
SLAC–PUB–7990
November, 1998

Choosing CPUs in an Open Market:
System Performance Testing for the BABAR Online Farm

T.J. Pavel
For the BABAR Computing Group�

Abstract

BABAR is a high-rate experiment to study CP violation in asymmetrice+e� collisions. The BABAR

Online Farm is a pool of workstations responsible for the last layer of event selection, as well as for full
reconstruction of selected events and for monitoring functions. A large number of machine architectures
were evaluated for use in this Online Farm. We present an overview of the results of this evaluation, which
include tests of low-level OS primitives, tests of memory architecture, and tests of application-specific CPU
performance. Factors of general interest to others making hardware decisions are highlighted. Performance
of current BABAR reconstruction (written in C++) is found to scale fairly well with SPECint95, but
with some noticeable deviations. Even for machines with similar SPEC CPU ratings, large variations
in memory system performance exist. No single operating system has an overall edge in the performance
of its primitives. In particular, freeware operating systems perform no worse overall than the commercial
offerings.

Introduction

The BABAR experiment is a high energy physics detector that will operate at the PEP-II asymmetrice+e�

storage ring at SLAC to studyCPviolation in theB meson system. The design of the experiment is described
in detail in [1]. An unusual aspect fore+e� experiments is the use of a partial-reconstruction software
selection (L3 trigger) for reduction of the data set to a manageable rate. Even with the L3 trigger, BABAR will
record some 109 events per year (resulting in 30 TB=year of raw data alone). As in other HEP experiments,
this L3 trigger will be performed on a farm of commercial Unix systems. In addition to the L3 trigger,
however, this farm will be required to support the building of events from the front-end processors over a
TCP/IP network [2], and some part of the farm will be used to perform a full first-pass reconstruction on all
selected events [3].

There are many factors that go into selecting a computing platform for such an application. In the ideal
world, one is free to make that choice purely on the grounds of performance and price. The BABAR Online
Farm selection was not quite ideal, but we were able to evaluate a large selection of different platforms for
consideration. The first goal of such an evaluation is to quantify the principal measures of performance
relative to the desired tasks. For the BABAR tasks of event building, L3 triggering, and reconstruction,
we identified the main performance components as CPU speed, network speed, and (pseudo-)real-time
responsiveness of the operating system (OS). The measurements of network performance are described in
another paper in these proceedings [4], while this paper focusses on the CPU and OS measurements.

One can consider the performance of computing systems to be generally factorizable into the performance
of the underlying hardware and the performance of the software that runs on top of it. The hardware layer is
principally made up of what is considered CPU performance, but it also includes an increasingly important
component of memory performance. Since our goal is to compare performance of several candidate machines
for the BABAR Online Farm, we can consider the software layer to stop at the operating system, as the
remaining software should be identical for different systems.

In order to measure these three aspects of system performance, we drew upon the work of others in
measuring performance (see below) and did not need to create any new benchmark programs of our own.

�This work was supported in part by Department of Energy contract DE–AC03–76SF00515.

Presented at the International Conference on Computing in High-Energy Physics (CHEP98),
Chicago, IL, August 30, to September 4, 1998

1



1-96 1-97 1-98 1-99 1-2000 1-2001
Year

0

20

40

60

80

S
P

E
C

in
t9

5

CPU speed projections
(from predictions at Microprocessor Forum ’97 + other speculations)

Intel
HP
DEC
IBM
Sun

1-96 1-97 1-98 1-99 1-2000 1-2001
Year

0

20

40

60

80

100

120

S
P

E
C

fp
95

P2/266

P2/400

P2/600

Merced/800

PA8000/180

PA8200/240

PA8500/300

PA8700/400??

AXP21164/400

AXP21164/600

AXP 21264/575

AXP 21264/733

AXP 21264/1000

PPC604e/233

PPC604e/333

P2SC/130 P2SC/160

Power3/200

Power3/350

Power3/500

Ultra/200

Ultra2/300

Ultra2/360
Ultra2/400

Ultra3/600
Ultra3/1000

Figure 1: SPEC ratings for various CPU families over the past few and next few years. Future projections
are based on [6] as well as vendor press releases. Within the uncertainty of future predictions, it is apparent
that all of the vendors considered here will continue to have competitive products tracking Moore’s law of
exponential growth for the next several years.

