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14.1 Introduction

The understanding of the analogy between propagation of light rays in a
nonuniform medium and the motion of electrons in an electromagnetic field,
outlined in the 1930s, served as a stimulus for the development of charged-
particle optics. In the initial stage of its development, charged-particle optics
mainly considered the problem of image acquisition by means of electrons.
In a short time, this area of study named “electron optics” resulted in the
development of the electron microscope. However, the problems of electron
optics were not confined to development of a lens system for providing im-
ages with the help of electron beams. The expanding applications of electron
and ion beams required the development of devices capable of providing the
necessary control of beams and to deliver charged particles from their source
to a distant target. The appearance and rapid growth of ion optics, for ex-
ample, were mainly caused by the need for mass analysis, as well as by the
development of charged-particle accelerators. To date, charged-particle optics
embraces a wide range of problems connected with the application of electron
and ion beams in different areas of science and technology. A huge number
of publications have been devoted to this subject. Unfortunately, it is impos-
sible to give even a brief overview of these publications in the framework of
this chapter. Therefore we confine ourselves to references to the books [1–3],
in which the principles of charged-particle optics are given along with an
extensive bibliography.

One of the fields of application of ion optics is electrostatic accelerators.
Ion-optical calculations play there (as in all other applications) a large role.
The techniques for ion-optical calculations for electrostatic accelerators have
undergone a very thorough change during their history of more than half
a century (one of the first papers in which a detailed calculational analysis
of an ion-optical system of an electrostatic accelerator was given was pub-
lished in 1953 [4]). These techniques have come a long way from simple an-
alytical calculations based on approximations of geometrical optics, towards
sophisticated 3-D computer simulation. The rapid development of hardware
will probably promote the creation of increasingly complicated software for
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mathematical simulation of ion-optical systems. However, as was mentioned
by J.D. Larson [5], application of complex numerical models without prelim-
inary analytical calculations is fraught with the risk that the understanding
of the results obtained could be lost. This observation, in spite of the impres-
sive development of a system for data visualization, seems to remain valid
in the future as well. Therefore it is essential to begin the solution of any
ion-optical problems with simple analytical evaluations, then passing on to
numerical calculations based on simplified mathematical models, and to use
more complicated calculation techniques only at the last stage if necessary.

Electrostatic accelerators are widely used in various fields of scientific
research and in industry. Quite naturally, the range of ion-optical problems
arising at these accelerators is wide enough, and rather different approaches
are necessary for their solution. Suffice it to mention ion microprobes and
bunched beams as examples of the variety of these problems. At the same
time, there is a problem that is general for the majority of applications. This
is the beam transport problem.

Some examples of uncomplicated ion-optical calculations (both analyti-
cal and numerical) which can be used for electrostatic accelerators will be
given in this chapter. The main attention is paid to methods for first-order
calculations of beam transport taking into account the unordered spread of
transverse speeds of ions, as well as the space charge forces. To describe a
continuous monoenergetic ion beam, we use the concepts of four-dimensional
phase space and of beam envelopes. According to Liouville’s theorem, the
phase volume occupied by the points representing the ion beam in the 4-D
space of canonically conjugate coordinates and momenta is conserved. In the
case of separation of variables in the equations of motion, projections of the
phase volume on the planes of canonically conjugate variables are conserved
as well. More often, however, to describe the transverse motion of ions, one
considers the projection of the phase volume onto a plane of coordinates and
angles, the plane XX ′ for example. The area of this projection divided by
π, called the emittance ε, is an important characteristic of a charged-particle
beam:

ε =
1
π

∫ ∫
dx dx′ (14.1)

It is known that for a beam with finite (i.e. nonzero) emittance, one cannot
point out a particle the trajectory of which could define a beam boundary. In
this case the boundary is defined by an envelope of the ion trajectories, the
determination of which is one of the principal problems for beams with finite
emittance. To find the beam envelope in a linear approach one generally uses
the matrix formalism or the solution of differential equations for the envelope.
Detailed descriptions of these methods can be found in [6–9].
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14.2 An Analytical Technique
for Calculation of Ion Beam Envelopes

Let us consider some simple calculation techniques which can be useful in the
first stage of designing the ion-optical system of an electrostatic accelerator,
as well as for analysis of the optical behavior of elements of this system. The
method we shall use was suggested by E.V. Shpak [10]. For an ion beam
with a negligibly small current, this method allows one to find an analytical
expression for the beam envelope from a family of trajectories passing through
a boundary of the projection of the 4-D phase volume. In the original method
[10], an analytical expression for the beam envelope is found as a function of
the longitudinal coordinate z on the assumption that the beam has a crossover
at the initial point z0 (i.e. the beam in the phase plane is represented at this
point by a straight ellipse).

