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Abstract

This thesis is concerned with the study of various aspects of the Yang-Mills Squared

construction, which aims at furthering our understanding of the provocative idea that

gravity may be regarded, in some sense, as the “square” of gauge theory. By assuming

a convolutive tensor product and introducing a bi-adjoint scalar field as one of the fac-

tors, the Yang-Mills Squared formalism describes a purely field-theoretic realisation of

this correspondence: the content as well as the global U -duality symmetries of a wide

variety of supergravity theories may be shown to originate in the product of the contents

and R-symmetries of two super Yang-Mills theories. Here we apply these ideas to twin

supergravities, pairs of theories with identical bosonic sectors but different supersymmet-

ric completions, to demonstrate that they are related in a controlled fashion through the

underlying Yang-Mills factors. This has the additional advantage of giving a prescrip-

tion for constructing new examples of factorisable supergravities from known ones. The

second part of the thesis is devoted to the study of the gauge symmetries of linearised

axion-dilaton gravity by adopting a Becchi-Rouet-Stora-Tyutin (BRST) covariant formu-

lation of Yang-Mills. The content, BRST and anti-BRST transformations as well as the

equations of motion of the gravitational side are shown to be related to those of the gauge

theory side by means of a dictionary building the gravity fields as sums of convolutions of

Yang-Mills potentials and ghosts, thus providing a fully Lorentz-covariant version of the

Yang-Mills Squared map. The anti-BRST transformations of the Kalb-Ramond 2-form

sector are shown to naturally anti-commute with BRST in this formalism.
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Chapter 1

Overview

A deeper understanding of the quantum-mechanical properties of the gravitational field

and its interactions is arguably one of the most intriguing enterprises which theoretical

physics has embarked on. Aside for its importance, one reason why it is so interesting to

think about this is the apparent chasm separating our currently most successful model of

gravity, as a theory of the geometry of a dynamical spacetime, and those describing the

other fundamental forces, which are best understood in terms of gauge theories. These are

models which describe the dynamics and interactions of the fundamental fields of nature

with the aid of additional, unphysical degrees of freedom which help maintaining many

desirable features, such as Lorentz covariance and locality, manifest. The redundancy

in such a description is then accounted for by ensuring that the action of such theories

is invariant under a set of gauge transformations, which heuristically help keep track

of the unphysical modes. The quantisation of gauge theories represents an extremely

successful chapter of theoretical physics, culminating with the Standard Model; however,

the attempts to apply the insights gained there to models of the gravitational field fail to

accomplish a similar level of success.

As it is often the case, however, it has become clear that other, perhaps more indirect,

relations between models of gravity and quantum gauge theories are poised to teach us a

great amount; of these, the AdS/CFT correspondence [1–3] represents, without a doubt,

the prime example. Another interesting idea, more closely related to the spirit of this

thesis, is that gravity may be thought of, in some way, as arising from a “product” of

two gauge theories. After first appearing in string theory with the KLT relations [4] as

well as in string field theory [5, 6], this provocative idea has gained new traction in recent

years when Bern, Carrasco and Johansson (BCJ) formalised it in the context of scattering

amplitudes [7, 8]. They taught us that, whenever the kinematic factors (contractions of

momenta and polarisation vectors) of a certain gauge theory amplitude obey the same

algebraic relations as the colour factors (products of structure constants) according to

the so-called color-kinematic duality [9], it is possible to construct amplitudes describing

graviton scattering as the double copy of the gauge theory one, that is by replacing the

colour factors with a second copy of the kinematics. For a nice review, see [10]. In addition

13



14 CHAPTER 1. OVERVIEW

to sparking great interest with this radical proposal, they also showed that the existence of

such a connection renders previously intractable gravitational calculations much simpler

to handle: rather than evaluating the extremely complicated gravity amplitudes head-on,

it is possible to “simply” compute the gauge theory amplitudes and construct the gravity

result as a by-product. Indeed, calculations at high loop orders have been challenging our

state-of-the-art understanding of the quantum-mechanical nature of supergravity theories,

particularly with regards to the emergence of ultraviolet divergences or lack thereof [11–

19]. Recently, a number of works have generalised the double copy procedure aiming at a

classification of double copy constructible theories [20–29]. The double copy construction

of gauged supergravities has been considered in [30]. Other, a priori independent lines

of research have been converging somewhat on similar results. Examples include studies

concerning the Cachazo-He-Yuan (CHY) formulae [31–39] and the related ambitwistor

string theories [40–45]; string theory [46–55]; kinematic algebras [56–60]. Alternatively, a

double-copy prescription valid directly at the level of classical solutions has been proposed

for various models [61–72].

In this thesis, we address the “Gravity = Gauge x Gauge” idea from a different stand-

point, exploiting a formalism which is a priori independent from the double copy prescrip-

tion in the scattering amplitudes context, albeit surely related in some way; we refer to it

as Yang-Mills Squared. This focusses primarily on the relationship between the symme-

tries of supersymmetric gauge theories of the Yang-Mills type and those of supergravity;

more specifically, it aims at constructing the latter from (a product of) the former, thus

finding a “Yang-Mills origin” to the invariances of supergravity. This program is con-

ceptually unified, but practically formed of two halves: indeed, the analysis of the global

symmetries on one hand, and the local ones on the other, necessitate two distinct treat-

ments, a fact which is reflected in the structure of this thesis: after a review of the general

context in Chapter 2, Chapters 3 and 4 are devoted to global symmetries, while Chapters

5 and 6 are concerned with gauge symmetries.

In Chapter 2, we remind the reader about the two sides in this game: (supersymmetric)

Yang-Mills gauge theory and supergravity. After a brief exposition of the necessary con-

cepts and notation relative to classical Yang-Mills theory [73], Section 2.2 introduces the

idea of supersymmetry by directly discussing minimal N = 1 super Yang-Mills theory in

four dimensions: the Yang-Mills gauge potential and one adjoint-valued spinor field come

together in a single entity, called a supermultiplet, bound by symmetry transformations

which, being generated by a fermionic Noether charge Q carrying half-integer helicity,

turns bosons into fermions, and vice versa. For an introduction, see for instance [74–76]

The idea of extended (that is, N > 1 in D = 4) supersymmetry, generated by multiple su-

percharges, Qi, leads naturally to the notion of R-symmetry, formally the automorphism

group of the supersymmetry algebra, which extends to an internal symmetry of the whole

supermultiplet. This is then used to review the classification [77] of supermultiplets in

D = 4 in Section 2.2.2.

Yang-Mills theory and, even more so, supergravities are often studied in dimensions
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different from D = 4 and usually ranging between 3 ≤ D ≤ 11 for a variety of rea-

sons: arguably the most important of these is the observation that the five consistent

(anomaly free) supersymmetric string theories live in 10 spacetime dimensions and their

conjectured mysterious “mother” theory, known as M-theory, lives in D = 11. Careful

consideration of the properties of minimal spinors in different dimensions leads to the

important classification of the allowed R-symmetry groups, which in turn allows one to

classify all possible supermultiplets in these dimensions. As far as the super Yang-Mills

multiplets are concerned, the highest dimension admitting any is D = 10, where in fact

one may find two inequivalent minimal super Yang-Mills theories, owing to the chiral

nature of the minimal spinors in this dimension; these have supersymmetry N = (1, 0)

and N = (0, 1) respectively. Again, see [77].

Finally, in Section 2.3 we introduce the idea of supergravity [78–80] by means of the

N = 1 theory in four dimensions, namely the field theoretic realisation of the smallest

supergravity multiplet comprising only the metric gµν and its supersymmetric partner, the

gravitino Ψµ. The particular simplicity of this model arise, among other things, from the

absence of scalar fields in the spectrum; the consequences of the presence of scalar fields

in a supergravity theory are presented in Section 2.3.1: specifically, they span a coset

space G/H, known as the scalar manifold, where G is the group of a non-compact global

symmetry acting non-linearly on the dim(G/H) scalars, while H is its maximal compact

subgroup [81–83]. In supergravity, the group G is usually referred to as the U -duality

group, owing to its affinity to that of the U -duality in string theory [84], although the latter

is the discrete analog of the former. The actions of G and H usually extend to invariances

of (the equations of motion of) the whole multiplet, thus not just of the scalar sector, and

are thus central in our understanding of supergravity theories; whilst H is the maximal

symmetry which is linearly realised on all fields, G only charges the bosons: the scalars, as

mentioned, trasform non-linearly, while the vector fields and higher rank p-forms (possibly

together with their duals) transform in linear representations. The graviton is invariant

under both. The classification of the scalar manifolds appearing in supergravities with at

least 8 real supercharges, where they are homogeneous symmetric spaces, is reviewed to

conclude this Section. For less supersymmetric theories, the metric of the scalar manifold

depends on one or more arbitrary parameters which define a particular geometry on the

manifold.

Chapter 3 reviews the Yang-Mills Squared construction proper [85–91]. In an identical

fashion as with all incarnations of the double copy, the tensor product of the on-shell states

of two (in general different) Yang-Mills vector potentials is decomposed into the rank-

2 symmetric, rank-2 antisymmetric and singlet irreducible representations of the little

group, which are interpreted as the helicity states for a graviton, a Kalb-Ramond 2-form

and a dilaton, namely the states constituting the universal bosonic sector of supergravity

theories. We refer to the Yang-Mills theories entering the product as the Left and Right

factors. However, it would be entirely unsatisfactory if the relationship between gauge

theory and supergravity were to stop at the simple identification of on-shell helicity states.
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In an attempt to go beyond this and towards a Lorentz covariant field theoretic description

of the double copy, one expands the tensor product to include a so-called spectator scalar

field valued in the bi-adjoint of the Left and Right gauge groups, G × G̃, in such a way

that the bona-fide gravitational states may be made singlets under the Yang-Mills gauge

groups, as required for consistency. A second important refinement to the standard tensor

product adopted in the relevant literature is the assumption that it is a convolution, rather

than a simple product, which combines the spacetime dependence of the factors, first

introduced in [90]; this is shown in Section 3.1. The convolutive structure determines that

it is in fact the convolution inverse of the bi-adjoint scalar which enters the product. The

convolution and the spectator are necessary ingredients in deriving the local symmetries

of supergravity at linear level, which include diffeomorphisms, 2-form gauge invariance

and supersymmetry, from the gauge symmetries of the Yang-Mills factors. These results

will be expanded upon in Chapter 6.

Similarly, taking the tensor product of two supersymmetric Yang-Mills multiplets with

N and Ñ , respectively, consistently yields the states of a (N +Ñ )-extended supergravity.

In Section 3.2, we review how one may relate the existence of the G and H symmetries

of supergravities to the underlying internal symmetries of the Yang-Mills factors, often

coinciding with their R-symmetry. The tensor product of little group representations

determines the content of some supergravity theory; these states are first labelled as

representations of int ⊕ ˜int, the Lie algebras of the internal Yang-Mills groups; then,

whenever needed, there exists an enhancement to a bigger Lie algebra h corresponding,

in all cases, to the correct H group. The non-compact group G corresponding to H is

then uniquely determined if one assumes that the supergravity scalars span a symmetric

space. We refer to this procedure as squaring. After performing all possible squaring

products of pure (as in, not coupled to matter) super Yang-Mills multiplets in dimensions

3 ≤ D ≤ 10, which are organised in a pyramid of supergravities, we give the explicit

example of how, in four spacetime dimensions, N = 4 super Yang-Mills squares to N = 8

supergravity in Section 3.2.4. Finally, in Section 3.3 we show, through the specific example

of half-maximal supergravity, how a generalisation of the squaring procedure is achieved

by considering, as inputs in the tensor product, non-supersymmetric Yang-Mills factors

and even matter couplings, namely chiral or hypermultiplets. Employing this sort of

generalised squaring is then possible to show that a wide variety of theories admit a

Yang-Mills factorisation, including virtually all ungauged supergravities coupled to vector

[27] and hypermultiplets with homogeneous scalar spaces [91]. Indeed, one of the most

interesting open questions of this program, as well as of the double copy in general, is

to establish the generality of this phenomenon, which may be summarised in the single

question [91]: are all supergravities Yang-Mills Squared?

Chapter 4 is devoted to twin supergravities, first classified in [92] and further discussed

in [93, 94]. These are pairs of supergravity theories with identical bosonic sectors, but

different supersymmetric completions; they are referred to as the bigN+ twin and the little

N− twin. After reviewing their classification as well as their construction from a common



17

(N+ + N−)-extended “parent” theory in Section 4.1, we show in Section 4.2, following

[95], how all supergravity theories admitting a twin also admit a Yang-Mills factorisation.

Furthermore, we argue that the twinness relation tying them together may be recast in

terms of the Yang-Mills factors, thus providing a general prescription for constructing twin

theories from Yang-Mills: if the parent supergravity admits a factorisation (it typically

lies in the pyramid mentioned above), the big and little twins are obtained by breaking

the R-symmetries of the Left and Right factors, respectively. The way this is carried out

is by decomposing the R-symmetry to the appropriate smaller group, and by replacing

the resulting adjoint-valued spinor multiplet with an identical one living in some different

representation of the gauge group. In order to illustrate things, we provide an explicit

example, again in four dimensions: the unique N = 6 supergravity twin to N = 2 coupled

to 15 vector multiplets. We conclude with a discussion of the few isolated cases which fall

outside of the general prescription; this is usually attributed to their not having a parent

supergravity lying in the pyramid.

Chapter 5 morally divides this thesis in two halves. While Chapter 3 introduces

the framework which we use to study the Yang-Mills origin of the global symmetries of

supergravity and Chapter 4 presents one application thereof, the remainder of the present

text is devoted to the study of the local invariances of supergravity, at least inasmuch as

they may be shown to originate from those of the underlying gauge theories. We argue

that the correct way to understand these necessarily requires one to deviate from the

purely classical Yang-Mills squared map of the previous chapters and consider instead

the Becchi-Rouet-Stora-Tyutin (BRST) form of Yang-Mills [96–102]. Chapter 5 is purely

intended as a review of BRST invariance and related concepts: we chose to present this

with a historical flavour, namely arriving at showing the “original” BRST invariance of

the gauge-fixed Yang-Mills action in Section 5.3 after having performed Faddeev and

Popov’s gauge-fixing in the path integral formalism [103, 104]. Once BRST invariance is

established so, we introduce the related anti-BRST transformations [105–112], which play

an interesting role in our construction. Finally, in Section 5.5, we present the BRST-fixed

version of the Kalb-Ramond 2-form field [113–125], which is extremely interesting since

it constitutes perhaps the least complicated example of a gauge theory not of the Yang-

Mills type: while the latter has an irreducible, closed gauge algebra, the former is first-

stage reducible. It turns out that the Faddeev-Popov gauge-fixing and associated BRST

procedure fail for most theories whose gauge algebra is not closed and irreducible. Then,

those with algebras which are open (closed only on-shell), soft (structure functions instead

of constants) or reducible (gauge invariances for gauge parameters) are best treated by the

more general and encompassing field-antifield or Batalin-Vilkovisky (BV) formalism [126–

133]. We give a brief review of it in Appendix B based upon the excellent [134], where

we also sketch the derivation of the gauge-fixed action for Yang-Mills and the 2-form,

following [135].

Chapter 6 is devoted to the Yang-Mills origin of the local gauge symmetries of N = 0

supergravity, at linearised approximation, as well as of its dynamics. By considering
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a more general squaring product involving the Faddeev-Popov ghosts, we review the

result [6] that the spectrum contains, in addition to the physical graviton, 2-form and

dilaton, also the ghosts and ghosts-for-ghosts required for consistency. Going beyond on-

shell states, we construct the supergravity fields as sums of convolutions of Yang-Mills

fields (physical and ghost); we refer to these collectively as the dictionary. On acting

on these expressions with the Yang-Mills BRST and anti-BRST charges and using the

corresponding Yang-Mills transformations and properties of the convolution, we reproduce

the expected BRST and anti-BRST variations of the gravitational side. Furthermore,

we show that the equations of motion of the gauge theory factors combine through the

dictionary to yield the equations of motion describing the gravitational dynamics.

