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Abstract. We have derived the Hawking temperature of the dReis
Nordstrom-Vaidya black hole by the use of bothridwtial null geodesic and the
complex path methods. We have obtained that thes rdapendence of the
temperature in the Reissner-Nordstrom-Vaidya blaak is not as simple as that
in the Schwarzschild black hole, but still we regtie conclusion, as in the case
of the Schwarzschild black hole, that a higher Hagkemperature corresponds
to a lower mass of a black hole.
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1 I ntroduction

A black hole is a very dense object that, claskicglarticles and light cannot
propagate away from it [1-3]. Quantum mechanicalipwever, there is a
possibility that one of a particle production paira black hole is able to tunnel
the gravitational barrier and escapes the black’siblorizon. Thus, a black hole
is not really black; it can radiate or evaporatetip@s. Such radiation was
shown for the first time by Steven Hawking in 1944]. As it radiates, a black
hole has a non-zero temperature, called the Hawldngperature. In deriving
the temperature, Hawking considered the Schwarzsthack hole, a neutral
black hole that has no angular momentum. He oldathat the Hawking
temperature of the Schwarzschild black hold,js hd16r°kM wherek is the
Boltzmann’'s constant and is the mass of the black hole [4]. It turns owdtth
the Hawking temperature is inversely proportiooaite mass of the black hole.
Thus, the possibility for a particle to escape fratmeavier black hole is smaller
than from a lighter one. Recently, some modelsladkbhole radiation or some
ways of deriving the black hole’s temperature hagen developed, including
the radial null geodesic method and the complek pathod or the Hamilton-
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Jacobi method [2,3,6-8]. Hawking radiation is a Hopic that has been
discussed in a number of papers on gravity, inolgidiome that were published
very recently [9-16]. Previously, we have derived Hawking temperature of a
Vaidya black hole by the use of both methods meseticbefore [17]. A Vaidya
black hole is a black hole of which the mass depesrdradius and time, thus,
in the case of the radiation aspect of black halés,more realistic as compared
to a static one. In this research we consideredHneking temperature of a
Reissner-Nordstrom-Vaidya black hoig. a Vaidya black hole that has a non-
zero electric charge. The black hole is specifigdthe following spacetime
interval [18]:

d¥ =-Fdf+ Fldr*+ r?dQ?
2 1)

F=1-2(M+ f)+=, dQ? = dg? + sindg?.
r r

M ande correspond to the mass and charge of a spherisathmetric black
hole and is an arbitrary function of mass and charge, f = f(M,€). The above
metric is the transformed form of the original one,

ds? = - Fdi + 2 dudr P dD 2. 2

Hereu represents a time variable. This form of metriaas applicable for the
complex path method since it does not give inforomabn the velocity of a
particle moving out. Accordingly, we will not codsir this metric for our
calculations (especially for the complex path mdjho

Note that the metric (1) reduces to the Reissneddtoom metric wheri= 0
and reduces to the Schwarzschild metric when bathd e are set to vanish.
The Reissner-Nordstrom-Vaidya metric has two siagiyl (corresponding to
F = 0) coordinates

=M +f)x (M +f)?-e?. (3)

Note that single singularity corresponds to a raugr= 0, black hole. Without
changing physical content we can define the transiton for the time
coordinate

_ _r1
dt - dt-v1-Fdr (4)
giving spacetime interval

d¢’ =-Fdf +(1- F+ F 1) dr’+ 2R/1- F 'drdi+ rPd) . ()
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In the following two sections, we will utilize thimetric to compute the
Hawking temperature with the radial null geodesietimd and the complex
path method. The final section is devoted to thechgsions.

2 Radial Null Geodesic Method

The Hawking temperature describes the appearanddaok hole radiation.
Quantum mechanically, this shows a tunneling effeatrounding the black
hole. Since the tunneling probability of a particteresponds to its action,

ro exp(—% ImSJ (6)

and the action relates to energy and thus temperathe corresponding
temperature will then define the Hawking tempemtuxccordingly we should

consider the action to obtain the Hawking tempeeat®ne way to do this is to
consider the radial null geodesic conditide=dQ?=0. This condition is

equivalent to considering to a two-dimensionar){case. This can be
understood since for the spherical symmetric blacle, as in our case, the
propagation of particles crossing the gravitatiobatrier is mostly along the
radial direction. Applying this condition to theai® metric, one has

dr _-Fy1-F'#1_ F
dt  1-F+F'  EJ1-Fli1

(7)

