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In the general theory of relativity, matter energy can be expressed ge-
ometrically, and Weyl put forward the hypothesis that a curved-space for-
mulation of the Dirac equation [iγk(∂k − ieAk)−m]ψ = 0 for a relativistic
spin-1/2 field ψ would lead to a possible reinterpretation of the mass pa-
rameter m in purely geometrical terms. Here, we show how this idea can
be realized in the general-relativistically covariant Dirac equation [iγk(∂k−
Γk− ieAk)−m]ψ = 0 due to Fock, where Γi is the spinorial connection, af-
ter rewriting m2 as m2(γ0)2 in comoving coordinates. Thus, m is replaced
by the matrix massmγ0, which can then be set equal to iγkΓk in an anti-de
Sitter space-time background that can be attributed to fermionic zero-point
vacuum fluctuations. This result is analogous to the reidentification of the
gauge field eAi with ImΓi in a Majorana representation of the γi.

PACS numbers: 03.65.Sq, 04.40.–b, 11.10.Lm, 11.30.Rd

1. Introduction

This paper is concerned with the conjecture, which we shall shortly elu-
cidate, due to Weyl [1], in the course of his attempt to relate gravitation and
electromagnetism, where the idea of gauge invariance was first put forward.
This symmetry expresses constancy under simultaneous transformation of
the wave function ψ, obeying the Dirac equation for a spinor of rest mass m
and charge e in Minkowski space,[

iγk (∂k − ieAk)−m
]
ψ = 0 , (1)

and the electromagnetic four-vector potential Ai contained therein, accord-
ing to (see [1] p. 331)

ψ → ψ′ = eiθψ , Ai → A′i = Ai +
1

e

∂θ

∂xi
, (2)
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where θ(xi) is an arbitrary real function of the space-time coordinates xi.
The Dirac gamma matrices satisfy the Clifford algebra

{γi, γj} = 2gij , (3)

where gij is the four-metric. Paper [1] emphasized the fact that the ex-
ponent in the factor multiplying ψ in Eqs. (2) is purely imaginary (see [1]
p. 331), the invariance under (2) acting as an adjunct to the covariance
under general coordinate transformations embodied in Einstein’s theory of
gravitation — and also emphasized the general relativistic nature of the
transformations (2), resulting from the arbitrariness in the xi-dependence
of θ (see [1] p. 331).

The starting point of the investigation [1] (see [1] p. 330) was the Dirac [2]
theory (1) for the relativistic electron, in which ψ is represented as a four-
component spinor that results, as is known, in a doubling of the number of
energy levels (see [1] p. 331). Weyl therefore argued that, without giving up
relativistic invariance, one should return to the Pauli [3] two-component
theory, which, however, holds true only for massless spinors ψ ≡

(
ψ1

ψ2

)
— the two two-component spinors ψ1 and ψ2 become linked together if
the spinor is massive.

This follows essentially from the presence of off-diagonal elements in the
γi, which occur in the kinetic term iγk∂kψ, but not in the mass term mψ.
In the Weyl [1] (chiral) representation, we have

γ0 =

(
0 −σ0
−σ0 0

)
, γα =

(
0 σα
−σα 0

)
, (4)

where the generalized 2× 2 Pauli matrices σi are defined by

σ0 = 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

(5)
As a result, Eq. (1) reduces to the two two-component equations

i [(∂0 − ieA0)− σα (∂α − ieAα)]ψ2 +mψ1 = 0 (6)

and
i [(∂0 − ieA0) + σα (∂α − ieAα)]ψ1 +mψ2 = 0 . (7)

Thus, the spinors ψ1 and ψ2 only decouple if m = 0, in which case we also
set e = 0 (although this does not change the argument), since no charged
massless fermion is known. Equations (6) and (7) then reduce further to

i (∂0 − σα∂α)ψ2 = 0 (8)
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and
i (∂0 + σα∂α)ψ1 = 0 , (9)

respectively, which differ by a sign in the second term, thereby breaking the
symmetry between ψ1 and ψ2.

