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Zusammenfassung

In dieser Bachelorarbeit wird der Einfluss verschiedener Parametrisierungen einer effek-
tiven Theorie auf die Streuung von Vektorbosonen untersucht. Dazu wurden Samples auf
“Generator-Level” mit den Monte-Carlo Generatoren VBFNLO und WHIZARD simuliert
und mittels des Analysetools RIVET verglichen. Die Einflüsse der aQGC Parameter fi und
αi einer effektiven Lagrange-Dichte wurden untersucht um in späteren Analysen Grenzen auf
diese zu setzen. Außerdem wurde versucht eine Umrechnung zwischen diesen Parametern zu
finden und mit der aus der Theorie hervorgesagten [1] Umrechnung verglichen. Dabei wurden
zwei verschiedene Unitarisierungs-Methoden verglichen.

Eine Umrechnung zwischen diesen Parametern war möglich, obwohl ein großer Einfluss
der Unitarisierung beobachtet wurde. Die vorhergesagte Umrechnung konnte nicht bestätigt
werden, da der totale Wechselwirkungsquerschnitt ein nichtkompatibles Verhalten gezeigt
hat.

Abstract

In this thesis, the influences of different parametrizations of an effective theory on Vector
Boson Scattering were studied. Samples on “generator level” were simulated with VBFNLO
and WHIZARD and compared using the analysis tool RIVET. The influences of the aQGC
parameters fi and αi of an effective Lagrangian were studied to set limits on them in further
studies. Furthermore a conversion between them was tried to be found and compared to a
prediction [1]. Two different unitarizations were compared.

A conversion of the different parametrizations was possible although a strong effect of
the unitarization method was observed. The predicted conversion was not confirmed, since
the dependencies of the total cross sections showed a behaviour not compatible.

v



vi



Contents

1 Introduction 1

2 Theoretical Framework 3
2.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Electroweak gauge theory . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Electroweak symmetry breaking . . . . . . . . . . . . . . . . . . . . . 5

2.2 Vector Boson Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Anomalous quartic gauge coupling . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Unitarization by form factors . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Unitarization via k matrix method . . . . . . . . . . . . . . . . . . . . 10

3 Experiment 11
3.1 The LHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 ATLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2.1 Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.2 Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2.3 Muon spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.4 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Data simulation 15
4.1 Monte-Carlo generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 VBFNLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 WHIZARD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Used samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Validity check 19
5.1 Total cross section of the SM process . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Differential cross section of the SM process . . . . . . . . . . . . . . . . . . . 19

6 Total cross sections 21
6.1 Dependency on aQGC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Effects of unitarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Differential cross sections 23
7.1 Discriminating observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.2 Effects of aQGC on observables . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.3 Effects of unitarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Conversion between different aQGC parametrizations 27
8.1 Comparison of non-unitarized samples . . . . . . . . . . . . . . . . . . . . . . 27
8.2 Comparison of unitarized samples . . . . . . . . . . . . . . . . . . . . . . . . . 29

9 Summary 31

vii



A List of used variables 33

B List of all samples 35

C Other plots 37
C.1 Total cross section plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
C.2 Differential cross section plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

C.2.1 WWss channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
C.2.2 WZ channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

C.3 Conversion between different parametrizations . . . . . . . . . . . . . . . . . . 44
C.3.1 differential cross sections for similar total cross sections . . . . . . . . 45

viii



Chapter 1

Introduction

Particle physicists try to discover and study the elementary particles of matter and their
interactions. In the last century a theory was developed to describe this, being known as the
Standard Model of particle physics. Up to now it is well tested and in a good agreement with
experimental measurements. History has shown that a theory might be obsolete once new
regions of accuracy of measurement as well as higher energies become available. Thus an
important interest of particle physicist is to determine the borders of validity of the Standard
Model and to test whether these new models of physics have indirect and direct effects on
the experimental available energy ranges. By comparing measured distributions with the
prediction of the Standard Model one can set limits on parametrizations of these effects.

The Standard Model predicts an interaction of the electroweak gauge bosons called Vector
Boson Scattering. The prediction of the Standard Model without a Higgs boson would lead
to a breaking of the unitarity. Therefore this process is important for the study of the way
electroweak symmetry is broken and of the properties of the Higgs boson.

For that reason the influences of two different parametrizations on Vector Boson Scat-
tering was studied in this thesis. Another aim is to find a possible conversion between two
different parametrizations to work with in further studies.

In chapter 2 the Standard Model and two different parametrizations are introduced.
Chapter 3 explains the experiment collecting data for a later comparison. In chapter 4 the
way of simulating data is described. This simulated data is validated in chapter 5. In chapter
6 the influences of the parametrizations on the total cross sections are studied. Chapter 7
compares the influences on the differential cross sections. A study of the conversion of the
used parametrizations is shown in chapter 8 and a summary is given in chapter 9.
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Chapter 2

Theoretical Framework

2.1 The Standard Model

The Standard Model of particle physics (SM) is a successful theory describing physical pro-
cesses. It is comprised of a theory for elementary particles, the fundamental constituents of
matter, and their interactions [2, 3]. It is well-tested and in good agreement with experimen-
tal results.

Up to now four fundamental interactions are known. The gravitational force is the only
interaction that is not included in the Standard Model. The three remaining interactions, the
strong interaction described by quantum chromodynamics, the electromagnetic interaction
described by quantum electrodynamics and the weak interaction are included in the Standard
Model. Glashow, Salam and Weinberg [2, 3, 4] have been able to find a theory that combines
both the electromagnetic and the weak interactions: the electroweak theory.

According to the Standard Model elementary particles are divided into two groups,
fermions and bosons. Fermions (see table 2.1) are particles following Fermi-Dirac statistics
with a half-integer spin and can be subdivided into leptons and quarks. Three generations
of fermions are known, each containing one electromagnetically charged lepton with an ab-
solute charge 1, one neutral lepton, two quarks and the corresponding anti-particles. The
up-type quark has an absolute electromagnetic charge of + 2

3 and the down-type quark has
an absolute charge of 1

3 . The different generations differ only in particle masses. The charge
the electroweak interaction couples to is called weak isospin and depends on the chirality of
a given particle.

Bosons (see table 2.2) are integer spin particles obeying Bose-Einstein statistics. In the
Standard Model bosons are the mediators of the interaction between particles, described by
local gauge theory. Thus these bosons are called gauge bosons. Gluons carry the strong force
and photons the electromagnetic force. The Z0 and the W± bosons are the gauge bosons of
the weak force. These bosons have a spin of 1 and are also called vector bosons, whereas the
Higgs boson H is a scalar boson with a spin of 0. It is an excitation of the Higgs field, which
is assumed to be1 responsible for the electroweak symmetry breaking (see section 2.1.2).

Since the electroweak gauge theory describes vector boson scattering, it is of higher im-
portance for this thesis and a closer look at it is taken.

2.1.1 Electroweak gauge theory

The electroweak gauge theory by Glashow, Salam and Weinberg [2, 3, 4] describes particles
as left- and right-handed four component Dirac fermion fields:

φL/R =
1

2

(
1∓ γ5

2

)
φ (2.1)

1It is necessary in SM, but was not experimantally verified jet. However is is assumed to have been
measured [6].

3



2 Theoretical Framework

Gener- Fermion Electric Weak isospin |T3| Mass
ation charge left- right- m in MeV

handed handed

1st e− electron −1 1/2 0 0.511
νe electron-neutrino 0 1/2 none < 2 · 10−6

u up 2/3 1/2 0 2.3+0.7
−0.5

d down −1/3 1/2 0 4.8+0.7
−0.3

2nd µ− muon −1 1/2 0 105.7
νµ muon-neutrino 0 1/2 none < 2 · 10−6

c charm 2/3 1/2 0 1275± 25
s strange −1/3 1/2 0 95± 5

3rd τ− tau −1 1/2 0 1177
ντ tau-neutrino 0 1/2 none < 2 · 10−6

t top 2/3 1/2 0 (1.735± 0.014) · 105

b bottom −1/3 1/2 0 (4.18± 0.03) · 103

Table 2.1: List of fermions in the Standard Model sorted by the generation. The first two
lines of every generation represent the leptons, whereas the later two lines are the quarks.
Each listed particle has a anti-particle with opposite charge. Data are taken from [5].

Boson Electric charge Spin Interaction Mass
m in GeV

γ photon 0 1 electromagnetic < 1 · 10−27

W± W bosons ±1 1 weak 80.385± 0.015
Z0 Z boson 0 1 weak 91.188± 0.002
g gluons 0 1 strong 0

H Higgs 0 0 115.5 and
none 127− 600 GeV

Table 2.2: List of bosons in the Standard Model sorted by spin. First four lines represent
vector bosons while the Higgs boson in the last line is a scalar boson. Data taken from [5].

with one of the Dirac matrices γ5. This theory contains a SU(2)L × U(1)Y symmetry and
the full Lagrangian is given by

L = iL̄jLγ
µDµL

j
L + il̄jRγ

µDµl
j
R + Q̄jLγ

µDµQ
j
L + iūjRγ

µDµu
j
R (2.2)

+ id̄jRγ
µDµd

j
R −

1

4
Wa,µνW

µν
a −

1

4
BµνB

µν . (2.3)

Einsteins summing convention is applied and the adjoint spinor is defined as φ̄ := φ†γ0. For
left-handed vector fields the doublet notation is used and j is an index of the generations.
Using the covariant derivative

Dµ = ∂µ + igWTaW
a
µ + igY Y Bµ (2.4)

ensures local gauge invariance under the SU(2)L × U(1)Y transformation

ψ → ei(α(x)Y+βa(x)Ta)ψ . (2.5)

With the weak isospin Ta ≡ 1
2σa (σa – Pauli matrices), the weak hypercharge Y = Q − T3

and the gauge couplings of the gauge fields W a
µ (a = 1, 2, 3) and Bµ, gW and gY .

The last two terms in the Lagrangian are the kinetic terms of the gauge bosons where
the field strength tensors are defined by

Bµν = ∂µBν − ∂νBµ (2.6)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gW ε
abcW b

µW
c
ν (2.7)
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using the gauge fields.
These gauge fields can be identified with the physical gauge bosons using the following

equations: (
Aµ
Zµ

)
=

(
cos θW sin θW
− sin θW cos θW

)(
Bµ
W 3
µ

)
(2.8)

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) . (2.9)

This means the photon γ and the Z0 boson result from a rotation by the so called electroweak
mixing angle or Weinberg angle θW of the gauge fields Bµ and W 3

µ and both charged Wµ

fields are linear combinations of W 1
µ and W 2

µ .

