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Abstract

The ratio of the in-medium to free nucleon structure functions for both the unpolarized
and polarized case is obtained using the bag model, along with the QMC model to
incorporate the in-medium modifications to the structure functions. The unpolarized
EMC effect, F ∗2 (x)/F2(x), is compared to data and the trend is certainly observed. A
prediction of the polarized EMC effect, g∗1(x)/g1(x), is made and found to be almost
identical to the unpolarized case. The in-medium modifications; the σ mean field, Fermi
motion, and ω mean field are included into the calculations one at a time to see how
the EMC ratio develops for both the unpolarized and polarized case, and to see which
in-medium modifications play the dominant role in producing the EMC effect.
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Chapter 1

Introduction

The discovery by the European Muon Collaboration (EMC) that the nucleon structure
functions differ substantially in-medium compared to the free case surprised the nuclear
physics community. The ratio of the in-medium to free structure function of the nucleon
was found to drop below unity, indicating a suppression of the bound nucleon’s struc-
ture function, this became known as the EMC effect. With many unsuccessful attempts
to explain the EMC effect through conventional nuclear effects, such as Fermi motion
and nuclear binding, it became clear that a change in the quark structure of the bound
nucleon could provide an explanation for this effect.

In this research we will investigate both the unpolarized and polarized EMC effect,
where we will build our nucleon from the quark level. We will employ the MIT bag
to model the free nucleon. With this we will produce the unpolarized and polarized
structure functions of the free nucleon. For the in-medium case we will apply the mean
field approximation along with the QMC model, thus including the quark degrees of the
freedom, such that the quark structure of the bound nucleon is allowed to be altered. To
calculate the structure functions of the bound nucleon, we will consider the in-medium
modifications to the bound nucleon and how these will impact its structure. Our calcu-
lations for the bound nucleon will take into account the mean scalar field generated by
the σ meson exchanges, which is first included through the altered quark wave function
of the bound nucleon, and then through the effective nucleon and diquark state masses.
We will then consider the Fermi motion of the bound nucleon, which is included through
a convolution with a Fermi smearing function. Finally, we will take into account the
mean vector field generated by the ω meson exchanges, which gives rise to a vector po-
tential and is included through scaling the quark distributions and shifting the Bjorken
variable. With this we will produce the in-medium unpolarized and polarized structure
functions of the nucleon.

With our in-medium and free structure functions we will then be able to produce a
theoretical result for both the unpolarized and polarized EMC effect. We will call the
ratio of the in-medium to free structure function of the nucleon the EMC ratio. We
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will try various parameter choices to see how each parameter effects the result of both
the unpolarized and polarized EMC ratio. We will also see what choices best fit the
experimental data for the unpolarized EMC effect. As there is no experimental data for
the polarized EMC effect, we will use the best fit parameter set from the unpolarized
case to present the unpolarized and polarized EMC ratios together. We will then be
able to compare our prediction of the polarized EMC effect from the bag model with
those from the NJL model [1], and see whether the enhanced polarized EMC effect found
in the NJL is a model dependent phenomena, or consistent with other model predictions.

We will then go through the contribution to both the unpolarized and polarized EMC
ratio for each in-medium effect accounted for, where the in-medium modifications will
be included one at a time to see how the EMC ratio develops with each added effect,
and to find out what in-medium modifications play the dominant role in producing the
EMC effect.

Finally, we will consider one correction to our calculations, namely the deuteron
structure function. Our free structure function will be that of a free proton, whereas in
reality the EMC ratio is performed with the deuteron structure function. Therefore, we
will consider how including the deuteron structure function correction into our calcula-
tions changes our prediction of the unpolarized EMC effect.

Does the internal structure of a nucleon change when it is immersed in a nuclear
medium? If so, what causes this change? Is this change different when looking at the
polarized quark distribution compared to the unpolarized case? These are the questions
we will explore.
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Chapter 2

Background

Before delving into the exciting results from the EMC, a review of the structure of the
nucleon as well as a description of deep inelastic scattering and structure functions will
prove to be very useful.

2.1 Nucleon Structure

During the 1950’s there were an ever growing number of particles called hadrons being
discovered. Hadrons, such as the kaon, pion, neutron, and proton, along with a col-
lection of other hadrons, were believed to be equally fundamental. As more and more
hadrons were discovered it was becoming questionable as to whether they could all be
fundamental particles. Around 50 years ago, during the 1960’s, physicists were begin-
ning to realize that the protons and neutrons that make up the atomic nucleus are not
elementary particles, but contain their own sub-structure. On the theoretical front, in
1961, Murray Gell-Mann and Yuval Ne’eman introduced a system to give order to the
ever growing number of hadrons being discovered. The system was known as SU3 sym-
metry [2] [3].

In 1964, seeking deeper understanding of the SU3 classification scheme, Murray
Gell-Mann [4] and George Zweig [5] independently proposed the existence of the particle
known as the quark. Gell-Mann was at the California Institute of Technology, while
Zweig was at CERN. They proposed that the properties of hadrons, previously thought
to be indivisible fundamental particles, could best be described if they were composed
of smaller sub-atomic particles, termed quarks by Gell-Mann.

In the SU3 scheme there are three fundamental quarks; up (u), down (d), and strange
(s), where each has its own anti-particle that has the opposite charge. The quarks
are spin-1

2 fermions. Hadrons could then be split into two groups; mesons, which are
composed of a quark and an anti-quark, and baryons, which are composed of three
quarks. For example, the neutral kaon is a meson composed of a down quark and a
strange anti-quark (ds̄), and the proton is a baryon composed of two up quarks and a
down quark (uud).
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The SU3 classification scheme then gave a system to the collection of hadrons, known
as the Eightfold Way, since many hadrons could be collected into octets. Particles with
spin-0, such as the pions and kaons, form a group of eight mesons called a meson octet.
Particles with spin-1 also form another meson octet. Particles with spin-1

2 , such as the
proton and neutron, form a baryon octet. Particles with spin-3

2 form a group of ten
baryons, known as a baryon decuplet. Effectively, Gell-Mann and Ne’eman came up
with a periodic table of hadrons, and the system could even be used to predict particles
that were later discovered with the correct properties. An example of such a case is
the omega− (Ω−) particle, which is a part of the spin-3

2 baryon decuplet. Gell-Mann
predicted in 1962 that this particle would be composed of three strange quarks (sss),
have an electric charge of -1, and a mass around 1680 MeV. In 1964, a particle with very
similar attributes was discovered [6], supporting SU3 symmetry as the correct represen-
tation for reality.

Quarks carry fractional electric charge in units of proton (or electron) charge, and
by assigning a charge equal to 2

3e for the up quark and -1
3e for the down and strange

quarks, the charges of the known mesons and baryons came out correctly. However, the
idea of fractional charges was not popular at the time. After several years of searching,
it was agreed by most particle physicists that while quarks might be a useful mathemat-
ical construct, they had no reality as physical objects [7]. Theories that attempted to
describe the growing variety of hadrons as combinations of a small set of fundamental
particles, such as quarks, were a small minority.

It wasn’t until the MIT-SLAC experiments through the late 1960’s to early 1970’s
where evidence was found that would give the physical existence of quarks growing
support. Deep inelastic scattering (DIS) has played a vital role in discovering and
investigating the sub-atomic structure of the nucleon. DIS is the process where a high
energy incident lepton interacts with a nucleon target such that insight into the structure
of the target can be obtained, this is discussed in more detail in section 2.2. DIS
provides us with structure functions, which contain information about the momentum
distributions of the quarks inside the nucleon.

During April of 1968, Bjorken and Kendall took the data from the initial MIT-SLAC
scattering experiments and looked at how the structure functions varied with the mo-
mentum transfer Q2, the momentum transferred from the incident lepton to the target.
They found that the structure functions scaled to a good approximation, meaning that
the structure functions depend only on a variable x (later interpreted as the fraction of
proton momentum carried by the struck quark) and are independent of Q2. Although
scaling had been predicted by Bjorken [8], it was Feynman’s idea in 1969 that gave the
clearest physical explanation of what scaling really means [9]. He introduced the Parton
Model of the nucleon. The key feature of the model is that the proton is composed
of point-like constituents he called partons. In such a model, scaling arises naturally
because the high energy leptons rebound from the charged partons, which absorb the
virtual boson. Extensive DIS experiments over the following decade confirmed that the
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partons in Feynman’s model were the quarks and gluons predicted by Gell-Mann and
Zweig. Further experimental and theoretical efforts found that the nucleon consisted of
three valence quarks.

Continued experiments found that the structure functions actually have a slight
dependence on Q2, which indicated a scaling violation. This was confirmed by SLAC
in 1973 through deep inelastic electron scattering. With more experiments it became
clear that the structure functions are not completely independent of Q2, confirming the
scaling violation. This discovery played a major role in developing an understanding
of the nucleon. This slight Q2 dependence of the nucleon structure functions had been
anticipated in parton models that had included gluons [10]. By including a cloud of
gluons around the charged quarks, it gave them a structure that naturally led to small
scaling violations, as had been observed. In this model, the quarks interact via the
exchange of spin-1 gluons at short distances. Analogous to photon exchange in QED,
where radiative corrections must be made for charged particle scattering, here we must
make radiative corrections for the gluons being emitted from the quarks. In the process
of lepton scattering off a quark, one must take into account the scattering process in
which a gluon is also radiated. Due to these radiative corrections the cross section
for scattering off a particular parton develops a logarithmic dependence on Q2, this
dependence is exactly the observed scaling violation. The picture of the nucleon was
starting to evolve, where the nucleon was considered to be made of three valence quarks
surrounded by a gluon cloud.

One outstanding issue was that if the nucleon consisted of quarks, then why had they
never before been detected despite continued efforts to find them. Light was shed on
this question during the early 1970’s with the development of the theory of the strong
interactions, named Quantum Chromodynamics (QCD). QCD is the theory of the strong
interaction which describes how quarks interact through the exchange of gluons. In QCD
both the quarks and gluons carry colour charge, which is analogous to electric charge
in electrodynamics, and the gluons interact with the quarks through this colour charge.
QCD exhibits two main properties; colour confinement, and asymptotic freedom.

Colour confinement is the phenomenon that colour-charged particles such as quarks
and gluons cannot be isolated, and can only exist in a composite particle so that a colour
neutral particle is made. Although this has never been analytically proven, it is well
established from calculations in lattice QCD as well as many years of experiments [11].
The property of confinement introduced by QCD provided an explanation as to why no
isolated quarks could be observed.

Asymptotic freedom, discovered in 1973 [12] [13], is a reduction in the strength be-
tween quarks and gluons as the length scale between them decreases, this is opposite
to electric charge which increases as charged particles move closer together. Gluons are
self interacting, which makes QCD a complex theory to work with, and this provides
the mechanism for confinement. As two quarks move away from each other the gluon
field between them becomes increasingly energetic, so that eventually it will become
energetically favourable for the gluon field to break into a quark-anti-quark pair. Hence
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the initial quarks moving away from each other now form a quark pair and so no isolated
quark is observed.

The development of QCD along with continued theoretical and experimental efforts,
has led to a picture of the nucleon being formed in which it consists of the three valence
quarks, a fluctuating sea of quark-anti-quark pairs, and neutral gluons carrying the
strong force acting as the exchange particle between quarks. To date there are 6 quarks;
up, down, strange, charm, top, and bottom, with a corresponding anti-quark for each
that has opposite charge. The proton is made from two up and one down (uud) valence
quarks, and the neutron is made from one up and two down (udd) valence quarks.

This internal structure of the nucleon was believed to be the same for a bound nucleon
compared to a free nucleon. Our interest is investigating what happens to the quark
structure of the nucleon when it is immersed in a nuclear medium.

2.2 Deep Inelastic Scattering and Structure Functions

In this section we will provide an overview of Deep Inelastic Scattering (DIS) and the
kinematics of the process. We will then discuss both the unpolarized and polarized
structure functions of the nucleon.

2.2.1 Kinematics of Lepton DIS

Deep inelastic scattering is the process where high energy leptons are scattered off a
nucleon target, such as a proton. The leptons are accelerated to high speeds through a
particle accelerator. The high energy of the incident projectile allows it to resolve the
internal structure of the nucleon target. During elastic scattering, a lepton is incident
on a nucleon at low energies and as a result the nucleon stays intact, which leads to form
factors. However, at higher energies the incident lepton is able to probe the internal
structure by exciting the nucleon, this being referred to as deep inelastic scattering.
The term inelastic means that the target absorbs some momentum, and hence there is
a momentum transfer from the incident lepton to the nucleon, with the final state being
more than just a nucleon. At high energies this momentum transfer is sufficient to cause
the nucleon to shatter. By inspecting the scattered lepton and the interaction products
one can gain insight into the nature of the process. Deep inelastic scattering allows us
to see how the momentum of the nucleon is distributed among its constituents.

In Fig. 2.1 we depict a lepton scattering off a hadronic target via the exchange of a
virtual boson, where the final hadronic state X is undefined. It is very useful to define
some quantities associated with deep inelastic scattering:

• The target has 4-momentum Pµ, in the lab frame the target is at rest and hence

Pµ =
(
M,~0

)
. (2.1)
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Figure 2.1: Deep inelastic scattering of a lepton off a nucleon via the exchange of a
virtual boson.

• The incident lepton has 4-momentum pµ with incident energy ε,

pµ = (ε, ~p ) . (2.2)

• The scattered lepton has 4-momentum p′µ with energy ε′,

p′µ =
(
ε′, ~p ′

)
. (2.3)

• The virtual boson transferred from the lepton to the target has 4-momentum qµ

with energy ν,

qµ = (ν, ~q ) , (2.4)

where the energy transferred from the incident lepton to the target via the virtual
boson is

ν =
P · q
M

= ε− ε′. (2.5)

• The lepton scattering angle in the lab frame is θ.

• The solid angle into which the lepton is scattered is dΩ.

• The squared 4-momentum transfer is (neglecting small lepton mass)

Q2 = −q2 = −(p− p′)2 = 4εε′sin2

(
θ

2

)
. (2.6)

• The Bjorken variable x is the fractional momentum of the nucleon that a quark
must carry in order to absorb the virtual boson, this is given by

x =
Q2

2P · q
=

Q2

2Mν
. (2.7)
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The value of Q2 gives the resolving power of the incoming lepton. The spatial wavelength
a lepton can resolve is related to the Q2 value by λ ' 1√

Q2
. So if one looks at a nucleon

with a low Q2, hence a large wavelength and poor spatial resolution, one cannot resolve
much of the internal structure of the nucleon. For Q2 of around 1 GeV2 the probed
distances are comparable to the size of the proton. As the value of Q2 increases the
resolving power of the probe increases and the internal structure of the nucleon is able
to be resolved. Up to values of 1 GeV2 the process would be dominated by scattering off
the valence quarks. For larger values of Q2 the resolving power of the incident lepton is
able to see more of the quark-anti-quark pairs and gluons that make up the nucleon. To
a good approximation, one is able resolve objects of order 1

10 fm at Q2 = 4 GeV2 and
order 1

100 fm at Q2 = 100 GeV2.

2.2.2 Unpolarized Structure Functions

Deep inelastic scattering provides us with structure functions, which contain information
about the momentum distributions of the quarks inside the nucleon. We will denote qf (x)
as the number density of quarks with flavour f carrying a fraction x of the nucleon’s
momentum. The distributions qf (x) are known as parton distribution functions and from
these we can get the structure functions. The structure functions are Lorentz invariant
and so one can formulate the parton model in any frame. Conceptually the simplest
frame is the one in which the nucleon has momentum approaching infinity along the
z-direction. This is referred to as the infinite momentum frame [14]. In this frame, time
dilation implies there is no time for interaction between the quarks during the absorption
of the virtual boson and hence we can treat the process in the impulse approximation.
Since the quarks are all non-interacting and point-like, the cross section for interaction
is just the sum of the cross sections for scattering from each individual quark. Thus the
structure functions, F1 and F2, are proportional to

∑
f e

2
fqf (x), where ef is the charge of

the quark of flavour f in units of the proton charge. The unpolarized structure function
F1(x) is given by [14]

F1(x) =
1

2

∑
f

e2
fqf (x). (2.8)

The Callan-Gross relation [15] shows that F2 is related to F1 by

F2(x) = 2xF1(x) = x
∑
f

e2
fqf (x), (2.9)

where Eq. (2.8) and (2.9) are only true at leading order in αs.

When considering the spin-independent case we include all spin orientations of the
quarks inside the nucleon. We will introduce the concept of helicity, which describes
a particles spin direction related to its momentum direction. If a particle has positive
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helicity (+1) then the direction of motion is parallel to its spin direction, if a particle has
negative helicity (−1) then the direction of motion is anti-parallel to its spin direction.
Mathematically, helicity is the projection of the spin vector onto the momentum vector,

h ≡ ~σ· ~p
|~p|

= ±1. (2.10)

If we consider a proton with positive helicity in an infinite momentum frame. We then
define q↑f and q↓f to be the number density of quarks of flavour i with helicity parallel and
anti-parallel to the target proton, respectively. The unpolarized case has distributions
related by q = q↑ + q↓.

We can now expand out the sum in Eq. (2.9) into the quark flavours u, d and s,
hence the spin-independent structure function for the proton is

F2p(x,Q
2) = x

[
4

9
u(x,Q2) +

1

9
d(x,Q2) +

1

9
s(x,Q2)

]
, (2.11)

where

u(x,Q2) = u↑(x,Q2) + u↓(x,Q2) + ū↑(x,Q2) + ū↓(x,Q2),

d(x,Q2) = d↑(x,Q2) + d↓(x,Q2) + d̄↑(x,Q2) + d̄↓(x,Q2), (2.12)

s(x,Q2) = s↑(x,Q2) + s↓(x,Q2) + s̄↑(x,Q2) + s̄↓(x,Q2).