We consider the method in more detail, having generalized it to initial
conditions given by an elliptical phase contour with an arbitrarily sloped axis.
We assume that at the initial point z0, the projection of the phase volume of
the beam onto the plane XX ′ is bounded by an ellipse given by

γx2
0 + 2αx0x

′
0 + β(x′

0)
2 = ε (14.2)

The relations between the coefficients α, β and γ in (14.2) and the input
characteristics of the beam (the envelope coordinate r0, the beam divergence
r′0 and the emittance ε) are given by the following:

α = −r0r
′
0

ε

β =
r2
0

ε
(14.3)

γ =
ε2 + (r0r

′
0)

2

εr2
0

Let the projection of the ion trajectory on the coordinate plane XOZ be
given by

x(z) = R1(z)x0 + R2(z)x′
0 (14.4)

where R1(z) and R2(z) are linearly independent solutions of the paraxial
equation (R1(0) = 1; R′

1(0) = 0; R2(0) = 0; R′
2(0) = 1); and x0 and x′

0 are
the initial values of the transverse coordinate of the ion and the tangent of the
angle between the ion trajectory and the longitudinal axis OZ, respectively.
Equation (14.5), obtained from (14.2)–(14.4), gives a family of ion trajectories

x(z) − R1(z)x0 − R2(z)
(

r′0
r0

x0 ± ε

r2
0

√
r2
0 − x2

0

)
= 0 (14.5)

The initial points of the trajectories (14.5) are located on the boundary phase
contour given by (14.2). The beam envelope can be determined as the enve-
lope of the family of the curves given by (14.5). After elimination of x0 from
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the simultaneous equations

F (x0, z) = 0
∂F (x0, z)

∂x0
= 0 (14.6)

where F (x0, z) denotes the left-hand side of (14.5), we arrive at an expression
for the calculation of the envelope,

r(z) = ±
√

(R1(z)r0 + R2(z)r′0)
2 +

(
R2(z)ε

r0

)2

(14.7)

Note that (14.7) agrees with a particular solution of the differential equation
for the beam envelope given in [7]. Finding the derivative of r with respect
to z, we arrive at an expression for the beam divergence r′:

r′(z) = ± (R1r0 + R2r
′
0)(R

′
1r0 + R′

2r
′
0) + R2R

′
2(ε/r0)2

r(z)
(14.8)

(The signs “+” and “−” in (14.7) and (14.8) are related to the upper and
lower branches of the envelope, respectively) And finally, equating the right-
hand side of (14.8) to zero, one can find a position of the beam crossover.

We shall now consider two examples of the application of the analytical
expression (14.7) to beam envelope calculation for elements of the ion-optical
system of an electrostatic accelerator.

14.2.1 Focusing of an Ion Beam
with Finite Emittance by an Accelerator Tube

Let us turn to Elkind’s classic work [4], in which a detailed analysis of beam
focusing by an accelerator tube was given for the first time. The calculations
represented in Elkind’s work were performed in the approach of geometrical
optics (i.e. for a beam with zero emittance). Therefore they did not take into
account the effect of an unordered spread of ion speeds on the beam focusing.
We shall now solve Elkind’s problem for a beam with finite emittance.

Let the system for beam acceleration and transport consist of the following
linear optical elements (Fig. 14.1): 1, a drift section between the plane of
optical object and the accelerator tube; 2, a converging aperture lens at
the entrance to the accelerator tube; 3, an uniform-field accelerator tube; 4
a diverging aperture lens at the exit of the accelerator tube; and 5, a drift
section between the accelerator tube and the target on which the beam has to
be focused [4]. The problem will be solved without taking into consideration
the space charge forces. In this case the variables in the equations of motion
are separated. Therefore the analysis can be confined to one of the coordinate
planes (XOZ, for example).
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Fig. 14.1. For calculation of beam-focusing by an accelerator tube

Consider the motion of nonrelativistic ions in the drift section following
the accelerator tube (Fig. 14.1, part 5). In this section the projection of the
trajectory on the coordinate plane takes the form of (14.4). Using matrix
formalism, we now determine R1(z) and R2(z) in (14.4). The transfer matrix
of the whole system (parts 1–5 in Fig. 14.1),