2.1.2 Electroweak symmetry breaking (EWSB)

One Problem of the electroweak theory is, that all particles are assumed to be massless.
Mass terms are not invariant under the transformation given in (2.5) and therefore break
the SU(2)L×U(1)Y symmetry. This is solved by the electroweak symmetry breaking via the
Higgs mechanism [7, 8]. It predicts a symmetrical Higgs field with a non-invariant lowest
energy state. This would give masses to bosons and fermions would gain mass by interacting
with this Higgs field. The Higgs field can only be observed indirectly, through its excitation
– the Higgs boson H. The Standard Model requires such a Higgs boson and in 2012, after 40
years of search, CERN announced they had found a new particle which is compatible with
the Standard Model Higgs boson [6].

But there are also more general approaches for electroweak symmetry breaking, e. g. by
a Σ field [9]. The Higgs field is a special case of a Σ field.

2.2 Vector Boson Scattering

To study the electroweak symmetry breaking, Vector Boson Scattering (VBS) is a very
important process aimed to be measured at the LHC. Furthermore Vector Boson Scattering
includes triple and quartic gauge couplings and Higgs channels. In this process gauge bosons,
emitted by quarks from each proton, interact with each other and decay afterwards (see
figure 2.1).

There are several possible channels for the interaction between the gauge bosons. The
Standard Model predicts a quartic boson coupling or the exchange of a γ or Z0 gauge boson
or a Higgs boson (see figure 2.2).

Vector Boson Scattering requires six weak vertices, so it is a O(α6
W ) process with a small

cross section compared to most of the processes observed at the LHC. Due to experimental
limitations it was not yet observed.

A very important experimental signature of Vector Boson Scattering are the two jets in
the forward pseudorapidity region, called tagging jets, resulting from the quarks emitting
the gauge bosons. So the pseudorapidity difference of the jets |∆ηjj | is expected to be rather
large. In most analyses only the leptonic decay channels of the bosons are considered to have
less background from multi-jet events contaminating the signal region. The leptons from the
decaying bosons tend to be in a pseudorapidity region spanned by the tagging jets. This is
measured by the lepton centrality ζ`` defined as:

ζ`` ≡ min
{

min{η`1, η`2} −min{ηj1, ηj2},max{ηj1, ηj2} −max{η`1, η`2}
}
. (2.10)

A scheme of a characteristic event is shown in figure 2.4.
In this thesis only the same sign W+W+ (WWss) and the W+Z0 (WZ)2 channels are

considered. For sake of simplicity only one flavor was generated, so the corresponding final

2This channel also includes the W+γ∗ channel, since it is not distinguishable to the pure WZ channel.
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f̄

qq

q q

V
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V

Figure 2.1: Feynman graph of a general VBS process. Straight lines with arrows represent
fermions. Curved lines represent vector bosons. Dashed circle stands for the different
possibilities of interactions between the vector bosons shown in figure 2.2.
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Figure 2.2: Feynman graphs for all possible VBS channels. Initial and final state as
shown in figure 2.1
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Figure 2.3: Feynman graphs of other processes with the same final state as VBS. These
are not gauge invariantly separable processes.
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2.5 Signal Characteristics at the LHC

1

23

4
∆φ

(a) r-Z Schematic

1

2

3

4
∆ηζ

(b) r-' Schematic

Figure 2.5: Schematic of a vector boson scattering event in a generic collider de-
tector. “1” and “2” are charged leptons from vector boson decays. “3” and “4” are
tagging jets (see text). The angular correlations �'``, ⇣ and �⌘tagjets are inscribed
for reference.

13

(a) R-η plane

Figure 2.4: Schematic view of a Vector Boson Scattering event in the ATLAS detector.
1 and 2 are leptons and 3 and 4 are jets. Observables ∆ηjj and ζll as described in the text
are shown. Graph is taken from [10].

states are

jje+νee
+νe , jje+e−e+νe . (2.11)

There are other O(α6
W ) processes with the same final state which are not gauge invariantly

separable. Those processes (see figure 2.3) are included in the used samples.

2.3 Anomalous quartic gauge coupling (aQGC)

Up to now the Standard Model shows good agreement with experiments. However it is
possible that this is only correct up to an unknown center of mass energy scale Λ. New
effects or completely new physics could occur beyond this energy with indirect or direct
effects on the currently experimental accessible energy range. One way to study this is to
build an effective field theory [1] to parametrize these effects on the low energy regions. This
introduces more degrees of freedom to the Standard Model.

One approach is to build an effective Lagrangian with additional operators of higher
dimension3

Leff = LSM +
∑
i

ci
Λi
Oi (2.12)

with the parameter ci. Due to this higher dimension these operators O have coefficients of
inverse power of mass so the operators with the lowest dimension are dominant. Most of
the SM operators are of dimension four and since only operators with even dimension satisfy
conservation of lepton and baryon number4 the new operators have to be at least dimension
six operators. These new operators effect also double and triple gauge boson couplings; these
can be studied more easily in other processes.

Dimension eight operators have no effects in double or triple couplings so they have to be
searched for in quartic gauge couplings. Vector Boson Scattering allows these examinations.
In general the following are the possible operators for the quartic gauge boson vertex

OWW
0 = gαβgγδ[W+

αW
−
β W

+
γ W

−
δ ] OWW

1 = gαβgγδ[W+
αW

+
β W

−
γ W

−
δ ] (2.13)

OWZ
0 = gαβgγδ[W+

α ZβW
−
γ Zδ] OWZ

1 = gαβgγδ[W+
αW

−
γ ZβZδ] . (2.14)

3Dimension in this context is the power of mass which is determined by dimensional analysis of the
Lagrangian.

4Proof can be found in [11].

7
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With equation (2.12) they lead to an effective Lagrangian of the quartic vertex

LV V V ′V ′
= cV V

′

0 OV V ′

0 + cV V
′

1 OV V ′

1 . (2.15)

In the Standard Model renormalizability and gauge invariance under the SU(2)L symmetry
imply that

cWW
0,SM = −cWW

1,SM =
2

cos2 θW
cWZ
0,SM = − 2

cos2 θW
cWZ
1,SM = g2

W . (2.16)

If operators of higher order are included these coefficients differ by an additional term.

cV V
′

i = cV V
′

i,SM + g2∆cV V
′

i . (2.17)

For simplicity’s sake only the operators not including derivatives of the gauge fields are
considered here. There are two possibilities to define these operators depending on the way
the electroweak symmetry is broken.

If the electroweak symmetry is linearly broken by a Higgs field including a light Higgs
boson only two operators are possible

Ls,0 =
f0

Λ4

[
(DµΦ)†DνΦ

]
×
[
(DµΦ)†DνΦ

]
(2.18)

Ls,1 =
f1

Λ4

[
(DµΦ)†DµΦ

]
×
[
(DνΦ)†DνΦ

]
(2.19)

using the Higgs doublet field Φ and its covariant derivative DµΦ. These operators lead to
the following variations of the coefficients

∆cWW
i =

g2v4fi
8Λ4

≡ ∆ci,lin (2.20)

∆cWZ
i =

g2v4fi
16 cos4 θWΛ4

=
∆ci,lin

2 cos2 θW
.

using the vacuum expectation value v and the energy scale Λ. If EWSB is due to a heavy
Higgs boson or without a Higgs boson one has to follow a more general approach using a
Σfield for a non-linear realization of the EWSB. It can be shown that the energy scale Λ
must be below 4πv ≈ 3 TeV.

Only 2 operators fulfill SU(2) symmetry

L(4)
4 = α4[Tr(VµVν)]2 , (2.21)

L(4)
5 = α5[Tr(VµV

µ)]2 , (2.22)

using Vµ ≡ (DµΣ)Σ. These generate four gauge boson interactions with

∆cWW
i = g2αi+4 ≡ ∆ci,no-lin (2.23)

∆cWZ
i =

g2

2 cos2 θW
αi+4 =

∆ci,no-lin
2 cos2 θW

.

Using equations (2.20) and (2.23) one finds the following relation

g2αi+4 = ∆ci,no-lin = ∆ci,lin =
g2v4fi
8Λ4

αi+4 =
v4fi
8Λ4

. (2.24)

To make this independent from this energy scale Λ a new parameter f̃i is introduced as

f̃i ≡ fi ·
TeV4

Λ4
. (2.25)

This changes equation (2.24) to

αi+4 =
v4

8TeV4 f̃i ≈ 4.59 · 10−4 · f̃i . (2.26)

8
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Figure 14: Cross sections (in nanobarns) for the five different scattering processes of longi-
tudinal weak gauge bosons: SM with a 120 GeV and a 1 TeV Higgs in the upper line, in the
middle: SM without a Higgs without and with K-matrix unitarization, respectively. In the lower
line, the case of α4,5 switched on are shown, on the left without, on the right with K matrix
unitarization. The contribution from the forward region is cut out by a 15 degree cut around
the beam axis.
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Figure 14: Cross sections (in nanobarns) for the five different scattering processes of longi-
tudinal weak gauge bosons: SM with a 120 GeV and a 1 TeV Higgs in the upper line, in the
middle: SM without a Higgs without and with K-matrix unitarization, respectively. In the lower
line, the case of α4,5 switched on are shown, on the left without, on the right with K matrix
unitarization. The contribution from the forward region is cut out by a 15 degree cut around
the beam axis.
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Figure 2.5: Cross sections for different Vector Boson Scattering processes. Left: Without
a Higgs boson. Right: With SM-Higgs boson of mass 120 GeV. Graphics taken from [9].

2.4 Unitarity
The Standard Model without a Higgs boson predicts a raise of the Vector Boson Scattering
cross section for high energies. This would imply a divergence of the cross section in the high
energy regions and therefore break unitarity [12, 9]. Although it was not modeled to do so a
light Higgs boson would prevent the divergence and thus restore unitarity (see figure 2.5).

