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ABSTRACT 

Absorptive corrections to scattering and production in a family of 

explicitly unitary models is studied. We find that in a particular model 

in which quantum number constraints are ignored, all the results 

concerning absorptive corrections found in the Reggeon calculus model 

of Abramovskii, Kancheli, and Gribov are reproduced. In extended 

models, however, the effects due to quantum numbers and/or alterna- 

tive unitarization schemes are shown to have a significant effect on 

the form of absorptive corrections. In particular, explicitly unitary 

models are given in which (i) the absorptive corrections enhance all 

cross sections, and (ii) isospin is introduced in a simple way and is 

found to produce quite different counting rules from that assumed in 

the Reggeon calculus. It is shown that the internal quantum number 

structure of the Pomeron affects the amount of absorption in inclusive 

cross sections and hence can be experimentally studied. 

(Submitted to Phys. Rev. D. ) 

*Work supported in part by the U. S. Energy Research and Development 
Administration. 

t’llarkness Fellow. 



-2- 

I. INTRODUCTION 

During the past few years there has been considerable interest in absorp- 

tive corrections to both inclusive and exclusive cross sections; in particular, 

c l-7 the question of their sign relative to the Born term. A popular approach has 

been the use of models based on field theory (in particular weak coupling h$3 

perturbation theory). These models suggest that the absorptive corrections to 

the single particle inclusive cross section cancel out when the trigger particle 

is in the central,region, I,3 and that the leading absorptive correction to the 

elastic amplitude, the two Pomeron cut, contributes negatively to the total cross 

section via the optical theorem. 1,697 In this paper we introduce a family of 

models based on the models of Auerbach, Aviv, Sugar and Blankenbecler. 899 

These are constructed so that the S-matrix explicitly satisfies the unitarity con- 

dition S’S = 1. They will be used to check if the results stated above, or indeed 

if any of the recipes for calculating absorptive corrections suggested in Refs. 

l-7, can be said to be a consequence of unitarity. 

Abramovskii, Kancheli and Gribov, 1 hereafter known as AKG, first showed 

that in a Reggeon calculus model the absorptive corrections to the single particle 

inclusive cross section in the central region cancelled out, so that this cross 

section was given by the Mueller diagram of Fig. 1. Interest in absorptive 

corrections to inclusive cross sections was stimulated when Einhorn and Savit 10 

showed that the colored quark parton model, together with the Drell-Yan for- 

mulaI1 was incompatible with the BNL data 12 for inclusive lepton pair produc- 

tion in hadronic collisions, the calculated cross section being much smaller than 

the observed one. 13 The inclusive cross section, using the Drell-Yan model, is 

given by the M2 discontinuity of the Mueller diagram of Fig. 2a. Landshoff and 

Polkinghorne had earlier suggested that the Mueller diagram of Fig. 2b may also 
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be important (in this diagram the ladder represents any absorptive correction, 

possibly the Pomeron). If this diagram were to explain the discrepancy between 

the Drell-Yan model and the data, its M2 discontinuity would have to be positive. 

Henyey and Savit2 claimed that this discontinuity is in fat t negative, but, as 

pointed out in Refs. 3,5, these authors had not included all the possible contribu- 

tions . Einhorn and Henyey , 5 in a particular unitary model (their model is sim- 

ilar to that studied in Sec. II), find that the diagram of Fig. lb gives a zero con- 
. . . 

tribution to the inclusive cross section. This result was also obtained earlier :. 

in field theory models by Cardy and Winbow and DeTar, Ellis and Landshoff. 4 

Investigations of the two Pomeron contribution to the elastic amplitude in 

field theoretical models 136 have shown that in these models the contribution is 

negative. Moreover using the unitarity sum to evaluate the two Pomeron con- 

tribution it is found that three kinds of contribution are important, those in which 

no Pomeron is cut (Fig. 3a), those in which one Pomeron is cut (Fig. 3b), and 

those in which both Pomerons are cut (Fig. 3~). In these field theoretical models 

the relative magnitudes of these contributions are (1, -4, +2) which clearly add up 

to be negative. In the AKG model’ analogous counting rules can be easily cal- 

culated for the exchange of an arbitrary number of Pomerons. 