RS =
(

R11 R12

R21 R22

)
(14.9)

can be expressed as a matrix product of its individual ion-optical elements:

RS = R2 RD RT RF R1 (14.10)

where

R1 =
(

1 L1

0 1

)
(14.11)

is the matrix of the drift section located before the accelerator tube (Fig. 14.1,
part 1);

RF =
(

1 0
1/f1 1

)
(14.12)

is the matrix of the input aperture lens (Fig. 14.1, part 2);

RT =
(

1 2LT /(
√

N + 1)
0 1/

√
N

)
(14.13)

is the matrix of the uniform-field accelerator tube (Fig. 14.1, part 3);

RD =
(

1 0
1/f2 1

)
(14.14)

is the matrix of the output aperture lens (Fig. 14.1, part 4); and, finally,

R2 =
(

1 L2

0 1

)
(14.15)
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is the matrix of the drift section positioned after the accelerator tube
(Fig. 14.1, part 5).

The following notation is used for the matrix elements: N = Φl/Φ0

is the ratio of the potential of the last electrode of the accelerator tube
to the potential of the first tube electrode; f1 and f2 are the focal lengths
of the input and output aperture lenses; and L1, LT and L2 are the lengths of
the first drift section, of the accelerator tube and of the second drift section,
respectively (see Fig. 14.1).

The focal length of the aperture lens can be approximated by f =
4Φξ/(E1−E2), where ξ is a function of Φ/(E1−E2) and the aperture diame-
ter D [4], and E1 and E2 are the fields preceding and following the aperture,
respectively. For the weak output lens, this dependence can be neglected,
assuming ξ = 1. Then, using the ratio N defined above, we arrive at

f1 = −4ξLT /(N − 1) (14.16)

f2 = 4NLT /(N − 1) (14.17)

Taking into consideration (14.10)–(14.17), one can write the matrix elements
R11 and R12 as

R11 =
3(N − 1)(ξ −√

N)L2

8NξLT
−

√
N − 1
2ξ

+ 1 (14.18)

R12 =
L2

2N

{
L1(N − 1)

2LT
+ (3

√
N − 1)

[
1 − L1(N − 1)

4ξLT

]}

+
2LT (

√
N − 1)

N − 1

[
1 − L1(N − 1)

4ξLT

]
+ L1 (14.19)

We suppose now that the beam is focused into a waist with a radius of r0 at
a distance of L1 from the entrance aperture lens. Let us find the distance L2

from the exit aperture at which the output crossover is shaped. Assuming the
plane of this crossover to be the end of the ion-optical system under considera-
tion, one can write R1(z) = R11 and R2(z) = R12. Having substituted (14.18)
and (14.19) into (14.7), we differentiate it with respect to z, taking into ac-
count the obvious relation between variables z and L2 : z = L1 + LT + L2.
Solving the equation obtained in such a way with respect to L2, we determine
the position of the output crossover

L2 =
4NLT (

√
N − 1 − 2ξ)(r4

0 + ε2S1S2)
3(N − 1)(ξ −√

N)(r4
0 + ε2S2

2)
(14.20)

where S1 = 4LT ξ/((
√

N + 1)(
√

N − 1 − 2ξ)) − L1 and S2 = 4LT ξ(3
√

N −
1)/(3(N − 1)(

√
N − ξ)) − L1(3

√
N − 1 − 2ξ)/(3(

√
N − ξ)). In the extreme

case of a beam of zero emittance, emerging from a point source on the optical
axis (i.e. for ε → 0 and r0 → 0), (14.20) transforms to Elkind’s formula:
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L2 = 4NLT
(
√

N − 1 − 2ξ) − 4ξ(LT /L1)/(
√

N + 1)
4ξ(LT /L1)(3

√
N − 1) − (N − 1)(3

√
N − 1 − 2ξ)

(14.21)

As a rule, N � 1 for electrostatic accelerators. Then a condition for
existence of a beam crossover in the drift space following the accelerator
tube is given by the inequality S1S2 < −r4

0/ε20. This inequality defines more
rigid constraints for the position of the input crossover in comparison with
the analogous inequality S1S2 < 0 obtained from Elkind’s formula (14.21).