The additional operators of an effective Lagrangian, as explained in section 2.3 lead to
a significant change of the effects for high energies and can therefore break unitarity again.
Thus an additional unitarization mechanism is needed to restore unitarity. This can be done
by slightly changing some properties of the Higgs boson or by other unknown effects of the
new physics. Either way real processes obey the unitarity requirement.

However in Monte-Carlo generated samples (see chapter 4) unitarity will be broken due
to the missing higher orders and not knowing the unitarization method of nature. For
comparability’s sake unitarization has to be done by other mechanisms to avoid a large
overestimation of the high energy cross sections. Therefore a criterion is needed to test
whether the unitarization was successful or not. The optical theorem of scattering theory [12]
implies that unitarity is fulfilled if the normalized eigenamplitude aIJ = 1

32πAIJ of the spin
I and weak isospin J fulfills the following equations

|Im aIJ | ≤ 1 |Re aIJ | ≤
1

2
. (2.27)

There are several ways to ensure these relations. The following sections will shortly present
the two approaches being used in this thesis.

2.4.1 Unitarization by the use of form factors
The general approach of the form factor method is to multiply a function of the center of
mass energy to suppress high energy events. VBFNLO (see section 4.1.1), one of the used
generators has implemented this approach using the function (see figure 2.6)

F =

(
1 +

m(WW )2

Λ2
FF

)−n
(2.28)

with the parameters ΛFF and n. This implements a soft cut off. The parameter n should
be greater than 1, in this thesis n = 2 is used, and determines the shape of the function.
ΛFF on the other hand defines the energy scale for the cut off and has to be adjusted to each
situation so that the projections of the matrix element on the zeroth partial wave fulfills
equation (2.27). This chosen value for ΛFF is also used for all higher order partial waves.
Since the absolute value of the higher order partial waves are always smaller, unitarity is given
for all partial waves. The maximum ΛFF for the used anomalous quartic gauge coupling fi
were tested by the authors of VBFNLO and can be found in table 2.3 [13].
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Figure 2.6: Shape of implemented form factor using the parameters ΛFF = 2 TeV and
n = 2.

∣∣∣f̃i∣∣∣ ΛFF /GeV

108.8 905
217.7 755
435.3 637
653.1 579
870.7 543
1500.0 500

Table 2.3: Used values for
∣∣∣f̃i∣∣∣ and corresponding ΛFF .

2.4.2 Unitarization via k matrix method
A sufficient criterion for equation (2.27) is that the spin-isospin eigenamplitudes have to be
inside the Argand circle in the complex plane. This corresponds to the relation∣∣∣∣aIJ − i

2

∣∣∣∣ ≤ 1

2
. (2.29)

The k matrix approach restores unitarity by projecting every partial wave onto the Argand-
circle (see figure 2.7) using the relation [9]

ãIJ =
1

Re(1/aIJ)− i =
aIJ

1− iaIJ
. (2.30)

An important difference to the form factor method is that higher order partial waves and
thus the total cross sections are in generall less suppressed.

i

11
2

i
2

a(s)

ak(s)

Figure 2.7: Schematic diagram of the k matrix method and the Argand circle. a(s) is
projected onto the Argand circle resulting in point ak(s). Since all point on the Argand
circle obey the unitarity criterion these projections are unitarized.
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Chapter 3

Experiment

3.1 The Large Hadron Collider (LHC)

The Large Hadron Collider (LHC) [14] is a huge circular proton-proton1 collider at the
European Organisation for Nuclear Research (CERN) designed to explore high energy physics
and to help answering open questions concerning the Standard Model, in particular to find
the origin of EWSB. It was built in the tunnel of the Large Electron-Positron Collider
(LEP) which is situated about 100m under the ground near Geneva, Switzerland, and has a
circumference of about 27 km (see figure 3.1).

Figure 3.1: Schematical overview of
the LHC. Graphic is taken from [15].

Bunches consisting of up to 1.15 ·1011 protons are
accelerated by more than 9000 superconducting mag-
nets to be measured in four main detectors. First
events were collected in March 2009 and from March
2010 till the end of 2011 the LHC ran with a center
of mass energy of

√
s = 7 TeV and provided about

5 fb−1 of integrated luminosity. By now LHC is run-
ning since March 2012 with a center of mass energy
of
√
s = 8 TeV and it is planned to raise

√
s to a

maximum of 14 TeV by the end of 2014, which is the
design energy for proton-proton collisions at the LHC.
In November 2012 the two General Purpose Detectors
A Toroidal LHC ApparatuS (ATLAS) and Compact
Muon Solenoid (CMS) had collected an integrated lu-
minosity of 20 fb−1 each in this year, so the amount
of data quadrupled in comparison to 2011 [16].

3.2 The ATLAS detector

A Toroidal LHC ApparatuS (ATLAS) [17] is one of the two general purpose detectors at the
LHC (see figure 3.2). It has a cylindrical shape with a length of about 44m and a diameter
of 25m. The detection of particles is realized in three main components, the Inner Tracker,
the Calorimeters and the Muon Spectrometer.

There is a well-defined coordinate system to describe processes consistently. It is a right-
handed Cartesian coordinate system, where x points to the middle of the LHC, y points
vertically upwards and z points into the beam’s direction. As usual φ measures the angle
from the x axis in the x-y plane in mathematical positive direction and θ gives the angle
to the z axis. Not being invariant under Lorentz transformation θ is rarely used. The

1It is also possible to collide heavy ions.
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3 Experiment 3.2 The ATLAS Detector

Figure 3.1: Overview of the ATLAS detector at the LHC [48].

The ATLAS detector consists of three overall detector systems: tracking detectors,
calorimeters and muon chambers; together with a four-magnet system: a thin super-
conducting solenoid surrounding the inner cavity and three large superconducting
toroids (one barrel and two endcaps) surrounding the calorimeters.

Inner Detector

The inner detector (ID) tracking system [55] is designed to reconstruct primary and
secondary vertices as well as vertices from additional proton-proton interactions (pile-
up) using charged tracks. It is therefore an important part of ATLAS for this anal-
ysis. Technical details about vertex finding and pile-up classification can be found in
Chapter 3.3.

The ID operates inside an axial solenoid magnetic field of 2 T covering a pseudora-
pidity range of |⌘| < 2.5. Three main types of tracking devices are part of the inner
detector. All detector sensors are subject to large integrated radiation doses due to
their position close to the beam axis and the interaction point.

At the innermost part, the B-layer of the silicon pixel detectors [56], the 1 MeV neu-
tron equivalent fluence Fneq rises to more than 1014 cm�2 at the design luminosity of
1034 cm�1s�1 [57]. To ensure e�cient semiconductor performance in this environment
the sensors are operating in the temperatur range �5 �C to �10 �C. The intrinsic
resolution of 115 µm in the beam direction and 10 µm in the R-' plane is reached by
1 744 pixel sensors with 47 232 pixels on each sensor. The nominal size of a pixel is
50⇥ 400 µm2 for about 90% of the pixels and 50⇥ 600 µm2 for the remaining pixels.

Located outside this innermost part of the ATLAS detector is the Semiconductor
Tracker (SCT). It covers |⌘| < 1.4 in the barrel and |⌘| < 2.5 in the endcaps. Intrinsic
accuracy of 17 µm in the R-� plane and 580 µm in the beam direction is reached by
this silicon strip detectors. Also the SCT has to be cooled down up to �10 �C to

19

Figure 3.2: Schematic overview of the ATLAS detector. Graphic is taken from [17].

pseudorapidity η on the other hand is invariant and is defined as

η = − ln

(
tan

θ

2

)
. (3.1)

Because the z component of the momentum is not well defined due to the not well known
momentum of the partons, the transverse momentum pT

2 is often used in analyses instead
of the momentum p.

3.2.1 Inner Detector
The Inner Detector (ID) is divided into three subdetectors, the Silicon Pixel Detector, the
Semi-Conductor Tracker and the Transition Radiation Tracker. It covers an η range of
|η| < 2.5 and is permeated by a solenoid magnetic field of 2T. This magnetic field bends the
path of charged particles so that the momentum and the charge can be measured.

The Silicon Pixel Detector is the innermost detector and has therefore the highest spatial
resolution requirements. With its pixel sensors this part achieves a maximum resolution
of 10µm in the R-φ plane and 115µm in beam direction and it provides up to three high
precision points for each track.

The Semiconductor Tracker has a slightly smaller resolution using silicon strip detectors
and typically measures up to four additional points to the track.

The Transition Radiation Tracker consists of a large number of straws filled with a mixture
of Xe, CO2 and O2 detecting the transition radiation produced by particles. This makes it
a very efficient identifier for light charged particles such as electrons.

3.2.2 Calorimeter
The Calorimeter was designed to identify and measure the energy of jets, electrons and
photons. It covers an η range of |η| < 4.9 and consists of the Electromagnetic Calorimeter
and the Hadronic Calorimeter.

Particles interacting electromagnetically, e. g. through particle showers are most of the
cases stopped in the Electromagnetic Calorimeter, so that their energy gets absorbed by lead
plates and then detected by liquid argon. Hadrons on the other hand react through inelastic
scattering in the Hadronic Calorimeter. Steel is used as absorber and the detector is made up

2defined in the x-y plane.

12



3.2 ATLAS

of scintillators in the barrel region whereas it is liquid argon based in the end caps. The quite
large |η| acceptance is achieved by the Forward Calorimeter covering the forward regions.

3.2.3 Muon spectrometer
Since muons cannot be stopped in the spectrometer, they can not be measured in the
calorimeter, therefore the Muon Spectrometer was built. It covers the region |η| < 2.7
and contains the Monitored Drift Tubes (MDT), Cathode Strip Chambers (CSC), Resistive
Plate Chambers (RPC) and Thin Gap Chambers (TGC). The first two are used for measur-
ing the transverse momentum of the muons while the latter two are used for triggering as
well.

3.2.4 Trigger system
The ATLAS detector measures events with a rate of 40MHz whereas the maximum storage
capability is 200Hz. Therefore events have to be preselected by the Trigger System. This is
done in three steps. The first one is the hardware based Level 1 Trigger which reduces the
rate to 75 kHz with a latency of 2.5µs. The Level 2 Trigger is software based and uses more
complex algorithms and reduces the rate even further to 3.5 kHz with a latency of 40ms.
The third step is the software based Event Filter that determines more detailed information
in special regions of interest. After rate is reduced to 200Hz the events passing the Trigger
System can be stored for analysis.