In this paper we study absorptive corrections to the elastic amplitude, the 

single particle inclusive cross section and exclusive amplitude in a family of 

unitary models of production, based on the model of Auerbach, Aviv, Sugar and 

Blankenbecler . 8,9 These models have the advantage over the Reggeon calculus 

model and the Regge eikonal model in that they naturally include a detailed 

description of production channels. The unitary model introduced in Refs. 8,9 

is found to be equivalent to the model of AKG in the sense that all the prescrip- 

tions for calculating absorptive corrections are the same in both models. We 
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find however that simple modifications to the AASB model, still preserving the 

unitarity of the S-matrix, drastically change these prescriptions. 

The plan of the paper is as follows. In Section II we review briefly the 

model of Auerbach, Aviv, Sugar and Blankenbecler 899 and show that in this 

model the absorptive corrections to the inclusive cross section indeed cancel 

as was shown in the original papers, that the elastic amplitude is given by the 

usual Regge-eikonal formula, and that the exclusive amplitude for the production 

of one particle is given by the elastic S-matrix element multiplied by the Regge ‘. 
Born amplitude in accordance with usual ideas. In order to facilitate compari- 

son with field theory models, we will restrict our discussion to ladder diagrams 

only, checkerboard diagrams involving interactions between three or more 

exchanges are neglected. In Section III we show that the counting rules of AKG’ 

for the elastic amplitude can be exactly reproduced in this model. In Section IV 

we present various modifications to the AASB model, and find that each modi- 

fication changes the counting rules for the elastic and production amplitudes and 

also the inclusive cross section. In Section V we present an extreme family of 

models, each of which is explicitly unitary, in which not only is the two Pomeron 

cut positive, but the exclusive production amplitude is also enhanced by absorp- 

tive corrections. Finally in Section VI we present our conclusions. 
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II. ABSORPTION IN A UNITARY MODEL 

In this section we study absorptive effects in a particular unitary model, 

that of AASB.8’g In this model there are two kinds of particles, firstly the 

initial state leading particles of mass m, which can neither be created nor 

destroyed which will be called nucleons, and secondly particles of mass ~1, which 

can be created and destroyed which will be called mesons. Here we shall treat 

only spinless particles with no quantum numbers, we shall introduce a model 

with isospin in Section IV. :. Mesons are created and destroyed off chains, which 

are exchanged between the nucleons. Each chain is represented by a hermitian 

operator Z. The unitarity of the S-matrix is then ensured by writing 

SC eiz , 

where Z is defined by a sum over the number of produced mesons 

and 

z = &&/-; d3qi3wn(Y,g;%.y) n . i=l 2Ei(2?r) i 

(2-l) 

P-2) 

(2.3) 

where Y = In s/m2 , E is the conjugate variable to 4 -$I$ -pJ -$(I$ -J+); yi, CJ~ 

are respectively the rapidity and transverse momentum of particle i and the other 

variables are as defined in Fig. 4. a and a+ are the usual destruction and crea- 

tion operators and we use the normalization of AASB, ’ 

[ a(gAa+($y 3 = 2(27r))” 6(q-q’) S(y-y’) NN (2.4) 

Wn is a c-number function of the kinematic variables. Most of the results which 

are of interest here do not depend on its specific form. When we shall need its 

detailed form we shall use the solvable model of AASB, ’ which is equivalent to 
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a multi-Regge model: 

n NYi-Yi-1) 
-y f (B_) I7 e n!e(Yi-Yi+l) x G g(%j) (2.5) 

i=O j=l 

We also impose the condition’ that W, vanishes unless lyi II i (l- e)Y where E 

is an arbitrarily small positive number. At high energies this requirement 

forces the final state nucleons to have energies of order 3 ‘JS, so that as long 

as the meson multiplicity does not grow as fast as s 42 , the meson variables 

can be dropped from the energy and longitudinal momentum conservation 6- :. 

functions. This defines the model. The more general AASB models that contain 

transverse momentum correlations can be treated as below but with a consider- 

able increase in notational complexity. 