Chapter 7 contains some final remarks about the results, as well as hopes and spec-

ulations about future directions. Finally, Appendix A collects some tables which didn’t

find their place in the main text, Appendix B, as mentioned, briefly discusses the BV for-

malism and Appendix C contains some more detailed computations relevant to Chapter

6.



Chapter 2

Gauge theory and supergravity

2.1 Yang-Mills theory

Yang-Mills theory and the principle of non-Abelian gauge invariance lie at the heart of our

understanding of three of the fundamental forces: the electromagnetic, the weak and the

strong forces. Albeit a standard topic, let us briefly remind the reader of its most salient

features, to set the stage for the more involved developments of the ensuing chapters and

to fix the notation.

The idea of Yang and Mills was to extend the principle of local gauge invariance of

Maxwell’s theory from the simple local phase rotation enjoyed by electrically charged mat-

ter fields, ψ → eiα(x)ψ, to more general, continuously generated groups of transformations,

G, acting on collections of fields in some (irreducible) representation. For example, G acts

on a set of N fields ψi and their conjugates via its fundamental and conjugate-fundamental

representations,

ψ → ψ′ = U(x)ψ, (2.1)

ψ̄ → ψ̄′ = ψ̄[U(x)]† (2.2)

where, crucially, the action of the group is a function of spacetime, labelled by xµ. A priori,

the matrices U(x) may be elements of any Lie group. Certain requirements imposed by

physical considerations – such as real and positive-definite kinetic terms in the resulting

Lagrangian density – lead one to restrict to compact and semi-simple Lie groups. Let

us consider here Yang-Mills theory based on the (N2 − 1)-dimensional (compact, simple)

group SU(N) of N ×N unitary matrices with unit determinant.

Some facts about SU(N) and su(N)

The matrices U(x) = U(x)i j furnish the fundamental representation of SU(N), with the

additional continuous dependence on x required by the gauge principle. The correspond-

ing (fundamental representation of the) Lie algebra, su(N), is spanned by a set of N2− 1

19
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traceless anti-hermitian N × N matrices (tA)i j, known as generators, related to the cor-

responding representation of the group by

U(x)i j = e−θ
A(x)(tA)i j . (2.3)

For simple Lie algebras, the generators of any representation r, denoted trA, can be chosen

to be trace orthogonal with some representation-dependent coefficient, C(r). For the

fundamental representation,

Tr(tAtB) = −1
2
δAB (2.4)

Furthermore, the space of generators is closed under the Lie bracket operation,

[trA, t
r
B] = f C

AB trC (2.5)

where the collection of real numbers f C
AB = −f C

BA , being the same for all representations,

is known as the structure constants of the algebra. They famously satisfy the Jacobi

identity

f E
AD f D

BC + f E
BD f D

CA + f E
CD f D

AB = 0. (2.6)

Among the infinite number of finite-dimensional inequivalent irreducible group represen-

tations, a central role is played by the so-called adjoint representation,

Ad : SU(N)→ Aut(su(N))

U 7→ AdU
(2.7)

mapping elements of SU(N) to automorphisms of the Lie algebra AdU : su(N)→ su(N),

defined by

AdU(tA) = UtAU
−1 ∈ su(N). (2.8)

The statement that the above lies in the Lie algebra is equivalent to finding some matrix

R(U)BA such that we can write it as a linear combination of generators,

UtAU
−1 = tBR(U)BA (2.9)

which implies that the R(U)BA are the matrices of the adjoint representation. The rele-

vance of all this for field theory lies in the fact that, given a set of dim(G) fields XA, we

can form the matrices X = XAtA as linear combinations of the Lie algebra generators.

Then, using (2.9), one can write down the adjoint action of the group, either in matrix

notation or in components, as

X → X ′ = UXU−1 (2.10)

XA → X ′A = R(U)ABX
B. (2.11)
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The Yang-Mills field, AAµ (x)

The analogue of the U(1) gauge field of Maxwell’s theory is a collection of dim(G) Lorentz

vectors, AAµ . As such, it is convenient to consider them as the entries of the N×N matrix

Aµ = AAµ tA, which transforms as a gauge field in the adjoint representation of SU(N),

Aµ → A′µ =
1

g
U(x)∂µU(x)−1 + U(x)AµU(x)−1 (2.12)

where the Yang-Mills coupling constant, g, is inserted for later convenience. Notice that

(2.12) reduces to the known QED transformation in the limit U ∈ U(1). As in the Abelian

case, the non-tensorial gauge transformation of Aµ perfectly interplays with the gauge

transformation of derivatives of fields, such that one may define the covariant derivative

for a field Φ in a generic representation,

DµΦ = ∂µΦ + g(dAΦ) (2.13)

with the aid of the Lie algebra representations dA = AAµ tA. In particular, the above is

adapted for matter fields in the fundamental and adjoint representations to

Dµψ = ∂µψ + gAµψ, (2.14)

DµX = ∂µX + g[Aµ, X], (2.15)

themselves transforming according as the representation of the field they act on. Thus,

they belong to the same representation space and their Lie bracket (itself belonging to

the same space) can be written as a linear combination of the generators. The coefficients

in this basis are the Lorentz components of an su(N)-valued 2-form on spacetime M,

g−1[Dµ, Dν ] ≡ Fµν = ∂µAµ − ∂νAµ + g[Aµ, Aν ] (2.16)

= FA
µνtA (2.17)

namely, the non-Abelian field strength tensor. This satisfies the Bianchi identity,

D[µF
A
νρ] = 0, (2.18)

which is trivially solved by (2.16), as a consequence of the Jacobi identity obeyed by the

Lie bracket. Albeit no longer gauge-invariant as in the U(1) case, the field strength may

be used to construct an invariant of SU(N), by virtue of its tensorial transformation. The

invariant, which relies on the Cartan-Killing form, reads

Tr(FµνF
µν) = −1

2
FA
µνF

µν
A (2.19)

where we used (2.4). Finally, we can write the gauge-invariant Yang-Mills action:

S[Aµ, ψ, ψ̄] =

∫
dDx

[
1

2
Tr(FµνF

µν)− ψ̄(γµDµ −m)ψ

]
. (2.20)
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Infinitesimal (Lie algebra) transformations

It is often easier to work with Lie algebra, rather than group, representations. Thus,

expanding U = exp(−θA(x)tA) to first order in θ(x), we get the transformations of the

fundamental matter fields under group elements infinitesimally close to the identity,

δψi = −θA(x)(tA)i jψ
j (2.21)

δψ∗i = θA(x)ψ∗j (tA)ji. (2.22)

For the adjoint representation, we perform the same expansion in (2.9), to obtain

R(U)AB = δAB + θC(x)f A
BC +O(θ2)

!
= e−θ

C(x)(tadj
C )AB

(2.23)

i.e. the structure constants generate the adjoint representation, (tadj
C )AB = f A

CB . Con-

sequently, under infinitesimal (Lie algebra) unitary transformations, the XA transform

as

δXA = f A
BC XBθC(x). (2.24)

The gauge components of the gauge field get rotated by

δAAµ =
1

g
∂µθ

A(x) + f A
BC ABµ θ

C(x) (2.25)

=
1

g

(
Dµθ(x)

)A
. (2.26)

where the appearance of the covariant derivative of the Lie algebra-valued function θ(x)

manifestly ensures that this gauge transformation consistently maps su(N)→ su(N).

2.2 Global supersymmetry

2.2.1 Super-Yang-Mills in four dimensions

A very interesting extension of the theory defined by the action functional (2.20) occurs1

when one takes the fermions coupled to the Yang-Mills gauge potential to be massless

minimal spinors transforming in the adjoint representation of the gauge group G. Since

the properties of spinors are particular to the specific spacetime dimension chosen, let us

specialise for clarity to D = 4 where a minimal spinor may be taken to be either a four-

component R-valued Majorana spinor or, equivalently, a (conjugate) pair of 2-dimensional

C-valued Weyl spinors. Since, as explained at the end of this section, the spinors in this

theory ought to be in the same gauge group representation as the Yang-Mills potential,

1This statament is strictly true in dimensions D = 3, 4, 6, 10, where supersymmetry may be established

with just a vector and a spinor. In the remaining dimensions, this requires additional scalars in the

multiplet.
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namely the (real) adjoint, let us write the following using Majorana spinors. Thus, the

action reads

S[Aµ, ψ, ψ̄] =

∫
d4x

[
− 1

4
FA
µνF

µν
A −

1

2
ψ̄Aγµ(Dµψ)A

]
. (2.27)

where we have re-instated the gauge indices for clarity. Crucially, this can be seen to be

invariant, up to a total derivative, under the supersymmetry transformations

δεA
A
µ = −1

2
εγµψ

A, (2.28)

δεψ
A =

1

4
γρσFA

ρσε, (2.29)

where ε is a global anticommuting Majorana spinor. The novelty lies in the fact that

they “rotate” bosons into fermions, and viceversa. This may be understood by realising

that they are generated, in the sense explained in (2.32), by spinorial charges carrying

half-integer helicity. Indeed, varying the action under these with ε a spacetime-dependent

function yields, as usual, the form of the Noether supercurrent, the vector-spinor quantity

Jµ = γνρFA
νργ

µψA, (2.30)

which is conserved by virtue of the Bianchi identity of the potential and the Fierz spinor

identities in D = 4. Its spatial integral yields the conserved spinor supercharge,

Qα =

∫
d3x J0

α(~x, t), (2.31)

which generates the infinitesimal supersymmetry variations via Poisson brackets at the

classical level or, with an eye towards quantisation, via the algebraic commutators as in

δεA
A
µ = [εQ,AAµ ]

δεψ
A = [εQ, ψA].

(2.32)

The fact that the supercharge transforms in the spinor representation of the Lorentz group

suggests that they generate neither a conventional spacetime symmetry nor an internal

one, commuting with the Poincaré generators. This statement is formalised by giving the

explicit form of the algebra spanned by the symmetry generators. Very conveniently, its

exact form may be computed directly from the infinitesimal transformations: on applying

two such variations in succession on any field φ in the two possible orderings, namely

[δ1, δ2]φ = δ1(δ2φ)− δ2(δ1φ), where we defined δi := δεi . One computes, for the theory at

hand,

[δ1, δ2]AAµ = −1

2
ε1γ

νε2F
A
νµ,

[δ1, δ2]ψA = −1

2
ε1γ

νε2(Dνψ)A + α
δS

δψ
(A).

(2.33)
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Thus, the commutator of successive transformations yields, in both cases, a covariant

translation2 by aν ≡ −ε1γνε2/2 on φ, as required by the gauge covariance of the LHS, up

to a term proportional, for α ∈ R, to the equations of motion of the spinor. An algebra

of this type, which requires using the equations of motion, is said to be on-shell closed.

Using (2.32) to re-express [δ1, δ2], one reads off the algebra obeyed by the supercharges,

{Qα, Q
β} = −1

2
(γµ) β

α Pµ, (2.34)

where the anti-commutator appears on stripping away the anticommuting spinor param-

eters and Pµ is the conserved Noether charge associated with translations in spacetime.

The other (anti)-commutators involving Q are

[Pµ, Qα] = 0, (2.35)

[Jµν , Qα] = −1

2
(γµν)

β
α Qβ, (2.36)

where the first one implies that a supersymmetry transformation does not change the

4-momentum, and hence the mass, of the field it acts on, while the second one re-iterates

the fact that the supercharge Q indeed transforms in the spinor representation of the

Lorentz group, generated by the skew-symmetric product of Clifford gamma matrices,

γµν = γ[µγν]. Together with the usual commutators defining the bosonic Poincaré algebra,

the conditions (2.34) - (2.36) define the so-called N = 1 super-Poincaré algebra, where N
counts the number of conserved supercharges. It is an instance of a graded algebra, with

even (viz. bosonic, B) and odd (viz. fermionic, F ) elements whose commutators obey the

pattern [B,B] = B, [B,F ] = F and {F, F} = B. The algebra above remains invariant

under the chiral u(1) transformation of Q,

δQα = [TR, Qα] = −i(γ∗) β
α Qβ (2.37)

where γ∗ is the highest rank gamma matrix and TR, the generator of the symmetry

motion, commutes with the generators of the Poincaré subalgebra, thus describing an

internal symmetry. This symmetry is known as R-symmetry, owing to its status as the

standalone internal symmetry with a non vanishing commutator with the super-Poincaré

generators. It is realised in the field theory of the N = 1 Yang-Mills multiplet, as a u(1)

rotation of the fermions,

δψA = irγ∗ψ
A (2.38)

under which the action is invariant. Notice the fact, which is true in general, that the

Yang-Mills potential is in the trivial representation of the R-symmetry. Because of this,

one can set its R-charge to zero, and consistency with (2.37) implies that r = 1 in

(2.38). All other internal symmetries, commuting with Poincaré, also commute with the

supercharge; since this includes the internal gauge group, this explains why we had to

take the fermions in the same gauge group representation as AAµ .

2Namely, the result is gauge-covariant and it differs from the usual translation by a field-dependent

gauge transformation.
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Extended supersymmetry

Equation (2.34) represents the simplest possible example of a supersymmetry algebra. In

general, there may be multiple sets of supersymmetry transformations leaving the action

invariant, leading to the existence of a number of conserved supercharges, denoted by Qi
α

with i = 1, . . . ,N . If this is the case, the theory is said to possess extended supersymmetry

[77]. In D = 4, the superalgebra for N > 1 is most conveniently described in terms of

complex Weyl spinors (in four component notation), denoted by PL/RQi making use of

the projection operators

PL/R =
1

2
(1± γ∗) . (2.39)

The anticommutator is only non-vanishing between supercharges of different chirality;

thus, lowering the spinor index, the (Q,Q) anticommutators may be written as

{Qαi, Q
j
β} = −1

2
δji (PLγ

µ)αβPµ (2.40)

{Qαi, Qβj} = 0 (2.41)

where the compact notation for the chiral supercharges, Qi ≡ PLQi and Qi ≡ PRQ
i,

has been adopted. The remaning two anti-commutators follow by charge conjugation.

Unsurprisingly, the u(1) R-symmetry discussed above is but the limiting N = 1 case of a

more general internal symmetry rotating the charges, which acts as

[TR, Qαi] = (UA) j
i Qαj, [TR, Q

i
α] = (UA)i jQ

j
α (2.42)

on the two types of charges. Demanding that these commutators are compatible with the

superalgebra, in particular with its super-Jacobi identities, imposes that the matrices UA
are anti-Hermitian and indeed span a representation of the R-symmetry algebra, which is

thus fixed to u(N ).

2.2.2 Particle representations

Having restricted to D = 4 is also convenient to discuss the nature of the massless3 rep-

resentations of the supersymmetry algebra. Although we arrived at the supersymmetry

algebra basing our discussion on the Yang-Mills theory of a gauge vector, we will see that

the following general considerations lead to a classification of supersymmetric theories in

D = 4 much beyond those of the Yang-Mills type. The key observation is that, upon quan-

tisation, the generators Qαi become operators acting on a Hilbert space. In particular, one

finds a subset of them carrying helicity ±1/2 and acting as creation/annihilation opera-

tors on the space of states |h〉, labelled only by the helicity since the momentum/energy of

all states may be fixed from the onset, owing to it being invariant under the action of Q.

Thus, fixed a “highest helicity state” |h0〉, in the kernel of the annihilation operator, one

3This thesis will be concerned exclusively with massless fields.
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may create states with helicity h0 −m/2 by acting m times with the creation operators,

denoted here by Q†i, which lower the helicity by 1/2:

|h0〉
|h0 − 1

2
; i〉 = Q†i |h0〉

|h0 − 1; [ij]〉 = Q†iQ†j |h0〉 ,
...

(2.43)

where the R-symmetry indices are antisymmetrised as a consequence of the anticommu-

tativity of alike charges, cf. equation (2.41): therefore, the states |h0 −m/2〉 transform in

the rank-m antisymmetric irreducible representation of the R-symmetry algebra. Thus,

there are (Nm ) states of helicity h0 −m/2, and the sequence ends when the single lowest

helicity state |h0 −N /2; [ij . . .N ]〉 is reached. Notice that there is a total of 2N states in

a massless irreducible representation, which goes by the name of supermultiplet. These

are always divided equally into 2N−1 bosonic states with integer helicity and the same

number of fermionic states with half-integer helicity.

