the method, it is assumed that a small error,

€l, exists at step n and we question how the error is amplified to step n+1.
To do so, the difference equation (14) is linearized about the small error "

n+l _ el of

ou

3 n

€ At

and using the definition for the amplification factor (Eq.(12)),

At (15)

n tl|<H

FIG.1. Euler explicit method. Between time-steps ti and tn*1, only the first term in a Taylor.expansion about_
time t™ is used to integrate the equations,
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/At»ZVO

/ unstable

At=2.0
neutrally
stable

FIG.2. Example of stability in the Euler explicit solution to the decay equation (decay time 7=1.0). The
three casés shown illustrate a stable, an unstable and a neutrally stable solution as the time-step At is varied
about the stability condition (At < 2.0).

Clearly, for decay type equations, where 8f/8u =20, the stability condition is
satisfied if the time-step is sufficiently small such that

of
3a At 52
n
2.
Atéz (16)
ou
n

For example, in the decay equation, with decay time +, 8f/8u= 1/7, we
require for stability:

At = 27 . (17)

This is illustrated in Fig.2, where the case of a stable, neutrally stable,
and unstable solution occurs as the time-step, At, is varied according to the
condition (7).

3.2. Leapfrog method

Second-order accuracy may be obtained by storing the variable u at two
time-levels (Fig. 3): )
un+1 =yt 1. f(un, tn)ZAt

un+2= uﬂ - f(un+1' tn+1)2At (18)
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FIG.3. Leapfrog scheme. Second-order accuracy is achieved by using a three-level formula at any step.
The meshes (X and O) can become uncoupled.

The same method of stability analysis is applied as before, but now errors

at three time-levels, €1, €%, €™, are related:

n+l_ n-1_ 9f

€ "¢ o 2At€" (19)

o
(5]
!
—
1

Therefore,

a a? of y
= . =2 [t =211 9t
g > + 2 +1 where o 5a A (20)

n

There are two roots for the amplification factor (corresponding to second-
order accuracy) and for non-oscillatory equations, where the parameter o is
not imaginary; the magnitude of the amplification factor for one of the roots
is always greater than one. This arises because we have introduced an
arbitrary computational mode, and the variables on the even mesh 2n are
not coupled to the variables on the odd mesh 2n+1. This will be considered
in more detail later, but clearly, if the computational mode can be removed,
either because the equations are oscillatory (o is imaginary as in a pair of
coupled equations) or by a filtering technique, the leapfrog scheme is parti-
cularly simple and has second-order accuracy.

3.3. Two-step explicit method |

An extremely useful method with wide application is to ''time centre"
n+l
the integral, [ f dt, by a two-step process. The two-step method uses the
n
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Euler explicit method as a first stage in evaluating the dependent variable,
u, temporarily at time, t =t (auxiliary calculation):

At
Auxiliary u™h s u? - gt uh = (21)
Main u™l = u? - ope™ At (22)

The amplification factor g is

2 f
g=1-a+—°’2—,where a/’-‘g—u‘ At

Again, for the case 3f/3u z 0, stability is achieved for a sufficiently small
time-step,

[\
[=]

ot (23)
du

3.4. Implicit second-order method

In the three methods described above, the solution at each time-step
is obtained in explicit form and a stability criterion for the time-step must
always be satisfied. We may formulate an implicit second-order accurate

n+
method by evaluating the time integral [ f dt by a time average (Fig. 4):
n

u?l =y %At'(f(un, tn) + f(uml, tn+1)> (24)

The amplification factor, g, satisfies

=1_ﬂ At 6f At
g au| 2 “au| 2 8
n n+l
1--2—2 At
- n (25)
LA
au
n+l

For the case 8f/9u z 0, the magnitude of the amplification factor is always
smaller than one, and the method is unconditionally stable, which is clearly
a great advantage of an implicit method. We have not, however, obtained the
new dependent variable, u?l, explicitly in terms of known quantities, and a
possibly complex algebraic equation must still be solved at each time-step.
For more sophisticated methods and a detailed discussion of ordinary dif-
ferential equations, see Ref.[1].
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FIG.4. Implicit second-order scheme. Second-order accuracy is achieved by time-averaging the integration.

4. VON NEUMANN STABILITY CONDITION FOR
PARTIAL DIFFERENTIAL EQUATIONS

The important properties of a difference solution to the initial-value
problem have been enumerated and the nature of the difference approximation
as a long-wavelength approximation in describing only the long-wavelength
modes of the dependent variables has been described. For ordinary differen-
tial equations the important property of stability in the explicit case depends
primarily on the magnitude of the time-step in comparison to the physical
times of interest in the problem, and,by evaluating the dispersion relation of
a system of partial differential equations,we have discussed the important
time-scales of interest which occur in physical problems. These ideas may
now be synthesized in evaluating the properties of a numerical solution to a
system of partial differential equations.

For a system of partial differential equations the solutions are obtained
at each time-step by operating a matrix C(At, A) on the solution at the pre-
vious time-step (see Eq.(10))

.ﬁjn+1= Cﬁjn . (26)

To determine the stability or to obtain the dispersion relation of the difference
scheme, the.problem may be simplified by separately investigating the modes
on the mesh, If C is constant (otherwise a linear approximation is applied)
and the space interval is periodic, then for a Fourier mode

T, = 1 (k) e

the set of equations (Eq.(26)) may be transformed

50+l ikx; 4n ikxj
u e C(at,A)u (k) e

= n+l

k) = ik (27)
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G(At, k) is the amplification matrix of the difference scheme, for the Fourier
mode k. For stability, we demand: if the amplitude of a Fourier mode is
finite at time t =0, then it must remain finite for all time-steps n. Namely,

] < xa0] (25)

where K is a positive finite number. Using the definition of the amplification
matrix,

G"(k) = G"4%k)

|6k | < K|8K)| " (29)
Therefore,
6" <k
1
|a| <k® (30)

1
For large n, K" 1. In general, G is a matrix of order I for a system of
I first-order partial differential equations, and the magnitude of G is given
by its determinant,

We therefore make plausible the condition for stability

lg,|.s1 (31)

Von Neumann took into account the possible occurrence of a growing local
term in the partial differential equation and he has shown that a necessary
and sufficient condition for stability is (Ref.[2])

lg,| s1+0(at)  for alli and k. (32)

The eigenvalues g, can be complex:
le,| =+ Vel ¢ (33)

where g¥* is the complex conjugate of g,- In the partial differential equations
of interest, the matrix C is in fact not a constant but might vary over the
space and time lattice. The stability condition then reduces to a ''local"
condition, i.e. it must be satisfied everywhere on the mesh, The above
discussion, generalizing the concept of stability in application to partial dif-
ferential equations, is merely illustrative. For a more detailed and rigorous
discussion, see Ref.[2].
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5. EXPLICIT FIRST- ORDER SOLUTION TO THE DIFFUSION EQUATION

As a simple example to illustrate this approach to stability, we consider
a first-order accurate (in the time-step) difference solution to the diffusion
equation with constant conductivity, analogous to the Euler method. The
diffusion equation :

du 9% -
st KNax 70 (34)
is simulated by the difference equation
n+l_ .n KAt n n n
uy = Uyt AZ <uj+1— 2u; +uj_1> (35)

For a Fourier mode in space, uj

Consequently,
2
g=1- KQAt(l- cos ka)
A
4KAt kA
=1 --—% sin2 & 36
g 1 A2 sin P ( )
Therefore, for |g| =1,
4KAt
AZ =2
2
A
= 7
At 0.5 B (37)

For stability, a maximum value of the time-step is obtained. This time
corresponds to the largest diffusion time on the space mesh (A%/K), and the
result is hardly surprising. The accuracy of the method is first-order only
in the time-step and second-order in the space-step, with errors e,

e = O(At) + O(AY
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6. ADVECTIVE EQUATION: EXPLICIT FIRST-ORDER INTEGRATION
We have seen how important the advective equation is, and we consider
a possible difference solution in first order as for the diffusion equation.

The advective equation

ou ou
—+v =0
ot " ax

is simulated on a difference mesh by
n+l_ .n VAt n n
Y T% T A <ui+1‘ uj-l) (38)
Considering a Fourier mode as before,
TLARE <1 S YA sin kA> "
A

g=1—v—2tisinkA (39)

g is now complex and its magnitude in the complex plane is

2
lg|® =1+ <V~AA—t sin kA> (40)

Thus the von Neumann stability condition in this case cannot be satisfied for
any time-step At, and the method is unconditionally unstable. This result
leads to considerable difficulty in many fluid simulations.

We may, however, obtain a first-order explicit solution, with the loss
of second-order accuracy in the space-step by replacing the algorithm
(Eq.(38)) by

n+l_ 1 n n vAt n n
uy o= 5<uj+1+uj-1> - '2‘1_\—<uj+1’ uj-1> (41)

where the value of the variable at the old time-step has been replaced by
a spatial average. Again, for a Fourier mode of wave number k, the
amplification factor now becomes

g=cos ka-i 25 sinkaA (42)
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Therefore,

2
gg* = cos*kA + (%) sin? kA

2
1 - sin? kA{l -<Y%> } _ (43)

and therefore the von Neumann stability condition (Eq.(32)) is satisfied if

lv]At
A S

A (44)

This method has considerable importance in hyperbolic equations and is
known as the Lax method. Again, the maximum permissible time-step is
associated with the fastest speed on the mesh or the characteristic physical
time described by the equations. This condition for the time-step for hyper-
bolic equations is known as the Courant-Friedrichs-Lewy condition [3].

7. DISPERSION AND DIFFUSION ON A DIFFERENCE MESH

The von Neumann stability condition has very wide applicability and
permits us to obtain a stability criterion inthe simplest way. It tells us
little, however, of the more detailed properties of a particular difference
solution. If mathematically the problem is not too complicated, ideally we
may obtain the dispersion relation of the differential system. Let us con-
sider the case of the Lax method applied to the advective equation. In one
dimension, for a constant velocity v, as for the differential system?2, the
dispersion relation for a Fourier mode in space and time is

w+vk=0 (45)

For the Lax difference scheme (Eq.(41)),
i B4 At)-kx; jwt? ikx;
ge TN ﬁem}vt {cos kA - y% sin kA} e

and the dispersion relation for the difference method is

WA - o5 kA - 1%1-‘- i sin kA (46)

% Section 2.2 of paper SMR-9/14a, these Proceedings.
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In general, w is complex, Let w=+ iy, and equating the real and imaginary
parts of the dispersion relation (Eq.(46)) separately,

VAt

tan QAt = A tan kA (47)
2y4 At :
- t .
e 7= cos®ka + VT> sin® ka (48)

In the special case where vAt/A =1, y=0, and
QAt = - kA

Q+vk =0 (49)

which is identically the dispersion relation of the differential system (Eq.(45)).
In general, however, for a variable velocity v, or a non-linear problem, the
parameter vAt/A is smaller than one, at least on most points on the mesh.

In this case, the imaginary part of the angular frequency exists, y >0, and

1 -1/ VAt
Q= At tan <—A tan kA> (50)

Thus, in general, the Lax method gives rise to diffusion on the mesh; unlike
the differential system, Fourier modes decay on the mesh. In addition,
dQ/dk # v for all modes; different modes travel with different speeds on the
mesh: the solution is dispersive. For long wavelengths (kA and At small),
an expansion of the difference dispersion relation (Eqs (47, 48)) shows
agreement with tite differential dispersion relation to first order. But to
second order in the Lax method, particularly for short wavelengths, the
effects of dispersion and diffusion can be very severe. This is a difficult
problem in the simulation of hyperbolic equations that may only be minimized
by turning to methods of second-~order accuracy.

8. CONSERVATION ON A DIFFERENCE MESH

When a system of partial differential equations is non-linear, we may
define a particular difference method, but there still remains a variety of
ways of differencing non-linear terms. Since many of the partial differential
equations of physics are conservative, as shown in paper SMR-9/14a, it
would be useful to demand that the corresponding difference equations are
themselves conservative. More specifically, we seek difference equations
which identically conserve the energy, mass, momentum, and the magnetic
flux of the system irrespective of the errors incurred by the finite difference
lattice.

Consider, say, a rectangular region R bounded by the boundary B. The
region R may be divided by a mesh into a set of elementary rectangular cells,
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FIG.5. A conservative scheme employs integrated variables in each space cell, C, N, E, S, W.- The fluxes
are defined only on the surfaces which divide the cells. Hence, if a differential system is conservative, a
difference scheme may be devised which identically conserves the same variables on the mesh.
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each of volume A7. In two dimensions, there are IJ rectangular boxes

(Fig.5). The system of conservative partial differential equations®
ad 3
~—~ +v-f=
ot f=0 (51)

may be integrated over each space-time box of volume ATAt between the
space-like surfaces t™] t0, At cell C,

tn+1 t“+1

oau , _ 3
[ atf[Bare- [ ot [[oiar
i C th C

Therefore,
g+l
ffﬁ’“”dT —ffﬁ“ d7=f at f T.a8 (52)
C C t? Surface

of C
where the left-hand side has been integrated over time, and on the right-
hand side, the divergence theorem has been applied. On the mesh, instead

of defining the intensive variable of, say, density or momentum density, the
total mass or total momentum, respectively, in each box or cell may be

defined. Thus,
50 -1
ATy =ff“u dr
C

3 gection 1 of paper‘SMR-S/i‘}a, these Proceedings.
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3 -
In addition, the fluxes f.dS are defined on the surfaces of each cell. For
the cell ij, there are four fluxes (o =E, S, W, N),

Therefore,

~5ntl M0
Uy = Uy - f Z al] (53)

Although a particular difference scheme has not been defined, since we
have not here defined the fluxes in time, this formulation has the consider-
able advantage that if the differential system conserves the variables udr,
the difference scheme also identically conserves these variables. For, if
Eqgs (53) are summed over all the boxes ij, in R, the fluxes cancel in pairs,
since for example,

ij Wi+1 j
Therefore,
I J
3 n+l 30 dt
Uy u; — F
Z Z‘z Z fAT &5
i=1 j=1 i=1 j=1 B

Hence the variables f udr are identically conserved in R except for the
R -
fluxes crossing the boundary B of R. By defining the fluxes F,in time, a
large set of conservative difference schemes may be obtained.
9. SUMMARY OF METHODS FOR PARABOLIC EQUATIONS
With the techniques now available, a number of important and useful
methods for solving parabolic difference equations are briefly summarized
below. As an example, the simple diffusion equation in one dimension is

used, but this is not to detract from the wide generality of the methods.

ou 3%u

ot Kox2 70
9.1. Explicit first-order method
n+l _ KAt _ o.n n 54
u; u + AT uj+1 2uj+uj_1> (54)

The amplification factor is

2
g(at, K) = KAt

- cos kA)
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for stability:

errors:

e = O(At) + O(4%)

9.2. Crank-Nicholson implicit method

Second-order accuracy in the time-step is obtained by using an implicit
method:

nl n KAt /n
u., =u

n n KAt / ntl n+
; j+m uj+1 2uj+uj <

1 n-1
= +2—A7 uj+1-2uj +uj_1> (55)

The amplification factor is

1 - KAt e kA
A
KAt . 5 kA

1+ A2 sin 5

and the scheme is therefore unconditionally stable with errors

e = O(AtY) + 0(4a?

We are still left with the problem of solving a matrix equation for u'}“ on the

mesh at each time-step.

9.3. Leapfrog method for the diffusion equation

A seemingly consistent method, as for ordinary differential equations,
is the two-time-level leapfrog method

n+l _ . n-1 2KAL n _ n n
upt Ty _Ar<uj+1 2uHy, (56)
The amplification factor for o = 4§2At (1-cos kA) is

2
o
+ 4+1

~lg

g=

g can be less than minus one for all o and the method is therefore un-
conditionally unstable.
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9.4. Dufort-Frankel method

By slightly altering the leapfrog scheme (Eq.(56)), the Dufort-Frankel
scheme is obtained:

1. 01, ZKAt 1
uit = <J+1 <n+ +u"1>+u] 1> (57)

ZKA‘L

For o = A2

n+ = nl
1+a 1+a J+1 11

The scheme is explicit, and the amplification factor is
1
g =11, @c¢0s kA £ N1- o? sin kA

The modulus of the amplification factor g is always less than unity, so that
the method is unconditionally stable, with errors

2
e = O(at?) + 0(a? + o<<%>>

10. SUMMARY OF METHODS FOR HYPERBOLIC EQUATIONS

To define these methods, the set of hyperbolic conservative equations
in one dimension are taken as an example

where F =§(ﬁ). It is found that stability criteria (Courant-Friedrichs-Lewy
condition[3]) are obtained

4

At = C
M

(58)

where C is a constant of the order of unity and v is the largest velocity on
the mesh. For the advective equation, the fluxes are defined by F =vi, and
v is some centre-of-mass velocity. Alternatively, in wave-like equations,
v is a phase velocity.

10.1. Lax first-order scheme

At
2ntl_ 1 (=23n |
Y; _§<J+1+ﬁ > <J+1' -1) 24 (59)
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step -0+l
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time !
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FIG.6. The conservative leapfrog scheme, which may be applied to conservative hyperbolic equations.
A three-time-level formula is used (n-1, n, n+1), The time derivatives are defined between the levels n~1
and n+1, and the fluxes are defined at the intermediate space-time points.

where, for the advective equation, the amplification factor g is
g=coskA-il2tsinkA

and, therefore, for stability,

At = £
vl
e = O(At) + O(4)

10.2. Leapfrog scheme

Three time levels are used to obtain the difference equations (Fig.6)

a0l _ on-1 At /= 2n
g A U T B (60)

and the amplification factors g are

g=ilat~N-a2+1
where
a=YAt-sinkA
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and,for a sufficiently small time-step, AtéA/|v|, stability is achieved with
the magnitude of the amplification factor equal to one. Hence no diffusion
arises, and the errors are of the order

e = O(a%) + 0(AtY

Decoupling between the meshes can occur, however.

10.3. Two-step (Lax-Wendroff) method

A method of very wide applicability for hyperbolic equations is the two-
step method or Lax-Wendroff method. Just as for ordinary differential
equations (Section 3.3), we evaluate temporary or auxiliary variables at the
half time-step to time-centre the equations. The auxiliary step uses the
Lax method:

»nth _ 3 >0 | =0} _ At (20 2
U 77 <“j+1+“j> " 24 \Fn ﬁ) (61)

which is used to define the fluxes —F.‘]&? =F ﬁ;’:f> in the main step:

Main step:

»>n+l _ »n _ At (=2 o+
R R (R et (62)

The condition for stability is
A
At = -[—l
v
e = O(At?) + O(4%

As with the leapfrog method, diffusion only occurs to high order in kA, but
in this case no extraneous computational mode is introduced.

REFERENCES

[1] SMITH, G.D., Numerical Solution of Partial Differential Equations, Oxford University Press, Oxford (1968).

[2] RICHTMYER. R.D., MORTON, K.W., Difference Methods for Initial-Value Problems, John Wiley (Inter~
science), New York (1967).

[3] COURANT, R., FRIEDRICHS, K.O., LEWY, H., Math.Annlnm(IQZS) 32.






IAEA-SMR-9/14¢

PLASMA PHYSICS, SPACE PHYSICS
AND ASTROPHYSICS

D.E. POTTER

Department of Plasma Physics,
Imperial College,

London, United Kingdom

Abstract

PLASMA PHYSICS, SPACE PHYSICS AND ASTROPHYSICS.

Fluid problems which occur in the structure of stars, in the solar system and in laboratory and fusion
plasmas are surveyed. These topics are described by the hydrodynamic equations with the inclusion of self-
consistent long-range forces: in gravitational hydrodynamics, used to study the evolution, structure and
behaviour of stars, the self-consistent gravitational field must be included; in magnetohydrodynamics, the
self-consistent electromagnetic fields must be included. Systems of equations for the gravitational and
electromagnetic cases are developed, and some simple properties of such equations are analysed, In
particular, the important frequencies associated with the gravitational frequency and with Alfvén waves are
stressed. The difference solutions of two particular problems are used to illustrate the general approach, In
the gravitational case, a one-dimensional model of stellar pulsation is discussed and an implicit solution
to the non-linear equations described, The approach is also applicable to one-dimensional problems in
magnetohydrodynamics. In the electromagnetic case, explicit models for two-dimensional problems are
briefly outlined. Such multidimensional problems are of importance in thermonuclear fusion physics, in
solar flares and the magnetosphere.

1, INTRODUCTION: FLUID EQUATIONS AND LLONG-RANGE FORCES
IN LABORATORY AND ASTROPHYSICAL PLASMAS

The scope of the title of this paper is extremely broad, covering, as
it does, a wide range of fluid objects from laboratory plasmas to stars )
and galactic fluids. To define the subject of the paper more precisely, we
are interested in describing many-particle (that is nuclear or star-like)
assemblies, interacting by long-range forces (gravitational or electro-
magnetic), by nmiclear forces and by radiation transfer. We shall be
concerned only with fluid descriptions of such assemblies, since the evolution
of distributions in phase-space, as described by, say, the Vlasov equation,
is discussed in papers SMR-9/13a, b, ¢ in these Proceedings,

The hydrodynamic equations, which describe fluids interacting under
their thermal pressure, as occurs in, say, the earth's atmosphere, are
introduced in papers SMR-9/14a and SMR-9/17 in these Proceedings. We
may describe many problems in fusion physics, in stars, and in the solar
system by the inclusion of other forces and other energy transfer processes.
In describing the structure and evolution of stars, the self-consistent
gravitational field produced by the stellar mass must be included. In
laboratory plasmas or the magnetosphere, the self-consistent magnetic
fields must be incorporated and the plasma is described by magnetohydro-
dynamic (MHD) equations. Theseproblems are strongly non-linear, since
the occurrence of the fluid produces the field, which in turn interacts back
as a force on the fluid, and apart from the simplest problems, solutions may

79
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only be obtained computationally. In addition, experimentally, both stellar
objects and laboratory plasmas are very difficult to study, firstly because
they are both hot and destroy any probes, and secondly because both scale
times and scale lengths are either very short (laboratory plasmas) or very
long (stellar and space objects). A considerable understanding of such fluid
problems may be obtained most readily by simulating interesting problems
on the computer.

To illustrate the range of physics involved and to introduce some
important problems, some example problems are listed which are described
by gravitational hydrodynamics or magnetohydrodynamics.

1.1. Gravitational hydrodynamics

1.1,1, Evolution of stars

Once a star is formed by condensation from the galactic hydrogen
matter, it is of interest to evolve the history of the star over long time-
scales. A radial equilibrium is described by the expansive thermal
pressure of the stellar matter and the contractive self-gravitational field
of the star. Our dominant concern here is the equilibrium of energy, by
production through nuclear reactions in the star interior on the one hand,
and,on the other hand, by loss through outward radiation [1].

1.1.2. Stellar atmospheres

When investigating stars experimentally, it is the outer atmosphere
which is observed. The gravitational hydrodynamic equations are solved
in planar geometry, but to describe fully the stellar atmosphere, complex
radiation phenomena must be studied, including many-species partially
ionized phenomena [2].

1.1.3, Pulsation of stars

The full time-dependent gravitationalhydrodynamic equations must be
included in the non-linear problem when a star's radial equilibrium is un-
stable. Stars may pulsate radially over time-scales typically of 105 seconds
in non-linear modes [3].

1.1.4. Gravitational collapse of stars

General relativistic hydrodynamic equations are used to describe the
rapid collapse, prior to supernova explosions of old stars [4].