A simple and interesting quantity to study in this model is the single particle 

inclusive cross section where the trigger particle is a meson in the central 

region. Then we can write 

1 II- 
2(27r)3 I 

d2g ~0 1 [Sk’, E), a+@ Y)] [ah, Y), SILO > (2.6) 

where the states are defined in the meson Hilbert space so that IO> denotes a 

state with no mesons but with two leading particles present. With the Wn defined 

in (2.5) it has been shown in Ref. 9 that 

Z = f(B) e@-l)Y :e(hy)1’2 @+‘+): 

where 

(2.7) 

P-8) 
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and 

Using these expressions it can be seen that ‘ 

b,Zl= g(g)Z 

and hence 

b, Sl= i&J 2x3 . 

Substituting (2.Jl) into (2.6) we obtain the result 

dcT incl 1 -=- 
d2gdy 2(27r)3 J d2B Pin 

V-9) 

(2.10) 

(2.11) 

(2.12) 

where 

P in=g2(~ <OIZ2(Y,B)10> . 

Hence we see that the single particle inclusive cross section is determined 

fully by Mueller diagrams with only two chains (i. e. , one ladder) exchanged (see 

Fig. 5). All diagrams with the exchange of more than two chains have cancelled 

out. As shown in Ref. 9, this even includes all the checkerboard diagrams. 

Thus in this model there are no absorptive corrections to inclusive meson pro- 

duction in the central region in agreement with Ref. 1. The ansatz (2.5) for Wn 

will be modified later to include the production of photons (and hence lepton 

pairs) as well as mesons, with the result that there are no absorptive corrections 

to the inclusive lepton pair cross section in agreement with Refs. 3,4,5. The 

model of Einhorn and Henyey’ is of this type. 

This cancellation of absorptive corrections to the inclusive cross section is 

certainly more general than the ansatz (2.5) for Wn, for example it also occurs 

in the multiperipheral model of Ref. 9. For models having the operator structure 
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defined by (2.3) such a cancellation will occur provided that [a, S] is proportional 

to [a,Z]S. 

Another interesting quantity to study is the elastic amplitude, and in par- 

ticular, contributions to the elastic amplitude arising from multiple ladder 

exchange. This has been studied in h$3 perturbation theory by Cicuta and Sugar, 15 

and multi-Pomeron exchange contributions to the elastic amplitude have been 

studied in the Reggeon calculus by AKG. 1 We define the scattering amplitude 

operator as in Ref. 9 by 

M(Y, AJ = / d2B_ e-@ E M(Y, I3) 

emi* E [l-S(Y) J3)] 

The amplitude for the ladder diagram is then given by 

M ladder(Y, I3) = F f2(13) ey[2((y-1)+h1 E 2isA 

(2. 13) 

(2.14) 

We now calculate the contribution to the elastic amplitude due to the exchange 

of n ladders, we denote this by %In. The full contribution from the exchange of 

2n chains is given by 

Mtzn) = -2is .QZ <OIZ2n10> 
el (2n) ! (2.15) 

where, as above, the states are defined in the meson Hilbert space. Contributing 

to Mr) there are (2n-1) ! ! ladder exchange diagrams since the first chain can 

link up with (2n-1) other chains, the next one can link up with (2n-3) chains and 

so on. Hence 

kn(Y,B) = -2is -$$$ (2n-l)!! [<OIZ210ijn 
. 

=, 2is g [<OlZ210>ln (2.16) 

+ (-A)” . . 
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Summing over n we have 

Gi(Y,BJ = 5 Gn(Y,g = 2is[l-ewAl 
n=l 

so that 

%I(Y, AJ = 2is / d2B_ eeib*E [l- emAl 

(2.17) 

(2.18) 

which is the usual Regge eikonal formula. 16 Unlike the Regge eikonal model 

however, the present model contains production channels naturally built in. 

Eikonalization of ladder exchange diagrams in I@3 perturbation theory has been 

discussed in Ref. 15. 

An alternative derivation of the above result follows from using a coherent 

state representation which diagonalizes the hermitian operator Z and only allows 

ladder diagrams to contribute. The meson vacuum expectation value of Z 2n is 

given by 

iOIZ2n10, = O3 / dZ e-Z2/4Az2n 
--oo z 

= f?$A” . (2.19) 

which agrees with the previous result. This technique will prove very useful 

below, particularly when we introduce isospin into the model in Section 4. 