Note that the second equality comes from the faat multiplication between
the LHS numerator and RHS denominator is equah&b between the RHS
numerator and LHS denominator. Let us look at dore@round the black
hole’s horizon by expanding the functiBraround the horizon’s radiug

F(rt)=F '(r, t)€ -r,,)+ 0 = Y. (8)

In the above, we take, for simplicity, only thesfiterm. The prime (dot) sign
defines the derivative with respect to radial cawater (timet). The velocity
around the horizon is

F(rt)=+F'Cpt)E -ry). %)

The plus sign corresponds to the velocity of aiglargoing out fromr;, to ryy
crossing the barrier near the horizon, while thausisign defines the velocity
of a particle near the horizon moving into the klhole.

The radial part of the action of a particle is defl as
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Tout Py " out

S :rTI p dr= I I dp dr:J.
fin r 0 r

in

=== 10
rdt dp (10)

H
J'd_H dr 1= dr _ dH
f
0
In the abovey, is the radial momentum ardlis the Hamiltonian. Recalling (8)
for outgoing particles, one has

routE
_ dH
3= j { Fn)C 1) -

The integration is easily computed. Note thatrtiegration can be computed
by the use of the residue method. We obtain

TE(t)

F'(r.t) (12)

Im§ =
Due to transformation (4), the time coordinate Inees imaginary at positions
whereF < 1. Accordingly, the temporal part of the actieiiEAt also contains
imaginary values. For the case of the Schwarzsdisitkground, the imaginary
component of the temporal part of the action can d¢ained through
transformation from Schwarzschild coordinates tagkal-Szekeres coordinates
[19]. It is shown in [19] that the time shifit has the form ofi27M. It turns out
that the value 2 corresponds to the inversedf/dr at the horizon wherEg for
the Schwarzschild background is equal +@NI/r. Thus, in our case we expect
that —EAt equalsi 7&/(dF/dr) herizon With F is given by Eq. (1). Inclusion of this
contribution to the action results in multiplyinget right-hand side of Eq. (12)
with a factor of 2:

27E(t)

ImS= .
F'(rt)

(13)

Finally, equalizing the tunneling probability (6)itkv the Boltzmann factor
exp(E/KT) we obtain the Hawking temperature

_AFE(rt)

=k (14)

The same result can be obtained when we utilizgien@). In this case the
temporal part of the action is real and thus dag#scantribute to the Hawking
temperature.

In the following we derive the Hawking temperatime the use of the second
method.
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3 Complex Path Method

In this method we work in scalar field theory iniathparticles (assumed to be
mass-less) that radiate out obey the Klein-Gordaugjsation with the above
metric as the background. We assume that the Wiatk absorbs almost all
particles that move into it, meaning that the plolitg of ingoing particles is
almost unity. In addition, the probability of palés being created within the
black hole and radiating out from the black holeagsumed to be equal to
expE(t)/kT). By deriving the actiongr,t) through the Hamilton-Jacobi
equation and writing the wave functigmas exp{2miS(r,t)/h), the Hawking
temperature may be obtained.

Let us start with the mass-less Klein-Gordon’s éqna
d,19"\J-gd,d =0. (15)

As a Reissner-Nordstrom-Vaidya black hole is spmadli symmetric, the
Hawking temperature may be thought of as correspgnb radial radiation.
Accordingly, the above equation reduces to a twoedisional I(-t) problem.
For the Reissner-Nordstrom-Vaidya metric (5), thewvee equation is equivalent
to

0=0,[g"J-00ip+ ' V- @, A+, [ §' V- o+ § - 9.4
=F(L+F2)0,p+ (-1 F -F 10, %p+F (1-F )%, o+
1A-F NP0+ 2F 1-F H)YD,0, 0+ (1-F HYF Bo+
1A-F N PFTR 0,0+ F 0,0+ FO, .

(16)

In the above, the prime sign defines the derivatvith respect to radial
coordinater and the dot sign defines the derivative with respe timet. In
terms of the action:

0=F1+F2)-in)S+ (-1+ F- F 1)@, Sy - 9, >9)+
FA-F Y2y, S+1 @1~ F Y Y2F ' (-in), S+
2F (1-F 2 (-0,5)0, 9~ 10,9, 9+ (1= F*)'* FCAp, S+
1A-F N2 FTF (-in)a, S + F(-in)d, o+ F(-@, S)* - 1d,°S).