One of the ion-optical problems for electrostatic accelerators lies in match-
ing the beam to the accelerator tube. By defining a relation between the
positions of the input and output crossovers, (14.20) allows us to perform
estimations necessary for this problem to be solved. These estimations will
be done using the low-energy accelerator tube of the 3 MV Pelletron tandem
accelerator in Lund as an example. The beam-matching problem at this ac-
celerator has already been solved earlier by a matrix method [11]. By analogy
with this work, we employ in our example a simplified approximation for the
input aperture lens, assuming ξ in (14.20) to be equal to unity. We shall also
assume that the electrostatic field in the accelerator tube (LT = 1.694 m)
is uniform. Figure 14.2 gives the relationship L2 = f(L1) calculated for the
fixed ratio N = 60. Here the variable parameters are the radius r0 of the
beam in the plane of the input crossover and the normalized emittance εn

(Fig. 14.2, curves 1–4). Curve 5, giving the relationship between the positions

Fig. 14.2. Relationships between the positions of the input (L1) and output (L2)
crossovers calculated for the low-energy part of the accelerator tube of the 3 MV
Pelletron accelerator in Lund. 1, εn = 3π×10−6 m rad (MeV)0.5, r0 = 0.5×10−3 m;
2, εn = 5π × 10−6 m rad (MeV)0.5, r0 = 0.5 × 10−3 m; 3, εn = 3π ×
10−6 mrad (MeV)0.5, r0 = 0.25 × 10−3 m; 4, εn = 5π × 10−6 mrad (MeV)0.5,
r0 = 0.25×10−3 m; 5, εn = 0, r0 = 0 (the calculation performed in accordance with
Elkind’s approximation)
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of an optical object located in the drift space before the accelerator tube and
its image created by the tube was calculated in Elkind’s approach (14.21).
For the purpose of more detailed analysis, the drift space after the accel-
erator tube has not been constrained to the actual drift section under the
high-voltage terminal of the Pelletron accelerator (the boundary of this drift
section is shown in Fig. 14.2 as a solid horizontal line). Consider the focusing
of the beam onto the center of the stripper (the center of the stripper channel
is marked by a dashed line). As can be seen from Fig. 14.2, the functional
dependences L2 = f(L1) plotted for a beam with finite emittance (curves 1–4
in Fig. 14.2) have a maximum. This highest possible value of L2 decreases
with increasing beam radius r0 in the plane of the input crossover and with
decreasing emittance εn. The curve 1 is completely below the dashed line, i.e.
in this case the crossover cannot be obtained at the center of the stripper.
The dashed line, as can be seen in Fig. 14.2, crosses the curves 2–4 twice,
giving two values of L1 for which the output crossover is in the center of
the stripper. However, the lower of these two values of L1 corresponds to an
impermissible large optical magnification and therefore cannot be applied in
practice. To obtain a beam crossover at the stripper, the beam needs to have
a rather small radius in the plane of the input crossover and, in addition,
the permissible position for this plane is constrained to quite a small part of
the input drift section. The calculation and experimental results given in [11]
justify this conclusion. Thus the ion-optical behavior of the system under
consideration imposes a rigid limitation upon the input characteristics of the
beam.

14.2.2 Application of the Beam Envelope Technique
for Acceptance Calculations

Let us consider an application of the beam envelope technique to calculation
of the acceptance of a part of an ion-optical system confined between two
apertures. Although this problem had been already discussed by J.D. Larson
and C.M. Jones in detail [12], we decided to return to the problem for the fol-
lowing reasons. Firstly, in the case of an elliptical phase contour, the envelope
technique allows somewhat of a simplification of the derivation of the main
formula for the acceptance calculation. Secondly, the method suggested gives
a possibility of graphical representation of the results in the phase plane.

Then let a part of some ion-optical channel be confined between two planes
z0, z1. Let r0, r1 be, correspondingly, the radii of the input and the output
apertures constraining the beam in these planes. For this part of the system,
we shall derive an analytical expression for the acceptance making use of
(14.7). If R2(z1) = 0, i.e. the system under consideration forms a Gaussian
image in the plane z1, then (14.7) takes the form r1 = |R1(z1)|r0. In this case
the transverse dimension of the beam in the image plane does not depend
on the beam emittance, and it is determined by the absolute value of the
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optical magnification of the system. Assuming R2(z1) �= 0, we can express
the emittance ε from (14.7) as

ε =

√(
r0r1

R2(z1)

)2

−
(

r0[R1(z1)r0 + R2(z1)r′0]
R2(z1)

)2

(14.22)

Equations (14.2), (14.3) and (14.22) determine in the phase plane a family
of ellipses of variable area πε. The ellipses exist under conditions given by
the inequality r2

1 − (R1r0 + R2r
′
0)

2 > 0. Its solution establishes the variation
limits for the beam divergence r′0:

−(R1/R2)r0 − (|r1|/R2) < r′0 < −(R1/R2)r0 + (|r1|/R2) ; R2 > 0
−(R1/R2)r0 + (|r1|/R2) < r′0 < −(R1/R2)r0 − (|r1|/R2) ; R2 < 0 .