These tools should be of interest to anyone faced with making similar evaluations. In the end, we found that
performance alone ruled out very few candidate platforms, leaving price and the more subjective criteria as
the primary decision-making factors.

CPU Performance

Performance testing of CPUs is one of the oldest pursuits in computer performance measurement. There
is a long history of development of different benchmark programs, but the current industry standard metric
is the SPEC CPU95 suite [5]. These benchmarks are generally run by the CPU vendors and the results are
widely available. The SPEC95 suite attempts to use a cross section of representative “real-world” code, with a
particular eye towards programs that have realistic memory and cache footprints. Currently, seven C programs
make up the SPECint95 benchmark, and ten Fortran-77 programs make up the SPECfp95 benchmark. The
results of each of these sets of tests are scaled to the times taken by a SPARCstation 10/40 and geometrically
averaged. Clearly one would like to make use of the wealth of published SPEC results in making CPU
decisions (rather than, for example, running test code on hundreds of different machines).

Furthermore, information from vendors about future products is only available as SPEC performance
targets (or as MHz). One cannot run application-specific tests on non-existent processors! A collection
of such information is shown in Fig. 1. One can see the exponential growth of CPU speeds, and that such
growth shows no signs of abating in the near future. Furthermore, one sees from Fig. 1 that no vendor holds
a clear advantage. The Alpha is expected to continue to be the fastest individual CPU. In addition, the Intel

2



0 5 10 15 20
SPECintbase95

0.00

0.05

0.10

0.15

0.20
B

aB
ar

 e
v/

se
c

BaBar Reco Speed v. SPECint/SPECfp

Sun -g -fast
IBM -O
DEC -g

0 5 10 15 20
SPECfpbase95

0.00

0.05

0.10

0.15

0.20

B
aB

ar
 e

v/
se

c
a)

b)

Figure 2: Comparison of BABAR reconstruc-
tion performance on several machines with
SPECint95(base) and SPECfp95(base). The
results show a much more linear scaling with the
SPECint95 points (a), indicating that SPECint95 is
a better figure of merit for estimating reconstruction
performance.

0 5 10 15
SPECint95 base

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

D
ch

R
ec

o 
ev

/s
ec

DchReco Performance v. SPEC95
(Reco Release 6.0.2)

Sun -g -O
Sun -O5
Sun -fast
IBM -O
IBM -O -qarch=604
DEC CXX5 -g
DEC CXX6 -g
DEC CXX5 -O
DEC CXX6 -O

Figure 3: A comparison of application performance
(for a small piece of the BABAR reconstruction) ver-
sus SPECint95 for three RISC CPU architectures.
The effects of different optimization options are also
shown (open points are unoptimized compilation,
while the solid points are the highest level of opti-
mization which still improved results). For the opti-
mized points, scaling with SPECint95 is quite linear.

Merced is expected to be a very significant force in the market, but it will not have very different performance
from other microprocessors which will be available at that time.

However, the SPEC results are only one aggregate number and may not really represent the performance
delivered in the BABAR Online Farm. Therefore, our first investigation was to see how well our application-
specific performance (as measured by the current BABAR reconstruction program) compares with SPEC95
results. One open question is how floating-point intensive HEP code really is. There clearly are a lot of
floating-point calculations involved in event reconstruction, but it seems that typical HEP code is dominated
by logic, control-flow, and data structures. Figure 2b shows that BABAR reconstruction does not scale well
with SPECfp95. The left-most two points come from IBM machines whose SPECint95=SPECfp95 ratios
differ wildly. As a result the machine with the higher SPECfp95 rating performs worse on the BABAR

reconstruction than the other (which has the higher SPECint95 rating). On the other hand, in Fig. 2a the
points within a given architectural family seem to lie on straight lines going through the origin, showing that
scaling with SPECint95 is quite good. In this early study, however, there seems to be a fairly large disparity
between different CPU families.

