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Abstract. We have derived the Hawking temperature of the Reissner-
Nordstrom-Vaidya black hole by the use of both the radial null geodesic and the 
complex path methods. We have obtained that the mass dependence of the 
temperature in the Reissner-Nordstrom-Vaidya black hole is not as simple as that 
in the Schwarzschild black hole, but still we regain the conclusion, as in the case 
of the Schwarzschild black hole, that a higher Hawking temperature corresponds 
to a lower mass of a black hole.  
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1 Introduction 

A black hole is a very dense object that, classically, particles and light cannot 
propagate away from it [1-3]. Quantum mechanically, however, there is a 
possibility that one of a particle production pair in a black hole is able to tunnel 
the gravitational barrier and escapes the black hole’s horizon. Thus, a black hole 
is not really black; it can radiate or evaporate particles. Such radiation was 
shown for the first time by Steven Hawking in 1974 [4,5]. As it radiates, a black 
hole has a non-zero temperature, called the Hawking temperature. In deriving 
the temperature, Hawking considered the Schwarzschild black hole, a neutral 
black hole that has no angular momentum. He obtained that the Hawking 
temperature of the Schwarzschild black hole is TH= hc/16π2kM where k is the 
Boltzmann’s constant and M is the mass of the black hole [4]. It turns out that 
the Hawking temperature is inversely proportional to the mass of the black hole. 
Thus, the possibility for a particle to escape from a heavier black hole is smaller 
than from a lighter one. Recently, some models of black hole radiation or some 
ways of deriving the black hole’s temperature have been developed, including 
the radial null geodesic method and the complex path method or the Hamilton-
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Jacobi method [2,3,6-8]. Hawking radiation is a hot topic that has been 
discussed in a number of papers on gravity, including some that were published 
very recently [9-16]. Previously, we have derived the Hawking temperature of a 
Vaidya black hole by the use of both methods mentioned before [17]. A Vaidya 
black hole is a black hole of which the mass depends on radius and time, thus, 
in the case of the radiation aspect of black holes, it is more realistic as compared 
to a static one. In this research we considered the Hawking temperature of a 
Reissner-Nordstrom-Vaidya black hole, i.e. a Vaidya black hole that has a non-
zero electric charge. The black hole is specified by the following spacetime 
interval [18]: 
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M and e correspond to the mass and charge of a spherically symmetric black 
hole and f is an arbitrary function of mass M and charge e, f = f(M,e). The above 
metric is the transformed form of the original one, i.e. 

 2 2 2 22 .ds Fdu dudr r d= − + + Ω  (2) 

Here u represents a time variable. This form of metric is not applicable for the 
complex path method since it does not give information on the velocity of a 
particle moving out. Accordingly, we will not consider this metric for our 
calculations (especially for the complex path method). 
  
Note that the metric (1) reduces to the Reissner-Nordstrom metric when f = 0 
and reduces to the Schwarzschild metric when both f and e are set to vanish.  
The Reissner-Nordstrom-Vaidya metric has two singularity (corresponding to 
F = 0) coordinates  

 2 2( ) ( ) .hr M f M f e= + ± + −  (3) 

Note that single singularity corresponds to a neutral, e = 0, black hole. Without 
changing physical content we can define the transformation for the time 
coordinate  

 
11dt dt F dr−→ − −  (4) 

giving spacetime interval 

 2 2 1 2 1 2 2(1 ) 2 1 .ds Fdt F F dr F F drdt r d− −= − + − + + − + Ω  (5) 
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In the following two sections, we will utilize this metric to compute the 
Hawking temperature with the radial null geodesic method and the complex 
path method. The final section is devoted to the conclusions. 

2 Radial Null Geodesic Method 

The Hawking temperature describes the appearance of black hole radiation. 
Quantum mechanically, this shows a tunneling effect surrounding the black 
hole. Since the tunneling probability of a particle corresponds to its action, 

 
2

exp ImS
 Γ ∝ − 
 ℏ

 (6) 

and the action relates to energy and thus temperature, the corresponding 
temperature will then define the Hawking temperature. Accordingly we should 
consider the action to obtain the Hawking temperature. One way to do this is to 
consider the radial null geodesic condition ds2 = dΩ2 = 0. This condition is 
equivalent to considering to a two-dimensional (t-r)-case. This can be 
understood since for the spherical symmetric black hole, as in our case, the 
propagation of particles crossing the gravitational barrier is mostly along the 
radial direction. Applying this condition to the above metric, one has 
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dr F F F
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−

− −

− − ±= =
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 (7) 

Note that the second equality comes from the fact that multiplication between 
the LHS numerator and RHS denominator is equal to that between the RHS 
numerator and LHS denominator. Let us look at a region around the black 
hole’s horizon by expanding the function F around the horizon’s radius rh:  

 2( , ) '( , )( ) 0( ) .h h hF r t F r t r r r r≈ − + −  (8) 

In the above, we take, for simplicity, only the first term. The prime (dot) sign 
defines the derivative with respect to radial coordinate r (time t). The velocity 
around the horizon is 

 ( , ) '( , )( ).h h hr r t F r t r r≈ ± −ɺ  (9) 

The plus sign corresponds to the velocity of a particle going out from r in to rout 
crossing the barrier near the horizon, while the minus sign defines the velocity 
of a particle near the horizon moving into the black hole.  
 
