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A challenge in mesonic three-body decays of heavy mesons is to quantify the contribution of re-
scattering between the final mesons. D decays have the unique feature that make them a key to
light meson spectroscopy, in particular to access the Kπ S-wave phase-shifts. We built a relativis-
tic three-body model for the final state interaction in D+ → K−π+π+ decay based on the ladder
approximation of the Bethe-Salpeter equation projected on the light-front. The decay amplitude
is separated in a smooth term, given by the direct partonic decay amplitude, and a three-body fully
interacting contribution, that is factorized in the standard two-meson resonant amplitude times a
reduced complex amplitude that carries the effect of the three-body rescattering mechanism. The
off-shell reduced amplitude is a solution of an inhomogeneous Faddeev type three-dimensional
integral equation, that includes only isospin 1/2 K−π+ interaction in the S-wave channel. The
elastic K−π+ scattering amplitude is parameterized according to the LASS data[1]. The inte-
gral equation is solved numerically and preliminary results are presented and compared to the
experimental data from the E791 Collaboration[2, 3] and FOCUS Collaboration[4, 5].
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1. Introduction

The non-leptonic decays of charmed mesons offer a good opportunity to study the mechanism
of heavy quark decay and subsequent hadronization. Due to the experimental efforts of the past
years (see e.g. [2, 4, 5, 6]) there are data available to access the hadronic interaction in the final
state. The first analysis of D+ → K−π+π+ decay was performed by the E791 collaboration and
revealed that approximately 50% of this decay proceed through a low-mass scalar resonance with
isospin 1/2: the K∗

0 (800), also called the κ[2]. The κ meson was the second elusive scalar to be
firmly detected in D+ decays since the scalar-isoscalar f0(600), or σ has been detected by the same
collaboration. Other recent experimental data analysis from the FOCUS[4, 5] and CLEO[6] collab-
orations based on large data samples had conclusions similar from that obtained by pioneering E791
experiment[2]. Some previous theoretical treatments and analysis[7, 8, 9, 10] of the K−π+ data
showed the presence of the κ pole in scattering amplitude. Other theoretical approaches[11, 12]
determine the κ and σ poles using Roy’s equation [13]. Also models based on chiral perturbation
theory [14, 15] extracted κ values from Kπ data.

Although, the κ pole of the Kπ amplitude is suggested by different models, a description of
the reaction D+ → K−π+π+ is still not available. In addition, this decay has a large branching ratio
fraction, easy to be reconstructed from the data, with a very low background and with an S-wave
contribution amounting to 80% of the total decay width. The E791 Collaboration[3] used MIPWA
(Model Independent Partial Wave Analysis) to obtain the decay amplitude in the lowest partial
waves, with no assumptions on the analytic form, which are represented by a generic complex
function to be determined directly from data. A comparison between the S-wave K−π+ phases
obtained by FOCUS from a MIPWA of D+ → K+π−π− decay and by LASS [1], showed a sizeable
energy dependent shift between these two results for the phases. A possible origin of this additional
energy dependent phase is a three-body final state interaction.

Our goal is to construct a relativistic three-body model of the final state interaction in D+ →
K−π+π+ decay by projecting onto the light-front the ladder approximation of the four-dimensional
Bethe-Salpeter (BS) equation. Previously, we have formulated the covariant BS equation for the
3 → 3 K−π+π+ full transition off-mass-shell amplitude without isospin degrees of freedom[16].
In the model, the decay amplitude is separated in a smooth term, given by the direct partonic
decay amplitude, and a three-body fully interacting contribution, that is factorized in the standard
two-meson resonant amplitude depending only on the square mass of the pair times a reduced
complex amplitude that carries the effect of the three-body rescattering mechanism. In the present
calculation, the off-shell reduced amplitude is a solution of an three-dimensional inhomogeneous
Faddeev type integral equation in light-front momentum, that has the S-wave isospin 1/2 K−π+

transition matrix as the input. The parameters of the S-wave isospin 1/2 K−π+ T-matrix are fitted
to the experimental data from LASS experiment[1]. The integral equation is solved numerically by
a standard discretization method and the results for the complex D+ → K−π+π+ decay amplitude
are compared to experimental data analysis from [2] and [4].