We examined this in detail for one small microcosm of the BABAR reconstruction (theDchRecomodule,
which performs first-pass track finding). The results of this are shown in Fig. 3 and demonstrate the sizeable
effects of various compilation/optimization flags (as much as�4–5). With optimization, both UltraSPARC
and RS/6000 families scale linearly with SPECint95 and are consistent to about 10%. However, both seem to
differ from Alpha systems by 20–30%. In the published SPECint95 results, spreads of 10–20% appear among
the individual components. Therefore, this 30% discrepancy may not be more than normal variation of results
on different computing problems. Nevertheless, it seems significant in the context of our measurements. One
possible explanation for the advantage would be a better C++ optimizer in Digital’s compiler. This would
not enter into the SPECint95 results, since those tests are exclusively C code. Another possible explanation
would be some advantage of the 64-bit Alpha architecture for reconstruction code, but we have no indication
of what such an advantage might be.

We also studied several other components of the BABAR reconstruction. Although the relative behavior
of various machines on those components did vary somewhat, the overall conclusion of good linear scaling
with SPECint95 within CPU architectures remained true. Furthermore, the consistency between SPARC and

3



0 50 100 150 200 250 300 350
Memory BW (MB/s)

Mot MVME2306/300

IBM F50/167

IBM 43P/332

IBM 43P/100

DEC UW/533

DEC 500/267

Sun Ultra10/300

Sun Ultra5/270

Sun E450/300

Sun E6000/250

Sun Ultra60/360

Sun Ultra2/300

Sun Ultra2/167

AMD K6/200 (SDRAM)

Intel P6/200 (EDO)

Intel P6/200 (FPM)

McCalpin Stream Benchmark

Figure 4: Memory bandwidth as measured by the McCalpin Stream benchmark [7].

PowerPC machines with respect to SPECint95 also seemed to hold throughout. More work needs to be done
to understand the relative scaling with SPECint95 for Alpha and other architectures not tested here.

Memory Speed

The second major element of hardware performance studied was memory bandwidth. This was found to
be very important in network performance [4], and it is also well-known to be significant in large numeric
calculations [7]. Unlike the rapid exponential increase in CPU performance, memory speeds have grown
much more slowly. Furthermore, it also turns out that memory performance is strongly correlated with many
of the OS performance metrics discussed later [8].

We used two different tests of memory bandwidth. The results in Fig. 4 are from the McCalpin Stream
benchmark [7], which is becoming ade factostandard for memory benchmarks. Many vendors have used it
to rate their memory systems. The test consists of iterating through two large arrays copying a double at a
time. This makes full use of any cache prefetching, but never reuses any data in the cache. The results are
reported as the sum of read and write bandwidths, so one should divide in half to get the copy bandwidth.

The other memory bandwidth test we performed was themem bw component of thelmbench suite [9].
This tests copy performance via thememcpy() call, as well as measuring read and write bandwidths indi-
vidually by looping through arrays. These results are presented in Table 1. The two tests give generally

Table 1: Memory bandwidth as measured bylmbench [9].

Machine OS memcpy()
(libc)

memcpy()

(unrolled)
Mem Read Mem Write

Sun Ultra60/360 MHz Solaris 2.6 257 MB/s 115 MB/s 178 MB/s 204 MB/s
Sun Ultra2/300 MHz Solaris 2.5.1 187 MB/s 99 MB/s 151 MB/s 186 MB/s
Sun Ultra2/200 MHz Solaris 2.5.1 176 MB/s 82 MB/s 126 MB/s 168 MB/s
DEC Alpha UW/533 MHz DEC Unix 4.0D 107 MB/s 108 MB/s 200 MB/s 187 MB/s
DEC Alpha 500/266 MHz DEC Unix 4.0B 74 MB/s 69 MB/s 127 MB/s 104 MB/s
Intel PPro/200 MHz (EDO) Solaris 2.5.1 61 MB/s 53 MB/s 226 MB/s 90 MB/s
IBM F50/166 MHz AIX 4.2 58 MB/s 82 MB/s 122 MB/s 126 MB/s
Intel PPro/200 MHz (FPM) Linux 2.0.27 45 MB/s 37 MB/s 158 MB/s 60 MB/s
AMD K6/200 MHz (SDRAM) FreeBSD 2.2.5 43 MB/s 43 MB/s 150 MB/s 74 MB/s
IBM 43P/200 MHz AIX 4.1.5 27 MB/s 28 MB/s 64 MB/s 41 MB/s
IBM 43P/333 MHz AIX 4.2.1 25 MB/s 26 MB/s 81 MB/s 34 MB/s