1.2, Magnetohydrodynamics

1,2.1, Laboratory plasmas and pinches

The macroscopic behaviour of dense laboratory plasmas is described
by the interaction of plasma and magnetic pressure, produced by currents in
the plasma [5].
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1.2,2, Fusion plasmas

Plasma is trapped in very strong externally produced magnetic fields.
The small fields produced by the plasma are nevertheless of great importance
in defining the length of containment. These problems are essentially
three-dimensional [ 5],

1.2.3. Magnetosphere

The magnetosphere is a three-dimensional problem in the interaction
between the solar wind and the dipole magnetic field of the earth,

1.2,4. Solar flares
Also of interest in astrophysics are problems which involve both the
gravitational field and the electromagnetic field in the hydrodynamic

equations. In particular, one might include as examples of such problems
the structure of pulsars and the magnetic field of galaxies.

2. HYDRODYNAMIC EQUATIONS WITH SELF-CONSISTENT FIELDS

2.1. Introduction to the equations

Classically and in three dimensions, we may describe a fluid hydro-
. dynamically by a set of five time-dependent equations in the fluid density
(p}, momentum density (pv), and internal energy density (pe) [6, 7].

Mass:

3p >

&+ V. (o0) =0 SENEY
Acceleration:

dv z >

—_—= o . +

o P+F (2)
Internal energy:

2 (pe) + P+ VYV + V- (pe¥ +Q) =S (p, €) (3)

ot
The pressure P is,ingeneralatensor (withtrace 3p - thescalar pressure)
which might include viscous effects, anda is an energy flux which might
include heat conduction or radiation diffusion. The gravitational or electro-
magnetic interactions may be included by defining additional forces F in the
acceleration equation (2) and supplementing the hydrodynamic equations -
with equations for the fields. In the gravitational case,

-

F = pg = - pV¢ (4)
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where ¢ is a gravitational potential, determined self-consistently by
Poisson's equation:

%6 = 41Gp (5)

In studying stars, their evolution and structure, the energy flux q is a
radiation diffusion term, and additional source terms, S(p, €), may occur,
for example, through nuclear reactions.

If L is a scale-length, these equations define in the first place the
advection of the fluid (frequency w = 'V'/L) and secondly they describé sound
waves (frequency w, ~ (1/L)yp/p, where v is the ratio of specific heats).

In addition, gravitational oscillations occur with frequency w_=v4rG Pos
and these couple to sound waves and lead, for example, to the phenomenon
of pulsating stars, It is these characteristic frequencies we must follow
in time-integrating the equationsl,

In the magnetohydrodynamic case, the force F is the magnetic force
- 1~
F==j
cIXB (6)

where B is the magnetic field and 5) the current density, given by Ampeére's
law,

?__C hud
J—4WV><B (n

Unlike the gravitational case, the magnetic field, in general, must be des-
cribed by time-dependent equations as defined by Faraday's law,

-

o0 B =
C + eV X 0 (8)

The electric field to be used in this equation depends on the properties of
the particular magneto-fluid being studied. In the simplest case, the
Lorentz electric field (in the frame of the moving fluid) is defined by Ohm's
law [5]

E+-vxB=n7 (9)

O

Again, in the magnetohydrodynamic case, the characteristic frequencies
associated with advection and sound waves occur. But, in addition, the
magnetic field acts as a pressure on the fluid and consequently Alfvén or
magnetosonic waves occur, with a characteristic frequency w,~ L/VA,
where V, is the Alfvén speed,

B

Va T (10)

The resistive electric field in Faraday's law leads to the diffusion of the
magnetic field, and correspondingly the source term, S, in the energy

! See papers SMR-9/14a and SMR-9/14b, these Proceedings.
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equation (3), includes Joule heating. These equations are supplemented
by an equation of state relating specific internal energy density to the
pressure of the plasma, ,

€=€e(p, o7 (11)

2.2. Simple properties of the equations

Unlike hydrodynamic problems, the physical systems described above
include gravitational energy (p¢) and magnetic energy ((1/87r)B2) respectively.
Consequently, field energy and thermal energy are interchangeable and great
variations in the fluid parameters can occur. This leads to strongly non-
linear problems, and characteristic frequencies (gravitational frequency
or Alfvén frequency) can vary very considerably over regions of the problem.
For example, in star structure problems, densities between the inner core
and the outer regions of stars vary by many orders of magnitude, and, _
consequently, the gravitational frequency may be very large in the core of
a star but very small in the atmosphere of a star, In explicit calculations
such large variations can lead to difficulties if the time-step is notto become
too small.

Similarly, in the magnetohydrodynamic case, plasma densities may
vary by three or more orders of magnitude and the Alfvén speed becomes
very large in tenuous plasma (since V, = B/~/4_7rp). Thus the Courant-
Friedrichs-Lewy condition® on an explicit time-step,

At s =
'v' + VA

where A is the mesh space-step, can lead to very small time-steps.

Approximations must be introduced to avoid small time-steps in such

circumstances.

3. ONE-DIMENSIONAL GRAVITATIONAL CASE: STELLAR PULSATION

Some of the phenomena which arise from the study of stars and which
have been investigated by fluid simulation have been outlined in the previous
section, These problems are very diverse, but the essential approach may
be illustrated particularly by describing the method of solution for problems
in stellar pulsation. Up to the present time, these problems have been
studied in one dimension and the possibly important processes of convection
from the centre of stars have therefore not been described.

Stellar pulsation has been observed experimentally in certain stars for
some time, particularly by the use of Doppler shift measurements from the
surface of such stars. Typical frequencies of the pulsation are of the order
of 10% s, associated with surface velocities of 50 km *s-!, The method of
simulation of this problem, which is discussed here, has been devised and
applied by Christy [3,8,9].

2 See paper SMR-9/14b, these Proceedings.
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In one dimension the use of a Lagrangianmesh and the rapid solution of
tridiagonal matrix equations [10], which facilitate the use of implicit
difference methods, admit a relatively simple formulation of the problem on
the computer. This is equally true for magnetohydrodynamic problems in
one dimension where the same techniques are applied [11].

3.1. System of equations

If r is an independent variable describing a radial shell in the star, a
Lagrangian mesh may be defined,

dr _
T (12)

where v is the centre-of-mass fluid velocity. It is convenient to define as
a variable the mass with the shell of radius r,

I

M(r) _=f4ns2p(s) ds (13)

0
From the continuity equation (Eq. (1)), in the Lagrangian frame,

dM

-a— =0 (14)

Clearly, the mass contained within each spherical Lagrangian shell is a
constant. Thus, in this simple geometry, Poisson's equation (5) may be
integrated immediately to define the local gravitational acceleration,

GM(r)
g=-V¢=- = (15)
and assuming a scalar pressure, pl = P, the acceleration equation (Eq. (2))
becomes

v, GM(r) 12 (16)
dt T2 p or

It proves useful to use as the independent Lagrangian space variable the
contained mass, M, rather than the radius, r (M is a scalar single-valued
function of r). The acceleration equation takes the form:

- 2 42 R (17

and r = r(M,t). The final equation for the energy or temperature of the
fluid may be taken from the equation for the internal energy density (Eq.(3)),

e a<1_9> 3
a P Tawm (@70 (1)
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where a scalar pressure has been assumed, and the energy flux q is dominated
by radiation diffusion., Alternatively, this equation may be combined with

the equation for the kinetic energy and gravitational energy of the fluid to
derive an equation for the conservation of total energy,

2(1v-ae)e 2 wmprag c0 (19

The conserved quantity in the time derivative includes, respectively,
kinetic energy, gravitational energy, and internal or thermal energy.
Frequently, and as has been discussed in papers SMR-9/14a, SMR-9/14b
(these Proceedings), it is preferable to use an equation for the conserved
quantity (Eq. (19)) rather than the equation for the unconserved gquantity, in
this case the specific internal energy density (Eq.(18)). However, in this
particular problem, large variations occur between the gravitational energy
and thermal energy in different regions of the star, and in particular, there
exist regions of low density on the surface of the star, where the calculation
of the temperature from the total energy equation would yield large errors
from the small thermal energy term. Hence in this problem the temperature
is determined directly from the thermal energy equation (Eq. (18)).

The radiation flux term q depends essentially on the opacity, « (p, €),
of the local stellar material. We apply Stefan's law and obtain an expression
for the energy flux,

q= - 4m? 22 = S (20)

o is the Stefan-Boltzmann constant, The inclusion of this term makes the
internal energy equation (17) parabolic and describes the emission and ab-
sorption of radiation energy by the macroscopic coefficient, 1/k, which must
be determined by considering the particular microscopic processes for a
given problem: Bremsstrahlung radiation and absorption and indeed atomic
phenomena. In the interior of stars where particles are fully ionized, a
very good functional approximation for the opacity k is k ~ p/T%, but in the
stellar atmosphere, particularly through the "ionization front", k may have
a more complex form. Finally, we define the specific internal energy
density by an equation of state (for example, in the fully ionized region

€ =p/{p(v-1)]) which may be complex through the ionization front. The
problem has now been reduced to three first-order, one-dimensional time-
dependent equations (Egs (11, 15, 17)) in the three dependent variables,
r(M,t), v(M,t) and (M, t}. The equations are essentially hyperbolic,
describing advection (frequency w), sound waves (w,) and gravitational
oscillations (wg), but the inclusion of the radiation term makes the energy
equation parabolic with a diffusion'frequency’

R T gor (2)
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3.2. Difference solution

The Lagrangian independent variable M is discretized by spherical
shell boundaries i, which define mesh cells i-%,

n-}

Vi
Pi+}s €i-f ry

M. :

1
4 | i
i-1 i-3 i i+ i+l

M —

The dependent variables of radius and velocity are defined at the mesh
boundaries rf!, vi““%, with the velocities defined at the half-time-steps t2-4,
All other variables (the intensive variables) may be defined as cell
quantities at i-3 and at integer time-steps. Thus, given the radius and
pressure, at integer times, the acceleration equation is integrated on a
time~-centred, space-centred scheme:

ath - onek g (OMp)
vy vi At (ri)z

-At 47 (r])?

X TAM,, + AM ) (PLy - PLLy) (22)
and,consequently, the new radial positions,at integer times,of the cell
boundaries are determined,

r?*l =rf+ v?*{' 'At“‘”% (23)
The local density of each cell is determined
= M- (24)

7T 7r<<rn+1> <r> )

It remains to solve the equation for the energy density. The essential
problem here is the non-linear diffusion equation, which is most readily
solved implicitly by the stable Crank-Nicholson method, and a stability
criterion related to the diffusion frequency (wg) is therefore avoided.
Consider the equation for the internal energy density € (Eq. (18)) which may

be written as
a(eoT) < > _ 9 8T

i R ar = 0 (25)

where R is the radiation diffusion coefficient,

3
- (4?2 40 AT (26)
kp
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and we have written the internal energy density, € = €;T. The second term
is explicitly known, but the radiation diffusion coefficient and the specific
internal energy density are functions of the unknown temperature T. A
solution may be obtained by iterating (over steps p) around the non-linear
terms and using the Crank-Nicholson method2 to time-difference the
equation:

€ 1

' n+l , N+l
&P n+1 Tp+1. n+l _ _n TR At {(RP + RP + )
054 s i+ 0i+ s i+ T 9 AM1+_

% <Tp+1 o+l Tp+1 n+1> (RF;’:_H-I + RE'_'_”I) < p+, ¥l _ Tp+1 n+l>}

i+d it} AM
n
=8 (27

The equation is time-centred and space-centred and the term on the right-
hand side is explicitly known. The left-hand side is a tridiagonal set of
equations in the temperature T at each time-step n + 1 and at each iteration
step p + 1. When the tridiagonal equations are simply inverted [5], improved
coefficients eB™! and Rﬁg "1 are determined over the mesh, and the

linear tridiagonal equations are solved again to convergence. The time-

step is then completed.

Because the grav1tat10na1 frequency is an increasing function of the
density and the time-step must be chosen smaller than the time of this
frequency, the inner boundary is not taken at r = 0, but over a small, rigid,
radiating sphere at the centre of the star, Equilibrium initial conditions
are imposed. Christy [3] has obtained solutions for a wide range of
equilibria. Non-linear steady-state oscillations (of amplitude typically 10%)
are obtained illustrating the fundamental properties obtained experimentally.
The detailed results are too extensive to discuss here.

The dominant modes found from the simulations are either the fundamental
or first overtone (one node), and after several periods of oscillation, only
* one mode exists: Particularly of interest, however, is the result that, given
the same equilibrium but perturbing the initial state with either a large-
amplitude fundamental or a large-amplitude overtone, different steady-state
oscillations may be obtained in either the fundamental or first overtone.

Thus the final state ''remembers' the time-history of the star [3].

4. TWO-DIMENSIONAL MAGNETOHYDRODYNAMIC SYSTEM -
THE COAXIAL Z-PINCH

Unlike stellar problems, problems inmagnetohydrodynamics, bothinfusion
and inthe solar system, are of particular interestintwo or three dimensions
(toroidal fusion plasmas; the magnetosphere; solar flares). Intwo
dimensions, even on present-day computers, the problem is fairly severe:
for example, on a 64 X 64 mesh, typically we must solve six time-dependent

2 See paper SMR-9/14b, these Proceedings.
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FIG.1. Schematic of the plasma focus experiment, A capacitance at typically 40 kV discharges a current
approaching 1 MA between coaxial electrodes. A two-dimensional supersonic shock is produced (time t,)

which collapses at the end of the centre electrode to form a thermonuclear plasma (time t,). The

calculation simulates the experiment in the (r, z) plane to which the magnetic field (BG) is always perpendicular.

coupled equations over probably one thousand time-steps, producing then
about 3 X 107 dependent variables. Again, the variety of problems is
immense, and the basic approach shall be illustrated by using as an example
a two-dimensional explicit simulation of a laboratory non-cylindrical super-
sonic pinch, which occurs between coaxial electrodes and which produces a
thermonuclear plasma (Fig.1).

We may write the magnetohydrodynamic equations most conveniently
in conservative form.

Mass:
B4 v.,v=0 (28)
at
Momentum:
v -~ 2 B2 BB
LY 4 . +P + .22 - 29
ot T VvV P T s0 (29)
Magnetic flux:
a_é - - - o2
—_— 4 . - = —_—
5tV (vB - BV vxn‘lﬂvxﬁ (30)

These equations are the same as given in Section 2, except that the magnetic
force term has been included within the momentum flux tensor (Eq.(29)) to
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obtain conservative equations, In general, in fully ionized plasmas it is
necessary to define separate electron and ion internal energy densities,

€., €;, the equations for which are non-conservative.

Electron thermal energy:

e - o . €i = €

D pe +PeV VY (et +Go) =it p L (31)

ot eq
Ion thermal energy:

at pei +pi V :1)+ V. (peiv +?1i):-\7;v7;+p5%€i (32)

eq .

geand qd; are the electron and ion heat conduction terms respectively. V
is the ion viscous tensor and 7., is the time for equipartition between
electrons and ions. In general, in three dimensions, these equations
define a set of nine dependent variables u = (p, p?, B, p€e, pei) where
equations of state relate €, = €. (Pe, p), € = €;(P;, p). In the absence of

resistivity n, viscosity u, and heat conduct1v1t1es k. and k;, the equations
are hyperbolic and describe advection (w ~ A/ Iv ) sound waves (w~ A./vS ),
and Alfvén waves (w~ A/v,), and in the explicit case the time-step is
limited by a Courant-Friedrichs-Lewy condition,

A
Ats=

33
, [ +,) LRt E , B 9
p 4mp

Unlike the one-dimensional case, matrix equations resulting from two- or
three-dimensional problems are extremely difficult to solve, particularly
for the non-linear or variable coefficient case, In the special case of
Poisson's equation, the eigenvectors of a resulting difference matrix are
known and a variety of exact methods of solution are available. This is
not the case for the general elliptic equation with variable coefficients,

and time-consuming iterative methods, such as the Alternating-Direction-
Implicit or Chebyshev methods, would have to be applied at each time~step
for the implicit solution of the above equations.

For multidimensional problems, explicit methods have been most
successful. Certainly for high-beta supersonic problems (beta is the plasma
pressure compared to the magnetic pressure), the diffusion processes are
small but important and may also be included explicitly, To avoid large
numerical diffusion, we use a second-order method in the time-step to
integrate the equations; the Lax-Wendroff method is particularly approprlate
We may write the equations as

%+V'§=S (34)
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FIG.2. In gravitational and electromagnetic hydrodynamic problems, large interchanges between field
energy and thermal energy occur. The diagram illustrates the problem in the case of a magnetohydrodynamic
simulation (plasma focus, Fig.1) where in the vacuum region (large magnetic energy) the Alfvén speed
becomes very large and a small time -step must be avoided. The calculation region is divided into a plasma
region and a vacuum region: the time-independent electromagnetic equations must be solved in the two-
dimensional vacuum region with a moving boundary. In the plasma region, the full magnetohydrodynamic
equations are solved,

where the source terms S arise only in the case of the internal energy
equations., Intermediate values intime and space are found by the Lax
method. In two dimensions, at the point (x;, y;) = C, at time t%

Auxiliary step

—>n+% _ >n n ~n ~n Zn
=2 + + - -
cl 4 < 1 +usl uEl uw> 2A <F wal + Fle Fys l> (35)

Main step
e 1 - At — - — —
u?:t urclil" X Fxlll;% - Fxn‘:f * F)"Ir\l:% - Fyr:é (36)

where P = f(ﬁ““’lf) and the subscripts N, S, E, W refer to adjacent
compass points.

The diffusion terms are also included explicitly by the same approach,
but the source terms in the internal energy equations, of viscous heating,
joule heating, equipartition and adiabatic compression, may be included
implicitly,

One of the major problems in magnetohydrodynamic simulations is the
occurrence of low-density regions where magnetic pressure replaces plasma
pressure and Alfvén speeds become very large. In the case of a coaxial
shock a vacuum region' exists behind the shock, and we must avoid a very
small time-step as defined by the Courant-Friedrichs-Lewy condition
(Eq.(33)). Here the magnetic field is in the azimuthal direction; 'in the
vacuum region (Fig. 2) we permit no currents to flow, so that the vacuum
magnetic field is given by Ampere's law,

21
Be ~ 7
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FIG.3. Two-dimensional simulation of the plasma focus experiment. The diagrams illustrate, for successive
times, the density in a moving shock and the associated flow velocity vectors,
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Time = 0.4025

5x10" cm™®

ION TEMPERATURE

ELECTRON TEMPERATURE

Dependent variables in the plasma focus shock, drawn above the two-dimensional (r z)-plane,
Behind the shock, the large magnetic energy and low density, giving rise to very large Alfvén speeds,
can be seen,

FIG.4.

where I is the total current flowing in the circuit.

When the magnetic fields
exist in the plane of the calculation, it is necessary to solve Laplace's
equation for the magnetic vector potential
varying boundaries,

in the vacuum region with
2 .
VéA =0 (37)

In laboratory plasmas and in the case of the coaxial gun, the calculational
magnetic energy,

plasma domain is coupled with an external circuit which provides the electro-

d -
5 LD = Q/C

L=f*B«d“
S



Switch - on  Shock

\ t=1.0 psec
|\
\ \
m B
\
N{R
l ! shock
-} front
/ I
AT

Switch- on  Shock

t=1.0 psec
M.z 11
M, =1.25

Switch- on  Shock
t22.0 psec
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where I is the current, L the inductance of the system, C a capacitance and
Q the charge on the capacitance (Fig. 1).

As an example of such a simulation, numerical solutions of the motion
of a two-dimensional coaxial shock and the consequent collapse to form a
thermonuclear plasma on the axis of the system are illustrated in Figs 3
and 4. The shock travels with a speed v, = 2 X 107 ecm - s'! and temperatures
of 1.5 keV are obtained in the hot contained pinch.

Another interesting example is the motion of a shock parallel to magnetic
field lines, which switches on a third component of the magnetic field (Fig. 5).
The reverse phenomenon (switch-off shock) is believed to be of importance
in annihilating the magnetic field in solar flares,

In magnetohydrodynamics, .the anisotropy introduced by the magnetic
field leads to a variety of wave phenomena (Alfvén and Whistler waves)
which travel preferentially along the magnetic field. In addition, the coef-
ficients of resistivity, viscosity, and heat conductivities are tensor -
quantities associated with the magnetic field [12], and,in future simulations
in both space physics and fusion physics, these anisotropic MHD phenomena
must be simulated in two and three dimensions for the full elucidation of the
subject [13].
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Abstract

PLASMA, GRAVITATIONAL AND VORTEX SIMULATION,

Particle models are first compared with fluid MHD-models and the time-stepping procedure described.
A plasma model is described in detail, and it is shown how this may be re-scaled to become a gravitational or
vortex simulation, Examples are given of the use of such models in the study of electron devices, galactic
evolution and fluid flow stability,

In this paper, we shall discuss the use of particle/field calculations
in the simulation of plasmas, galaxies and vortex flows. We shall describe
the simulation in terms of the plasma case and show that by suitable
scaling the same model can be used for the case of galaxies and vortices.

¢

THE QUASI-ELECTROSTATIC PARTICLE MODEL

In a particle model, the plasma is represented by calculating the
motion of a "'large number" (usually 10¢ to 10°) of representative ions
and electrons as they move through the fields of all the other particles.
The motion is governed by Newton's laws and the only field we consider
in this model is the electrostatic field of the assembly (except perhaps
for a fixed external magnetic field).

The model is termed''quasi-electrostatic'' because, although the
particles move dynamically according to Newton's laws, the field is at
all times the electrostatic field due to the present positions of all particles,
That is to say, we consider only non-relativistic velocities when the
velocity of transmission of the field (i. e, the velocity of light) is very
much greater than the velocities of the particles.

In contrast to an MHD-plasma, the main properties of such an electro-
static plasma arise from charge separation and inertia. These lead to:

(a) Plasma oscillations at a frequency wp given by wg = 47ne2/m and

a characteristic time of 7, = 27r/wp. Here n,e and m are the
density, charge and mass of the particle, respectively.

(b) Charge separation over distances of the order of the Debye length,

Ap given by 7\2D = kT/(41rne2). The Debye length is a characteristic
length of the system. Here k is the Boltzmann constant, and T
the absolute temperature.

The above behaviour is in sharp contrast to the behaviour of an MHD-
plasma which may be more familiar to many readers. In the MHD-
plasma one is interested in time scales much greater than 7 and distance
scales much greater than A. On this time and space scale, the system

95
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may be considered to be neutral and all the effects present in the quasi-
electrostatic plasma are ignored. Furthermore, in the MHD-plasma

one's interest is focused on the magnetic field produced by currents flowing
in the system and the effect of this field on the motion of the plasma. In
the electrostatic plasma, the magnetic field of a moving charge is ignored.

The electrostatic particle model is useful in the study of

(a) small-scale, high-frequency micro-instabilities which give rise

to anomalous diffusion and resistivity effects.

(b} Velocity-space instabilities, two-stream instability, Landau

damping, Debye shielding.

(c) Problems involving many inter-penetrating streams.
However,because the magnetic field of a moving charge is ignored,the model
is only applicable to low densities for which 8 = nkT/(B%/87) <« 1, where
By is the strength of some external magnetic field imposed on the problem,
for example, the containing field in the case of a problem in controlled
nuclear fusion.

All computer models of a plasma are wrong in one way or another,

A particle model is wrong in the first instance because we represent a
real system of say 101 particles by a model with at most about 10°. We
return to the question of the effect particle number on the properties of
the model later on. We may also, as in the electrostatic model,
ignore many of the fields actually present in the physical system.

An MHD-fluid model is wrong because the velocity distribution function
of the particles, f(v), is not allowed to change and the model cannot cope
with inter-penetrating streams. If, on the other hand, we go to a solution
of Vlasov's equations which may be said to simulate a system of an infinite
number of particles, to overcome the problems of particle number, then
we swop errors due to using too few particles for errors due to having too
few spatial and velocity mesh points on which to solve the Vlasov equation,

THE TIMESTEP LOOP

The simulation proceeds in a series of timesteps during which the field
is assumed to remain constant. We store in the computer the co-ordinates
{x,y)' and (Vy, Vy)"%DT of all the particles, where t is the time and DT the
timestep, and we find it convenient in the differencing to regard the
velocity as given one half timestep before the positions. The positions and
velocities are advanced stepwise in time as follows:

(a) Find the field on each particle due to the present positions

(x; y) of all particles.