(14.23)

The emittance reaches its maximum value when the second term under the
square root in (14.22) is equal to zero, i.e.

r′0 = −R1

R2
r0 (14.24)

The upper bound of the emittance determines the acceptance A; it follows
directly that

A =
∣∣∣∣r0r1

R2

∣∣∣∣ (14.25)

Taking into account that the emittance has been defined in the present work
as the area of a phase ellipse divided by π, (14.25) coincides with the ex-
pression derived in [12]. Substituting (14.24) and (14.25) in the coefficients
of (14.3), we arrive at the equation representing the acceptance in the phase
plane: (

r2
1 + r2

0R
2
1

r2
0r

2
1

)
x2 +

2R1R2

r2
1

xx′ +
R2

2

r2
1

(x′)2 = 1 (14.26)

As an example we present acceptance calculations performed for the mass
analyzer of the injector at the Pelletron accelerator in Lund [13]. The mass
analyzer is an uniform-field dipole magnet with a bending angle ϕ = 90◦, a
bending radius ρm = 0.3735 m and an angle of pole edge rotation β = 28.2◦.
The cross section of the vacuum chamber of the mass analyzer has the fol-
lowing dimensions: 80 mm in the dispersive plane and 39 mm in the non-
dispersive plane. The planes of the optical object and image are at equal
distances from the boundaries of the magnetic field. A four-blade input aper-
ture is positioned in the object plane of the magnetic analyzer. A two-blade
slit device is installed in the image plane.

Since the trajectory R2 crosses the optical axis in the image plane (i.e.
R2 = 0 in this plane), the analyzer acceptance does not depend on the aper-
ture of the slit device. It is defined only by the input aperture which is used
as the first diaphragm in (14.25) and by the aperture of the vacuum chamber
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of the analyzer. For a wide range of initial beam conditions (beam radius,
divergence and emittance), the beam envelope reaches a maximum inside the
analyzer. Therefore, to use the transverse dimensions of the vacuum chamber
of the analyzer in acceptance calculations performed by the “two diaphragm”
formula (14.25), we have to find a cross section of the vacuum chamber that
represents the chamber constraints equivalently and hence could be consid-
ered as the second diaphragm.

Consider first the dispersive (XOZ) plane of the magnetic analyzer. In
this plane, the beam is defocused by the fringe fields and focused by the
uniform magnetic field. Focusing is the resulting effect. Therefore, it is most
natural to connect the position of the second diaphragm with a possible max-
imum of the beam envelope in the uniform-field region. Then, using (14.8),
we can find this maximum from the equation

(R1r0 + R2r
′
0)(R

′
1r0 + R′

2r
′
0) +

(
ε

r0

)2

R2R
′
2 = 0 (14.27)

Taking into account that R1r0 + R2r
′
0 = 0 for the beam of the maximum

possible emittance, and that the image plane is outside the magnetic field
(i.e. R2 �= 0 in the field region), we arrive at the condition for the extreme of
the R2 trajectory,

R′
2 = 0 (14.28)

Thus, the position of the second diaphragm coincides with the extreme of
the trajectory R2(z) determined by a linearly independent solution of the
paraxial equation.

To find the trajectory R2(z) in the field region of the magnetic analyzer,
we use the matrix formalism. The transfer matrix of the system, consisting
of a drift section between the input aperture and the effective boundary of
the magnetic field, a thin lens describing the effect of the fringe field, and the
sector magnetic field can be expressed as a matrix product of these individual
elements:

R = RMRLRDr (14.29)

where

RM =
(

cos(z/ρm) ρm sin(z/ρm)
−ρ−1

m sin(z/ρm) cos(z/ρm)

)
(14.30)

RL =
(

1 0
ρ−1

m tan β 1

)
(14.31)

RDr =
(

1 L
0 1

)
(14.32)

are the matrices of the uniform magnetic field, of the fringing-field lens and
of the drift section of length L, respectively. Multiplication of the matrices
yields
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R2(θ) = L cos θ + (L tan β + ρm) sin θ (14.33)

where θ = z/ρm. The trajectory R2(θ) attains an extreme at

θe = arctan
(
tan β +

ρm

L

)
, |θ| ≤ 90◦ (14.34)