Now, the amplitudes for the exclusive production of a single pion will be 

computed. We still restrict the absorption to ladder exchanges. Defining G(l) 

to be the single particle exclusive amplitude where the absorptive corrections 
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are restricted to be ladder exchanges, we find 

fi(‘)(Y B*sy) = <OI[a(~,y),S]lO> ‘w’ 

= ig(cJ <OIZSIO> 

m 
= ig 

J -se 
-Z2/4A ZeiZ 

= -2gQ)A e -A (2.20) 

and we see that since only even powers of Z contribute, the produced meson is 

attached to the projectile and target via Reggeons only, as required for the 

leading terms in the central or pionization region. Production from the original 

chain, which is nonleading because it does not have the full Regge behavior, has 

been dropped. Formulae such as Eq. (2.20) have often been adopted as a 

phenomenological way of taking absorptive corrections into account. 

Let us now extend the above discussion to a generalized Drell-Yan model 

for heavy photon (or lepton pair) production. The S-matrix will be written as 

before, but Z will be written as Z = Z. +ez, where Z. is the purely strong inter- 

action chain while z produces a photon with coupling e as well as any number of 

possible mesons. The photon destruction operator a(r) has the commutation 

relation 

[a(y), ez] = ez , 

where z” does not contain any photon operators and it commutes with Zo. The 

necessary meson vacuum expectation values are given by 

<OlzlO> = D <Ol(&D)210> = 2R 

<OIZ IO>= 0 <OlZ;lO> = 2R1 

<OlZ210> = 2A 
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where D can be identified with the usual Drell-Yan production matrix element 

<s+s- I* y”) and R is its fully Regge behaved counterpart (RI+ R2 - “y”). It 

is the expected leading term in Mueller-Regge theory. These quantities are 

represented diagramatically in Fig. 6. To first order in e, the results are 

<OISIO> = e -A 

$1) = < 0 IS ieZl O> = ie(D+2i 

and 

Pin 
= e2<OlF210> = e2 

RI) e -A 

(2.21) 

If the term 2R is small, ,oin agrees with the result of Drell-Yan. Since R con- 

tains a form factor coupling of the virtual photon to two Reggeons, it should 

indeed be small for large mass production. Note again that inclusive production 

is not absorbed but the exclusive production amplitude has an explicit factor of 

<OISlO> . 

We have seen that the simple unitary model of AASB has provided us with 

many features concerning absorption that may have been expected in view of the 

arguments presented in the introduction. In the next section we shall present a 

remarkable similarity of this model with the Reggeon calculus of AKG. 1 
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III. COUNTING RULES FOR MULTILADDER/POMERON EXCHANGE 

Abramoskii, Kancheli and Gribov’ have presented a technique for calcul- 

ating the imaginary part of the elastic amplitude, corresponding to multi- 

Pomeron exchange, by evaluating the terms which contribute to the unitarity 

sum. They argue that the relevant contributions are those in which each Pomeron 

is either left totally uncut (i. e. , is completely included in either M or M+ in the 

unitarity equation) or is totally cut. Hence the contribution of Fig. 7a is impor- 

tant in the evaluation of the leading behavior of the two Pomeron term, whereas 

that of Fig. 7b is not. In this section, we will show that the AKG counting rules 

are exactly reproduced in the exponential model of Section II. 
17 

The amplitude for the exchange of v Pomerons is given by (see Fig. 8) 

iA(‘)(s, t) = s / NV [(iDI) . . . (iDvd NV dSly (3.1) 

where Nvck,i,k2.. . “v k ) are real vertices of Reggeon emission, D([ , k2) are the 

complex Green’s functions of the Pomerons and 5 = logs. Taking the Pomeron 

to be a simple pole of positive signature we have 

D([ , g2) = 
ei7ro(lL2)/2 

-e 
sin 7roE2)/2 

The Reggeon phase space is given by 

(3.2) 

(3.3) 

where Q2 = t. The prescription given by AKG is the following. The vertices NV 

are unchanged by cutting the diagram, hence for the purposes of evaluating the 

imaginary part of A 04 by the unitarity equation, we may write 

A(‘) N -i(iDl)(iD2) . . . (iDv) (3.4) 
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For a particular term in the unitarity sum we write (iD) for every Pomeron in 

M, (iD)* for every Pomeron in M’ and 2 Im D for every cut Pomeron. We take 

the intercept of the Pomeron to be 1, and neglect its real part. Consider then 

a diagram with m+ n+r Pomerons, where m Pomerons are cut, r are in M, 

and n are in M+ . Using the above prescription, and noting that there are 

(m+ n+r)!/m! n! r! such terms we find 

2 Im Ar m n = 
2 , 

w (iD)’ (iD)*n (2 Im D)m . . . 
<. 