(b) Accelerate each particle for a short time, DT according to Newton's

laws;
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to obtain revised positions and velocities

(%, y)t+DT, (Vx Vy )t+%DT

DIFFERENCING OF NEWTON'S EQUATIONS

The simplest differencing scheme is used which is centred in time
2 -1 24, 1 =, -
3+ 4DT _ Ft-4DT 1+4DT | t-4DT
m(#) B SV VTN By
DT 2 c

= -
X +DT_ Pt

X _ T+ iDT
bt -V

where ¥, 7, _B)O are vectors. N

This scheme is implicit in the new velocity Vi*#PT; however, the
equations are linear in the velocity and an explicit expression can be
obtained for the new velocity. We note also that if the velocity is eliminated
the resulting difference equation is the same as that obtained by differencing
Newton's equation in the form

2

m T force
" dt?

with the second derivative represented as

Px ) U DT gyt 4 o t+DT
ate ° DT?

The integration in time is explicit and we may expect there to be a stability
requirement limiting the size of the timestep. In fact, one may show that
for stability wpDT <2, where w, is the highest plasma frequency, which is
due to the electrons. This is a severe limitation on the size of the time-
step and the magnitude of physical time that can be studied in this type of
simulation.

FINDING THE FIELD

Two methods are available for finding the field in step (a), the method
of "action at a distance' and the "mesh method".

Action at a distance

For small numbers of particles, N <1000, it is possible to find the
field on each particle by adding up contributions from all the other (N-1)
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particles. Since this must be done for each particle the number of arith-
metic operations and hence the computer time used will be proportiocnal
to N(N-1) or N2 for large N.

The field on the i-thparticle due to all others is

N
-
2) Gl
Ei _Z Irij l
i=1
i#

which would take about 10 N arithmetic operations to compute. To find
the field on all N particles therefore takes about 10 N2 operations.

To see the meaning of this in practice, let us consider a computer
which takes about 1 us for an arithmetic operation (e.g. CDC 6600,
IBM 360/91). Then the time for the field calculation in each timestep is:

N =100 timestep = 0.1 s
= 1000 =10 s
= 10000 =15 min
= 100000 =1d

Since a-useful computer experiment will include at least 1000 time-
steps, it is clear that at most 1000 particles can be moved in a simulation
using the "action at a distance'' method. Simulations of this type are
performed in studies of clusters of a few hundred stars. For plasma and
galactic simulations,however, one must seek an alternative method which
will allow one to move many thousands of particles. To do this a method
in which the number of operations is proportional to N, and not N2, must
be found.

The mesh method

In the mesh method the region of calculation is divided into a regular
array of cells as shown in Fig.1. At the centre of each cell, there is a
mesh point at which the values of variables applying to that cell are
calculated. In the present context, these variables are the charge density
and the electrostatic potential. The field in the region is then determined
by solving the appropriate differential equation by finite-difference methods
operating on the variables given at the mesh points, To conserve storage
it is usual to solve for the potential and then derive the fields by differencing
as follows:

(1) examine (x,y) for each particle and assign a unit of charge to the
appropriate mesh point. This gives a charge distribution p(x,y)
on the mesh.

(2) Solve the Poisson equation

V2¢ = -4mp

to give the electrostatic potential. The 5-point difference
approximation may be used

bij-1 + Oije1 + bi-,j * Gin1,y - 49y = -4mpy H2

where H is the mesh interval,
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POSITION OF ROD-STARS

48 x 48 RASTER
_/OF CELLS

1
T
| X X X!
EREN
X XX
-I-XXX

X
X
X
X

MESHFOR ___ =4
POTENTIAL VALUES

FIG.1, The mesh method — showing the division of space into cells and the mesh points used in the
solution of Poisson’s equation. A typical problem showing "stars” ona 48 X 48 mesh, [from HOCKNEY, R, W.,
Astrophys. J. 150 (1967) 797, Chicago University Press].

(3) Derive the field in each cell by differencing
E = -grad ¢

The simplest finite-difference approximation for the field in the
(i,j) cell is

Ex = (15 - 9.1,5)/2H

Ey =(¢;5-1 - ¢,5,1)/2H

In the above scheme let us suppose there are on average p particles
per mesh cell, then there will be N/p mesh points, It will be shown in
another paper by the author in these Proceedings that, in simple
geometries, the number of arithmetic operations required to solve Poisson's
equation [1] is proportional to the number of mesh points (neglecting a
slowly varying logarithmic dependence). Hence the number of operations
for stage (2) above is proportional to the number of particles N, Stages (1)
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and (3) also require a fixed number of operations for each particle and
hence the total number of operations required by the mesh method is
proportional to N. We find in a typical case that 100000 particles can

be moved one timestep in 5 s on a CDC 6600 or IBM 360/91 which is some-

thing like 100 times the number of particles that can be moved using action
at a distance.

s

NGP approximation [2]

Particle models differ in the manner in which charge is assigned to
the mesh in stage (1) above and the manner in which the field is obtained
in stage (3). We have described above the simplest scheme, which is
known as the nearest-grid-point approximation (NGP) in which all the charge
of a particle is assigned to the nearest mesh point as shown in Fig, 2,
In stage (3) the field is taken to be the same for all particles in the same
cell and is given by the simplest difference given above.

The NGP is very simple computationally and can be reduced by appro-
priate scaling to a program like:

For every particle compute:

I =X
J=Y
EX = PHI(I-1,J) - PHI(I+1,J)
EY = PHI(I,J-1) - PH(I,J+1)
DX =DX 4+ EX
X =X+ DX
DY =DY + EY
Y =Y +DY
(NEAREST GRID POINT) (CLOUD IN CELL)
BUNEMAN, HOCKNEY et. al. BIRDSALL, FUSS et. al.
X
X | ~X
‘/'
X X X NN
X x
!
X |

FIG.2. The relation between cells, mesh (or grid) points and clouds in the NGP and CIC models, The
region is divided into cells by straight lines. There is a mesh point shown by a cross at the centre of each
cell. In CIC this is the centre of a square cloud, The shaded areas show the portion of the cloud in each
cell, and the arrows the mesh points with which the parts are associated. [from HOCKNEY, R, W,, Meth,
Comput. Phys, 9(1970) 135, Academic Press]. -
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S

1
NGP Cic

0 TR

FIG.3. The force Rx/H) between two particles with separation x/H for the NGP and CIC models. The dots
show the (x/HY! interaction between point charges, [from HOCKNEY, R.W., Meth, Comput. Phys. 9(1970) 135,
Academic Press].

such a loop has six operations per particle and is probably short enough
to use the "loopmode" or instruction stack facilities of computers like
the CDC 6600 or IBM 360/91. The charge assignment loop is particulary
simple:

I1=X

J=Y

QL J) =Q(L,J) + CH
where CH is the unit of change.
The disadvantage with the NGP scheme is that the force between two

interacting particles varies like a staircase with separation, as is shown
in Fig. 3. The sharp changes at the steps lead to a high level of noise in

the system and a poor conservation of energy (a few per cent conservation
over 1000 steps is considered good).

CIC approximation [3]

To overcome the noise problems associated with NGP the clound-in-
cell method (CIC) was devised. In this method, the co-ordinate of a
particle is regarded as the centre of a square cloud of change of uniform
density. In assigning the density in stage (1) the charge of the cloud is
apportioned to the four neighbouring mesh points according to the proportion
of the cloud that lies in each of the four cells associated with the mesh
points. In stage (3) the NGP field is calculated in each of the four neigh-
bouring cells. The total field on the cloud is then found as the weighted
average of the neighbouring fields,using as weights the areas of the cloud
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in each cell. A program for the above method using an obvious notation
might look like:

I1=X
J=Y
Now work out the weights
=X-1
Y-J
(1-1U)
B=(1-V)

o< a
I

Now assign charge to the mesh points

Q01 =QO01+A.V.CH
Q11 =Q11+U.V.CH
Q00 = Q00+ A.B.CH
Q10 = Q10+ U.B.CH -

where 00 refers to the bottom left mesh point in Fig. 2:
"

10 t (3] " (3] right 1" "
01 " " " tOp left " 4] . "
11 " " " tOp I‘lght 1" " 3

For the field calculation one has the NGP field in all cells:

E00 = PHI (left) - PHI (right) about 00 cell
E10 = similarly "oo10 "
Ell = similarly o1 "
EOL = similarly R S R

and similarly for the y-field; then the total field is

ETOTX = A.V.E01 + U.V.E11+A.B.E00+U.B.E10

and similarly for ETOTY.

Since the weights are too numerous to store between stages (1) and
(3) they must be recalculated and the total number of operations per
particle for CIC is about 34 compared with 7 for NGP. The disadvantage
of the CIC method is that it may take 4 to 5 times longer to computer
per particle than NGP. However, the CIC model is perhaps ten times
less noisy and is the only method that can be used in some cases.

The area-weighting technique used in CIC is the same as a bilinear
interpolation and hence we find in Fig. 3 that the resulting force law is
like a linear interpolation between the step values of the NGP force law.
It is clearly a much more accurate and smoother approximation to the
exact r’! force law between interacting line charges which is given by
the dots in Fig. 3.
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GRAVITATIONAL ANALOGY

The electrostatic particle model which has just been described can
be appliedtoa gravitational problem by re-scaling. We note that the force
law between interacting charges is

Fo=-919
)

and between interacting masses is
m;m
F =4 _1}2_2

Hence, if we use an electrostatic model with a charge-to-mass ratio
q/m equal to NG, the square root of the gravitational constant, and in
addition change the sign somewhere in the loop, then we have a gravitational
simulation.

Thereis,however,amore difficult problem associated with the absence
- of gravitational electrodes. It is necessary to modify the boundary condi-
tions of the potential problem to those associated with a gravitational
problem. This usually means that the gravitational potential should decay
away toinfinity correctly, without the potential being specified anywhere,

In contrast, a typical electrostatic problem has the potential specified
on a near boundary. Consequently,considerable revision is likely to be
necessary in the potential solving routine; a method for doing this is
described in Ref.[4].

If a two-dimensional electrostatic particle simulation is converted to
a gravitational simulation, one has a simulation of infinitely-long rod-like
stars. Such a two-dimensional model may be interesting in its own right
and have some realism in simulating long cigar-like galaxies such as
NGC 2685. However, the simulation of a thin-disk galaxy is much more
interesting as it is a good model for the study of the origin and evolution
of spiral structure. For this one needs a model of point (in contrast to
rod) stars moving in a plane and the potential calculation must reproduce
correctly the r! potential of interacting point masses (and not the log(r)
interaction of line-masses). This cannot be achieved by solving Poisson's
equation in two dimensions, but Fourier transform techniques are available
and described in Ref.{1].

THE VORTEX ANALOGY

In an electrostatic simulation with a high external magnetic field B,
the motion of the gyrating particles can be accounted for adequately by
the guiding-centre approximation, which gives the velocity directly from
the electric field

BExB
V:e—ﬁBz—
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or, in component form,
c c 3¢
V = E = -
X B, 7 B, oy
c c 9¢
AVA = - = —
y B, Ex B, 9x
where ¢ is given by
V2§ = -4mp(x,y)

=, ; v 1 F

132 AL A =R
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FIG.4. A simulation of plasma flow across a strong magnetic field, showing top left — particle positions,
top right — flux arrows, and bottom — electrostatic potential. [from HOCKNEY, R.W,, Physics Fluids
9(1966) 1826, A,L.P.1.
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0.0 0.2 0.4 0.6 0.8

2.0 2.2 2.4 2.6 2.8

3.0 3.5 4.0 45 5.0

FIG.5. The development of an elliptical bar galaxy under differential rotation. Time in units of rotations
of the outer stars. [from HOCKNEY, R.W,, Publ. Astronom. Soc. Pacific 80 (1968) 662].

An analogous situation arises in two-dimensional incompressible and
inviscid flow. In this case the velocity is derived from a stream function
¢ by

. )
Vx = ay”’ Yy % ax

The vorticity, &, is then defined as the curl of the stream function.
Hence

3
g=curlV=2-" Vv, = By

A
Y 3y
Comparing these formalisms one can see that the stream function and
vorticity are analogous to the electrostatic potential and charge distribution.
In this analogy the moving charges must be thought of as moving elements
of vorticity.
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100 200 300 400

FIG. 6. The Kelvin-Helmholtz instability seen in a thin electron beam in a strong magnetic field or by
analogy in the vortex layer between two fluids passing each other with equal and opposite velocities, [from
LEVY, R.H., HOCKNEY, R.W., Physics Fluids 11 (1968) 766, A.1.P.].

APPLICATIONS

Anomalous diffusion

An electrostatic model with a fixed external field has been used to
study the anomalously high transport of plasma across a containing magnetic
field [2]. Figure 4 shows the output from such a simulation. At the top
left are the positions of all the simulated particles and at the top right
are flux arrows showing the flow of both ions and electrons. At the bottom
is an isometric view of the potential showing the wave that gives rise to
the unexpectedly high transport of particles from the plasma at the bottom
to the wall at the top.

Gravity

A modified electrostatic particle model has been used to study the
evolution of galaxies. Figure 5 shows still frames from a computer-made
movie displaying the evolution of a bar-shaped galaxy under the influence
of differential rotation, produced by the presence of a heavy central
nucleus [5]. Familiar spiral shapes are observed but these are transitory
and disappear after about five rotations.
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Vorticity

An electrostatic particle model with guiding-centre motion has been
used to study the stability of a thin beam of electrons in the interior of a
containing vessel [6]. If the beam is thinner than about one fifth of the
vessel, it is found to be unstable to the Kelvin-Helmholtz slipping stream
instability. The nature of the instability is shown in F'ig. 6 which contains
still frames from a computer-generated movie. The beam is observed
to wind up into vortices, The linear-growth region can be obtained by
classical analysis but the computer model obtains, in addition, the non-
linear saturation amplitude.

Viewed by the vortex analogy, the computer experiment of Fig. 6 can
be regarded as showing the vortex layer between two fluids slipping past
each other with different velocities. The vorticity is then confined to a
thin layer at the junction of the fluids. In the right conditions this layer
is unstable and the vorticity re-distributes itself as shown in the figure,
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Abstract

PARTICLE-FIELD INTERACTIONS: NUMERICAL TECHNIQUES AND PROBLEMS,

Errors inherent in the use of a particle model in the simulation of a physical system are discussed, These
arise from N, the particle number, H, the interval of the space mesh, and DT, the time-step. Measurements
are presented that show that the collision rate of both the NGP and CIC models are the same and depend mainly
on N. Stochastic heating which leads to poor energy conservation depends on N in the same way as the collision
rate but also strongly depends on H, DT and the model used. “The CIC has substantially less heating than
the NGP model. Recommendations are made for the choice of H and DT.

AIM OF MODEL

In particle field simulations using the mesh method the object is usually
to simulate a collisionless system. That is to say, it is desired to have
the collision time of the model greater than the time of the simulated ex-
periment. Such a simulation can be used to simulate a physical system
with a very long collision time such as a 'collisionless' plasma or a galaxy
of stars. Alternatively, collisional effects may be added to such a simula-
tion in a controlled and detailed way to obtain a simulation, e,g. of a
collision-dominated semi-conductor or collisional plasma,

SOURCES OF ERROR

The principal sources of error in a particle model arise from N — the
number of particles which is always much less than in the physical system;
H — the space mesh interval, and DT — the time-step, both of which must
be finite, The effect of these errors is seen primarily in the distortion of
the collision time and the introduction of stochastic heating,

COLLISION TIME

The collision time may be defined as the time, on average, for aparticle
to be deflected 90° from its initial direction due to collisions with other
particles, In a plasma, we are not dealing with hard-billiard-ball col-
lisions but with the accumulation of many small-angle scatterings whichatest
particle suffers as it bounces off the Coulomb field of other particles,
Figure 1 shows some orbits of a typical particle within a simulation, and

109
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ELECTRON —‘

FIG.1. Typical orbits of simulated electrons and ions in a computer model of a plasma. There is one dot
per time-step in the motion. Electrons and ions can be distinguished by the difference in their velocities.
(This and all other figures from J. Comput. Phys. 8 (1971) 19, Academic Press].

if ¢4(t) is the angular deflection of the i-th particle at time t from its initial
direction then the average square deflection is

<821 (i qsg(t))/m
i=1

The collision time 74 is defined as the time for the square root of the
quantity to reach 90°, Figure 2 shows the results of such a measurement
made in a thermal two-dimensional computer plasma,

EFFECT OF PARTICLE NUMBER

It is sometimes difficult to see why the collision time increases as
‘the particle number increases because one might think at first that, with
more particles to collide with, this time would be decreased. But one
must remember that as more particles are used to simulate the same
system, less chargeis associated with each particle and this rapidly de-
creases the collision cross-section of each particle., This effect overweighs
that due to the increase in the number of collisions and the collision time
is, in fact, increased.
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FI1G.2. Typical results obtained for the measurement of deflection (or collision) time.
The dots are measured values.

This may be seen from an examination of the Rutherford-Coulomb
scattering cross-section:

If q — charge of particle,
m~— mass of particle,
d — density of particles,
v — average particle velocity, and
o — collisional cross-section

then colhsmns/s are given by dvo. The Rutherford cross-section is propor-
tional to q / m?v*), Hence the collision rate is

dq4
Vo T‘zvm

If in the model we have 's' electrons per particle of the model then
q = se, m = sme, d = n/s where e, me and n are the electronic charge,
mass and physical plasma density., Then

(2) oty s 3 - o v )
Vmodel = v (sm) m2 plasma

Hence the collision rate in the model is increased by a factor s over
that of the real plasma. 's' is the ratio of number of electrons in the plasma
to the number of particles in the model and is typically 106,
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In terms of the collision time 7 = v 71, and the particle number N, Eq. (1)
becomes

- JTplasma

Tmodel p

sz

Tplasma (2)

which shows the increase of collision time with particle number.

The difference between a real plasma and a computer plasma may be
visualized by considering a sandy beach of 10'® grains of sand (corresponding
to the real plasma) and a rocky beach, e.g. at Grignano, of 10% boulders
(corresponding to the computer plasma), Both beaches contain the same
- mass of material but they have vastly different properties from the bather's
point of view, If the bather wishes to reach the sea from his beach hut he
may do so in a straight line on the sandy beach, but would be obliged to
follow a circuitous route with many large deflections on the rocky beach,

In the former case, one has the long collision time associated with the real
plasma and in the latter case the short collision time and large deflections
associated with the computer plasma,

MACROSCOPIC PROPERTIES

If a computer model exaggerates the collisional effects by many orders
of magnitude, one must be concerned with the effect on other properties such
as plasma frequency and Debye length,

The plasma frequency is given by

w% = 4me?/m
Hence
) o = 47 (2 ) £ 2 (3)
Wplmodel = *T \ g (sme) Wpe ) plasma

and the plasma frequency is unaffected by the particle number used in the
simulation, Since the Debye length Ap = vth/wpe, it will be unaffected provided
we make the particle velocity v the same in the model as in the real plasma,
This is always done. It may similarly be shown that the amount of subdi-
vision, s, does not affect other macroscopic quantities.

EFFECTS OF MESH SIZE

Measurements have been made of the collision time in a two-dimensional
thermal plasma for both the NGP and CIC models [1]. These are found to
be fitted to 20% by the relation

Tell = g2+ w?) (4)
Tp
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FIG.3. The dependence of collision time on particle number and width for the NGP, CIC, HNGP and
HCIC meodels,

where d is the particle density and W the particle width, For both NGP
and CIC it is found necessary to associate a particle width W = H to the
mesh spacing, Figure 3 shows the results of these measurements for a
wide range of conditions,

The collision time can be said to depend primarily on the number of
particles used and, to a small extent — via W — on the mesh size, It is
not dependent on the time-step DT and it is found to be the same, within
the limit of experimental accuracy, for the NGP and CIC models. Some
smoothing procedures have the effect of broadening the particle and this
can affect the collision time via the particle width W,

STOCHASTIC HEATING

Errors of a random or stochastic nature occur as particles pass cell
boundaries of the mesh or as field variations are ignored because of the
use of a finite time-step. These errors may be regarded as being equivalent
to the iniroduction of a stochastic error field at each time-step. This leads
to a random walk in velocity space and consequent stochastic heating of the
system, This in itself constitutes a loss of energy conservation.

The heating time 7y is defined as the time for the increase in energy
due to stochastic heating to equal kT/2, Since Ty depends on the particle
number in the same way as 7T, we study the ratio "'H/'Tcou' This
is found to be a complicated function of the time-step DT and space mesh H.

This dependence is shown in Fig, 4 for four models. These are the NGP
and CIC and two others, HNGP and HCIC, obtained from them by smoothing
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FIG.4. Variation of heating time in the parameter plane (wpe DT, H/Ap).

the potential before use. It is desirable to keep the ratio 7,;/7.,; as large

as possible, anditis evident from Fig. 4 that for any value of H/ pthere is an
optimum value for wpeDT. This optimum path through the parameter plane
is given by

(wpe DT)opt = mmin [% %3’ 1J ‘ (5)

and is shown.in Fig, 5 and also by the dotted line in Fig. 4.
It is evident that a time-step larger than the optimum will result in a rapid
increase in stochastic heating, whilst a time-step shorter than the optimum
decreases the stochastic heating very little, One has also to avoid getting
too close to w, DT = 2 which represents the stability limit for the time
integration scheme,

Along this optimum path the heating time is given by

TH Ky
= 6
Teoll (H/xp)2 (6)
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where

Ky =2 NGP

41 CIC -
6.4 HNGP

200 HCIC

n

n

The heating time is then very strongly dependent on the model used
as well as on the size of the space- and time-steps,

CHOICE OF MODEL

The results obtained in the previous sections enable us to choose rational-
ly between the available models for any particular application. The basis
of the choice will be the cost in computer time of simulating a collisionless
plasma for a given number of plasma periods using a given number of mesh
points. The cost will be assessed on the basis of the number. of arithmetic
operations involved, and it will be assumed that a plasma may be regarded-
as collisionless up to a time equal to the collision time of the model.

The number of particles used must be selected on the basis of the number
of collisionless plasma periods P that are required using Eq. (4),

P = (Tcon/Tpe) = d(K; + Wz)/Kl , (7
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Then the number of particles necessary in a region of size L cm X L cm is
N=dL? =K PL2/0Z+ W

The time-step used ‘will be chosen from the optimum path on the basis of
the value of H/x using Eq. (5)

(wpe DT)opt = min[(l/Z)H/)\D, 1} (8)

The number S of steps required is then given by

P 27 P
S = pe = 9
DTopt (W pe DT)opt ®

If we let K5 (model) be the cost of computing for a given model per step
per particle then the total cost is

C=K SN

27 P KiP L2

= Ky 5
(wpe DT )opt (7\% + W+)

i} 27 KsK1 P2(L/H)?
(@pe DT)opt (A p/H)Z+(W/H)Z) .