In physical terms, this means, as remarked in paper [1] (see [1] p. 332),
that one has to give up the left–right chiral symmetry, since γ5 ≡ iγ0γ1γ2γ3
=
(
1 0
0 −1

)
in the representation (4), the left- and right-handed components

under projection being precisely

ψL = 1
2(1 + γ5)ψ = ψ1 , ψR = 1

2(1− γ5)ψ = ψ2 . (10)
Eq. (9) therefore describes a massless, left-handed neutrino, for example.

This result led Weyl to express the hope, since mass is ultimately of
gravitational origin, that it would be possible, in a more complete, curved-
space formulation of the Dirac equation, to replacem by a purely geometrical
term (see [1] p. 331). He also emphasized, however, that quantization of the
gravitational field equations themselves was a prerequisite to a complete
understanding — which is still a subject of research.

The general-relativistically covariant Dirac equation, on the other hand,
was developed soon thereafter by Fock [4], taking the form[

iγk (∂k − Γk − ieAk)−m
]
ψ = 0 , (11)

which contains in addition to Eq. (1) the spinorial connection

Γk = −1
4 ωabks̄

ab . (12)

The spin connection and spin operator occurring in the definition (12) are
constructed from the tetrad components t ai and Christoffel symbols

Γ ljk = 1
2g
lm (∂jgkm + ∂kgjm − ∂mgjk) (13)

as
ωabk = −ωbak = tjat

j
b;k ≡ tja

(
∂kt

j
b + Γ jklt

l
b

)
(14)

and
s̄ab = 1

2 [γ̄a, γ̄b] , (15)
respectively. The metric gij , now describing a curved space-time, is related
at every point to the Minkowski tangent space ηab by

gij = t ai t
b
j ηab , ηab = tiat

j
bgij , (16)

the tetrads obeying the orthogonality conditions

tai t
j
a = δji , tai t

i
b = δab . (17)

The derivation of Eq. (11) is discussed in detail in Ref. [5].
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2. The evaluation of the spinorial connection

From formulae (12)–(16), we see that the ωabk, and hence the Γk, are in
general complicated functions of the metric gij , which it is therefore natural
to simplify by imposing some degree of symmetry on the space-time. If the
particle under consideration is regarded as a stationary extended object,
then the total mass-energy is defined classically as a volume integral of
the

(
0
0

)
component of the Ricci tensor Rij , accordingly to the formula of

Nordström [6] (see also Tolman [7]),

m =
2

κ2

∫
d3x
√
−g R0

0 , (18)

assuming the space-time to be asymptotically flat at infinity, where κ2 ≡
8πGN is the gravitational coupling, GN ≡ M−2P being the Newton constant
and MP = 1.221× 1019GeV the Planck mass, and g = det gij .

Application of this result to the Dirac theory would therefore result in
the replacement of the differential equation (11) by an integro-differential
equation in space-time on the atomic scale. In the absence of a precise
understanding of how to formulate this problem, let us instead see what
can be learnt from Eq. (11) as it stands. Evidently, this corresponds to
a semi-classical approximation in which the wave function ψ of the electron is
described quantum mechanically, while the spinorial connection Γk is defined
from a classical, curved background space-time. In fact this should be a good
approximation, since we are trying to investigate the structure of space-time
within the Compton wavelength of the electron, λC = ~/mc ≈ 4×10−11 cm,
larger by a factor ∼ 2×1022 than the Planck scale lP ≡ G1/2

N ≈ 2× 10−33 cm
below which quantum gravitational effects can no longer be ignored.

We assume the electron to occupy a spherically symmetric region of
radius r0 ∼ λC, far from which, at distances r � r0, it can be regarded
as a point mass and the space-time considered essentially flat. Within the
electron, however, at radius r . r0, space-time must become appreciably
curved, raising the question whether it is possible to construct a contribution
iγkΓk to Eq. (11) in simulation of a real, constant scalar source-mass m.