Assuming charge symmetry [16], we have:

dn = up ≡ u un = dp ≡ d, (2.13)

so the spin-independent structure function for the neutron is

F2n(x,Q2) = x

[
4

9
d(x,Q2) +

1

9
u(x,Q2) +

1

9
s(x,Q2)

]
. (2.14)

In the parton distributions we note the inclusion of both the quark and anti-quark
distributions. We will not be explicitly calculating the anti-quark distributions, but
these will be included through an approximation. The strange quark distribution is
also not explicitly calculated, but is included due to manifestation of the strange quark
distribution in the QCD evolution process, discussed in Section 3.3. In these expressions
we include the dependence on Q2.

2.2.3 Polarized Structure Functions

Spin dependent measurements are able to reveal more information about the internal
structure of the nucleon. Many new and exciting developments have been made by
investigating spin physics. When considering the spin-dependent case we only consider
quarks that have a specific spin orientation, namely quarks which have helicity parallel to
that of the target nucleon. The polarized case has distributions related by ∆q = q↑− q↓.
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The spin dependent structure function is given by [14]

g1(x) =
1

2

∑
f

e2
f∆qf . (2.15)

Expanding out the sum, for the proton we have

g1p(x,Q
2) =

4

18
∆u(x,Q2) +

1

18
∆d(x,Q2) +

1

18
∆s(x,Q2), (2.16)

where

∆u(x,Q2) = u↑(x,Q2)− u↓(x,Q2) + ū↑(x,Q2)− ū↓(x,Q2),

∆d(x,Q2) = d↑(x,Q2)− d↓(x,Q2) + d̄↑(x,Q2)− d̄↓(x,Q2), (2.17)

∆s(x,Q2) = s↑(x,Q2)− s↓(x,Q2) + s̄↑(x,Q2)− s̄↓(x,Q2).

Assuming charge symmetry, as we did for the unpolarized case, we find the spin-
dependent structure function for the neutron is

g1n(x,Q2) =
4

18
∆d(x,Q2) +

1

18
∆u(x,Q2) +

1

18
∆s(x,Q2). (2.18)

2.3 QCD Evolution

When we determine the structure functions of the nucleon using the bag model, the
calculated distributions will be at the model scale (Q2 = µ2). In order to compare our
model distributions with data they are required to be evolved from the model scale to
a scale where they can be compared with experimental data, such as Q2 = 10 GeV2.
To evolve the data the QCD evolution equations are used, also known as the DGLAP
equations so named after the authors who first wrote them [17] [18] [19]. The QCD
evolution equations determine the rate of change of parton densities when the energy
scale at which they are defined is varied. They are essential in order to evolve parton
densities from one scale Q2 to a different one.

2.3.1 Non-Singlet Evolution Equations

The DGLAP evolution equations are simple for the valence quarks, which are good
examples of a non-singlet quark distributions. Generally speaking, a flavour non-singlet
quark distribution is one which cannot mix with gluons. For the case of the valence
distributions, there are always three valence quarks. In this case, the non-singlet DGLAP
evolution equations can be expressed as [14]

∂qv(x, µ
2)

∂lnµ2
=
αs(µ

2)

2π

∫ 1

x

dz

z
Pqq

(x
z
, µ2
)
qv(z, µ

2). (2.19)
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Here qv is either the valence u or d distribution, and Pqq
(
x
z , µ

2
)

is the q − q splitting
function which can be interpreted as the probability for a quark carrying momentum
fraction z of the nucleon (in the infinite momentum frame) to radiate a gluon, leaving
the quark with momentum fraction x. The momentum carried by the radiated gluon is
positive, and so only quarks with z > x can contribute. The QCD coupling constant,
αs(µ

2), is scale-dependent and to leading order is given as

αs(µ
2) =

4π

β0ln µ2

Λ2
QCD

(2.20)

with

β0 = 11− 2

3
Nf , (2.21)

where ΛQCD is a constant determined from experiment, with a value of ΛQCD ≈ 200−300
MeV [14], and Nf are the number of quark flavours allowed at this energy scale.

2.3.2 Singlet Evolution Equations

Unlike the non-singlet case, the singlet quark densities obey evolution equations coupled
to the gluon density. The simplest case for the singlet DGLAP equations correspond to
a single type of quark with distribution fi(x, µ

2). Before writing the evolution equations
for such a distribution, we need to generalize the parton densities to include gluons, thus
we have g(x, µ2)dx is the number of gluons in the momentum interval [xP, (x + dx)P ]
in a nucleon with momentum P (P → inf), when evaluated at the scale µ2. The singlet
DGLAP evolution equations can be expressed as

∂

∂lnµ2
fi(x, µ

2) =
αs(µ

2)

2π

∫ 1

x

dz

z

(
Pqq

(x
z
, µ2
)
fi(z, µ

2) + Pqg

(x
z
, µ2
)
g(z, µ2)

)
, (2.22)

∂

∂lnµ2
g(x, µ2) =

αs(µ
2)

2π

∫ 1

x

dz

z

(
Pgq

(x
z
, µ2
)
fi(z, µ

2) + Pgg

(x
z
, µ2
)
g(z, µ2)

)
, (2.23)

where the details on the splitting functions can be found in Ref. [14].

Since the DGLAP evolution equations are first-order integro-differential equations,
once we know the parton distribution at some scale µ2, they can be calculated at any
other scale where leading order, perturbative QCD applies. Hence, we can evaluate
our quark distributions at some model scale, and then evolve them to any other scale
for comparison to experimental data. We will perform our QCD evolution using the
QCDNUM program [20]. QCDNUM, conveniently, handles the different evolution of the
singlet and non-singlet quark distributions. The evolution process will generate quark
and anti-quark distributions for the u d and s quarks, as well as a gluon distribution.
Even if these distributions are not explicitly calculated to begin with, the evolution
process will dynamically generate them at the evolved scale. For more information on
the process of QCD evolution, the QCDNUM write up is very useful and can be found
in Ref. [20].
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2.4 The EMC Effect

We will now give a review of the EMC effect, the understanding of which is crucial to this
work. Our understanding of nuclear structure was thrown under spotlight with the un-
expected experimental results released by the European Muon Collaboration (EMC) in
1983, who conducted high energy scattering experiments at CERN. The EMC compared
the structure function of a free nucleon to the structure function of a bound nucleon [21]
and found there was a difference between them. Extensive deep inelastic muon scatter-
ing was performed on liquid hydrogen, deuterium, and iron. The measurements with
hydrogen and deuterium targets allowed the structure functions for the free nucleon to
be determined, and measurements with iron allowed the in-medium structure functions
to be determined.

The proton structure function F p2 is able to be extracted from the hydrogen data
alone. The neutron structure function Fn2 is able to be determined using both the
hydrogen and deuterium data, where one can subtract the hydrogen data from the
deuterium data to obtain the neutron structure function. However, in this procedure of
obtaining the neutron structure function, corrections must be made to take into account
the effects arising from the nucleon motion in the deuteron nucleus, which is a loosely
bound proton-neutron system. After making corrections for this Fermi motion one can
determine the neutron structure function.

Prior to this experiment, there were theoretical predictions made of the structure
function of a bound nucleon. Such a prediction can be made in a high mass number (A)
element, provided the corrections due to the nuclear effects are known. To determine
such corrections, it was common to view the nucleus as a collection of weakly bound
slowly moving nucleons, each of which had an internal structure that did not change
compared to the free nucleon case. The experimental results released by the EMC had
a complete disagreement with the theoretical predictions.

In Fig. 2.2a we show the theoretical prediction of the in-medium to free structure
function of the nucleon. The general trend shows an enhanced quark distribution for
higher x. In Fig. 2.2b we show the experimental results, the in-medium structure func-
tion FN2 is obtained from iron and the free case from deuterium. The general trend shows
a decrease in the iron structure function for higher x, which is in complete disagreement
with the theoretical expectation based on nucleons with unchanging internal properties.

From the EMC results we see that the structure function of the nucleon is suppressed
at larger x values when in a nuclear medium. Therefore, for a bound nucleon, in the
valence region, there appears to be a decrease in the number of partons carrying a given
fractional momentum x of the nucleon compared to the free case. This suppression of
the in-medium structure function for a bound nucleon is known as the EMC effect.

Since the release of the initial EMC results the experimental situation has continued
to progress and further in-medium structure functions have been obtained by various
groups at SLAC [22] [23] [24], by the New Muon Collaboration (NMC) at CERN [25],
and by the BCDMS collaboration [26] [27]. Through this experimental effort the ratio
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(a) Theoretical prediction. (b) Experimental results.

Figure 2.2: a) Theoretical prediction of the ratio of the in-medium to free structure
function of the nucleon as a function of Bjorken variable x. b) Experimental

determination of the ratio of the in-medium to free structure function of the nucleon as
a function of x. There is a clear disagreement between theoretical and experimental

results.

of the in-medium to free structure function of the nucleon has been determined to an
improved accuracy. In Fig. 2.3 we show more recent data for the EMC effect from the
EMC [28], who took the ratio of the nuclear structure function for copper and deuterium,
and SLAC [29], who took the ratio of iron to deuterium. The experimental results show
that in the valence region, corresponding to 0.3 ≤ x ≤ 0.7, there is a decrease in the
in-medium structure function. This means that when a nucleon is placed in a nuclear
medium the quark momentum distribution becomes suppressed for increasing x in the
valence region. The ratio is at unity around x = 0.3, and remains above one for de-
creasing x until about x = 0.06. The low-x region corresponding to x ≤ 0.15 has also
been investigated to a greater accuracy. In this region the ratio of the in-medium to
free structure function decreases with decreasing x. This low-x region is dominated by
effects related to a phenomena known as shadowing [30].

The results are clear on the experimental front; when immersed in a nuclear medium
there is a suppression of the structure function of a bound nucleon compared to the free
case. This is an exciting result, any unexpected experimental result is no doubt a spark
that excites theorists to come up with a theory or model to explain such observations.
The EMC effect is no exception. Many papers were published rapidly in response to the
results, and about 35 years on, there is still no widely accepted explanation.
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Figure 2.3: The EMC effect from the EMC [28] and SLAC [29].

It became clear that to understand the EMC effect, our view of nuclear structure had
to change. Viewing the nucleon as an object with an unchanging internal structure was
dubious at best, and the EMC effect gave rise to a new approach of viewing the nucleon;
the Quark Meson Coupling (QMC) model, which explicitly includes the quark degrees
of freedom thus allowing the internal structure of the nucleon to be altered. Before
discussing the QMC model we will discuss the use of the mean field approximation,
which is commonly employed when investigating the EMC effect, and we will discuss the
attempts to explain the EMC effect through conventional nuclear effects such as Fermi
motion and nuclear binding.

2.5 Mean Field Approximation

Bound nucleons experience many interactions with the surrounding nuclear environment.
It would be a strenuous task to individually calculate the interaction of one nucleon with
all other nucleons in the nucleus, we need to simplify the task and therefore we will take
the approach of the mean field approximation.

In order to explain the EMC effect the mean field approximation is used in many
theories. In general, a mean field theory is a self consistent field theory which considers
a large number of small individual components that interact with each other. The idea
is that the effect of all other individuals on a given individual can be approximated
by a single averaged effect, this effectively reduces a many-body problem to a simpler
one-body problem. This approximation can be adopted for the nucleons in a nucleus.
The individual nucleons interact with one another via the exchange of mesons. At our
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present understanding, bound nucleons interact with each other through the exchange
of the π (pion), σ, ω, and ρ mesons.

The pion has total spin zero (J = 0), negative parity (P ) (JP = 0−), and isospin 1
(I = 1) [31].The pion is the lightest meson, and the single pion exchange is responsible for
the long range part of the nucleon-nucleon interaction. Since the pion has negative parity,
the mean pion field must be set to zero to avoid parity breaking [32]. Its contribution
can be included through the Fock exchange term, but the pion is not considered in this
work.

The σ meson is a scalar meson with total spin zero (J = 0), even parity (JP = 0+),
and isospin zero (I = 0) [31]. The σ meson is responsible for the intermediate range
attractive force between nucleons. Starting with the well known one-boson-exchange
potentials [33], it became clear that the intermediate range attractive force between
the nucleons of a nucleus had a Lorentz scalar, isoscalar character, which at the time
was represented by the exchange of the σ meson. This meson exchange was thought
to be unphysical and purely a mathematical construct developed for convenience. The
existence and properties of the σ meson have been controversial for almost six decades,
however experimental investigation into the dispersion relations seen in pion-nucleon
(πN) scattering performed in the past few decades have shown that the σ state does
in fact exist [34] [35]. The Lorentz scalar, isoscalar character of the intermediate range
attractive force between nucleons was also shown by the group in Paris [36], where a
dispersion relation theory of the nucleon-nucleon (NN) force was developed.

The ω and ρ mesons are vector mesons with total spin 1 (J = 1), and odd parity
(JP = 1−). The ω meson has isospin 0 (I = 0), while the ρ meson has isospin 1
(I = 1) [37]. The ω meson is responsible for the short range repulsion between nucleons.
The ρ meson accounts for the isospin dependence of the interaction, and is necessary
when there is a difference in the proton and neutron densities, so it is of particular
importance in the case for N 6= Z nuclei where isovector properties should be taken into
account [38]. In this work we will only consider the case where (N = Z) and so we need
not consider the effect of the ρ meson. A summary of the mesons is shown in table 2.1

Meson Mass (MeV) JP I Interaction

π 135 0− 1 Long range attraction

σ 400-700 0+ 0 Intermediate range attraction

ω 783 1− 0 Short range repulsion

ρ 775 1− 1 Isospin dependence (N 6= Z)

Table 2.1: Mesons in nucleon-nucleon interactions

For simplicity, we will only consider the effect of the σ and ω mesons on a bound
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nucleon. Using the mean field approximation we can combine the effects of these mesons
into a single averaged effect for each case. If we consider a single bound nucleon, it will
be modelled as sitting in an averaged scalar field, which is formed by all the σ meson
interactions, and also sitting in an averaged vector field, which is formed by all the ω
meson interactions.

Models of bound nucleons based on a relativistic mean field theory appeared in the
1950’s with a paper published by Johnson and Teller [39]. Further work was done by
Walecka, who developed the Walecka model [40] in 1974. These models proved to be very
successful in describing nuclear matter and provided strong evidence for the applicability
of the mean field approximation to bound nucleons.

2.6 Fermi Motion and Nuclear Binding

It was thought that the observed EMC effect could be accounted for by conventional
nuclear effects, namely Fermi motion and nuclear binding energy. Nucleons are not
stationary within a nucleus, but rather they fluctuate and Fermi motion corresponds to
the small motion of a bound nucleon within the nucleus. Fig. 2.4 provides some insight
into this phenomena.

Figure 2.4: Fermi motion of a bound nucleon.

The Fermi motion and nuclear binding effects do not imply a change in internal nu-
cleon structure, and so if they did happen to explain the EMC effect then the situation
would be resolved without the need to consider a change to the internal structure of the
bound nucleon. A study into this idea was performed by Bickerstaff and Thomas [41],
who investigated the EMC effect with an emphasis on conventional nuclear corrections,
including Fermi motion and nuclear binding. They found that these corrections cannot
explain the observed EMC effect. Further investigations were performed by Birse [42],
where the effects of nuclear binding energy and Fermi motion on deep-inelastic struc-
ture functions were studied in a relativistic mean field treatment. The conclusion was
that the mean field contributions to nucleon binding can account for only a rather small
fraction of the depletion of the nuclear structure function in the region x ' 0.5. It was
also found that the Fermi motion was too small to give the observed depletion. It was
becoming clear that conventional nuclear effects could not explain the EMC effect. This
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provided evidence for the modification of the internal nucleon properties when in matter.

These results were confirmed in further studies by Miller and Smith [43], where the
relationship between properties of nuclear matter and structure functions were measured
in lepton-nucleus deep inelastic scattering using light front dynamics. They looked at
relativistic mean field models such as the Walecka [40], Zimanyi-Moszkowski [44], and
Rusnak-Furnstahl [45] models. In these models the mesons couple to the nucleons,
where the nucleons are treated as immutable. The conclusion of the investigation was
that relativistic mean field models of the nuclei, successful for many observables, do not
contain the binding effect needed to reproduce the observed EMC effect. The depletion
of the deep inelastic structure function observed in the valence region is due to some yet
unknown interesting effect involving dynamics that go beyond the conventional nucleon-
meson treatment of nuclear physics.

These results pointed to a very important change in our fundamental understanding
of the nucleon. When placed in a nuclear medium the internal structure of the nucleon
undergoes a change, pointing to a new view of nuclear theory.

2.7 The QMC Model

The EMC effect gave rise to a new model of the nucleon, the Quark Meson Coupling
(QMC) model. With conventional nuclear effects being insufficient to explain the EMC
effect, physicists turned to the internal structure of the nucleon and incorporated the
quark degrees of freedom. We will provide a general overview of the QMC model.

To accurately investigate the internal structure of the nucleon, a relativistic treatment
is necessary. Quarks are also quantum mechanical objects and so the QMC model is
formulated as a Quantum Field Theory (QFT), where the system is described by a
Lagrangian density, L. An early attempt to describe the nucleon many-body problem
using QFT was Quantum Hadrodynamics (QHD), where the nucleus is described as a
relativistic system of baryons and mesons, introduced by Walecka [40] in 1974. QHD
generates an effective NN interaction through the exchange of mesons between the
nucleons, which were considered to have no internal structure. Walecka and co-workers
used the Lorentz scalar nature of the intermediate NN attraction and the Lorentz vector
character of the short range repulsion to construct a fully relativistic mean field theory
of nuclear matter, which proved to be quite successful. Later the model was extended to
finite nuclei [46]. In these models the nucleon was considered to be an immutable object,
lacking any internal structure, experiencing a mean field generated by the mesons.