13
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Chapter 4

Data simulation

All events passing the Trigger System are reconstructed later on. Therefore special algorithms
try to reconstruct tracks from the hits in the detectors. The output is afterwards summarized
to the AOD (Analysis Object Data) format containing the necessary information for later
analyses.

To compare predictions of the theory with the experimental data one has to generate
events following rules implied by theory. This process can be divided into several important
steps. At first one has to generate so called generator or truth level events, containing the
processes of the elementary particles. This is done via Monte-Carlo generators as explained
in the following section. Since the LHC is a hadron collider a parton density function (PDF)
is used to estimate the initial four momentum of the interacting quarks and gluons. The
decay of unstable particles, hadronization, showering, initial state radiation and final state
radiation have to be considered. The output can be stored in a format such as HepMC [18],
which is used in this thesis, containing information about all interacting particles.

So far no detector effects have been considered. If one could build a perfect detector
measuring all information of every particle exactly this would be the measured information.
Since this is not possible detector effects have to be simulated in two steps. The first step
simulates all interactions of the particles with the different detectors. The second step, the
digitalization creates the same output format as done for data taken by the detectors. These
simulated events can be treated exactly like real measured data in terms of reconstruction.
This detector simulation is a very CPU-intensive process taking about 15 minutes per CPU
and event.

In this thesis only truth level events without hadronization and showering are used and
one aim is to compare two different Monte-Carlo generators using different aQGC models.

4.1 Monte-Carlo generators

Monte-Carlo generators are necessary for the first steps in the process of sample generation.
To simulate an event, a generator has to find possible Feynman diagrams, these can be

hard-coded in databases, or dynamically generated. Then the generator has to determine
the matrix element using the Feynman rules. By integrating the matrix element over the
phase space using the Monte Carlo method, the generator calculates the cross sections. This
means the integration is done numerically by summing over a large number of random points
instead of evaluating every single point.

4.1.1 VBFNLO

VBFNLO [19] is a Monte-Carlo generator with NLO1 QCD accuracy specialized on vector
boson fusion as well as double and triple vector boson production. Using the HepMC output

1Next to leading order – this means that QCD loops in feynman graphs are allowed.
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4 Data simulation

format as in this thesis only leading order processes can be generated. Since VBFNLO is
specialized on these processes, the feynman diagrams are stored in a hard-coded database.

In addition to the Standard Model several extensions like Minimal Supersymmetric Stan-
dard Model (MSSM) and anomalous quartic gauge couplings with the parameters2 f0 and
f1 (see section 2.3) are available. For unitarization the form factor method is implemented.
There are several other parameters available. The most important are the parton density
function (pdf) or scale factors.

In this thesis three models were generated:

• The Standard Model – including a light Higgs boson

• The Standard Model extended by aQGC – parametrized by f0 and f1, including a light
Higgs boson, without unitarization

• The Standard Model extended by aQGC – parametrized by f0 and f1, including a light
Higgs boson, with unitarization by a form factor given by

F =

(
1 +

m(WW )2

Λ2
FF

)−n
(4.1)

The parameter3 ΛFF was chosen to be small enough to unitarize all generated cases and
used in all these samples. Therefore for one parameter it is expected to be smaller than
necessary, implying a stronger suppression for this parameter. Since ΛFF is also the same for
WWss and WZ channel, this is expected to have an according influence on the WZ channel, too.

4.1.2 WHIZARD

WHIZARD [20] is an universal leading order Monte-Carlo generator able to compute tree-
level matrix elements generating partonic event samples. Parton showering can be done
directly using WHIZARD, while showering and hadronization can also be done using exter-
nal tools. As in VBFNLO, beside the Standard Model alternative models, as the MSSM or
anomalous quartic gauge couplings using the parameters α4 and α5, are available. Unita-
rization is done using the k matrix approach.

If aQGC are used in this model, the EWSB is realized by a Σ field. However in the used
samples a light Higgs boson is also included.

• The Standard Model – including a light Higgs boson

• The Standard Model extended by aQGC – parametrized by α4 and α5, including a
light Higgs boson, without unitarization

• Extended model – effective chiral Lagrangian, Σ field for EWSB, including a light Higgs
boson, aQGC parametrized by α4 and α5 with k matrix unitarization

4.2 Used samples
In this thesis samples for proton-proton collisions in different channels with a center of mass
energy of

√
s = 8 TeV were generated with VBFNLO and WHIZARD. For analysis the

Standard Model and unitarized samples with different anomalous quartic gauge couplings
were generated. All samples are generated with a light Higgs boson with a mass of 126 GeV.
Only one aQGC parameter at a time was set to a non-zero value, so that at least one of the
two used parameters is always set to the SM value. To apply equation (2.26) the parameters
fi were chosen to be equivalent to the used αi+4 value. The most important parameters are
listed in table 4.1.

2In VBFNLO these parameters are called fs0 and fs1.
3At the time of writing there was no tool for calculating the maximum ΛFF available. However the authors

of VBFNLO planned to publish such a tool. Therefore the authors told us the appropriate values.
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4.2 Used samples

As described in section 2.2 the generated final states are:

WWss : jje+νee
+νe , WZ : jje+e−e+νe . (4.2)

For the same signWW (WWss) channel non-unitarized samples were also generated for further
comparisons.

In the following the cuts implemented in the analysis tool for the WWss channel are shown.
For an explanation of the variables see appendix A:

pT (`1) > 25GeV pT (j1) > 30GeV (4.3)
pT (`2) > 20GeV pT (j2) > 30GeV (4.4)
|η(`)| ∈ [0, 1.37] ∪ [1.52, 2.47] |η(j)| < 5 (4.5)
m(``) > 20GeV m(jj) > 500GeV (4.6)

ζ > −0.5 |ηjj | > 2.4 (4.7)

Emiss
T > 40GeV . (4.8)

In the WZ channel the following cuts were used:

pT(`1) > 25GeV pT(j) > 30GeV (4.9)
pT(`2) > 20GeV (4.10)
pT(`3) > 20GeV (4.11)
|η(`)| ∈ [0, 1.37] ∪ [1.52, 2.47] |η(j)| < 5 (4.12)

m(`+`−) > 10GeV m(jj) > 500GeV (4.13)
ζ > −0.5 |ηjj | > 2.4 (4.14)

Emiss
T > 40GeV . (4.15)

parameter value

center of mass energy
√
s 8 TeV

Higgs mass 126 GeV
Higgs width 0.00418 GeV
Top mass 172.5 GeV
τ mass 1.77705 GeV
scale µF 160.798 GeV
scale µR 160.798 GeV
Fermi Constant GF 1.16639 · 10−5 GeV−2

W± mass 80.399 GeV
Z mass 91.1876 GeV
Parton distribution function (PDF) cteq6ll.LHpdf

Table 4.1: List of most important parameters with chosen values for the generation. To
calculate other parameters the GF scheme was used.
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Chapter 5

Validity check

There are several possibilities to validate the results and the generation of events. This is
important to make sure the different generators and models are consistent and to avoid errors
in event generation.

5.1 Total cross section of the SM process
A simple possibility is to check if all approaches have the same result in the SM case. Both
generators have a special mode for the SM process. However all other modes should reproduce
the SM result if all parameters are set to SM values. This means for both generators that
aQGC can be turned on, but chosen to be equal to zero. Additionally the unitarization can
be used. In a first step the total cross sections should be equal. These can be found in
table 5.1.

All values for the WWss channel are in a good agreement. In VBFNLO with aQGC = 0
the unitarization has no effect. But since the form factor only effects the modifications of
the aQGC (see chapter 6), this is plausible. In the WZ channel there is a difference between
the two generators. The WZ samples also include a W+γ∗1 channel. This leads to a raise of
the cross section for low invariant masses of the leptons coming from the γ∗. Therefore in
the VBFNLO samples a cut is included in the generators to simulate only events, where all
combinations of opposite-charged leptons have an invariant mass of m(l+l−) ≥ 4 GeV. This
cut was not included in the WHIZARD samples, leading to too high total cross sections.
This has no effect on the shapes of the further analyses since this cut was included in the
analysis using the RIVET [21] tool. New samples that include this cut were generated, but
it was not enough time to use only these new samples. Therefore the total cross section of
the SM process is listed in addition to the older samples to estimate the influences of this
effect. Since σ is compatible with the results of the VBFNLO samples this missing cut is
expected to be the reason for the discrepancies.

5.2 Differential cross section of the SM process
A next possibility to check the validity is to compare the differential cross sections of these
SM samples. The most important distributions are shown in figure 5.1 for the WWss channel
and in figure 5.2 for the WZ channel.

Besides the large statistical uncertainty especially in the WZ samples generated with
WHIZARD these distributions show a very good agreement. The VBFNLO samples were
generated weighted. This could be a reason for the smaller statistical uncertainties than in
the unweighted WHIZARD samples. All in all these samples are consistent with each other
and with the knowledge of the missing cut and its effects one can use these samples for
further analyses.

1γ∗ takes place of the Z0 in the relevant diagrams.
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5 Validity check

σWWss [fb] σWZ [fb]

VBFNLO without aQGC 0.6534± 0.0026 0.3007± 0.0035
with aQGC = 0, non-uni 0.6534± 0.0026 0.2998± 0.0035
with aQGC = 0, uni 0.6534± 0.0026 0.2998± 0.0035

WHIZARD without aQGC 0.6606± 0.0012 0.3211± 0.0020
with aQGC = 0, non-uni 0.641± 0.011 not generated
with aQGC = 0, uni 0.6593± 0.0012 0.3425± 0.0028
without aQGC, with cut 0.3037± 0.0013

Table 5.1: Total cross sections of the SM process for all different generation methods.
“without aQGC” represents the SM process. All samples labeled with “with aQGC = 0” are
generated using the SM extended by aQGC, with all parameters set to SM values. “uni”
– unitarized. “non-uni” – non-unitarized. For the WZ channel no non-unitarized samples
have been generated using WHIZARD. In the last line an additional generated sample is
shown, which includes a m(l+l−) ≥ 4 GeV cut in the WZ channel, which was missing in
the other WHIZARD samples. This shows, that the observed discrepancies seemed to be
caused by this missing cut. Uncertainties are given by generator.
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Figure 5.1: Comparison of different models for the WWss SM process. The left distribution
shows the differential cross section over the transverse mass of the pair of vector bosons
mT(WW ). The right distribution shows the differential cross section dependency on the
absolute value of the angle between the projections of the leptons’ momenta in the x-y plane
∆φ(ll). The red and green lines show the distributions of the SM process generated by
VBFNLO or WHIZARD respectively. The blue and magenta distributions are generated
using the SM extended with aQGC (SM values) by VBFNLO or WHIZARD respectively.
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Figure 5.2: Comparison of different models for the WZ SM process. The left distribution
shows the differential cross section over the transverse mass of the pair of vector bosons
mT(WZ). The right distribution shows the differential cross section dependency on the
absolute value of the angle between the projections of the vector bosons’ momenta in the
x-y plane ∆φ(WZ). The red and green lines show the distributions of the SM process
generated by VBFNLO or WHIZARD respectively. The blue and magenta distributions
are generated using the SM extended with aQGC (SM values) by VBFNLO or WHIZARD
respectively.
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Chapter 6

Total cross sections

The first step is to study the total cross section’s dependency on anomalous quartic gauge
couplings. If this is understood, it is possible to set limits on the aQGC parameters once the
total cross section is measured.