Here, it is instructive [4, 5] that the term involving the gauge vector
potential eAk in Eqs. (1) and (11) can be completely absorbed into the
definition of Γk via the transformation

Γk → Γ ′k = Γk + ieAk1 . (19)

The imaginary gauge term ieAk can be identified exclusively with the imag-
inary part Im(Γ ′k) if we choose a Majorana representation for the gamma
matrices in which all the γi are imaginary (see Ref. [8], for example). In this
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case eγkAk is purely imaginary, while m, ωabk and s̄ab are purely real, as
a result of which Γk is real when Ak = 0, leading to the conjecture that m
can be related to Re(Γ ′k).

Since m is a constant, the most natural simplifying assumption for the
interior of the particle is the maximally symmetric space-time generated by
an effective cosmological constant Λ, so that the Riemann–Christoffel and
Ricci tensors are

Rijkl = 1
3Λ (gilgjk − gikgjl) , Rij = −Λgij . (20)

These spaces constitute a subset of the Friedmann space-times

ds2 = dt2 − a2(t)dx2 , (21)

where t is comoving time and a(t) ≡ a0e
α(t) is the radius function of the

three-space dx2, assumed to be flat. In this case the Γk are known [9, 10]
and can be written in terms of the matrix-valued massM(t), defined by

M(t) ≡ m(t)γ0 = iγkΓk , (22)

where the scalar mass function, denoting • ≡ d/dt, is

m(t) = 3
2 i α̇(t) . (23)

For the space-time (20), (21), we have

α =

√
Λ

3
t , α̇ =

√
Λ

3
, (24)

from which it follows that α̇ is real and constant in de Sitter space. Eq. (23)
shows, however, that m is then imaginary and to generate a real m we have
instead to choose anti-de Sitter space, where Λ < 0 and α̇ is imaginary.
In the coordinate system (21), this means Wick rotation of the time,

t→ t̃ = ±it . (25)

(It is alternatively possible to express the anti-de Sitter metric in the static,
Lorentzian coordinate system (t′, r, θ, φ), when the line element reads

ds2 =

(
1− Λr2

3

)
dt′

2 −
(

1− Λr2

3

)−1
dr2 − r2(dθ2 + sin2 θdφ2) , (26)

which is sometimes more convenient.)
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3. The definition of mass

The question now is whether the matrix massM defined in Eq. (22) can
be converted into a scalar. SinceM plays the rôle of an operator acting on
the wave function ψ in Eq. (11), this is equivalent to seeking a solution of
the eigenvalue equation

γ0ψ = λ0ψ , (27)

where λ0 is non-trivial. The problematic nature of Eq. (27) emerges if we
focus attention first on Weyl spinors, which are by definition only left- or
right-handed. In this case ψ is an eigenfunction of one of the chirality
operators (10), which we can write as

1
2 (1± γ5)ψ± = ψ± . (28)

The projection operators Π± ≡ 1
2(1±γ5) do not commute with γ0, however,

since γ0 and γ5 anti-commute, as a result of which we have the non-vanishing
commutator

(Π±, γ0) = ±γ5γ0 . (29)

(Note that the same situation obtains in all even dimensionalities D, since
the generalized (D+1)-gamma symbols γ̂D+1 ≡ (−1)(D−2)/4γ̂0γ̂1 . . . γ̂D−1 al-
ways anti-commute with γ̂0. In odd dimensionalities γ̂D+1 cannot be defined
in this way, and Weyl spinors do not exist, because D/2 is non-integral.)

Consequently, a Weyl spinor cannot be an eigenfunction of γ0 and Eq. (27)
has no solution.

In flat space-time, (γ0)2 = 1, which would mean, multiplying Eq. (27)
through by γ0, that λ0 = 1 and hence γ0 = 1. Then the anti-commutator{
γ0, γα

}
reduces to 2γα rather than zero, and therefore Eq. (27) has no

solution for any type of spinor.
This impasse naturally leads us to reappraise the exact notion of mass in

the Dirac equation (1), which appears to be dependent upon representation
in the spinor space, containing the γi per se. We should expect experimen-
tal results to be independent of representation, however, the most important
examples being the phenomenon of the existence of positively charged elec-
trons, that is positrons, and the explanation of the intrinsic spin of the
electron.