The ideas of Walecka were quite successful but there was one outstanding issue. At
nuclear matter densities, where only nuclear forces are at play between protons and
neutrons, the typical mean scalar field strength experienced by a bound nucleon in the
Walecka model is of the order 500 MeV. This is a huge number, and as a result the
effective mass of the bound nucleon is only half of its free mass [47]. At around the same
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time that Walecka and collaborators were developing their model, the theory of Quan-
tum Chromodynamics (QCD) was developed as a local gauge theory based on colour
symmetry. Experimental results in the late 1960’s continuing through to 1970’s revealed
that the nucleon contains point like constituents called quarks, with the gluon acting
as the exchange particle of the strong force. The mesons exchanged between nucleons
must couple to the quarks as this is the only component of the nucleon that the mesons
can couple to. Thus, the question arose from the more fundamental level of the nucleon.
When a nucleon is in medium, how can it be that the exchange of mesons between nu-
cleons, where the mesons must couple to the quarks at such a strength indicated by the
Walecka model, can have no effect on the internal structure of the nucleon, which is far
from point-like.

Then, in 1983, the EMC results were released, which showed a suppression in the
structure function of a bound nucleon compared to a free nucleon. Could it be possible
to explain the EMC effect by allowing the quark structure of a bound nucleon to be
altered, rather than considering it as an immutable object? Such questions led to a
drastically different approach to nuclear binding. The Quark Meson Coupling (QMC)
model, initially proposed by Guichon [48] in 1988, has the feature that the meson field
couples to the quarks in the nucleon. This model goes far beyond QHD to explicitly
include the internal structure of the nucleon through the quark degrees of freedom. The
nucleon-nucleon interaction is then explained by meson exchanges between quarks rather
than the nucleons as a whole.

In the QMC model, the nucleus is considered to be a collection of nucleons that
do not overlap. We are using the MIT bag model to confine the quarks, and so each
nucleon is treated as a bag containing three quarks. It is assumed the effect of hav-
ing the bags overlap, that is clusters of more than three quarks, can be ignored. Of
course, this approximation will break down at some density, but is certainly acceptable
at nuclear matter densities. In this regard, the bag model is a good approximation to
confinement, but should not be taken too literally. From lattice QCD calculations [49]
we find that the quarks are more accurately bound to each other through a Y-shaped
colour string. Around this thin string is the usual, non-perturbative QCD vacuum in
which the quarks from other clusters can pass without disturbing the structure. There-
fore, while the bag model imposes a strict boundary condition preventing the quarks
from travelling through this boundary, we must view this as an average representation
of a more complicated system of confinement, where no deep physical meaning should
be given to the bag boundary [50].

In the QMC model the interactions between nucleons are generated by the exchange
of mesons coupled locally to the quarks. Combing this with the mean field approxima-
tion, we see that a quark inside a bound nucleon is effectively sitting in a mean field
generated by the meson exchanges from all other nucleons. Hence, the effect of the mean
meson fields generated by other nucleons is treated self-consistently when solving for the
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wave function of each confined quark.

The mesons in consideration are the σ and ω mesons. Taking the simplest form of
the coupling of the σ and ω mesons to the quarks confined in the MIT bag model, we
get two Lorentz components to the nuclear mean field from these mesons; a Lorentz
scalar attraction (σ meson), and a Lorentz vector repulsion (ω meson). In nuclear
matter the vector field simply shifts the definition of the energy of the system, while the
scalar field modifies the Dirac wave function [47]. This difference in the effect of the two
Lorentz components of the nuclear mean field is of crucial importance, while their effects
essentially cancel when it comes to the total energy of the nucleon, for the quark motion
(or wave function) the scalar field is not cancelled. Therefore, when viewing the nucleon
from the quark level, we must take into account the effect of the nucleon interactions on
the quark structure.

In order to anticipate the possible consequence on the structure of a bound nucleon
due to a scalar field we can turn to atomic physics. We know that when an electric field
is applied to an atom, its electron structure will rearrange itself in order to the oppose
the applied field. In terms of describing the energy of the system, this change in the
atoms internal structure can be described in terms of an electric polarizability, where
the energy of the systems has a term quadratic in the applied electric field with the
coefficient being one half of the electric polarizability. The exact same thing happens
when a magnetic field is applied to an atom, where the coefficient of the term that is
quadratic in the applied magnetic field involves the magnetic polarizability. Looking at
the nucleon itself, we know that applied electric and magnetic fields alter its internal
structure, which give rise to electric and magnetic polarizabilities.

In more advance electron scattering experiments, these fields even give rise to what
is known as generalized polarizabilites [51] [14]. With this background knowledge of
how nuclear systems react to applied fields, it is strange that it took so long for serious
attention to be given to the response of the nucleon to an applied scalar field, and its
scalar polarizability.

From past experience, one would naturally expect that a nucleon sitting in a scalar
field would have an energy dependence that is non-linear with the mean scalar field. In
the first investigation into nuclear matter from this point of view, using the MIT bag
model to self-consistently describe the quark structure of the bound nucleon, Guichon
found exactly this behaviour [48]:

M∗(σ̄) = M − gσσ̄ +
d

2
(gσσ̄)2 , (2.24)

where d = 0.22R, with R the bag radius. The last term is an essential part of the QMC
model. It represents the response of the nucleon to the applied scalar field, where d is
called the scalar polarizability. It is completely analogous to the response of atoms and
nucleons to applied electric and magnetic fields.

The idea of the QMC model has been developed and used by many groups to explain
various phenomena. Key people have been Saito and Thomas who have applied the
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QMC model to many phenomena in nuclear physics with high success.
A key result was the application of the QMC model in exploring the EMC effect.

They applied the QMC model as well as the mean field approximation to bound nucleons
and found that through this approach the EMC effect can be produced [52]. This was
an important result, as it showed that a possible explanation of the EMC effect is that
the quark structure of the bound nucleon is altered in a nuclear medium.

The QMC model has also been applied to study the properties of hypernuclei with
promising results [53] [54], and also employed to investigate the in-medium nucleon
electromagnetic form factors [55]. Both the electric and magnetic form factors were
found to be reduced for a nucleon at nuclear density, which agreed with the experimental
data.

Our last mention will be the extensive application of the QMC model to investigate
the properties of finite nuclei, with many successful results [56] [57] [58] [59]. The QMC
model has no doubt proven to be a viable approach in explaining nuclear phenomena.

2.8 The Polarized EMC Effect In The NJL Model

Up until now we have only been talking about the spin-independent structure functions in
nuclear medium, and when we refer to the EMC effect we are referring to the unpolarized
EMC effect. This is because the data concerning the EMC effect has only been measured
on unpolarized targets. However, with the 12 GeV upgrade at Jefferson Lab, we hope
that this will bring forth the first data on the polarized EMC effect, where polarized
beams and targets will be used.

Predictions on what the polarized EMC data will look like have been made by Cloët,
Bentz and Thomas [1]. In their calculations they employ the use of a modified Nambu-
Jona-Lasinio (NJL) model. In Fig. 2.5 we show the predictions from Ref. [1] for the
unpolarized and polarized EMC effect. The EMC effect is obtained from the ratio of the
in-medium to free spin-independent structure function, FA2N/F2N , which has been exper-
imentally tested. The polarized EMC effect is obtained from the ratio of the in-medium
to free spin-dependent structure function, gA1p/g1p, which is yet to be experimentally
tested.

It will be very interesting to follow up this result for the polarized EMC effect found in
the NJL model. It is clear that in the NJL model the polarized EMC effect is significantly
greater than the unpolarized EMC effect, with the polarized effect being of order twice
that of the unpolarized effect. We want to follow up from this result and see if this is
purely a model dependent result or if the polarized EMC effect is also enhanced in other
model calculations.
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Figure 2.5: Ratios of the in-medium to free structure functions at nuclear matter
density for the spin-independent and spin-dependent cases. The top curve is the EMC

ratio FA2N/F2N , where F2N is the isoscalar structure function and the superscript A
denotes the in-medium structure function. The EMC data for nuclear matter is taken

from Ref. [60]. The prediction of the polarized EMC effect, gA1p/g1p, obtained from
Ref. [1] is the lower curve.
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Chapter 3

Free Structure Functions

In order to produce the EMC effect we need to calculate the free and in-medium struc-
ture functions of the nucleon. In this chapter we will describe our process for calculating
the free structure functions.

Often when modelling complex systems physicists use a method called perturbation
theory. Perturbation theory is a technique where one starts be using an easier system
with a known solution, then to model the real system one adds small disturbances, known
as perturbations. Complex problems simplify greatly using such a technique. However,
in QCD the small disturbances are so great that perturbation theory is strictly limited.
The quarks in a nucleon are also confined and the force between them increases with
distance. This odd behaviour, along with perturbation theory not being adequate, has
made it very difficult to find a viable approach to model the nucleon.

Since our goal here is to investigate not just a free nucleon, but also the in-medium
effects on a nucleon, we need a simple model that will give us a handle on including the
in-medium modifications into the calculations of the nucleon.

The MIT bag model [61] is a successful phenomenological model for quark confine-
ment. In this model, three non-interacting quarks are confined to a spherical region of
space, with the boundary condition that the quark vector current normal to the surface
vanishes. The quarks being treated as non-interacting is justified by appealing to the
idea of asymptotic freedom, and the hard boundary condition is justified by quark con-
finement. In the MIT bag model all the calculations can be carried through analytically,
giving us a viable approach for including the in-medium effects into the calculation of
the quark distributions. We shall therefore choose the MIT bag to model the nucleon.

3.1 Overview of the Formalism

In calculating the free structure functions of the nucleon we will take the course of
the operator product expansion (OPE). In the context of deep inelastic lepton-hadron
scattering, the product of two electromagnetic or weak currents is expressed as a series
expansion called the operator product expansion, which enables the extraction of a short
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distance piece in the scattering cross sections. This piece is useful to us as it is calculable
through the QCD Lagrangian by the use of the renormalization group method [62].

Through the OPE the moments of some arbitrary structure function F(x,Q2) can
be written as a sum of coefficient functions Ci,n(µ2, Q2) multiplied by matrix elements
Ai,n(µ2) [62]:

∫ 1

0
xn−1F(x,Q2)dx =

∑
i

Ci,n(µ2, Q2)Ai,n(µ2). (3.1)

The coefficient functions Ci,n(µ2, Q2) are perturbative corrections that describe how the
structure functions evolve with Q2 and can be calculated through the use of the renor-
malization group equations in perturbative QCD.

The matrix elements Ai,n(µ2) that produce the dominant contributions at large Q2

are those of leading twist-2 and, in the A+ = 0 gauge, have the form [63]

Ai,n(µ2) ≈ 〈 (p, s)µ2 |Ψ†(0) Γi(i∂
+)n−1 Ψ(0) | (p, s)µ2 〉, (3.2)

where the subscript µ2 indicates the renormalization scale at which the matrix element
is evaluated, and Γi contains the Dirac and spin flavour matrices that are appropriate to
the wave function under consideration. Twist is given by the difference of dimension and
spin (twist=dimension-spin). The twist-2 contributions to the moments of a structure
function correspond to scattering of a lepton off asymptotically free quarks, and calcu-
lating the twist-2 contributions will be our focus. Here we will not consider the twist-2
matrix elements which involve gluonic operators. The considered processes contributing
to the twist-2 piece of the matrix elements Ai,n(µ2) is given in Fig. 3.1.

An important point is that the matrix elements Ai,n(µ2) are independent of Q2 and
depend only on the renormalization scale µ2 [63]. This independence of momentum
transfer is key as it makes the matrix element calculations possible in models which
would be unable to make a direct calculation of F(x,Q2).

The wave functions and operators that appear in Eq. (3.2) are renormalized ones
and therefore involve the renormalization scale µR. Due to our limited ability to cal-
culate Eq. (3.2) from QCD we will follow the procedure outlined in Ref. [63]. In this
approach we assume that at the renormalization scale the renormalized wave functions,
as well as the quark field operators, can be approximated by bag wave functions and
bag field operators. Therefore, we will proceed by calculating the matrix elements in
Eq. (3.2) within the bag model at the scale µ = µR. In a model calculation, µ is an
undetermined input and will be obtained by comparison with data. The scale µ will be
fitted by comparing the valence quark distribution against experimental data. All quark
distributions and structure functions will then be calculated with this scale as the input.

The matrix elements Ai,n(µ2) can be expressed in terms of moments of quark and
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Figure 3.1: Contributions to the twist-2 piece of Ai,n(µ2) [63].

anti-quark distribution functions [64]

q↑↓f (x) = p+
∑
n

δ(p+(1− x)− p+
n )|〈n|Ψ+,f (0)|p, s〉|2,

q̄↑↓f (x) = p+
∑
n

δ(p+(1− x)− p+
n )|〈n|Ψ†+,f (0)|p, s〉|2,

(3.3)

where the notation ↑↓ indicates the helicity projection, with (1 ± γ5)/2 for the quarks
and (1 ∓ γ5)/2 for the anti-quarks, with ↑ indicating a quark with spin parallel to the
spin of the target and ↓ indicating a quark with spin anti-parallel to the spin of the
target. The sum runs over all intermediate states, f distinguishes the quark flavour, and
the + components of momenta k are defined by k+ = k0 + kz.

For positive p+ and p+
n , the quark distributions are non-zero for x ≤ 1. Although

qf (x) and q̄f (x) have support for negative x, there are other contributions in this region
which are not included in Eq. (3.3) [65]. It is only in the region 0 ≤ x ≤ 1 that qf (x)
and q̄f (x) give the full contribution, and so only in this region can we interpret the
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structure functions in terms of parton distributions. Therefore, we will limit the explicit
calculations of quark distributions to this region.

It can be shown that Eq. (3.3) satisfies the normalization condition∫ 1

0
dx
[
q↑↓f (x)− q̄↑↓f (x)

]
= N↑↓f − N̄

↑↓
f , (3.4)

where N↑↓f and N̄↑↓f count the number of quarks and anti-quarks in the target, respec-
tively [63].

We will now look at how we can use Eq. (3.3) to obtain expressions for the processes
shown in Fig. 3.1. The field operators Ψ and Ψ†, when expanded in a complete set
of states, each yield two distinct contributions. Ψ may destroy a quark contained in
the initial state leaving a two-quark intermediate state, or it may create an anti-quark
resulting in a three-quark one-anti-quark intermediate state. In a similar way, Ψ† may
insert a quark into the initial state resulting in a four-quark intermediate state, or it could
also destroy an anti-quark in the initial state (however, this will have no contribution as
our choice of model wave function will only consist of three valence quarks).

The two-quark intermediate state will be our main focus and is calculated explicitly,
whereas the four-quark intermediate states will be included in an approximate form to
satisfy the normalization requirements of Eq. (3.4).

3.2 Calculating Quark Distributions in the Bag Model

3.2.1 The Two-Quark Intermediate State

We will now focus on the contribution from the two-quark intermediate state, which
makes up the dominant part of the calculation for the valence quark distributions. The
action of the operator Ψ on a three-quark state is defined by

Ψ(x)|x1x2x3〉 = δ(x− x3)|x1x2〉+ permutations (3.5)

and similarly for a two-quark state. Inserting complete sets of states into Eq. (3.3) we
obtain [63]

q↑↓f =
M

(2π)3

∑
n,α

〈µ|Pf,α|µ〉δ(M(1− x)− p+
n )

∣∣∣∣∫ dx1dx2〈pn|x1x2〉〈x1x20
↑↓
α |0〉

∣∣∣∣2, (3.6)

where |µ〉 is the spin-flavour wave function of the initial state which is taken to be at rest
and Pf,α is a projector operator onto quark flavour f and any other quantum number α.
In this case, all initial quarks are taken to be in the lowest-energy state, and so α may
be taken to be the quark spin projection m.

We will use the wave functions of the MIT bag model and modify these by a pro-
jection, namely the Peierls-Yoccoz projection [66]. This ensures the wave functions are
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momentum eigenstates, and also ensures the translational invariance of the matrix ele-
ments used for the proof of Eq. (3.4).

Applying the Peierls-Yoccoz projection, we have in the coordinate representation for
a three-quark state [63]

〈x1x2x3|p〉 =
1

φ3(p)

∫
dReip·RΨ(x1 −R)Ψ(x2 −R)Ψ(x3 −R), (3.7)

where φ3(p) is given by the normalization requirement

〈p|p′〉 = (2π)3δ(p− p′), (3.8)

or more explicitly,

|φ3(p)|2 =

∫
dxe−ip·x

(∫
dyΨ†(y − x)Ψ(y)

)3

. (3.9)

Similarly for the diquark state we have

〈x1x2|p〉 =
1

φ2(p)

∫
dReip·RΨ(x1 −R)Ψ(x2 −R). (3.10)

where φ2(p) is given by the normalization requirement

|φ2(p)|2 =

∫
dxe−ip·x

(∫
dyΨ†(y − x)Ψ(y)

)2

. (3.11)

Substituting Eq. (3.7) into Eq. (3.6) gives

q↑↓f (x) =
M

(2π)3

∑
m

〈µ|Pf,m|µ〉
∫
dpn
|φ2(pn)|2

|φ3(0)|2
δ(M(1− x)− p+

n )|Ψ̃↑↓+,f (pn)|2, (3.12)

where M is the nucleon mass and

Ψ̃↑↓+,f (pn) ≡
∫
dxeipn·xΨ↑↓+,f (x). (3.13)

The best approach to do this integration is to choose the magnitude of pn and its
transverse component p⊥n as the integration variables, as well as using the δ-function to
do the p⊥n integration. This produces the result∫

dpnδ(M(1− x)− p+
n ) = 2π

∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn, (3.14)

where Mn is the mass of the intermediate two-quark state.
In order to prove Eq. (3.14) we note that

p+
n =

√
p2
n +M2

n + pzn, (3.15)
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and the δ-function appearing in the integral of Eq. (3.12) means that as we integrate
over all of pn we will pick out the value of

p+
n = M(1− x), (3.16)

therefore by comparing Eq. (3.15) with Eq. (3.16), we see that

pzn = M(1− x)−
√

p2
n +M2

n. (3.17)

Using the fact that p2
n = pz2n + p⊥2

n , we have

p⊥2
n = 2M(1− x)

√
M2
n + p2

n −M2(1− x)2 −M2
n. (3.18)

We now apply the result of Eq. (3.14) to Eq. (3.12) and obtain the expression

q↑↓f (x) =
M

(2π)2

∑
m

〈µ|Pf,m|µ〉
∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2
|Ψ̃↑↓m (pn)|2. (3.19)

We will now make mention of the shortcomings of the Peierls-Yoccoz projection. Even
though it creates a momentum eigenstate, there is still an unphysical dependence on
the momentum in the internal wave function. Furthermore, the projection is a nonrel-
ativistic approximation and is not equivalent to a boost. Since the initial state is at
rest this is a reasonable assumption. When one might expect the nonrelativistic ap-
proximation for the intermediate state to be reasonable we can look at Eq. (3.19). The
dominant part of the integral comes from the region of small pn, therefore the non-
relativistic approximation should be valid while the lower limit of the pn integration is
less than the diquark mass Mn. This is true for x less than about 0.7 for Mn ≈ 3

4Mn [63].