After substituting θe in (14.33), we find this extreme of the trajectory R2:

R2(θe) = L

√
1 +

(
tan β +

ρm

L

)2

(14.35)

In the field region of the 90◦ magnet, the extreme is a maximum for any
L, since R2 > 0 and R′′

2 = −R2 at the point of the extreme. Taking into
consideration the condition for radial focusing in a uniform sector magnetic
field [3],

sin ϕ + 2
L cos(ϕ − β)

ρm cos β
−

(
L

ρm cos β

)2

sin(ϕ − 2β) = 0 (14.36)

as well as equality of the distances from the field boundaries to the object
and image planes, one can express L through the geometrical parameters of
the analyzer:

L =
ρm

1 − tan β
(14.37)

And finally, substituting (14.37) in to (14.35), we arrive at an expression for
the extreme of the trajectory R2:

R2 =
ρm

√
2

1 − tan β
(14.38)

R1 can also be expressed through the matrix product given by (14.29). Sub-
stituting the value of θe in this expression at the point of the extreme of the
trajectory R2 yields

R1 =
1 + tanβ√

2
(14.39)

Equations (14.38) and (14.39) and the dimensions of the two diaphragms
determine an acceptance area in the phase plane. In accordance with (14.25),
the value of the acceptance in the dispersive plane of the magnetic analyzer
can be calculated from:

A =
rx0rx1(1 − tan β)

ρm

√
2

(14.40)

where 2rx0 and 2rx1 define the input aperture and the aperture of the vacuum
chamber of the magnetic analyzer, respectively.

In the nondispersive (Y OZ) plane of the magnetic analyzer, only the
fringe field lenses act as focusing elements. In the first-order approach, the
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absolute value of the focal length of the lenses is the same for both of the
transverse planes. Therefore the transfer matrices RM and RL can be written
as

RM =
(

1 z
0 1

)
(14.41)

RL =
(

1 0
−ρ−1

m tan β 1

)
(14.42)

Substitution of (14.41) and (14.42) in (14.29) yields

R1 = 1 − z tan β

ρm
(14.43)

R2 =
ρm

1 − tan β
+ z

1 − 2 tan β

1 − tan β
(14.44)

In the magnetic-field region, the trajectory R2 neither attains the extremes
nor crosses the optical axes. Taking into account that 1 − 2 tan β < 0 in
(14.44), we arrive at the expressions for the acceptance calculation

R1 = 1 ; R2 =
ρm

1 − tan β
; A =

ry0ry1(1 − tan β)
ρm

(14.45)

Finally, let us consider a numerical example. Let the opening of the four-
blade input aperture be 5×5 mm2. To reduce the unfavorable effect of aber-
ration, we require that the beam dimensions in two transverse planes do not
exceed half of the aperture of the vacuum chamber of the analyzer. This re-
quirement results, evidently, in smaller acceptances in comparison with those
which are defined by the geometrical constraints of the chamber. Taking into
consideration that 2rx1 = 40 mm and 2ry1 = 19.5 mm, we obtain the fol-
lowing values of these “conditional” acceptances: Ax = 44 mm mrad for the
dispersive plane and Ay = 30 mm mrad for the nondispersive plane. Contours
of these acceptances calculated with the help of (14.26) are given in Fig. 14.3.

Fig. 14.3. Acceptances of the magnetic analyzer in the new injector leg of the
Lund Pelletron accelerator, calculated (a) for the dispersive plane and (b) for the
nondispersive plane
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14.3 Differential Equations for Beam Envelopes
with the Kapchinskiy–Vladimirskiy
Density Distribution

Beam envelope calculations performed in a first-order approach are among
the most simple and, at the same time, a rather effective way to obtain
information about an ion beam with finite emittance. These calculations allow
one to find the semiaxis r of the transverse cross section of the beam and the
beam divergence r′ as functions of the longitudinal coordinate z. Consider a
method based on numerical solution of the differential equation for a beam
envelope with the Kapchinskiy–Vladimirskiy density distribution [7,9]. This
method is suitable for ion-optical calculations for electrostatic accelerators as
the beams for these accelerators have a moderate divergence and relatively
low intensity.