6.1 Dependency on aQGC

The additional terms in the effective Lagrangian lead to new terms in the matrix element
M . Those new terms depend on the aQGC parameters and since the total cross section σ
can be calculated using the matrix element, σ also depends on the aQGC parameter. Using
the aQGC parameter α this can be expressed by the matrix element M ≡ α ·MaQGC +MSM
which leads to

dσ = |M |2 dΦ

σ =

∫
α2 |MaQGC|2 + 2α (Re(MaQGC) Re(MSM) + Im(MaQGC) Im(MSM))︸ ︷︷ ︸

≡MInterference

+ |MSM|2 dΦ

= α2

∫
|MaQGC|2 dΦ︸ ︷︷ ︸
≡σaQGC

+α · 2
∫
|MInterference| dΦ︸ ︷︷ ︸

≡σInt

+

∫
|MSM|2 dΦ︸ ︷︷ ︸
≡σSM

≡ α2 · σaQGC + α · σInt + σSM . (6.1)

This can be done for f in an analog way leading to different values for σaQGC and σInt.
This implies a parabolic dependency of the cross section σ on the aQGC parameters α and
f respectively. This is shown in figure 6.1 for f0 in the WWss channel. The non-unitarized
samples are in a good agreement with a parabolic fit. Comparing all distributions one can
see that the parabolic fits for f0 and f1 are nearly identical. However the WHIZARD samples
have the same cross section when α4 is the half of α5. For the WZ channel non-unitarized
samples were generated only with VBFNLO. These distributions show a difference between
f0 and f1, while f0 ≈ 2

3f1 applies for any given cross section. Another important thing to
notice is that the minimum of the fits is always close to the SM case. This implies that
σInt is small compared to σaQGC. Therefore cross sections of positive and negative aQGC
parameters are similar.

6.2 Effects of unitarization

The right distribution in figure 6.1 shows the dependence of σ on f0 for the unitarized samples.
The cross sections do not agree well with the parabolic fit. The effect of the unitarization gets
more important with larger absolute values of aQGC. Therefore cross sections of high aQGC
parameters are suppressed while cross sections near to the SM case are not influenced much.
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Figure 6.1: Dependency of σ on the aQGC parameter f0 for the WWss channel. Left:
non-unitarized samples. Right: unitarized samples. Red crosses correspond to the cross
sections of the generated samples. Blue data points refer to the cross section of the samples
generated using the mode for the SM process. The green dashed line is a parabolic fit for
non-unitarized samples. For the unitarized samples it is a combination of two linear fits
with independet slopes for different values for the aQGC parameter. Other channels and
parameters can be found in appendix C.1

σaQGC [fb] σInt [fb] σSM [fb]

VBFNLO f0, WWss (8.23± 0.03) · 10−5 (−2.8± 1.0) · 10−4 0.654± 0.007
f1, WWss (8.23± 0.01) · 10−5 (−3.5± 0.4) · 10−4 0.654± 0.002
f0, WZ (7.47± 0.03) · 10−6 (−2.8± 0.9) · 10−5 0.298± 0.002
f1, WZ (3.31± 0.01) · 10−6 (−2.4± 0.4) · 10−5 0.301± 0.002

WHIZARD α4, WWss 656± 21 −0.9± 1.7 0.63± 0.02
α5, WWss 183± 10 −1.70± 1.5 0.64± 0.04

Table 6.1: Table including the fit parameters σaQGC, σSM and σSM for the dependency
of σ on the aQGC parameters corresponding to equation (6.1). The second column lists
the varied couping parameter and the channel. The parameter not listed has the SM
value. Note that the value of the fit parameters σaQGC and σSM depends on the aQGC
parametrization and therefore is not comparable for different generators.

So the expected dependency would be nearly parabolic for aQGC close to the SM process
with growing differences for larger absolute values of aQGC. In most of the channels these
cross sections are better represented by seperated linear fits. Therefore a threshold value
was fitted as cross section of two simultaneously fitted linear functions. The similarity for
positive and negative aQGC values is not given any more, which indicates a larger influence
of the interference term. The minimum of the cross section curve, as well as the threshold
value, is therefore shifted to positive values of the aQGC parameter. This could be caused by
the phase space dependent suppression of the unitarization methods. A point to be studied
are the differences between α4 and α5 or f0 and f1 respectively, since the domination of the
interference term seems to differ between the two parametrizations. The use of the same ΛFF
for both, f0 and f1, in the form factor method is expected to be a reason for that.

Comparing the distributions for the other channels one can see, that the unitarized cross
sections are much smaller than the non-unitarized cross sections. Especially the form factor
approach strongly suppresses the differences to the SM. Thus in the WZ channel there is
hardly any difference to be seen after the form factor unitarization.

In table 6.1 there is a list of all fit parameters for a parabolic fit1. These numbers are
consistent with the observations given above. For all non-unitarized samples, the influence
of σInt is smaller than the influence of σaQGC. In the region of the generated samples the
influence is smaller by a factor in the order of 10−2.

1Not plotted for the unitarized samples.

22



Chapter 7

Differential cross sections

Once the total cross sections are understood, a further possibility for analyses is the study
of the differential cross sections. The shapes of the differential cross sections provide a good
possibility to tighten the limits on the anomalous quartic gauge couplings and to study the
influences of the different coupling parameters.

7.1 Discriminating observables

The first step of this analysis is to find discriminating observables which show a dependency
on the coupling parameters. Therefore samples with rising values for the aQGC parame-
ters were generated using WHIZARD and VBFNLO. These samples are now analyzed with
RIVET to create distributions for a couple of observables. Larger absolute values of the
aQGC parameter should lead to larger total cross section. This is not always the case for
positive aQGC parameters due to the different influence of the interference term (see ap-
pendix C.1). Thus negative values of the aQGC parameters are used in this study to have
a more consistent result. A selection of the resulting distributions for all different chan-
nels and aQGC parameters can be found in appendix C.2. Comparing these one sees some
discriminating observables, most notably the transverse invariant mass of the pair of gauge
bosons mT (WW ) or mT (WZ) respectively and the angle in the transverse plane between
the leptons ∆φ(``) or between the boson pair ∆φ(WZ) respectively. The transverse mass is
used, because the invariant mass of the boson pair cannot be reconstructed for the WW case.
This is because the momentum of the neutrinos in the event cannot be fully reconstructed
by the measured missing transverse energy estimated using momentum conservation in the
detector. The transverse mass is therefore calculated with this missing transverse energy
Emiss

T using the equation mT = pµp
µ and

pµ = p(`1)µ
∣∣∣
pz=0

+ p(`2)µ
∣∣∣
pz=0

+


Emiss

T

−psum, x
−psum, y

0

 (7.1)

with the vectorial sum of all measured momenta psum.
There are also other discriminating observables with less significant effects, e. g. the

kinematics of the jets. |η| and pT of both leptons or the invariant mass of both jets mjj

do not only scale with the cross section, but also vary their shape. On the other hand
the remaining kinematics of the leptons do only scale with the cross section, leading to a
constant ratio to the SM process. Besides the already mentioned ∆φ(``), especially the
lepton centrality ζ and the invariant mass of the leptons m`` show differences compared to
the shape of the SM process.
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7 Differential cross sections

7.2 Effects of aQGC on observables
Figure 7.1 shows the distributions of the most discriminating observables for the WWss channel
and the aQGC parameter f0, other observables are shown in appendix C.2. There are large
differences to be seen in most of the distributions. The strongly rising total cross section can
be seen, since the distributions are scaled with respect to the cross section. Thus the curve
of the SM process in figure 7.1 is barely visible. These distributions show, that additional
events through the aQGC have a large mT(WW ) and a ∆φ(``) close to π. This indicates
that the leptons are going in opposite directions. Thus also the gauge bosons are back to
back. The distributions for the WHIZARD samples show a good agreement, besides the
different scaling, to the shapes of the VBFNLO distributions. An interesting thing to notice
is that the shapes for same values of f0 and f1 are not distinguishable within statistical
uncertainty, while for αi this is realized for α4 ≈ 2 · α5. This corresponds to the results
seen in chapter 6.1. The differences can also be seen for the WZ channel. The distributions
of ∆φ(WZ) correspond to the ∆φ(``) which implies a similar shape as it can be seen in
appendix C.2.

The steep rise in mT(WW ) or mT(WZ) respectively could be caused by a divergence of
the cross section (see section 2.4), since no unitarization is applied and therefore unitarity
can not be guaranteed. In these samples it is suppressed by the parton density function
(PDF). These samples are expected to be not physical and therefore not measurable.

7.3 Effects of unitarization
In figure 7.2 the corresponding distributions to figure 7.1 with unitarization are shown. Since
the additional terms in the matrix element are suppressed, the resulting shapes are similar
to the SM process. Due to the dependency of the form factor unitarization on

√
s, the

shape gets closer to the shape of the SM process with rising mT(WW ). The peak in the
∆φ`` distribution is less significant. For the used values for f0 and f1, ∆φ(``) is the only
significantly discriminating observable. Along with that, jet kinematics and the mT(WW )
do vary their shape compared to the SM process. Thereby, also for the WZ channel, f1 is
closer to the SM process than the shapes of the f0 samples, so the form factor unitarization
has different effects on the different aQGC parameters.