The radial part of the action of a particle is defined as 
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In the above pr is the radial momentum and H is the Hamiltonian. Recalling (8) 
for outgoing particles, one has 
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The integration is easily computed. Note that the r integration can be computed 
by the use of the residue method. We obtain 
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Due to transformation (4), the time coordinate becomes imaginary at positions 
where F < 1. Accordingly, the temporal part of the action, −E∆t also contains 
imaginary values. For the case of the Schwarzschild background, the imaginary 
component of the temporal part of the action can be obtained through 
transformation from Schwarzschild coordinates to Kruskal-Szekeres coordinates 
[19]. It is shown in [19] that the time shift ∆t has the form of −i2πM. It turns out 
that the value 2M corresponds to the inverse of dF/dr at the horizon where F for 
the Schwarzschild background is equal to 1−2M/r. Thus, in our case we expect 
that −E∆t equals iπE/(dF/dr)|horizon with F is given by Eq. (1). Inclusion of this 
contribution to the action results in multiplying the right-hand side of Eq. (12) 
with a factor of 2:  
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Finally, equalizing the tunneling probability (6) with the Boltzmann factor 
exp(−E/kT) we obtain the Hawking temperature 

 
'( , )

.
4

h
H

F r t
T

kπ
=
ℏ

 (14) 

The same result can be obtained when we utilize metric (2). In this case the 
temporal part of the action is real and thus does not contribute to the Hawking 
temperature.  
 
In the following we derive the Hawking temperature by the use of the second 
method.  
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3 Complex Path Method 

In this method we work in scalar field theory in which particles (assumed to be 
mass-less) that radiate out obey the Klein-Gordon’s equation with the above 
metric as the background. We assume that the black hole absorbs almost all 
particles that move into it, meaning that the probability of ingoing particles is 
almost unity. In addition, the probability of particles being created within the 
black hole and radiating out from the black hole is assumed to be equal to 
exp(−E(t)/kT). By deriving the action S(r,t) through the Hamilton-Jacobi 
equation and writing the wave function φ as exp(−2πiS(r,t)/h), the Hawking 
temperature may be obtained.  
 
Let us start with the mass-less Klein-Gordon’s equation: 

 [ ] 0.g gµν
µ ν φ∂ − ∂ =  (15) 

As a Reissner-Nordstrom-Vaidya black hole is spherically symmetric, the 
Hawking temperature may be thought of as corresponding to radial radiation. 
Accordingly, the above equation reduces to a two-dimensional (r-t) problem. 
For the Reissner-Nordstrom-Vaidya metric (5), the above equation is equivalent 
to 
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In the above, the prime sign defines the derivative with respect to radial 
coordinate r and the dot sign defines the derivative with respect to time t. In 
terms of the action: 
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As the Planck constant is very small, we may approximate to non Planck 
constant terms. We have 
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Now use the above equation to obtain the action function. In the standard 
Hamilton-Jacobi method, S(r,t) can be written into two parts: the time part 
which has the form of Et and the radius part R(r). However, allowing the energy 
to vary with time, the action should have a more general form:  

 
0

( , ) ( ') ' ( , ).
t

S r t E t dt R r t= +∫  (19) 

Insertion of Eq. (19) into Eq. (18) gives 
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As a function of r and t and recalling Eqs. (7) and (19), the function R(r,t) 
fulfills 
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Considering a slowly varying R, the second term may be neglected. The 
function R in the near horizon may then be obtained by integrating the above 
equation with respect to r, after recalling (8): 
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Accordingly, the action has the form 

 0

( )
( , ) ( ') ' .

'( , )

t

h
h

iE t
S r t E t dt

F r t

π≈ ±∫  (23) 

In the tunneling process, the particle’s energy is less than the barrier potential. 
Accordingly, the particle’s momentum is imaginary, resulting in the imaginary 
of the action function. Thus we may write ∫Edt in the above as i Im(∫Edt). Thus, 
the probability of particles moving in and moving out, respectively, becomes 
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Since we assume that almost all ingoing particles are trapped, we have Pin 
equals to unity and thus 

 Im ( ') ' ( )
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giving 
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Equalizing the above with exp(−E(t)/kT) we get the Hawking temperature 
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This result agrees with (14) derived by the first method. Thus we conclude that 
Eq. (27) is the Hawking temperature for the Reissner-Nordstrom-Vaidya black 
hole.  
 
Let us now look at the explicit form of F (Eq. (1)). We have the explicit form of 
the Hawking temperature for the Reissner-Nordstrom-Vaidya black hole: 
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In the ± sign, plus (minus) corresponds to a larger (smaller) radius of the 
singularity. Thus we have different Hawking temperatures for different 
horizons: the larger radius has a lower temperature, and vice versa.  

The temperature difference between both horizons is 

( )2 2 2 2 2
4

4( ' ') 8( ) ' 4 8( ) ( )
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For the case when f = e = 0, i.e. for the case of a Schwarzschild black hole, Eq. 
(28) reads  
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Note that the second equation is in accordance with Hawking’s result. This is 
understood as the case f = e = 0, and M is r-independent corresponds to the 
Schwarzschild black hole. Note also that this black hole has only one horizon 
radius, corresponding to the plus sign in Eq. (28), and thus Eq. (29) is not 
applicable.  
 
Finally, the Hawking temperature for the case of an extreme Reissner-
Nordstrom-Vaidya black hole where M = e, is 
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Note that the above temperature vanishes when f = 0. We see complexities of 
the mass dependence in the Eqs. (28) and (31). Since the mass in the numerator 
has lower power compared to that in the denominator, we conclude that a more 
massive black hole has a lower Hawking temperature compared to a less 
massive one. 

4 Conclusion 

We have derived the Hawking temperature for a Reissner-Nordstrom-Vaidya 
black hole with two different methods. The mass dependence of the temperature 
is not as simple as for the temperature of a Schwarzschild black hole. This is 
due to the complexity of the Reissner-Nordstrom-Vaidya metric. However, the 
general conclusion that heavier black holes have a lower Hawking temperature 
is guaranteed.  
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