Not surprisingly, the electronic spin cannot be extracted from Eq. (1)
alone (although an anomalous contribution to the magnetic moment can be
added via a Lagrangian

δL = −1
2 il0
√
−gψ̃Fijsijψ , (30)

where ψ̃ = ψ+γ0 , ψ+ = ψT∗ , and l0 is the anomaly parameter, introduced
by Pauli [11]). Rather, Dirac [12] emphasized that it is necessary to square
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the linear operator of Eq. (1), yielding a modified Klein–Gordon equation,
which in flat space-time reads[

2 +m2 − e2AkAk − ie
(

2Ak∂k + 1
2 Fijs

ij
)]
ψ = 0 , (31)

assuming the Lorentz gauge

∂kA
k = 0 . (32)

Eq. (31) differs from Eq. (1) in two important respects: firstly, the field-
free part of the operator, 2 +m2, no longer contains the γi explicitly, these
having combined to produce the representation-independent metric; and sec-
ondly, Eq. (31) now contains the magnetic-moment term Fijs

ij , which only
appears as a result of the second operator [iγk(∂k − ieAk) −m] acting on
the first. In writing Eqs. (30) and (31), we define the electromagnetic field
tensor

Fjk = ∂jAk − ∂kAj (33)

and the spin operator
sij = 1

2 (γiγj − γjγi) . (34)

As discussed in Ref. [12], Eq. (31) contains twice as many solutions as
Eq. (1), due to its being invariant under reversal of the energy operator
p0 ≡ −i~∂0 → −p0 (time-reversal invariance after quantization), implying
the existence of both positive- and negative-energy solutions. According to
the hole theory [13], the solutions of negative energy can be interpreted as
particles with the opposite energy and charge, that is they have positive
energy and positive charge.

Technically, these solutions can be obtained by taking the Hermitian
conjugate of Eq. (1). The difficulty arising from the fact that γ0 is Hermi-
tian, while the γα are anti-Hermitian, can be resolved either by multiplying
through by γ0 ≡ β, which has the effect of converting the γα into the Her-
mitian matrices αα ≡ βγα, or by Euclideanizing the time coordinate, so
that γ0 → γ̃0 = ±iγ0, the metric becomes positive definite, and all the
gamma matrices are anti-Hermitian. In the latter case, for example, we
have

(
iγk
)+

= iγk, while
(
γkAk

)+
= −γkAk (since the Ak are Hermitian),

so that the Hermitian conjugate of Eq. (1) is[
i
(
∂kψ

+
)
γk −mψ+ − eψ+γkAk

]
= 0 , (35)

which clearly describes a particle of the same energy but opposite charge.
Eq. (31) is also invariant under the transformation [14]

m→ −m, (36)
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raising the question why mass is always positive. In fact we can multiply
m by any matrix square root of unity as well, resulting in the more general
transformation, for example,

m→ ±mγ0 , (37)

since
(
±γ0

)2
= 1, without changing any of the experimental predictions.

Thus, Eq. (1) could be written equivalently as{
iγ0 [∂0 + i(m− eA0)] + iγα(∂α − ieAα)

}
ψ = 0 . (38)

The matrix-valued mass term mγ0 occurring in Eq. (38) can now be com-
pletely simulated by the gravitational vacuum term iγkΓk = 3

2 iα̇γ
0 in an

anti-de Sitter background space-time, thus realizing Weyl’s conjecture,
if we set

Λ = −4m2

3
. (39)

4. Gravito-electromagnetism

It is interesting to examine Eq. (38) from the gravito-electromagnetic
viewpoint. Suppose first, for simplicity, that Aα = 0 and that ψ = ψ(x0),
in which case Eq. (38) reduces to

γ0 [i∂0 − (m− eA0)]ψ = 0 . (40)

Now the line action for a test particle of rest mass m and charge e in in-
teraction with external gravitational and electromagnetic fields gij and Ai,
respectively, can be written as

S ≡
∫
Lds = −

∫
mds+

∫
eAidx

i =

∫ (
−mds

dλ
+ eAi

dxi

dλ

)
dλ , (41)

where λ is an affine parameter. The path of the particle is given by δS = 0,
that is

δ

∫ [
−m

(
gij
dxi

dλ

dxj

dλ

)1/2

+ eAi
dxi

dλ

]
dλ = 0 , (42)

which, since the integrand is a homogeneous function of first degree of the
four variables dxi/dλ, is equivalent to a variational problem with only three
dependent variables xα, and with global time x0 as independent variable
(see Courant and Hilbert [15]).