For the WHIZARD samples mT(WW ) and the kinematic distributions of the jets do
separate more significantly the aQGC from the SM process. Unlike the form factor samples,
the samples using the k Matrix do not agree with the SM process for large mT(WW ).
However they agree with each other with a shift to the SM.
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7.3 Effects of unitarization
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Figure 7.1: Comparison of different values for aQGC parameter f0, with f1 = 0, in the
WWss channel. No unitarization was used. The left distribution shows the differential cross
section over the transverse mass mT(WW ). The right distribution shows the differential
cross section dependency on the absolute value of the angle between the projections of the
leptons’ momenta in the x-y plane ∆φ(ll). The different colors represent different values
for f̃0 as listed in the key.
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Figure 7.2: Comparison of different values for aQGC parameter f0 in the WWss channel.
For unitarization a form factor was applied. The left distribution shows the differential
cross section over the transverse mass mT(WW ). The right distribution shows the differ-
ential cross section dependency on the absolute value of the angle between the projections
of the leptons’ momenta in the x-y plane ∆φ(ll). The different colors represent different
values for f̃0 as listed in the key.
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Chapter 8

Conversion between different
aQGC parametrizations

Theory predicts a relationship between fi and αi+4 as described in section 2.3. It was tried
to find a factor for an assumed linear proportionality. Thereby it was tested whether fi and
αi+4 are related in this way or not.

8.1 Comparison of non-unitarized samples

The first step was to match the parabolic fits of the total cross sections by varying the scale.
The results are shown in figure 8.1. Since no WHIZARD samples without unitarization were
generated for the WZ channel, the following part only applies to the WWss channel. For these
distributions the cross sections for both parameters were fitted in the same parabola with
an additional fitting parameter, the scale ti = fi

αi+4
. This is also used as scale between the

different x axes. This results in a combined distribution with one variable and one fixed x
axis. Since the distributions for non-unitarized samples agree very well with their parabolic
fit, the agreement with the combined fit is good. The resulting parameters ti are listed in
table 8.1. This is consistent with the results from chapter 6 since for a given cross section, f0

equals f1 and α4 is the half of α5. But these scaling factors are neither equal to each other
nor to the predicted value. One important thing to be studied in further analyses are the
discrepancies between the predicted values and the results from the generated samples. For
some reason the predicted value is the mean of the calculated factors.

ti = fi/αi+4

predicted (see equation (2.26)) 8Λ4

g2v4 ≈ 2176

non-unitarized WWss for f0 and α4 2815.63± 53.46
WWss for f1 and α5 1485.48± 27.58

unitarized WWss for f0 and α4 (1.50± 0.18) · 104

WWss for f1 and α5 (5.6± 3.8) · 104

WZ for f0 and α4 (2.50± 0.13) · 104

WZ for f1 and α5 (6.0± 5.9) · 104

Table 8.1: List of the fit parameters ti. The second column lists the corresponding
channel and the varied and compared parameters, parameters not listed have their SM
value. Second and third line show values for unitarized samples, while in lines five to seven
values for unitarized samples are listed. Non-unitarized samples were fitted in a parabolic
fit. Unitarized samples were fitted according to equation (8.1).
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8 Conversion between different aQGC parametrizations
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Figure 8.1: Dependency of σ on the aQGC parameter fi and αi+4 for the WWss channel,
non-unitarized samples. Left: parameters f0 and α4. Right: parameters f1 and α5. Red
crosses correspond to the cross sections of the samples generated by VBFNLO. Green data
points refer to the cross section of the samples generated by WHIZARD. The black line
is a parabolic fit for all samples. fi-axis was scaled to match αi+4-axis according to fit
parameter ti. Other channels and parameters can be found in appendix C.3.
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Figure 8.2: Comparison of values for aQGC parameter f0 and α4, that are predicted
to match, with f1 = α5 = 0, in the WWss channel. No unitarization was used. The left
distribution shows the differential cross section over mT(WW ). The right distribution
shows the differential cross section dependency on the absolute value of the angle between
the projections of the leptons’ momenta in the x-y plane ∆φ(``). In the ratio plot the
ratio to the distribution with f̃0 = −870.7 is given.
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Figure 8.3: Comparison of values for aQGC parameter f1 and α5, with similar cross
section, with f0 = α4 = 0, in the WWss channel. No unitarization was used. The left
distribution shows the differential cross section over mT(WW ). The right distribution
shows the differential cross section dependency on the absolute value of the angle between
the projections of the leptons’ momenta in the x-y plane ∆φ(``). In the ratio plot the
ratio to the distribution with f̃1 = −435.3 is given.
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8.2 Comparison of unitarized samples

A further check in figure 8.2 a pair of parameters is shown, that is predicted in equa-
tion (2.26) to have the same results. These show significant differences not only in the total
cross section, but also in the shape of the distributions. So these samples are not consistent
to each other. On the other hand the samples in figure 8.3 are in a good agreement. These
are samples with a similar cross section, and therefore are close to the scaling factor given in
table 8.1 calculated using the fit in one combined parabola.

8.2 Comparison of unitarized samples
Since unitarity cannot be ensured the generated samples are assumed to be not physical. For
comparison with data one has to use unitarized samples. Therefore it is important to study
the influences of unitarity on the conversion between fi and αi+4.

As explained in section 6.2 unitarity breaks the parabolic dependency on the aQGC
parameter. Thus another fit was used to compare the samples of fi and αi+4. Since the
form factor approach suppresses the total cross sections stronger than the k matrix approach
does, only a smaller αi range was studied, ignoring the samples with |αi| = 0.4. In this range
the total cross sections can be estimated in a linear fit using different slopes for positive and
negative values for the aQGC. The interference term has more influence and therefore the
minimum of σ is not at fi = 0 or αi+4 = 0 respectively (see section 6.2). Therefore one could
increase the agreement of the fit by varying the point where the slope changes to a larger
value. For simplicity’s sake this was not done here, since the influence is not expected to be
large. The cross sections for all samples of each channel were fitted using the function

σ =


ai · (ti · αi+4) + σSM , αi+4 < 0

bi · (ti · αi+4) + σSM , αi+4 > 0

ai · (fi) + σSM , fi < 0

bi · (fi) + σSM , fi > 0

(8.1)

with the fitting parameters ai, bi, and ti, latter is listed in table 8.1 for all channels. The
resulting distributions for the WWss channel are shown in figure 8.4. The x axes is adjusted to
the fitted scale ti. Comparing the scaling factors listed in table 8.1 one sees that the scaling
factors are not any more in the order of magnitude of the predicted value. Since the form
factor unitarization results in smaller cross sections, higher values of fi match a given αi+4.
Since the differences to the SM cross section are small for fi in the WZ channel the ti are even
larger than in the WWss channel and the fits of ti are inaccurate. The largest simulated values
for |fi| correspond to the smallest |αi+4| 6= 0 for i = 0 and even smaller values for i = 1.
Thus to determine a relationship for the unitarized samples one would have to generate more
samples with smaller αi+4 and higher fi.

Figures 8.5 and 8.6 show a comparison of the differential cross sections for different pairs
of fi and αi+4. Figure 8.5 shows a pair according to the predicted relation. These samples do
not match compared to the samples shown in figure 8.6. These are in a good agreement with
each other, both in shape and in cross section. However there are more differences than for
non-unitarized samples. These are differences of the unitarization methods, in addition to
the stronger suppression by the form factor unitarization. Since the unitarization methods
depend on the invariant mass of the bosons, there is a discrepancy to be seen in these
distributions. There are also differences in the pT distributions of the jets and leptons.
These differences can be seen in particular regions of low |η| of the jets and in the high
energy regions for jets and leptons (see appendix C.3).

29



8 Conversion between different aQGC parametrizations

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

-3000 -2000 -1000 0 1000 2000 3000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
-0.2 -0.1 0 0.1 0.2

cr
os
s
se
ct
io
n
σ
in

fb

f0/Λ
4 · TeV4

α4

unitarized samples, WWss channel
Fit

VBFNLO (f0)
WHIZARD (α4)

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

-10000 -5000 0 5000 10000
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
-0.2 -0.1 0 0.1 0.2

cr
os
s
se
ct
io
n
σ
in

fb

f1/Λ
4 · TeV4

α5

unitarized samples, WWss channel
Fit

VBFNLO (f1)
WHIZARD (α5)

Figure 8.4: Dependency of σ on the aQGC parameter fi and αi+4 for the WWss channel,
unitarized samples. Left: parameters f0 and α4. Right: parameters f1 and α5. Red crosses
correspond to the cross sections of the samples generated by VBFNLO. Green data points
refer to the cross section of the samples generated by WHIZARD. The black line is a fit for
all samples according to equation (8.1). fi-axis was scaled to match αi+4-axis according
to fit parameter ti. Other channels and parameters can be found in appendix C.3.
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Figure 8.5: Comparison of values for aQGC parameter f0 and α4, that are predicted
to match, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over mT(WW ). The right distribution
shows the differential cross section dependency on the absolute value of the angle between
the projections of the leptons’ momenta in the x-y plane ∆φ(``). In the ratio plot the
ratio to the distribution with f̃0 = −870.7 is given.
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Figure 8.6: Comparison of values for aQGC parameter f0 and α4, with similar cross
section, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over mT(WW ). The right distribution
shows the differential cross section dependency on the absolute value of the angle between
the projections of the leptons’ momenta in the x-y plane ∆φ(``). In the ratio plot the
ratio to the distribution with f̃0 = −870.7 is given.
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Chapter 9

Summary

In this thesis the effects of different aQGC parametrizations on Vector Boson Scattering
were analyzed and compared. The aim was to understand the influences and the differences
between them. This is a necessary foundation for the possibility to set limits on the aQGC
parameters in further analyses. For that reason Monte-Carlo samples of proton-proton col-
lisions at

√
s = 8 TeV were analyzed on truth level.