We are now at the stage to apply our choice of model, the MIT bag. Here we note
that in the calculation of the free quark distributions the quark mass is set to zero. For
a zero mass quark the MIT bag wave function takes the form [67]

Ψm(x) = N

 j0

(
Ω|x|
R

)
χm

iσ · x̂j1
(

Ω|x|
R

)
χm

Θ(R− |x|), (3.20)

Here R is the bag radius, Ω is the lowest energy eigenfrequency, j0 and j1 are the spherical
Bessel functions of the first kind, χm are spinors, and σ are the Pauli spin matrices. The
normalization is given by

N2 =
1

4π

Ω3

2R3(Ω− 1)sin2(Ω)
. (3.21)

In the MIT bag the quarks are confined to the interior of the bag, and so there is no
component of the current normal to the surface of the bag. Therefore we have the
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requirement that Ψ̄Ψ vanishes at the boundary of the bag, hence we have the boundary
condition

Ψ̄Ψ|x=R = 0,

⇒ j0(Ω) = j1(Ω). (3.22)

The lowest energy solution of Eq. (3.22) gives

Ω ' 2.04. (3.23)

In order to make use of Eq. (3.19) to calculate quark distributions we need to
evaluate the normalizations |φ2(pn)|2 and |φ3(0)|2. These are tedious calculations and
can be found in the Appendix for the intrigued reader. With the insight that a quark
mass will be included for later calculations, it is convenient to keep the normalization
term N in its full form in the evaluation of |φ2(pn)|2 and |φ3(0)|2 rather than inserting
and simplifying it. This is because when a quark mass is inserted, the normalization
term for the bag wave function with a quark mass is known and so can be simply changed
in place of the free normalization.

Starting from Eq. (3.10), the full calculation is found in Appendix A, we obtain the
result

|φ2(pn)|2 =
4πR

u

(
2πN2R4

Ω4

)2 ∫
dv

v
sin

(
2vu

Ω

)
T 2(v), (3.24)

and from Eq. (3.7), the full calculation found in Appendix B, we obtain the result

|φ3(0)|2 = 4π

(
2πN2R4

Ω4

)3 ∫
dv

v
T 3(v). (3.25)

The term resulting from the overlap integral of the bag wave function is given by

T (v) = Tt(v) + Tb(v)

=
[
(Ω− v)sin(2v) + (1− sin2(Ω))− cos(Ω)cos(Ω− 2v)

]
+

[(
1− 4v2

2Ω2

)
sin2(Ω)− 2

Ω
sin(Ω)cos(Ω− 2v) +

2

Ω
sin(Ω)cos(Ω) + Ωsin(2v)

− sin(Ω)sin(Ω− 2v)− vsin(2v)

]
, (3.26)

where the first square bracket corresponds to the overlap integral of the top part of the
bag wave function and the second square bracket to the bottom part. We have also
made the substitutions

v =
|x|Ω
2R

, u = |pn|R . (3.27)
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The evaluation of |Ψ̃↑↓m (pn)|2 is taken from Ref. [63] where the Fourier transform of Ψ is
given as

|Ψ̃↑↓m (pn)|2 =
1

2

[
f(pn)± (−1)m+3/2g(pn)

]
, (3.28)

where we have

f(pn) =
πR3

2

Ω3

(Ω2 − sin2(Ω))

[
s2

1(u) + 2
pzn
|pn|

s1(u)s2(u) + s2
2(u)

]
, (3.29)

and

g(pn) =
πR3

2

Ω3

(Ω2 − sin2(Ω))

{
s2

1(u) + 2
pzn
|pn|

s1(u)s2(u) +

[
1− 2

(
p⊥n
|pn|

)2
]
s2

2(u)

}
.

(3.30)

Here we have

s1(u) =
1

u

[
sin(u− Ω)

u− Ω
− sin(u+ Ω)

u+ Ω

]
, (3.31)

which corresponds to the upper component of the bag wave function, and

s2(u) = 2j0(Ω)j1(u)− u

Ω
s1(u), (3.32)

which corresponds to the lower component of the bag wave function.

We will make a brief note on the inclusion of a quark mass, which will be discussed
when looking at the in-medium calculations of the quark distributions. When a quark
mass is included the terms that will be altered in the evaluation of the quark wave func-
tion will be N , Ω, T (v), and s2(u).

If we make the assumption that |µ〉 is a 56-plet SU(6) wave function for the proton
with m = +1

2 we have the matrix elements

〈µ|Pu,+ 1
2
|µ〉 =

5

3
,

〈µ|Pu,− 1
2
|µ〉 =

1

3
,

〈µ|Pd,+ 1
2
|µ〉 =

1

3
,

〈µ|Pd,− 1
2
|µ〉 =

2

3
,

(3.33)

where 〈µ|Pu,+ 1
2
|µ〉 is the number of quarks in the proton with flavour up and spin +1

2 .

We then obtain the expressions for the quark distributions,

u↑↓(2)(x) = F(2)(x)± 2

3
G(2)(x), (3.34)



30 Chapter 3. Free Structure Functions

and

d↑↓(2)(x) =
1

2
F(2)(x)∓ 1

6
G(2)(x), (3.35)

where the u and d refer to the up and down quark distributions respectively, and the
subscript (2) is an indication that this corresponds to the contribution from the two-
quark intermediate state, which for now is the only contribution we have considered.

The term F(2)(x) corresponds to the spin-independent distribution. It is determined

by replacing |Ψ̃↑↓m (pn)|2 in Eq. (3.19) with the part of Eq. (3.28) that includes the term
f(pn). We will note that for the sum over m; if the u-quark matrix elements are used
then a factor of 1 will appear in front of F(2)(x), and if the d-quark matrix elements are

used then a factor of 1
2 will appear. Doing this, and performing the sum over m using

the u-quark matrix elements, we have

F(2)(x) =
M

(2π)2

∑
m

〈µ|Pf,m|µ〉
∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2

(
1

2
f(pn)

)
=

M

(2π)2

(
1

3
+

5

3

)∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2

(
1

2
f(pn)

)
=⇒ F(2)(x) =

M

(2π)2

∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2
(f(pn)) . (3.36)

The term G2(x) corresponds to the spin-dependent distributions. Similarly, it is deter-

mined by replacing |Ψ̃↑↓m (pn)|2 in Eq. (3.19) with the part of Eq. (3.28) that includes
the term g(pn). We will note that for the sum over m; if the u-quark matrix elements
are used then a factor of 2

3 will appear in front of G(2)(x), and if the d-quark matrix

elements are used then a factor of −1
6 will appear. Doing this, and performing the sum

over m using the u-quark matrix elements, we have

2

3
G(2)(x) =

M

(2π)2

∑
m

〈µ|Pf,m|µ〉
∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2

(
1

2
(−1)m+ 3

2 g(pn)

)
=

M

(2π)2

(
(−1)

1

3
+ (+1)

5

3

)∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2

(
1

2
g(pn)

)
=

2

3

M

(2π)2

∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2
(g(pn))

=⇒ G(2)(x) =
M

(2π)2

∫ ∞
|M2(1−x)2−M2

n|
2M(1−x)

pndpn
|φ2(pn)|2

|φ3(0)|2
(g(pn)) . (3.37)

We can see from the form of the u and d distributions that the structure functions are
just scaled versions of F(2)(x) and G(2)(x).

In Fig. 3.2 we show F(2)(x) and G(2)(x) for a bag radius of R = 0.8 fm, a nucleon mass

of M = 938.27 MeV and an intermediate diquark mass of Mn = 3
4M . The formalism here
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Figure 3.2: The distributions F(2)(x) and G(2)(x).

predicts different x behaviour for the spin-independent and spin-dependent structure
functions. This difference arises from the non-zero p⊥n of the quarks, and it is seen that
the difference between the two distributions is greatest in the small-x region, which is
where p⊥n is large compared with p+.

A key feature of these distributions is that the integrals of F2(x) and G2(x) can
be calculated analytically from −∞ to ∞, or equivalently from −∞ to 1. This will be
important for including the four-quark intermediate states. The integrals have the result∫ 1

−∞
F(2)(x)dx = 1, (3.38)

and ∫ 1

−∞
G(2)(x)dx = 0.789 for Ω = 2.04. (3.39)

The integrals from 0 to 1 are determined numerically and have the result∫ 1

0
F(2)(x)dx = 0.744, (3.40)
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and ∫ 1

0
G(2)(x)dx = 0.645 for Ω = 2.04. (3.41)

An important point about these integrals is that they are independent of all parameters,
except for the dependence ofG(2)(x) on the quark energy Ω and hence the quark massmq.

3.2.2 The Four-Quark Intermediate States

We now focus our attention on the four-quark intermediate states depicted in Fig. 3.1.
Their contributions can be determined in a similar way to the two-quark intermediate
state [63], but such a procedure will not be followed here. We will parametrize the four-
quark states such that they simply pick up the contribution of the two-quark state from
−∞ to 0. We will include the four-quark states such that we have the condition∫ 1

−∞
dx F(2)(x) =

∫ 1

0
dx
[
F(2)(x) + F(4)(x)

]
, (3.42)

where F(4)(x) denotes the contribution to the integral from only the four-quark inter-
mediate states. G(4)(x) is included in an equivalent way.

The four-quark states will be approximated by the function C(1−x)7, which is very
similar to the actual shape of F(4)(x) [63], where C is determined such that we have the
desired normalization. We can simply rearrange Eq. (3.42) to obtain the normalisation
constant C. Hence, we shall include the four-quark states via the approximation

F(4)(x) = C(1− x)7, (3.43)

where

C =

∫ 1
−∞ dx F(2)(x)−

∫ 1
0 dx F(2)∫ 1

0 dx (1− x)7
. (3.44)

An equivalent expression is used for the spin-dependent case.

We take this approach because the calculated model distribution F(4)(x) will peak
around the value of 1 −M4/M , which will be in the negative-x region. Therefore, the
tail of this distribution, which is not so reliable, will be at small positive-x. Hence, if
we take the distribution F(2)(x), the integral from 0 to 1 plus a calculated F(4)(x) is not
guaranteed to equal one. The valence normalization is fixed correctly by the integral of
the two-quark state over x from −∞ to 1. So while the phenomenology of our approach
is not ideal it does ensure the correct valence normalization.

Obviously, this procedure will result in some uncertainty in the final result. However,
the shape used for the four-quark state will concentrate this uncertainty to small x. This
approach will not affect the distributions too much, especially for the region x > 0.3,
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since the four-quark distribution has a rapid fall off to zero. Furthermore, after the
model distributions have been evolved to a scale such that they can be compared with
data, Q2 = 10 GeV2 is a good standard, the uncertainty will move to even smaller x.
As a result one should not look too deeply into the results in the low-x region.

3.2.3 The One-Gluon Exchange

We will now look at an improvement of the model. One physical effect that has been
known to affect the spin-flavour dependence of the quark distributions is the one-gluon
exchange [68]. Due to its noticeable contribution, the one gluon-exchange effect is an
important inclusion in model calculations, and it is analogous to the hyperfine splitting in
atomic physics. Referring to the process in Fig. 3.1 with the diquark intermediate state;
the diquark mass depends on its spin configuration. If the diquark is in a spin-singlet
state, then the quark spins are anti-aligned resulting in a spin-zero state (s = 0), this is
termed the scalar intermediate state and has the lower mass (Mn,s). If the diquark is in
a spin-triplet state, then the quark spins are aligned resulting in a spin-1 state (s = 1),
this is termed the vector intermediate state and has the higher mass (Mn,v).

The magnitude of the mass splitting can be determined from the nucleon-delta baryon
(N − ∆) mass difference, assuming this has the same origin. Explicitly, one finds the
scalar intermediate state mass is about 150 MeV lighter than a diquark without hyperfine
splitting, and the vector intermediate state mass is about 50 MeV higher [69]. In the
absence of the gluon exchange correction the mass of the diquark bag is taken, by the
viral theorem, to be 3

4 of the nucleon’s mass (Mn = 3
4M).

The spin-flavour matrix elements that appear in Eq. (3.19) are dependent on the
spin state of the spectator diquark bag, and are given by

〈µ, s = 0|Pu,+ 1
2
|µ, s = 0〉 =

3

2
, 〈µ, s = 1|Pu,+ 1

2
|µ, s = 1〉 =

1

6
,

〈µ, s = 0|Pu,− 1
2
|µ, s = 0〉 = 0, 〈µ, s = 1|Pu,− 1

2
|µ, s = 1〉 =

1

3
,

〈µ, s = 0|Pd,+ 1
2
|µ, s = 0〉 = 0, 〈µ, s = 1|Pd,+ 1

2
|µ, s = 1〉 =

1

3
,

〈µ, s = 0|Pd,− 1
2
|µ, s = 0〉 = 0, 〈µ, s = 1|Pd,− 1

2
|µ, s = 1〉 =

2

3
.

(3.45)

Using these matrix elements in Eq. (3.19) gives the quark distributions [63]

u↑↓(2)(x) =

[
3

4
F(2)s(x) +

1

4
F(2)v(x)

]
± 2

3

[
9

8
G(2)s(x)− 1

8
G(2)v(x)

]
, (3.46)

and

d↑↓(2)(x) =
1

2
F(2)v(x)∓ 1

6
G(2)v(x). (3.47)

The subscripts s and v indicate that the diquark masses Mn,s and Mn,v, respectively,
are to be used when evaluating the distributions F(2)(x) and G(2)(x), which are given
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in Eq. (3.36) and (3.37). We can see that the u-quark distribution is dominated by the
scalar intermediate state, and the d-quark is given solely by the vector intermediate state.

The four-quark intermediate states are included as before and are determined sepa-
rately for the scalar and vector case for F and G, so before the quark distributions are
calculated one must include the four-quark states such that the following is satisfied;

∫ 1

−∞
dx F(2)s(x) =

∫ 1

0
dx
[
F(2)s(x) + F(4)s(x)

]
,∫ 1

−∞
dx F(2)v(x) =

∫ 1

0
dx
[
F(2)v(x) + F(4)v(x)

]
,

(3.48)

and equivalently for G(2)s(x) and G(2)v(x). As before, the four-quark distribution is
given by C(1−x)7, where C ensures that these normalization requirements are satisfied.

3.2.4 Quark Distributions at the Model Scale

We have the required expressions to determine the quark distributions and hence the
structure functions for both the spin-independent and spin-dependent case. Starting
from the quark expressions in Eq. (3.46) and (3.47) we can determine required distribu-
tions needed for the structure functions.

For the unpolarized structure function we will need the following;

u(x) = u↑(x) + u↓(x)

=

[
3

4
Fs(x) +

1

4
Fv(x) +

2

3

(
9

8
G(2)s(x)− 1

8
G(2)v(x)

)]
+

[
3

4
Fs(x) +

1

4
Fv(x)− 2

3

(
9

8
G(2)s(x)− 1

8
G(2)v(x)

)]
=

3

2
Fs(x) +

1

2
Fv(x), (3.49)

and

d(x) = d↑(x) + d↓(x)

=

[
1

2
Fv(x)− 1

6
Gv(x)

]
+

[
1

2
Fv(x) +

1

6
Gv(x)

]
= Fv(x). (3.50)

To be clear on notation, choosing one term as an example, Fs(x) contains both the
two-quark and four-quark component where the scalar diquark mass Mn,s is used as the
intermediate state mass for determining Eq. (3.36) and (3.43). The u and d distributions
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have the following integral results;∫ 1

0
dx u(x) =

∫ 1

0
dx
(
u↑(x) + u↓(x)

)
= 2.00, (3.51)∫ 1

0
dx d(x) =

∫ 1

0
dx
(
d↑(x) + d↓(x)

)
= 1.00. (3.52)

Since there are two valence u-quarks and one valence d-quark in the proton, if we inte-
grate over all polarizations then we expect these results.

The unpolarized structure function of the proton is then given by

F2(x) = x
∑
f

e2
fqf (x)

= x

[(
2

3

)2

u(x) +

(
1

3

)2

d(x)

]
. (3.53)

For the polarized structure function we will need the following;

∆u(x) = u↑(x)− u↓(x)

=

[
3

4
Fs(x) +

1

4
Fv(x) +

2

3

(
9

8
G(2)s(x)− 1

8
G(2)v(x)

)]
−
[

3

4
Fs(x) +

1

4
Fv(x)− 2

3

(
9

8
G(2)s(x)− 1

8
G(2)v(x)

)]
=

3

2
Gs(x)− 1

6
Gv(x), (3.54)

and

∆d(x) = d↑(x)− d↓(x)

=

[
1

2
Fv(x)− 1

6
Gv(x)

]
−
[

1

2
Fv(x) +

1

6
Gv(x)

]
=

1

3
Gv(x). (3.55)

The distributions Gs(x) and Gv(x) contain both the two-quark and four-quark interme-
diate states. The ∆u and ∆d distributions have the following integral results;∫ 1

0
dx ∆u(x) =

∫ 1

0
dx
(
u↑(x)− u↓(x)

)
= 1.05, (3.56)∫ 1

0
dx ∆d(x) =

∫ 1

0
dx
(
d↑(x)− d↓(x)

)
= −0.26. (3.57)

The polarized structure function of the proton is then given by

g1(x) =
1

2

∑
f

e2
f∆qf (x)

=
1

2

[(
2

3

)2

∆u(x) +

(
1

3

)2

∆d(x)

]
. (3.58)
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The presented distributions will contain the two and four-quark intermediate states
as well as the one gluon exchange effect. The approach for producing the quark distri-
butions will be to choose parameters, bag radius and diquark masses, for the two-quark
component and then add in the term C(1−x)7 corresponding to the four-quark compo-
nents to fix the normalization such that Eq. (3.48) is satisfied.