Therefore, the motion of the particle is determined by a Hamilton prin-
ciple, and we may now write

δ

∫
L(x0, xα, dxα/dx0)dx0 = 0 . (43)
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Further, expressing the line element in the form

ds2 ≡ gijdxidxj =
(√

hdx0 − gαdxα
)2
− γαβdxαdxβ = dτ2 − dl2 , (44)

where, as shown by Landau and Lifschitz [16], the physical (chronometrically
invariant [17]) three-space dl2 is defined on the time slice dx0 = 0 via the
three-metric

γαβ = −gαβ + gαgβ , γαβ = −gαβ ,
gα = −g0α/

√
h , gα =

√
hg0α , h = g00 , (45)

we can expand the Lagrangian L (see also Møller [18]) as

L=−m ds

dx0
+eAi

dxi

dx0
=−m

[(√
h−g ·w

)2
− w2

]1/2
+e (A0+Aαw

α) . (46)

Differentiation of L with respect to the velocities wα ≡ dxα/dx0, keeping
xα fixed, thus yields

∂L

∂wα
= mΓ (w)

[
wα +

(√
h− g ·w

)
gα

]
+ eAα , (47)

where the curved-space gamma factors are defined, setting v = dl/dτ , as

Γ (w) =
dx0

ds
=

[(√
h− g ·w

)2
− w2

]−1/2
,

γ(v) =
dτ

ds
= (1− v2)−1/2 . (48)

From expressions (46)–(48), we obtain the Hamiltonian

H = wα
∂L

∂wα
− L

= m
√
hΓ (w)

(√
h− g ·w

)
− eA0 = m

√
hγ(v)− eA0 . (49)

In stationary background fields, for which ∂0gij = ∂0Ai = 0, L does
not depend upon x0 explicitly, and therefore the Hamiltonian (49) is a con-
served quantity [16,18]. (It is straightforward to show that the gravitational
contribution to H is the zeroth component p0 of the covariant mechanical
four-momentum of the particle, defined by pi = mdxi/ds, and hence, from
the geodesic equation, constant for a stationary gravitational field.)
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The chronometrically invariant quantity

E = mγ(v) (50)

defines the locally measured (kinetic plus rest-mass) energy of the particle,
while the gravito-electric and electric scalar potentials are identified as

φ(g) =
√
h , φ = −A0 , (51)

so that the Hamiltonian can be written as

H = p0 − eA0 = Eφ(g) + eφ . (52)

Note that H is not chronometrically invariant, due to its h-dependence.
For a particle at rest in comoving coordinates, we have

v = 0 , γ(v) = 1 , h = 1 , (53)

whereupon Eq. (49) simplifies to

H = m− eA0 . (54)

We now see that Eq. (40) can be written as

γ0 (i∂0 −H)ψ = 0 , (55)

which is γ0 times (the time-dependent Schrödinger equation). In this for-
mulation, the Hamiltonian energy of the electron is thus incorporated into
the spinor wave equation as a single entity. The two constituents m and eφ
occur multiplied by the same matrix factor γ0, which seems reasonable on
geometrical grounds, and suggests that in curved space-time one should use
the full definition (49) for H in Eq. (55), rather than the flat-space limit (54).