2. Covariant four-dimensional three-body model for heavy-meson decay

Following our model proposed in ref. [16], the partonic amplitude for the decay of the D meson
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into the Kππ channel with off-shell momenta qµ
i , and masses mi (i = π,K,π ′) is expressed by a

function D(qπ ,qπ ′). This amplitude should be convoluted with the 3→ 3 off-shell transition matrix,
which take into account the three-meson interacting final state, as shown in figure 1 including the
three-body connected ladder series, where the 2 → 2 scattering process is summed up in the Kπ
transition matrix.

+ + + · · ·

Figure 1: Diagrammatic representation of the heavy meson decay process into Kππ , starting from the
partonic amplitude (gray) and adding the hadronic multiple scattering in the ladder approximation. The
input Kπ scattering amplitude (black) is required fully off-mass-shell.

The full decay amplitude shown in figure 1 is given by:

D(kπ ,kπ ′) = D(kπ ,kπ ′)+
∫ d4qπ d4qπ ′

(2π)8 T (kπ ,kπ ′ ;qπ ,qπ ′)Sπ(qπ)Sπ(qπ ′)SK(K −qπ ′ −qπ)D(qπ ,qπ ′),(2.1)

where the momentum of the pions from the decay of the D are kπ and kπ ′ . The matrix element
of the 3 → 3 transition matrix is T (kπ ,kπ ′ ;qπ ,qπ ′). The Feynman propagator for the meson is
Si(qi) = ı(q2

i −m2
i + ıε)−1 in the approximation where self-energies are disregarded.

The 3 → 3 transition matrix is obtained from the following assumptions: i) the Kππ Bethe-
Salpeter equation is solved in the ladder approximation, and ii) the effective S-wave interaction
between the kaon and pion is local on the fields with the Kπ scattering amplitude, τi(M2

Kπ), pa-
rameterized to reproduce the Kπ S-wave phase-shift from the LASS experiment [1]. After that, the
full 3 → 3 ladder scattering series is summed up by solving the integral equations for the Faddeev
decomposition of the scattering matrix.

Owing the S-wave contact interaction for the Kπ system, the decay amplitude can be decom-
posed as:

D(kπ ,kπ ′) = D(kπ ,kπ ′) + τ(M2
Kπ)ξ (kπ ′)+ τ(M2

Kπ ′)ξ (kπ) , (2.2)

where the first term, D(kπ ,kπ ′), corresponds to a smooth background given by the partonic decay
amplitude. It is represented by the gray blob with three legs at leftmost corner of figure 1. The sec-
ond and third terms in the rhs of Eq. (2.2) carry the full effect of the final state interaction through
the two-meson resonant amplitude, τ , times a spectator amplitude, ξ , that contains the three-body
re-scattering contributions. The contributions to the decay from τ(M2

Kπ)ξ (kπ ′) + τ(M2
Kπ ′)ξ (kπ)

correspond to the sum of the second, third and higher order diagrams of figure 1. They represent
the full hadronic re-scattering series of the Kππ system in the ladder approximation.

The re-summation of the scattering series by the reduced amplitude ξ (k) can be done by an
integral equation shown diagrammatically in figure 2,

ξ (k) = ξ0(k)+
∫ d4q

(2π)4 τ((K −q)2)SK(K − k−q)Sπ(q)ξ (q), (2.3)
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where

ξ0(k) =
∫ d4q

(2π)4 Sπ(q)SK(K − k−q)D(k,q), (2.4)

is the driving term (source term) in the above integral equation. This term multiplied by τ(M2
Kπ ′) is

represented by the second diagram in figure 1. The other term in eq. (2.3) comes from three-body
connected diagrams. The lowest order rescattering term is the connected amplitude given by the
third diagram in figure 1.

= +

Figure 2: Diagrammatic representation of the integral equation for the three-body function τ(M2
Kπ ′)ξ (kπ)

(gray box). The driving term contains the partonic amplitude convoluted with the two-body scattering am-
plitude (black).

The contribution to the three-body rescattering process given by the reduced amplitude solu-
tion of eq. (2.3) is built by mixing resonances of the two possible Kπ pairs. The reduced amplitude
from the model is a function only of the momentum of the spectator pion. The model separates the
background of the decay amplitude in two parts: one that corresponds to a smooth function of the
momentum of the pions (D(kπ ,kπ ′)) and the other giving by ξ (k) times the pair amplitude, which
is a fully three-body interacting term modulated by the Kπ resonant amplitude.

