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ABSTRACT 

A set of high speed l&bit computers and ADC’s 
has been designed and built for the data collection, 
compression, and correction system of the SLAC/LBL 
Mark II Magnetic Detector. The “Brilliant ADC” con- 
trols the analog multiple-xing of a CAMAC crate of data 
acquisition modules, digitizes the analog data, and 
executes microprogrammed algorithms for data 
handling-and correction. 

Introduction 

The SLAC/LBL Mark II Magnetic Detector is a large 
solenoidal detector for the storage rings SPEAR and PEP. 
The detector includes large arrays of drift chambers and liq- 
uid argon ionization detectors. The -3200 drift chamber sig- 
nals are processed by 32 channel time-to-amplitude con- 
verters (TAC’s) , and the+4000 liquid argon signals are 
processed p 32-channel Sample and Hold Analog Modules 
(SHAM’s). The TAC’s and SHAM’s hold their analog informa- 
tion ou FET isolated capacitors and, under control of the 
“Brilliant ADC” (BADC), multiplex their data onto the analog 
bus. A system block diagram is shown in Fig. 1. The BADC 
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Fig. 1 System Block Diagram 

digitizes the signals, and does data compression, correction, 
and formatting under the control of a 16 bit, high speed, 
microprogrammable processor. Each BADC controls one 
CAMAC crate of modules ( 608 channels), and will perform 
algorithms such as elimination of data below threshold and 
quadratic corrections to data above threshold in 3-10 ms. 
The Mark II will use about ,16 BADC’s. 

System Considerations 

The motivations for the BADC are primarily economy, 
reduction of event data acquisition time and host computer 

-- processing time, and simplification of the structure of the 
analysis program. The first point is achieved by allowing the 
BADC costs to be spread over 600 channels and by removing 
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digitization hardware from the TAC’s and SHAMIs. The re- 
moval of this hardware allows a packaging density of 32 chan- 
nels per single width CAMAC module without using hybridiza- 
tion, thus amortizing crate, controller, and BADC costs over 
600 channels. The event data acquisition time is reduced 
because only channels having good data are transmitted, and 
the data is buffered so the host computer channel2 can run 
at full speed. The hardware is configured so that an entire 
branch can be read by a single channel program not involving 
the host computer. Host computer processing time is reduced 
because all data correction that is independent of data from 
other channels (e.g. , pre-amplifier gain for the SHAM’s or 
cable lengths for the TAC’s) is done by the BADC. Since the 
BADC is faster for half word arithmetic than the host machine, 
a time factor of more than the number of BADC’s is saved. 
Program structure is improved because approximately 28,000 
constants are removed from the analysis program, saving 
storage space and overlay swapping. Also, each data word 
enters with its functional label, (3. g. , a drift chamber layer 
and wire number, rather than an artitrary channel number to 
be translated. 

Architecture 

A simplified block diagram of the BADC is shown in 
Fig. 2. The CPU is implemented using 4 AMD 2901 4-bit 
slices as an ALU and AMD 2909’s for the microprogram 
sequencer. 3 The program is written in microcode (rather 
than in higher level instructions which are then interpreted 
by microcode) in order to maximize the execution speed. The 
microword is 48-bits wide, and the fields are shown in Table 
I. The microprogram is usually stored in a PROM 256 words 
long, but PROM’s 512 words long can be used via a page con- 
trol bit. The 16-bit immediate constant field is also used as 
an effective S-bit branch address field; the immediate constant 
or address function being selected by another bit. A 3-bit 
branch condition field selects among no branch, unconditional 
branch, and branch on zero, non-zero, signed, not signed, 
overflow and carry flags. Another bit causes a pause of the 
CPU clock at the beginning of the cycle, so that an elirernnl 
device, such as the data memory or ADC, may acknowledge 
completion. This allows fetched data to the ALU to be used 
during this cycle. Three fields of three bits each control the 
ALU source, destination, and function. Two fieltts of four bits 
each control the A and B port selection of the ALU registers. 
A one bit field controls the least significant carry input to the 
ALU. A two bit field is used to control the SHIFT-ROTATE 
multiplexor. These two bits in combination with the ALU 
function control and one combination of the encoded micra- 
word field allow selection among left or right shifts with 
0 or 1 fill, left or right rotation, arithmetic shifts. and shift 
with conditional arithmetic for a multiplication subroutine. 

Two breakpoint “switches” are incorporated into the de- 
sign for debugging and status checks. Break 1 is intern11 to 
the CPU and may be set and reset by the microcode. Break 
2 is external, controlled by the ADC or by a frout panel switch. 
Either breakpoint switch may be tested by a conditional branch 
instruction explicity controlled by 2 microcode bits. 