We note that the cost is proportional to the square of the number of colli-
sionless plasma periods required and to the number of mesh cells. Hence
we compare the cost per square collisionless plasma period per mesh cell
which is

27 Ks Kq
min [3H/Ap, 11 ((p/H) +(W/H)?)

c/eL/my - (11)

This function is plotted in relative units for the different models as
a function of (H/Ap) in Fig.6. On the basis of the number of computer opera-
tions we have taken K5(CIC or HCIC) = 5 K5 (NGP or HNGP). Because of
this factor, the NGP and HNGP models are always cheaper if they can be
used. However, the noise in these models prevents their being used for
large values of (H/xp). If we assume that a model can be used provided the
heating to collision time ratio (Tg /Tcon ) is greater than 10 (and therefore
the total energy conservation better than 2. 5%) then the models may only
be used on the solid parts of the curves. If in addition we only use smoothing
when the unsmoothed model is too noisy, in order to keep as much spatial
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FIG.6. The cost per square collisionless plasma period per mesh cell in relative units for the NGP, CIC,
HNGP and HCIC models.

resolution as possible, then we find that there is a favoured zone of (H/Ap)
where each model is cheapest. This is given by the tableau

0<NGP-0, 45«HNGP-0. 8«CIC~2. 0<HCIC~4. 5

where the name of the model is written between the values of H/Ap for which
it is best suited.

If one is less conservative and allows computing up to a (Ty4/Tcon) = 1,
equivalent to a total energy conservation of 25%, then the dotted parts of
the curves of Fig. 6 may be used and the favoured ranges of (H/\p) for the
different models are

0<NGP-1. 5-HNGP-2, 5<CIC-6. 5-HCIC~14

Under these circumstances, none of the models considered here can be
used for H/xp > 14,
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Abstract

THE SOLUTION OF POISSON'S EQUATION,

Iterative methods for the solution of Poisson's equation are considered first and the convergence rates of the
SOR, Gauss-Seidel and Chebyshev methods are compared, Direct methods, based on Fourier analysis and cyclic
reduction are then discussed, and finally measurements are given of the execution times for Poisson solvers using
a variety of computers and compilers.

In many areas of computational physics, particularly in time-dependent
simulations, a central problem is the rapid solution of the field equations.
In the past few years a variety of special direct methods have been developed
which can be used in simple geometries, and, in this case, are very much
superior to the more commonly known iterative methods. In this paper, we
shall confine our attention to the solution of one equation, namely that of
Poisson:

V26 = -4mp(x, y) (1)

ITERATIVE METHODS

Before proceeding to a discussion of the special direct methods, we
start by quoting some convergence results for the most commonly used
iterative methods, in order to demonstrate how bad the convergence can be.

We consider the solution of Poisson's equation in the square with zero
values for the potential on the boundary. The five-point difference approxi-
mation is used

) 2
Gi-1,5 7 bis1,j ¥ Pi,5-1F SLil — 4915 = —4mpiiH = q4,5 - (2)
We consider three iterative methods:

(a) Gauss-Seidel method

Equation (2) is solved for ¢4,; and this formula is used to update mesh
values in some ordered sequence, e, g. line by line. Freshly computed
values immediately overwrite old values on the mesh and the hence latest
values are always used on the right-hand side

new latest values

! 1
R Il C TP I IO WA TR S 2R RS Bl E) (3)
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(b) Successive over-relaxation (SOR)

In this method, the new value is calculated as an average of the ¢|
used by Gauss-Seidel and the old value., A constantw, the relaxation factor,
determines the weighting:

ew

n ' old
035 =w¢ij+(1-w)¢ij (4)
l1sws2
For the square a formula exists for wyp, thebestvalue of the factor w.

{¢) Chebyshev method

A variant of SOR in which w varies every half iteration has better
convergence properties than SOR. This is the Chebyshev method in which
the iteration is divided into two parts. The first half is the adjustment of
all odd points (i.e. those for which i + j is odd) on the mesh by Eq. (4), the
second half iteration is the similar adjustment over the remaining even points,
The relaxation factor varies at each half iteration according to

w® =1

w® = 1/<1 _ _;_“2>

(t+3) _ 12 _1 3
[8) /<1 4uw > t 9 1,2..,

where u = cos 7r/n for an n x n mesh, It can be shown that W = wp, sO that
the Chebyshev method starts with a half iteration of Gauss-Seidel (when

w = 1) and then smoothly varies v until one is performing SOR with v = wy,.

CONVERGENCE RATES

If d)i*j is the exact solution to the Poisson problem then we define the
error vector at the t-th iteration to be

t

R PER (5)

and the norm of the error vector to be

2
€i'- %
1€ - (—an ) ©)

All the above iterative processes are linear and the t-th iterate of the
error can be related by a matrix M(! to the initial error €@

M) = MB) e0) N
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FIG.1., Theoretical error bounds for the variation of the maximum possible norm of the error vector (relative to
its initial value) with the number of iterations, for SOR, Gauss-Seidel and Chebyshev methods on a 128 x 128
mesh using Odd/Even ordering, [from Meth, Comput. Phys. 9 (1970) 166, Academic Press],

Taking norms and dividing we have

e®

TECH < ||| ' (8)

Hence HM(t)H is an upper bound on the factor by which the initial error
is reduced in t iterations. Fortunately, for the Poisson problem in the
square, ||M(t)|| can be calculated by analysis for all the above iterative
methods, and the results are plotted in Fig, 1 for a 128 x 128 mesh,

From this figure it can be seen that the convergence of the Gauss-
Seidel method can be so slow that the method is useless. The SOR method,
whilst it gives a reasonable convergence rate for large t, can give
unexpectedly bad results for small numbers of iterations, In fact, it is
possible for the error to increase in size by 30 times in the first ten
iterations. The superiority of the Chebyshev method is seen in that it
overcomes this problem with SOR and, as may be proved analytically, |M(t)||
is a monotonically decreasing function of t. Even with the Chebyshev method
it can be seen that about n iterations are required to guarantee an error
reduction by a factor of 10°2to0 1073,

We should like it to be clear what the above theoretical results mean.
They do not mean that for any particular case the error decay will follow
the curve of Fig. 1 but only that no error decay curve met in practice can
rise above the lines in the figure. The curves are therefore a worst-case
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result. The error boundis sharp, however, because of the equality in Eq. (8).
This means that there exists an initial error vector which would give an error
decay curve that will touch any chosen point on the curves,

We hope this brief discussion of the most commonly used iterative
methods and convergence results will motivate the following discussion of
direct methods. These are methods that solve the difference equations (2)
in a known finite number of arithmetic operations that are equivalent in work
to about 5 to 10 SOR iterations. It is clear that within this time one can
guarantee no significant reduction of the error by any of the iterative
methods. '

DIRECT METHODS

A direct method of solution is one in which a single solution is obtained
after a fixed finite number of arithmetic operations which is accurate to
within, say, 10 times the rounding error. This contrasts with an iterative
method in which many approximate solutions are found which, if all goes
well, converge gradually towards the solution to the problem,

If we let —éj be the vector of unknown values on the j-th line, then the
Poisson problem can be expressed in matrix form as:

51—1+A$j+$j+1=aj i=1, 2, ..., n-1
with go = $n = 0 and
-4 1 0----- 0
1 0
A% 1 (9)
0----0 N1 -4

The special form of these equations enables the variables on every other line
of the mesh to be eliminated, This process which we call odd/even (or
cyclic) reduction is fundamental to many direct methods. Let us take three
neighbouring equations for the j - 1, j and j + 1 lines:

$5-2 T Adj1 T 9, = 9.1

$j.1 TAN .y = qj (10)

- - -
05 Y Apji1 t ez = Qje1

All reference to the odd lines j - 1 and j + 1 (considering j to be even) is
eliminated if we multiply the central equation by the matrix -A and add.
We then obtain

52 ¥ (21 - AT) gt djr2 = Qj-1 *+ Qje1 - Aqgj (11)
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If now we define new values for A® and q(» appropriate to the first level
of reduction as

2 - - -
AW =21 - A% QY = q;, +qy,,; - Ag (12)

then the reduced equations are

- (1) - e -(1
$j-2 T A 9t g5 = qj ) (13)
j=2, 4, 6, , n=2

The reduced equations on the even lines are n/2 in number. They are also
more complex since AD, peingaproduct of two tridiagonal matrices, is
five-diagonal in form, However, as regards the dependence on j, they are
in the same form as the original Eqs (10). Hence the process of reduction
can be repeated to obtain equations on every fourth line with A and q defined
by

AP =21 - (A'D)2 g now nine-diagonal

A0 WA € S 6 V I € Bed .
q a;5; * a5y, T AT A (14)

A whole family of direct methods can now be envisaged depending on
how often the reduction is repeated and how the reduced equations are finally
solved.

Solution of reduced equations

The reduced equations are eminently suited to solution by Fourier
analysis using the techniques of Cooley, Tukey [1] and others which are now
generally referred to as the FFT (Fast Fourier Transform). To classify
as such a transform, the number of operations needed to compute all the n
harmonic amplitudes from n data values must be proportional to n logyn.
This is to be compared with the n? operations required if the harmonics are
computed by the defining series. When n is large (say > 100) the saving in
computer time is dramatic, It is probably fair to say that any direct
algorithm that uses an n? Fourier analysis calculation is throwing away,
quite unnecessarily, most of the potential advantage that the method has.

Solution by Fourier analysis of the reduced equations like (13) is worth-
while only because sines and cosines are the eigenvectors of the rather
special operator A, and also of the derived operators AV, A(Z), ete. Itis
because of this that the resulting equations for the harmonic amplitudes are
uncoupled, and the equations for each harmonic amplitude may be solved
independently,

On Fourier analysis of the reduced equations (like 13) one obtains
equations for the harmonic amplitudes §¥ and gX:

=k -k -k -k
¢j_2 + )“Pj + Piso = 4 (15)

where we can see that the complicated matrix A® hag been reduced by
Fourier analysis to a scalar quantity A, The indexing in Eq. (15) has been

given for one level of reduction, but the above remarks apply, with appro-
priate indices, to an analysis performed at any level,
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The harmonic equations (15) are a tridiagonal system and can be solved
by any convenient means., We recommend the method of cyclic reduction [2]
for periodic conditions in y and Gauss elimination [3] for other conditions
(and necessarily if X in a more difficult problem depends on j).

Solution of the tridiagonal system (15) gives the harmonics of the
potential on the specified lines. A Fourier synthesis (of course using an
FFT algorithm) gives the potential values on these lines,

The remaining lines

Having obtained the solution ¢ on some lines, the remaininglines may be
solved for using the appropriate reduced equation. Supposing we had taken
two levels of reduction then we would know the potential on every fourth line.
The solution on every second line can then be obtained by using the reduced
equations of the first level (Eq. (13)), on every even line, in the form

1) = - (L -~ - .

AD Py = qg) " P52 T iz j even (18)
Sincejiseven, ¢;_ 5 and ¢,,, are known values from every fourth line,
Equations (16) are solved by any suitable method, e. g. Gauss-elimination or
cyclic reduction, and it is important to note that all the matrices A(® can
be expressed as products of tridiagonal matrices. For example,

AW =21 - A% = (J3T - A)W2I + A) (17)

Hence the solution- of equations like Eq. (16) can be performed by successive
application of a routine for solving tridiagonal systems., This is clearly
better than multiplying out the A? and solving the five-diagonal system AD
directly., Similar considerations apply to any level of reduction £,

To return to our example, the solution of Eq. (16) yields the solution on
all even lines. The solution on the odd lines is then obtained similarly
from the original equations:

- -

Agy=qj-gj-1 - Qj+1 (18)

The FACR(£) method

The method just described may be summarized:

(a) reduce equations to level '£'
(b) solve equations of level '£' by Fourier analysis getting solutions on
every (2”)-th line,
(c) expand getting solution of intermediate lines,
This method has been referred to variously as the FACR(£) [4] method
and CORF [5] algorithm. If FFT is used, the number of operations to solve
the Poisson equation on an n x n mesh is, for a particular implementation,

n®[2 + 4.5 + (5 logyn - 4)/2"] (19)
This function is plotted in Fig. 2 as a function of £ for a 128 x 128 mesh,

A clear minimum in the number of operations is seen at two levels of
reduction and there is little gain in two levels as compared to one, The
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FIG.2. The number of operations per mesh point for the FACR(£), DFA and DCR algorithms on a-128 x 128
mesh, [from Meth. Comput, Phys. 9 (1970) 161, Academic Press].
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FIG.3. The different stages of the FACR({) algorithm, The circles show the positions of the variables related
at each stage; even-lines are shown as solid lines and odd-lines are shown as dashed lines, [from Meth., Comput.
Phys. 9 (1970) 149].
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TABLE I. MEASURED EXECUTION TIMES (s) FOR 3 POISSON-SOLVING
PROGRAMS ON A VARIETY OF COMPUTERS. THE STAR INDICATES
THE FASTEST PROGRAM IN EACH CASE. 128 x 128 MESH IS USED
EXCEPT WHERE SPECIFIED

ALGORITHM FACR(S) - Modified FACR (logn - 1)
COMPUTER POT1 XYPOIS ODDEVN COMPILER
R. Hockney O, Buneman A, George
1BM . 0.50 0.99° _ 0,35 FORTRAN H’
360/91 _ opt=2
cDe 0.75 ' - 1 - - ASSEMBLY
6600 1.93 _ 1,64 - 2,79 FTND
2,78" , 3.24 5.79 RUNC
1BM 2.56° 3.4 3.18 FORTH opt = 2°
360/15 3,74 5,66 5,84 FORTRAN G
360/61 3.53" 6.15 - FORTH opt = 2
310/155 4,90 - : - Hopt = 2P
6.50 - - G*
IBM 0.37% - - 32 x 32
7090 ASSEMBLY
ICL 7.0 5,26 3,48 32 x 32
4130 FORTRAN®

2 Scaled from measured value of 0,832 on 48 x 48 mesh,
b These compilers claim to optimize object code,
¢ Compilers with no claim to optimization,

equivalent number of SOR iterations is given on the right-hand side based
on there being seven operations per point in the SOR calculation, All the
direct methods considered get the solution comprise less than 10 SOR
iterations. }

Buzbee et al. [5] have shown that the FACR(£) algorithm rapidly loses
accuracy as £ is increased, Since the algorithm becomes slower if £ > 2
and there is not much speed advantage in £ = 2 over £ = 1, the accuracy
consideration leads one to favour an £ = 1 algorithm, Such an algorithm has
been in successful use for many years [2] and a recent version POT1 is well
documented [4, 6]. The relation between quantities during the FACR(£)
algorithm is shown in Fig. 3.

BUNEMAN ALGORITHM

An attractive feature of the reduction process is that if £ = logyn- 1
then the problem is reduced to the solution of a single equation for the
central line of the mesh, This may be solved by repeated application of a
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tridiagonal equation solver without the need for Fourier analysis. Un-
fortunately, as already mentioned, the method is numerically inaccurate and
cannot be used, Buneman, however, hasrephrased the algorithm slightly and,
at the expense of introducing an extra arithmetic operation, made the method
accurate, This method is called DCR in F'ig, 2 and two implementations have
been compared by the author. They are XYPOIS [7] written by Buneman
and ODDEVN written by Alan George, both at Stanford University.

COMPARISON OF PROGRAMS

The programs POT 1, XYPOIS, ODDEVN have been run and accurately
timed (using a CPU timer) on a variety of computers using a variety of i
compilers, The results are interesting and are shown in Table I,

We see that the computer time depends strongly on the particular
computer and compiler used, sometimes more than on the algorithm itself,
We find, for example, thatODDEVNis three times faster than XYPOIS on the
360/91 but that XYPOIS is almost twice as fast as ODDEVN onthe 6600. Also
we find that the algorithm with the minimum number of arithmetic operations
(POT1)is not always the quickest in execution (see 360/91, 4130 & 6600 under
FTN). The loss of efficiency when using FORTRAN as opposed to Assembly
code even with an optimizing compiler is quite striking, |

OTHER GEOME TRIES

The methods described above depend heavily for their speed on the
problem having simple enough geometry for sines and cosines to be the
eigenfunctions of the operator A, A curved rather than rectangular
boundary or the presence of electrodes in the interior destroy this fact,
However, extensions to the methods have been developed that allow the
inclusion of a number of interior and surface electrodes and cover some
cases of mixed boundary conditions [8].
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Abstract

DIFFERENCE METHODS IN FLUID DYNAMICS, WITH APPLICATIONS.

Finite-difference methods for solving the differential equations of fluid dynamics are described. Time-
dependent, initial-value problems in one and two spatial dimensions are considered. Also discussed are the
applicationsof these methods to problems in meteorology and magnetohydrodynamics.

1., INTRODUCTION

In this paper, computational methods for solving the differential equa-
tions of fluid dynamics are discussed. Time-dependent, initial~value prob-
lems in one and two spatial dimensions are considered.

A general introduction to this subject is given in Chapters 12-13 of
Ref.[1]. Applications of these methods to important practical problems
of hydrodynamics are found in Refs [2, 3], and applications to problems in
plasma physics are found in Ref. [4], These last three references are
volumes in the series of books published annually on Methods in Compu-
tational Physics. In addition, recent work in the field of computational
fluid dynamics can be found in the Journal of Computational Physics published
by Academic Press every two months.

Section 2 presents the Eulerian and Lagrangian forms of the differential
equations to be solved. In Section 3, the main topic of this paper is con-
sidered — the solution of the equations by finite-difference methods. The
stability of these difference schemes is considered, but the methods for
determining stability are not given in detail as they are the subject of
papers SMR-9/14a, SMR-9/14b and SMR-9/14c in these Proceedings,

Section 4 deals with the addition of diffusion terms to the differential
equations and discusses difference methods appropriate for such problems.
In this last section, some applications of the methods to more complicated
‘systems of equations which arise in meteorology and magnetohydrodynamics
are also studied.

2, EQUATIONS OF FLUID DYNAMICS

In this section, we shall give the differential equations of fluid dynamics
neglecting dissipative effects such as viscosity and thermal conduction.

129
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There are two descriptions used in fluid dynamics — the Eulerian, in which
a fixed co-ordinate system is used for the spatial variables, and the
Lagrangian, in which a co-ordinate system is employed which moves with
the fluid,

2,1, Eulerian form

Let ¥ denote the position vector, The fluid is characterized by the
density, p(¥,t), the pressure, p(¥,t), the specific internal energy, €(¥,1),
and the fluid velocity, 4(r,t), The conservation of matter is expressed
by the following equation

<381: +;-V>p=-pv u (1)
The equation of motion is

p<¥+u-v>vﬁ--v1> (2)
The energy equation is

p<;—t+ﬁ-v>e=-pv-a’ (3)

In one dimension the above equations are

8 8 ) . 1 8 o1
(ﬁ +u3;>p TP Ty (r”"u) (4)
3 8 ) _ 9p
"(ﬁ“‘ar YT Br ()

9 a-1

d 2] _ 1
p<¥ +u§ 6—-p—ra_1 Br(r u) (6)

where for slab Symmetry, r=x, a=1, for cylindrical symmetry,
r=(x2+y?)¥2, 4=2, and for spherical symmetry,

r = (x2+y2 +22)%, a=3

In two~-dimensional Cartesian co-ordinates we have
P, tup, tvpy =~ plu, +v,) (7)
plu +uuy +vuy) = - py (8)

p(v, +uv, +vv),)=-p), (9)
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p(€‘[ +ue, +vey)=-p(ux+vy) (10)

where u and v are x and y components of the velocity and we have used the
subscript notation for derivatives. The above form of the equations is
called the advective form., We could also write the above equations in
conservation form, e.g. we can write Eq. (7) as

pr H(pu}x +{pv)y = 0 (11)

Although Eqgs (7) and (11) are equivalent, when we consider their difference
approximations later we shall see that it is sometimes advantageous to use
the conservation form.,

We can also consider the energy equation in a different form. From
Eq. (1) we have

> 1 dp
Ve = = =
v p dt
d 9 - .
where Fro ¥+u-V . We can then write Eq.(3) as
de _p dp
dt  p? dt (12)
and if we define the specific volume V = l/p, then we have
de _ dv
TP H® (13)
If we compare this with the relation
de _ dv ds
TP TTw (14)

we have ds/dt =0, hence if we are considering fluid flow satisfying Eq. (3)
or (13) then the entropy, s, is constant in time,.

2.2. Equation of state, sound speed

To solve a fluid dynamic problem, we need a fourth equation which is
a relation between the pressure, energy, and density or specific volume.
‘We shall assume that the thermodynamic properties of the fluid are described
by an equation of the form

p=P(e,V) (15)
which is called the equation of state,

When performing a calculation we need to know the sound speed in the
fluid as a function of space and time, i.e.

() ()]
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We have
i 9p
dp = <-——> de + <—— dav
oe/y oV /,

where

_(2e ae> i

de <8s>vds+<a\7 st Tds - pdV

s0

SORSNCES
dp <a€des+[ 5w/, -plae ), |av

But since entropy is constant, i.e. ds =0, we have

%
] @) (3_p>]
c V[p(a6 8 3V /. (17)
As an illustration, consider the ideal gas law

_(y-1)e
P‘—V—

then
_ t 3
c = (ypV)" = (vp/p) (18)

2.3. Lagrangian form

We shall derive the Lagrangian form of the equations in two dimensions.
Consider a particle at (a,b) at t=0; at a later time, its co-ordinates will be

"

x = x(a,b,t)
y =y(a,b,t)
The components of the velocity of a particle are
u(a,b,t) = (x.)a, b constant

v(a,b,t) = (y,)a, b constant

We define the Jacobian of the variables x and y as functions of the real
variables a, b
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By the rules of implicit differentiation
ay =3y, b, = =31y,
ay = -3 xy by =T 1txa
In the x-direction the equation of motion is

1
X[[—-pr

1
= ; (Pa2x *Ppbx)

1
= - ﬁ(payb-pbya)

and in the y-direction we have

}

1
Yu 7 ; (paay +pbby)

1
= - p_J (- PaXp +PpX,)
In the continuity equation we have

Ux +Vy = u,ay +upby +tvaay +Vbby

1
=7 (Ua¥p - UpYa = VaXp +VpX,)

Now,
J = X,¥p = VaXp
and
Jt S U, Yp tX V- VX, - Yalp
Therefore,
o1

divu = 3 Jt

The continuity equation is then
[4 =
p.t -j Jt =0

or
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Integrating we get logpJ = constant, or

pJ = py(a,b)
The energy equation is

€. +tpv, =0

We summarize the Lagrangian equations in two dimensions

X Tu Ve =V (19)
1

u, = - a[payb - Py, ] (20)
1

Vo == =lpyx, - P, %, (21)
0

pJ =pg (22)

€ tpVy = 0 (23)

p = P(e, V) (24)

These equations take on a particularly simple and useful form in one di-
mension. As with the Eulerian equations, we combine the formulas by
writing «=1,2, 3 for slab, cylindrical, or spherical symmetry., With r
as the Lagrangian variable we have

a-1
u__ (R
Pogt =~ <r> or (25)
OR _
5 = u (26)
a-1
JL 5) R
v= Py \T or (27)
th | |
| {
| |
net | |
______ Y I SN AN S,
. L1
| |
i |

T A U

FIG.1. Difference scheme for the solution of Eqs (25) - (29).
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de AV '
3% - P33 (28)
= P(e, V) (29)

where R(r,t) is the position of the fluid element at time t, which was at
r=0at t=0.

3. DIFFERENCE METHODS

3.1, Lagrangian difference equations

A difference scheme for the solution of Eqs (25) - (29) is given in Fig, 1,
We subdivide the r,t domain as shown above and denote R(rj 2tp) = R?,

etc,
oo - V°At <—L> Phy -PLy) (30)
le -R{ = Atun+é (31)
Vii T, (%Eff) —_(f;ri;i)a (32)
g - €y = -2 5 (Pfey + PIDIVAY - Vi) (33)
Bt L VD e

where V; =1/p,.

