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ABSTRACT

A set of high speed 16-bit computers and ADC's
has been designed and built for the data collection,
compression, and correction system of the SLAC/LBL
Mark II Magnetic Detector. The "Brilliant ADC" con-
trols the analog multiplexing of a CAMAC crate of data
acquisition modules, digitizes the analog data, and
executes microprogrammed algorithms for data
handling ard correction.

Introduction

The SLAC/LBL Mark II Magnetic Detector is a large
solenoidal detector for the storage rings SPEAR and PEP.
The detector includes large arrays of drift chambers and lig-
uid argon ionization detectors. The ~3200 drift chamber sig-
nals are processed by 32 channel time-to-amplitude con-
verters (TAC's), and the~4000 liquid argon signals are
processed by 32-channel Sample and Hold Analog Modules
(SHAM's). !
tion on FET isolated capacitors and, under control of the
"Brilliant ADC" (BADC), multiplex their data onto the analog
bus. A system block diagram is shown in Fig. 1. The BADC
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Fig. 1 System Block Diagram

digitizes the signals, and does data compression, correction,
and formatting under the control of a 16 bit, high speed,
microprogrammable processor. Each BADC controls one
CAMAC crate of modules ( 608 channels), and will perform
algorithms such as elimination of data below threshold and
quadratic corrections to data above threshold in 3-10 ms.
The Mark IT will use about }6 BADC!s.

System Considerations

The motivations for the BADC are primarily economy,
reduction of event data acquisition time and host computer
-- processing time, and simplification of the structure of the
analysis program. The first point is achieved by allowing the
BADC costs to be spread over 600 channels and by removing
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The TAC's and SHAM's hold their analog informa-

digitization hardware from the TAC's and SHAM's. The re-~
moval of this hardware allows a packaging density of 32 chan-
nels per single width CAMAC module without using hybridiza-
tion, thus amortizing crate, controller, and BADC costs over
600 channels. The event data acquisition time is reduced
because only channels having good data are transmitted, and
the data is buffered so the host computer channel® can run

at full speed. The hardware is configured so that an entire
branch can be read by a single channel program not involving
the host computer. Host computer processing time is reduced
because all data correction that is independent of data from
other channels (e.g., pre-amplifier gain for the SHAM's or
cable lengths for the TAC's) is done by the BADC. Since the
BADC is faster for half word arithmetic than the host machine,
a time factor of more than the number of BADC's is saved.
Program structure is improved because approximately 28,000
constants are removed from the analysis program, saving
storage space and overlay swapping. Also, each data word
enters with its functional label, e.g., a drift chamber layer
and wire number, rather than an arbitrary channel number to
be translated.

Architecture

A simplified block diagram of the BADC is shown in
Fig. 2. The CPU is implemented using 4 AMD 2901 4-bit
slices as an ALU and AMD 2909's for the microprogram
sequencer,3 The program is written in microcode (rather
than in higher level instructions which are then interpreted
by microcode) in order to maximize the execution speed. The
microword is 48-bits wide, and the fields are shown in Table
I. The microprogram is usually stored in a PROM 256 words
long, but PROM!'s 512 words long can be used via a page con-
trol bit. The 16-bit immediate constant field is also used as
an effective 9-bit branch address field; the immediate constant
or address function being selected by another bit. A 3-bit
branch condition field selects among no branch, unconditional
branch, and branch on zero, non-zero, signed, not signed,
overflow and carry flags. Another bit causes a pause of the
CPU clock at the beginning of the cycle, so that an external
device, such as the data memory or ADC, may acknowledge
completion. This allows fetched data to the ALU to be used
during this cycle., Three fields of three hits each control the
ALU source, destination, and function. Two fields of four bits
each control the A and B port selection of the ALU registers.
A one bit field controls the least significant carry input to the
ALU. A two bit field is used to control the SHIFT-ROTATE
multiplexor. These two bits in combination with the ALU
function control and one combination of the encoded micro-
word field allow selection among left or right shifts with
0 or 1 fill, left or right rotation, arithmetic shifts, and shift
with conditional arithmetic for a multiplication subroutine.

Two breakpoint "switches' are incorporated into the de-
sign for debugging and status checks. Break 1 is internal to
the CPU and may be set and reset by the microcode. Break
2 is external, controlled by the ADC or by a {front pacel switch.
Either breakpoint switch may be tested by a conditional branch
instruction explicity controlled by 2 microcode bits.

Finally, 5 bits are encoded to control mutually exclusive
operations. These include multiply control, push and pop
operations on the sequencer stack, control of CAMAC Q and L
lines, and control of "peripheral devices,' e.g., the RAM and
the ADC multiplexor section.