Finally, 5 bits are encoded to control mutually exclusive 
operations. These include multiply control, push and pop 
operations on the sequencer stack, control of CAhiAC Q and L 
lines, and control of “peripheral devices, I’ e.g. , the RAM and 
the ADC multiplexor section. 

The RAM for the BADC is used for constant storage, a data 
buffer, and control table storage, but not as program storage. 

(Presented at the IEEE 1977 Nuclear Science Symposium, San Francisco, Ca., October 19-21, 1977) 
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Fig. 2 Simplified block diagram of the BADC. The dotted lines enclose the 
ADC-MUX board and the memory board. 

The memory is 4096 words by 16-bits per memory board. 
Normally only 1 memory board is used, but expansion to 
32,768 words is possible. Memory read access time is 220ns. 

CAMAC commands are executed by forcing branches to 
predefined locations in the microprogram PROM. Some 
CAXIAC commands also directly affect the hardware, such as 
the F24-F26 LAM enable or the F9 reset instruction. A front 
panel h?hl input also causes a forced branch so that the BADC 
operation may be initiated by the trigger logic without involv- 
ing CAMAC. The BADC does not support interrupts (i.e., 
it is not possible to return from a forced branch). The BADC 
data interface to the R and W lines is by a pair of 16-bit buf- 
fers. The CAMAC R line buffer is loaded by every RAM read 
access, and is gated onto the R lines by valid CAMAC read 
functions. The W line buffer is loaded from CAMAC by any 
valid CXI\MC write function, and this buffer is enabled onto 
the ALU input bus by one of the encoded microcode instruc- 
tions. The W data may be enabled onto the ALU input and 
the ALU output written to RAM in a single instruction. 

The CPU clock has 3 modes: short, long, and pause. The 
short cycle is used for all instructions not involving condi- 
tional branches or external devices and is 200 ns. The long 
cycle is used for conditional branches and is 360 ns. The 
pause cycle is arbitrarily long and waits for external device 
acknowledgment. 

The BADC takes over control of the CAMAC crate via the 
SLAC Type U4 crate controller. Autonomous control of the 
crate at the moment is a nonstandard aspect of CAMAC. The 
protocol chosen here is essentially that the host computer 
shall not address the crate while the BADC is in control. If 
the crate is addressed at this time, this condition is latched 
by the BXZ and it can take appropriate error exits under 
software control. The rear cable connection behveen the 
BADC and crate controller includes encoded N lines, a con- 
troller enable signal from the BADC, and a controller active 
signal from the branch to the BADC. The cable assembly 
also includes the rather trivial LAM grading for the BADC . 
BADC control of the CAMAC function, subaddress, and strobe 
lines is by pulling these open collector lines down at the data- 
way. The TAC’s and SHAM’s have nearly identical control 
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and analog multiplexing sections, and use Fl as a high order 
address line, along with the subaddress lines, to select among 
the 32-channels. The TAC’s and SHAM’s latch the address 
data with Sl, which is generated by the BADC. The BADC 
CPU can set the starting address of this multiplexor control, 
and it can increment the address as part of an ADC read in- 
struction. 

The analog section is a pipeline, going from the modules 
to a sample and hold and then to an ADC. Thus while the CPU 
is analyzing channel i, the ADC can be digitizing channel i + 1, 
and the modules can be setting up channel i + 2. The sample 
and hold is a Burr-Brown SHMGO with a 1~s acquisition time 
for a 10 volt step. The ADC is the Date1 EH12B3, a 12-bit, 
as maximum conversion time device. The TAC’s and SHAM’s 
both operate with 0 to +5V outputs. 

Construction 

The BADC is constructed as a triple width CAMAC mod- 
ule, and is shown in Figs. 3 and 4. Both the CPU and memory 
boards are 4 layer printed circuits, while the ADC-MUX board 
has 2 layers. The front panel includes LED’s indicating the 
PROM address, branch code, CPU condition flags, L, X, Q 
and clock indicators, and a set of 16 LED’s that can be switched 
to show either the ALU input or output. Other contiwls are 
reset, single step, breakpoint, and external clock switches. 

The design of the BADC is such that the ADC-MUX board 
is treated as an external device, so that its modification or 
replacement--for example, the addition of a buffer for the R 
lines to accept digital data from other modules--is rather 
easy. 

Software 

One of the problems associated with designing a computer 
with a new instruction set is that there are typically no pro- 
gramming aids available. Even such a simple tool as an 
assembler has to be written for each new instruction set. ln 
the case of the BADC, this problem was overcome by writing 
an assembler-assembler (i.e., a program which generates an 
assembler for a given instruction set as its output) called 



Fig. 3 Photograph of the BADC 

Fig. 4 Photograph of the disassembled BADC to show 
the memory board and the inter-board cabling. 