Finally, restoring the vector potential Aα and the xα-dependence of ψ,
we can write the wave equation (38) as[

γ0 (i∂0 −H) + γα (i∂α + eAα)
]
ψ = 0 . (56)

5. Vacuum fluctuations

In the previous sections, we have developed the idea that the mass pa-
rameter m in the Minkowski-space formulation of the Dirac equation for
a spinor ψ can be simulated precisely by transforming to a curved, back-
ground anti-de Sitter space generated by a negative cosmological constant
defined from m by Eq. (39). That is to say, a massless spinor in anti-de Sit-
ter space-time behaves like a massive spinor in Minkowski space, in the
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sense that the operator iγ0(∂0 + im) in Eq. (38) is replaced by the operator
i(γ0∂0 − γkΓk) in Eq. (11) with m = 0. Further, by extension, the same
reasoning applies in all dimensionalities D ≥ 2 for which a non-vanishing
spinorial connection exists.

The most natural way of explaining this result is to attribute the mass
of the fermion to quantum-mechanical vacuum fluctuations. The general-
relativistically invariant vacuum is necessarily a maximally symmetric space,
as shown by Zel’dovich [19, 20] (only in this case is the energy-momentum
tensor independent of the choice of unit time-like vector ui). Zel’dovich [20]
also found that zero-point fluctuations of the free fermionic vacuum give
rise to a negative semi-definite energy-density, originating from the negative-
energy solutions to the Dirac equation, and hence to a negative cosmological
constant after imposing general covariance.

Indeed, Λ must be negative, producing an anti-de Sitter space, in order
that the Nordström energy-density be positive,

ρN ≡
2R0

0

κ2
≡ T 0

0 − Tαα ≡ ρ+ 3p = −2ρ = −2Λ

κ2
, (57)

where the energy density ρ and pressure p are given by

ρ = −p =
Λ

κ2
, (58)

for the gravitational mass measured at infinity will then be positive, accord-
ing to Eq. (18). In other words, we have a completely self-consistent picture
of the fermionic vacuum energy only if Λ is negative.

To understand this in more detail, consider a region of anti-de Sitter
space that is spherically symmetric in both configuration and momentum
space. The energy-density of the zero-point fluctuations is then defined by
the integral [20]

ρv = −1
2 4

~
(2π)3

k′∫
0

4πk2(k2 +m2)1/2dk = − ~
π2

k′∫
0

k2(k2 +m2)1/2dk , (59)

where k ≡ 2π/λ is the three-momentum, λ being the wavelength, k0 ≡
−(k2 + m2)1/2 is the relativistic energy of the fermion, the coefficient 1/2
is the standard prefactor, and the statistical weight 4 accounts for the two
spins ±1/2 and helicities ±1. Strictly speaking, we have to carry out a
regularization procedure and then let the upper limit k′ →∞. To obtain a
finite answer, however, it is obviously sufficient to impose an effective cut-off
on the integral (59), which otherwise diverges.
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Adopting a semi-phenomenological approach, we can now equate expres-
sions (58) and (59), after substitution from Eq. (39), so that

ρv ≡
Λ

κ2
= −

m2M2
P

6π
. (60)

Since m � MP for all known particles, we shall find that m � k′, and can
therefore approximate the vacuum integral (59) as

ρv ≈ −
~
π2

k′∫
0

k3dk = −~k′4

4π2
. (61)

Equating expressions (60) and (61), we obtain the solution

k′ ≈

√√
2π

3
mMP , (62)

which, applied to the electron mass me = 0.511 MeV, for example, yields

k′e ≈ 9.50× 107GeV . (63)

Finally, we compare k′ with the radius r0 in configuration space, defined
now using the static coordinate system (26), in which

√
−g = r2 sin θ, such

that
m = 4

3πr
3
0ρN = −8

3πr
3
0ρv , (64)

to which the solution is

r0 =
~(

2
3

)2/3
m1/3M

2/3
P

. (65)

Thus, r0 and k′ satisfy the inequalities

lP � r0 , 1/k′ � λC . (66)

In this region, gravity can still be regarded as classical, due to the first
inequality (66), while the fermion has to be treated quantum mechanically,
by means of the Dirac equation, due to the second inequality, thus justifying
the method.