3. Kπ S-wave I=1/2 transition matrix and a dynamical AdS/QCD Model

In our model the input for the calculation of the 3 → 3 T-matrix is the S-wave I=1/2 Kπ
amplitude. Besides the K∗

0 (1430) resonance of the parametrization of the LASS data [1] given
in ref. [17], we introduced the resonances K∗

0 (1630) (in PDG there is no assignment of spin to
K(1630)) and K∗

0 (1950) in the S-wave Kπ scattering amplitude.
The suggestion to include the higher radial excitations of K∗

0 comes from a recent proposal to
interpret the scalar meson family ( f0) as radial excitations of the σ meson[18]. This interpretation
comes within a Dynamical AdS/QCD model [19] in which the dilaton-gravity background is a
solution of 5D Einstein equations. Confinement is dynamically encoded in the model and leads
to a Regge behavior for light- scalar, - pseudoscalar mesons as well higher spin mesons (S ≥
1). These models implement Maldacena’s Conjecture [20] which introduced new perspectives
to the treatment of the strong-interaction physics by using gauge/string dualities. New insights
and analytical tools to study hadron properties in the non-perturbative regime of the strong force
follows the conjecture. The dynamical AdS/QCD model applied to the strange sector gives a mass
spectrum (M2×n) for the Kappa family with a slope of ∼ 0.6 GeV2 [21]. Therefore, the resonances
K∗

0 (1430), K∗
0 (1630) and K∗

0 (1950) are suggested to be radial excitations of K∗
0 (800), which couple

to the S-wave Kπ I=1/2.
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In this way, we include the K∗
0 (1630) and K∗

0 (1950) resonances in our relativistic model of the
S-wave Kπ amplitude extending the parametrization given in ref. [17]:

τ
(
M2

Kπ
)
= 4π

MKπ

k
(SKπ −1) , (3.1)

with the S-matrix given by:

SKπ =
k cotδ + ı k
k cotδ − ı k

3

∏
r=1

M2
r −M2

Kπ + ızrΓ̄r

M2
r −M2

Kπ − ızrΓr
, (3.2)

where zr = k M2
r /(kr MKπ). The relative c.m. momentum of the Kπ pair is

k =

[(
M2

Kπ +m2
π −m2

K

2MKπ

)2

−m2
π

] 1
2

. (3.3)

The parameters Mr, Γr, Γ̄r and kr refer to each resonance. The relative momentum kr is obtained
at the resonance position. The parameter −Γr < Γ̄r < Γr is introduced to allow inelasticity in
the Kπ scattering. The background s-matrix is parameterized by the effective range expansion
k cotδ = −a−1 + 1

2 r0 k2 with a = −1.6 GeV−1 and r0 = 3.32 GeV−1. The resonance parameters
(Mr,Γr, Γ̄r) in GeV for K∗

0 (1430), K∗
0 (1630) and K∗

0 (1950) are (1.48, 0.25, 0.25), (1.67, 0.1, 0.1)
and (1.9, 0.2, 0.14), respectively.

4. Light-Front Three-Body Model

The Bethe-Salpeter formalism is four-dimensional and explicitly Lorentz covariant. Three-
dimensional reductions result in equations of the quasi-potential type. In Light-Front Dynamics
(LFD) the state vector describing the system is expanded in Fock components with increasing num-
ber of particles. The Fock-space state vector is defined on a hypersurface of the four-dimensional
space-time defined by the light-front x+ = t + z = cte. The time evolution is governed by the light-
front (LF) hamiltonian which is the generator of the LF-time boosts. This form of dynamics is
suited for relativistic systems, since the interaction of a probe (an electron, for instance) with the
constituents of the system is separated from its interaction with the vacuum fluctuations - the LF
vaccum is trivial apart the contribution of zero modes [22, 23]. The perturbative amplitudes for
the physical process obtained within LF quantization are equivalent to the usual equal time formal-
ism in the infinite momentum frame. From a qualitative point of view, all the physical processes
become as slow as possible because of time dilation in this reference frame. LF quantization and
the associated Fock-space decomposition greatly simplifies the description of the system which is
equivalent to a snapshot not spoiled by vacuum fluctuations. It is thus very natural that in the de-
scription of high energy experiments like deep inelastic scattering the probabilities associated with
the LF wave functions are measured.