Let us assume that the ion-optical channel under consideration includes
the following elements: drift sections, axially symmetric electrostatic lenses,
sections of the accelerator tube with a uniform field, magnetic and electro-
static quadrupole lenses, dipole analyzing magnets and spherical electrostatic
analyzers. To exclude the second derivative of the axial potential Φ(z) from
the envelope equations, we make use of Picht’s substitution [14]

rx,y = Rx,yΦ−0.25 (14.46)

which expresses projections of the beam envelope rx,y on the planes XOZ
and Y OZ by way of the auxiliary variables Rx,y. If, in (14.46), instead of the
potential Φ, one uses the kinetic energy W (expressed in electron volts), the
equations for the envelopes of the nonrelativistic ion beam can be written in
the following general form [15]:

R′′
x = kI/[W (Rx + Ry)] + (W0ε

2
x)/R3

x − (3/16)(W ′/W )2Rx ± ω2
xRx

R′′
y = kI/[W (Rx + Ry)] + (W0ε

2
y)/R3

y − (3/16)(W ′/W )2Ry ± ω2
yRy

(14.47)

where I is the beam current in amperes, εx and εy denote transverse emit-
tances in m rad, and W0 is the initial value of the kinetic energy of the ions.
The coefficient k is defined by (14.48):

k =
Zi

2πε0

√
A

2η0
(14.48)

where Zi and A stand for the ion charge state and mass number, respec-
tively; ε0 = 8.85 10−12 F/m; and η0 = 0.958× 108 C/kg. The coefficients ω2

x,y

describe focusing (−) and defocusing (+) effects of the linear ion-optical ele-
ments. For the different ion-optical elements mentioned above, the coefficients
ω2

x,y have the following values and expressions:
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– Drift space: ω2
x,y = 0.

– Axially symmetric electrostatic lens: ω2
x,y = 0.

– Uniform electrostatic field: ω2
x,y = 0.

– Electrostatic quadrupole lens: ω2
x,y = (ZiU)/(a2W ), where U is the

voltage applied to the lens electrodes in V, and a is the aperture radius of
the lens in m.

– Magnetic quadrupole lens: ω2
x,y = ZiGx,y(η0/(2AW ))0.5, where Gx,y,

in T/m, stands for the gradients of the magnetic flux density.
– Magnetic analyzer: ω2

x = (1 − n)/ρ2
m in the dispersive plane, and ω2

y =
n/ρ2

m in the nondispersive plane, where n is a field index and ρm is the
bending radius in m.

– Sperical electrostatic analyzer: ω2
x = 1/ρ2

e in the dispersive plane, and
ω2

y = 1/ρ2
e in the nondispersive plane, where ρe is the bending radius in m.

In the framework of this method, the electrostatic field on node points of
the ion-optical axis is determined by the numerical solution of the Dirichlet
problem

∂2Φ

∂r2
+

1
r

∂Φ

∂r
+

∂2Φ

∂z2
= 0 , ΦS = Ui (14.49)

where Ui is the potential of the ith electrode. The continuous distribution of
the axial potential is approximated by a cubic spline.

The need for calculation of a multielectrode axially symmetric electrosta-
tic lens is rather common in studies of the ion-optical system of an electro-
static accelerator. If the potentials of the electrodes attain only two indepen-
dently variable values, then, having solved the Dirichlet problem for a pair
of arbitrarily selected unequal potentials, one can easily determine potentials
on the optical axis for any regime of the lens. In the case of more than two
independently variable potentials the field calculation becomes complicated,
inasmuch as one solution to the boundary problem is now insufficient for all
regimes of the lens to be described. In principle it is possible to seek an indi-
vidual solution to the Dirichlet problem for each of those regimes. However,
such an approach to the problem looks rather unpractical from a computa-
tional point of view. Another way is to apply the superposition principle to
some totality of solutions to the Dirichlet problem. In this case the potential
on the optical axis of an n-electrodes lens can be expressed in the following
way:

Φ(r, z) =
n−1∑
i=1

(Ui − Ui+1)Φi + UnΦn (14.50)

where Φ1(r, z) − Φn(r, z) are solutions to the Dirichlet problem obtained for
the linearly independent vectors of the boundary condition S1(1, 0, 0, . . . , 0),
S2(1, 1, 0, . . . , 0),. . .Sn(1, 1, 1, . . . , 1); U1, U2, . . . , Un stand for the potentials
of the lens electrodes. Some examples of the application of the superposition
technique to calculation of multielectrode lenses, as well as estimations of the
resulting error in the calculated field, are given in [16].
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14.4 Examples of Beam Envelope Calculations

Consider two examples of the application of the method based on solution
of the simultaneous differential equations for the beam envelopes, exploiting
results obtained at the 3 MV Pelletron accelerator in Lund [17].