One of the most important outstanding problems in elementary particle
physics is to explain the origin of the mass spectrum of fermions and bosons.
This problem seems no closer to solution in the present approach, simply
being transformed into the corresponding one of the spectrum of values ofΛ.



On the Weyl Gravitational Conjecture and Massive Spinor Theory 791

Nevertheless, it is interesting that the heterotic superstring theory of Gross
et al. [21–23], obtained by taking into account the higher-derivative gravi-
tational terms up to order R4 in the effective action for the bosonic sector
after reduction to four dimensions, gives rise to two possible vacuum states.
These vacua are Minkowski space and anti-de Sitter space, but with a neg-
ative cosmological constant fixed at the Planck scale, far larger than any
particle mass-squared, given by Eq. (52) of Ref. [24],

Λ = −
[

18

175ζ(3)

]1/3
A−1r κ−2 , (67)

where ζ(3) = 1.202 is the Riemann zeta function and Ar ≈ 1/g2s is the
modulus of the physical four-space, which also defines the inverse tree-level
gauge coupling.

The field-theory limit of the superstring is a supergravity theory preserv-
ing N = 1 space-time supersymmetry, which we recall, from the classifica-
tion of Nahm [25], is permitted in anti-de Sitter space, but not in de Sitter
space (which permits only N = 2 space-time supersymmetry) — see also
Weinberg [26].

6. The dimensionality of the spinor space

Returning to the question of the number of components defining a fer-
mionic spinor, we first recall that the Dirac equation necessarily involves a
four-component wave function, since the γi cannot be represented by matri-
ces of dimension less than 4 × 4 (see Schweber [27]). This result is equally
valid in curved space-time, and consequently the spinorial connection Γi
cannot be represented by matrices of dimensionality less than 4 × 4 either,
for the γi are necessary to relate the curved-space metric gij to the tangent
space ηab.

Therefore, the reduction to a two-component spinor is only possible after
imposing some type of symmetry or constraint. If we write the Dirac spinor
in the form ψ =

(
ψ1

ψ2

)
, where ψ1 and ψ2 are two-component spinors, we obtain

Eqs. (6) and (7) in Minkowski space-time, which separate into Eqs. (8) and
(9) for a massless spinor. In this case it is possible to set ψ2 = 0, the
two-component spinor ψ1 then defining a left-handed Weyl fermion given
by Eq. (10). Clearly, the wave equation (56) describing a massive spinor is
separable in the same way.

From Eqs. (6) and (7), we see, however, that a massive fermion can
also be described by a two-component theory if a functional relationship
exists between ψ1 and ψ2. Due to the difference between Eqs. (6) and (7),
the theory cannot be made chirally symmetric, but it is possible instead to



792 M.D. Pollock

impose invariance under the charge conjugation operator C, thereby defining
a Majorana spinor [28] (see also Racah [29])1. In the Weyl representation (4),
C is given (see Ref. [8], for example) by

C = i

(
−σ2 0

0 σ2

)
, (68)

which satisfies the condition

C = C∗ = −CT , (69)

as required. Without loss of generality, we can express the wave function in
the form [31]

ψ =

(
χ
σ2ξ
∗

)
(70)

(see also Ref. [32], for example), and it then follows straightforwardly that
the charge conjugate spinor is

ψC ≡ Cψ̃T = −i
(

ξ
σ2χ

∗

)
(71)

The Majorana condition
ψc = ψ (72)

can then be imposed (up to an unimportant phase factor −i) by setting

χ = ξ , (73)

so that

ψ ≡
(
ψL

ψR

)
=

(
ψ1

σ2ψ∗1

)
. (74)

Eq. (7) can now be written entirely in terms of the left-handed Majorana
spinor ψ1.

For the purposes of the present paper, the important point is that these
considerations can be carried over to curved space-time by defining all quan-
tities in the local tetrad frame [5].

This paper was written at the University of Cambridge, Cambridge,
England.

1 More precisely, chiral symmetry would require the existence of an additional mirror
sector, which interacts with the visible Universe essentially through gravity alone —
see Okun [30] and references therein.
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