The above system is an explicit scheme as long as the calculations
are performed in the given order. In Eq. (33), the quantity p;‘:g must be
estimated at first and then the last two equations are iterated at least once
on each time step. This centring gives a scheme that is accurate to second
order in At and Ar,

The stability condition for the system of equations (30) - (34) is given by

cAt <1
Ris1 - Rj

for all n,j (35)

In one-dimensional problems, the Lagrangian scheme is very simple and
perhaps the best to use. Another advantage of the Lagrangian method is
in problems where there are different materials present with different
equations of state. The Lagrangian variable identifies fluid elements so
the correct equation of state is automatically used.

In two dimensions the Lagrangian method has the serious disadvantage
that the mesh becomes badly distorted in time andre-zoningis required.
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Nevertheless, for problems with several materials it is widely used [2].

In one-fluid problems such as in meteorology, ocean circulation, and

magnetohydrodynamics, the Eulerian form of the equations is preferable,
When shocks are present in the flow, the Eqs (30) and (33) are modified

to include the von Neumann - Richtmyer [1] artificial viscosity.,

3.2. Eulerian difference equations — hyperbolic systems

The differential equations (4)~ (6) or (7)- (10) form what is called a
hyperbolic system. Consider the system of equations
n
ou Z duj .
———ax+ ay 3y +b; =0 i=1,2,....,n (36)
i=1

Here the a;; and b; are functions of x, y, u1, ug,..., u,. This system
of equations is non-linear, but the coefficients do not depend on du;/dx
or 9u;/dy. A system such as this is called a quasi-linear system, Let
us transform system (36) as follows:

n n n
ouj _
vkl_L+Zkaiaij#+ZVkibi— 0 (37)
i=1j=1 i=1

Now we choose the vy; such that

n

kaiaijz"kvkj k,j=L.2,....n
i=1

Then we can write Eq. (37) as

n
311] ouj _
zvkl < Ak——J—ay > +kai b; =0
i=1

Note that for this system we have n characteristic directions given by

The equation for the eigenvalues is

aig- A ap a13... @1
a o ago= A a93... a2p
det{(A-2Al) = =0

an1 * e e app A
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If A (A =(a;;)) has n real eigenvalues, not necessarily distinct, and has

a full set of eigenvectors Vy =(vy;,Vyg,+.+,Vk)s ¥=1,2,...,n, then Eq.(36)
is called a hyperbolic system, If A is symmetric, then Eq.(36) is said to
be a symmetric hyperbolic system. This is of note because much of the
theory for hyperbolic systems has been developed for symmetric hyperbolic
systems. We can write Eq. (36) in vector form as

u, +Au, +B=0

where we have made the notational changes of replacing x by t and y by x.
Now consider an example

ut+uux+%Px=0

by +upx tou, =0

Assume, as an equation of state, P= kpy. Then

-1
o?= 3P> = vkp'
S

"\
S0

1 _c?

P

Hence we can write
c
U tuuy - 0

p, tup tpu, =0

or

Bk

To find the characteristics, we set

det(A-2I) =0
or
- 2
u-x  c?/p s s
=(u=-a)"-c"=0
P u-A
We find

A=uzxc
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Hence the characteristics are

%-uic
dt

We can write Eqs (4) - (6),in the form

8_t+A_+B 0 ‘ (38)

where U and B are three-dimensional column vectors and A is a 3x3 matrix.
Since we are mainly interested in the advective terms, we shall consider
the simpler system

LA, (39)

We consider a finite-difference grid with x; = jAx, t, =nAt, where jand n
are integers and U;‘ =U(x;,tp). The simplest difference approximation to
Eq. (39) is

n+l n
- U.

Ui =Ui-3a

xA (U} - ULy

which is unstable. (The stability criteria given in this discussion are
derived assuming that the coefficients are constant, so for our non-linear
equations they must be regarded as local conditions which must be tested
numerically.) A better scheme is the so-called "upstream-downstream"
difference equation. For scalar u we have

ou ou

—-— 4+ aq — =
5t > Bx 0
The difference equations are
n ui uf if aj<0
; it17 Y i
wf*tsgp o 2LAL { (40)
uj -uf, if a? >0

The stability condition is |aAt/Ax{ < 1. A scheme with higher-order accuracy
is the ''leap-frog" equation

At n

Uptt= Ut - = AT (UR, - URy) (41)

} ) AX

which has the same stability condition |aAt/Ax| <1 for all eigenvalues a of
A, but has the disadvantage of being a three-level equation, Another equa-
tion which has second-order accuracy but uses only two time levels is based
on the expansion

n
2 2
+1 oU At 04U
Uil = Uf A 6t> +(2) <at2>j
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If A is assumed constant, then we have the difference equation

uj = uf -

2
1/ AAt
2Ax A(US41 - US) +§<‘z;{—> (Ufa - 2Uf +Uj-1)  (42)

When A is not constant, the above equation can become much more com-
plicated. The condition is |aAt/Ax| <1. Again with A assumed constant we
can go to fourth-order accuracy by using five points:

+1 _ " 1 [AAL
Ui = U -3 >[8(U“ - Uj) = (Ufg - UTL,)I

1 (AAt
37 >[30 U} - 16(Uf,; + Uj.y) + (U - UTp)]

- A‘“)[ 2(UT, - UR,) + (Ulyy- UP,)]

1 A
oy ‘“) [6 U = 4(U,y + Uly) + (Ul + U] (43)

Equations (40) - (43) are all examples of explicit difference schemes and
they all have the same stability criteria.
It is sometimes possible to write the system in conservation form

oU | oF

Bt * % Bx =0 (44)

where F is an m-dimensional column vector. The system of equations (4)

to (6) can be put into this form. We define m =pu and e =p(e +3u?), where

p, m, e are the mass, momentum and energy per unit volume. The equations
take the form (44) where U and F(U) are vectors, defined as

P m
U=im F(U) = | (m?/p) +p (45)
e (e+p)m/p

The pressure is given by the equation p = P(€,V), where P(€,V) is the equa-
tion of state of the fluid. For the Lagrangian formulation in slab symmetry,
we can eliminate R to give:

oV ___ du
rraial (v (46)
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and define E, the total energy per unit mass, E=¢ +u2/2. Then with

v -u
U-=|u FU)=V, | p (47)
T LE | pu

where p=P(E-u2/2,V), the equations are in the conservative law form.
The Lax-Wendroff system of difference equations is given by

1At
Ut = Ul - 5 Ay (Fha - Fly)

. 2
17 At D ,m e
T3 (A_x> [Ajy(Fji1- F}') - A} y(F] - Fll1)] (48)

where the matrix A(U) is the Jacobian of F(U) with respect to U, that is,
the matrix component Aj; is :

Ay = 3F /3y

and the matrix A],,é denotes A(} [U]+1 +U7 ).

Where A is a constant matrix, F(U)=AU, and the system reduces to
Eq.(42). An equivalent two-step Lax-Wendroff procedure with second-
order accuracy was proposed by Richtmyer:

Ui = B UL, U - g (R - FD) (49)
n+l _ n._ at n+§ n+4
U U ( i+ FJ %) (50)

The stability condition in the Eulerian formulation is found by examining
the Eulerian equations in the advection form

ou oU _
3t Thax 70
where
u o 0 o
A=10 u 1/p U=|u
0 pc? u p

The stability condition for the Lax-Wendroff difference equations is then

(|u|+c)-AA—i<1 (51)
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where the matrix A was assumed to be constant.
Similarly, for the advection form of the Lagrangian equations, where

0 -V, 0 v
A=10 0 Vo U=|u
0 Vy(e/V)® 0 p

its eigenvalues are 0, :i:CVO /V, so that the stability condition is

V_ocAt<

2
VAx1 (52)

Artificial viscosity can appear implicitly in the difference equations and
results in an attenuation of short-wavelength components of the solution.
The Lax-Wendroff scheme for the advection form

ouU oU
— —
ot A ax 0

where U is a vector and A is a constant matrix, may be written as

UPt-uf |, URi- UL | At 42 URa - 207+ UR
At 2Ax 2 (Ax)2

A solution for the difference equation, U(x,t), will not be an exact solution
of the differential equation, but will be a solution of the modified differential
equation :

oU . oU

We can determine Q to various orders of At by demanding that U satisfy
the difference equation to the specified order in At, for example, that the
differential equation solution U satisfy

1AAt

2
1/ AAt 4
U - Ul g A ?+1-U§‘-1>-§<‘&‘> (Ui = 205 + Uy = OL(A1)7]

which, on Taylor series expanding, yields for Q
S 1 2,9°U
QU = - = A[(A%)®] 53 (54)

This Q is dispersive but not dissipative. Solving to the next order, the
next correction is
1 3*u

Q'U = - E AzAt[(Ax)z- (AAt)z] —é;!T (99)

where the correction is now Q+Q', which is dissipative. Empirical results
show that even with this dissipation, oscillations and non-linear instabilities
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can occur near sonic points or stagnation points. There an eigenvalue of
A(u, Uzxc) is zero and the corresponding eigenvalue of the amplification
matrix goes to one. Additional dissipation is then needed to prevent non-
linear instabilities. (Recall that all of our stability analysis has been done
assuming A is constant, If the solution variables, hence A, vary fast near
a sonic point or stagnation point, our stability analysis may be invalidated. )

3.3. Two-dimensional Eulerian difference equations

The Eulerian form of the differential equations in two dimensions,
Eqgs (7)- (10), can be written as

oU ou oU
—_— o —_— =
e + A 5 +B 3y CcC=0 (56)

where U is a four-dimensional column vector and A and B are 4x4 matrices,
The difference schemes discussed in the previous section can be generalized
to two dimensions. In the case of the upstream-downstream and leap-frog
methods the extension to two dimensions is obvious. With the second-order
scheme, Eq.(42), we must be more careful [5], Consider the simpler
equation

- +A—4+B-—=0 (57)

We can represent Eq. (42) by the equation U™!= (I+A')U?, A natural ex-
tension of the one-dimensional scheme for a regular mesh x,, y, with
intervals Ax, Ay would be to take

: 2
1 a o n
Ul = Uli- 5 (URa e =URa ) + 5= (Ul g = 207 + U3y )

2
B n n Bz n n n
=5 (Ui = Uje1) 57 (U er = 205 + U 1) (58)

where
.- Aat
Ax

and

- BAt
Ay

are the dimensionless interpolation coefficients in the two directions. This
expression involves the five values of U at the mesh point (x;, y,) and the
four surrounding points. We represent Eq.(58) by the equation

U™ = (1+AT+B)UD

= RU"
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From the point of view of a two-dimensional Taylor series expansion of U
about the point (xj, ¥y) the cross-term AB(At)Z(azU/Bx 9y) is missing, and
so the suggested scheme is not truly accurate to second order.

Worse than this is the fact that this scheme is unstable. For an eigen-
vector of the form

R
the associated eigenvalue of the recursion matrix R is
r, , = 1-iesinkAx- (1 - cos kAx) - iB sin Ay - B2(1 - cos LAY) (59)

An example of an eigenvalue outside the unit circle is given for coskx
= cos £y =1/2, thus sinkx =sin £y =3}/2, In case o=§ then

=1-02-i3ta

: (60)
In J* = 1+a%+at 21

This is an example of an instability arising out of the interaction of
two difference schemes, each of which is stable., Using the matrix notation,
we have an example of the fact that, although the recursion matrix I+A"
describing advection in the x-direction has eigenvalues.on or in the unit
circle and thus characterizes a stable difference scheme, as is also the
case for the recursion matrix I+B' describing advection in the y-direction,
it cannot be concluded that the combined recursion matrix I+A'+B!' has its
eigenvalues on or in the unit circle.

However, by a different composition of the two one-dimensional opera-
tors a stable scheme can be generated. Following the method of fractional
time steps the recursion matrix is taken to be the product of the one-
dimensional matrices, Thus

= (I+A')(I1+B'") ] (61)

The stability of the individual factors is maintained in the product. In the
simple example considered here the two matrices commute and so may be
taken in either order. This recursion matrix R differs from the earlier
one by the term AB=BA, whichprovides the full second-order accuracy
missing from the earlier scheme, as well as stability,

In applying this scheme, the difference equation can be written as a
sequence of two equations :

u

U?ﬁk Tk - g(U?.kﬂ - Ufe1) + B 5 (U 1-2U5 ¢ + UJ 1)
(62)

n+l nty @ n+i n+i

U = UG = 5 (Uit - UREa) +3- (U?:f,k 20T+ UFE )

The computational process involved in a single time-step is divided into two
cycles. In the first of these, advection in the y-direction only is evaluated,
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whereas in the second, advection in the x-direction only is evaluated starting,
of course, with the results of the first cycle. The fractional time-step no-
tation is a convenience, and the results of the first cycle would seem to
have no particular physical significance,

The conservation form of Eqgs (7) - (10) takes the form

% +g—£ +-g—;-} =0 (63)
where
p m n
m (mz/p) +p mn/p
U7 la F1 mn/p G | (n2/p)+p
e (e +p)m/p (e +p)n/p

and m=pu, n=pv, e=pfe+3u2+ve)].
A direct two-dimensional generalization of schemes (49) and (50) is
used:

+1 _ 1
Uy = Z(U?ﬂ!ﬁ Uf1g+ Ufper + Ueep)

At n At

—_ n - - " n - n
" 9Ax (Fj+1!£ Fj-lll) 2Ay(GjM+1 Gj!t-l) (64)

2 _ At 1 1 At 1 1
Uy = USy = 25 (Fii - Fipy) - Z;(G;‘Ll- Gjy1) (65)

This scheme has been used by Burstein [6] for hypersonic flow. For the
Lax~-Wendroff scheme, a stability analysis which results from assuming A
and B constant yields the condition

A 1
A T o%JB

Where Ax=Ay = A, and o* is the maximum eigenvalue of A or B, Empirically,
this can be exceeded by a factor of 2 in the steady state, if non-linear instabi-
lities at shocks and stagnation-points are not encountered. There a value
of At, one-tenth of that required by the stability condition, can be unstable,
Negative densities were found empirically in this case. The problem of unit
values in the amplification matrix, with no effective damping, was res-
ponsible, To stabilize the difference equations, an artificial viscosity term
is introduced of the form
2L [65(Q,6,U) + 6, (Qy 8, U)] (66)
2AX X X ¥x y yvy

where the 6's are centred difference operators and Q, and Qy are quadratic
polynomials in A and B respectively,

QﬁzanA" Qy=2an“ n=0,1,2
n

n
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By proper choice of the coefficients (a;), (b,), the eigenvalues of Q, and
Qy will be proportional to the difference of the eigenvalues of A and B
across a mesh interval. Thus, where U changes slowly, a, and b, will
be small; also the artificial viscosity will be small. It will be significant
where U changes rapidly.

To analyse the stability with the artificial viscosity present, A and B
areassumed locally constant, and for the case

2

1 21 2
Qx-gaA QY_EBB

the resulting stability condition is
At 1
= e—— 3 K ——
r=_ |0 [ =7

Thus the artificial viscosity improves stability., However, empirical results
must be consulted because we have again linearized the problem by assuming
A and B constant. For the above condition the criterion is r =0. 408.
Empirical results are:

r Condition of solution
0.65 Unstable at 90 cycles (negative densities)
0.55 Negative velocities at 350 cycles near

stagnation point

0.45 Negative velocities at 640 cycles near
stagnation point

0.35 No negative velocities or densities at
2500 cycles

4. APPLICATIONS

In this section, we shall consider a few applications of the methods
discussed in the previous sections.

4.1. The motion of the earth's atmosphere

This section is based on the work of Leith [5]. In this model the hydro-
dynamic and thermodynamic evolution of a moist atmosphere on the whole
globe is computed, taking into account such external influences as solar
heating, evaporation and surface friction. The equations are those describing
the thermodynamic relations and conservation of mass, momentum, energy,
and water vapour,

It is assumed that the atmosphere is always in hydrostatic equilibrium,
This means that the pressure at a given point is determined by the weight
per unit area of the air above that point, A differential expression of this
assumption is the hydrostatic relation

dp=-gpdz (67)
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giving the increment in pressure dp in terms of an increment in height dz
for given density p. Here g is the (assumed constant) acceleration of gravity
that transforms the mass element p dz into a weight element gp dz.

The hydrostatic assumption rules out the possibility of dynamic pressure
differences leading to vertical accelerations, For horizontal scales of
motion large compared to the thickness of the atmosphere this assumption
is valid. '

The hydrostatic assumption permits the replacement of z by p as an
independent variable. There must be a replacement of p by z as dependent
variable, The dependent variable that is used is the geopotential ¢=gz,
giving the potential energy per unit mass and serving as a measure of the
height of a given pressure surface,

The earth is considered to be a sphere of radius a =2 /7 x 10 000 = 6366 km.
Horizontal position co-ordinates are latitude 8 and east longitude A.

It is important to distinguish two kinds of time derivative. The Eulerian
time derivative 9/3t is based on the rate of change at a fixed point in the
space co-ordinates (6,A,p). The Lagrangian time derivative D/Dt is based
on the rate of change at a point imbedded in and moving with the fluid.

The horizontal velocity components are

u =a cos 6]—]3% (68)
_ D6
v=agr (69)

positive towards the east and poie respectively.
In the pressure co-ordinate system the vertical velocity component is

Dp
= 2 70
YT Dt (70)

positive downward. In terms of these velocity components the relation
between the two kinds of time derivative is

D _ 2@ 1 9

]
Dt 9t "% 3080 on £

1
+V§ae+w (71)

|

The kinematic boundary condition at the earth's surface p =p, gives

S () iy, (%) oy 1(2)
“s <Dts 3t YsTcoso \ oA/ & \eg/, (72)

where ug, v, are surface wind components, and the partial derivatives
(8p,/dN),, (8p,/80) are taken in the earth's surface.
At the top of the atmosphere p=0 we have

w=0 (73)
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Dry air is assumed to be a perfect gas satisfying the gas law

o o

=pa = RT (74)

where R =2.87x10% cm?/s? deg is the gas constant, T is the absolute
temperature in degrees Kelvin, and @=1/p is the specific volume.

Water vapour is also assumed to be a perfect gas, but for it the gas
constant R' is greater with R/R'=0=0, 622,

In the pressure co-ordinate system an element of volume is an element
of weight

dpdxdy = -pgdzdxdy = - gdm (75)

where dm is a mass element, Thus conservation of mass requires non-
divergent three-dimensional flow, i.e.

ow _
D+$—O ("16)

where D is the divergence of the two-dimensional wind field calculated in
a pressure surface from horizontal components u,v, i.e.

1 [Bu av cosB:]

N a cos 8 | oA a6 (77)

Using the boundary condition Eq, (73) at p=0, Eq.(76) can be integrated
to give

w(p) = -fD(p')dp' (78)

The acceleration equations in the pressure co-ordinate system are

Du . u tan 6 _ 1 ;1%
Dt-{29s1n9+ a }v__acosea)\-'-F" (79)

Dv +{29 sing+2200 tane}w -L2
a a

or + (80)

(R

The bracket terms take into account Coriolis and centrifugal-force terms;
§? is the angular velocity of the earth's rotation, F, and F, are frictional
force components due largely to eddy viscosity. The acceleration due to
pressure differences in this system is given by the negative gradient of
geopotential,

With no heat sources or sinks the motion of a parcel of air in the
atmosphere is adiabatic; that.is, if s is entropy per unit mass,

Ds _
ot =0 (81)
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A more convenient measure of entropy is the potential temperature 8 defined
as the temperature that a parcel of air would have if adiabatically compressed
to a standard pressure p,. Forair, withy=C,/C,=1.4,

.= BQ)K
0 <p T (82)

where

When heating occurs, the potential temperature equation becomes

K
_]:E =_1__ B&) .
Dt C, < p /1 (83)
where q is the heating rate.

In the pressure co-ordinate system this equation is

18T
tv=o+
Vase Y

8T 1 2T
ot a cos 6 o

|1
@
@

1,
==—q (84)
Cp

[~
ko]

This is a formulation of the law of conservation of energy which implicitly
takes into account changes in potential energy associated with changes in
internal energy in a hydrostatic atmosphere.

The heating rate § includes the heating due to incoming solar radiation,
the release of latent heat associated with water vapour condensation, and
the eddy diffusion or convection of heat. It also includes the cooling due to
outgoing terrestrial radiation.

The mixing ratio u of grams of water vapour to total grams in a parcel
of air is changed during its motion only by precipitation, evaporation, and
eddy diffusion. If we denote by I these sources and sinks, we have then

T VRN S VI B T VI
Dt 5t  “acos6ox 'ase “ap (85)

The finite difference equations are based on two separate, fixed Eulerian
space-time meshes which are distinguished as even and odd. Some dependent
variables such as temperature and water vapour concentration are defined
on the even mesh; others suchas horizontal velocity components are defined
on the odd mesh.

Pressure, p, is used as a vertical co-ordinate; even mesh points are
at pressure levels of 100, 200, 400, 600, 850, and 1000 mb. Latitude, 0,
and longitude, A, are used as horizontal co-ordinates. Even mesh points
are at even multiples of 5° in latitude and in longitude between the equator
and 60° latitude. Poleward of 60° a coarsening of the mesh in the longitudinal
direction is introduced. For 65°, 70° and 75° latitude the even mesh points
are at even multiples of 10° in longitude, for 80°, at even multiples of 20°,
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and for 85°, at even multiples of 40°. The pole is an even mesh point. The
time variable t is Greenwich Civil Time. The even mesh times are even
multiples of 10 minutes starting from midnight.

Equations (79), (80), (84) and (85) form a system of advection equations
of the type described in the last section., The scheme that is used to solve
them is the fractional time-step or '"splitting" method given by Eq. (62),
generalized for variable coefficients.

4.2. Advection-diffusion equations, magnetohydrodynamics

In many time-dependent problems of practical interest we have, in
addition to the hydrodynamic equations of hyperbolic type, coupled diffusion
equations, i.e. equations of parabolic type. It is not unusual to have both
of these types of equations in the same system. °

The finite-difference methods for diffusion equations are different from
those that we have been considering in that it is usually advisable to use
implicit difference schemes. We shall illustrate these techniques with the
equations of magnetohydrodynamics. The problems that we have chosen to
discuss have all come from plasma physics — the physics of fully ionized
gases. We have taken these problems from controlled thermonuclear re-
search because this program has provided the impetus for much of the theo-
retical development of the subject and because only numerical methods could
give the answers to specific questions in the design and analysis of experi~-
ments, Similar problems occur in geophysics.,

There are many mathematical models that are used to describe a plasma
in a magnetic field and these vary from the description of single-particle
‘'orbits to the kinetic theory of ionized gases. The fluid model, or magneto-
hydrodynamics (MHD), is basic, and any experiment is first analysed to
determine if MHD equilibria and stability exist. Within the fluid theory
various degrees of complexity are considered. The so-called ideal MHD
is an infinite conductivity approximation. In some models the pressure
is a scalar function, but in some problems it is necessary to consider it
as a tensor with different values along and perpendicular to the magnetic
field. The more realistic models include the transport coefficients, e. g,
thermal conductivity and electrical resistivity, and these can also be scalars
or tensors, In this section, we have made no attempt at completeness in
describing MHD models, but have picked problems for their computational
interest. The numerical methods described have all been used in the model-
ling of actual experiments.

The application of computers to plasma physics has advanced rapidly
in the last few years. Volume 9 of Methods in Computational Physics (1970)
[4] is devoted to this field. Most of it is devoted to articles on the solution
of the Vlasov or collisionless Boltzmann equation and these include the
many-particle simulation techniques. There are two chapters on collisional
plasma models — one on the numerical solution of the Fokker-Planck equa-
tion for a plasma and one on magnetohydrodynamic calculations. The article
by Roberts and Potter [7] gives a good review of the role of MHD computa-~
tions and discusses methods for the solution of time-dependent problems,

The use of numerical calculations in the design and analysis of pinch
experiments has been of central importance, In most of these computations
the equations of magnetohydrodynamics are used. The earliest problems
used the infinite conductivity theory in analysing the linear pinch. At
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Livermore, in order to analyse some experiments, we coupled the pinch
dynamical equations with the external circuit equations. The resulting set
of differential equations was solved numerically,

As the stability theory of the pinch advanced and more complex experi-
ments evolved, such as the diffuse "stabilized' pinch, hardcore pinch and
theta pinch, more elaborate numerical computations have been made.
Fortunately, at this same time, the speed and capacity of computing machines
have been increasing at a rapid rate.