4



comparable results, with some exceptions like the UltraSPARC, where Sun’s libc uses the UltraSPARC VIS
instructions to sidestep the caches formemcpy(). This gives Sun systems a factor of 2 edge, for example, in
memory copy over otherwise comparable Alphas.

Of interest also are the Intel systems. Here the memory bandwidth results are fairly good overall, but
the write performance is much worse than read on the Pentium Pro. This is due to the overhead of the
multi-processing cache-coherency protocol which is built into every Pentium Pro chip and active even on
uniprocessor systems [10].

Finally, we notice that IBM’s 43P (low-end) line of workstations has abysmal memory bandwidth. The
same 30 MB/smemcpy()performance is present on the 333 MHz machines as on the early 100 MHz versions.
While the F50 (4-way SMP) machine improves this considerably, it is still not competitive with Sun or DEC
machines. Although not measured in our study, high-end IBM machines (with the P2SC chip) have much
better memory speeds, and the upcoming Power3 workstations are claimed to perform over 500 MB/s on
memcpy(). However, these machines were too costly for consideration for the BABAR Online Farm.

Operating System Primitives

One of the most straightforward ways to gain insight into operating system performance is through the use
of microbenchmarks, tests that measure the performance of individual OS primitives. Each microbenchmark
test is hopefully easy enough to understand, and one can, in principle, break down a macroscopic task into its
component primitives and synthesize an understanding of its performance based upon the microbenchmark
measurements.

The first systematic benchmarks of OS primitives came from John Ousterhout’s study of why OS perfor-
mance was not scaling well with CPU speed [8]. Some of these benchmarks were primitive, and there were
some areas not really covered. This led Larry McVoy to refine Ousterhout’s suite and to add additional tests,
creating thelmbench suite [9]. This suite has been very successful, and has reportedly been used by many
OS vendors for measurement and tuning. Development oflmbench is still proceeding, while meanwhile
there have been some attempts to address some of its shortcomings [10, 11].

We present a selected subset of thelmbench measurements here. A sample of “200-300 MHz class”
machines were used to provide a roughly comparable hardware assortment. We follow the presentation
format of [9] with similar tables showing the results sorted on the column indicated with a bold heading.

System Calls

The overhead of system calls is a basic starting point for OS performance. All other OS functions will require
at least the overhead of a kernel trap and associated context switch. Thelmbench test measures a 1-byte
write() to /dev/null (as opposed to thegetpid() call, which has been optimized via caching the value
in user space on some systems). Most of the systems do simple syscalls fairly efficiently, in 2–5µs, as shown
in Table 2. Unlike the systems in [8], this is usually a fairly negligible overhead. However, AIX seems to
have some difficulty with syscalls.

Process Creation

The next most basic OS function is process creation.Lmbench tests process creation at three levels: a simple
fork() followed byexit() (null process), afork()which execs a trivial program (the famous hello-world
program), and the common case of forking/bin/sh (such as in thesystem() call). The results are shown
in Table 3. AIX does surprisingly well at processes, given its high syscall overhead. Digital Unix, FreeBSD,
and Linux also do very well, although Linux is hurt on the/bin/sh test somewhat by its largerbash shell.
Solaris is the worst of the set on processes. Reference [9] claims that this is partly due to the overhead of
dynamically-linked programs, but all the other systems tested also have dynamic linking and don’t show the
same overheads.