14.4.1 The Low Energy Part of the Lund Pelletron Accelerator

Figure 14.4 gives examples of beam envelopes calculated for the low-energy
part of the accelerator between the ion source and the stripper. The calcula-
tions were performed in connection with the development and installation of a
new injector [17]. Carbon ion beams with currents of 5 and 10 µA and normal-
ized emittances of 2π mm mrad (MeV)0.5 and 4π mm mrad (MeV)0.5, respec-
tively, were considered. We assumed that the following voltages were applied
to the electrodes of the ion source and the ion source lens (see Fig. 14.5):
U1 = −40 kV, U2 = −35 kV, U3 = −29 kV, U4 = −35.4 kV, U5 = −20 kV
and U6 = 0 kV. All voltages except U4 are similar to those found from ex-
perience with test running of the ion source. (U4 in those tests was varied
from −35.6 kV to −36.4 kV, depending mainly on the sputtering conditions.)
These results illustrate the beam transport through the low-energy part of
the accelerator. The ion source lens, in the form in which it has been provided
in the design of the injector, allows ions to be focused into a waist on the
beam profile monitor. The voltages of the lens electrodes used in the calcula-
tions are in agreement with their experimental values. The shape of the beam

Fig. 14.4. Beam envelopes in the low-energy part of the Lund Pelletron ac-
celerator. Calculations were carried out for a carbon ion beam under the fol-
lowing conditions: (a) I = 5 µA, εn = 2π mmmrad (MeV)0.5, (b) I = 10 µA,
εn = 4π mmmrad (MeV)0.5. Numerals: 1, ion source lens; 2, electrostatic quadru-
pole triplet; 3, slit device; 4, spherical electrostatic analyzer; 5, magnetic analyzer;
6, einzel lens; 7, accelerator tube; 8, stripper
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1 2 3 4 5 6

Fig. 14.5. SIMION simulation of C− beam in the ion source section. Numerals:
1, cathode of the sputtering ion source; 2, spherical ionizer; 3, extracting electrode;
4, focusing electrode; 5, preaccelerating electrode; 6, accelerating electrode

within the electrostatic and magnetic analyzers found from these calculations
indicates that the beam emittances are matched to the acceptances of the
analyzer section in both transverse planes. In the dispersive plane of the an-
alyzers, the calculated beam occupies approximately half of the aperture of
the vacuum chamber. In the nondispersive plane of the magnetic analyzer,
the beam transport conditions are somewhat worse. However, the transverse
dimension of the beam in this case does not exceed the chamber constraints
either. And finally, the ion-optical system of the new injector provides the
conditions necessary to match the beam emittance and acceptance of the
accelerator tube and to have a beam waist at the stripper position.

14.4.2 Ion Source Lens

To verify the calculation results for the ion source lens obtained by numerical
solution of the differential equation for the beam envelopes, these calculations
were repeated by use of the SIMION ion-optics simulation program [18]. Re-
sult of the SIMION simulation of the carbon ion beam in the part of the
ion-optical system between the sputtered sample and the beam profile mon-
itor, performed for the same electrode voltages as in the previous example,
are given in Fig. 14.5.

The beam envelopes found from numerical solution of the differential
equations (14.47) and from the SIMION simulation are given in Fig. 14.6.
The calculations were carried out for two pairs of values of the beam current
and emittance, namely I = 5 µA, εn = 2π mm mrad (MeV)0.5 (Fig. 14.6, part
a) and I = 10 µA, εn = 4π mm mrad (MeV)0.5 (Fig. 14.6, part b). In both
cases, the results obtained by these two different methods are in good agree-
ment. Some differences between the beam geometries are observed. The plane
of the beam waist calculated by SIMION has a small shift toward the lens. It
can be explained by the influence of geometrical aberrations, which are not
taken into account in the framework of the paraxial approximation used in
the beam envelope method. The fact that the differences are reduced with
decreasing emittance value (this value defines the highest possible angle of
the ion trajectory in the beam) indicates the consistency of this assumption.
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Fig. 14.6. C− beam envelopes in the lens of the spherical-ionizer sputtering ion
source, found by different calculation techniques (+++ SIMION simulation, —–
beam envelope method) for two values of the emittance: (a) 2π mm mrad (MeV)0.5

and (b) 4π mmmrad (MeV)0.5
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