Furthermore, in general, CPT symmetry demands that the conjugate sequence is also

added, which amounts to repeating the steps above starting with the lowest helicity state

and using the operator which raising the helicity. Exceptions to this rule are the cases for

which N = 4|h0|, whereby |−h0〉 = |h0 −N /2〉, that is the negative helicity counterpart

of the initial state coincides with the singlet obtained after N steps. This highlights the

all-important fact that for N > 4|h0| this algorithm would produce states with |h| > |h0|,
contradicting the original assumption of |h0〉 as the maximal helicity state. Therefore, in

D = 4,

• multiplets with |h0〉 = |1
2
〉 exist up to N = 2,

• multiplets with |h0〉 = |1〉 exist up to N = 4,

• multiplets with |h0〉 = |2〉 exist up to N = 8.

In principle, this series could continue for all values of h0. However, fields with spins

higher than h = 2 are usually not included in physical models due to the apparently

insurmountable difficulty in writing down a consistent theory describing their interactions;

on physical grounds, then, the series stops here.

Let us illustrate this more concretely. We will denote states by their representations

under u(1)st ⊕ u(N ), with the superscript denoting the helicity and the subscript the

u(1) ⊂ u(N ) R-symmetry charge. Thus, for notational clarity, we will henceforth only

consider integer values of u(1) charges in order to avoid fractions appearing as subscripts or

superscripts, which calls for a redefinition of the charge under u(1)st as twice the helicity,

s = 2h.
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• Vector multiplets, |s0〉 = |2h0〉 = 2

Consider the case in which a vector AAµ is taken as the highest helicity state, which

in our modified notation means |s0〉 = |2〉, and where the number of real conserved

charges is Q = 8, which in four dimensions is equivalent to N = 2. In turn, by the

discussion above, this fixes the R-symmetry to u(2). The multiplet is built by acting

with Q†i, transforming as the 2−1
1 of u(1)st ⊕ u(2), on the positive helicity state of

the Yang-Mills vector, transforming as the 12
0, and extracting the antisymmetric

part of the tensor product. Pictorially, this reads

12
0 1−2

0

(ΛQ†) 21
1 + 2−1

−1 (ΛQ) (2.44)

(Λ2Q†) 10
2 10

−2 (Λ2Q)

Note that the supermultiplets, in most of the literature and thus in this thesis, owe

their name to the state with highest helicity. Consequently, the multiplet above is

referred to as N = 2 vector multiplet, or concisely as V2. On gathering the states

with the same |s|, one obtains

V2 = (AAµ , λ
i, φa)

= {12
0 + 1−2

0 ,21
1 + 2−1

−1,1
0
2 + 10

−2}.
(2.45)

Another example of interest is furnished by N = 4 super-Yang-Mills theory, or V4,

which exemplifies the self-conjugate property exhibited by multiplets with N =

4|h0| = 2|s0| discussed above. Repeating the procedure above leads to

12
0

(ΛQ†) 41
1

(Λ2Q†) 60
2 (2.46)

(Λ3Q†) 4
−1
3

(Λ4Q†) 1−2
4

where the CPT conjugate states need not be added. Notice how, as a consequence

of its self-conjugacy, the u(1) ⊂ u(2) charges are not consistent, which implies that

this multiplet cannot support the Abelian factor, which needs to be dropped. The

R-symmetry in this case is reduced to su(4) and the multiplet reads

V4 = {12 + 1−2,41 + 4
−1
,60}. (2.47)

• Supergravity multiplets, |s0〉 = 4

Everything goes through as above if the initial “vacuum” state is taken with helicity

2, or |s0〉 = 4, which describes the positive helicity state of a graviton, hµν . Doing so

results in the so-called supergravity multiplets, containing a single graviton, invariant
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under the R-symmetry, N gravitini in the defining, as well as vectors, spinors and

scalars in the rank-m antisymmetric representations. These theories will be intro-

duced in detail in Section 2.3. Let us emphasise, in particular, the case of N = 8

supergravity, which is maximal in four dimensions: as such, by the same argument

as for V4, it possesses su(8) R-symmetry, rather than u(8), under which its content

is organised as

G8 = {14 + 1−4,83 + 8
−3
,282 + 28

−2
,561 + 56

−1
,700}. (2.48)

• Chiral and hyper-multiplets, |s0〉 = 1

Finally, it is worth spending a few words on those cases where the highest helicity

state is a spinor, |s0〉 = 1. As indicated earlier, the maximal amount of super-

symmetry allowed is Q = 8; therefore, the only possible cases are for N = 1, 2.

Since they present some subtleties, it is convenient to discuss them separately. The

N = 1 multiplet, known as the chiral multiplet4, contains one Majorana spinor and

a complex scalar, transforming under u(1)st ⊕ u(1) as

C1 = (λ, φ)

= {(1, r) + (−1,−r), (0, r − 1) + (0,−r + 1)},
(2.49)

where the u(1) charge is not determined by the content alone, but an analysis of

the specific model and its interactions (in particular its superpotential) is needed

to determine the exact value of r. The N = 2 case, known as the hypermultiplet,

possesses more structure: despite being maximal, hence self-conjugate, it admits

a doubling (and the extra u(1) of the R-symmetry) owing to the fact that the

singlet spinor may carry an arbitrary r charge, as opposed to the singlet vector of

V4 which cannot be charged under the R-symmetry. Therefore, it contains two

Majorana spinors and two complex scalars, transforming under u(1)st ⊕ u(2) as

H2 = {11
r + 1−1

−r, 20
r+1 + 20

−(r+1),1
−1
r+2 + 11

−(r+2)}. (2.50)

Notice, however, that in the case with r = −1 the content simply looks like two

copies of {11
−1, 20

0, 1−1
1 }, which calls for the enhancement of the global symmetries

to include an extra sp(1) rotating the two identical submultiplets. This extends to

an sp(n) for n hypermultiplets. Here, one is confronted with a choice: (i) interpret

the additional sp(n) as a global symmetry, whereby the multiplet trasforms in the

overall real representation under u(1)st ⊕ sp(n)⊕ u(2),

HA
2 = {(n,1)1

−1, (n,2)0
0, (n,1)−1

1 }. (2.51)

For consistency, then, H2 must be in a real representation of the gauge group, e.g.

the adjoint as indicated by the upper case index A above. Otherwise, (ii) interpret

4Notably, this is also known as the Wess-Zumino multiplet. They described it in 1974 [136], when it

represented the first instance of a supersymmetric field theory.
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the sp(n) as the gauge group, under whose action the multiplet transforms in the

pseudoreal defining representation n, denoted by the lowercase index a. This implies

that, this time, the overall real multiplet is simply

Ca
2 = {11

−1, 20
0, 1−1

1 }, (2.52)

known as the half-hypermultiplet in the literature, with the same content as the

chiral C1, only this time transforming under an internal u(2) rather than a u(1).

The complete classification of massless irreducible supermultiplets in four dimensions is

given in Table 2.1, while the original and complete analysis can be found in [77].

Q Name Content R-symmetry

32 G8 14 + 83 + 282 + 561 + 700 + 56
−1

+ 28
−2

+ 8
−3

+ 1−4 su(8)

24 G6 14
0 + 63

1 + (152
2 + 1−26 ) + (201

3 + 6
−1
5 ) + 15

0
4 + c.c. u(6)

20 G5 14
0 + 53

1 + 102
2 + (10

1
3 + 1−15 ) + 5

0
4 + c.c. u(5)

16 G4 14
0 + 43

1 + 62
2 + 4

1
3 + 10

4 + c.c. u(4)
′′ V4 12 + 41 + 60 + 4

−1
+ 1−2 su(4)

12 G3 14
0 + 33

1 + 3
2
2 + 11

3 + c.c. u(3)

8 G2 14
0 + 23

1 + 12
2 + c.c. u(2)

′′ V2 12
0 + 21

1 + 10
2 + c.c. u(2)

′′ H2 11
r + 20

r+1 + 1−1r+2 + c.c. u(2)
′′ Ca

2 11
−1 + 20

0 + 1−11 u(2)

4 G1 (4, 0) + (3, 1) + c.c. u(1)
′′ V1 (2, 0) + (1, 1) + c.c. u(1)
′′ C1 (1, r) + (0, r + 1) + c.c. u(1)

Table 2.1: All allowed supermultiplets in D = 4. Note that G7 = G8 and V3 = V4, and

the half-hypermultiplet Ca
2 exists on its own only for pseudoreal representations of the

gauge group.

Representations in various dimensions

The supermultiplets discussed in D = 4 are related, through toroidal dimensional reduc-

tion, to their counterparts in various other dimensions. Since the central object in the

construction of irreducible representations is the spinorial supercharge Qα, one needs to
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be mindful of the properties of (minimal) spinors in each dimension, in order to correctly

re-distribute the degrees of freedom (read Q). The type and number of components of

minimal spinors in dimensions 3 ≤ D ≤ 11, given in Table 2.2, are obtained by checking,

for each D, which conditions may be applied to the Dirac representation in order to obtain

a more fundamental one.

• In odd dimensions, one may impose (a version of) the Majorana reality condition,

which halves the number of independent real components. In D = 3, 9, 11, this is

the whole story and the minimal spinors are referred to simply as Majorana. In

D = 5, 7, this condition can only be imposed on pairs of spinors: interpreting these

pairs as the “minimal spinors” leads to these being referred to as symplectic.

• In even dimensions, to complicate things, the Dirac spinor representation is fully re-

ducible, in an entirely analogous fashion to the Weyl representation in D = 4. Here,

looking for minimal spinors amounts to checking whether the two chiral components

are independently Majorana or, conversely, whether the two Weyl component are

rotated into each other under charge conjugation, that is

(PL/Rψ)C = PL/Rψ, vs (PL/Rψ)C = PR/Lψ. (2.53)

The first case is true in its simplest form in D = 10 (hence a minimal spinor is

Majorana-Weyl), while in D = 6 it is true again on a pair of (Weyl) spinors (hence

symplectic-Weyl). On the other hand, the second is true in D = 4, 8, where working

with a 4-component Majorana spinor or two 2-component Weyl spinors gives rise

to equivalent physics.

Note that, although we restrict to 3 ≤ D ≤ 11 on physical grounds, the reality properties

of minimal spinors are the same for D and D + 8, giving rise to an infinite sequence

M,M,S, SW, S,M,M,MW, . . . displaying the so-called Bott periodicity. This analysis

leads to finding the number of independent components listed in Table (2.2). For an

extensive treatment of the properties of spinors in various dimensions, see [80]. In any

given spacetime dimension, once the reality properties of the minimal spinors, and thus of

the supersymmetry generator Qα, have been established, one may construct the relevant

supersymmetry algebra and read off the conditions on the matrices UR of the defining

representation of the R-symmetry via [TR, Qαi] = (UR) j
i Qαj. Doing so yields the R-

symmetry algebras listed in the last column of Table (2.2). Notice that in D = 6, 10, where

truly chiral spinors exist, the supersymmetries are denoted as (NL,NR). For notational

consistency, we keep using N to denote the (chiral) supersymmetries also in D = 5, 6, 7,

counting the number of minimal spinors, rather than the number of symplectic pairs;

indeed, the symplectic nature of the spinors has favoured the use of N̂ := N /2 in the

literature. At this point, the knowledge of the D = 4 supermultiplets, together with the

relations between multiplets in different dimensions implied by dimensional reduction, is

enough to characterise all allowed theories. In particular,
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D Type Q R-symmetry

11 M 32 so(N )

10 MW 16 so(NL)⊕ so(NR)

9 M and D odd 16 so(N )

8 M and D even 16 u(N )

7 S 16 usp(N )

6 SW 8 usp(NL)⊕ usp(NR)

5 S 8 usp(N )

4 M and D even 4 u(N )

3 M and D odd 2 so(N )

Table 2.2: Properties of minimal spinors in 3 ≤ D ≤ 11. The last column lists the type

of internal symmetry algebra that may act on them in the defining representation.

• Supergravity multiplets GN exist up to D = 11.

In D = 12, where a Dirac spinor carries 26 = 64 complex components and only

either the Majorana or the Weyl conditions may be imposed (same as D = 4 by

Bott periodicity), a minimal spinor carries 64 independent real components. The

multiplet obtained by dimensionally reducing to D = 4 would thus violate the

physical bound of maximum helicity. This latter “physical” upper bound of Q = 32

real supercharges, saturated in four dimensions by N = 8 supergravity, is saturated

in D = 11 by the minimal unique N = 1 theory, G1, where a single Majorana spinor

carries 32 independent real components.

• Vector multiplets VN exist up to D = 10.

By the same reasoning, uplift of the N = 4 super-Yang-Mills theory in four dimen-

sions, with Q = 16, is possible all the way to D = 10, where a single Majorana-Weyl

spinor carries 16 independent real components. Since the supersymmetries are truly

chiral, there exist two inequivalent vector multiplets in D = 10: the V(1,0) and the

V(0,1).
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• Chiral multiplets C1 exist up to D = 4, (half-)hypermultiplets H up to D = 6.

Since chiral multiplets are defined for Q = 4 and a minimal spinor in D = 5

already carries 8 components, chiral multiplets cannot uplift beyond D = 4. On

the other hand, as it is clear from the entries of Table (2.2), hypermultiplets exist

up to D = 6. Similarly to the case of vector multiplets, the maximal dimensions

admitting hypermultiplets has chiral spinors, which in turn implies that there exist

two distinct, inequivalent hypermultiplets, denoted H(2,0) and H(0,2).

• Tensor multiplets T(NL,NR) exist only in D = 6.

These are multiplets containing antisymmetric tensors Tµν . While in principle these

exist in lower dimensions as well, the rank-2 antisymmetric representation of the

little group is dual to the singlet and the vector representations in D = 4, 5 respec-

tively. Hence, under certain assumptions (such as standard kinetic terms, or the

requirement that they be in the adjoint representation of the gauge group in D = 5)

these are already captured by the matter and vector multiplets above. In D = 6,

however, a 2-form is (anti) self-dual, living in the (3,1) or in the (1,3) of the little

group algebra 2usp(2), thus distinct from other representations. Tensor multiplets

may carry 16 or 8 real supercharges, resulting in the multiplets T(4,0), T(2,0) and

their chiral counterparts.

All the possible supermultiplets5 in 4 ≤ D ≤ 11 are listed in Tables A.5, A.6 and A.7.

Since the Yang-Mills multiplets will play a privileged role in the remainder of this thesis,

they are also listed together in Table 2.3.