5



Table 2: System Call Overhead

Machine OS MHz Null
syscall

DEC Alpha UW/533 MHz DEC Unix 4.0D 533 2µs
Sun Ultra60/360 MHz Solaris 2.6 360 2µs
DEC Alpha 500/266 MHz DEC Unix 4.0B 266 3µs
IBM 43P/333 MHz AIX 4.2.1 333 3µs
Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 200 3µs
Sun Ultra2/300 MHz Solaris 2.5.1 300 3µs
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 200 4µs
Sun Ultra2/200 MHz Solaris 2.5.1 200 5µs
AMD K6/200 MHz FreeBSD 2.2.5 200 5µs
IBM F50/166 MHz AIX 4.2 166 8µs
IBM 43P/200 MHz AIX 4.1.5 200 19µs

Table 3: Process Creation

Machine OS Null
process

Simple
process

/bin/sh

process
IBM 43P/333 MHz AIX 4.2.1 2 ms 3 ms 13 ms
DEC Alpha 500/266 MHz DEC Unix 4.0B 1 ms 4 ms 13 ms
IBM F50/166 MHz AIX 4.2 2 ms 4 ms 16 ms
IBM 43P/200 MHz AIX 4.1.5 2 ms 4 ms 17 ms
DEC Alpha UW/533 MHz DEC Unix 4.0D 1 ms 5 ms 12 ms
AMD K6/200 MHz FreeBSD 2.2.5 1 ms 5 ms 12 ms
Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 2 ms 5 ms 32 ms
Sun Ultra60/360 MHz Solaris 2.6 2 ms 9 ms 18 ms
Sun Ultra2/300 MHz Solaris 2.5.1 2 ms 13 ms 24 ms
Sun Ultra2/200 MHz Solaris 2.5.1 3 ms 17 ms 35 ms
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 4 ms 20 ms 38 ms

Signal Handling

Another fairly basic component is the installation of and activation of signal handlers. The Unix signal facility
is not as rich a facility as threads or the other IPC primitives. Nevertheless, it still has its uses, and it can be
particularly important in legacy code.

From the results in Table 4, we can see that Linux and Digital Unix perform best, followed closely by
FreeBSD. AIX also does reasonably well. Solaris is poor at signal handling, up to 10 times worse than the
best system.

Context Switch

This is one of the primary performance criteria for real-time response in an OS. Unfortunately, it is somewhat
difficult to define and correspondingly hard to measure.Lmbench uses multiple processes with tokens
passed between them via pipes. The overhead of the token passing is calculated in a single process and
then subtracted from the multi-process results.Lmbench also seeks to measure the cost of bringing a new
working set into the CPU caches as part of the context switch values; it does this by spinning through an array
of tunable size between each passing of the token. Unfortunately, there is a fair amount of statistical scatter
in the lmbench measurements, and there are some pitfalls involved in subtracting imprecisely measured
quantities [10].

6



Table 4: Signal Handling

Machine OS sigaction()
signal
handler

DEC Alpha UW/533 MHz DEC Unix 4.0D 1µs 5µs
Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 4µs 7µs
DEC Alpha 500/266 MHz DEC Unix 4.0B 2µs 10µs
AMD K6/200 MHz FreeBSD 2.2.5 3µs 10µs
IBM 43P/333 MHz AIX 4.2.1 1 µs 11µs
IBM 43P/200 MHz AIX 4.1.5 2 µs 20µs
IBM F50/166 MHz AIX 4.2 4 µs 27µs
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 4µs 34µs
Sun Ultra2/300 MHz Solaris 2.5.1 3µs 35µs
Sun Ultra60/360 MHz Solaris 2.6 2µs 37µs
Sun Ultra2/200 MHz Solaris 2.5.1 5µs 49µs

Table 5: Context Switch

Machine OS 2-proc
CSW

8-proc
CSW

Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 5µs 6µs
IBM 43P/333 MHz AIX 4.2.1 5µs 13µs
DEC Alpha 500/266 MHz DEC Unix 3.2G 8µs 12µs
DEC Alpha 500/266 MHz DEC Unix 4.0B 9µs 11µs
IBM 43P/200 MHz AIX 4.1.5 10µs 28µs
Sun Ultra60/360 MHz Solaris 2.6 11µs 12µs
AMD K6/200 MHz FreeBSD 2.2.5 11µs 14µs
DEC Alpha UW/533 MHz DEC Unix 4.0D 12µs 15µs
IBM F50/166 MHz AIX 4.2 12 µs 16µs
Sun Ultra2/200 MHz Solaris 2.5.1 13µs 18µs
Sun Ultra2/300 MHz Solaris 2.5.1 17µs 18µs
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 34µs 42µs