Most of the above experiments have been analysed with computations
on a time-dependent, fully ionized hydromagnetic model, Electrical resisti~
vity and thermal conductivity of the plasma are included and separate tempera-
tures are assigned to the electrons and ions. The equations that we shall
consider are

%0, (VV)p = -p divv (86)
at
av - - -+ =2
p[a— + (V'-V)v:| xB-Vp (87)
t
205 L (5.v)g, = - (y-1)8; divy + div(k,ve,) + 20t (88)
ot p eq
36 . - ~ N 8,-6;, .v-1 .o
m +(v.V)o, = - (v-1)§, divv +; div(k V6, ) - ffre—ql +——;—— Nla (89)
9B o~ 2 o= o o =
a—t+(v-V)B= - B divv + (B*V)v- curlnj (90)

where p is the plasma pressure, p =p(6; +8,), 06; and 6, are the ion and
electron temperatures, B is the magnetic f1e1d and J = curlﬁ Equations
(88)-(90) are examples of advection-diffusion equations. Let us consider
Eq.(90) in one-dimension using the cylindrical co-ordinate r as the spatial
dimension. Let B, = B(r,t), v, = v(r,t), and n(r,t) is the electrical resistivity,
then Eq. (90) becomes -

9B .1 0 19 9B
3t Tr e (tVB) = o ar \I By (91)

It is important [1] to use an implicit difference approximation for the
diffusion term in Eq.(91), otherwise At must satisfy nAt/(Ar)2 s 1/2, which
is a very severe condition. The equation can be treated by the ''splitting"
technique [1] which is also used in multi-dimensional problems. The cal-
culation of each time-step is split mto two cycles. On the first cycle the
advection equation

8B . 1 9 )
—(,)-t-+;§(rvB)—0 (92)

is solved by one of the explicit difference equations described previously.
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On the second cycle the diffusion equation

8B _ 1 3B
2B _;_<r,, : (93)

is solved by an implicit difference scheme (which is stable) using the results
of the first cycle.

We can write an implicit difference approximation to Eq. (93). Let
r; = jAr, t, = naAt, Bj= B(ry,t,), etc. Consider the following equation

+1 _ eAt +1 +1 +1 nt+ n+1 n+1
BI - B = Gy, il Bra - B - 5] 1]
(1- 0)At . ] 0 n
@)y, [y 10y (Bl - B) = 1y 7 (BF - B (94)

where 6 is a weighting constant; for stability we must have 1/256=1, In
the above it is assumed that the n“*l have already been computed. We must
solve an algebraic system of the form

- ofBY+ BB - VB = 6] (95)

for j= , J-1. In order to solve the linear system given by Eq. (95) we
use the algorlthm given in Ref.[1]. Let

B = BB + F| (96)
where E;1 and F;‘ are determined by the recurrence relations
Ej = (8] - 7jEL) o] (97)
= (8] - EL) (] +v]FT) (98)
for j=1,...,J. To determine Eg F we use the boundary conditions at

r=0, e,g. if 83B/3r =0 then Ej =1, Fo 0 or if B(0,t) = B, then E§=0,

F§ = By. The computatmn consists of two sweeps of the r mesh, On the
first sweep the E and F are computed using Eqs (97) and (98), and on the
return sweep the Bn+1 are computed from Eq. (96).

To give a better description of many of the experiments in CTR pro-
grams a two-dimensional model is needed. We consider a cylindrical system
with azimuthal symmetry. The variables are then functions of r,z, and t.
Because of the success of the earlier calculations in describing certain
experiments, we shall again consider the hydromagnetic model. For pur-
poses of discussion we shall consider a two-fluid model (unequal electron
and ion temperatures) with thermal conduction. The velocity has components
v, and v, and the magnetic field has components B, and B,. This model is
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suitable for analysing theta pinches, conical plasma guns, and other cylindri-
cal magnetic compression experiments. The use of computers for two-
dimensional magnetohydrodynamic calculations is well established. The
current density is J = (0, Jg»0) with

. _0B 9B
Jo © BZr - Brz (99)
Equations (86) and (87) can be written in terms of cylindrical co-
ordinates r and z as the following hyperbolic system
:19) oU oU _
—E+A¥+B8—2—+F—O (100)
where
p v, p O
U=1v, A=|10 v, 0
v, 0 0 v,
v, 0 p 1 p{vr /I‘)
B=|0 v, 0 F = | -(Bz/plig+(1/p)8p/or
0 v, (B:/p)ig +(1/p)0p/oz

The difference schemes discussed in Section 3 for one-dimensional
hyperbolic systems can be generalized with some modifications to Eq. (100).
The simplest explicit scheme would be to rearrange the equations so that
A and B are diagonal with v, and v, as the diagonal elements and then use
the "upstream-downstream'' differencing scheme. Let z;= iAz, r; = jAr,and
t,=nAt, then

n n . n
gt g Abgat | it UL )iy <0
i 1] Ar )
Ul - Ul if (v.)i;>0
n n . n
_ atF" - BLjAt { Uies,j = Ui (V)i <0
i T TAg - . n
U= Ui i (v, )i;>0

where A' and B' are diagonal and F' is suitably modified from F. This
scheme is effective for short time calculations such as the implosive phase
of a theta pinch or the expansion of a plasma across a magnetic field. For
longer time integrations a higher-order scheme is advisable, such as the
angled-derivative and staggered mesh schemes discussed by Roberts and
Weiss [8]. Another scheme is the fractional time-step method given by
Eq. (62) or the two-step Lax-Wendroff method.

In their two-dimensional MHD codes Freeman and Lane [9] and Roberts
and Potter [7) use a modified form of the Lax-Wendroff method for the
advective equations.
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The equations for the field components B, and B, in cylindrical co-
ordinates r and z are given by

5B 9B OB ov > av an<aB 9B >
utis & —_F L Z i ST § r_ 22z
5t TV or V2o B< * B Yez\5z ~ or
< r B
T Br T2
3B, 9B, 0B, <avr > v, 9B, 2B, >
+ v, ——Z + = S SETRAS =z
ot Vr Br Vz 9z * B, ar oz or

10 9B, ) , 8°B,
+n[;8_r T or * 9z 2

We see that these equations are of parabolic type., To avoid a severe time-
step restriction the most suitable method of solution is the alternating-
direction implicit difference scheme [1]. For this purpose it is convenient
to write the above system in the form

B 928 2B 9B B
?t-—aar2+CaZ2 +d—+eg'z—+fB (101)
where
Br 7 0
B = a=¢-=
B, 0 n
on
() - ()
n ., on > an
0 < +8r Ve Tor £
<v, +8vZ n ) ov;
T2 oz
f=
v, <8vr Vi
ar “\or +T

In the computational sequence we calculate p, v, , v, at the new time-step
using Eq.(100). Hence we know v, v, and their derivatives at time t_,,
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In the ADI method we treat r derivatives implicitly on one time-step and
the z derivatives implicitly on the next step. The difference equation for
n even is

1 1 +1
B - Bl . n1 BIA - 2T+ BN
Bij-Bij . ™ J i N
At L (Aar)?
n n n n+l n+l
ey Bi+1,j - 2Bi,j + Bi-1,j +d{1*_1 Bi,j+1 - Bi,j-1
i, (Az)? bl 2Ar

Bn+1 j - Bq-l j 1 n+l +1
n i+1,§ i-1,) = n n n
+ e 5y +2[fi,jBi'j+fi.jBi,j]

The difference equation for the next time-step (n odd) is

nt+l n n n n
\ Bii-Bij . 0o Bijn-2Bij+Bija
At H (Ar)?
n+l n+l n+l n n
41 Birtj = 2Bij ¥ Bigy g0 Bijs - Bija
1] (Az)2 i,j 2AT
n+l n+l
1Bl - Bty 1 neloasl o oon
tei 3Az +5 [, Bij +1i,3B4)

The above difference approximations lead to the following algebraic systems
to be solved, for n even

n+l o n+l n+l ~n+l ntlon+l n
mlae)i,i By T (Be)i By y - (ve)iy Bija = (8 )y

and for n odd

ntl . n+l n+l on+l n+l on+l  _ n
= (eg)s y Bhag j T (Boliy Biy = (o)ij Bicrj = (80)y

In the first equation we have a tri-diagonal matrix equation to solve for
each value of i, and in the second equation we have a similar problem for j.
Hence we can use the algorithm mentioned earlier for one-dimensional
diffusion problems, but in this case the unknowns are vectors and the coef-
ficients are 2x2 matrices.

The pair of equations (88) and (83) can be solved in a similar manner.
In a version of their code, Freeman and Lane [9] solve the advective equa-
tions explicitly, but solve the diffusion equations by the ADI method as above,.
In the code of Roberts and Potter [7] both the advection and diffusion are
done explicitly,

We have developed a general method for solving numerically two-
dimensional, two-fluid magnetohydrodynamic equations [10]. The method

- uses second-order accurate, alternating direction implicit finite difference

equations. The accuracy and implicitness of the codes which have been
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developed using this method are features not available in previously reported
codes., The equations which are solved by the codes are given by Eqs (86)
to (90). The equations are solved in cylindrical co-ordinates with axijal
symmetry, so that no variation in the azimuthal direction occurs.

Denoting U as a nine-component vector whose components are de-
pendent variables and k as a four-component vector whose components are
the transport coefficients, each a function of U, i.e.

6., 0 B

4 1 e’

U=(p, v, Vv B

r (P’v

r? @? Bz)

and

k = &k(U) = (Kj, Koy 1/Toq, M)

Egs (86) - (90) can be written in cylindrical co-ordinates with axial symmetry
as

’ 2 2
8U+T<U 3U 8U 2%U %U & 3K>=0

Bt *Br 5z 3re’ 32 “or’ oz (102)

where T is a nine-component, non-linear vector function of the arguments
indicated. The alternating direction implicit finite difference approximations
to Eq.{(102) have one time-step of the form

(A, ult+ B Ul - ©f Ul = Vi (103)

and the following time-step

nt+l

(A‘)i_j U?sz-}- (B|)Iilijn+2 . (Cl)li'lj'le n+2 V;n;l (104)

ij+1 i,j-1%
In the above equations, A, A', B, B', C, and C' are 9x9 matrices, V and
V! are nine-component vectors, and the superscript n and subscripts i and
j refer to the space-time point (t?, r;, zj). The difference equation is tri-
diagonal in the implicit quantities and is solved by a generalization to vector
equations of the method given by Richtmyer and Morton [1] for scalar
equations,

Tokamak and Levitron geometries involve all three components of the
fluid velocity and magnetic field, The computer codes written to calculate

all nine dependent variables are also set up to calculate several subsets of
the nine variables. The subsets are

U=(p, v/, 6, 8., B,)
applicable to one-dimensional theta pinches,
U=(p, v, 6, 6, B‘,,. B,)
applicable to one-dimensional stabilized z-pinches, and

U=(p, v,, v,, 8, 8

T z i e’

B,, B,)
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appropriate for two-dimensional theta-pinch geometries and laser-produced
plasma expansion studies. For one-dimensional calculation, of course,

B' and C' are zero and the calculations are performed for only one value

of j.

It is difficult to assess at this time the extent of the advantages of the
alternating direction implicit MHD calculations over the several explicit
schemes reported with respect to enhanced numerical stability, Our calcula-
tions performed to date indicate numerical stability for time-steps several
times larger than would be allowed with an explicit method., It is expected
that the implicitness and second-order accuracy of the method presented
above will allow calculations covering a longer real time than is presently
feasible with explicit methods. With the advent of the new generation of
computers it is certain that alternating direction implicit calculations in
magnetohydrodynamics and other areas of computational physics will be
performed more and more frequently.
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Abstract

APPLICATION OF COMPUTERS TO PROBLEMS OF CONTROLLED THERMONUCLEAR REACTORS.
A discussion of the successful applications of computing, and its failures, to the study of the problem
of stably confining a plasma in a so-called magnetic bottle.

In this paper, I shall discuss primarily the successful applications
of computing, and its failures, to the study of the controlled release of
thermonuclear energy, i.e. the problem of stably confining a plasma
in a so-called magnetic bottle. For those totally unfamiliar with this
problem let me briefly outline the idea. To produce a fusion energy
release it is necessary to heat the plasma (consisting of light elements
such as deuterium or a deuterium-tritium mixture) to temperatures
sufficient to overcome the Coulomb repulsion between nuclei, that is,
to temperatures of the order of 108°K, at which point the thermonuclear
reaction rates may become appreciable, To keep pressures at a reasonably
low level where they can be held by conventional material structures, this
implies densities of the order of 1016/cm3, and the reaction rates then
indicate the necessity of confinement times of the order of 0.1 s or more.

Note that at temperatures of 108°K in deuterium sound speeds are of
the order of 108 em/s and hence natural hydrodynamic disassembly times
are very short in reasonable-sized structures — much shorter than reaction
times,.

To digress briefly from the main thread of our argument, it should be
noted that one way around this dilemma would be to relax the requirement
of reasonable pressures and consequent low densities, An extreme of
this is the hydrogen bomb, which is of course not a very attractive type
of power station. Recently, considerable- interest has been aroused in the
possibility of "mini-bombs'' in which high pressures are attained very
briefly by shining intense laser light on solid deuterium-tritium pellets,
with consequent yields small enough to be contained and utilized for power,
Some magnetic shock schemes such as imploding a magnetized plasma with
a metallic liner or the so-called ''plasma focus' are other conceivable
methods of obtaining densities high enough to achieve thermonuclear burn
on a timescale compatible with hydrodynamic disassembly, In all these
impulsive concepts most of the physics is well described by the standard
hydrodynamic or magnetohydrodynamic equations, and two- or three-
dimensional standard computing techniques are both suitable and essential
for their investigation,

157
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However, in this paper, I wish to confine my comments to what is
now generally considered to be the most promising line of approach —
that involving low-pressure long-time confinement by static magnetic
fields — in particular the Tokamak concept. Let me mention the basic
idea. The trajectory of a charged particle in a homogeneous magnetic
field is of course a spiral along the field lines with gyroradius a=MVc/eB.
With easily realizable fields these radii transverse to the field are of the
order of a few millimetres, hence representing satisfactory transverse
confinement. To prevent loss along the field lines it is natural to consider
wrapping them into a torus as shown in Fig, 1, Here we depict a configura-
tion symmetric around the major axis, i,e. /8¢ = 0, with a primary
magnetic field B,. Now, however, a problem arises in that the field
is no longer uniform since from Ampére's Law we see B ,~ 1/R with R
the major radius. In such an inhomogeneous field there exist magnetic
drifts upwards or downwards caused by the fact that the circles of gyration
are larger towards the outside of the torus., This leads to rapid particle
loss.

A simple expedient for curing this is to provide also a poloidal magnetic
field By as shown in cross-section in Fig, 2. Now the field is a spiral con-
sisting of the main toroidal field B, plus the poloidal fields Bg. As the

©

FIG.1. Toroidal co-ordinate system.

By (toroidal field)

Bg (poloidal field)

FIG.2. Poloidal and toroidal field components.
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particle orbits along the spiral field its magnetic- drifts cancel so that it
remains centred on a toroidal magnetic surface depicted in Fig. 2, An easy
way to see this isto note that two constants of the motion exist, the total.
energy € = + mV?2 and the canonical angular momentum p¢ = R(mv, + eAy)
where A, is the vector potential from which By is derived. RA, is constant
along a field line, From these constants we see immediately that motions
away from the magnetic surface are limited in amplitude to the order of a
gyroradius in the poloidal field.

How can we provide such a poloidal magnetic field? The simplest
method is to apply a voltage around the torus, hence drawing a plasma
current and creating the desired fields. This is the idea of the Tokamak,
Other possible schemes involve the use of levitated internal rings as in
the spherator, or external helical windings (inducing more complex fields
but with the same basic principle) as in the stellarator,

Thus with the Tokamak a simple, satisfactory magnetic container for
single particles may be achieved. This, however, is only the beginning
of the problem, There remains first the problem of creating and heating
the plasma and drawing the appropriate plasma currents. Much more diffi-
cult, there remains the problem of plasma collective effects and stability.
That is, when a plasma is introduced into the system it is capable of producing
charges and currents which may serve as the sources of fields which destroy
the confinement properties of the bottle, Moreover, these collective effects
may be unstable, small perturbations growing rapidly to destroy confine-
ment, While analytical linear theory may go a long way in discussing such
questions, only experiment or possibly computer simulation seems suitable
for deciding the crucial nonlinear evolution of such instabilities.

The equations governing the system are the Boltzmann equation for the
electron and ion distributions:

of e 2 . _@_f_
TRl Vf+m(5+vxﬁ)vvf T (1)

with consequent charge and current densities

p=e ﬁdsx—; 7= eff?}dﬁ (2)

plus Maxwell's equations, We observe that Eq. (1) is a six-dimensional
time-dependent equation., At first sight it might appear that with particle
simulation techniques it might be barely tractable on a computer. However,
this is not so, due to the wide range of phenomena with different timescales
which may occur, Thus electrostatic plasma oscillations have frequencies
of ~1012/s, as do electron gyrations; Alfvén waves and ion sound waves
may have frequencies of 10%; hydrodynamic motions and instabilities,
106; drift waves and trapped particle modes in which we are interested,
104 (resistive phenomena, 103); while we must study confinement times
of the order of 1071 s,

Clearly, a brute force ‘approach is hopeless and only a very careful
delineation of particular questions of interest with a consequent tailoring
of the equations to eliminate rapid phenomena of no interest will allow
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computers to be of help, Let me now indicate some of these questions
and how the computer has been utilized.

The simplest such question is the magnetic field structure itself,
For axisymmetric currents it is easy to show that the fields indeed have
the desired structure of nested toroids, However, coils are not perfect
and the field structure is quite sensitive to small errors, The computer
may be of great help here, First, the vector potential is calculated from
the applied currents, B is determined and then a field line is followed from
the defining equation:

In this application, computers have been invaluable since the size and
precision of field coils are only achieved with great cost, and while
analytical mapping theory is capable of understanding the situation quali-
tatively, the necessary numerical factors are only attainable numerically,
An interesting example is the stellarator where later computer runs indi-
cated that many of the earlier experiments were ruined because the field
lines were unconfined. A typical stellarator field structure is revealed

in Fig. 3. Here we see nice nested toroids near the magnetic axis,
surrounded by an "island structure", outside which the field lines are
effectively ergodic and wander to the walls, being useless for confinement.

Nowadays, careful field structure computations are an essential feature
of experimental design. A similar situation exists with respect to single
particle orbits in slightly imperfect magnetic fields (for perfect symmetry
they can be calculated analytically). For example, it is known, and this
is the basis for magnetic mirror confinement, that the magnetic moment
u = me/ZeB of a particle is an adiabatic invariant of the motion. That
is, for fields in which (a;/B) (dB/dx) = € <« 1, i, e. the field varies only
a little in a gyroradius, the magnetic moment changes only like e-ofe,
with e a constant of order unity which is difficult to determine analytically.
To determine it accurately numerically for various shaped fields by computer
usage may mean a factor of ten savings in equipment cost by indicating
necessary field properties. A similar situation exists with respect to stel-
larator orbits.

Returning now to the more complex collective effects, we may divide
the discussion into two parts — equilibrium and stability. For equilibrium
considerations it is sufficient to consider an axisymmetric situation, and.
we are interested in the evolution of plasma density, temperature, and
currents under the influence of the applied electric fields. Here the govern-
ing equations are those of the so-called neoclassical theory, which deter-
mine resistivity, particle and thermal diffusion, and various thermo-
electric coefficients, together with Maxwell's equations. Numerical inte-
gration of these equations by various authors, particularly Duchs, Furth,
and Rutherford, have succeeded in casting considerable light on the ex-
perimental Tokamak results. To date, such calculations have been one-
dimensional (radial), adequate for small aspect ratio r/R, but could and
will be extended without too much difficulty to the two-dimensional (r, 8)
case. In fact, preliminary two-dimensional investigations using a hydro-
dynamic model and non-selfconsistent fields have already been made.
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NESTED TOROIDS

MAGNETIC ISLANDS

ERGODIC FIELDS

FIG.3. Magnetic field structure patterns.

Here a degree of subtletyin excluding uninteresting fast Alfvén and sound
waves along the field lines is required.

The principal result of comparison with experiments has been that
while there is considerable agreement with neoclassical predictions of
plasma behaviour, nonetheless there certainly exists an anomalously
rapid skin effect — penetration of current into the plasma — pointing to
the existence of some sort of instability leading to anomalous dissipation.
With somewhat less certainty, because the impurity level is unknown, there
are strong indications in the steady state of an anomalously high electron
thermal transport.

This brings us to the really crucial question — plasma stability. At
least to date the computer has not helped much here, Let us examine
the. complexities of the situation. I believe the basic problem is that
the Tokamak is in fact very stable, In the familiar linear pinch, for
example, hydromagnetic instabilities are very strong, comparable in rate
to the fastest magnetohydrodynamic waves which can exist in the system.
Such fast modes are easily amenable to computer study, but in the Tokamak
the kink modes are driven extremely feebly and hence are hard to see by
simulation — and likely to be masked by numerical noise,

For Tokamak plasmas which are large in scale and only subject to
low-frequency oscillations, it is possible to average out the fast gyration
in Eq. (1) and reduce the governing equations to a one-dimensional Vlasov-
Boltzmann equation along the field lines, which is complicated by the fact
that the field geometry is time-varying, plus the usual MHD-type fluid
equations across the lines. Only some very preliminary numerical work
has been attempted on this system. However, some phenomena, particularly
the kink mode (see Fig. 4) or its resistive variant, the tearing mode, are
probably adequately described by the pure fluid MHD equations,

The linear stability of an MHD equilibrium against arbitrary perturba-
tions is described by an energy principle, the system being self-adjoint,
in which it is studied whether an arbitrary plasma displacement E(?') can
lower the plasma energy. In the Tokamak case, this may involve careful
trial functions, a great deal of integration, and algebraic complexity even
though the theory is in principle well known, An interesting application
of computer algebraic manipulation to the problem of evaluating the energy
integrals has been made by Biskamp and the Garching group.
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FIG.4. Kink instability,

f(v}

(a) (b)

FIG.5. Distribution functions for strong and weak instabilities,
(a) Two-stream instability; (b) Tokamak case.

A more interesting question is the nonlinear evolution of these kink
modes which after all determines their effect on the plasma, To study
this in full would be a three-dimensional time-dependent problem complicated
by the weakness of the mode already referred to, Probably considerable
information could be obtained by studying a restricted number of harmonics
of the basic helical perturbation, i.e. a 25D calculation, As yet, these
studies have not been attempted.

Finally, there remains the question of the microinstabilities, those
for which the MHD equations are not adequate but which involve the use
of at least the Vlasov equation along field lines as mentioned earlier.