= w g-y4”tr (Im D) 
n+r+m 

. . . 

As a specific example we can consider the case of two Pomeron exchange, 

(3.5) 

m+n+r=2. The m=O contribution is seen to be 2! (Im D)2, the m=l contribution 

is (-4)x 2! (ImD)2 and the m=2 contribution is (2) x2! (ImD)2. This (1, -4, +2) 

counting is also true in the Mandelstam diagram in A+3 perturbation theory. 6 

We now evaluate the analogous quantity to (3.5) in the model of AASB. ’ In 

this model we now have 2r + m chains in M and 2n+ m chains in M+ giving us a 

factor 

W22.kEl$ (3.6) . . 
In M we can arrange the m “open” chains in the 2r + 1 spaces in 

&& (2r+m)! ways . . 

Similarly in T’ we can arrange the m “open” chains in the 2n+l spaces in 

& j$ (2n+m) ! ways . . 
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We can link up the m open chains of M with the m open chains in M+ in m! 

ways. In M we can draw the r closed ladder diagrams (2r-l)! ! ways and in M+ 

we can draw the n closed ladder diagrams (2n-l)! ! ways. Hence 

21mMn m r= [< 0 I Z2 I O>Jr+m+n (2r+m) !’ (2n+m)! 
, , (2r+m)! (2n+m)! 2n! 2r! m! m! 

x (-l)n+r ’ m! (2r-l)! ! (2n-l)! ! 

:. 

_ LO I Z2 I 04r+m+n ( l)n+r 
2n2r n! m! r! 

= Ar+m+n (-l)n+r n,i;r, (3.7) . . . 
Thus we see that the counting is the same in both models. 

We end this section by calculating explicitly some lower order diagrams to 

see how the (1, -4, +2) counting in the two ladder exchange contribution to the 

elastic amplitude and the cancellation of absorptive corrections in the inclusive 

cross section arises. For simplicity we take a model in which only a single 

meson can be created or destroyed off each chain, i. e., WI is as defined in 

Eq. (2.5), Wi=O for iL2. The three types of contribution to the unitarity sum 

for the two ladder elastic amplitude are shown in Fig. 9. 

The contribution in which no ladder is cut (Fig. 9a) is proportional to 

$ x kg (<olz210>)2 =+ (<olz210>)2 
. 

= A2 (3.8a) 

There are six diagrams such as that of Fig. 9b in which one ladder is cut and 

their total contribution is proportional to 

6X $ xq (<olz2,0>)2= -(<olz210>)2 

= -4A2 (3.8b) 
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Finally there are two diagrams such as that in Fig. 9c in which both ladders 

are cut and their total contribution is proportional to 

2x 2 x $ (<olz”Io>)2=~(<olz210>)2 
2! . 

= 2A2 (3.8~) 

Thus we arrive at the (1, -4,+2) counting mentioned above. 

The cancellation in the inclusive cross section is now straightforward to 

see. To order A2, there are only two types of terms which contribute, those <. 

of Fig. 9b and 9c. However both diagrams of the type shown in Fig. 9c contrib- 

ute twice to the inclusive cross section since either of the two mesons could be 

the trigger particle. Hence the total contribution of order A2 to the inclusive 

cross section is proportional to 

-4A2 + 2. 2A2 = 0 (3.9) 

demonstrating the cancellation. 

IV. EXTENDED MODELS 

Let us now generalize the previous model in order to study the effects of 

the isospin of the produced particles, alternative unitary prescriptions, and 

possible excited states of the projectile. 