The results vary with both hardware (e.g. size of the register set) and with OS (i.e. efficiency of task
switching), as seen in Table 5. The case of Pentium Pro systems is particularly instructive. Linux on the
Pentium Pro is excellent, while Solaris on the same hardware is worse by a factor of 7. The SPARC Solaris
systems also tend to be near the bottom of the pack. On the other hand, AIX performance varies tremendously,
presumably with the speed of the hardware.

IPC Latency

Lmbench measures a collection of latencies of various IPC channels, all over the loopback network in order
to separate out the effects of network link layers. Unlike IPC bandwidths, which are generally dominated by
the hardware (viz. memory bandwidth), the latencies depend strongly on software organization and efficiency
in the kernel. In particular, the time to transit through the kernel for a TCP packet can be very important for
real-world applications (e.g.Web servers).

These results are presented in Table 6. One can see that Solaris scales well with hardware speed, unlike
Digital Unix, which is mostly unchanged as the CPU speed doubles. Solaris also has the fastest RPC
implementations of the set, reflecting heavy optimization work expended on this. A curious note is that
the RPC implementation worsened going from Digital Unix 3.2 to 4.0. Linux does very well on pipe and
UDP latencies, but its TCP code seems to be not so good. FreeBSD, on the other hand, does quite well

7



Table 6: IPC Latency

Machine OS pipe UDP RPC/UDP TCP RPC/TCP
Sun Ultra60/360 MHz Solaris 2.6 26µs 86µs 161µs 85µs 193µs
IBM 43P/333 MHz AIX 4.2.1 25µs 97µs 267µs 116µs 312µs
AMD K6/200 MHz FreeBSD 2.2.5 39µs 101µs 195µs 120µs 243µs
IBM 43P/200 MHz AIX 4.1.5 63µs 125µs 336µs 127µs 418µs
Sun Ultra2/300 MHz Solaris 2.5.1 51µs 133µs 189µs 130µs 240µs
DEC Alpha 500/266 MHz DEC Unix 3.2G 40µs 132µs 255µs 131µs 252µs
DEC Alpha 500/266 MHz DEC Unix 4.0B 36µs 131µs 311µs 133µs 317µs
Sun Ultra2/200 MHz Solaris 2.5.1 47µs 184µs 233µs 152µs 307µs
IBM F50/166 MHz AIX 4.2 58 µs 146µs 328µs 157µs 370µs
DEC Alpha UW/533 MHz DEC Unix 4.0D 37µs 144µs 310µs 159µs 418µs
Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 25µs 79µs 229µs 166µs 232µs
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 90µs 242µs 321µs 222µs 362µs

Table 7: File Operations

Machine OS FS type create/sdelete/s
Intel PPro/200 MHz (256 kB L2) Linux 2.0.27 EXT2 1302 19053
Intel PPro/200 MHz (512kB L2) Solaris 2.5.1 UFS 74 120
Sun E450/300 MHz Solaris 2.6 UFS 63 120
Sun Ultra2/300 MHz Solaris 2.5.1 UFS 63 120
Sun Ultra2/200 MHz Solaris 2.5.1 UFS 63 120
DEC Alpha UW/533 MHz DEC Unix 4.0D UFS 58 117
DEC Alpha 500/266 MHz DEC Unix 4.0B UFS 49 110
IBM 43P/333 MHz AIX 4.2.1 JFS 103 105
IBM F50/166 MHz AIX 4.2 JFS 101 105
AMD K6/200 MHz FreeBSD 2.2.5 UFS 38 90
IBM 43P/200 MHz AIX 4.1.5 JFS 73 77

on TCP and RPC but not as well on pipe. AIX does surprisingly well in latency, even though its memory
performance hurts it terribly on the bandwidth measures.