We will first present the quark distributions at the model scale µ2, in order to compare
with experimental data the distributions must be evolved, this is described in the next
section. In Fig. 3.3 we show the unpolarized and polarized quark distributions for
R = 0.6 fm, Mn,s = 550 MeV, and Mn,v = 750 MeV. This corresponds to a model scale
of about 0.04 GeV2. This value of µ2 is quite low, and comes about from the bag model
giving quark distributions that peak around the mid-x region.

Figure 3.3: Unpolarized and polarized quark distributions in the bag at the model
scale.

There are a couple of key features to point out about the quark distributions in
the bag model. It can be seen that the distributions peak in the mid-x region, the
inclusion of the gluon exchange actually pushes the peak to a larger x value. This is
not a problem, and is a property of the bag model, and also depends on the parameters
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chosen. However, this does result in the model scale being quite low, around µ2 = 0.04
GeV2 (see next section), and one would be hesitant to perform QCD evolution at a
starting scale any lower than this as uncertainties in the evolution process become more
prominent at starting scales that are too low. It is also important to note that the
distributions die off quite rapidly to zero at an x value above 0.8. Therefore, when the
ratios of distributions are determined the high-x region should be taken with caution.

3.3 Evolving the Model Distributions

To determine the model scale at which the distributions are calculated, we will evolve
the u-quark distribution to a scale of Q2 = 10 GeV2 and compare the result with known
experimental data, the starting scale will be varied until the evolved distribution best
matches the experimental data, this starting scale will then be used for all other distri-
butions. The evolution is performed using the QCDNUM program [20].

In Fig. 3.4 we have used the following parameters; R = 0.6 fm, Mn,s = 550 MeV,
and Mn,v = 750 MeV. After testing a few starting scales it was found that the evolved
u-quark distribution best matches the data for a starting scale of µ2 = 0.04 GeV2. This
corresponds to αs = 2.05 at the starting scale, and αs = 0.23 at the finish scale of
Q2 = 10 GeV2, giving a value of ΛQCD=0.02 GeV2 (=141 MeV), which can be evaluated
from Eq. (2.20). This value for ΛQCD is a bit low, which is due to the low model
scale. Further details on the αs(Q

2) evolution can be found in the QCDNUM write
up [20]. The data used for comparison is the modified leading order (LO) MRST2007
parametrization of the valence u-quark distribution [70]. The evolved valence u-quark
distribution from the bag model matches the data reasonably well, and these parameters
give the best fit of our model distribution to the data. In Appendix C we show the model
scale corresponding to various parameters.

In Fig. 3.5 and 3.6 we show the spin-independent structure function for the proton
and neutron, respectively. In Fig. 3.7 and Fig. 3.8 we show the spin-dependent structure
function for the proton and neutron, respectively. The four plots are for the following
parameters; R = 0.6 fm, Mn,s = 550 MeV, Mn,v = 750 MeV, corresponding to a model
scale of µ2 = 0.04 GeV2.

A few extra components come into the evolved structure functions compared to the
model scale. The evolution process produces anti-quark, a strange quark, and a gluon
distribution. We will not be including the gluon distribution into our calculations, as
this only adds on a small correction to structure function of the nucleon, and also has
a negligible impact in the valence region, which is our main area of interest. We will
be including the anti-quark distributions into our structure functions as well as the
strange quark distribution, which are not explicitly calculated at the model scale, but
are dynamically generated in the evolution process.

Therefore, our evolved structure functions are the full structure functions containing
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Figure 3.4: u-quark distribution in the bag model. The solid curves correspond to the
theoretical results at both the model scale µ2, corresponding to the largest peak, and

then evolved to Q2 = 10 GeV2 for comparison with data for the valence u-quark
distribution from Ref. [70]

the anti-quark as well as strange quark distributions, shown in Eq. (2.11). This can be
seen in the unpolarized structure function figures where there is a clear low-x increase
in the evolved distributions compared to the model scale distributions.

In a model that has SU(6)-symmetry then gn1 (x) would be zero everywhere. The
splitting from the one gluon exchange is the dominant effect that causes it to become
finite. The QCD evolution also results in a small value for gn1 (x), even if it had been
zero everywhere at the model scale. This is because the singlet and non-singlet parts
evolve differently. The effect due to the evolution is about 1

3 of that due to the one gluon
exchange.

3.4 Chapter Summary

In this chapter we went through our procedure for calculating the quark distributions in
the bag model. With these distributions we were able to determine the spin-dependent
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Figure 3.5: Spin-independent structure function for the proton in the bag model. The
larger peak corresponds to the model scale µ2, and then evolved to Q2 = 10 GeV2.

and spin-independent structure functions for the proton and neutron. For the calcula-
tions we set the quark mass to zero. We then evolved the distributions from the model
scale to a scale of Q2 = 10 GeV2.
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Figure 3.6: Spin-independent structure function for the neutron in the bag model. The
larger peak corresponds to the model scale µ2, and then evolved to Q2 = 10 GeV2.
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Figure 3.7: Spin-dependent structure function for the proton in the bag model. The
larger peak corresponds to the model scale µ2, and then evolved to Q2 = 10 GeV2.
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Figure 3.8: Spin-dependent structure function for the neutron in the bag model. The
larger peak corresponds to the model scale µ2, and then evolved to Q2 = 10 GeV2.
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Chapter 4

In-Medium Structure Functions

Having determined the free structure functions of the nucleon, we now move on to dis-
cussing the in-medium case. In this chapter we will show how we include the in-medium
modifications into the calculation for the quark distributions of the bound nucleon.
There are three effects that we will be accounting for in the bound nucleon; the σ mean
field, Fermi motion, and the ω mean field. These effects will be explicitly included in the
two-quark intermediate state, and the four-quark intermediate states will be included as
an approximation at the end to satisfy normalization requirements, as done for the free
case.

With our in-medium structure functions we will be able to make predictions of both
the unpolarized and polarized EMC effect.

4.1 The σ Field

The σ field, or scalar field, has two effects on a bound nucleon that will be considered.
Firstly, the quark wave function will be altered due to the effective quark mass (m∗q)
that comes from the coupling of the σ field to a quark. Secondly, the effect of the overall
coupling of the σ field to the nucleon will result in an effective nucleon mass (M∗) as
well as effective diquark state masses for both the singlet and vector intermediate states
(M∗n,s and M∗n,v, respectively).

4.1.1 The Altered Quark Wave Function

We will now look at the effect of the σ mean field on the quark wave function. A quark
inside a bound nucleon is effectively sitting in a scalar potential well generated by the
σ mesons, and this will alter its mass. The effective quark mass of a bound nucleon is
given by [71]

m∗q = mq − gqσσ̄, (4.1)

where mq is the quark mass of a free nucleon, and gqσσ̄ is the coupling strength of the
σ mean field to the quark inside a bound nucleon. In order to determine this coupling
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strength we refer to a plot from Guichon, Saito, Rodionov, and Thomas [56], shown in
Fig. 4.1. The symbol gσσ̄ is the coupling of the σ mean field to the nucleon in free space.
The coupling strength at nuclear matter density corresponds to values along ρB

ρ0
= 1.

Figure 4.1: Mean-field values of the σ meson for various bag radii as a function of
baryonic density of the bound nucleons (ρB) as taken from Ref. [56]. The solid, dotted,
and dashed curves show gσσ̄ for a bag radius of R = 0.6, 0.8, and 1.0 fm, respectively.

Referring to Fig. 4.1, at nuclear matter density for a bag radius of R = 0.6 fm we
have a value of gσσ̄ ' 225 MeV. There is some variation in the strength of the σ mean
field coupling in different variations of the QMC model and we will therefore try various
values of gσσ̄ when looking at the EMC effect. From the coupling of the σ mean field to
the nucleon as a whole (gσσ̄), we can determine the value of the coupling to an individual
quark (gqσσ̄).

The nuclear coupling constant for the σ mean field is given by [56]

gσ = 3gqσS(σ = 0). (4.2)

The final quantity in the above expression is the integral of the quark fields over the bag
volume,

S(σ = 0) =

∫
Bag

dV q̄q. (4.3)
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This integral will be dependant on the bag radius, since the radius will have an effect
on the quark fields. For different radii we have the results

S(σ = 0) = 0.4819 for R = 0.6 fm , (4.4)

S(σ = 0) = 0.4827 for R = 0.8 fm , (4.5)

S(σ = 0) = 0.4834 for R = 1.0 fm . (4.6)

Doing some manipulations on Eq. (4.2) we can obtain the expression of the σ field
coupling to a quark,

gqσσ̄ =
1

3S(σ = 0)
gσσ̄. (4.7)

As an example, if we take a bag radius of R = 0.6 fm and gσσ̄ = 180 MeV we get the
result gqσσ̄ ' 124.5 MeV and this corresponds to an effective quark mass of m∗q ' −124.5
MeV, where we have taken the quark mass of a free nucleon to be zero.

Because of the modification of the quark mass in a bound nucleon, we must consider
how this alters the quark wave function in the bag model. The quark wave function of
a bound nucleon in the bag is given by [67]

Ψ∗m(x) = N∗2

 j0

(
Ω|x|
R

)
χm

ibσ · x̂j1
(

Ω|x|
R

)
χm

Θ(R− |x|), (4.8)

where

b =

(
E −mq

E +mq

) 1
2

, (4.9)

E =
1

R

(
Ω2 + (mqR)2

) 1
2 , (4.10)

and

N∗2 =
1

4π

E2 −m2
q

R3j0(Ω)2
[
2E
(
E − 1

R

)
+

mq

R

] . (4.11)

The b factor appearing in the lower component of the bag wave function leads to an
alteration of the expression for s2(u) (Eq. (3.32)), where we now have

s∗2(u) = b
(

2j0(Ω)j1(u)− u

Ω
s1(u)

)
, (4.12)

while the expression for s1(u) (Eq. (3.31)) remains unchanged. The normalizations
become

|φ2(pn)|∗2 =
4πR

u

(
2πN∗2R4

Ω4

)2 ∫
dv

v
sin

(
2vu

Ω

)
T ∗2(v), (4.13)
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and

|φ3(0)|∗2 = 4π

(
2πN∗2R4

Ω4

)3 ∫
dv

v
T ∗3(v), (4.14)

where the overlap integral of the bag wave function now becomes

T ∗(v) = Tt + b2Tb (4.15)

=
[
(Ω− v)sin(2v) + (1− sin2(Ω))− cos(Ω)cos(Ω− 2v)

]
+ b2

[(
1− 4v2

2Ω2

)
sin2(Ω)− 2

Ω
sin(Ω)cos(Ω− 2v) +

2

Ω
sin(Ω)cos(Ω) + Ωsin(2v)

− sin(Ω)sin(Ω− 2v)− vsin(2v)

]
.

In order to determine the eigenfrequency we need to solve the equation

tan(Ω) =
Ω

1−mqR− (Ω2 + (mqR)2)
1
2

. (4.16)

As an example; a quark mass of mq = −124.5 MeV gives an in-medium eigenfrequency
of Ω ' 1.83.

We have just considered the effect of the σ mean field on the quark mass and how
this alters the quark wave function.

4.1.2 The Altered Nucleon Mass

Having explored the effect of the σ mean field on an individual quark, we will now look
at how this mean field impacts the bound nucleon as a whole. The σ mean field for the
bound nucleon is included through the effective nucleon and diquark state masses. The
effective mass of a bound nucleon is given by [72]

M∗(σ̄) = M − gσσ̄ +
d

2
(gσσ̄)2 , (2.24)

where d = 0.22R, with R the bag radius. Studies have shown that Eq. (2.24) is quite
accurate up to values of gσσ̄ = 400 MeV [72], which will be sufficient for our purposes.

In order to determine the effective diquark state masses we will first need to work out
the strength of the vector field. We will describe how the vector field is used to determine
the effective diquark state masses, but save the discussion for including the vector field
effects into the quark distributions for the next section. The vector field is generated
by the ω mesons, and is responsible for the short range repulsion between nucleons. V0

is the zeroth component of the vector field felt by the quarks, and is essentially the
strength of the vector potential. Since nuclear matter is bound, then 3V0 = (M −M∗)
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would be an overestimate of the vector field strength, and hence 3V0 should be less than
this. Figure 21 from Ref. [71] shows the potential strengths for different lambda (Λ)
hypernuclei, so only containing two light quarks. Using the results for hypernuclei is
acceptable as we will be interested in the ratio of the vector and scalar fields. For the
hypernuclei lead (209

Λ Pd), we see that at the centre of lead, which has approximately the
density of nuclear matter, the vector potential is around 90 MeV and the scalar potential
is around 130 MeV. Therefore, taking 3V0 as 65-70% of M −M∗ will be acceptable, and
we therefore use the expression

3V0 =

(
90

130

)
(M −M∗) , (4.17)

where V0 is the vector potential. We have a similar expression for the diquark case,

2V0 =

(
90

130

)
(Mn −M∗n) . (4.18)

Our approach to determine the effective diquark state masses will be as follows.
Determine the effective nucleon mass from Eq. (2.24). Then determine the vector
potential through the equation

V0 =
1

3

(
90

130

)
(M −M∗) . (4.19)

We then use the value of the vector potential to find the diquark state masses through

M∗n,s = Mn,s − 2V0

(
130

90

)
, (4.20)

M∗n,v = Mn,v − 2V0

(
130

90

)
. (4.21)

Having described our approach to determine the effective nucleon and diquark state
masses, we can now write the quark distribution for a bound nucleon including the
total effect of the σ mean field, which includes the effect on the wave function and the
change of the nucleon and diquark state masses. We will drop the subscript (2) on
the quark distribution for the sake of reading clarity, but we emphasize that the in-
medium modifications are only applied to the two-quark intermediate state. The quark
distribution is given by

q↑↓N0
(x) =

M∗

(2π)2

∑
m

〈µ|Pf,m|µ〉
∫ ∞
|M∗2(1−x)2−M∗2

n |
2M∗(1−x)

pndpn
|φ2(pn)|∗2

|φ3(0)|∗2
|Ψ̃∗↑↓m (pn)|2, (4.22)

where the subscript 0 indicates that only the scalar field has been included and the
vector field is yet to be incorporated. From this we can obtain the expressions

F ∗N0
(x) =

M∗

(2π)2

∫ ∞
|M∗2(1−x)2−M∗2

n |
2M∗(1−x)

pndpn
|φ2(pn)|∗2

|φ3(0)|∗2
(f(pn)∗) , (4.23)

G∗N0
(x) =

M∗

(2π)2

∫ ∞
|M∗2(1−x)2−M∗2

n |
2M∗(1−x)

pndpn
|φ2(pn)|∗2

|φ3(0)|∗2
(g(pn)∗) . (4.24)
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The expressions for |φ2(pn)|∗2 and |φ3(0)|∗2 are given in Eq. (4.13) and (4.14), respec-
tively. The stars on f and g are an indication that the effective masses, in-medium Ω,
as well as s∗2(u), must be used for the terms in those expressions.

Summing up this part; we have just explored the effect of the σ mean field on the
bound nucleon. The σ field alters the quark wave function as well as the nucleon and
diquark masses.

4.2 Fermi Motion

Fermi motion is the next effect that is included into the quark distributions. It has been
shown that the effect of Fermi motion on a bound nucleon can be included through a
convolution of the quark distribution with a Fermi smearing function, f0(ỹA), which is
given by [73]

f0(ỹA) =
3

4

(
EF
pF

)3
[(

pF
EF

)2

− (1− ỹA)2

]
, (4.25)

where the distribution has support for

1− pF
EF

< ỹA < 1 +
pF
EF

. (4.26)

The Fermi energy is given by

EF =
√
p2
F +M∗2, (4.27)

where pF is the Fermi momentum. The effective nucleon mass in the Fermi energy
shows that the σ mean field must be included in the calculations for the Fermi motion.
An acceptable value for the Fermi momentum at nuclear matter density is pF ' 265
MeV [74]. We will be testing various values of Fermi momentum to see how this impacts
the EMC effect. Since Fermi motion describes the motion of a bound nucleon as a whole,
its impact will be predominantly seen in the high-x region.

Performing the convolution of the quark distribution in Eq. (4.22) with f0(ỹA) gives
the distribution

qA0(x̃A) =

∫
dỹA

∫
dx δ(x̃A − ỹAx) qN0(x)f0(ỹA). (4.28)

Eliminating the δ-function integral we obtain the result

qA0(x̃A) =

∫
dỹA

1

ỹA
qN0

(
x̃A
ỹA

)
f0(ỹA), (4.29)
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where we remind the reader that the subscript 0 indicates that the vector field effects
have not been included. From this we can obtain the distributions

F ∗A0
(x̃A) =

∫
dỹA

1

ỹA
F ∗N0

(
x̃A
ỹA

)
f0(ỹA), (4.30)

G∗A0
(x̃A) =

∫
dỹA

1

ỹA
G∗N0

(
x̃A
ỹA

)
f0(ỹA). (4.31)

4.3 The ω Field

Now we will discuss how we include the effect of the ω mean field, or vector field, into
the calculation of the quark distribution. The quarks of a bound nucleon feel the zeroth
component of the vector field, V0, which is the strength of the vector potential. As we
mentioned previously, the vector field simply shifts the definition of the energy scale.
This leads to a predominantly model independent result for the modification of the in-
medium quark distribution of a bound nucleon by the vector mean field [38].