The RAM for the BADC is used for constaat storage, a data
buffer, and control table storage, but not as program storage.
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Fig. 2 Simplified block diagram of the

BADC. The dotted lines enclose the

ADC-MUX board and the memory board.

The memory is 4096 words by 16-bits per memory board.
Normally only 1 memory board is used, but expansion to
32,768 words is possible. Memory read access time is 220ns.

CAMAC commands are executed by forcing branches to
predefined locations in the microprogram PROM. Some
CAMAC commands also directly affect the hardware, such as
the F24-F26 LAM enable or the F9 reset instruction, A front
panel NIM input also causes a forced branch so that the BADC
operation may be initiated by the trigger logic without involv-
ing CAMAC. The BADC does not support interrupts (i.e.,
it is not possible to return from a forced branch). The BADC
data interface to the R and W lines is by a pair of 16-bit buf-
fers. The CAMAC R line buffer is loaded by every RAM read
access, and is gated onto the R lines by valid CAMAC read
functions. The W line buffer is loaded from CAMAC by any
valid CAMAC write function, and this buifer is enabled onto
the ALU input bus by one of the encoded microcode instruc-
tions. The W data may be enabled onto the ALU input and
the ALU output written to RAM in a single instruction.

The CPU clock has 3 modes: short, long, and pause. The
short cycle is used for all instructions not involving condi-
tional branches or external devices and is 200 ns. The long
cycle is used for conditional branches and is 360 ns. The
pause cycle is arbitrarily long and waits for external device
acknowledgment.

The BADC takes over control of the CAMAC crate via the
SLAC Type U4 crate controller. Autonomous control of the
crate at the moment is a nonstandard aspect of CAMAC. The
protocol chosen here is essentially that the host computer
shall not address the crate while the BADC is in control. If
the crate is addressed at this time, this condition is latched
by the BADC and it can take appropriate error exits under
software control. The rear cable connection between the
BADC and crate controller includes encoded N lines, a con-
troller enable signal from the BADC, and a controller active
signal from the branch to the BADC. The cable assembly
also includes the rather trivial LAM grading for the BADC,
BADC control of the CAMAC function, subaddress, and strobe
lines is by pulling these open collector lines down at the data-
way. The TAC's and SHAM's have nearly identical control

and analog multiplexing sections, and use F1 as a high order
address line, along with the subaddress lines, to select among
the 32-channels. The TAC's and SHAM's latch the address
data with S1, which is generated by the BADC. The BADC
CPU can set the starting address of this multiplexor control,
and it can increment the address as part of an ADC read in-
struction.

The analog section is a pipeline, going from the modules
to a sample and hold and then to an ADC. Thus while the CPU
is analyzing channel i, the ADC can be digitizing channel i + 1,
and the modules can be setting up channel i + 2. The sample
and hold is a Burr-Brown SHM60 with a 1us acquisition time
for a 10 volt step. The ADC is the Datel EH12B3, a 12-bit,
2us maximum conversion time device. The TAC's and SHAM!'s
both operate with 0 to +5V outputs.

Construction

The BADC is constructed as a triple width CAMAC mod-
ule, and is shown in Figs. 3 and 4. Both the CPU and memory
boards are 4 layer printed circuits, while the ADC-MUX board
has 2 layers. The front panel includes LED's indicating the
PROM address, branch code, CPU condition flags, L, X, Q
and clock indicators, and a set of 16 LED's that can be switched
to show either the ALU input or output. Other controls are
reset, single step, breakpoint, and external clock switches.

The design of the BADC is such that the ADC-MUX board
is treated as an external device, so that its modification or
replacement--for example, the addition of a buffer for the R
lines to accept digital data from other modules--is rather
easy.

Software

One of the problems associated with designing a computer
with a new instruction set is that there are typically no pro-
gramming aids available. Even such a simple tool as an
assembler has to be written for each new instruction set. In
the case of the BADC, this problem was overcome by writing
an assembler-assembler (i.e., a program which generates an
assembler for a given instruction set as its output) called



Fig. 4 Photograph of the disassembled BADC to show
the memory board and the inter-board cabling.

MIMIC (Machine Independent Micro Code assembler)., A
MIMIC assembly consists of two phases. The first phase is
used to define the machine in terms of its microcode fields

_and to define instructions to be used in the actual programming 3.

as operations on those fields. For example, the 3-bit field
specifying the ALU opcode could be defined by the Define
Machine Field instruction as:

ALUOP DMF 3

After the machine fields are defined, DMI (Define Machine
Instruction) and DKW (Define Key Word) instructions are used
to structure the actual assémbly instructions. Fig. 5 is an
actual listing of the DMF, DMI, and DKW instructions used
for the BADC.