The projection of the four-dimensional BS equation 2.3 to the light-front takes the advantage
of the quasi-potential formalism developed in ref.[24] and the result is written as:

ξ 3
2
(y,k⊥) =

5
3

ξ0(y,k⊥)+
i
3

∫ 1−y

0

dx
x(1− y− x)

∫ d2q⊥
(2π)3

τ 1
2
(M2

Kπ)ξ 3
2
(x,q⊥)

M2
D −M2

0,Kππ + iε
. (4.1)
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A similar form, but considering the homogeneous equation, has been used to study relativistic
three-boson bound states [25, 26]). The driving term becomes

ξ0(y,⃗k⊥) = −
∫ d4q

(2π)3
1

q2 −m2
π + iε

1
(K − k−q)2 −m2

K + iε

=
i
2

∫ 1

0
dx

∫ d2q⊥
(2π)3

[
1

M2
kπ −M2

0,Kπ + iε
− 1

µ2 −M2
0,Kπ + iε

]
+ iλ (µ2) (4.2)

where λ (µ2) is the renormalization parameter and

M2
Kπ = (M2

D −
k2
⊥+m2

π
y

)− k2
⊥, M2

0,Kπ =
q2
⊥+m2

π
x

+
q2
⊥+m2

K

1− x
. (4.3)

The physical amplitude for the S-wave D+ → K−π+π+ decay parameterized according to [4] as
A0(SA,SB) = a0(SA)eiΦ0(SA)+a0(SB)eiΦ0(SB) and our theoretical framework gives:

A0(M2
Kπ ′) = a0(M2

Kπ ′)eiΦ0(M2
Kπ′ ) ∝ 1+ τ 1

2

(
M2

Kπ ′
)

ξ 3
2
(y,k⊥π) , (4.4)

where k2
⊥π =

(
M2

D +m2
π −M2

Kπ ′
)2
/(2MD)

2 −m2
π and y =

√
k2
⊥π +m2

π/MD.

Figure 3: Comparison of the three- and two-body models S-wave phase-shifts with the experimental data as
function of the Kπ mass. The D+ → K−π+π+ phase is defined according to (4.4). Experimental data from
E791 and FOCUS collaborations, and for the Kπ I=1/2 S-wave phase-shift from LASS.

5. Numerical Results and Conclusion

Our aim is to solve numerically light-front eq. (4.1) for the reduced amplitude. For that
preliminary calculation, we introduce a cut-off, Λ = 4 GeV, of the transverse momentum in eq.
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Figure 4: Magnitude of the D+ → K−π+π+ S-wave amplitude (4.4)as a function of the Kπ mass. Experi-
mental data from E791 and FOCUS collaborations.

(4.1), to calculate the spectator function ξ (k). Also, we have considered a finite value of 0.1 GeV
for ε in the meson propagators. The spectator function was considered for virtual pion momentum
fully off-energy-shell. The partonic decay amplitude is assumed momentum independent with, i.e.,
D(qπ ,qπ ′) = 1 and λ (0) = 0.12+ ı0.06.

Our preliminary results for the s-wave phase for the D → Kππ decay are shown in figure 3 and
for the complex reduced S-wave amplitude in figure 4. We show the results for the three-resonance
model (3.2) for the S-wave Kπ I=1/2 phase-shift which present a reasonable compared agreement
with the LASS data.

The three-body calculation shows a considerable effect on the phase near the Kπ threshold
with a shift of about −150o. These results are similar to the Focus data from the D → Kππ decay.
But we stress that the phase from the computation of the inhomogeneous term comes from λ (0).
Given that, the phase for MKπ < 1.45 GeV follows the trend of the data but the details are still
missing. The modulus of the S-wave D → Kππ decay amplitude |1

2 + τ(M2
Kπ)ξ (kπ ′)| essentially

follows the data as well the modulus of the Kπ amplitude. However, our toy model results are still
far from satisfactory. We have to consider other effects that could enhance the final state interaction.
Moreover, the analytical continuation of the S-wave Kπ scattering amplitude to the unphysical
region has to be studied in more detail, as we have naively used the on-mass-shell formula given
by eq. (3.3) for M2

Kπ < (mK +mπ)
2. Also, the momentum cut-off dependence has to be explored

and also the momentum dependence of the partonic amplitude may be important. Therefore, we
believe that our model still need to be further improved to allow more definite conclusion about the
effect of hadronic three-body final state interaction. However, with the present work we give the
first steps to systematically address the issue of final state interaction in the D → Kππ decay.

We thank the Brazilian funding agencies FAPESP (Fundação de Amparo a Pesquisa do Estado
de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and
CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior).
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