A. Isospin Example 

Consider a model in which in addition to the purely isoscalar chain, pro- 

ducing isoscalar mesons, there is a chain which can emit a particle with unit 

isospin called a pion which can be emitted along with an arbitrary number of 

I=0 mesons such as illustrated in Fig. 10. The projectile has 1=1/2 and the 

target I=O. Our model S-matrix can be written in the unitary form 

s = .i”P.y+ iZ (4.1) 
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where Z is as before and 7 is the vector isospin matrix for the projectile. If 

aj is the destruction operator for a pion with index j, then we have 

[ 1 aj’Z = O 
and 

where x3 is given by 

(4.2) 

xj = /&h[aj(q,y)+aj’(q,y)l Zl(kY-y) Z(y+iY) , . 
2(27r)3 

and ZI is the analogue of Z for the I=1 chain. Also, xl and Z commute since 

they are both functions of (a +a’). The eikonal form for S has not yet been 

derived in cases with isospin, but it is not clear that such general forms as 

the above have been considered. In any case, we are primarily interested in 

the unitarity property of S. 

We shall be interested in elastic scattering, inclusive scattering and exclu- 

sive production of one pion. -- l/2 With the definition x = (~‘8 , the S-matrix and 

its commutators with the single pion destruction operator can be written as 

S= cosx+i7.r? 
( - ) 

iZ e 

and 

eizQj , 

(4.3) 

(4.4) 
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where 

. (4.5) 

In order to retain the ladder approximation and avoid checkerboard graphs, 

we note that the only nonzero vacuum expectation values are defined by 

A=;<olZ210> 

I. 

A1=;<OI;;-.;;‘lO> 

R=;<Ol, ;; IO> 

(4-G) 

R1=;<OIZ;; IO> 

which are illustrated graphically in Fig. 11. The lack of cross terms between 

Z and T considerably simplifies the following analysis as we shall see. 

The elastic S-matrix element is the meson and pion vacuum expectation 

value of S; 

<olSlo>=J* e-x2~4A1ei~~-cOleiz10> 
= 1 

=e -(A+A1) (1 

The exclusive production amplitude is 

- 2A4 

~01 aj,S IO>= ih <Ole [1 1 iz cjlO> / A e-x2'4A1[Qj] 

1 

= -2h R T.H 
11 

(4.7) 

(4.8) 
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where the integral is performed by introducing F= 2Al l/2; , and the result is 

H = e-(A+A1) 1 ( -34 - (4.8a) 

The resultant cross section for the production of only one pion will be propor- 

tional to the square of the integral of this quantity over impact space. Note that 

the absorption factors are not related to the elastic S-matrix: 

<Ol aj,S IO>+ -2hR.iTj<OISIO> . [ 1 (J-9) 
The inclusive production cross section of neutral pions is given by the 

vacuum expectation value of a3, S I[ II 2 as before, and the result is 

PFn = 2h2RF , (4. 10) 

where 

F=$~+&-(l-eB4A1)] . (4.10a) 

It should be noted that the absorption due to A has cancelled but not that due to 

Al. The result for charged pions is similar: 

P;, = 2h2R{F zt T3G] 

where 

+1 (1- e-4AljJ 4i 

(4.11) 

(4. lla) 

Note that in the limit Al --LOO , G - 0, F - l/3 and pFn = p% . It is clear that 

these inclusive cross sections are still shadowed because of the isospin structure 

of the production matrix element. The commutation properties of the isospin 

operators of the leading particles change the counting and the absorption no 

longer cancels. 
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In the opposite limit, AI - 0, F=G= 1, and the result is the expected 

Mueller-Regge limit with R as shown in Fig. 11. 

B. K-Matrix 

It has been pointed out by R. Sugar 18 that the absorption does not cancel 

in the single particle inclusive cross section, for the K-matrix form for 

satisfying unitarity. To see this, write 

s= (1 +iz)(1 -;zy (4.12) 

and the elastic”matrix element can then be written as 

< 0 IS I O> = 1 + 2 2 (-l)n y ($)n = 1 /m dx e-X2(I-Ax2)(I+Ax2)-1. (4.13) 
n=l . 

J T-00 

The particle production operator is 

[a, S] = igZ (1 - iz)-” 

and the inclusive cross section is proportional to the vacuum matrix element of 

g2z+z (1 +;z+z) 
-2 

, (4.15) 

which clearly shows that absorption effects are still present. 