2.3 Supergravity

The existence of such representations of the supersymmetry algebra does not necessarily

imply the existence of a field theory realisation with the corresponding content. For

example, we did not include multiplets with highest helicity state carrying h = 3/2 in the

classification of D = 4 multiplets above, since these are not realised as field theories on

their own. The spin 3/2 field, also known as the Rarita-Schwinger field, has flat-space

dynamics specified by the action,

S = −
∫

d4x Ψ̄µγ
µνρ∂νΨρ. (2.54)

It constitutes the four-dimensional realisation of the gravitino field, whose name helps

anticipate its role in physical models as the supersymmetric partner of the spin-2 field,

the graviton. Together, they form the backbone of what we defined previously as a

5There is the additional possibility of so-called conformal multiplets in D = 6, which are non-

gravitational analogs of the supergravity multiplets containing higher tensor fields. We do not include

these here.
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D Little group Q = 16 Q = 8 Q = 4 Q = 2

10 so(8) V(1,0)

∅

9 so(7) V1

∅

8 su(4) V1

u(1)

7 usp(4) V2

usp(2)

6 usp(2)⊕ usp(2) V(2,2), T(4,0) V(2,0), T(2,0)

2usp(2), usp(4) usp(2)

5 usp(2) V4 V2

usp(4) usp(2)

4 u(1) V4 V2 V1

su(4) u(2) u(1)

3 ∅ V8 V4 V2 V1

so(8) 3so(3) 2so(2) ∅

Table 2.3: All super Yang-Mills multiplets in 3 ≤ D ≤ 10, together with their R-symmetry

algebra. Note that the D = 3 entries are valid after dualisation of the vector.

supergravity multiplet. As field theories, these are characterised by the property that

they realise local supersymmetry, namely their action and equations of motion are invariant

under a set of supersymmetry transformations in which the fermionic parameter is allowed

to be an arbitrary function of the spacetime coordinates, ε(x). Noting that the action

above is invariant under the local fermionic transformation

Ψµ → Ψ′µ = Ψµ + ∂µε(x) (2.55)

hints at the fact that the gravitino acts as the gauge field for local SUSY, much in the same

way as the Yang-Mills field does for local internal symmetries. The fact that there exists

a connection between local supersymmetry and the presence of the gravitational field may

be understood as a consequence of the supersymmetry algebra itself: the commutator of

two global supersymmetry transformations closes on translations, as seen in (2.34); when

the former are made local transformations, the latter must be “gauged” as well, yielding
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diffeomorphisms6. The converse is also true: if a theory exhibiting supersymmetry need

also contain gravitational interactions, the notion of a global spinorial parameter becomes

ill-defined. Thus, one should really let it depend on xµ.

Fermions are defined according as their transformation properties under the action

of the Lorentz group. Therefore, when coupling fermions to gravity, hence to a curved

manifold, it is necessary to somehow recover the familiar flat-space Minkowski structure

where one knows how to properly define them, namely a tangent space at each spacetime

point. This is achieved by expressing the metric as

gµν(x) = ηabe
a
µ(x)ebν(x) (2.56)

where, for a given D-dimensional spacetime, eaµ is a D×D matrix known as the vielbein,

whose definition may be taken to be the above. Note that (2.56) is invariant under the

transformations

e′aµ (x) = (Λ−1)abe
b
µ(x) (2.57)

for any x-dependent Λa
b leaving ηab invariant (that is, a Lorentz transformation); this

subtracts D(D− 1)/2 degrees of freedom from eaµ, leaving D(D+ 1)/2 independent com-

ponents. In this sense, eaµ carries the same amount of information as the rank-2 symmetric

metric tensor gµν . The indices a = 1, . . . , D are referred to as those of local Lorentz frames.

The gauge field of this newly found local transformation is known as the spin connec-

tion, denoted by ω a
µ b, transforming under local Lorentz transformations as

ω
′ a
µ b = (Λ−1)ac ∂µΛc

b + (Λ−1)ac ω
c
µ dΛ

d
b (2.58)

that is, just like the Yang-Mills field in (2.12). This transformation, among other things,

is tailored so that the spacetime components of the spacetime 2-form T a, known as the

torsion,

T aµν = 2
(
∂[µe

a
ν] + ω ab

[µ eν]b

)
= 2eaρΓ

ρ
[µν] (2.59)

indeed transform like a Lorentz vector. Depending on the connection, the torsion may or

may not vanish. As the last equality makes manifest, affine connections whose coordinate

space components are symmetric in their lower indices are, by definition, torsion-less. It

may be proven that the usual Levi-Civita connection is the unique torsion-free connection

which, in addition, is covariantly constant. Furthermore, the spin connection allows to

construct the local Lorentz covariant derivative in the usual way: for instance, on a

Lorentz vector V a, one has

DµV
a = ∂µV

a + ω a
µ bV

b, (2.60)

6It is possible to show that the gauging of the translation generators correctly reproduces diffeomor-

phisms, by imposing the right constraints. See [80].
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while the coordinate space covariant derivative may be obtained by replacing Lorentz

with spacetime indices using the vielbein,

eνaDµV
a := ∇µV

ν = ∂µV
ν + ΓνµρV

ρ, (2.61)

which establishes the relation between the spin connection and the more familiar affine

connection,

Γρµν = eρa
(
∂µe

a
ν + ω a

µ be
b
ν

)
. (2.62)

When acting on spinor fields, transforming in a representation generated by Mab = 1
2
γab,

one has

Dµψ =

(
∂µ +

1

4
ω ab
µ γab

)
ψ. (2.63)

Therefore, the covariant derivative on the gravitino Ψµ, with spinor indices suppressed, is

given by

∇µΨν = ∂µΨν +
1

4
ω ab
µ γabΨν − ΓρµνΨρ. (2.64)

This is sufficient to write down some simple supergravity Lagrangians. For example,

there is only one case in dimensions 4 ≤ D ≤ 11 where a graviton and a gravitino are

sufficient to establish supersymmetry without additional fields, namely in the D = 4,

N = 1 supergravity theory based on the multiplet G1 = {gµν ,Ψµ}. In the first order

formalism, that is treating the vielbein and the general torsionful spin connection as two

independent variables, the action is given by

S =

∫
d4x e

(
R(ω)− Ψ̄µγ

µνρDνΨρ

)
, (2.65)

where the first term is the Ricci scalar built as a contraction of the curvature 2-form, with

components

R ab
µν = 2

(
∂[µω

ab
ν] + ω a

[µ cω
cb
ν]

)
. (2.66)

The action is invariant under the supersymmetry transformations

δεe
a
µ =

1

2
εγaΨµ, (2.67)

δεΨµ = Dµε, (2.68)

where that of the gravitino is the natural curved space generalisation of (2.55). Solving

for the spin connection, and substituting the result back into the action (2.65), one may

re-express it in terms of a more familiar torsion-free connection plus additional terms as

S =

∫
d4x e

(
R− Ψ̄µγ

µνρD̂νΨρ + Ltorsion
)
, (2.69)

where the covariant derivative acting on the gravitino now contains the torsion-free con-

nection and the last term describes 4-gravitino contact terms.
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2.3.1 Scalars and supergravity

More generally, however, the discussion in the previous section shows that supergravity

multiplets need contain a variety of fields on lower spins. Particularly interesting is the

bosonic sector of the resulting field theories, described by the general Lagrangian,

e−1L =
R

2
− 1

4
MABF

A
µνF

µνB − 1

2
gij(φ)∂µφ

i∂µφj + . . . (2.70)

where the second term describes a collection of Abelian gauge fields AAµ coupled to n

scalar fields φi exhibiting a generalisation of the D = 4 electromagnetic duality, the third

encodes the dynamics of the scalar fields themselves and the dots represent the kinetic

terms of higher p-form gauge fields which may be present, depending on the dimension.

The metric appearing in the scalar kinetic term, gij, is that of a coset space G/H, known

as the scalar manifold, where G is a non-compact group and H its maximal compact

subgroup. The former is not a symmetry of the Lagrangian in general, but a duality

transformation: in D = 4, for example, it rotates the vector fields’ equations of motion

into their Bianchi identities and acts non-linearly on the scalar fields of the theory, while

it leaves all fermionic fields (and the metric) invariant. The latter is the largest symmetry

group which is realised linearly on all fields.

Dimensional reduction and SL(2,R)

One convenient way to understand the origin of G and H is by means of the Kaluza-Klein

dimensional reduction approach. We do not give a detailed review here: in particular, we

focus on the global symmetries possessed by the lower dimensional theory without much

explanation of how they originate in the higher dimensional theory’s diffeomorphisms,

which is an extremely fascinating idea at the core of the unification program; the interested

reader is referred to the excellent [137]. The simplest non-trivial example is provided by

the reduction of the metric in D + 2 dimensions on a 2-torus: the components of the

higher dimensional metric, gMN with M,N = 1, . . . , D + 2, yield

GMN → Gµν , Gµi, G(ij)

≡ gµν , A
i
µ, φ

i + χ
(2.71)

that is from a D-dimensional perspective, there are one graviton gµν , two vectors Aiµ with

i = 1, 2 labelling the dimensions of the torus, and three scalars packaged in the symmetric

matrix G(ij). These may be split into the φi, arising from the metric tensor at each circle

reduction, and the single scalar χ, originating from the reduction of the D+1 dimensional

vector A1
µ. Restricting to the scalar sector, in line with the aim of this discussion, one

sees that under a suitable set of field redefinitions, φi → (ϕ, φ), the lower dimensional

Lagrangian reads

Lscalar = −1

2
∂µϕ∂

µϕ− 1

2
∂µφ∂

µφ− 1

2
e2φ∂µχ∂µχ. (2.72)
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The first is the unique term containing ϕ; it is easy to see that it is invariant under

constant scalings δϕ = c. The remaining part of the Lagrangian describes the dynamics

of the other two scalars; after performing the redefinition

τ = χ+ ie−φ, (2.73)

it is re-written as

L(φ, χ) =
∂µτ∂

µτ

2(Imτ)2
. (2.74)

This is invariant under the transformation

τ → aτ + b

cτ + d
(2.75)

with the constraint ad − bc = 1, which amounts to a non-linearly realised SL(2,R)

transformation on τ , since the constraint may be seen as the unimodular condition on the

otherwise unconstrained 2× 2 matrix with a, b, c, d as entries,

S =

(
a b

c d

)
. (2.76)

Therefore, the Lagrangian (2.72) is invariant under GL(2,R) ∼= SL(2,R)×R, where the

extra R factor stands for the constant shifts of ϕ by an arbitrary real number c.

Furthermore, it is possible to express all of the above in a different fashion, which

helps clarify the action of the SL(2,R) as well as the origin of the coset structure of the

scalar space. Consider representing the two scalars (φ, χ) as the 2× 2 matrix

V = e
1
2
φHeχE+ =

(
e

1
2
φ χe

1
2
φ

0 e−
1
2
φ

)
∈ SL(2,R), (2.77)

known as the coset representative, where H and E+ are the Cartan and the positive root

generators of SL(2,R) in the basis

H =

(
1 0

0 −1

)
, E+ =

(
0 1

0 0

)
, E− =

(
0 0

0 1

)
. (2.78)

Then, defining the matrix M = VTV , one may rewrite the (φ, χ) part of the Lagrangian

(2.72) as

L(φ, χ) =
1

4
Tr
(
∂M−1∂M

)
. (2.79)

This is left invariant by an SL(2,R) transformations of the representative, since V ′ = VS
induces

M′ = STMS (2.80)
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which, in turn, leaves the trace above invariant. However, in general, the transformed V ′

is not of the upper-triangular form as the original matrix, which implies that one may not

read off the variations on the scalars directly, and the treatment is incomplete. One ought

to consider, in addition to the SL(2,R), a compensating transformation which preserves

the upper-triangular form of the representative. It may be proven that there is a unique

unimodular orthogonal matrix O ∈ SO(2) that accomplishes this, namely

O =
(
c2 + e2φ(cχ+ a)2

)−1/2

(
eφ(cχ+ a) c

−c eφ(cχ+ a)

)
. (2.81)

It is important that such a transformation be orthogonal since then, under the simulta-

neous variation V ′ = OVS, one has

M′ = STVTOTOVS = STMS (2.82)

as before, hence the invariance of the Lagrangian is preserved. Notice that the SO(2)

transformation is local, as it depends on the two scalar fields. Nonetheless, it is not

associated to any propagating gauge field, so one may gauge away the SO(2) part of

SL(2,R), leaving the physical scalars φ and χ to parameterise the non-compact coset

SL(2,R)/SO(2).

Scalar conspiracy and enhancements

The more general case of a dimensional reduction of the metric tensor on an d-torus T d

works analogously, with few adjustments and refinements to the mathematical machinery

required in order to construct the explicit expressions leading to the correct kinetic term.

The result is that the lower dimensional theory contains d(d + 1)/2 scalar fields in the

symmetric matrix G(ij), now with i, j = 1, . . . , d. All but one of them parameterise the

coset manifold SL(d,R)/SO(d), where the global symmetry is enhanced to GL(d,R) if

the higher-dimensional theory is in addition scaling invariant. On the other hand, if the

bosonic sector of the original theory contains additional fields other than the metric, a

further important enhancement is possible. The typical example is that of the dimensional

reduction of D = 11 supergravity, with on-shell content

G1 = {GMN ,ΨM , CMNR} = {44,128,84} (2.83)

that is a graviton, a gravitino and a 3-form potential. The reduction of the 3-form does

not yield additional scalars until D = 9. When the internal space is a 3-torus, however,

leaving an external 8-dimensional spacetime, there is one scalar, C123, coming from the

3-form, in addition to the 6 scalars (3 dilatons and 3 axions) coming from the reduction

of the metric on T 3. Five of the latter, with the exception of one dilaton as in the T 2

reduction, span a SL(3,R)/SO(3) coset space, whilst the remaining dilaton couples to

C123 to once again yield a dilaton/axion SL(2,R)/SO(2). Therefore, the additional scalar
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is responsible for enhancing the expected GL(3,R)/SO(3) to

G

H
=
SL(3,R)

SO(3)
× SL(2,R)

SO(2)
. (2.84)

Things work in a similar fashion for d ≤ 5, namely reduction to six dimensions. For higher

dimensional tori, one ought to take into account that higher dimensional forms may be

dual to scalars. A first hint comes from counting on-shell degrees of freedom: a p-form

potential in D spacetime dimensions has
(
D−2
p

)
=
(
D−2
D−p−2

)
on-shell degrees of freedom.

Restricting to the case at hand, namely that of the 3-form and hence setting p ≤ 3, the

cases of higher p-forms dual to a scalar are given by those (D, p) pairs yielding just one

dof. As may be verified in Table 2.4, one finds (5, 3), (4, 2) and (3, 1), symbolising that

a scalar is dual to a 3-form in 5 dimensions, a 2-form in 4-dimensions and a 1-form in 3-

dimensions. Thus, in these dimensions, the space of scalar fields after toroidal dimensional

D C(3) C(2) C(1) C(0)(
D−2
3

)
on T d

(
D−2
2

)
on T d

(
D−2
1

)
on T d dof on T d

5 1 1 3 6 3 15 1 20

4 ∅ 1 1 7 2 21 1 35

3 ∅ 1 ∅ 8 1 28 1 56

Table 2.4: Which components of CMNR are dual to scalars in each D = 3, 4, 5? For

each p-form, with p = 0, . . . , 3, the left column indicates the on-shell degrees of freedom

carried in D dimensions, whilst the right column reports the number of forms of that type

coming from the dimensional reduction of CMNR in D = 11. For instance, in D = 4, this

contributes seven 2-forms which are dual to scalars.

reduction consists of d(d + 1)/2 dilatons and axions coming from the metric,
(
d
3

)
axionic

scalars coming from the 3-form, as well as some D-dependent number of scalars coming

from dualisation of the appropriate p-form.

For example, the all-important reduction of D = 11 supergravity to four dimensions,

on T 7, includes 28 + 35 + 7 scalars in G(ij), C[ijk] and C[µν]i, for a total of 70 scalars.

This is precisely the correct number of scalars of the maximal supergravity multiplet

in D = 4, which is also singled out by the T 7 reduction of the single 32-component

Majorana gravitino ΨM which yields 8 number of 4-component Majorana gravitini Ψµ

and 56 Majorana spinors. Earlier, the scalars were shown to transform irreducibly under

the R-symmetry SU(8); indeed, decomposing SU(8) ⊃ SO(7) one obtains

70→ 1 + 7 + 27 + 35 (2.85)
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which shows the enhancement of the local invariance from the naive SO(7) to SU(8),

under which all fields transform in linear representations. This is accompanied by a

corresponding enhancement of the global symmetry, namely GL(7,R) → E7(7). Indeed,

under E7(7) ⊃ SU(8), the adjoint splits according as

133→ 63 + 70 (2.86)

which shows that the scalars parameterise the 70-dimensional coset space E7(7)/SU(8).