Here, a great deal of linear analytical theory has been done on so-
called drift waves and trapped-particle modesbut the correct treatment
of radial eigenfunctions remains to be done. Needless to say, the real
interest is again in the nonlinear problem.
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TABLE I. POSSIBLE COMPUTER APPLICATIONS TO ASPECTS OF THE
TOKAMAK PROBLEM

X Present Relative s
Calculations . Possibility
status importance
Full treatment~time~-dependent No
Fokker-Planck
Accurate determination of vacuum v 1
fields
Single-particle orbits v 1
Evolution and 1D guiding centre v 1
equilibrium
Evolution and 2D MHD ~ Important for Yes, not too hard
equilibrium large 1/R(1/4)
Evolution and 2D guiding centre Important for Yes, difficult
equilibrium large 1/R(1/2)
MHD instabilities — linear algebraic ~ s 1 Yes
Resistive mode — linear 1 Yes
MHD instabilities — nonlinear 2 24D or weak instability
3D time dependent

Tearing modes — nonlinear 2 Different timescales
Anomalous transport coefficients — 5 3D or 24 D weak
nonlinear drift waves, trapped modes + guiding
particle modes centres

To see the complexities for the computer, let us briefly compare
the situation for the current-driven drift wave with that of the much
computed two-stream instability. In both cases the instability arises
because the distribution function of particle velocity parallel to B is not
single-valued (see Fig. 5) because of the currents being drawn, In this
case an interaction, such as ion sound waves, which conserves total
momentum may lower the plasma energy by "interchanging" high and low
velocity particles. In the two-stream instability (Fig. 5a), where the
distribution function is violently non-monotonic, the sheet model simulations -
of K. Roberts and others have shed great light on the nonlinear evolution,
As the distribution approaches more that of Fig, 5b the instabilities become
more and more feeble and the numerical simulation of the effects of interest
is progressively obscured by numerical noise,
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Further, for actual Tokamak situations the distribution is completely
linearly stable against all such one-dimensional modes, and only the so-
called drift wave with w ~k  (ai/n) (dn/dx)V; and w ® k; V4 remains unstable.
As mentioned before, its radial dependence is also crucial. Hence, instead
of studying a very strong one-dimensional effect, we are faced with simulat-
ing a very weak three-dimensional one, The techniques of simulation clearly
will need to be greatly extended to study this case and probably some com-
promises with the full problem made. Nonetheless, it seems clear that the
behaviour of these drift modes, and the similarly complex trapped particle
modes, holds the key to the Tokamak future.

In Table I, possible computer applications are listed to aspects of the
Tokamak problem with some assessment of their present status, probable
importance, and comments. In the column marked "present status' a
check mark indicates presently functioning codes; a ~mark indicates
the beginning of useful operation.
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Abstract

MONTE CARLO TECHNIQUES IN STATISTICAL MECHANICS.
A study of the behaviour of systems with several hundred interacting particles, giving information
on the properties of large assemblages.

One of the earliest applications of computers to physics was in the
area of statistical mechanics, It was obvious that since it was now feasible
to follow systems of several hundred interacting particles, one might be
able to learn something about the properties of large assemblages — equa-
tions of state, transport coefficients, and perhaps the nature of phase
transitions. In particular, the nature of the liquid-solid transition has
never really been understood — whether, for example, its existence might
depend on many-body attractive potentials or whether it should be exhibited
by molecular systems interacting through only repulsive two-body potentials.
Does it exist in two dimensions?

The most obvious computer approach to the problem is simply a time
integration of the dynamical trajectories of N interacting particles placed
in a box, Since N2/2 pair potentials are involved, this can be very time
consuming especially if long-range forces, e.g. Van der Waals' attractions,
are important, and for this reason most applications of this so-called
"molecular dynamics'' approach have been restricted to the hard sphere
problem where only nearby pairs need be considered. ' A detailed discussion
of this topic is given by Killeen in paper SMR-9/17 in these Proceedings.

One question which immediately arises is how big is N — how large
a system is needed? It helps, and is conventional among all workers in
the field, to use periodic boundary conditions, so that particles near the
right-hand boundary are also considered as neighbours of those near the
left-hand boundary. Thus, the material is considered to be composed of
a periodic array of identical samples of N particles.

One expects, of course, that a finite assemblage of particles will
exhibit large fluctuations and will not have perfect phase transitions but
smeared-out ones. In practice, one simply tries different values of N,
hoping that nearly asymptotic results are obtained for computationally
feasible values., In fact, samples of several hundred seem to give good
results,

Let me now turn to the Monte Carlo calculations — the alternative
to the straightforward dynamical method. We are discussing a classical
problem and the method is based on Gibbs' canonical ensemble which says
that the relative probability of any point in phase space is simply exp (-H/kT)
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with the Hamiltonian H = K + V. Thus, we can calculate any desired
ensemble-averaged physical quantity by:

fA VKT gaNg goNg

K =
fe -H/deSN;{’ a3y

As is well known, the velocity integrals may always be done explicitly,
if we assume velocity-independent potentials due to the simple dependence
of the kinetic energy on velocity. Hence, the average reduces to a 3N-
dimensional integral over configuration space:

fA e V/KT ¢3N3

A= o (1)
j;-v/kT dSN}—g

For example, to find the equation of state p(Y, T), the volume Y could
be varied by changing the box size, the temperature varied in Eq. (1), and
the pressure determined from the virial theorem:

pY = NkT - 1 ZrMﬁl—) 2)
1] 1} arij

where we have assumed a two-body potential dependent only on the distance
rij between the i-th and j-th molecule. Our task would then be to use Eq. (1)
to make a canonical average of the last term in Eq. (2) or equivalently to
find the canonical average of the two-particle distribution function.

It is clear that a straightforward integration technique to evaluate the
integrals in Eq. (1) is hardly feasible since even if we chose a very crude
mesh of 10 points per dimension we would have 10°N mesh points. On the
other hand, it is obvious that if we have to perform a multidimensional
integral of a smoothly varying function we can obtain accuracy of order
1/vM by simply summing over M randomly chosen points. This is the idea
of Monte Carlo integration, first suggested, I believe, by S, Ulam.

For our problern, this most naive Monte Carlo approach would then
consist of assigning random positions to the N particles, calculating the
values of A and V, repeating this M times, and deducing

-V, /KT
z AMe M
M

Z o -VM/KT

M

‘A:

While this would be a correct procedure, it is not a practical one for the
reason that there is usually a strong repulsive core to intermolecular
potentials, Hence, when we choose a random point in phase space, it is
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highly probable that two molecules will be close together, V will be very
large, the exponential very small, and we will have chosen a very un-
important point in phase space,

Clearly, what we need is a weighted sampling procedure, one which
selects points in phase space not with equal probability, but with weighted
probability exp (-V/kT). To accomplish this, we play the following game
beginning from an arbitrary initial configuration: '

(1) Make a random move, For example, choose a particle at random,
choose a direction at random. Move the particle a distance RZ, where
Z is an appropriately chosen maximum displacement and R is a random
number between zero and one,

(2) Calculate the change in potential energy AV caused by the move,
This involves calculation of the change of N two-body potentials. If
AV < 0, allow the move. If AV > 0, take a random number R' between
0 and 1 and allow the move if R'< exp (-AV/kT).

(3) After modifying the configuration or not, according to rule (2),
begin again with rule (1) for the next move and iterate the procedure as
many times as desired.

If only rule (1) were used, then clearly after many moves we would
have sampled all phase space with equal probability. By applying also
rule (2), we sample phase space with the proper Gibbs weighting factor.
To see that our prescription indeed leads to proper phase space averages,
we note that the probability F(X) that the configuration is at point X in
phase space obeys the steady-state equation

FX) = PX'» X)FX))

where P(X'—» X) is the probability of moving from X' » X, Since the ratio

of P(X' » X)and P(X - X') is just the Gibbs weighting factor

exp [V(X') - V(X)/kT] it is clear that a solution for F(X) is exp[-V(X)/kT].
By a method analogous to that used in demonstrating Boltzmann's H-theorem,
we may indeed show that the canonical distribution is always approached

by F.

After a transient determined by the arbitrary initial configuration has
died away, we may assume therefore that the sampled configurations are
in the canonical ratio and calculate the desired statistical averages, How-
ever, one word of caution is in order. Since moves always go to neigh-
bouring configurations it is clear that many moves are needed to cover all
phase space, i.e. to be effectively ergodic. In practice, it has been found
that it is about optimal to choose the maximum displacement Z so that about
half the moves are allowed, With this choice, a cycle of a few N moves
(i. e. each particle moves a few times) seems adequate for sampling phase
space,

The main virtue of the Monte Carlo technique vis-a-vis the molecular
dynamics technique is that a much more rapid motion through phase space
is allowed since to move each particle once in the Monte Carlo procedure
takes about as much computation as one dynamical time-step. On the other
hand, the latter is limited to be quite small to get accurate trajectories,
while Z may be chosen relatively large,



168 ROSENBLUTH

The main disadvantage of the Monte Carlo technique is that it is limited
to computation of equilibrium properties while, by following the dynamics,
one may study rates of approach to equilibrium, transport coefficients, etc.

Perhaps the most interesting result obtained with these methods is
the unequivocal demonstration from the pressure versus volume curves
that in both two and three dimensions a solid-liquid phase transition (with
about 5% expansion) occurs even for a fluid of hard spheres. In the Monte
Carlo runs, one sees quite clearly a sudden change from a situation (liquid)
where moves carry particles freely throughout the box to a situation (solid)
where only small oscillations around fixed positions occur with reasonable
frequency. Needless to say, just at the melting point there is a rather
slow relaxation from the lattice to the fluid structure and 5 or 10% fluctua-
tions in pressure are seen corresponding to surface energies between
coexisting solid and liquid phases in our very finite box.

For future work it would seem to me that with present-day computers
one could study by the Monte Carlo method more complex materials, for
example, polyatomic molecules where both relative position and orientation
of neighbours is relevant,

Finally, I would like to close by discussing a possible computer Monte
Carlo study of another fundamental statistical mechanics problem — the
zero temperature equation of state of a many-body system of Bose-Einstein
particles such as helinm-4. This is of course equivalent to finding the
ground-state of such a system, governed by the Schr6dinger equation

2
E¢=-;—mv2¢/+vw (3)

where again the equation is to be interpreted as being in the 3N-dimensional
configuration space and therefore too complex for straightforward integra-
tion techniques. '

Again we may consider a Monte Carlo technique. Here we note the
analogy between Eq. (3) and a diffusion equation. For example, to describe
neutronics in a reactor structure, we may use the diffusion approximation

an
Fral DV?n + o;(F)n (4)

where D is the diffusion coefficient and o the local fission cross-section,
For complicated reactor structures an alternative approach to the solution
of Eq. (4) is simply to follow the trajectories of individual neutrons through
the structure, allowing them to scatter or fission, This is the Monte Carlo
neutronics method widely used by reactor designers. We now propose to
solve the Schrddinger equation in the same way — representing the wave
function ¢ by a few randomly chosen systems of N particles, just as the
neutron density n is represented by a few typical neutrons. (Note that the
Monte Carlo neutronics method actually is a solution of the integral diffusion
equation rather than Eq. (4). However, by allowing the scattering mean
free path to become appropriately small, the integral problem always
becomes equivalent to the diffusion approximation. )
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The term E¥ in Eq. (3) is replaced by - 8%/8t (note this is not the usual
time-dependent Schrédinger equation) and E is then determined by the
multiplication rate of the system, Naturally, in such a sampling calculation,
only the fastest growing eigenmode will be seen. This corresponds to the
lowest energy eigenvalue, hence we determine the ground-state energy.
Moreover, as we are not enforcing any particular symmetry on the wave
function, the lowest wave function will automatically be symmetric and the
method applies to a Bose-Einstein fluid.

To go back to the neutronics analogy, we see that since the sample
neutrons are in fact N-body systems the calculation is indeed rather
ambitious., Nonetheless, 18 years ago, using the MANIAC computer, my
wife and I succeeded in getting a reasonably good fit to the helium-4
pressure versus volume curve, Curiously enough, the lower mass of
helium-3 seemed also to account pretty well for its higher ground-state
energy even though the statistics were of course incorrect. However,
with the relatively crude computer we used, the fluctuations were very
large and the work remains unpublished. Probably the calculation could
be done well on present computers.
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Abstract

A FLUID TRANSPORT ALGORITHM THAT WORKS,

This paper describes a class of explicit, Eulerian finite-difference algorithms for solving the continuity
equation which are built around a technique called "flux correction”. These Flux-Corrected Transport
Algorithms are of indeterminate order but yield realistic, accurate results. In addition to the mass-conserving
property of most conventional algorithms, the FCT algorithms strictly maintain the positivity of actual mass
densities, so steep gradients and inviscid shocks are handled particularly well. This paper concentrates on
a one-dimensional version called SHASTA. !

INTRODUCTION

This paper proposes a new approach for numerically solving the con-
tinuity equation which yields physically reasonable results even in circum-
stances where standard algorithms fail. This new approach, called Flux-
Corrected Transport (FCT), leads to a class of algorithms which strictly
enforce the non-negative property of realistic mass and energy densities,
As a result, steep gradients and shocks can be handled particularly well,
A one-dimensional explicit Eulerian FCT algorithm is described here, and
several computational examples and comparisons with more conventional
methods are given, Revised versions of this paper are in preparation
including complete treatments of the fluid equations on shock and piston
problems,

In most conventional approaches using an Eulerian finite-difference
grid [1, 2], the solution of

2mv eV (1)

is approximated by expanding locally up through a given order in the two
parameters

_ aegax
vét (2)

>4

In pursuing this approach, the standard finite-difference expansions can
be endowed with certain desirable qualitative features such as stability
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and exact conservation. For finite-difference methods of a given order,
typically the first or second, the distinguishing qualitative features are
determined by the error terms. The crucial importance of the form of
the error comes glaringly to light in regions where € and/or é is of order
unity, i,e. in most problems of physical interest. N

In regions where the mass density p(x) and the flow velocity v(x) in
Eq. (1) are smooth, most second-order schemes, such as Lax-Wendroff
[3,4] orleapfrog [1, 4-6], treat the continuity equation quite adequately.

In shocks and steep gradients, however, 6 is of order unity. In regions

of large velocity € is of order unity because one always wants to take as
large a timestep as possible, 6 is also of order unity near sources of fluid
near sinks, and at interfaces, In all of these cases, the truncation errors,
formally of asymptotic order €3 or €62, are, in fact, as large as the solution,
50 numerical garbage is certain to arise. Using higher-order numerical
methods in these regions does not help because the terms at all orders are
roughly the same size,

The FCT finite-difference technique described here [7] circumvents
these steep-gradient problems by requiring another physical property of
the continuity equation, positivity, instead of vigorously adhering to an
asymptotic ordering. The technique is also stable and mass-conservative
and is essentially second-order in regions where the concept of order is
meaningful. The FCT technique is of indeterminate order near sharp
gradients, the physical behaviour of the continuity equation being folded
into the technique directly, The FCT technique described here is explicit
and Eulerian and therefore generalizes easily to two-and three-dimensional
problems,

The FCT class of algorithms consist of two major stages, a transport
or convective stage (stage I) followed by an antidiffusive or corrective stage
(stage II). Both stages are conservative and maintain positivity, Their
interaction enables FCT algorithms to treat strong gradients and shocks
without the usual dispersively-generated ripples.

We illustrate the FCT principle by considering in detail a one-dimensional
explicit algorithm called SHASTA, Sectionl of this paper discusses the
transport stage in SHASTA, It has a simple geometric interpretation which
generalizes for two-and three-dimensional applications. Section 1 also
contains a detailed analysis of the transport stage. Section 2 is devoted
to the antidiffusion stage of the algorithm (stage II) which corrects numerical
errors introduced in stage I (Transport). An analysis of error in the overall
algorithm is presented.

Section 3 treats the square-wave problem in one dimension using
several conventional difference schemes as well as the FCT technique
introduced in this paper and implemented in SHASTA, The concepts of
dispersion and diffusion used in sections I and II are also applied to these
conventional schemes, This analysis allows a more complete understanding
of the new technique in light of the problems encountered in these earlier
finite-difference schemes [1, 4, 8].

The SHASTA subroutine can be generalized to include equations of the
momentum and pressure type as well as perfect continuity equations for
the mass and energy density.

The results of several shock and piston calculations will be compared
to other numerical methods of solving these problems in a future paper.

We wish to emphasize here that the new algorithm employs no adjustable
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artificial viscosity of the von Neumann type [1, 9] and displays none of
the undershoot-overshoot phenomena which plague other finite-difference
methods [ 8],

In section 4 the workings of the algorithm are described qualitatively
and applications for the FCT algorithms are discussed.

1. THE TRANSPORT STAGE (STAGE I)

The transport stage of the FCT algorithm in one-dimension has a
geometric interpretation with a simple extension to multi-dimensional
calculations, Figure la shows the uniformly-spaced Eulerian grid at the
beginning of the cycle (t = 0). The densities { p.%} are known and the velocities
{ Vj%} are known at t = & /2, half a time-step ahead. We seek the densities
{ pjl} at the end of the time-step whent = 6t. Stage I of the algorithm
proceeds by considering individually each of the fluid-element trapezoids
formed by connecting adjacent density values with straight line segments,

This piece-wise linear density profile is fully consistent with the definition
of the total mass,

Mo =Z pj 6x (3)
i
(Q) E i E t=0
P . — : initial location
i i : ¢ of a fluid
i . i element
o ' = X
j i
FAn

t = 3t
location and

shape ofter
transport

Prn
(c) ' a E interpolation
E E\§$ ! of the fluid
RI : :;§ i element back
J i 2§ ! onto the grid
o =
| X

i j*l

FIG.1. The transport stage of the 1 D FCT algorithm SHASTA (stage I). Linear interpolations are used
throughout so that mass is conserved and the density is non-negative as long as | vét/6x| < 4.
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The short arrows at the grid points’j and j + 1 indicate representative
motions the fluid at these grid points might undergo. In the examples and
analysis of this paper I consider only lv&t/éx] < % so that no grid point can
convect past the cell boundaries, indicated by vertical dashed lines in Fig, la,
in one cycle. This restriction is probably not strictly necessary but ensures
that no two grid points cross in a single cycle, a necessary condition for
this algorithm. It also simplifies the programming immensely.

Following the motion of this fluid element for one time-step in a Lagran-
gian sense, the two boundaries move by amounts Vji 6t and vjél 6t. At the
end of the cycle, the fluid element has been convected and deformed as
shown in Fig, 1b, The height of each side of the trapezoid is varied in inverse
proportion to the contraction or dilation in x of the base of the trapezoid,
Thus

- piy 6x
pj(+) il 'ler,.;il— vj%) and
o (4)
p )= pi 8x
i 5x + 6t (vjffl—vj’f)

It is clear from these formulae that the area of the fluid element, and hence
the mass, is fully conserved. It is also clear that the valves p{and p (")
are always non-negative if all the { pjo} are non-negative initially and if

L <1, (5)

6x

This ensures that the mass density, interpolated back onto the original
grid, is also non-negative.

The velocities used in Eqs (4) are evaluated at the centred time but
not the centred position with respect to the motion of the fluid at the grid
points, Thus, the transport is not fully second-order. This minor defect
is easily rectified by using modified velocities found by linearly interpolating
on the grid. That is, replace vji in Egs (4) with

1

-3 € €
v [ --—2’—]\rj%+—§1-vj+% (vjé>0)

(6)

;j% = [1 -—62’—-J v.é+ —2— Vjél (Vj% < 0)

I
2
[Sod
&
~.
o
]

where € =

Interpolation of the displaced fluid element back onto the original Eulerian
grid is accomplished simply, as shown in Fig, le, The area of the trapezoid
lying to the right of the cell boundary (midway between the j-th and the j+1-st
grid points) can be calculated by a simple linear interpolation. This amount
of fluid is assigned to grid point j+1, The remainder of the fluid in the
trapezoid (residing to the left of the cell boundary) is assigned to grid point
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j, since it lies in the j-th cell. All of the fluid elements are treated in the
same way and independently, Thus, a portion of the fluid-element trapezoid
which extended from j-1 to j initially also gets assigned to grid point j, In
a similar way the cell j+1 also gets some of the fluid originating between
grid points j+1 and j+2.

The transport prescription can be expressed algebraically as

=

¥ = Q [Q (l-zQ)+Q+(1-2Q+)jIPn+ Q* p1+1 ()

where Q, = (3 + vj% 6t/6x)/[ 1+ (vjéﬂ- vj%)ét/éx:'
For a uniform velocity field, this reduces to

2
n+l =" ,n - on 1, & -
o] ol - z € (p]+1 pj_l) t(5+5) oy, 205+ p;,) (8)

This is a simple two-sided differencing of the dilation term plus a strong
diffusion, Without the velocity-independent diffusion it is identical to the
two-step Lax-Wendroff algorithm.

The treatment at the boundaries depends entirely on the physical problem
being simulated and will not be considered in detail here since the geometric
and numerical interpretation of any particular boundary condition is a
straightforward generalization of the above,

This transport stage is conservative and non-negative as promised
but has a very large, zeroth-order diffusion associated with it as well as
the usual second-order dispersion and velocity-dependent diffusion, This
zeroth-order diffusion arises principally as shown in Fig. 2 for the special
case of v = 0, Consider p = 0 at all grid points but one as in Fig. 2a, The
fluid in the two shaded regions is withdrawn from cell j and added to cells
j-1and j+ 1 during stage I, This strongly diffusive effect amounts to
operating on the initial density profile { pjo} in the following way:

- tln 0
PRt (pm—z P, +pJ 1> (9)

s 7 is étrictly

is roughly 0. 125 plus a

In this simple zero-velocity example the diffusion coefficient
= 0,125, In the case of non-zero velocities ''z"
small velocity-dependent term,
Consider the slightly more general problem where € = v6t/6x is constant,
greater than zero, but less than 0.5, Let

pj° = elkix (10)
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(a) it=0

| BEFORE
STAGE |

t =8t
AFTER
STAGE |

(c) t=st
3/4— AFTER
STAGE Il

FIG.2. The strong diffusion of stage I. With the velocity everywhere zero, the central density value is
strongly diffused, the shaded portions of (a) being transferred to the adjacent cells as in (b). The flux cor-
rection of stage II prevents re-enhancement of the central density.

where the cell index j is to be distinguished from i =~-1, k is the wave
number, and the superscript is the time-step number. This initial condition
corresponds to the physical solution

p (x,1) = elkx e-ikv (t-to) (11)

an infinite wave propagating to the right. The transport prescription Eq (8)
gives rise to an amplification coefficient

1
-%% = {1 - <£ + €2> <1-cos k6x> - ie sin kéx} (12)

J

The two velocity-dependent terms, proportional to €? and €, describe the
phase propagation of the wave and include small velocity-and wavenumber-
dependent errors in both phase and amplitude of the wave. Without the sin
kéx term, Eq, (12) looks like a pure three-point diffusion equation. Some
of the €2/2 term is involved in the wave phase change so the actual diffusion
in Eq. (12) has a smaller coefficient than (1/8 + €2/2), Furthermore, the
velocity-dependent part is also wave-number-dependent.