The second phase of a MIMIC assembly is similar to a
normal assembly. The programmer codes using the instruc-
tions defined via DMI's in the first phase. The major con-
trast between MIMIC and normal assemblies is that several

operations may be performed during a single instruction cycle,

which is, of course, an implication of the use of microcode.
The different (compatible) operations are coded on the same
line, separated by commas. An example is shown in Fig. 6.

Software preparation for the BADC was done at the SLAC
Triplex facility (two IBM 370/168's and a 360/91). The source
code was written using the text editor WYLBUR. MIMIC ac-~
tually consists of an extensive set of macros for the IBM H
assembler, and a post-processor used to clean up the assem-
bler listings and generate a simplified object module. The
object modules can then be transmitted over a link to a CAMAC
interface, and either loaded into a special debugging RAM or
burned into PROM's. The debugging RAM is a separate CAMAC
module that can be connected to the BADC to replace its PROM's,
thus simplifying the debugging process, While MIMIC was
initially written for the BADC, it has been used for other micro-
coded machines,

The first algorithm that has been developed for the BADC
is a simple data correction and compression routine. Let Q
be the ADC result for the ith channel. Then the data is dis-
carded if Q; < €4; else Q{ =ai@Q) -6 + f; @ - 51)2 is
stored in the RAM with the channeI‘identjﬁcation label in the
adjacent word. The four constants are independently stored
in the RAM for each of 608 channels. The two multiplica-
tions are done by a subroutine which takes approximately 3us
per 16-bit by 16-bit (32-bit product) multiplication. Data
transfers between CAMAC and RAM are mediated by the pro-
gram; CAMAC is slow enough that there is time for a short
loop. The program also includes diagnostics for the BADC and
for the other modules: for example, there is a mode in which
any block of channels can be continually scanned so oscilloscope
observations of the analog bus can be easily made. Finally,
the BADC hardware allows a register directly loaded from
CAMAC to be substituted for the ADC, thus allowing detailed
comparison of the algorithm executed by the BADC with its
simulation on the host machine.

Summary

Sixteen production models of the BADC have been built
and tested. It is already quite clear that the programmability
1s a major advantage, since modifications and additions to the
program are being actively pursued.
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Fig. 5 DMF, DMI and DKW Instructions for the BADC
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U TEST RUUTINE
NSTRUCT IUNS

READS OIRECT ADC REGISTER

WRITe EXTERNAL ADC KREGISTER
ALUZ(ROWRORANDSYZA +F ) s JMP=CAMWAL T
ALU=(RO RO IRIRS«DZyF3F) yRADRADERR=DISPQC

JMP=FQAOQ
ALUS(R1,R1+RANDSsZ2Q+FBF ), WMSA

ALUS(R2+RZ+yRURSsDZ+FBF) 4 IMMED=X"220"
ALU=(RIIRI+RIRSIDZIFBF) sRADs RADEIR=DISPQC

ALU=(R]1 ¢y Rl +kPLUSS3 4 ZDsFOF, CARRY )y FRQe JUP=DIS22
ALU={R]1 +sH2IREXTRS+AB»F) 4 JMP=(NZ,RADC)
ALUZ(R3I+RIRORS s ZB¢F) s JMP=F16A0
ALUS(ROYROWRANDS e ZQesF )y JUP=D1SPQ

ALU=(RO+RORANDS»ZQsF ) s JIMP=DISPQC

of MIMIC Phase 2 Code

Table I
BIT NAME DESCRIPTION
0 Do These 16-bits connected to ALU input
1 D1 (D Lines) by 4 code bit 10 (immediate const).
2 D2
3 D3
4 D4
5 D5
6 D6
7 Page Bit D7 This bit also used as prom page address.
8 BRO D8
9 BR1 DI
A BR2 DA
B BR3 DB These 8-bits are the prom branch address during
(o] BR4 DC a branch instruction
D BR5 DD
E BR6 DE
F BR7 DF
10 CONSTANT Selects bits 0-F as immediate constant.
11 BRCOND 2
12 BRCOND 1 Conditional Branch Codes.
13 BRCOND 0
14 18
15 17 ALU Destination Codes.
16 16
17 I5
18 14 ALU Operation Codes.
19 13
1A 12
1B I1 ALU Source Codes
1C I0
1D B3
1E B2 B-Port ALU Register Address.
1F B1
20 B0
21 | A3
22 A2 A-Port ALU Register Address.
23 Al
24 A0
25 ALUCARRY Least Significant Carry Input to ALU.
g? gggé Shift-Rotate multiplexor Control.
28 Status Req Causes execute pause at phase 0 of CPU clock,
29 BRKPT 1 REQ Test status of BREAKPNT 1.
2A BRKPT 2 REQ Test status of BREAKPNT 2.
2B EXT Select external or internal encoded p codes.
2C OPCODE 0
el el Encoded bits
2F OPCODE 3