Classification

All three cases analysed above exhibit homogeneous symmetric scalar manifolds, where a

homogeneous space G/H is one which admits a transitive action of G, with H ⊂ G the

isotropy group keeping a point invariant. A homogeneous space is said to be symmetric

if any element g of Lie(G) = g may be written as g = h+ p with h ∈ h and p ∈ p, where

p is the complement of h in g, respecting the commutator structure

[h1, h2] ∈ h, [h1, p1] ∈ p, [p1, p2] ∈ h. (2.87)

In fact, all supergravities obtained from D = 11 upon toroidal reduction, representing

the maximally supersymmetric case in each respective dimension, admit symmetric scalar

cosets. Non-maximal supergravities may be obtained by reducing on some compact spaces

other than the torus, or by consistent truncation. We will see an example of the latter in

Chapter 4. In general, it is possible to classify the type of scalar manifold as a function

of the number of real supercharges:

• Supergravities with Q > 16 cannot be coupled to any vector or matter multiplets,

and are therefore unique. Their scalar manifolds are always homogeneous symmetric

spaces.

• Supergravities with 8 < Q ≤ 16 may be coupled to vector/tensor multiplets. In

this range, the kinetic terms of both the supergravity and the field theory of the

vector/tensor multiplets are uniquely fixed once the content is given. The scalar

manifolds are again homogeneous and symmetric.

• Supergravities with Q ≤ 8 may be coupled to both vector multiplets and chi-

ral/hypermultiplets. In this range, the kinetic terms of both local and rigid su-

persymmetric theories are not uniquely fixed as a function of the field content. In

particular, the scalar space metric may in general depend on one or more arbi-

trary functions, which specify a geometry on the scalar manifold. One notices that

supergravity multiplets with this number of supercharges exist only for D ≤ 6.

Furthermore, postponing the discussion of D = 3 theories to Chapter 4 in order to

avoid repetitions, such multiplets do not contain any scalars. Therefore, the scalar

manifolds are determined by the content of the remaining coupled multiplets. In

particular,
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– For Q = 8, the scalar manifolds spanned by both vector and hyperscalars

are understood in terms of so-called special geometries. The scalars in the

vector multiplets span very special real manifolds in D = 5 and special Kahler

in D = 4. The hyperscalars span quaternionic-Kahler manifolds in all cases

D = 4, 5, 6 (as well as D = 3), since hypers are insensitive to dimensional

reduction.

– For Q = 4, in D = 4, the vector multiplet V1 does not contain scalars. Scalars

may exclusively come from chiral multiplets C1, and span a Kahler-Hodge

manifold.

Notice that these need not be homogeneous or symmetric spaces and that, in all

cases, the full scalar space is given by the product of the those spanned by the vector

multiplet scalars and the hyperscalars separately.

All the symmetric scalar spaces for Q > 8 and 4 ≤ D ≤ 10 are given in Table 2.5.



D Q = 32 Q = 24 Q = 20 Q = 16 Q = 12

10 O(1, 1) or SL(2,R)
SO(2) O(1, 1)× O(n)

O(n)

9 O(1, 1)× SL(2,R)
SO(2) O(1, 1)× O(1,n)

O(n)

8
SL(3,R)
SO(3) ×

SL(2,R)
SO(2) O(1, 1)× O(2,n)

SO(2)×O(n)

7
SL(5,R)
USp(4) O(1, 1)× O(3,n)

SO(3)×O(n)

6
SO(5,5)

USp(4)×USp(4)
SU∗(4)
USp(4) ×

USp(2)
USp(2) O(1, 1)× O(4,n)

USp(2)2×O(n) or O(5,n)
USp(4)×O(n)

5
E6(6)

USp(8)
SU∗(6)
USp(6) O(1, 1)× O(5,n)

USp(4)×O(n)

4
E7(7)

SU(8)
SO∗(12)
U(6)

SU(1,5)
U(5)

SL(2,R)
SO(2) ×

SO(6,n)
SU(4)×SO(n)

U(3,n)
U(3)×U(n)

Table 2.5: Symmetric scalar manifolds of supergravities in 3 ≤ D ≤ 10 with Q > 8, following [80]. There are two cases with

two entries: (i) in D = 10 they describe G(1,1) and G(2,0), whilst (ii) in D = 6 they describe G(2,2) + nV(2,2) and G(4,0) + nT(0,4),

respectively. The D = 3 theories are reported in Table 4.1. For half-maximal theories and below, n is the number of vector multiplets

coupled to the supergravity multiplet.



Chapter 3

Supergravity as Yang-Mills Squared

3.1 Basics

In the absence of matter, the metric satisfies the vacuum Einstein equations Rµν = 0,

whose simplest solution is the flat Minkowski metric gµν = ηµν . Then, the typical approach

is to consider this as a flat background and set up a perturbative expansion in powers of

the coupling constant κ,

gµν(x) = ηµν + κhµν(x) +O(κ2) (3.1)

where the coefficient of the linear power of κ is regarded as a fluctuation about the

Minkowski vacuum and is referred to as graviton. The linearised Ricci tensor reads

Rlin
µν = −κ

2

(
�hµν − ∂ρ(∂µhρν + ∂νhµρ) + ∂µ∂νh

ρ
ρ

)
(3.2)

which gives the form of the equation of motion for the graviton in vacuum, namely

�hµν − 2∂(µ∂
ρhν)ρ + ∂µ∂νh = 0. (3.3)

These are invariant under the local transformation of the graviton

δhµν = ∂µξν + ∂νξµ (3.4)

by an arbitrary vector ξµ(x), which we refer to invariably as spin-2 gauge transformation

or linear diffeomorphisms. Then, very simply put, the “squaring” approach has its roots

in the observation that the on-shell states of the spin-2 graviton may be identified as the

rank-2 symmetric traceless component of the tensor product of two defining little group

representations describing the on-shell states of a gauge boson,

Aµ ⊗ Ãν =


hµν ≡ A(µ ⊗ Ãν) − ηµν

D
Aρ ⊗ Ãρ

Bµν ≡ A[µ ⊗ Ãν]

ϕ ≡ Aρ ⊗ Ãρ
(3.5)

43
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with the on-shell states of a 2-form and a scalar going along for the ride as the remaining

irreducible representations. It is natural to extend the identification of gravitational states

to these: they describe the (on-shell states of the) Kalb-Ramond antisymmetric tensor

[113] and a dilaton, thus completing the interpretation of the full tensor product as the

Neveu-Schwarz-Neveu-Schwarz (NS-NS) sector of supergravity (or string theory). We

view the above as a tensor product of gauge bosons belonging to distinct Yang-Mills

theories, referred to as the Left and Right factors respectively, thus Aµ ∈ YML and

Ãν ∈ YMR.

The careful reader would have noticed, at this point, that something is missing in

(3.5): the gauge indices of the left and right Yang-Mills gauge groups, G and G̃, have

been omitted. Having re-instated them, it is easy to see that if we wish to maintain

our identifications, we ought to account for them in such a way that the gravitational

states be singlets under the combined gauge group G × G̃, as they ought to be. In the

scattering amplitude literature, the two gauge groups are taken to be the same, and only

tensor products containing a singlet are allowed. Here, in order to work with generic

gauge groups, we formally introduce a scalar quantity, valued in the adjoint of both gauge

groups, ΦAA′ , whose primary role is to contract the gauge indices to yield gauge invariant

objects, such that the tensor product now reads

AAµ ⊗ Φ−1
AA′ ⊗ Ã

A′

ν , (3.6)

where the presence of the inverse of the scalar will be motivated shortly. The appearence

of this “spectator” scalar is roughly consistent with the results in the scattering amplitude

literature, whereby gravitational amplitudes are equivalent, in a precise fashion, to the

product of two gauge theory amplitudes together with a third amplitude pertaining to the

field theory of a bi-adjoint scalar field with a cubic Lagrangian [64, 65]. The bi-adjoint

scalar also emerges as the “zeroth” copy of gauge theory amplitudes, that is the converse

of the double copy: instead of replacing color factors by kinematic ones, one eliminates

the latter in favour of a second copy of the former, thus obtaining a doubly-coloured

amplitude. Another interesting perspective directly relating the bi-adjoint scalar theory

to the α′ = 0 limit of the KLT kernel of string theory is given in [138].

Field theoretic aspects

The above construction is restricted to little group representations; despite this, we will

devote two chapters in this thesis to showing how this version of the gauge/gravity map

may be considerably extended, to reveal a rich structure and a web of relations between

different (super)gravity theories. A different, perhaps more ambitious view could be

adopted, whereby a similar map or “dictionary” may be built at the level of spacetime

fields. Although this will be the subject of Chapter 6, it is worth introducing some of

the basic concepts here. Firstly, one should specify how the spacetime dependence of the

Yang-Mills (and spectator) fields carries over to those of gravity. It turns out to be very
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effective to assume the precise form of the map to be a convolution in spacetime: for two

functions on R1,D−1, f(x) and g(x), their convolution is given by

[f ? g](x) :=

∫
dDy f(y)g(x− y) =

∫
dDy f(x− y)g(y), (3.7)

heuristically consistent with the observation that the double copy relations are multi-

plicative in momentum space1. The convolution is both commutative, f ? g = g ? f and

associative, f ?(g?h) = (f ?g)?h. Adjoining the aforementioned gauge index contraction,

the triplet of states above may be promoted to a triplet of fields defined by

(hµν , Bµν , ϕ)(x) = [Aµ ◦ Ãν ](x) = [AAµ ? Φ−1
AA′ ? Ã

A′

ν ](x), (3.8)

where the notation ◦ has been introduced to denote convolution and index contraction

with the spectator scalar field, which allows us to omit the gauge indices from here on.

Aside from the comparison with the amplitude double copy, one compelling reason

to assume the convolutive nature of the product from our perspective is that only after

assuming a convolution, as opposed to a simple product, is one able to derive the (lin-

earised) local diffeomorphism and 2-form gauge symmetries of graviton and Kalb-Ramond

field from the gauge invariance of the underlying Yang-Mills fields. The reader is referred

to Section 6.1 for a more complete discussion, and to [139] for the full derivation of the

symmetries of N = 1 supergravity which include, aside from those already mentioned,

also local Lorentz and supersymmetry transformations of the whole multiplet. Suffice here

to say that these results crucially rely on the non-Leibniz property of the convolution,

namely

∂µ(f ? g) = ∂µf ? g = f ? ∂µg, (3.9)

which practically allows one to “pull out” a derivative, acting on just one factor inside

the integral, to act on the whole product. The derivative rule (3.9) is not valid for the

convolution of any two functions on R1,D−1: it is possible to show [72] that it suffices

to restrict the allowed domain to functions in the image of the Green function for the

d’Alembert operator, namely to functions f(x) such that

f(x) = [G ? j](x) :=
1

�
j(x) (3.10)

where G = G(x − y) is the usual Green function for the d’Alembertian, �xG(x − y) =

δD(x− y) and where we use the streamlined notation �−1 to denote convolution with G,

as in [72]. We also demand that the Green function commutes with the d’Alembertian,

�−1� = ��−1 = Id (3.11)

1Recall that the (inverse) Fourier transform of a product is given by the convolution of the individual

(inverse) Fourier transforms.
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on this domain. Notice, in particular, how this implies that plane wave solutions, such that

�f(x) = 0, are therefore excluded. This is relevant, among other things, to the double

copy of classical solutions which, as the name suggests, aims at finding a gauge theory

interpretation of the solutions of the classical Einstein equations of motion by relating

them to a double copy of e.g. Maxwell or Yang-Mills solutions. In Section 6.3, we will

show that such careful consideration of the properties of the convolution is necessary in

order to obtain a proper understanding of the gauge/gravity map, especially with regards

to the Yang-Mills origin of the gravitational dynamics.

Finally, having been granted the status of spacetime fields rather than on-shell states,

the quantities in (3.8) should inherit a number of properties qualifying them as such.

Among these, they ought to have a specific mass dimension, which fixes how they might

enter a Lagrangian density encoding their symmetries and dynamics. In this regard,

notice how the introduction of the spectator scalar, Φ−1
AA′ , gives a way out2 of the formal

difficulty in matching the mass dimensions of the three fields (hµν , Bµν , ϕ), each of which

has standard mass dimension (D−2)/2 in D-dimensional spacetime. Obviously the naive

tensor product Aµ⊗ Ãν has twice the required value, that is D− 2. If we had introduced

the convolution, but not the spectator, things would be even worse since, in that case,

Aµ ? Ãν =
∫

dDy Aµ(y)Ãν(x − y) has fixed mass dimension −D + D − 2 = −2. On

the other hand, it is possible to require that the dictionary prescribed in (3.8), which

explicitly reads

[AAµ ? Φ−1
AA′ ? Ã

A′

ν ](x) =

∫
dDzdDy Aµ(x− y)Φ−1

AA′(z)Ãν(y − z), (3.12)

has the correct mass dimension: the “spectator” scalar must be assigned mass dimension

[Φ−1
AA′ ] =

3D + 2

2
, (3.13)

which shows that it cannot be a conventional scalar field. Indeed, this value is typical of

the convolution inverse of a usual scalar field, defined by the relation

[Φ−1 ? Φ](x) =

∫
dDy Φ−1(y)Φ(x− y) = δ(D)(x), (3.14)

which motivates the notation. Postponing further discussions on the field theoretic aspects

of the squaring map until Chapter 6, let us now focus on extending the above construction

from a purely group theoretic perspective.

3.2 Squaring pure super-Yang-Mills

The remainder of this chapter is devoted to a review of the results in [85–88], which

laid out the Yang-Mills squared construction. We present this here as it constitutes the

2Aside from the ad hoc inclusion of dimensionful parameters.
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foundation on which the results on twin supergravities of Chapter 4 build on. Compared

to the amplitudes double copy, this represents an a priori independent, albeit surely

related, group theoretic approach to the idea that gravity is the “square” of gauge theory.

Excellent reviews, containing a much more detailed exposition of this material, are [139–

141].

3.2.1 Overview

Experimental questions aside, the inclusion of supersymmetry to a physical model is

theoretically very compelling, inasmuch as it provides a larger framework which very

often exhibits a much richer structure than its non-supersymmetric counterpart. Being

no exception, the gauge/gravity map briefly sketched in the preceding section greatly

benefits from a supersymmetric extension, as one could anticipate from the appearence of

the whole NS-NS sector - reminiscent of supergravity - in the simple (i.e. N = 0) product.

Thus, rather than the tensor product of two Yang-Mills potentials, it is tempting

to consider that of two pure3 super-Yang-Mills (sYM) multiplets, where we denote the

amount of supersymmetry byN and Ñ for the Left and Right sYM theories, respectively4.

The number of distinct possible cases is a function of the number of allowed multiplets

in any given spacetime dimension, which are summarised in Table 2.3. Naturally, one

expects the resulting states to organise themselves into allowed supergravity multiplets,

giving a precise (and hopefully unique) mapping from a pair of sYM theories on one side,

which we denote by (VN ,VÑ ), and a specific supergravity theory on the other. The

simplest instance in which this can be seen to work is in 10-dimensional spacetime (the

highest admitting a sYM multiplet), squaring two vector multiplets containing spinors of

opposite chirality, that is

V(1,0) ⊗V(0,1) = (8v + 8s)⊗ (8v + 8c)

= (35v + 28 + 1) + (56s + 8s) + (56c + 8c) + (56v + 8v)

= G(1,1),

(3.15)

resulting precisely in the states of N(1,1) supergravity in ten dimensions, with the two

gravitini (also of opposite chirality) transforming in the 56s and 56c. The simplicity of

this example owes to the triviality of the R-symmetry of the sYM factors, which cor-

rectly square to a supergravity theory with an equally trivial R-symmetry (or H group

altogether, in this case): the content on both sides is labelled simply by so(8)st represen-

tations5. In general, however, the fields belonging to a sYM multiplet carry, alongside

(adjoint) gauge and Lorentz indices, also those of the relevant global internal symmetry,

3That is, not coupled to matter. This case will be considered in Section 3.3.2.
4The slightly awkward notation is due to the fact that we prefer to reserve NL/R to indicate the

chirality of the supercharges, and N± for the twin theories of Chapter 4.
5This statement is marginally incomplete: the similar product of D = 10 vector multiplets with the

same chirality leads to G(2,0) with R-symmetry SO(2), as may be verified in Table 3.6. This type of

enhancement is explained in Section 3.2.3 and an explicit example is given in Section 3.2.4.
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with Lie algebra int(N , D), which always acts trivially on the vector, but rotates the

spinors in its defining representation and the scalars among themselves, as it is appar-

ent if we write the components of the vector multiplet as VN = (Aµ, λ
i, φa)A, where

i = 1, . . . ,N while a = 1, . . . ,Q/2 + 2 −D and A the adjoint index of the gauge group.