The vector field is included by scaling the quark distribution qA0(x̃A), and shifting
the Bjorken variable x. The in-medium quark distribution then becomes [73]

qA(xA) =
εF
EF

qA0

(
x̃A =

εF
EF

xA −
V0

EF

)
, (4.32)

where

εF =
√
p2
F +M∗2 + 3V0 ≡ EF + 3V0 (4.33)

is the Fermi energy with the vector field included. The new variable xA is the Bjorken
scaling variable for the nucleon. From this we obtain our full in-medium distributions

F ∗A(xA) =
εF
EF

F ∗A0

(
x̃A =

εF
EF

xA −
V0

EF

)
, (4.34)

G∗A(xA) =
εF
EF

G∗A0

(
x̃A =

εF
EF

xA −
V0

EF

)
. (4.35)

These distributions are able to be plotted as a function of x through the relation xA =
M
εF
x [75].

4.4 In-Medium Distributions

4.4.1 In-Medium Four-Quark Intermediate States

We have considered the effect of the σ mean field, Fermi motion, and ω mean field
on the in-medium quark distributions. These effects were only applied to the two-
quark intermediate state, which yields the dominant contribution. Since the four-quark
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intermediate states are not explicitly calculated, there is no physical significance in
applying the in-medium modifications to the four-quark term. Therefore, as done in
the free case, we shall include it as a phenomenological term to satisfy normalization
requirements. The four-quark term will be included so that it picks up the region of
the two-quark state corresponding to the negative-x region. Hence we will desire the
following to be satisfied;∫ 1

−∞
dx F ∗A(x) =

∫ 1

0
dx
[
F ∗A(x) + F ∗(4)(x)

]
, (4.36)∫ 1

−∞
dx G∗A(x) =

∫ 1

0
dx
[
G∗A(x) +G∗(4)(x)

]
. (4.37)

The four-quark term, as before, will take the form of C∗(1− x)7, where C∗ refers to the
normalization constant such that the above requirements are satisfied.

From these we can determine the quark distributions, given in Eq. (3.46) and (3.47)
for the free case, and the equivalent expression for the in-medium case are given by

u∗↑↓(x) =

[
3

4
F ∗A,s(x) +

1

4
F ∗A,v(x)

]
± 2

3

[
9

8
G∗A,s(x)− 1

8
G∗A,v(x)

]
, (4.38)

d∗↑↓(x) =
1

2
F ∗A,v(x)∓ 1

6
G∗A,v(x), (4.39)

where we reiterate that the subscripts s and v indicate that the diquark masses M∗n,s and
M∗n,v, respectively, must be used when evaluating the distributions F ∗A(x) and G∗A(x).
The u and d distributions above include the four-quark term. From these we get the
following distributions for the unpolarized case;

u∗(x) = u∗↑ + u∗↓

=
3

2
F ∗A,s(x) +

1

2
F ∗A,v(x), (4.40)

and

d∗(x) = d∗↑ + d∗↓

= F ∗A,v(x), (4.41)

where the unpolarized structure function of the proton is now given by

F∗2 (x) = x

[(
2

3

)2

u∗(x) +

(
1

3

)2

d∗(x)

]
. (4.42)

For the polarized case we have

∆u∗(x) = u∗↑ − u∗↓

=
3

2
G∗A,s(x)− 1

6
G∗A,v(x), (4.43)
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and

∆d∗(x) = d∗↑ − d∗↓

=
1

3
G∗A,v(x). (4.44)

where the polarized structure function of the proton is now given by

g∗1(x) =
1

2

[(
2

3

)2

∆u∗(x) +

(
1

3

)2

∆d∗(x)

]
. (4.45)

4.4.2 In-Medium Results

We are now at the stage to present the results for the in-medium quark distributions
and structure functions. The presented distributions will contain the two and four-
quark intermediate states, as well as the full in-medium contributions, namely the σ and
ω mean fields as well as Fermi motion. In Table 4.1 we give the parameters chosen for
the distributions that will be shown here. The free nucleon parameters as well as the σ
mean field coupling strength are chosen, and from them we can calculate the effective
nucleon and quark masses, as well as the eigenfrequency and vector potential.

Set Values

R (fm) gσσ̄ (MeV) pF (MeV) M Mn,s Mn,v

0.6 180 220 938.27 550 750

Resultant Values

m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

-124.51 1.83 39.04 769.12 437.22 637.22

Table 4.1: Set and resultant values. Masses are in units MeV.

In Fig. 4.2 we show the in-medium unpolarized and polarized quark distributions
for the parameters shown in Table 4.1. The in-medium quark distributions are shifted
slightly to the left and peak at lower x compared to the free case.

For a direct comparison of the structure functions, we will present the in-medium and
free structure functions of the proton together. In Fig. 4.3 we present the in-medium
and free unpolarized structure functions for the proton at the model scale µ2 = 0.04
GeV2 and evolved to Q2 = 10 GeV2, and in Fig. 4.4 we present the in-medium and
free polarized structure functions for the proton at the model scale µ2 = 0.04 GeV2 and
evolved to Q2 = 10 GeV2. Both plots are for the parameters shown in Table 4.1.



52 Chapter 4. In-Medium Structure Functions

Figure 4.2: In-medium unpolarized and polarized quark distributions in the bag at a
model scale of µ2 = 0.04 GeV2.

It can be seen that for the evolved case, the in-medium structure function sits below
the free one for the majority of x in both the unpolarized and polarized case. This is a
very important observation. By modelling the nucleon at the quark level and allowing
the quark structure to be altered when in-medium, we are observing the suppression of
the in-medium structure function that is associated with the EMC effect. Our approach
of applying the in-medium effects at the quark level has naturally given rise to this
phenomena.

It is also very important to point out that we are observing a suppression of the
in-medium structure function in both the unpolarized and polarized case. A comparison
of the suppression for the unpolarized and polarized case will be looked at in the results
section. For now we just state that there is definitely an observed EMC effect in both
cases.
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Figure 4.3: Spin-independent structure functions for the proton in the bag model. The
dashed lines correspond to the free case and the solid lines correspond to the in-medium
case. The larger peaks are at the model scale µ2, and then evolved to Q2 = 10 GeV2.

4.5 Chapter Summary

In this chapter we considered the in-medium modifications on a bound nucleon and how
this would impact the internal quark structure. We will briefly recap the inclusion of
each in-medium modification.

First, the scalar σ mean field is included through the altered quark wave function as
well as effective nucleon and diquark state masses. This produces the distribution

q↑↓N0
(x) =

M∗

(2π)2

∑
m

〈µ|Pf,m|µ〉
∫ ∞
|M∗2(1−x)2−M∗2

n |
2M∗(1−x)

pndpn
|φ2(pn)|∗2

|φ3(0)|∗2
|Ψ̃∗↑↓m (pn)|2. (4.22)

Next, the Fermi motion of a bound nucleon is included through a convolution with the
Fermi smearing function, given in Eq. (4.25), producing the distribution

qA0(x̃A) =

∫
dỹA

1

ỹA
qN0

(
x̃A
ỹA

)
f0(ỹA). (4.29)
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Figure 4.4: Spin-dependent structure functions for the proton in the bag model. The
dashed lines correspond to the free case and the solid lines correspond to the in-medium
case. The larger peaks are at the model scale µ2, and then evolved to Q2 = 10 GeV2.

Finally, the vector ω mean field is included through scaling the distribution and shifting
the Bjorken variable to give the distribution

qA(xA) =
εF
EF

qA0

(
x̃A =

εF
EF

xA −
V0

EF

)
. (4.32)

The scalar field is included in the steps for the Fermi motion and the vector field by using
the effective nucleon and diquark state masses for in those cases. To compare with the
free case, the in-medium distributions can be produced as a function of x through the
relation xA = M

εF
x. With these quark distributions we determined the structure function

for a bound nucleon.
We found that by taking the bag model and allowing the quark structure to be

altered in-medium, we have observed a suppression in both the unpolarized and polarized
structure functions of a bound nucleon compared to the free case.
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Chapter 5

Results

We have described the process for determining the free structure functions of the nu-
cleon, and then the contributions that go into the calculation of the in-medium structure
functions. We are now at the stage to take the ratios of these structure functions to see
our theoretical prediction of the EMC effect.

We will present the unpolarized EMC ratio for various parameters, and then present
the polarized EMC ratio for the same parameters. We will then choose the best pa-
rameter set to look at the contribution to the unpolarized and polarized EMC ratios of
each in-medium modification considered. When trying different parameters for the bag
radius and diquark state masses the model scale varies and so the starting scale for the
evolution is dependent on these parameters. Refer to Appendix C for the model scale
corresponding to various combinations of radii and diquark state masses.

5.1 Unpolarized EMC Ratios

We will start by looking at the unpolarized EMC ratio for the proton (RU ), which is
given by the ratio of the in-medium to free unpolarized structure function of the nucleon;

RU =
F ∗2 (x)

F2(x)
. (5.1)

We will investigate how the unpolarized EMC ratio changes for different values of various
parameters.

5.1.1 Changing R

We will first consider how the EMC ratio changes for various choices of bag radius R.
Our choice of set parameters is shown in Table 5.1. Apart from the variation in R, these
will not be changed. In Table 5.2 we show the resultant values corresponding to various
choices of R. In Fig. 5.1 we show the results for the unpolarized EMC ratio of the
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Set Values

R (fm) gσσ̄ (MeV) pF (MeV) M Mn,s Mn,v

varied 180 220 938.27 550 750

Table 5.1: Set values, where R will be changed. Masses are units MeV.

Resultant Values

R (fm) m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

0.6 -124.51 1.83 39.04 769.12 437.22 637.22

0.8 -124.30 1.75 38.20 772.72 439.63 639.63

1.0 -124.12 1.66 37.37 776.33 442.04 642.04

Table 5.2: Values corresponding to R = 0.6, 0.8, and 1.0 fm. Masses are in units MeV.

proton for various bag radii.

From Fig. 5.1 we see that a bag radius of 0.6 fm gives the best fit to the data.
To some extent this may be because R = 0.6 fm also give the best description of the
free structure functions. By giving the quarks a smaller region to move around in, the
in-medium modifications have a greater impact on the structure of the bound quarks
causing the in-medium structure function to be suppressed to a greater degree compared
to a larger bag radius. The general trend of the EMC effect is certainly observed through
our approach.

5.1.2 Changing Diquark State Masses

We will now consider how the EMC ratio changes for various choices of diquark state
masses Mn,s and Mn,v. Our choice of set parameters is shown in Table 5.3, these will
be held constant with only the diquark masses being altered. In Table 5.4 we show the
resultant values corresponding to various choices of diquark state masses. In Fig. 5.2 we
show the results for the unpolarized EMC ratio of the proton for various diquark state
masses.

From Fig. 5.2 we see that as the diquark state masses are made heavier the minimum
of the EMC ratio is pushed down and to the left. The best fit to the data in the valence
region is for the lightest diquark masses of Mn,s = 550 MeV and Mn,s = 750.
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Figure 5.1: Unpolarized EMC ratio for various bag radii. The results are evolved to
Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

Set Values

Mn,s Mn,v R (fm) gσσ̄ (MeV) pF (MeV) M

varied varied 0.6 180 220 938.27

Table 5.3: Set values, where Mn,s and Mn,v will be changed. Masses are in units MeV.

5.1.3 Changing gσσ̄

We will now consider how the EMC ratio changes for various choices of the coupling
strength of the σ mean field, gσσ̄. Our choice of set parameters is shown in Table 5.5,
these will be held constant with only the σ mean field being altered. In Table 5.6 we
show the resultant values corresponding to various choices of the σ mean field. In Fig.
5.3 we show the results for the unpolarized EMC ratio of the proton for various coupling
strengths of the σ mean field.
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Resultant Values

Mn,s Mn,v m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

550 750 -124.51 1.83 39.04 769.12 437.22 637.22

650 850 -124.51 1.83 39.04 769.12 537.22 737.22

750 950 -124.51 1.83 39.04 769.12 637.22 837.22

850 1050 -124.51 1.83 39.04 769.12 737.22 937.22

Table 5.4: Values corresponding to (Mn,s,Mn,v) = (550, 750), (650, 850), (750, 950),
and (850, 1050) MeV. Masses are in units MeV.

Figure 5.2: Unpolarized EMC ratio for various diquark state masses. The results are
evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

From the results in Fig. 5.3 we see that as the coupling strength of the σ mean field is
increased the in-medium structure function is suppressed to a greater degree. Therefore,
the EMC ratio sits lower for increasing gσσ̄. Referring back to Fig. 4.1 we noted that
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Set Values

gσσ̄ (MeV) R (fm) pF (MeV) M Mn,s Mn,v

varied 0.6 220 938.27 550 750

Table 5.5: Set values, where gσσ̄ will be changed. Masses are in units MeV.

Resultant Values

gσσ̄ (MeV) m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

180 -124.51 1.83 39.04 769.12 437.22 637.22

200 -138.34 1.81 43.07 751.65 425.59 625.59

220 -152.17 1.78 47.03 734.46 414.13 614.13

Table 5.6: Values corresponding to gσσ̄ = 180, 200, and 220 MeV. Masses are in units
MeV.

at nuclear matter density for a bag radius of R = 0.6 fm we had a value of gσσ̄ ' 225
MeV. This value puts the EMC ratio under the data and we find a better fit to valence
region for a value of gσσ̄ ' 180 MeV. This is obviously lower than the value shown for
the QMC model in Fig. 4.1. However, given the variation possible within the model it
is acceptable.

5.1.4 Changing pF

We will now consider how the EMC ratio changes for various choices of Fermi momentum
pF . Our choice of set parameters is shown in Table 5.7, holding these constant, we will
only alter the Fermi momentum. Changing the value of the Fermi momentum does not
impact any other values and so the results in Table 5.8 are true for any value of Fermi
momentum. In Fig. 5.4 we show the results for the unpolarized EMC ratio of the proton
for various choices of Fermi momentum.

Set Values

pF (MeV) R (fm) gσσ̄ (MeV) M Mn,s Mn,v

varied 0.6 180 938.27 550 750

Table 5.7: Set values, where pF will be changed. Masses are in units MeV.
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Figure 5.3: Unpolarized EMC ratio for various σ mean field strengths. The results are
evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

Resultant Values

pF (MeV) m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

220, 250, 280 -124.51 1.83 39.04 769.12 437.22 637.22

Table 5.8: Values corresponding to pF = 220, 250, and 280 MeV. Masses are in units
MeV.

Fermi momentum corresponds to motion of a bound nucleon and so its effect is
predominantly seen in the large-x region. As the Fermi momentum is increased the
EMC minimum is pushed up and to the left. From Ref. [74] we see that at nuclear
matter density the Fermi momentum is pF ' 265 MeV. In our calculations we find
dropping the Fermi momentum to a value of 220 MeV gives a better fit to the nuclear
matter EMC data in the high-x region.
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Figure 5.4: Unpolarized EMC ratio for various Fermi momentum pF . The results are
evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

5.1.5 Changing V0

Finally, we will consider how the EMC ratio changes for various choices of the ω mean
field, which corresponds to varying the vector potential V0. Our choice of set parameters
is shown in Table 5.9, these will be held constant, where only the vector potential will
be altered. We will not be changing the vector potential directly. If we recall Eq. (4.17)
we see that the vector potential is determined through the relation

3V0 =

(
90

130

)
(M −M∗) , (4.17)

where the ratio 90/130 is the ratio of the vector to scalar potentials at the centre of the
hypernuclei lead. We will be varying this ratio of the vector to scalar potential, which
is what we use to determine V0. Hence by varying this ratio we are effectively varying
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V0. We will try three different values:

3V0 =

(
60

130

)
(M −M∗) ⇒ V0 = 26.03, (5.2)

3V0 =

(
90

130

)
(M −M∗) ⇒ V0 = 39.04, (5.3)

3V0 =

(
120

130

)
(M −M∗) ⇒ V0 = 52.05. (5.4)

Changing the value of the vector potential does not impact any other values and
so the results in Table 5.10 are true for any value of the vector potential. In Fig. 5.5
we show the results for the unpolarized EMC ratio of the proton for various vector
potentials.

Set Values

V0 (MeV) R (fm) gσσ̄ (MeV) pF (MeV) M Mn,s Mn,v

varied 0.6 180 220 938.27 550 750

Table 5.9: Set values, where V0 will be changed. Masses are in units MeV.

Resultant Values

V0 (MeV) m∗q Ω M∗ M∗n,s M∗n,v

26.03, 39.04, 52.05 -124.51 1.83 769.12 437.22 637.22

Table 5.10: Values corresponding to V0 = 26.03, 39.04, and 52.05 MeV.

From Fig. 5.5 we see that varying the vector potential has the greatest impact in
the mid to high-x region. The EMC ratio is enhanced in the high-x region as the vector
potential is increased. Recall that the vector field just shifts the definition of the energy
scale, and so by changing the vector field we are simply shifting the quark distributions
along the x-axis. Since the quark distributions approach zero quite rapidly for x & 0.7
the shift is most sensitive in this region.

Of all the parameters tested the EMC ratio is most strongly dependent on the vector
potential. The best fit to the nuclear matter EMC data corresponds to a vector potential
of V0 = 39.04 MeV. This corresponds to equation

3V0 =

(
90

130

)
(M −M∗) , (4.17)

where 90/130 is the ratio of the vector to scalar potentials at the centre of the hypernuclei
lead as given in Ref. [71].
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Figure 5.5: Unpolarized EMC ratio for various vector potentials. The results are
evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

5.1.6 Best Fit Parameter Set

We will finish off this section by presenting the unpolarized EMC ratio for the parameter
set that gives the best fit to the nuclear matter EMC data. Having tried various choices
for different parameters, we state the best fit parameter set in Table 5.11, where the
vector potential is determined through the relation given in Eq. (4.17). In Fig. 5.6 we
present the unpolarized EMC ratio for the best fit parameter set.