The reproduction of the SM process for different models showed a good agreement, indi-
cating that the generators seem to be consistent. The dependency of the total cross section
on the aQGC parameters is parabolic for non-unitarized samples but differs for unitarized
samples. This was expected due to the suppression of σ by the unitarization. However
the predicted conversion of the different parametrizations (2.24) was neither consistent with
the results of unitarized nor non-unitarized samples. The conversion, listed in table 8.1, of
non-unitarized samples was in the order of magnitude of the prediction. Compared to the
prediction, the results showed a different relation for f0 and f1. For a given cross section f0

and f1 were nearly identical while α5 was about the half of α4. This was not expected.
The comparison of unitarized samples showed that the form factor unitarization sup-

pressed the total cross section more than the k matrix method does. There are also differences
between samples, having similar total cross sections after unitarization. This shows that the
choice of the unitarization method has an influence not only on the total cross section but
also on the shape of the differential distributions.

These are important questions to be studied in further analyses. Especially the differences
of the non-unitarized samples to the prediction have to be understood before setting limits
on the aQGC parameters. For further analyses a conversion of the different parametrizations
for the unitarized cases would be helpful. To determine it one would have to generate more
samples. In WHIZARD the additional cut on the invariant mass of the leptons would have
to be included and in VBFNLO the parameter ΛFF of the unitarization should be adjusted
to the different channels and parameters.
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Appendix A

List of used variables

Name Description Formula

η

Pseudorapidity
η ≡ − ln

(
tan

θ

2

)

f̃i
Abbreviation for anomalous coupling parameter fi
to make it independed of energy scale Λ and to
work without dimension.

f̃i ≡
fi · TeV4

Λ4

Λ
Energy scale up to which die SM is valid.

ΛFF
Parameter of form factor unitarization. Is also an
energy scale, but is independent of Λ.

Emiss
T

Missing transverse energy.

m(WW ), m(WZ)

Invariant mass of the boson pair. Calculated using
the mass if the leptons and neutrinos.

mT(WW ), mT(WZ)

Transverse invariant mass of the boson pair. Cal-
culated using the mass of visible particles.

m(jj)

Invariant mass of the jet pair

m(``)

Invariant mass of the lepton pair

pT
Transverse momentum

ζ

Lepton centrality
ζ`` ≡

min
{

min{η`1, η`2} −min{ηj1, ηj2} ,

max{ηj1, ηj2} −max{η`1, η`2}
}
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Appendix B

List of all samples

Generator f0 f1 α4 α5 cross section σ comment

VBFNLO 0 0 0.3007± 0.0035 SM with Higgs
VBFNLO 0 0 0.2998± 0.0035
VBFNLO 0 0 0.2998± 0.0035 unitarized
VBFNLO −870.7 0 6.0124± 0.0334
VBFNLO −435.3 0 1.7264± 0.0096
VBFNLO −217.7 0 0.6597± 0.0064
VBFNLO −108.8 0 0.3864± 0.0030
VBFNLO 108.8 0 0.3889± 0.0038
VBFNLO 217.7 0 0.6447± 0.0049
VBFNLO 435.3 0 1.6926± 0.0095
VBFNLO 870.7 0 5.9293± 0.0292
VBFNLO −870.7 0 0.3448± 0.0111 unitarized, ΛFF = 543
VBFNLO −435.3 0 0.3180± 0.0043 unitarized, ΛFF = 637
VBFNLO −217.7 0 0.3022± 0.0029 unitarized, ΛFF = 755
VBFNLO −108.8 0 0.3059± 0.0040 unitarized, ΛFF = 905
VBFNLO 108.8 0 0.3113± 0.0082 unitarized, ΛFF = 905
VBFNLO 217.7 0 0.3033± 0.0044 unitarized, ΛFF = 755
VBFNLO 435.3 0 0.3097± 0.0033 unitarized, ΛFF = 637
VBFNLO 870.7 0 0.3178± 0.0038 unitarized, ΛFF = 543
VBFNLO 0 −870.7 2.8356± 0.0163
VBFNLO 0 −435.3 0.9336± 0.0074
VBFNLO 0 −217.7 0.4662± 0.0041
VBFNLO 0 −108.8 0.3394± 0.0025
VBFNLO 0 108.8 0.3357± 0.0026
VBFNLO 0 217.7 0.4523± 0.0039
VBFNLO 0 435.3 0.9256± 0.0109
VBFNLO 0 870.7 2.7893± 0.0148
VBFNLO 0 −870.7 0.3176± 0.0051 unitarized, ΛFF = 543
VBFNLO 0 −435.3 0.3127± 0.0042 unitarized, ΛFF = 637
VBFNLO 0 −217.7 0.3094± 0.0060 unitarized, ΛFF = 755
VBFNLO 0 −108.8 0.3067± 0.0041 unitarized, ΛFF = 905
VBFNLO 0 108.8 0.3010± 0.0038 unitarized, ΛFF = 905
VBFNLO 0 217.7 0.3003± 0.0041 unitarized, ΛFF = 755
VBFNLO 0 435.3 0.3020± 0.0033 unitarized, ΛFF = 637
VBFNLO 0 870.7 0.3079± 0.0023 unitarized, ΛFF = 543
WHIZARD 0 0 0.3211± 0.0020 SM with Higgs
WHIZARD 0 0 0.3425± 0.0028 unitarized
WHIZARD −0.4 0 0.9905± 0.0091 unitarized
WHIZARD −0.2 0 0.6378± 0.0043 unitarized
WHIZARD −0.1 0 0.4625± 0.0035 unitarized
WHIZARD −0.05 0 0.4026± 0.0025 unitarized
WHIZARD 0.05 0 0.3230± 0.0018 unitarized
WHIZARD 0.1 0 0.3118± 0.0018 unitarized
WHIZARD 0.2 0 0.3256± 0.0019 unitarized
WHIZARD 0.4 0 0.3747± 0.0028 unitarized
WHIZARD 0 −0.4 1.0520± 0.0119 unitarized
WHIZARD 0 −0.2 0.6326± 0.0055 unitarized
WHIZARD 0 −0.1 0.4361± 0.0027 unitarized
WHIZARD 0 −0.05 0.3979± 0.0026 unitarized
WHIZARD 0 0.05 0.3632± 0.0020 unitarized
WHIZARD 0 0.1 0.4217± 0.0024 unitarized
WHIZARD 0 0.2 0.6499± 0.0060 unitarized
WHIZARD 0 0.4 0.9762± 0.0074 unitarized

Table B.1: List of all W±Z0 samples
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B List of all samples

Generator f0 f1 α4 α5 cross section σ comment

VBFNLO 0 0 0.6534± 0.0026 SM with Higgs
VBFNLO 0 0 0.6534± 0.0026
VBFNLO 0 0 0.6534± 0.0026 unitarized
VBFNLO −870.7 0 63.2299± 0.1589
VBFNLO −435.3 0 16.1029± 0.0606
VBFNLO −217.7 0 4.6573± 0.0206
VBFNLO −108.8 0 1.6768± 0.0091
VBFNLO 108.8 0 1.5897± 0.0076
VBFNLO 217.7 0 4.4911± 0.0158
VBFNLO 435.3 0 16.4014± 0.0611
VBFNLO 870.7 0 62.6464± 0.1557
VBFNLO −870.7 0 1.0048± 0.0033 unitarized, ΛFF = 543
VBFNLO −435.3 0 0.8279± 0.0029 unitarized, ΛFF = 637
VBFNLO −217.7 0 0.7410± 0.0027 unitarized, ΛFF = 755
VBFNLO −108.8 0 0.6976± 0.0026 unitarized, ΛFF = 905
VBFNLO 108.8 0 0.6574± 0.0025 unitarized, ΛFF = 905
VBFNLO 217.7 0 0.6723± 0.0026 unitarized, ΛFF = 755
VBFNLO 435.3 0 0.7120± 0.0027 unitarized, ΛFF = 637
VBFNLO 870.7 0 0.8106± 0.0029 unitarized, ΛFF = 543
VBFNLO 1500 0 1.0477± 0.0037 unitarized, ΛFF = 500
VBFNLO 0 −653.1 35.9323± 0.1020
VBFNLO 0 −435.3 16.4014± 0.0611
VBFNLO 0 −217.7 4.6573± 0.0206
VBFNLO 0 217.7 4.4911± 0.0158
VBFNLO 0 435.3 16.1029± 0.0606
VBFNLO 0 653.1 35.4844± 0.0990
VBFNLO 0 −653.1 0.7026± 0.0026 unitarized, ΛFF = 579
VBFNLO 0 −435.3 0.6867± 0.0026 unitarized, ΛFF = 637
VBFNLO 0 −217.7 0.6709± 0.0026 unitarized, ΛFF = 755
VBFNLO 0 217.7 0.6504± 0.0026 unitarized, ΛFF = 755
VBFNLO 0 435.3 0.6524± 0.0026 unitarized, ΛFF = 637
VBFNLO 0 653.1 0.6559± 0.0026 unitarized, ΛFF = 579
WHIZARD 0 0 0.6606± 0.0012 SM with Higgs
WHIZARD 0 0 0.6410± 0.0105
WHIZARD 0 0 0.6593± 0.0012 unitarized
WHIZARD −0.4 0 117.0737± 5.7200
WHIZARD −0.2 0 28.8891± 1.3900
WHIZARD −0.1 0 6.7704± 0.2430
WHIZARD −0.05 0 2.2611± 0.0709
WHIZARD 0.05 0 2.0733± 0.0607
WHIZARD 0.1 0 7.8536± 0.3470
WHIZARD 0.2 0 28.5528± 1.1200
WHIZARD 0.4 0 105.8519± 5.4800
WHIZARD −0.4 0 3.4941± 0.0079 unitarized
WHIZARD −0.2 0 2.0086± 0.0066 unitarized
WHIZARD −0.1 0 1.2673± 0.0025 unitarized
WHIZARD −0.05 0 0.9244± 0.0046 unitarized
WHIZARD 0.05 0 0.8554± 0.0017 unitarized
WHIZARD 0.1 0 1.1438± 0.0032 unitarized
WHIZARD 0.2 0 1.7867± 0.0051 unitarized
WHIZARD 0.4 0 3.0850± 0.0080 unitarized
WHIZARD 0 −0.3 19.8708± 1.2936
WHIZARD 0 −0.2 8.4165± 0.3424
WHIZARD 0 −0.1 2.6274± 0.0756
WHIZARD 0 0.1 2.5140± 0.0834
WHIZARD 0 0.2 6.5106± 0.2362
WHIZARD 0 0.3 17.9422± 0.5513
WHIZARD 0 −0.4 2.5736± 0.0054 unitarized
WHIZARD 0 −0.2 1.4781± 0.0031 unitarized
WHIZARD 0 −0.1 0.9953± 0.0018 unitarized
WHIZARD 0 −0.05 0.7980± 0.0016 unitarized
WHIZARD 0 0.05 0.7544± 0.0014 unitarized
WHIZARD 0 0.1 0.9171± 0.0022 unitarized
WHIZARD 0 0.2 1.3216± 0.0031 unitarized
WHIZARD 0 0.4 2.3265± 0.0053 unitarized