Thus, if this is to work, the question naturally arises of how the R-symmetry represen-

tations ought to combine under the squaring map, in order to obtain a consistent and

meaningful set of results.

With the luxury of hindsight, we could imagine a natural guess to be that the internal

global symmetries of the sYM factors square to the maximal compact symmetry H of the

corresponding supergravity, the largest global internal symmetry linearly realised on the

fields in the multiplets. Indeed, this may be shown to be the case. Before presenting a

sketch of the proof, however, let us discuss why it makes sense that this should be true.

Heuristically, one could visualise the tensoring of two supersymmetric multiplets as in the

following table, where the bona fide gravitational states, defined as irreducible so(D−2)st

Ãν λ̃i
′

φ̃a
′

Aµ hµν +Bµν + ϕ Ψi′

ν + χi
′

V a
′

µ

λi Ψi
µ + χi ϕii

′
+ . . . χia

′

φa V aν χai
′

ϕaa
′

Table 3.1: Generic form of the squaring of two SUSY multiplets, VN ⊗VÑ .

representations due to the identification of the left and right little groups, directly inherit

both representations under int(N , D) and int(Ñ , D), which ought to be kept independent.

Overall, then, they are labelled as representations of

so(D − 2)st ⊕ int(N , D)⊕ int(Ñ , D)⊕ δ4Du(1)d (3.16)

where the Kronecker delta symbolises that the additional Abelian factor is present only in

4 dimensions, where the generators of the Lorentz transformations in the tensor product

representations of the little group correspond to the sum of those in the Left and Right

factors, labelled by the helicity of the states. Thus, the generators corresponding to the

orthogonal combination u(1)d ≡ u(1)st − ũ(1)st commute with those of the little group

and may contribute as an internal symmetry of the supergravity states.

The tensoring thus yields states ranging from spin-2, the graviton hµν , all the way

down to spin-0 scalars, in half-integral decrements, as expected. In particular, notice how

the spectrum includes N gravitini coming from Ψi
µ ∼ λi ◦ Ãµ and Ñ gravitini coming

from Ψi′
µ ∼ Aµ ◦ λ̃i

′
, thus suggesting the general result that the corresponding (pure or



3.2. SQUARING PURE SUPER-YANG-MILLS 49

matter coupled) supergravity will possess (N + Ñ )-extended supersymmetry, that is

VN ⊗VÑ = GN+Ñ ⊕MN+Ñ (3.17)

where MN denotes possible supersymmetric matter multiplets coupled to the supergravity

multiplet. Note also that the tensor product of two sYM spinors, that is the central entry

of Table 3.1, must be expanded onto the basis of the Clifford algebra provided by the

skew-symmetric products of the generating gamma matrices; this implies that, in general,

the result will depend on the spacetime dimension. Notice, however, how the notation of

the table betrays the fact that, irrespective of D, there always will be a set of NÑ scalar

fields ϕii
′
, usually referred to as Ramond-Ramond (RR) scalars. In addition to those in

the RR sector, scalar fields belonging to the gravity side are also produced in other types

of tensor products, namely ϕ ⊂ Aµ ◦ Ãν and ϕaa
′ ⊂ φa ◦ φ̃a′ and the dualised 2-form

Bµν in four dimensions, where the corresponding 3-form field strength is Hodge-dual to a

1-form field strength, hence to a scalar. We will discuss shortly how the knowledge of the

sYM origin of the scalar space of supergravity can help pin down a unique result for each

squaring. How, though, can this set of states be shown to correspond to those of honest

supergravity?

• Compact symmetries

The key observation is that there always exists, for all dimensions and combinations

of supercharges, a maximal embedding of the (direct sum of) Lie algebras inherited

directly from Yang-Mills into a larger one,

h(D,N , Ñ ) ⊃ int(N , D)⊕ int(Ñ , D)⊕ δ4Du(1)d (3.18)

such that the bona fide gravitational states above may be seen to consistently uplift

to irreducible representations of h. As suggested by the notation, the remarkable

fact is that, without exception, the latter corresponds to the Lie algebra of H, the

maximal compact subgroup of the U -duality group G of the precise supergravity

theory whose content is fixed by the tensor product. In this sense, the so(D − 2)st

tensor product and the embedding (3.18) conspire to pin down a particular super-

gravity theory.

• Non-compact symmetries

The fact that the scalar states as computed from the product of the Yang-Mills

factors transform irreducibly under the linear action of h is enough to establish that

they parameterise a locally homogeneous space [27, 89]. If we additionally assume

that said space is symmetric, we are led to the conclusion that they span a coset

manifold, G/H, with the structure defined in (2.87), with tangent space at each

point given by the vector space p = g− h. Thus, the scalars span p and transform

in the dim(p)-dimensional representation of h. This fixes the Lie algebra g, which

in all cases matches the expected non-compact U-duality group G.
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3.2.2 Construction in D = 3

Let us now briefly present the essence of the proof. This relies on the mathematics of

the four normed division algebras (NDAs) An of real dimension n = 1, 2, 4, 8, namely the

reals R, the complexes C, the quaternions H and the octonions O. Since the original work

presented in this thesis does not require knowledge of the division algebras, we will only

mention certain results which are relevant to our purposes without much justification. The

interested reader is referred to the original works [85–88] and to the excellent discussions

contained in [139–141]. At the core of the construction is a formula, the (reduced) magic

square formula,

L2 (AL,AR) = tri(AL)⊕ tri(AR) + (AL ⊗AR) (3.19)

which builds a 4× 4 array of Lie algebras from a set of subalgebras, the so-called triality

algebras of the division algebras, denoted tri(A). Remarkably, the entries of the reduced

magic square correspond exactly to the h algebras of the supergravities whose content

arises from tensoring the allowed N = 1, 2, 4, 8 multiplets in D = 3, as reported in Table

(3.2).

V8 V4 V2 V1

so(8) 3so(3) 2so(2) ∅

V8 G16 G12 G10 G9

so(8) g = e8(8) g = e7(−5) g = e6(−14) g = f4(−20)
h = so(16) h = so(12)⊕ so(3) h = so(10)⊕ so(2) h = so(9)

V4 G16 G8 + 4V8 G6 + 2V6 G5 + V5

3so(3) g = e7(−5) g = so(8, 4) g = su(4, 2) g = usp(4, 2)

h = so(12)⊕ so(3) h = so(8)⊕ 2so(3) h = so(6)⊕ so(3)⊕ so(2) h = so(5)⊕so(3)

V2 G10 G6 + 2V6 G4 + V4 + C4 G3 + V3

2so(2) g = e6(−14) g = su(4, 2) g = 2su(2, 1) g = su(2, 1)

h = so(10)⊕ so(2) h = so(6)⊕ so(3)⊕ so(2) h = so(4)⊕ 2so(2) h = so(3)⊕so(2)

V1 G9 G5 + V5 G3 + V3 G2 + V2

∅ g = f4(−20) g = usp(4, 2) g = su(2, 1) g = so(2, 1)

h = so(9) h = so(5)⊕ so(3) h = so(3)⊕ so(2) h = so(2)

Table 3.2: The magic square of supergravities in D = 3. The U -duality algebras g cor-

respond to the entries of the Freudenthal-Rosenfeld-Tits (FRT) magic square of division

algebras, while their maximal compact subalgebras h correspond to those of the reduced

magic square.
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It is possible to show that there exists a parameterisation of super-Yang-Mills theories in

D = 3 in terms of An, exploiting a relation between the division algebras and supersym-

metry whereby the triality algebras correspond to the internal symmetries of the D = 3

Yang-Mills multiplets, tri(AQ/2) ∼= int(N , 3), namely tri(AQ/2) = ∅, 2so(2), 3so(3), so(8)

for N = 1, 2, 4, 8, to be compared with the relevant entries of Table 2.3. As a conse-

quence of this, the reduced magic square formula (3.19) acquires a physical interpretation!

Namely, it formalises, for D = 3, the enhancement (3.18) of the (direct sum of) internal

symmetries of the sYM factors to the full h algebra. Indeed, part of the reformulation of

sYM in terms of the NDAs involves realising that, as vector spaces, the division algebra

An is isomorphic to the total sYM spinor space for AQ/2 ∼= sN which, in addition, always

carries the fundamental representation of the internal symmetry algebra, e.g.

• VD=3
2 carries 4 supercharges, so AQ/2 = C, and has two real spinors, R2 ∼= C,

transforming as the (1,−1) and (−1, 1) of int(2, 3) = 2so(2);

• VD=3
8 carries 16 supercharges, so AQ/2 = O ∼= R8, and has eight real spinors, R8,

transforming as the 8 of int(8, 3) = so(8).

Thus, the formula (3.19) may suggestively be re-written as

h(3,N , Ñ ) = int(N , 3)⊕ int(Ñ , 3) + sN ⊗ sÑ , (3.20)

which makes manifest the Yang-Mills Squared origin of the h algebras in Table 3.2: with

the knowledge of the internal symmetries of both sYM factors together with their spinorial

content and representations, one may build h uniquely.

Non-compact symmetry

Let us now clarify why the magic square defined by (3.19) is referred to as “reduced”. It

turns out that there is an even bigger algebra which can act on the tensor product of two

NDAs, namely that of the Freudenthal-Rosenfeld-Tits magic square, defined by

L1,2 (AL,AR) = tri(AL)⊕ tri(AR) + 3 (AL ⊗AR)

= L2 (AL,AR) + 2 (AL ⊗AR) .
(3.21)

The commutation relations between generators in L2 and the complement may be com-

puted to be those of (2.87), which establishes the reduced magic square as the maximal

compact subalgebra of L1,2. It will not surprise, then, that the entries of the magic square

(3.21) correspond to the non-compact Lie algebras g of the D = 3 supergravities appear-

ing in Table 3.2. With an eye to the Yang-Mills origin of these, we then re-write the above

as

g(3,Q, Q̃) = h(3,Q, Q̃) + p(3,Q, Q̃), (3.22)
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through the identifications

g(3,Q, Q̃) ∼ L1,2(AQ/2,AQ̃/2) (3.23)

h(3,Q, Q̃) ∼ L2(AQ/2,AQ̃/2) (3.24)

p(3,Q, Q̃) ∼ 2
(
AQ/2 ⊗AQ̃/2

)
. (3.25)

Having already shown the Yang-Mills origin of h, all is left to do is to find one for the non-

compact complement, p. As we have seen, for supergravities with homogeneous symmetric

scalar manifolds (which we assume), this space is spanned by the scalars. From a Yang-

Mills perspective, in three dimensions these come from only two kinds of tensor products,

since the vectors are always dualised to scalars as a consequence of working on-shell: left

with right scalars, φ ◦ φ̃ and (the Fierz decomposition of) left with right6 spinors, λ ◦ λ̃.

The non-compact space is thus seen to be isomorphic, as a vector space, to

p(3,Q, Q̃) ∼= S(3,Q)⊗ S(3, Q̃) + sN ⊗ sÑ , (3.26)

where S(3,Q) represents the vector space spanned by the scalars of the Left Yang-Mills

multiplet, with identical expressions for the Right factor. Notice that, in D = 3, super-

symmetry implies S(3,Q) ∼= sN . It may be checked that, in all cases, the scalars obtained

from squaring carry precisely the irreducible h representations necessary for the enhance-

ment h ⊂ g to occur, which can also be checked explicitly by computing the commutators

of h and p.

3.2.3 Squaring in all dimensions

All this may be generalised to all dimensions 3 ≤ D ≤ 10, to obtain the Lie algebras of the

groups appearing in the scalar cosets G/H of all supergravities arising from VN ⊗VÑ in

these dimensions. Denoting by A[n] the set of n× n matrices with entries in the division

algebras An = R,C,H, the first observation to be made is that the set of anti-Hermitian

elements in A[n],

a(n,A) := {x ∈ A[n] : x† = −x} (3.27)

yields the classical Lie algebras

a(n,A) =


so(n), A = R,

u(n), A = C,

sp(n), A = H.

(3.28)

6We remind the reader, to avoid possible confusion, that “left” and “right” in this thesis usually refer

to the two sYM factors entering the squaring product, not to the chirality of the spinors. We tried to

pay due care and make it very clear where we actually refer to the left and right Weyl components of a

spinor in even dimensions, for instance by using projector operators PL/R.



3.2. SQUARING PURE SUPER-YANG-MILLS 53

corresponding to the R-symmetry algebras in various dimensions, according to the pattern

in Table 2.2, which justifies the identification,

r(N , D) = a(N ,D) (3.29)

where D is the (direct sum of) division algebras associated to the reality properties of

minimal spinors, and hence to the R-symmetry, in each dimension, e.g. in D = 10,

D = RL⊕RR corresponding to the R-symmetry so(NL)⊕ so(NR). One may build larger

algebras using the fact that

a(N + Ñ ,D) = a(N ,D)⊕ a(Ñ ,D) +D[N , Ñ ] (3.30)

where the term D[N , Ñ ] may be thought of as a dimD = NÑ vector space spanned by

N ×Ñ matrices valued in D. With an eye towards the Yang-Mills Squared interpretation,

using (3.29), one may re-write the above as

r(N + Ñ , D) = r(N , D)⊕ r(Ñ , D) +D[N , Ñ ] (3.31)

which may be interpreted as constructing the R-symmetry of the supergravity from those

of the sYM factors, as follows: upon tensoring two sYM theories, one can form the doublet

of Left and Right supercharges (Q, Q̃) ∈ DN ⊕ DÑ . Each one is acted upon by the R-

symmetries of the Left and Right sYM theories independently; however, there is now the

possibility of the additional “off-diagonal” contributions, corresponding to D[N , Ñ ]. The

action of r(N + Ñ , D) in this basis is given explicitly by

X =

(
XL 0

0 XR

)
+

(
0 M

−M † 0

)
(3.32)

where XL ∈ r(N , D), XR ∈ r(Ñ , D) and M ∈ D[N , Ñ ]. This may be used to check that

the commutators are indeed the correct ones, cf. [88] for the explicit calculation.

The expression (3.31) is enough for those cases when the whole set of internal symme-

tries of both sYM factors coincides with their R-symmetries. This is not always the case:

in fact, it is convenient to define

int(N , D) = r(N , D)⊕ q(N , D)	 δD4δN4u(1)r (3.33)

for q = so(2), so(3) for V2,V4 in D = 3. These enhancements of the internal symmetry in

three dimensions are due to the dualisation of the vector to a scalar, while the D = 4 factor

symbolises the fact that the maximal N = 4 sYM multiplet is CPT self-conjugate and

thus cannot support the u(1)r ⊂ u(4) part of the R-symmetry. Then, in all dimensions,

the formula which builds the algebras of the maximal compact supergravity group H

ought to account for the above discrepancy, as well as for the extra Abelian factor u(1)d
mentioned in the discussion around (3.16), with charge given by the difference of the Left

and Right helicities. It is given by

h(D,N , Ñ ) = int(N , D)⊕ int(Ñ , D)⊕ δD4u(1)d +D[N , Ñ ]. (3.34)
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The compact expression (3.34) is valid in all dimensions thanks to the unifying potential of

the division algebraic notation, which captures at once the nature of the minimal spinors,

hence the R-symmetry algebras, in all dimensions.