C. Projectile Excitations 

The effect of excited states of the projectile will now be investigated by 

considering the S-operator as a matrix in this state space: 

s = ,iGZ (4.16) 

where Z is the chain meson creation operator and G is the symmetric, real 

coupling matrix among the projectile states. Using the commutator 

[a, S] = SG $a, Z] = igSGZ , (4.17) 

the effects of absorption are again seen to cancel in the meson inclusive cross 

section for any choice of G. 
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The choice of G can affect the explicit form of the S-matrix, however, in 

unusual ways. If the elastic matrix element of G” is defined by 

then S becomes 

Go = 

tGn)ll = g(n) (4. 18) 

tQll = C 5 g(n) Zn 

which may or may not be an exponential series. 

For example if one chooses G equal to 

\ 
1 1 0 0 . . . I 

1 3 2 0 . . . 

0 2 5 3 0 .*. 

0 0 3 7 4 . . . 

. 0 4 9 .., 

. 

. 

(4.19) 

(4.20) 

the reader may be interested in proving that g(n) =n! , and 

(S)ll = (1- iZ)-l 
(4.21) 

@) 12 
-2 = iZ(l-iZ) . 

If one cuts off the finite G matrix at any point, g(n) still equals n! until n exceeds 

the value of the last diagonal element of G. A choice with better convergence 

properties is to set G2 = Go so that g(n) = (n/2)! . 

Using our previous results, the general elastic S-matrix element is 

<oIsllIo> = # A” fm-0 . (4.22) 

A similar result holds for the exclusive production amplitude. By choosing dif- 

ferent forms for G, the nature of the convergence of this series can be changed 

at will from exponential (G=l), to geometric (G2=Go), to superficially divergent 

( G=Go ) , for example. 
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V. ANTISHADOWING 

Since we have now seen that an exponential form for the S-matrix is not the 

only possible one, it is amusing to consider the following form. Write S as 

s = eW-WZ (l+ iaZ) (1- iaZ)+I (5 * 1) 

where a is a parameter. As a varies from zero to one-half, S changes from the 

exponential form to the K-matrix form. Unitarity is preserved for any value of 

a. It is convenient to introduce an expansion for S in terms of the coefficients 

uQW : 
i. 

where 

uQ(a) = (1 - 2a)Q + 2 Q2 5 (1 - 2a)maQ-m 
m=O . 

Some explicit forms for low Q are uo=u1=u2= 1, u3= l+4a3, u4= l+ 16a3, 

u5= 1+8a3 (5+6a2), . . . 

The elastic S-matrix is 

<OISIO> = xg . An u2#) 

and the inclusive cross section is proportional to 

m=g2A g”1 Un P. 0 tn+u. 

where 

-l)k-n (2n) 1 
k! (2n-k)! ’ Uk+l(a) U2n+l-k(a) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 



A few sample values 

tion cross section is 
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are Uo= 1, and U1= 2(1-u3) = -8a3. The exclusive produc- 

proportional to 

pex = 4g2A2 (5 - 7) 

and only if a=0 is the coefficient of the Born term 4g2A2 equal to ~0 IS I 0>2, as 

would be expected in simple absorption models. Note that the inclusive cross 

section is proportional to A whereas the exclusive one is proportional to A2 as 

would be expected in a fully Reggeized theory. 

Let us now examine these quantities only to the order of two Pomeron 

exchange. An expansion of the above results yields 

l- <OISIO> = P - + P2 u,(a) (5.8a) 

P- in = g2P[l + P(l-u,(a))] (5.8b) 

p,,= 4g2P2[1-P u3(a;l (5.8~) 

where P = ~<OlZ210>. These formulas, which hold in this explicitly unitary 

theory, have several interesting and surprising properties. Note that pin is 

absorbed in general. However, if a<O, the absorption actually enhances the 

inclusive cross section. Similarly, if u,(a) is negative, the two Pomeron cut 

in the elastic cross section is positive, also an enhancement. This will occur 

for sufficiently small a, a < -16 -l/3 N -0.40. Finally, if u,(a) is negative, 

exclusive production is enhanced as well, and this occurs if a < -4 -l/3 tx -0.63. 