Using Eq. (12) we find the amplification factor:

1

%ﬁ = [1 -3 - cos kéx)i'2 - ; (1-2€2) (1-cos kéx)2 (13)
i
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which is always less than unity for Ie' <% (the numerical wave always decays

in time and hence the transport scheme is stable)., With a velocity~dependent
diffusion of the form (1/8 + a(k)/2), we would have

2
lpj /pj‘)[2 =[1- ( +a) (1 - cos kéx)}

The effective velocity-dependent diffusion coefficient @ then follows from
this equation and from Eq. (13).

|-V e -

The quantity a(k) is always positive, i.e. damping. Thus the effect of the
velocity is always to increase the diffusion, When the wavelengths are
sufficiently long or € sufficiently small that

A}

2
1 J -% (1-2€2) (14)

(1 - cos kéx)

W=
N

o(k) = [

[(1 - cos kéx)"1- % } is much larger than % €2 (1-2¢2),

€ (1-2¢?%)
a(k) = vy T T (15)
[(1 - cos kéx) 4]
The maximum diffusion coefficient (kéx=7) is
<1/8+‘”§¢> = 1/8+€2/2 (16)

The analysis of the transport stage of SHASTA so far has considered
only the diffusion errors. The phase errorinstagel is also a function of
wavenumber kéx (here identical with the parameter § defined by Eq. (2))
and velocity €, Define x, (€,k) to be the position where the imaginary part
of pj1 goes to zero, X, is zero at t=0 for the exact solution (11) and the
numerical solution (10)., Thus at t =6t the deviation of x, (€,k) from the
analytically exact value €6x measures the phase error as a function of €
and k. Setting Im (p;’) =0 in Eq. (12) with x, = jéx gives

€ sin kéx
1-(3+€2) (1-cos kéx)

tan kx, =
For long wavelengths this gives the relative phase error

_ .2,2 ]|€ 1 4 4
= k 6x ,:—'é——ﬁ} O(kéx) (18)

Xgp - €6X
€6X



178 BORIS

Equation (18) shows that the algorithm is second-order accurate and that
the phase errors reduce for larger velocities, becoming fourth-order ac-
curate when Iel = 3, the maximum allowable velocity. Equation (17) also
shows that the numerical phase velocity is smaller than the actual transport
velocity for all wavelengths, The very shortest wavelength, kéx = =, does
not propagate at all, according to Eq. (17). Section 3 compares these
phase errors with those of other widely-used methods for solving the
continuity equation [4],

2. THE ANTIDIFFUSION STAGE (STAGE 1I)

As seen in the previous section, stage I of the FCT algorithm SHASTA
has quite small phase errors for long and intermediate wavelengths but has
a large diffusion which is only weakly velocity dependent. In particular,
for zero velocity stage I gives effectively the diffusion equation

1
p.

- 0 _o. 0 0
;= e v 1/8(p),, =20 +p0 ) (19)

Removal of this erroneous diffusion by applying an equal and opposite
antidiffusion immediately suggests itself. Equation (19) can be inverted
in one dimension since it is tridiagonal. Thus we could take the results
of stage I{p;!} and find a corrected density { pjl} by solving the implicit
equation [10].

oy -1 1,1
pjl = pjl +1/8 |:p].+1 -2pj + pj-l} (20)

This would effectively remove the factor of 3 from Eq. (12) in the € = 0 limit
and gives in general

pi [1 -(+ + €?) (1-cos kéx) -ie sin kéx}
F}B [1- 2 (cos kéx] 21)

The squared amplitude is

(22)

€2
Bj_l -1 _'2_ (1-2€2) (1 - cos chx)2
0.0 [1-%(1-cos kéx)]?

The residual diffusive amplitude factor, in this case, has a minimum value
[1- 82 (1-2€2)].

This implicit approach has several minor drawbacks:

1) It is implicit and hence difficult to generalize to multi-dimensions.
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2) It is not positive intrinsically and it would be more expensive to
apply the flux-limiting procedure (to be defined shortly) that does
make the antidiffusion positive.

3) The result is only slightly better than the following explicit approach
which is faster and simpler,

so we concentrate, in this paper, on the following explicit equation:

1

- 1
le = pjl -1/8 (Pj+1 -291-1 +Pj.1) (23)

Notice that this antidiffusion step adds only a real multiplicative factor
to Eq. (12) and hence does not disturb the phases:

b= [1 + 1 (1 - cos kéx) :lpjl (24)

The amplitude of the modified 7)'].1 is

-1 2
Biﬁ = [1 -1/16 (1-cos k6x)2il - 62—2 (1-2€%) (1-cos kéx)?

P;

2
X [1 - 3 (1 - cos kéx) J (25)

The velocity-dependent term in Eq, (25) is smaller than in Eq. (22) but a
small velocity-independent term has been added,

We see that the antidiffusion.as given in Eq. (23), is certainly not positive,
The simple example of Fig. 3 shows why this is so. The antidiffusion of
stage II, which is only’'intended to remove numerical errors introduced in
stage I, in fact introduces additional numerical errors at grid points j and
j+1 in the figure, New maxima and minima are formed where they are
physically unreasonable. The new minimum is in fact negative.

o

FIG.3. Showing the non-positive tendencies of antidiffusion, At gridpoint j a2 new maximum will be created
by antidiffusion and the new minimum at j+1 will be negative.
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The following qualitative limitation on the antidiffusive mass fluxes
suggests itself.

The antidiffusion stage should generate no new maxima or minima
in the solution, nor should it accentuate already existing extrema,

This qualitative condition obviously limits stage II to just those anti-
diffusive corrections which are positive. What is not so obvious is how
to make this limiting procedure both quantitative and coservative in a simple
way. This is done by limiting the size of antidiffusive mass fluxes without
allowing their sign to change, thus the name Flux-Corrected Transport.

In more quantitative terms, the antidiffusion stage can be written the
following way:

-1

Py = P~1 - (fj+§ - fj_ ) (26)

where the {fj+}} are the limited antidiffusion fluxes. These are defined to be

i+ = sgn (A1) max [0, min (Aj.4+ sgn (Ajs+d), "'1/8"
A]+5' sgn(A ]+%)] (27)

where Aj+i= pj1+1 - pjl. It is clear immediately from the form of Eq. (26)
that this second stage is also fully conservative. The prescription given
by Eq. (27) also ensures that the density remains positive and develops no
new extreme as a few trials will convince the reader.

The factor 1/8 of Eq. (23) has been replaced by ''1/8". The quotation
marks indicate that more exact cancellation of errors can be achieved,
if one expends a small amount of computational effort by including at least
rough approximations to the velocity-and wavenumber-dependent corrections
a(k) (Eq. (14)). Inthe next section, we compare this FCT algorithm with
other more-or-less standard schemes, These comparisons, for the most
part are made on the simplifying basis that ''1/8" = 0, 125,

3. THE SQUARE-WAVE TEST PROBLEM

This section compares the one-dimensional FCT algorithm given in
the preceding section with three contemporary, explicit, Eulerian, finite-
difference techniques. They are the ''one-sided' first-order scheme [11],
the second-order Lax-Wendroff two-step scheme, and the second-order
"leapfrog'' scheme, Tables I, II and III show the amplification factors,
phase behaviour and long wavelength relative phase error of each algorithm
applied to the Fourier harmonic with wavenumber k = 27/x. The correct
theoretical result is also shown for comparison,

In this section, we assume, as earlier, that v is spatially and temporally
constant and define € = v6t/6x. Then the four algorithms and the exact
analytic formula are linear operations except for the flux-correction part
of stage II. Each harmonic can be treated independently and should be a
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TABLE I. COMPARING THE AMPLIFICATION FACTOR SQUARED FOR
FOUR DIFFERENCE SCHEMES AND THEORY. ONLY THE LEAPFROG
METHOD, OF THOSE SHOWN, HAS NO DAMPING

Algorithm Order Square of the amplification factor®
Theory L) 1
One-sided 1 1-2]e|(1-]e]) (1-cos kéx) strong damping
Lax-Wendroff 2 1 - (e2-€4) (1-cos kéx)? weak damping
Leapfrog 2 1 (exact result) no damping
SHASTA (FCT) 2" [1-1/16 (1-cos k§x)?]2
- 5 (1-2¢2) (1-cos ksx)2 [ 1+ § (1-cos kix)]?

* _ ot
{heree = ox }

TABLE 1I. THE SINGLE-CYCLE PHASE SHIFT FOR FOUR DIFFERENCE
SCHEMES AND THEORY. THE EXPRESSIONS ARE VALID FOR ALL
WAVELENGTHS WITH FIXED VELOCITY

Algorithm Order . Phase shift x , in one cyele®
Theory o kxp = ke 6x [y = v5t]
€ sin kéx
One-sided 1 = ———— e
e-side tan kx, T1- ]| (1-cos BRI
in kéx
Lax-Wendroff 2 = __gSinkeX |
ax-Wendr tan ki [1-e2(1-cos ksx)}

f1-(1-5 s 2
Leapfrog 2 tan kxy = 1-a g o K6x)

€2
(1-—2- sin2 k&x)

¢ sin k&6x
[1-(+e2)(1-cos kéx)]

SHASTA (FCT) "o tan kx, =

% = Yo
{heree = =1}

travelling wave of constant amplitude moving with velocity v (independent
of k), Finite-difference algorithms, in general, cause each harmonic to
travel at the wrong velocity and cause the amplitude to vary slowly in time.
Consider first Table I for the harmonic amplitudes. The amplification
factor is the relative change in the amplitude of the Fourier harmonic during
one computational cycle of the given algorithm. Theoretically the amplitude
should remain constant for all time. The second order leapfrog method
alone achieves this result — not a great surprise since the leapfrog method
is reversible and also gives undamped solutions to wave equations. The
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TABLE III. COMPARISON OF LONG- AND INTERMEDIATE-
WAVELENGTH RELATIVE PHASE ERRORS. THE FCT-ALGORITHM
HAS A FOUR TIMES SMALLER ERROR, FOR SMALI VELOCITIES,
THAN THE OTHER METHODS

Algorithm Order Relative phase error’®
Theory o —xﬂv_éTm = 0 (no error)
2

One-sided 1 "= (16 - % + SIkEExE + Ok éx4)

2 " =-(1/6-€_2 2 §x2 45x4
Lax-Wendroff 5 ) k2sxz + O(ktsx4)

€2

2 o= . - —) k2 §x2 4 &%

Leapfrog (1/6 24) k2 6x2 + O(k4 5x4)
- vét 2

SHASTA (FCT) "o L%r = - (/2 -%) K2 6x2 + O(ks 6x4)

« _ Vot
- *{here ¢ = a}

other three algorithms give damped solutions with the shorter wavelengths
"decaying quite rapidly. The one-sided method has particularly strong dif-
fusion. The damping is linear in |v| and only second-order in kéx. Thus
with € = 0.2, a mode of four cells wavelength loses 18% of its amplitude in
one cycle. Half of the modes in the system (all those with shorter wavelength)
are even more strongly damped.

The Lax-Wendroff two-step method has much lower intrinsic damping,
of order €2 and k4éx?. Thus for the same mode with X = 4 &x the amplification
factor is ~0.94. Clearly leapfrog is best by this criterion. In practical
usage, however, both the Lax-Wendroff and leapfrog algorithms require
an additional diffusive smoothing term to keep dispersively generated ripples
from pulling the density negative near even moderate gradients. A typical
value, per cycle, is 20.05. Thus both Lax-Wendroff and leapfrog are more
diffusive in practice than the new algorithm, which nevertheless guarantees
non-negative values because of the flux-correcting procedure. When velocity -
and wavenumber- dependent corrections to Eq. (23) are included, or if the
implicit antidiffusion is used, the numerical diffusion of the new algorithm
can be made almost non-existent.

Table II shows phase behaviour as a function of € and k for the exact
solution and for the four algorithms. x, is the position of the Im(p) = 0
point at the end of one cycle, assuming Im(p) = 0 at x = 0 initially. The
theoretical result is Xy = vét, independent of k. For long wavelength, all
expressions have the correct limit, as is to be expected. When kéx equals
7 (2 cells per wavelength), the phase velocity vanishes for all four algorithms.
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As an example consider short wavelengths for which kéx = 7/2 (four-celled
modes). Also take € = 3. Then

tan kx, =1, (theory)
tan kx, =1, (one-sided)
tan kx| = Z (Lax-Wendroff) (28)

tan kx, =15/7, (leapfrog)
1. (FCT algorithm)

tan kx,

The new algorithm and the one-sided algorithm give the correct result
in this special case. For shorter wavelengths all algorithms give basically
nonsensical results. ‘

Table III shows the relative phase error for one cycle for the four
algorithms. The relative phase error is defined to be [ x, -vét]/vst. All
four algorithms have phase errors quadratic in kéx. For most problems
of interest the €2 terms can be neglected since €2 <« 1, At long wavelengths
the one-sided scheme has a term proportional to |€ which competes with
the 1/6 term where € approaches Z. This competition effectively reduces
the relative phase error.

Lax-Wendroff and leapfrog have comparable relative phase errors at
long and intermediate wavelength, The last line of Table III shows that the
relative phase errors of the FCT algorithm are typically four times smaller
than those of the other methods for small velocity at long and intermediate
wavelengths. The error becomes fourth order as the velocity gets large
(€~ 3).

Since the one-sided, first-order algorithm has fairly good phase pro-
perties even though strongly diffusive, one can apply a velocity-dependent
anti-diffusion stage to correct the diffusion problem. This has been done
in tests, with good results. The conservative one-sided scheme, however,
provides no intrinsic guarantee that positive quantities will remain positive.
Dispersively generated ripples and regions of negative density may still
get through the anti-diffusion stage to spoil the solution.

In summary, these tables show that the FCT algorithm is also superior
to the other methods in regions of x where the solutions are smooth and the
flux-corrections unnecessary,

Diffusion behaviour in the simple form using 0.125 for ''1/8" is not
noticeably better than pure Lax-Wendroff but slightly superior to Lax-
Wendroff and leapfrog in their practical form where filtering has been
applied to keep the solutions positive. The phase behaviour of the FCT
algorithm is considerably better than for the other methods, however, and
the flux-limiting correction of stage II gives it excellent additional properties,

To these results should be added the conclusions of Morton who
has compared seven different algorithms in somewhat greater detail than
we have attempted here [ 4]. These seven algorithms include the basic
methods in common use today. In addition to the three basic methods discus-
sed above, he includes treatments of the Crowley fourth-order method [12],
the Crank-Nicholson method [10], the Fromm extension of Lax-Wendroff [13]
and the Robert-Weiss fourth-order method [5]. His paper contains two
major results:
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FIG.4. Initial conditions for the square-wave comparison runs. The system is 100 cells long and periodic;
the velocity is constant, and v6t/6x = 0.2, The square wave is 20 cells across,

(1) The leapfrog algorithm is the best of the generally applicable basic
methods.

(2) Implicit and semi-implicit algorithms of the Crank-Nicholson type
should be restricted to use in diffusion equations where an explicit
time differencing would result in a prohibitively small timestep
to ensure numerical stability.

Computer calculations confirm the conclusions of the analysis given
above. Tests were performed on square-waves travelling with constant
velocity., All four algorithms of Tables I, II, and III were tested with identi-
cal initial conditions and identical timestep. The initial condition
in seen in Fig.4 and the comparison of the four algorithms at two later
times is shown in Fig.5. The square wave is initially 20 cells wide with
height 2.0. The background density is 0.5 and constant throughout the
rest of the system. The system is 100 cells long with periodic boundary
conditions. The velocity was chosen so that vét/éx = 0.2 for all cases.

The Lax-Wendroff test was performed with a small additional diffusion
to keep the solution from becaming negative. The leapfrog case was run
with the same level of diffusion and looks appreciably better because under-
shoots and overshoots are smaller., No undershoots are visible in the one-
sided calculation because of the massive diffusion. The SHASTA one-
dimensional FCT calculation shows remarkably good agreement with the
exact solution when the k-dependent corrections in the factor ""1/8" are
included approximately. Figure 6 shows a comparison of the SHASTA
subroutine results for both the ''1/8'"" corrected calculation and the '"1/8'" = 1/8
calculation. The correction, called a ''steepener'’, enhances the antidiffusion
coefficient in regions where short wavelengths predominate. The uncorrected
calculation has no overshoots or undershoots but residual fourth-order dif-
fusion rounds the corners of the square wave somewhat. Even this result
is obviously qualitatively far superior to the three basic methods shown
in Fig.5.
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FIG.5. Square-wave test comparisons at two times during the calculation. The solid line is the analytic
solution, the dots are computed values. Computed values at the background level of 0.5 are not all plotted.

= x o« "1/8" = 125
« « « "1/8" including corrections

2l t=160 cycle 800

O ——=26——=0 60 80 100

X (cell no.)

FIG.6, Comparison of the 1 D FCT-algorithm SHASTA with and without k and v dependent corrections

to the antidiffusion coefficient., Notice the improvement obtained even by the simple formulation "1/8" = 0,125
in comparison with the standard schemes of Fig. 5.
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FIG.7. A test of SHASTA on a problem where new maxima and minima appear physically. Mode 2 is
excited initially using an analytic time- and space-dependent velocity and Mode 4 grows with time. The
weak clipping phenomenon at maxima and minima is a result of the simple flux-limiting correction of stage II.

Figure 7 shows a further test of the 1 D FCT algorithm. The continuity
equation is solved analytically for a time- and space-dependent density of
the form

p(x,t) = 1 +% sin [kl (x-vot)} +§?2:Tax sin kox (29)

The corresponding velocity field is:
1 1 . N
v(x,t) = rak Vo sin | ky(x-vyt) | +sink, v t

— 1 ]
—— Jcos kox -1
kztmax 2 =

where vy, k;, kg, and t max are constant and p(x, t) is given by Eq. (29).
This exact velocity was used in the SHASTA subroutine to solve the

continuity equation numerically for the density. Analytic and computed

solutions for the density are plotted for comparison at three times. This

(30)

+

winy
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problem has a growing sinusoidal density component and a travelling sinu-
soidal component. Their interaction creates a situation in which new maxima
and minima are continually forming and moving physically. This test would
also be handled reasonably well by the leapfrog and Lax-Wendroff algorithms,
It shows that flux-limiting, as performed in stage II of the algorithm, does
not preclude the appearance and disappearance of extrema in the solution
when they occur physically.

Great progress in treating full sets of fluid equations on strong shock
problems has been made recently, two-dimensional versions of FCT algo-
rithms have been devised and tested, and a cylindrical MHD-model has
been programmed. These algorithms and calculations will be published
in a series of three articles in the near future,

4, CONCLUSIONS

A new class of algorithms for solving continuity and continuity-like
equations has been presented. It features a second-order treatment of
the advective terms, is conservative, and is non-negative. The FCT-
algorithm for one-dimension, as employed in a program called SHASTA,
consists of two distinct stages. The first, or transport, stage solves the
continuity equation by a (linear interpolation} three-point formula which
has an appealing geometric interpretation. The second, or antidiffusion
stage, corrects the numerical errors introduced during the first stage.

The strong diffusion of stage I, coupled with the antidiffusion and simple
flux-correcting procedure of stage II makes the new FCT algorithms work,
The flux correction allows the overall algorithm to remain non-negative
and stable while reducing spurious numerical diffusion, the usual stabilizing
element of most methods, to a very low level. The condition that no new
maxima or minima be generated by the antidiffusion of stage II seems to
be the crucial factor. The exact details of the stage I algorithm seem to
be of only minor importance as long as the effective diffusion is sufficiently
great to ensure that the transport of stage I is non-negative, This means
qualitatively that the diffusion introduced in stage I must be larger than any
dispersive error, Then the local residual diffusion, taken to be the diffusion
of stage I minus the limited and hence smaller antidiffusion of stage II, can
always be large enough, in principle, to cancel the dispersion. That is,
the FCT algorithms leave a large residual diffusion behind locally which
is equal and opposite to the local dispersion error. Both terms are of zero
order but combine to give an accurate solution.

Although the particular version of stage I used in the SHASTA subroutine
has excellent phase properties to recommend it, there are many adequate
transport algorithms with sufficient diffusion. The basic conservative one-
sided method may not possess adequate diffusion on its own to remain posi-
tive, but this additional diffusion could be added externally. This approach
has also been tried with the leapfrog method with good results. Hain has
pointed out that the Lax-Wendroff two-step method with an additional dif-
fusion is equivalent to the stage I transport algorithm in the special case
of constant velocity. '

The original motivation for developing this new algorithm arose from
considerations of large-scale multi-fluid, multi-dimensional calculations
on computers just now becoming available. It is clear that the CPU-speeds
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of the newer machines are increasing faster than the size of the fast core
storage. Therefore, if one does not wish to buffer sections of the calculation
into and out of core from external storage, improvements in accuracy will
not come principally from increases in resolution. The necessary improve-
ments will come from achieving a greater accuracy per grid point by ex-
pending more CPU-cycles. By this argument the FCT algorithms will be
used to improve accuracy or the newer faster machines without requiring
longer or larger runs than on the slower existing machines.

Thus it is appropriate to close this paper with a few timing consider-
ations. In the simple 1 D forms used for the tests of section 3, the Lax-
Wendroff method is marginally slower than the leapfrog method; the one-
sided method, without tests, is 1.4 times slower than leapfrog, and the
SHASTA subroutine is ~2.9 times slower., When effective resolution is
taken into account, however, the FCT-algorithms regain this factor easily.
In a shock problem, e.g. comparable calculations using one of the basic
methods with a von-Neumann viscosity would require roughly 3-5 times
more cells to achieve comparable resolution. This required decrease in
&x implies a corresponding decrease in 6t. Thus 9-25 times more grid-
point-time-steps would have to be performed using a standard method than
would be required of the FCT. algorithm. This means, in practical calcula-
tions, involving steep gradients that a given error tolerance can be achieved
by FCT in 3-8 times less computer execution time. The savings in multi-
dimensions could be even more substantial. An even more compelling
argument for the FCT approach can be derived by considering strong-shock
problems. The use of a sufficiently large artifical viscosity to suppress
ripples at the shock in conventional algorithms usually introduces a severe
diffusive stability restriction on the time-step because the viscous diffusion
dominates the flow. Thus, even on grids with the same éx, the FCT
algorithms may consume less computer time by taking longer time-steps —
and give a much better answer in the bargain.
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STATISTICAL METHODS
FOR BUBBLE CHAMBER ANALYSIS

E. LOHRMANN
Deutsches Elektronen-Synchrotron DESY,
Hamburg, Federal Republic of Germany

Abstract

STATISTICAL METHODS FOR BUBBLE CHAMBER ANALYSIS.
1. Introduction; 2. Display of data; 3. Estimating parameters from experimental distributions;
4, Maximizers (minimizers).

1. INTRODUCTION

Bubble chamber pictures contain a large amount of information.
After the care taken in measuring and reconstructing events in the bubble
chamber, one wants to retrieve as much of this information as possible
in terms of quantities of immediate physical interest. This is done with
the help of programs which can display and statistically analyse large
samples of bubble chamber data. These programs consume more than
half of the total computer time devoted to bubble chamber analysis. So,
although most of them are, in principle, quite simple, they have to be
engineered very well to be optimally adapted both to the user's needs and
to the computer installation.

2. DISPLAY OF DATA

As a first step in the statistical ahalysis one wants to look at one~
and two-dimensional frequency distributions of experimental quantities.
We shall describe two program systems which accomplish this. The
following difficult points have to be solved by these programs: handling
large amounts of input (typically up to ~100 tapes), making optimum use
of available computing resources (storage space, peripherals, software
assistance), and making them easy to modify and to use. The last point
is most important. For programs which are meant for a large number
of users, the interface between man and program requires careful engi-
neering and a knowledge of the psychology of the physicist.

2.1. Examples of plotting one- and two-dimensional distributions

This is to give a few examples of the type of output of plotting programs,
Consider, e. g. a bubble chamber experiment, which has yielded a number
of events of the following reaction: yp = pn*r",

One wants to study resonance production in the 7*7° system. The
program should therefore take the following steps: Take the experimental
data, which in the simplest case will be just the four-momenta of all the
particles, calculate the 7*7” invariant mass

M2, =(Eps +E- )2 - (P + B,-)?
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FIG.2, Scatter plot of polar cosine versus azimuth angle of K*(890) decay, observed in the reaction
K p— K%, shown for three slices in the cosine of the production angle & (from Ref. [4]).

and plot the distribution of the masses of the n*7~ system. Figure 1

shows this distribution, which demonstrates the presence of the p~ resonance.
In a two-dimensional or scatter plot two quantities are plotted against

each other, each event being represented by one point. Figure 2 shows

such a plot, displaying the decay distribution (polar versus azimuthal angle)

of the K* resonance decay, observed in the reactionK'p » Kp7~. These

plots can be produced conveniently by a CRT display and photographed.

However, for large numbers of events, these pictures become messy and
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