Naturally, it may be simplified by restricting to a specific spacetime dimension, where

it then depends simply on N and Ñ , thus yielding a sequence of algebras corresponding

to supergravities with different amounts of supersymmetry. In D = 8, for instance, the

internal symmetry of the N -extended Yang-Mills multiplet is u(N ), which fixes D = C

and implies

h(8,N , Ñ ) = int(N , 8)⊕ int(Ñ , 8) + C[N , Ñ ]

= su(N )⊕ u(1)⊕ su(Ñ )⊕ ũ(1) + C[N , Ñ ]

= u(1)′ ⊕ su(N )⊕ su(Ñ )⊕ u(1)′′ + C[N , Ñ ]

= u(1)′ ⊕ su(N + Ñ )

(3.35)

where the difference between the second and the third line highlights that a rotation of

the u(1) charges may be needed in order to find the correct embedding; two examples

of such rotations will be presented in Section 4.2. In fact, as it is clear from Table 2.3,

there is a unique D = 8, N = 1 sYM multiplet with R-symmetry algebra u(1); therefore,

according to (3.35), the supergravity resulting from tensoring it with a second copy of

itself should have h = u(2), which is indeed the (Lie algebra of the) correct compact

symmetry group of the unique N = 2 supergravity in that dimension, as may be verified

in Table 2.5. The results for all D, N and Ñ constitute the h entries of the so-called

magic pyramid of supergravity theories. At the base of the pyramid is the 4 × 4 magic

square of supergravities in D = 3, which was the subject of the previous section and

whose entries are tabulated in Table 3.2. Then follow a 3 × 3 square in D = 4, 2 × 2

squares in D = 5, 6 and a single theory in each dimension 7 ≤ D ≤ 10, whose entries are

summarised in Tables 3.3 through 3.6.

Note that equation (3.34) may be thought of as the decomposition of the adjoint

representation of h under the branching H ⊃ Int(N , D) × Int(Ñ , D), expressing the

dim(h) generators in a manifest int⊕int basis, which in turn suggests the Yang-Mills origin

of the enhancement: in addition to the generators of the left and right internal symmetry

algebras, which live in the (adj,1) and (1, adj) respectively, thus manifestly only acting

on the left (resp. right) sYM factor in the tensor product, the formula suggests that the

missing generators necessary to obtain a full h-transformation should live in the space

D[N , Ñ ] and carry the representation (def ,def). It is then tempting to suppose that

these correspond to the scalar part7 of the tensor product of supersymmetry generators,

QL ⊗ Q̃R, which indeed spans the correct on-shell vector space,

Q⊗ Q̃ ∈ DN ⊗DÑ ∼= D[N , Ñ ], (3.36)

and transforms in the bi-defining as required. Indeed, said product of Grassmann-odd

generators can be shown to yield a bosonic transformation of the supergravity states: it

7In the sense that it commutes with the little group generators and can thus be considered internal.
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corresponds precisely to the off-diagonal components of the h-transformation when decom-

posed according to int⊕ int, provided that the momentum factors arising (in momentum

space) from the derivatives in the supersymmetry variations are dropped. Because of this

fact, however, this identification remains more of a useful heuristic argument, rather than

a solid proof. An example displaying all this is the subject of Section 3.2.4.

Non-compact symmetry

As was done for D = 3 before, it is possible to concoct a similarly unified formula which

yields the Lie algebras g of the corresponding non-compact symmetry groups, G. One

constructs the non-compact complement p to be adjoined to h using the knowledge of the

space spanned by the supergravity scalars as it arises from the tensor product. It is given,

as a vector space, by

p(D,N , Ñ ) = (1 + δD4 − δD3)R⊗R+D[N , Ñ ] + S(D,N )⊗ S(D, Ñ ), (3.37)

where the three terms symbolise the three distinct origins of supergravity scalar fields in

the tensor product of two sYM theories, namely:

• The tensor product of the two vectors, which always gives one scalar (the trace). In

D = 4 there is an extra scalar contribution from the dualisation of the Kalb-Ramond

2-form, Bµν , while in D = 3 we must subtract one degree of freedom since, having

dualised both sYM vectors to scalars, their contribution is already accounted for in

the third term.

• The tensor product of two gaugini which, just like for the supercharges in (3.36),

is expanded on the Clifford algebra basis. The rank-0 contribution of the Fierz

expansion may be succintly represented as D[N , Ñ ], which automatically takes into

account the reality properties of the two gaugini entering the formula.

• The tensor product of the scalars of the Left and Right theories, each set spanning

a space S(D,N ) ∼= RQ/2−D+2+δD3 .

Again, a Lie algebra structure may be given to this vector space by checking the com-

mutators [88]. All the resulting g algebras are summarised, together with their maximal

compact subalgebras, in the tables below.

Finally, a comment. It is not clear, to date, what to say about the Yang-Mills origin

of the generators in p: all known symmetry generators of the underlying sYM theories

conspire to form the linear action of h on the supergravity states, with the supersymmetry

generators heuristically acting as the driving force behind the enhancement int⊕ int ⊂ h.

Which combination, if any, of gauge theory transformations (not necessarily leaving the

sYM action invariant) should come together to form the non-linear action of the full

U -duality group Lie algebra, g, is a very intriguing outstanding question.
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D = 4 V4 V2 V1

u(1)st su(4) u(2) u(1)

V4 G8 G6 G5

su(4) g = e7(7) g = so?(12) g = su(1, 5)

h = su(8) h = u(6) h = u(5)

V2 G6 G4 + 2V4 G3 + V3

u(2) g = so?(12) g = su(1, 1)⊕ so(2, 6) g = u(1, 3)

h = u(6) h = u(4)⊕ u(1) h = u(3)⊕ u(1)

V1 G5 G3 + V3 G2 + H2

u(1) g = su(1, 5) g = u(1, 3) g = u(1, 2)

h = u(5) h = u(3)⊕ u(1) h = u(2)⊕ u(1)

D = 5 V4 V2

sp(1)st sp(2) sp(1)

V4 G8 G6

sp(2) g = e6(6) g = su?(6)

h = sp(4) h = sp(3)

V2 G6 G4 + V4

sp(1) g = su?(6) g = o(1, 1)⊕ o(5, 1)

h = sp(3) h = sp(2)

D = 6 V(2,2) V(0,2)

2sp(1)st 2sp(1) sp(1)

V(2,2) G(4,4) G(2,4)

2sp(1) g = o(5, 5) g = sp(1)⊕ su∗(4)

h = sp(2)⊕ sp(2) h = sp(1)⊕ sp(2)

V(2,0) G(4,2) G(2,2)

sp(1) g = su?(4)⊕ sp(1) g = o(1, 1)⊕ 2sp(1)

h = sp(2)⊕ sp(1) h = sp(1)⊕ sp(1)

Table 3.3: Tensoring pure super Yang-Mills multiplets in D = 4, 5, 6. The first yields

the 4 × 4 layer of the pyramid, while the remaining two yield 3 × 3 layers. Each vector

multiplet entering the product is given with its R-symmetry group algebra, while the

resulting supergravity theory is given with the algebras associated to the non-compact

U-duality group G and its maximal compact subgroup H.
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D = 6 V(2,0)

2sp(1)st sp(1)

V(2,0) G(4,0) + T(4,0)

sp(1) g = o(5, 1)

h = sp(2)

D = 7 V2

sp(2)st sp(1)

V2 G4

sp(1) g = sl(5;R)

h = sp(2)

Table 3.4: On the left, the remaining D = 6 product, that of two super Yang-Mills

multiplets of the same chirality. On the right, the unique D = 7 squaring product.

D = 8 V1

2su(4)st u(1)

V1 G2

u(1) g = sl(2;R)⊕ sl(3;R)

h = u(2)

D = 9 V1

so(7)st ∅

V1 G2

∅ g = o(1, 1)⊕ sl(2;R)

h = so(2)

Table 3.5: The unique squaring products in D = 8, 9. Note that in the latter case, Q⊗ Q̃
constructs the single generator of so(2).

D = 10 V(0,1)

so(8)st ∅

V(1,0) G(1,1)

∅ g = ∅
h = ∅

D = 10 V(1,0)

so(8)st ∅

V(1,0) G(2,0)

∅ g = sl(2;R)

h = so(2)

Table 3.6: The D = 10 products: squaring multiplets of opposite chirality yields Type

IIA supergravity (left), whilst same chirality multiplets give Type IIB (right).
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3.2.4 Squaring N = 4 sYM gives N = 8 supergravity

Let us illustrate this by means of an example. We choose the prototypical case of D = 4,

N = 8 supergravity as the square of N = 4 sYM because it is one of the most studied in

the amplitude literature, because the reader may be already familiar with it and, finally,

because we will need it again in Chapter 4. Consider the D = 4, N = 4 vector multiplet,

whose content under u(1)st ⊕ su(4) is given by

V4 = {Aµ, λi, φa} = {12 + 1−2,41 + 4
−1
,60}, (3.38)

reflecting the fact that it is CPT self-conjugate and thus cannot support the u(1) ⊂ u(4).

As a consequence, we have one less internal u(1) charge to work with, which renders this

example particularly amenable8. Thus, the states of the squaring product V4 ⊗V4 are

labelled by u(1)st ⊕ 2su(4)⊕ u(1)d and are given in Table 3.7.

12 + c.c. 41 + c.c. 60

12 + c.c. (1,1)40 + (1,1)04 + c.c. (1,4)31 + (1,4)13 + c.c. (1,6)22 + c.c.

41 + c.c (4,1)3−1 + (4,1)1−3 + c.c. (4,4)20 + (4,4)02 + c.c. (4,6)11 + c.c.

60 (6,1)2−2 + c.c. (6,4)1−1 + c.c. (6,6)00

Table 3.7: Squaring V4⊗V4 in four dimensions. The positive helicity states are presented

explicitly.

According to (3.18), it should be possible to find an enhancement of the internal symme-

tries. This may be easily seen to be the case upon organising the states according as their

little group representation: in D = 4 it suffices to show this for either the positive or the

negative helicity states. Choosing the former here we obtain, for helicities ranging from

(4) to (0),

Under su(8) ⊃ su(4)⊕ su(4)⊕ u(1)d,

1→ (1,1)0

8→ (4,1)−1 + (1,4)1

28→ (6,1)−2 + (1,6)2 + (4,4)0

56→ (4,1)−3 + (1,4)3 + (6,4)−1 + (4,6)1

70→ (1,1)4 + (1,1)−4 + (6,6)0 + (4,4)2 + (4,4)−2

(3.39)

8In general, if more than one internal u(1) is inherited by the states after squaring, a rotation of the

charges is needed to match the precise representation content of supergravity.
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showing that all states in a particular set, specified by helicity, may be consistently put in

a representation of h = su(8). Expressing the adjoint of the latter in a su(4)⊕su(4)⊕u(1)

basis,

63 −→ (15,1)0 + (1,15)0 + (1,1)0 + (4,4)2 + (4,4)−2, (3.40)

helps understand the Yang-Mills origin of the su(8) generators. Consider, for instance,

the two negative helicity gravitino states coming from squaring, namely

Ψi
1 = λi ⊗ Ṽ (4,1)−3

1 (3.41)

Ψi′

2 = V ⊗ λ̃i′ (1,4)−3
−1 (3.42)

They may be put together in a 8-dimensional column, ΨI = (Ψi
1,Ψ

i′
2 )T , which should

transform under the full su(8). The index I = 1, . . . , 8 is that of the bona fide defining

representation of su(8). On-shell and at the infinitesimal level, the states of the two super

Yang-Mills factors are transformed under the spacetime and R-symmetries as

δstV = 2iαV, δRV = 0, (3.43)

δstλ
i = iαλi, δRλ

i = θm(Tm)i jλ
j, (3.44)

where (Tm)i j ∈ su(4), and with a similar set for the states of the Right factor (i.e. the

states with tildas). Then, simply exploiting the R-symmetries of the two factors, and

denoting transformations of the supergravity theory with a prime, δ′, the doublet inherits

the transformation

δ′RΨI = δ′R

(
Ψi

1

Ψi′
2

)
=

(
δRλ

i ⊗ Ṽ + λi ⊗ δRṼ
δRV ⊗ λ̃i

′
+ V ⊗ δRλ̃i

′

)

=

(
θm(Tm)i jΨ

j
1

θ̃m
′
(T̃m′)

i′

j′Ψ
j′

2

)

=

(
θm(Tm)i j 0

0 θ̃m
′
(T̃m′)

i′

j′

)(
Ψj

1

Ψj′

2

) (3.45)

corresponding to the (15,1) and (1,15). The singlet contribution (1,1) is due to the

peculiar feature present only in four dimensions, which allows to construct two mutually

commuting transformations on the tensor product (read supergravity) states, namely

δ′st = δst + δ̃st and δ′d = δst − δ̃st. Since the former is identified with the spacetime

little group algebra transformation, the latter is necessarily interpreted, by virtue of its

commutativity with δ′st, as an internal symmetry on the supergravity states. In this case,

δ′dΨ
I = δ′d

(
Ψi

1

Ψi′
2

)
=

(
δstλ

i ⊗ Ṽ − λi ⊗ δstṼ
δstV ⊗ λ̃i

′ − V ⊗ δstλ̃i
′

)

= iα

(
−1 0

0 1

)(
Ψj

1

Ψj′

2

)
.

(3.46)
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This exhausts the effect of varying the sYM pieces under their respective bosonic symme-

try transformations. Finally, one may consider the simultaneous variation of both sYM

factors under a supersymmetry transformation. Schematically, at the Yang-Mills level

one has that

δεV ∼ ε∗iλ
i, (3.47)

δελ
i ∼ V εi + . . . , (3.48)

where we are only interested in the piece of the supersymmetry variation of the spinors

proportional to the vector. Then, the simultaneous application on the states in the tensor

product induces the supergravity transformation,

δ′Ψi
1 ≡ δελ

i ⊗ δε̃Ṽ ∼ (εj ε̃∗j′)(V ⊗ λ̃j
′
) + · · · ≡ T jj′Ψ

j′

2 , (3.49)

δ′Ψi′

2 ≡ δεV ⊗ δε̃λ̃i
′ ∼ (−ε∗j ε̃j

′
)(λj ⊗ Ṽ ) + · · · ≡ U j′

j Ψj
1, (3.50)

which shows how the (4,1) and the (1,4) get rotated into each other. The dots correspond

to pieces proportional to (scalar)×(spinor) terms, which are discarded on the basis that

they do not commute with spacetime. Using (εj ε̃∗j′)
∗ = ε∗j ε̃

j′ , one identifies U j′

j ≡ (−T †)j
′

j.

When represented on the doublet,

δ′ΨI = δ′

(
Ψi

1

Ψi′
2

)
=

(
0 T jj′

(−T †)j
′

j 0

)(
Ψj

1

Ψj′

2

)
, (3.51)

these off-diagonal entries are the “missing” generators in the (4,4)+(4,4), and completes

the set of su(8) generators. Notice, as mentioned before, that this is only a heuristic

argument, whose role is to give an idea of what kind of transformation of the two factors

indeed reproduces the required missing generators. The reason it fails to be more than

this is that the variation of the spinor is really given by (2.28) which may be seen to

contain a derivative of the vector field, in the gauge-invariant combination Fµν . When

transported in momentum space and reduced on-shell, the derivative becomes a factor of

energy, E, which need to be dropped by hand.

Finally, focussing on the space spanned by the scalars, one sees from (3.39) that it

carries the action of the 70 of h; recalling its interpretation as the space of the non-compact

generators of G, one is able to derive g as the Lie algebra whose adjoint representation

decomposes, under G ⊃ H, as g = h + p = 63 + 70. Thus, G should be a group with

real dimension 133 and maximal compact subgroup SU(8). This fixes g = e7(7) and,

consequently, we identify the resulting scalar coset as E7(7)/SU(8). The result of this

squaring is denoted by

V4 ⊗V4 = G8. (3.52)
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3.3 Generalised squaring

The previous section has been devoted to “squaring” pure N -extended super Yang-Mills

theories. All possible products in 3 ≤ D ≤ 10 form the so-called magic pyramid, a

sequence of n×n arrays, one in each dimension, with n indicating the number of allowed

sYM multiplets in each specific dimension, decreasing as D increases. Each of the arrays’

entries are (the g and h algebras of) supergravity theories, whose content and symmetries

are related in a consistent fashion to a pair of super Yang-Mills factors. However, it is

clear from the tables in Section 3.2.3 that only a small subset of all supergravities are

produced this way: while virtually all more-than-half-maximal 16 < Q ≤ 32 theories

admit a factorisation and hence lie in the pyramid, the wealth of supergravities theories

with half-maximal or even smaller number of real supercharges, 4 ≤ Q ≤ 16, is far from

being captured by the pyramid alone. One question naturally comes to mind:

Are the supergravities in the pyramid the only cases where the factorisation into two

super Yang-Mills factors is possible?