We reiterate that this unexpected behavior is true in an explicitly unitary theory 

and hence the sign of absorption effects cannot be said to follow from s-channel 

unitarity alone. However, it should be noted that this type of unitary S-matrix 

cannot arise from the Lippman-Schwinger or Bethe-Salpeter type of equation used 

as starting points in the proof of the negative sign for diffractive effects near 

threshold. 
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VI. CONCLUSION 

The simple models that were discussed above can only be used to suggest 

possible behavior in more complicated and physically realistic situations. They 

should be used to increase one’s physical intuition’and hence to aid in construc- 

ting more sensible theories. A few salient points should be stressed which were 

gleaned from studying the above examples: 

(1) The exponential operator form of the S-matrix is a very convenient 

approach to use in formulating the Reggeon-calculus of AKG and the Regge- 

eikonal model. It is especially useful in those cases in which s-channel unitarity 

must be implemented. It may prove to be more basic than Reggeon calculus in 

the sense that details of the inelastic states can be built into the form of Z 

which are lost or hidden when only Reggeons are considered. 

(2) However, t-channel unitarity is not guaranteed by the model but it can 

be enforced to any desired order by appropriately modifying the choice of Z to 

contain the appropriate nonplanar graphs and rapidity gaps. 

(3) It was found that the internal quantum numbers and possible excited 

states of the projectile, which may or may not be discrete states in the continuum, 

can change the counting rules for higher order diagrams. For example, the 

counting rules of AKG seem to be true only in a model of the Pomeron which neg- 

lects the isospin character of the couplings. These possibilities can also super- 

ficially change the convergence property of the S-matrix, from exponential to 

geometric. 

(4) These effects change the counting of higher order diagrams and can 

strongly ‘modify the shadowing. They may have a large influence on the discus- 

sions of nuclear multiplicity using the AKG formulas depending on details of the 

model of the Pomeron. 
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(5) The extreme example in Section V that had antishadowing clearly shows 

that s-channel unitarity does not specify or determine absorption, not even its 

sign. However, such models may be inconsistent with t-channel unitarity since, 

with certain analyticity assumptions, White 19 has <demonstrated that the full two 

Pomeron contribution is definitely negative (normal shadowing). The model in 

the text, however, possesses a positive contribution from’ the disconnected two 

Pomeron (< 0 I Z2(Y, B) IO >2) cut only, and hence may or may not be consistent 

with this theorem. :. 

(6) These models point out the importance of measurements that study ab- 
^ 

sorption effects in elastic, and in inclusive and exclusive production processes. 

It is possible that one can learn about the basic nature of the Pomeron (such as 

its isospin content) from detailed studies of the momentum transfer and trans- 

verse momentum dependence of these processes. 

We find it very surprising that two models, one constructed to satisfy s- 

channel unitarity (that of AASB 8 ’ ‘) and the other satisfying t-channel unitarity 

(that of AKG’) should give identical prescriptions for unitarity corrections. 

However, even if these counting rules should be correct in the case of no quantum 

numbers, it is clear, from the discussion in Section IV, that they may be altered 

by the presence of internal symmetries or excited states. The models presented 

in Sections IV and V demonstrate that s-channel unitarity alone does not place any 

relevant constraints on the magnitude or sign of absorptive corrections. Clearly, 

before the properties of the models reviewed in the introduction can be safely as- 

sumed to be general, much more ambitious models must be examined. 
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FIGURE CAPTIONS 

1. Mueller Regge diagram for the single particle inclusive cross section, 

where the trigger particle is in the central region. 

2. Mueller diagrams for the inclusive production of massive lepton pairs 

(a) given by the Drell-Yan model; (b) absorptive correction to the Drell- 

Yan model. 

3. Dominant contributions to the unitarity sum for the two Pomeron cut. 

4. Basic form of Zn. i. 

5. Mueller diagram which determines the single particle inclusive cross 

section in the model of AASB. 

6. Definition of quantities which appear in massive lepton pair production. 

7. (a) A leading order contribution to the unitarity sum for the two Pomeron 

cut and (b) a nonleading contribution. 

8. Elastic amplitude corresponding to the exchange of v Pomerons. 

9. Three leading contributions to the unitarity sum for the term of order 

Z4 in the elastic amplitude. 

10. (a) A chain with only I=0 mesons produced and (b) a chain with I=0 mesons 

produced together with an I=1 pion. 

11. Definition of quantities which appear in the production of a pion with 

isospin 1. 
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