File Operations

Although more removed from the OS core and dominated by disk speeds, the time for filesystem creations
and deletions can also have important effects on application performance. As shown in Table 7, this seems
to depend strongly on filesystem type and only weakly on OS vendor. For example, all three of the UFS
implementations seem to perform quite similarly. On the other hand, the Linux EXT2 filesystem is fully
asynchronous. Unlike other filesystems, it never forces updates to disk for the sake of guaranteeing consis-
tency in the event of crashes. This has a huge effect in file operations. The AIX journalling JFS performs
worse that UFS at deletes, but better at creates.

Conclusions

The results presented in this paper looked at system performance in three main areas: CPU speed, memory
system performance, and a set of OS primitives. None of these tests showed any conclusive standout
machines: it seems there are a lot of good hardware platforms to choose from.

8



In CPU benchmarking, we found that SPECint95 is a good model for BABAR reconstruction performance,
but there are still discrepancies from perfect scaling (�30%) that are not really understood. Furthermore, we
found that mastering compiler optimization is essential on RISC platforms. This can account for as much as
�5 in speed.

Memory bandwidth and latency are getting attention from vendors, but at present there is a wide spread
in memory speeds available. The IBM 43P line of workstations stood out as particularly poor in memory
bandwidth. As a practical application, this weakness showed up unmistakably in the network performance
measurements in [4].

Leadership in the OS primitives was quite evenly distributed among the different platforms, with no single
platform performing well on all tests. Interestingly enough, the freeware operating systems (Linux and
FreeBSD) performed as well as any of the other systems, indicating the high quality of freeware available
today. It is not clear which of the primitives tested are most relevant for the type of workload to be found in
the BABAR Online Farm, so it is hard to draw any definitve conclusions from the OS benchmarking.

The Future promises to be exciting, with CPU speeds still growing exponentially every year, and all of the
CPU vendors try to keep up with (or surpass) Intel’s Merced. This is the promise of open systems. If one can
keep application software portable to a range of different hardware, then one will be able to reap the rewards
of this competition.

References

[1] BABAR Technical Design Report, SLAC-R-457 (1995).
See alsohttp://www.slac.stanford.edu/BFROOT/doc/TDR/.

[2] I. Scottet al., “The BABAR Data Acquisition System,” CHEP 98 #19, submitted to these proceedings.

[3] T. Glanzmanet al., “The BABAR Prompt Reconstruction System,” CHEP 98 #52, submitted to these
proceedings.

[4] T.J. Pavelet al., “Network Performance Testing for the BABAR Event Builder,” CHEP 98 #31,
submitted to these proceedings.

[5] SPEC CPU95 benchmark suite,http://www.specbench.org/osg/cpu95/.

[6] L. Gwennap, “Comparing High-Performance Microprocessor Designs,” Microprocessor Forum
Seminar, San Jose, CA, Oct. 1997.

[7] J.D. McCalpin, “STREAM: Sustainable Memory Bandwidth in Recent and Current High Performance
Computers,” a continually updated technical report (http://www.cs.virginia.edu/stream/).
See alsohttp://reality.sgi.com/mccalpin/papers/bandwidth/bandwidth.html.

[8] J.K. Ousterhout, “Why Aren’t Operating Systems Getting Faster as Fast as Hardware?”Proc. 1990
Summer USENIX Conf., Anaheim, CA, June 1990, pp. 247–256.

[9] Larry McVoy and Carl Staelin, “Lmbench: Portable Tools for Performance Analysis,”Proc. 1996
Winter USENIX Conf., San Diego, CA, January 1996, pp. 279–295.
See alsohttp://www.bitmover.com/lmbench/lmbench.html.

[10] A.B. Brown and M.I. Seltzer, “Operating System Benchmarking in the Wake ofLmbench: A Case
Study of the Performance of NetBSD on the Intel x86 Architecture,”Proc. 1997 Sigmetrics Conf.,
Seattle, WA, June 1997.
See alsohttp://www.eecs.harvard.edu/~vino/perf/hbench/.

[11] K. Lai and M. Baker, “A Performance Comparison of UNIX Operating Systems on the Pentium,”
Proc. 1996 USENIX Conf., San Diego, CA, January 1996.
See alsohttp://gunpowder.Stanford.EDU/~mgbaker/publications/usenix96.bench.ps.

9