MIMIC (,Machine Independent Micro Code assembler). A 

Software preparation for the BADC was done at the SLAC 
Triplex facility (two IBM 370/168’s and a 360/91). The source 
code was written using the text editor WYLBUR. MIMIC ac- 
tually consists of an extensive set of macros for the lBM H 
assembler, and a post-processor used to clean up the assem- 
bler listings and generate a simplified object module. The 
object modules can then be transmitted over a link to a CAMAC 
interface, and either loaded into a special debugging RAM or 
burned into PROM’s. The debugging RAM is a separate CAMAC 
module that can be connected to the BADC to replace its PROM’s, 
thus simplifying the debugging process. While BHMIC was 
initially written for the BADC, it has been used for other micro- 
coded machines. 

The first algorithm that has been developed for the BADC 
is a simple data correction and compression routine. 
be the ADC result for the im channel. 

Let Qi 
Then the data is dis- 

carded if Qi < ~1; else Qi = Lyi(Q. - f, Q) + Pi (Qi - hiI is 
stored in the RAM with the channe identification label in the 
adjacent word. The four constants are independently stored 
in the RAM for each of 608 channels. The two multiplica- 
tions are done by a subroutine which takes approximately 3~s 
per 16-bit by 16-bit (32-bit product) multiplication. Data 
transfers between CAMAC and RAM are mediated by the pro- 
gram; CAMAC is slow enough that there is time for a short 
loop. The program also includes diagnostics for the BADC and 
for the other modules: for example, there is a mode in which 
any block of channels can be continually scanned so oscilloscope 
observations of the analog bus can be easily made. Finally, 
the BADC hardware allows a register directly loaded from 
CAMAC to be substituted for the ADC, thus allowing detailed 
comparison of the algorithm executed by the BADC with its 
simulation on the host machine. 

Summary 

Sixteen production models of the BADC have been built 
and tested. It is already quite clear that the programmability 
is a major advantage, since modifications and additions to the 
program are being actively pursued. 
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lAr’4 
‘lli5 3P JMP=F OAO 
112? Fl6AO JP ALU=~R~.H~.RANDS~LQ.F~F~,WMS~ 
lli‘4 
113d UP ALU=(RZ.RZ.RURS,DZ,FRF) ,IH~~EO=x’220’ 
1132 K43C OP ALU=(RJrh.~.RJHS~OZ,Fk3F~~RAU~RADE?R=DISPQC 
1124 
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llA7 
113’) 
1141 * 

UP ALU=( Hl eK1 .kPLlJSS, ZO,FdF,CAHHY 1 .FtiQ, JUP=DISD1 
JP .4LU=(Hl .KZrKtX~RS,46,Fb ,JMP=(NL,?ADCJ 
UP A~U=~h3.H3.HDKS.L6~F~.J~~=F~6AO 

1142 UISPO OP ALU=(KO,KO,KA~DS.ZU.F~,J~P=DISPQ 
ououc9 0u~973100003 1144 

1145 Ul5POC OP ALU=~KO~hO.H4NDS,ZO.F~.JMP=DISPQ= 
OOOOU4 OOOA 7~103tiOO 1147 

II-t3 * 
114’) tijv 

Fig. 6 An example of MIMIC Phase 2 Code 

Table I 

‘IT NAME DESCRIPTION 

0 DO These 16-bits connected to ALU input 
1 Dl (D Lines) by ~1 code bit 10 (immediate con&). 
2 D2 
3 D3 
4 D4 
5 D5 
6 lx 
7 Page Bit D7 This bit also used as prom page address. 

8 BRO D8 
9 BRl DS 
A BR2 DA 
B BR3 DB These 8-bits are the prom branch address during 
C BR4 DC a branch instruction 
D BR5 DD 
E BR6 DE 
F BR7 DF 

0 CONSTANT Selects bits O-F as immediate constant. 
1 BRCOND 2 
2 BRCOND 1 Conditional Branch Codes. 
3 BRCOND 0 
4 18 
5 17 ALU Destination Codes. 
6 16 
7 15 

3 14 
9 13 
A 12 
B 11 
C IO 
D B3 
E B2 
F Bl 

0 BO 
1 A3 
2’ A2 
3 Al 
4 A0 
5 ALUCARRY 
5 SRSl 
7 SRSO 

ALU Operation Codes. 

ALU Source Codes 

B-Port ALU Register Address. 

A-Port ALU Register Address. 

Least Significant Carry Input to ALU. 

Shift-Rotate multiplexor Control. 

3 Status Req Causes execute pause at phase 0 of CPU clock. 
9 BRKPT 1 REQ Test status of BREAKPNT 1. 
A BRKPT 2 REQ Test status of BREAKPNT 2. 
B EXT Select external or internal encoded /.I codes. 
C OPCODE 0 
D OPCODE 1 
E OPCODE 2 Encoded bits 

F OPCODE 3 
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