Table B.2: List of all same sign W±W± samples
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Appendix C

Other plots

The distributions shown in this thesis for other combinations of channels and parameters are
listed here. Other distributions of differential cross sections are shown at:

www.iktp.tu-dresden.de/∼bittrich/BA-results/Rivet/index.html

C.1 Total cross section plots
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Figure C.1: Dependency of total cross sections on the aQGC parameter for different
samples in the WZ channel. For further information see next figure.
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C Other plots

0

10

20

30

40

50

60

70

-800 -600 -400 -200 0 200 400 600 800
0

10

20

30

40

50

60

70
-800 -600 -400 -200 0 200 400 600 800

cr
os
s
se
ct
io
n
σ
in

fb

f0 · TeV4/Λ4

non-unitarized VBFNLO samples, WWss channel
with aQGC
SM process

0

10

20

30

40

50

60

70

-800 -600 -400 -200 0 200 400 600 800
0

10

20

30

40

50

60

70
-800 -600 -400 -200 0 200 400 600 800

cr
os
s
se
ct
io
n
σ
in

fb

f1 · TeV4/Λ4

non-unitarized VBFNLO samples, WWss channel
with aQGC
SM process

0

20

40

60

80

100

120

140

160

180

-0.4 -0.2 0 0.2 0.4
0

20

40

60

80

100

120

140

160

180
-0.4 -0.2 0 0.2 0.4

cr
os
s
se
ct
io
n
σ
in

fb

α4

non-unitarized Whizard samples, WWss channel
with aQGC
SM process

0

5

10

15

20

25

30

35

40

45

50

-0.4 -0.2 0 0.2 0.4
0

5

10

15

20

25

30

35

40

45

50
-0.4 -0.2 0 0.2 0.4

cr
os
s
se
ct
io
n
σ
in

fb

α5

non-unitarized Whizard samples, WWss channel
with aQGC
SM process

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

-800 -600 -400 -200 0 200 400 600 800
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05
-800 -600 -400 -200 0 200 400 600 800

cr
os
s
se
ct
io
n
σ
in

fb

f0 · TeV4/Λ4

unitarized VBFNLO samples, WWss channel
with aQGC
SM process

0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

-800 -600 -400 -200 0 200 400 600 800
0.64

0.65

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73
-800 -600 -400 -200 0 200 400 600 800

cr
os
s
se
ct
io
n
σ
in

fb

f1 · TeV4/Λ4

unitarized VBFNLO samples, WWss channel
with aQGC
SM process

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.4 -0.2 0 0.2 0.4
0.5

1

1.5

2

2.5

3

3.5

4

4.5
-0.4 -0.2 0 0.2 0.4

cr
os
s
se
ct
io
n
σ
in

fb

α4

unitarized Whizard samples, WWss channel
with aQGC
SM process

0.5

1

1.5

2

2.5

3

-0.4 -0.2 0 0.2 0.4
0.5

1

1.5

2

2.5

3
-0.4 -0.2 0 0.2 0.4

cr
os
s
se
ct
io
n
σ
in

fb

α5

unitarized Whizard samples, WWss channel
with aQGC
SM process

Figure C.2: Dependency of σ on the aQGC parameter f0 for the WWss channel. Red
crosses correspond to the cross sections of the generated samples. Blue data points refer to
the cross section of the samples generated using the mode for the SM process. The green
dashed line is a parabolic fit for non-unitarized samples. For the unitarized samples it is
a combination of two linear fits with independet slopes for different values for the aQGC
parameter.
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C.2 Differential cross section plots

C.2 Differential cross section plots

C.2.1 WWss channel
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Figure C.3: Comparison of different values for aQGC parameter f0, with f1 = 0, in
the WWss channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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Figure C.4: Comparison of different values for aQGC parameter f1, with f0 = 0, in
the WWss channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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Figure C.5: Comparison of different values for aQGC parameter α0, with α1 = 0, in
the WWss channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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C Other plots
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Figure C.6: Comparison of different values for aQGC parameter α1, with α0 = 0, in
the WWss channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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Figure C.7: Comparison of different values for aQGC parameter f0, with f1 = 0, in
the WWss channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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Figure C.8: Comparison of different values for aQGC parameter f1, with f0 = 0, in
the WWss channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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C.2 Differential cross section plots

Figure C.9: Comparison of different values for aQGC parameter α4, with α5 = 0, in
the WWss channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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Figure C.10: Comparison of different values for aQGC parameter α5, with α4 = 0, in
the WWss channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WW ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the leptons’ momenta in the x-y plane ∆φ(``). The
different colors represent different values for f̃0 as listed in the key.
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C.2.2 WZ channel
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Figure C.11: Comparison of different values for aQGC parameter f0, with f1 = 0, in
the WZ channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.
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Figure C.12: Comparison of different values for aQGC parameter f1, with f0 = 0, in
the WZ channel. No unitarization was used. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.

f̃0 = 0

f̃0 = −217.7

f̃0 = −435.3

f̃0 = −870.7

0 1000 2000 3000 4000 5000
0

1e-05

2e-05

3e-05

4e-05

5e-05

6e-05

7e-05

8e-05

9e-05

mT (WZ) [GeV]

d
σ
/
d
m

T
(W

Z
)

[f
b
/
G

eV
]

f̃0 = 0

f̃0 = −217.7

f̃0 = −435.3

f̃0 = −870.7

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

∆φ

d
σ
/
d
∆

φ
[f
b
]

Figure C.13: Comparison of different values for aQGC parameter f0, with f1 = 0, in
the WZ channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.
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C.2 Differential cross section plots
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Figure C.14: Comparison of different values for aQGC parameter f1, with f0 = 0, in
the WZ channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.
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Figure C.15: Comparison of different values for aQGC parameter α4, with α5 = 0, in
the WZ channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.
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Figure C.16: Comparison of different values for aQGC parameter α5, with α4 = 0, in
the WZ channel. Unitarization was applied. The left distribution shows the differential
cross section over the transverse mass of the pair of vector bosons mT(WZ). The right
distribution shows the differential cross section dependency on the absolute value of the
angle between the projections of the vector bosons’ momenta in the x-y plane ∆φ(WZ).
The different colors represent different values for f̃0 as listed in the key.
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C.3 Conversion between different parametrizations
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Figure C.17: Dependency of σ on the aQGC parameter fi and αi+4 for the WWss channel,
non-unitarized samples. Left: parameters f0 and α4. Right: parameters f1 and α5. Red
crosses correspond to the cross sections of the samples generated by VBFNLO. Green data
points refer to the cross section of the samples generated by WHIZARD. The black line
is a parabolic fit for all samples. fi-axis was scaled to match αi+4-axis according to fit
parameter ti.
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Figure C.18: Dependency of σ on the aQGC parameter fi and αi+4 for the WWss channel,
unitarized samples. Left: parameters f0 and α4. Right: parameters f1 and α5. Red crosses
correspond to the cross sections of the samples generated by VBFNLO. Green data points
refer to the cross section of the samples generated by WHIZARD. The black line is a fit
for all samples according to equation(8.1). fi-axis was scaled to match αi+4-axis according
to fit parameter ti.
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Figure C.19: Dependency of σ on the aQGC parameter fi and αi+4 for the WWss channel,
unitarized samples. Left: parameters f0 and α4. Right: parameters f1 and α5. Red crosses
correspond to the cross sections of the samples generated by VBFNLO. Green data points
refer to the cross section of the samples generated by WHIZARD. The black line is a fit
for all samples according to equation(8.1). fi-axis was scaled to match αi+4-axis according
to fit parameter ti.
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C.3 Conversion between different parametrizations

C.3.1 differential cross sections for similar total cross sections
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Figure C.20: Comparison of values for aQGC parameter f0 and α4, with similar cross
section, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over Emiss

T . The right distribution shows
the differential cross section dependency on the invariant mass of the vector boson pair
mT(WW ).
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Figure C.21: Comparison of values for aQGC parameter f0 and α4, with similar cross
section, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over |η| of the most forward jet. The right
distribution shows the differential cross section dependency on the transverse momentum
of the leading jet pT(j1).

f̃0 = −870.7

α4 = −0.05

SM (f̃0 = α4 = 0)

0

0.05

0.1

0.15

0.2

0.25

d
σ
/
d
∆

φ
[f
b
]

0 0.5 1 1.5 2 2.5 3
0

0.2
0.4
0.6
0.8

1
1.2
1.4

∆φ

R
a
ti
o

f̃0 = −870.7

α4 = −0.05

SM (f̃0 = α4 = 0)

0

0.0005

0.001

0.0015

0.002

0.0025

d
σ
/
d
p
T

[f
b
/
G

eV
]

0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

pT [GeV]

R
a
ti
o

Figure C.22: Comparison of values for aQGC parameter f0 and α4, with similar cross
section, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over |∆φ(``)| of the most forward lepton.
The right distribution shows the differential cross section dependency on the transverse
momentum of the leading lepton pT(`1).
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Figure C.23: Comparison of values for aQGC parameter f0 and α4, with similar cross
section, with f1 = α5 = 0, in the WWss channel. Unitarization was applied. The left
distribution shows the differential cross section over the invariant mass of the jet pairMjj .
The right distribution shows the differential cross section dependency on the transverse
momentum of the lepton centrality ζ.
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Figure C.24: Two-dimensional distributions for unitarized WWss samples with f̃0 =
−870.7. The left distribution shows a two-dimensional distribution of η of the lets. x-
axis represents the absolute value of the pseudorapidity of the leading jet, while the y-axis
corresponds to the subleading jet. The right distribution shows a two-dimensional distri-
bution of the transverse mass of the vector boson pair mT(WW ) and the difference of the
angle |∆φ``|.
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