(17)

As the Planck constant is very small, we may apprate to non Planck
constant terms. We have

_-FJF?-F £F
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Now use the above equation to obtain the actiorctiomn. In the standard
Hamilton-Jacobi methody(r,t) can be written into two parts: the time part
which has the form dEt and the radius paR(r). However, allowing the energy
to vary with time, the action should have a moneegal form:

t
SUﬁ:IE@MW+Rn& (19)
0

Insertion of Eq. (19) into Eq. (18) gives

-FVF2-F +

2,50, R—F—<Eu+a B. (20)

As a function ofr andt and recalling Egs. (7) and (19), the functigfr,t)
fulfills

dR(r, 1) :6R(r,t)+it6Rr,t)
dr or dr ot

/ 1
+1 FVl-F %1 21)

= (EM R0 R

—J__j_tl

= E() + 220, R
- F F

Considering a slowly varyind?, the second term may be neglected. The
function R in the near horizon may then be obtained by imtiyy the above
equation with respect g after recalling (8):

7ai

R(r,t) = +EwImF(t) iaonly (22)
Accordingly, the action has the form
THE(t)
S(k, 1) = j E(t)drs T T8 (23)

In the tunneling process, the particle’s energhess than the barrier potential.
Accordingly, the particle’s momentum is imaginargsulting in the imaginary
of the action function. Thus we may wrft&dt in the above asIm([Edf). Thus,
the probability of particles moving in and movingtorespectively, becomes
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R.(r,t)= ex;{ (lij(t)duE(t)ﬂﬂ
(24)

P (r,t) = exp{ ('ij“dt_E”TH

Since we assume that almost all ingoing particles teapped, we have,
equals to unity and thus

Im j E(t)dt' = — E(Y) (25)

T
F'(r,t)
giving

Fi(r.t)
Equalizing the above with exgE(t)/kT) we get the Hawking temperature

CHE(r )
"4k

out(r t) eXp|: [ (t)—J:| (26)

(27)

This result agrees with (14) derived by the firgthod. Thus we conclude that
Eqg. (27) is the Hawking temperature for the Reishmdstrom-Vaidya black
hole.

Let us now look at the explicit form &f(Eq. (1)). We have the explicit form of
the Hawking temperature for the Reissner-Nordstkéitya black hole:
2M+ 1) 2M + f)+ Ze’
ok [(M+f)+\/(M+f) -€’] [(M+ HE(M+H2-e 2
"k

_[(M + f)t«/(M +f)2-€?]3

In the + sign, plus (minus) corresponds to a larger (smjalladius of the
singularity. Thus we have different Hawking temperas for different
horizons: the larger radius has a lower temperature vice versa.

(28)

The temperature difference between both horizons is

AT, =" (a0 1)@ +8(M+ fleer 4&-8(Me T7)J (e 1P- & (29)

47ike

For the case whef=e= 0, i.e. for the case of a Schwarzschild black hole, Eq.
(28) reads
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L(_EJ,LJ M = M(r)
T, = 8k I:I 2M (30)
o MO

Note that the second equation is in accordance Mavking’s result. This is
understood as the case e=0, andM is r-independent corresponds to the
Schwarzschild black hole. Note also that this blhole has only one horizon
radius, corresponding to the plus sign in Eq. (28)d thus Eq. (29) is not
applicable.

Finally, the Hawking temperature for the case of extreme Reissher-
Nordstrom-Vaidya black hole wheké =g, is

B 2M '+ £ + 2M + )+ 2VM
| M EJM+H)Z-MZ] (M (M H2-MF?
" "8k 2M?2

_[(M + ) (M +)2-M?]3

Note that the above temperature vanishes wWhefl. We see complexities of
the mass dependence in the Egs. (28) and (31)e 8iecmass in the numerator
has lower power compared to that in the denominaterconclude that a more
massive black hole has a lower Hawking temperatapared to a less
massive one.

+

. (31)

4 Conclusion

We have derived the Hawking temperature for a ReisBlordstrom-Vaidya
black hole with two different methods. The massestelence of the temperature
is not as simple as for the temperature of a Sctsghild black hole. This is
due to the complexity of the Reissner-Nordstromelyai metric. However, the
general conclusion that heavier black holes halmvar Hawking temperature
is guaranteed.
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