From Fig. 5.6 we see that in the region for x < 0.3 the theoretical result does not
fit the data very well. Since the bag model is a valence picture of the nucleon, and the
low-x region is included as an approximation, it is not surprising the theoretical result
does not overlap the data in this region. In the valence region for 0.3 < x < 0.7 the
theoretical result is in far better agreement with the data. Overall, while the data is not
fitted perfectly, the general trend of the EMC effect is certainly obtained through our
approach.
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Set Values

R (fm) gσσ̄ (MeV) pF (MeV) M Mn,s Mn,v

0.6 180 220 938.27 550 750

Resultant Values

m∗q Ω V0 (MeV) M∗ M∗n,s M∗n,v

-124.51 1.83 39.04 769.12 437.22 637.22

Table 5.11: Parameter set resulting in the best fit of the unpolarized EMC ratio to the
nuclear matter EMC data. Masses are in units MeV.

Figure 5.6: Unpolarized EMC ratio for best fit parameter set, shown in Table 5.11.
The results are evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken

from Ref. [60].
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5.2 Polarized EMC Ratios

We will now study the polarized EMC ratio for the proton (RP ), which is given by the
ratio of the in-medium to free polarized structure function of the nucleon:

RP =
g∗1(x)

g1(x)
. (5.5)

As we did for the unpolarized case, we will examine how our prediction of the polarized
EMC ratio changes for different choices of various parameters. In each case we will also
include the unpolarized EMC ratio corresponding to the best fit parameter set, shown
in Fig. 5.6, as a reference. We will try the same values as we did in the unpolarized case
and therefore will not show the tables of values corresponding to the different choices of
parameters, since these will be the same as the unpolarized case. We will just refer to
these tables for the corresponding case.

5.2.1 Changing R

We will first consider how the polarized EMC ratio changes for various choices of bag
radius R. Our choice of set parameters is shown in Table 5.1, and the resultant values
corresponding to various choices of R is shown in Table 5.2. In Fig. 5.7 we show the
results for the polarized EMC ratio for the proton for various bag radii, along with the
unpolarized EMC ratio as a reference.

From Fig. 5.7 we can see that our prediction of the polarized EMC ratio is very
similar to our unpolarized prediction. The various choices of R have the same effect on
the polarized case as it does on the unpolarized case, which is shown in Fig. 5.1. For
the value of R = 0.6 fm, which is the preferred value in the unpolarized case, we observe
very little difference between the unpolarized and polarized EMC ratio.

5.2.2 Changing Diquark State Masses

We will now consider how the polarized EMC ratio changes for various choices of diquark
state masses Mn,s and Mn,v. Our choice of set parameters is shown in Table 5.3, and
the resultant values corresponding to various choices of diquark state masses is shown
in Table 5.4. In Fig. 5.8 we show the results for the polarized EMC ratio for the proton
for various diquark state masses, along with the unpolarized EMC ratio as a reference.

From Fig. 5.8 we can see that changing the diquark state masses has a very similar
effect on the polarized case as it does on the unpolarized case, which is shown in Fig.
5.2. The unpolarized case is given at the lightest diquark state masses, and we see little
difference between the unpolarized and polarized EMC ratios.
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Figure 5.7: Polarized EMC ratio for various bag radii. The results are evolved to
Q2 = 10 GeV2. Our prediction of unpolarized EMC ratio is the solid light grey line
with the same parameters with R = 0.6 fm. The unpolarized EMC data for nuclear

matter is taken from Ref. [60].

5.2.3 Changing gσσ̄

We will now consider how the polarized EMC ratio changes for various choices of the
coupling strength of the σ mean field, gσσ̄. Our choice of set parameters is shown in
Table 5.5, and the resultant values corresponding to various choices of the σ mean field
is shown in Table 5.6. In Fig. 5.9 we show the results for the polarized EMC ratio for
the proton for various coupling strengths of the σ mean field, along with the unpolarized
EMC ratio as a reference.

From the results in Fig. 5.9 we see that the coupling strength of the σ mean field
has the same effect for the polarized case as for the unpolarized case, which is shown in
Fig 5.3, where we see a deeper suppression of the in-medium structure function of the
nucleon for larger values of the σ mean field.
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Figure 5.8: Polarized EMC ratio for various diquark state masses. The results are
evolved to Q2 = 10 GeV2. Our prediction of unpolarized EMC ratio is the solid light
grey line with the same parameters with Mn,s = 550 MeV and Mn,v = 750 MeV. The

unpolarized EMC data for nuclear matter is taken from Ref. [60].

5.2.4 Changing pF

We will now consider how the polarized EMC ratio changes for various choices of Fermi
momentum pF . Our choice of set parameters is shown in Table 5.7, and since changing
the Fermi momentum does not impact any other values the results in Table 5.8 are
true for any value of Fermi momentum. In Fig. 5.10 we show the results for the
polarized EMC ratio for the proton for various values of Fermi momentum, along with
the unpolarized EMC ratio as a reference.

From Fig. 5.10 we can see that changing the value of Fermi momentum has the
smallest effect on the EMC ratio, this is also true for the unpolarized case, which is
shown in Fig. 5.4. The effect of changing the Fermi momentum on the polarized EMC
ratio is very similar to the unpolarized case, with the effect being predominantly seen in
the large-x region.
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Figure 5.9: Polarized EMC ratio for various σ mean field strengths. The results are
evolved to Q2 = 10 GeV2. Our prediction of unpolarized EMC ratio is the solid light
grey line with the same parameters with gσσ̄ = 180 MeV. The unpolarized EMC data

for nuclear matter is taken from Ref. [60].

5.2.5 Changing V0

Finally, we will consider how the polarized EMC ratio changes for various choices of the
ω mean field, which corresponds to varying the vector potential V0. Our choice of set
parameters is shown in Table 5.9. As done in the unpolarized case, we will not vary the
vector field directly but will be varying the ratio of the vector to scalar potential, which
is what we use to determine V0. See the unpolarized case (Section 5.1.5) for more detail.
Changing the vector potential does not impact any other parameter and so the results
in Table 5.10 are true for any value of the vector potential. In Fig. 5.11 we show the
results for the polarized EMC ratio for the proton for various vector potentials, along
with the unpolarized EMC ratio as a reference.

From Fig. 5.11 we can see that, like the unpolarized case, of all the parameters
tested the EMC ratio is most strongly dependent on the vector potential. The effect



5.2. Polarized EMC Ratios 69

Figure 5.10: Polarized EMC ratio for various Fermi momentum pF . The results are
evolved to Q2 = 10 GeV2. Our prediction of unpolarized EMC ratio is the solid light
grey line with the same parameters with pF = 220 MeV. The unpolarized EMC data

for nuclear matter is taken from Ref. [60].

of changing the vector field strength on the polarized EMC ratio is very similar to the
unpolarized case, which is shown in Fig. 5.5, where the effect of changing the vector
field has the greatest impact in the mid to high-x region.

5.2.6 Best Fit Parameter Set

We will finish this section by presenting both the unpolarized and polarized EMC ratios
together for the best fit parameter set found for the unpolarized case, which is given in
Table 5.11. In Fig. 5.12 we present our prediction of the unpolarized and polarized EMC
ratios together. We are very interested in comparing our prediction of the polarized EMC
ratio with that made by Cloët, Bentz and Thomas [1], where they employed modified
Nambu-Jona-Lasinio (NJL) model. Therefore, we shall also present their results. In Fig.
5.13 we show the predictions from Ref. [1] for the polarized EMC effect. We shall show
the two predictions with the same y-axis scale for easier comparison.
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Figure 5.11: Polarized EMC ratio for various vector potentials V0. The results are
evolved to Q2 = 10 GeV2. Our prediction of unpolarized EMC ratio is the solid light

grey line with the same parameters with V0 = 39.04 MeV. The unpolarized EMC data
for nuclear matter is taken from Ref. [60].

Our prediction of the polarized EMC ratio along with that of the unpolarized EMC
ratio is shown in Fig. 5.12. We can see that through our approach we observe very little
difference between the unpolarized and polarized EMC ratios, with the ratio being of
the same order in both cases. This is a very interesting result, as it is rather different
from the result obtained for the polarized EMC ratio in the NJL model [1], shown in
Fig. 5.13. There the polarized EMC ratio is enhanced by about an order twice that
compared to the unpolarized case. By taking the bag model and including the quark
degrees of freedom in the in-medium calculations through the use of the QMC model,
we predict the polarized EMC ratio to be about the same as the unpolarized EMC ratio.
Therefore, the enhanced polarized EMC ratio observed in the NJL model appears to be
a model dependent phenomena. It will be very exciting to compare the predictions of
the polarized EMC ratio to the experimental data. We will make a brief note about
the low-x region (x . 0.05), where the unpolarized curve has a small downturn and the
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Figure 5.12: Unpolarized and polarized EMC ratio for best fit parameter set for the
unpolarized case, shown in Table 5.11. The results are evolved to Q2 = 10 GeV2. The

EMC data for nuclear matter is taken from Ref. [60].

polarized case an upturn. In the model calculations both the ratios tend smoothly up
to values of approximately 1.1 for the unpolarized case and 1.05 for the polarized case
at x = 0. The low-x turns we see here are a result of the QCD evolution.

The results presented in this work are evolved at LO. As a comparison we have pro-
duced the next-to-leading order (NLO) results for the unpolarized and polarized EMC
ratio and these are presented in Appendix D, where we see little difference between the
LO and NLO results.

Recapping our results so far; we have gone through how the changing various param-
eters effects the EMC ratio for both the unpolarized and polarized case. We observed
that changing the strength of the vector field had the greatest impact on the EMC ratio.
Having found a best fit parameter set for the unpolarized case, we presented out predic-
tion for the polarized case and found that there is little difference between the two cases
in the bag model. This is in contrast to the results found in the NJL model, where the
polarized EMC ratio is of order twice that of the unpolarized case.
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Figure 5.13: Unpolarized and polarized EMC ratio from Ref. [1] where the NJL model
was used. The lower curve corresponds to the polarized case. The EMC data for

nuclear matter is taken from Ref. [60].

5.3 In-Medium Contributions to the EMC Effect

Having explored the effect of various parameters on the EMC ratio and coming up with
the best fit parameter set in the previous section, we are now at the stage to look at
the contribution to both the unpolarized and polarized EMC ratio from each in-medium
modification included. We will do this by including the in-medium modifications one at
a time and looking at how the EMC ratio develops as we do this, where we shall present
the results for both the unpolarized and polarized case together at each step. We will
start by including the effect of the scalar mean field, this will first be done through
the modification to the quark wave function of a bound nucleon, and then through the
effective nucleon and diquark state masses, we will then include Fermi motion, and finally
include the vector field effects.

5.3.1 σ Mean Field: Wave Function Modification

We will first look at the contribution to the EMC effect from the modified quark wave
function caused by the σ mean field. The effect of the σ mean field on the quark wave
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function of a bound nucleon is discussed in Section 4.1.1. For this case, when we take the
ratio of the in-medium to free structure function of the proton, the in-medium structure
function will only contain the altered wave function, we present the results in Fig. 5.14.
The values for the parameters are given in Table 5.11.

Figure 5.14: Unpolarized and polarized EMC ratio, where only the altered wave
function arising from the σ mean field is included in the in-medium structure function.
The results are evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken

from Ref. [60].

From the result presented in Fig. 5.14 we can see that the altered quark wave function
arising from the bound quark experiencing the σ mean field does not play a significant
role in producing the EMC effect. The effect is strongest in the polarized case at low-x
where the ratio drops below 1 at x ≈ 0.3 and smoothly decreases to about a value of 0.9
at x = 0. Besides the low-x behaviour observed in the polarized case, the ratio for the
in-medium to free structure function is approximately unity over the majority of x for
the unpolarized case, and at unity over the valence region for the polarized case.
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5.3.2 σ Mean Field: Effective Nucleon Masses

We will now extend the effect of the σ mean, and consider the effect of this mean field
on the bound nucleon as a whole. The effect of the σ mean field on the bound nucleon is
included through the effective nucleon and diquark state masses, as discussed in Section
4.1.2. For this case then, we will be considering the contribution of the total effect of
the σ mean field to the EMC effect. Therefore, when we take the ratio of the in-medium
to free structure function of the proton, the in-medium structure function will include
the effect of both the altered wave function and the effective nucleon and diquark state
masses, both arising from the bound nucleon experiencing a σ mean field. We present
the results in Fig. 5.15. The values for the parameters are given in Table 5.11.

Figure 5.15: Unpolarized and polarized EMC ratio, where only the altered wave
function with the altered nucleon and diquark state masses arising from the σ mean

field are included in the in-medium structure function. The results are evolved to
Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

From Fig. 5.15 we can see that introducing the effective nucleon and diquark state
masses has a significant effect on the EMC ratio. We are now beginning to see the
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trend associated with the EMC effect, where the suppression of the in-medium structure
function compared to the free case is becoming apparent, and is seen to occur in the
low to mid-x region where the ratio of the in-medium to free structure function of the
proton sits below unity. The upward slopping tail has a gradual ascent that starts much
earlier compared to the full result. The effective nucleon masses has a similar effect on
both the unpolarized and polarized case.

5.3.3 Fermi Motion

We will now extend our calculations to include the effect of Fermi motion on the bound
nucleon, which is discussed in Section 4.2. For this case, our bound nucleon will include
the effects of σ mean field as well as Fermi motion. Therefore, when evaluating the
ratio of the in-medium to free structure function of the proton, the in-medium structure
function will include the altered quark wave function with the effective nucleon and
diquark state masses, arising from the σ mean field, along with the effect of Fermi
motion. We present the results in Fig. 5.16. The values for the parameters are given in
Table 5.11.

We can see that the effect of Fermi motion, as taken from the difference between
the results in Fig. 5.15 and 5.16, has a relatively small impact on both the unpolarized
and polarized EMC ratio. Including Fermi motion into the calculation of the in-medium
structure function has the effect of slightly enhancing the EMC ratio where the minimum
has been expanded to a small degree and the upward slopping tail now has a more rapid
ascent. Overall the effect of Fermi motion does not play a significant role in producing
the EMC effect.

It is somewhat interesting that the effect of Fermi motion appears to be so minor. We
check the effect of Fermi motion alone without any of the other in-medium modifications
in Appendix E.

5.3.4 ω Mean Field: The Vector Potential

Finally, we will extend our calculations to include the of the ω mean field, or vector
potential. This is the final effect that is included into the calculations, and incorporating
the vector field is discussed in Section 4.3. In this case, we are now considering all
in-medium modifications accounted for, and so our in-medium structure function will
include; the altered quark wave function with the effective nucleon and diquark state
masses, arising from the σ mean field, the effect of Fermi motion, and the vector potential,
arising from the ω mean field. We present the result in Fig. 5.17. The values for the
parameters are given in Table 5.11.

From the result presented in Fig. 5.17 we can see that the vector potential plays an
important role in producing the shape of the EMC effect. The vector potential counters
the effect of the σ mean field in the low-x region where the EMC ratio is slightly pushed
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Figure 5.16: Unpolarized and polarized EMC ratio, where only the altered wave
function with the effective nucleon and diquark state masses arising from the σ-mean
field along with Fermi motion are included in the in-medium structure function. The
results are evolved to Q2 = 10 GeV2. The EMC data for nuclear matter is taken from

Ref. [60].

upward toward unity. On the contrary, in the mid to high-x region the vector potential
has the effect of drawing down the minimum of the EMC ratio. Hence we see that the
vector potential enhances the suppression of the in-medium structure function of the
bound nucleon in the mid to high-x region. Overall, the ω mean field, which produces
the vector potential, plays a significant role in producing both the unpolarized and po-
larized the EMC effect.

We will now review this section with the important results. We went through the
contribution to both the unpolarized and polarized EMC ratio from each in-medium
modification accounted for. We included the in-medium modifications one at a time
and watched the EMC ratio develop with each added effect. We found that the altered
quark wave function, arising from the σ mean field, as well as the effect of Fermi motion
play a minor role in producing the EMC effect. We found the key players in producing
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Figure 5.17: Unpolarized and polarized EMC ratio, with all in-medium modifications
included; the altered wave function with the altered nucleon and diquark state masses

arising from the σ mean field, the effect of Fermi motion, and the vector potential,
arising from the ω mean field. The results are evolved to Q2 = 10 GeV2. The EMC

data for nuclear matter is taken from Ref. [60].

the EMC effect are the effect of the σ mean field on the nucleon and the ω mean field.
The effective nucleon and diquark state masses, arising from the σ mean field, causes a
suppression in the in-medium structure function in the low to mid-x region. The vector
potential, arising from the ω mean field, causes a suppression in the in-medium structure
function in the mid to high-x region, and also slightly opposes the effect of σ mean field
in the low-x region. Hence we find that together, the σ mean field and ω mean field
are the dominant contributors to producing the EMC effect in both the unpolarized and
polarized case.

5.4 Deuteron Structure Function

We will now discuss a correction that should be made to our calculations. When we
determine our unpolarized EMC ratio, the free structure function is that of a free proton.
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However, when the EMC ratio is experimentally measured a deuteron target is used.
Hence, the ratio actually determined is the structure function of some heavy nucleus,
such as lead, divided by the structure function of deuteron. We will apply a correction to
account for the fact that the free structure function in experiment actually corresponds
to the deuteron, rather than just a free proton, structure function and see how this
impacts our result for the EMC ratio. The unpolarized deep inelastic structure function
of a relativistic deuteron has been previously investigated by Melnitchouk and Thomas,
where they determined the fully off-shell calculation of the deuteron structure function
and presented the ratio of the total deuteron to nucleon structure functions [76] [77]. The
on-mass-shell calculations have also been determined by Frankfurt and Strikman [78] [79].
In Fig. 5.18 We will present the results of the off-shell and on-shell ratio of the deuteron
to nucleon structure function from the previously mentioned references.

Figure 5.18: Ratio of the deuteron to nucleon unpolarized structure function, FD2 /F
N
2 ,

as a function of x for the off-shell correction from Refs. [76] [77], and the on-shell
correction from Refs. [78] [79]. The results are evolved to Q2 = 5 GeV2.

The results presented in Fig. 5.18 have been evolved to Q2 = 5 GeV2, up until
this stage we have been evolving all our distributions from the model scale to a scale
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of Q2 = 10 GeV2. Since the evolution progresses logarithmically, the difference in the
result from Q2 = 5 GeV2 to 10 GeV2 is minor. However, to be consistent we will evolve
our unpolarized EMC ratio to a value of Q2 = 5 GeV2 and then apply both the off-shell
and on-shell corrections to see how these impact our result. In Fig. 5.19 we present the
result for the off-shell and on-shell deuteron structure function correction applied to the
unpolarized EMC ratio, F ∗2 (x)/F2(x).

Figure 5.19: Unpolarized EMC ratio with no correction, and with the off-shell and
on-shell deuteron structure function corrections applied. The results are evolved to

Q2 = 5 GeV2. The EMC data for nuclear matter is taken from Ref. [60].

The first thing to point out about Fig. 5.19 is that the results are evolved to Q2 = 5
GeV2, compared to our previous results, which have been evolved to Q2 = 10 GeV2.
This was done so the deuteron corrections could be applied. The nuclear matter EMC
data corresponds to Q2 = 10 GeV2, but this is not a big issue. Take Fig. 5.17 for
example, by comparing the unpolarized EMC ratio to that of Fig. 5.19 we can see that
the difference between a Q2 of 5 GeV2 and 10 GeV2 is only minor.

The deuteron structure function corrections predominantly impact the mid to high-x
region. The off-shell correction gives a better fit to the data in the mid-valence region, as
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is also true for the on-shell correction, but to a lesser degree. Toward the upper-valence
region the on-shell correction gives a better fit to the data by drawing down the mini-
mum slightly.

Finally, in Fig. 5.20 we present the unpolarized EMC ratio with the deuteron struc-
ture function corrections applied, along with our polarized EMC ratio for comparison.
We can see that the polarized EMC ratio fits very well with the unpolarized on-shell
correction in the mid to high-valence region. On the contrary, the polarized EMC ratio
sits under the unpolarized off-shell correction for essentially the entire x region.

Figure 5.20: Unpolarized EMC ratio with no correction, with the off-shell and on-shell
deuteron structure function corrections applied, along the polarized EMC ratio. The
results are evolved to Q2 = 5 GeV2. The EMC data for nuclear matter is taken from

Ref. [60].

In Appendix F we look at some more recent phenomenological extractions of the
off-shell corrections by Accardi et al. [80], as well as earlier by Kulagin and Petti [81].
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5.5 Chapter Summary

In this chapter we presented the results of our investigation into the unpolarized and
polarized EMC effect using the bag model. Firstly, we presented our unpolarized EMC
ratio and saw how varying different parameters affected the result. We then did the same
for our polarized EMC ratio. In both cases we saw that varying the vector potential had
the biggest impact on the EMC ratio. Through varying different parameters we found
a parameter set that gave the best fit to the EMC data. This parameter set is given in
Table 5.11 with the corresponding unpolarized and polarized EMC ratios shown in Fig.
5.12. We found that our prediction of the polarized EMC effect is very similar to our
unpolarized prediction. This is in contrast to the prediction from the NJL model, Fig.
5.13 [1], where the polarized EMC effect is of order twice that of the unpolarized effect.

We then went through and included the in-medium modifications step by step into the
calculations of the structure function of the bound nucleon so that we could see how each
effect contributes to both the unpolarized and polarized EMC ratio. The altered quark
wave function of the bound nucleon, arising from the σ mean field, and Fermi motion
play a minor role in explaining the EMC effect. The effective nucleon and diquark state
masses, arising from the σ mean field, as well as the vector potential, arising from the ω
mean field, play the dominant role in producing the EMC effect for both the unpolarized
and polarized EMC ratio. The effect of σ mean field is observed in the low to mid-x
region and the effect of the vector field is predominantly seen in the mid to high-x region.

Finally, we looked at how the deuteron structure function correction impacts our
results. Our EMC ratio was found using the structure function of a free proton, whereas
in reality the structure function of deuteron is used. Applying this correction had the
biggest impact in the mid to high-x region, where the off-shell correction gave a better
fit to the EMC data in the mid-valence region, which was also true for the on-shell
correction, but to a lesser degree. Toward the upper-valence region the on-shell correction
gave a better fit to the data by drawing down the minimum slightly. Overall, the deuteron
correction did not have an overwhelming effect on the results.
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Chapter 6

Conclusion

We performed a detailed investigation into the unpolarized and polarized EMC effect
using the MIT bag to model the free nucleon, and then applied the mean field approx-
imation along with the QMC model to model the bound nucleon, with the key feature
that we included the quark degrees of freedom and hence allowed the internal quark
structure of the nucleon to be altered when placed in a nuclear medium.

With the MIT bag model we calculated the unpolarized and polarized structure func-
tion of the proton. The u-quark distribution calculated from the bag model was checked
against experimental data and found to be in good agreement.

To calculate the structure function of the bound nucleon, we considered the in-
medium modifications on the bound nucleon and how this would impact its structure.
To start with, we considered the σ mean field, which is first included through the altered
quark wave function of the bound nucleon, and then through the effective nucleon and
diquark state masses. Next the Fermi motion of a bound nucleon was considered, which
is included into the calculations through a convolution with the Fermi smearing func-
tion. The final effect we considered was the ω mean field, which gives rise to the vector
potential and is included into the calculations through scaling the quark distributions
and shifting the Bjorken variable. We then calculated the unpolarized and polarized
structure function for the bound proton.

We then produced our EMC ratios for both the unpolarized and polarized case. We
changed various parameters to see how this would impact the EMC ratio and observed
that changing the strength of the vector potential had the greatest impact on both the
unpolarized and polarized EMC ratio. Through testing different parameters we found
a parameter set that gave the best fit of the unpolarized EMC ratio to the data. We
then presented the unpolarized and polarized EMC ratios with this parameter set and
found that there is little difference between the unpolarized and polarized EMC ratios
in the bag model. This is an interesting result, as it is in contrast to the results found in
the NJL model, where the polarized EMC ratio is of order twice that of the unpolarized
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case. Hopefully, there will be data out of JLab in the near future for the polarized EMC
effect so the different predictions can be compared with experimental data.

We went through the contribution to both the unpolarized and polarized EMC ratio
for each in-medium modification accounted for, where the in-medium modifications were
included one at a time and we saw how the EMC ratio developed with each added effect.
We found that the altered quark wave function, which arises from the σ mean field, as
well as the effect of Fermi motion play a negligible role in producing the EMC effect. The
key players in producing the EMC effect, for both the unpolarized and polarized case, are
the effect of the σ mean field on the nucleon and the ω mean field. The effective nucleon
and diquark state masses, arising from the σ mean field, cause a suppression in the in-
medium structure function in the low to mid-x region. The vector potential, arising from
the ω mean field, causes a suppression of the in-medium structure function in the mid to
high-x region, and also slightly opposes the effect of the σ mean field in the low-x region.

We also applied a deuteron correction to our calculations. This altered our free
structure function such that it effectively became that of a deuteron. We checked both
the off-shell and on-shell case and found that applying this correction had the biggest
impact in the mid to high-x region, where the off-shell correction gave a better fit to
the EMC data in the mid-valence region, which was also true for the on-shell correction,
but to a lesser degree. Toward the upper-valence region the on-shell correction gave a
better fit to the data by drawing down the minimum slightly.

Concluding our most important findings; we found that together, the effective nucleon
and diquark state masses arising from σ mean field, and the vector potential arising from
the ω mean field are the dominant contributors in producing the EMC effect for both
the unpolarized and polarized case. Using the bag model, along with the mean field
approximation and QMC model, we found that the polarized EMC effect is essentially
the same as the unpolarized EMC effect.

6.1 Future Work

The bag model is a fairly crude model of the nucleon. It would be good to improve on
the model. A pion cloud will carry some fraction of the nucleon’s momentum and also
change its spin-isospin distribution. It would be very interesting to include the pion into
the calculations of both the free and in-medium structure function of the nucleon and
see how this changes the results.

On the experimental front, we are hoping that JLab will obtain data on the polarized
EMC effect shortly, as the proposals have been approved [82]. It is crucial to compare
the predictions of polarized EMC effect from different models, such as the bag model,
done in this work, and the NJL model, too see which predictions best match the ex-
perimental data. This would provide us with further insight into the structure of the
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nucleon, as there is no doubt that spin physics has played a crucial role in developing
our understanding of the nucleon, among many other things.
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Appendix A

Calculation of |φ2(pn)|2

First we need the overlap integral of the bag wave function,

I(x) =

∫
dy Ψ†(y) Ψ(y − x), (A.1)

where the bag wave function, given in Eq. (3.20) is given by

Ψm(x) = N

 j0

(
Ω|x|
R

)
χm

iσ · x̂j1
(

Ω|x|
R

)
χm

Θ(R− |x|), (3.20)

with the normalisation constant

N2 =
1

4π

Ω3

2R3(Ω− 1)sin2Ω
, (3.21)

resulting in the overlap

I(x) = N2

∫
dy

[
j0

(
Ω

R
y

)
j0

(
Ω
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j1

(
Ω

R
|y − x|

)
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]
× θ(R− y) θ(R− |y − x|). (A.2)

The result from the integral, with the substitution v = |x|Ω/2R, is

I(v) =
πN2R3

Ω3v

{[
(Ω− v)sin(2v) + (1− sin2(Ω))− cos(Ω)cos(Ω− 2v)

]
+

[(
1− 4v2

2Ω2

)
sin2(Ω)− 2

Ω
sin(Ω)cos(Ω− 2v) +

2

Ω
sin(Ω)cos(Ω) + Ωsin(2v)

− sin(Ω)sin(Ω− 2v)− vsin(2v)

]}
, (A.3)
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which we will write as

I(v) =
πN2R3

Ω3v
(Tt(v) + Tb(v)) , (A.4)

where Tt is the first square bracket corresponding to the overlap integral of the top
part of the bag wave function, and Tb is the second square bracket corresponding to the
overlap integral of the bottom part of the bag wave function. We will define the variable
T as the addition of these two components, used in Eq. (3.26), so we have

T (v) = Tt(v) + Tb(v)

=
[
(Ω− v)sin(2v) + (1− sin2(Ω))− cos(Ω)cos(Ω− 2v)

]
+

[(
1− 4v2

2Ω2

)
sin2(Ω)− 2

Ω
sin(Ω)cos(Ω− 2v) +

2

Ω
sin(Ω)cos(Ω) + Ωsin(2v)

− sin(Ω)sin(Ω− 2v)− vsin(2v)

]
. (3.26)

We are now at the stage to evaluate the expression for the normalization term |φ2(pn)|2,
where we have

|φ2(pn)|2 = 4π

∫ ∞
0

dx x2 j0(pnx) |I(x)|2

= 4π

∫ ∞
0

dx x2 sin(pnx)

pnx
|I(x)|2

= 4π

∫ ∞
0

dx x
sin(pnx)

pn
|I(x)|2,

now using the substitutions

v =
|x|Ω
2R

, u = |pn|R , (3.27)

we have

dx = dv
2R

Ω
, pnx =

2vu

Ω
. (A.5)

Continuing our calculation for |φ2(pn)|2 with these substitutions, we have

|φ2(pn)|2 = 4π

∫ Ω

0
dv

2R

Ω

2Rv

Ω
sin

(
2vu

Ω

)(
R

u

)
|I(v)|2
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4πR

u
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0
dv

(
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Ω

)2
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(
2vu

Ω

)(
πN2R3

Ω3v

)2

|T (v)|2,

which then gives our final expression

|φ2(pn)|2 =
4πR

u

(
2πN2R4

Ω4
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0

dv

v
sin

(
2vu

Ω

)
|T (v)|2. (3.24)
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Calculation of |φ3(0)|2

Having gone through the overlap integral in Appendix A we can go straight into deter-
mining the expression for the normalization term |φ3(0)|2. In order to evaluate |φ3(0)|2
we will first determine |φ3(pn)|2, where we have

|φ3(pn)|2 = 4π

∫ ∞
0

dx x3 j0(pnx) |I(x)|3

= 4π

∫ ∞
0

dx x3 sin(pnx)

pnx
|I(x)|3

= 4π

∫ ∞
0

dx x2 sin(pnx)

pn
|I(x)|3,

using the substitutions found in Eq. (3.27) and (A.5) from Appendix A we have

|φ3(pn)|2 = 4π

∫ Ω

0
dv
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Ω

(
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(
2vu

Ω

)(
R

u

)
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(
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πN2R3
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|T (v)|3,

which then gives us the expression

|φ3(pn)|2 =
4πR

u

(
2πN2R4

Ω4

)3 ∫ Ω

0

dv

v
sin

(
2vu

Ω

)
|T (v)|3. (B.1)

The expressions for I(x), I(v), and T (v) can be found in Eqs. (A.2), (A.3), and (3.26),
respectively.

To obtain our desired result, we set pn = 0, which removes the sin from the expres-
sion as well as an R/u factor. Hence, we arrive at the final expression

|φ3(0)|2 = 4π

(
2πN2R4

Ω4

)3 ∫ Ω

0

dv

v
|T (v)|3. (3.25)
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Appendix C

Model Scale for Various
Parameters

R (fm) Mn,s (MeV) Mn,v (MeV) µ2 (GeV2)

0.6 550 750 0.040

0.6 650 850 0.056

0.6 750 950 0.100

0.6 850 1050 0.280

0.8 550 750 0.036

0.8 650 850 0.052

0.8 750 950 0.098

0.8 850 1050 0.260

1.0 550 750 0.034

1.0 650 850 0.050

1.0 750 950 0.096

1.0 850 1050 0.240

Table C.1: Corresponding model scale for various parameters

The parameters that give the best fit of the evolved u-quark distribution to data corre-
sponds to R = 0.6 fm, Mn,s = 550 MeV and Mn,v = 750 MeV ,.
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Appendix D

EMC Effect at NLO

Our prediction of the unpolarized and polarized EMC effect is evolved at NLO to a scale
of Q2 = 10 GeV2, and compared to the same results evolved at LO. The main difference
between the orders of evolution is the value of the model scale, which is the starting scale
for the evolution. Our valence u-quark distribution is evolved at NLO and compared
to the MSTW2008 NLO valence u-quark distribution [83] to determine the model scale.
At LO we previously found that the model scale corresponds to µ2 = 0.04 GeV2, while
for the evolution at NLO the model scale is much higher at a value of µ2 = 0.20 GeV2.
We present the results in Fig. D.1.

The NLO results give a slightly better fit to the data, but there is only a minor
difference between the LO and NLO results for both the unpolarized and polarized
EMC ratio.
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Figure D.1: Unpolarized and polarized EMC ratio. The results are evolved to Q2 = 10
GeV2 at NLO, corresponding to the solid lines, and at LO, corresponding to the

dashed lines. The EMC data for nuclear matter is taken from Ref. [60].
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Appendix E

EMC Effect with only Fermi
Motion

In Section 5.3.3 we notice that the effect of Fermi motion plays only a minor role in
producing the EMC effect for both the unpolarized and polarized case. Here we check
the effect of the Fermi motion alone, without any of the other in-medium modifications.
Therefore, when evaluating the ratio of the in-medium to free structure function of the
proton, the in-medium structure function will include only the effect of Fermi motion,
which is discussed in Section 4.2. We present the results in Fig. E.1 for the parameters
R = 0.6 fm, M = 938.27 MeV, Mn,s = 550 MeV, Mn,v = 750 MeV, along with a Fermi
momentum of pF = 220 MeV for the in-medium structure function.

From Fig. E.1 we do indeed see only a minor effect from Fermi motion, which is
consistent with the results presented in Section 5.3.3.
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Figure E.1: Unpolarized and polarized EMC ratio, where only Fermi motion is
included in the in-medium structure function. The results are evolved to Q2 = 10

GeV2. The EMC data for nuclear matter is taken from Ref. [60].
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Appendix F

Deuteron Correction to the EMC
Ratio

We apply the phenomenological extractions of the off-shell deuteron corrections from
Accardi et al. [80] as well as Kulagin and Petti [81] to our unpolarized EMC effect. The
ratio of the deuteron to nucleon structure function is presented in Fig. F.1. The results
from Accardi et al. correspond to Fig. 9 from Ref. [80] where the AV18 curve is repro-
duced here. The results from Kulagin and Petti correspond to Fig. 13 from Ref. [81]
where the uncertainties have not been included.

In Fig. F.2 we present the result of the off-shell deuteron corrections applied to our
prediction of the unpolarized EMC ratio, where the values for the parameters are given
in Table 5.11. Applying the deuteron correction from Accardi et al. gives a better fit to
the EMC data over the majority of x. Applying the correction from Kulagin and Petti
gives a very similar result to that presented in Fig. 5.19. It is interesting to see that
using the more recent data for the off-shell deuteron correction from Accardi et al. we
see a better fit to the data in the mid to high-x region while this was not case for the
other off-shell deuteron corrections we looked at. It is also interesting to point out that
the off-shell correction of Accardi et al. presented in Fig. F.2 is more reminiscent of the
on-shell correction presented in Fig. 5.19.
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Figure F.1: Ratio of the deuteron to the isoscalar nucleon unpolarized structure
function, FD2 /F

N
2 , from Ref. [80] and [81]. The results are evolved to Q2 = 10 GeV2.
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Figure F.2: Unpolarized EMC ratio with no correction, and then with the off-shell
deuteron corrections from Ref. [80] and [81] applied. The results are evolved to
Q2 = 10 GeV2. The EMC data for nuclear matter is taken from Ref. [60].
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