The answer is negative. It turns out that a much larger class of supergravities is con-

structible in a similar way, once the correct extension of the procedure above is found.

Thankfully, the issue is clear. Squaring pure super Yang-Mills multiplets gives rise to

only a fixed (very small) number of supergravity theories with very specific spectra, and

thus a very limited number of matter couplings, while in general supergravities with low

supersymmetry may be coupled to matter multiplets in a (sometimes infinite) number

of ways. Thus, the question becomes: what is the Yang-Mills origin of general matter

couplings in supergravity?

3.3.1 Squaring hypers and single vectors

The resolution of the problem hinges on the realisation that new products should be

considered, alongside those of the VN ⊗ ṼÑ type. In particular, it is necessary to include

• VN ⊗ Ṽ0: the product of a vector multiplet with a single gauge vector, here treated

as an “N = 0 multiplet” and denoted as V0. These are summarised in Table 3.8.

• HN ⊗ H̃Ñ : the product of two hypermultiplets (or chirals, in D = 3, 4), which may

result in either vector or tensor multiplets. In the same spirit as for the vector

multiplets, we also extend this kind of product to the N = 0 case, namely when one

factor is a minimal spinor, λ. These are summarised in Table 3.9.

Notice that cross products of the type VN ⊗ H̃Ñ produce non-dynamical “gravitino mul-

tiplets”, e.g. the
(

3
2
, 1
)

multiplet in D = 4, known not to correspond to independent

interacting field theories. While these products yield sensible results9, they are omitted

9In the sense that, just like all other products, they consistently map the pair to (a sum of) known

multiplets.
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D VN ⊗V0 Supergravity D VN ⊗V0 Supergravity

10 V(1,0) ⊗V(0,0) G(1,0) 5 V4 ⊗V0 G4

9 V1 ⊗V0 G1 V2 ⊗V0 G2 + V2

8 V1 ⊗V0 G1 4 V4 ⊗V0 G4

7 V2 ⊗V0 G2 V2 ⊗V0 G2 + V2

6 V(2,2) ⊗V(0,0) G(2,2) V1 ⊗V0 G1 + C1

V(2,0) ⊗V(0,0) G(2,0) + T(2,0)

Table 3.8: Squaring vector multiplets with a single gauge vector.

D HN ⊗HN Supergravity D HN ⊗HN Supergravity

6 H(2,0) ⊗H(2,0) 4T(4,0) 4 H2 ⊗H2 4V4

H(2,0) ⊗H(0,2) 4V(2,2) H2 ⊗C1 2V′3
H(2,0) ⊗ λL 2T(2,0) H2 ⊗ λ 2V2

H(2,0) ⊗ λR 2V(2,0) C1 ⊗C1 V2 + H2

5 H2 ⊗H2 4V4 C1 ⊗ λ V1 + C1

H2 ⊗ λ 2V2

Table 3.9: Tensor products of two hyper- or chiral multiplets. For pseudoreal representa-

tions of the gauge group, the corresponding products involving half-hypermultiplets C2

are obtained from those of full hypers via the identification C2 = H2/2.

from the analysis here as we are ultimately interested in the field theoretic realisations

of the corresponding multiplets. In D = 6 there is the additional possibility of squar-

ing tensor multiplets, TN ⊗ T̃Ñ . This is by all means allowed, but we do not include

a detailed presentation here as this is not relevant to the developments of the present

text; consult e.g. [139] for more information. However, let us note that a subset of these

products10 yield all possible supergravity multiplets in D = 6, all of which however may

be alternatively constructed from squaring VN ⊗ ṼÑ . A subtle difference between the

two types of products is the following: the tensor multiplets must be used if one requires

the product to yield only G(2,0) or G(4,0) since, in vector multiplet products, these arise

along with additional tensor multiplets, e.g. for the latter

V(2,0) ⊗ Ṽ(2,0) = G(4,0) + T(4,0) vs T(4,0) ⊗ T̃(0,0) = G(4,0). (3.53)

10The remaining products yield conformal multiplets instead, possibly coupled to tensors.
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Squaring non-adjoint matter

A few more comments are in order. Notice that it is not strictly true in all cases that the

product should be limited to adjoint representations of the gauge group, with a spectator

scalar valued in the bi-adjoint representation of G×G̃, as in (3.6). In the present context,

while this is still obviously valid for VN ⊗ Ṽ0 products, it need not be when squaring

hyper or chiral multiplets, which may live in any arbitrary representation. Given two such

multiplets in non-adjoint gauge group representations ρ and ρ̃, we similarly postulate the

existence of a scalar field valued in the ρ⊗ ρ̃ representation which mediates the product

as

HN ◦ H̃Ñ ≡ Ha
N ⊗ Φ−1

aa′ ⊗ H̃a′

Ñ . (3.54)

with indices a = 1, . . . , dimρ and a′ = 1, . . . , dimρ̃. Notice that it does not suffice for the

two representations to be non-adjoint; it is also necessary that they share the same reality

properties. In other words, it is not possible to take the product of a real and a complex

representation, say. All of this is relevant because, in order to couple arbitrary matter

to the supergravity multiplets, we will be led to consider more general squaring products

where each factor is given by a vector multiplet coupled to a non-adjoint multiplet Ha
N .

In this case, consistency implies the “sum of squares” rule,

(VA
N ⊕Ha

N )⊗ (ṼA′

Ñ ⊕ H̃a′

Ñ ) = (VA
N ⊗ ṼA′

Ñ )⊕ (Ha
N ⊗ H̃a′

Ñ ), (3.55)

corresponding, heuristically, to the spectator scalar taking the diagonal form,

ΦAA′ =

(
ΦAA′ 0

0 Φaa′

)
. (3.56)

Indeed, if this were not the case, the products VA
N⊗H̃a′

Ñ would yield too many gravitini for

the result to correspond to a supergravity theory. This type of squaring, with non-adjoint

matter coupled to one or both Yang-Mills factors, is also at the core of our understanding

of twin supergravities from Yang-Mills, as discussed in Chapter 4.

3.3.2 Coupling matter to supergravity

These new tools allow one to understand the Yang-Mills origin of matter couplings in

supergravity. As highlighted in Section 2.3, supergravity theories are unique for Q > 16.

Below this, vector multiplets may be coupled for Q ≤ 16 and, finally, hyper and chiral

multiplets forQ = 8, 4 respectively. Similarly, on the Yang-Mills side on things, a maximal

vector multiplet with Q = 16 does not admit couplings to further matter multiplets, while

for half- and quarter-maximal, Q = 8, 4 respectively, it may couple to hyper- and chiral

multiplets. Let us discuss here how to obtain vector multiplet couplings to supergravities

with Q = 16, to introduce the reader to the general ideas of matter couplings from

Yang-Mills. For more details on couplings with lower supersymmetry see [139], while

a full classification of vector and hypermultiplet couplings to Q = 8 supergravity with

homogeneous scalar manifolds may be found in [27, 91].
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First factorisation

The most straightforward way to construct half-maximal supergravities coupled to n

vector multiplets consists in

VA
Q=16 ⊗ (ṼA′

0 + nφ̃A
′
) = (VA

Q=16 ⊗ ṼA′

0 ) + n(VA
Q=16 ⊗ φ̃A

′
)

= GQ=16 + nVQ=16.
(3.57)

The Left factor is simply a maximal vector multiplet with R-symmetry algebra r(Nmax, D),

while the Right factor is non-supersymmetric, comprising of a single gauge vector and n

scalars, both in the adjoint representation of the gauge group. The Right theory pos-

sesses an so(n) invariance, under which the vector is a singlet and the scalars transform

in the defining. In this case, the number of adjoint scalar fields coupled to the non-

supersymmetric Yang-Mills theory is a direct measure of the number of vector multiplets

in the resulting supergravity, since the term VQ=16 ⊗V0 always contributes just the su-

pergravity multiplet, as may be verified in Table 3.8. No enhancement occurs, which is

in full agreement with the observation that it is driven by the simultaneous supersym-

metry variation of both sYM factors: this cannot happen here as the Right factor is

non-supersymmetric. Thus, the compact algebra is simply the sum of the Left and Right

symmetries (up to the Abelian factor in four dimensions, which may of course still be

present),

h = r(N , D)⊕ so(n)⊕ δD4u(1)d, (3.58)

and the corresponding scalar coset reads

G

H
=

SO(φL, n)

SO(φL)× SO(n)
×MAA′ , (3.59)

with

MAA′ =


∅ D = 3

SU(1,1)
U(1)

D = 4

O(1, 1) D = 5, . . . , 10.

(3.60)

This matches the correct scalar spaces for Q = 16 supergravities coupled to n vectors,

see Table 2.5. Notice it is the direct product of two terms: in honest supergravity, this

reflects the split between the scalars of the vector multiplets and those belonging to the

supergravity multiplet. As it is apparent from (3.60), there is usually only one scalar

parameterising MAA′ , with two exceptions: in D = 3 there is none, as the supergravity

multiplet is taken to comprise just the graviton and N gravitini, hence all scalars fall in

the matter multiplets; in D = 4, due to the structure of the little group, there are two

such scalars.

Returning to the Yang-Mills origin of the coset (3.59), as the notation suggests, the

first term is generated by the scalars arising from n(Aµ ◦ φ̃), while the second is generated
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by the scalars in the Aµ ◦ Ãν sector, which may be checked to indeed belong to the

supergravity multiplet. As a consistency check, notice that Aµ ◦ Ãν yields only one scalar

field (the trace Aρ ◦ Ãρ) in all cases, with two exceptions: in D = 3, since we dualise the

vector to a scalar on the Yang-Mills side, we have none; in D = 4, after dualisation of the

2-form A[µ ◦ Ãν], we have two such scalars. This exactly matches the situation in honest

supergravity discussed above.

Second factorisation

While the factorisation in (3.57) remains valid in all dimensions, there exists another

one in dimensions D = 4, 5, 6, which exploits the “sum of squares” rule (3.55), as well

as highlighting the important role of the half-hypermultiplet in the Yang-Mills Squared

construction11. It is given by

(VA
Q=8 + Ca

Q=8)⊗ (ṼA′

Q=8 + (n− nD)C̃a′

Q=8) = (VA
Q=8 ⊗ ṼA′

Q=8) + (n− nD)(Ca
Q=8 ⊗ C̃a′

Q=8)

= (GQ=16 + nDVQ=16) + (n− nD)VQ=16

= GQ=16 + nVQ=16,

(3.61)

where in the second line the first set of brackets indicate the result of the V ⊗ Ṽ sector,

which changes according as the dimension it is being performed in: one has nD = 2, 1, 0

for D = 4, 5, 6 respectively, as one can see from Table 3.3. Consequently, in order for the

resulting supergravity to have exactly n vector multiplets, one must tune the number of

vectors required in the C ⊗ C̃ sector. Observing from Table 3.9 that HQ=8 ⊗ H̃Q=8 =

4VQ=16 in all dimensions, then CQ=8 ⊗ C̃Q=8 = VQ=16. It is obvious that this type of

factorisation can only exist for those dimensions where a hypermultiplet, and hence the

half-hyper, is defined, namely up to D = 6. Recall that the half-hypermultiplet makes

sense on its own only in a pseudoreal representation of the gauge group. The remainder

of the internal symmetry representation space is real and may thus be rotated under

so(n − nD). In this case, the symmetry directly inherited from squaring is not the full

compact symmetry h of the supergravity: the two sets of nD and (n−nD) vector multiplets

coming from the V⊗ Ṽ and C⊗ C̃ sectors, respectively, are brought together under the

enhancement

h ⊃ r(Nhalf, D)⊕ r(Ñhalf, D)⊕ so(n− nD), (3.62)

occurring according to the same logic as before, since now both sides are supersymmetric.

11The half-hypermultiplet C2 allows for the construction of more general theories in our framework, as

well as in the amplitude double copy literature, see for instance [27].
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D Left theory Right theory Supergravity

Content Symmetry Content Symmetry Content

10 VA
(1,0) ∅ VA′

(0,0) + nφA
′

so(n) G1,0 + nV1,0

9 V1 ∅ VA′

0 + nφA
′

so(n) G1 + nV1

8 VA
1 u(1) VA′

0 + nφA
′

so(n) G1 + nV1

7 VA
2 sp(1) VA′

0 + nφA
′

so(n) G2 + nV2

6 VA
(2,2) 2sp(1) VA′

0 + nφA
′

so(n) G(2,2) + nV(2,2)

VA
(2,0) + Ca

(2,0) sp(1) VA′

(0,2) + nCa′

(0,2) sp(1)⊕ so(n) G(2,2) + nV(2,2)

5 VA
4 sp(2) VA′

0 + nφA
′

so(n) G4 + nV4

VA
2 + Ca

2 sp(1) VA′

2 + (n− 1)Ca′

2 sp(1)⊕ so(n− 1) (G4 + V4) + (n− 1)V4

4 VA
4 su(4) VA′

0 + nφA
′

so(n) G4 + nV4

VA
2 + Ca

2 u(2) VA′

2 + (n− 2)Ca′

2 u(2)⊕ so(n− 2) (G4 + 2V4) + (n− 2)V4

Table 3.10: Factorisation of Q = 16 supergravity coupled to vector multiplets.



Chapter 4

Twins from Yang-Mills

4.1 Twin supergravities

In Section 2.3 we have reviewed the classification of supergravities, focussing mainly of

the symmetries of such theories. Of particular interest was the fact that the scalar fields

belonging to a supergravity theory parameterise a homogeneous (and often symmetric)

space M = G/H, with G the non-compact U -duality group and H its maximal compact

subgroup. The latter corresponds to the R-symmetry for pure supergravities while, if the

theory is coupled to matter multiplets, it includes an additional factor rotating these.

Whilst all fields in a supergravity theory carry linear representations of H, only (a subset

of) the bosons “feel” the action of G: the graviton is invariant, the p-forms (possibly

together with their duals where this is appropriate) transform in linear representations,

the scalars transform non-linearly. In most cases, knowledge of the field content and of

the scalar manifold go a long way in determining the Lagrangian. Furthermore, it is

often useful to look purely at the bosonic subsector of supergravity theories, for instance

when working out particular background solutions, or to discuss certain aspects of their

gaugings.

It is thus a very intriguing fact that certain supergravity theories, despite enjoying

completely different amounts of supersymmetry, denoted here by N− and N+ with the

obvious assignment N− < N+, share an identical bosonic sector, all the way from the

content to interactions and to the scalar manifold itself. After being discussed variously

in the literature, they were classified by Samtleben and Roest in [92] and further analysed

in [93, 94]. Going further, they may be regarded as the same bosonic theory admitting

two distinct fermionic supersymmetric completions. Their classification is carried out in

D = 3, where all vectors may be dualised to scalars, which implies that the bosonic sector

of all supergravities is entirely described by the geometry of the scalar manifold G/H. The

considerations at the end of Section 2.3.1 concerning the properties of the scalar manifolds

as a function of Q may be seen to be reflected by the entries of Table 4.1 describing the

cosets of D = 3 supergravities: unique and one-parameter1 families of symmetric spaces

1For n the number of vector multiplets coupled to the supergravity multiplet.

67
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for Q > 16 and 8 < Q ≤ 16 respectively; described by a certain geometry for Q ≤ 8.

Q TheoryN Mscalar(3)

2 G1 + . . . Riemannian

4 G2 + . . . Kähler

6 G3 + . . . Quaternionic

8 G4 + . . . Quaternionic×Quaternionic

10 G5 + nM5
Sp(1,n)

Sp(1)×Sp(n)

12 G6 + nM6
SU(4,n)

SU(4)×SU(n)×U(1)

16 G8 + nM8
SO(8,n)

SO(8)×SO(n)

18 G9
F4(−20)

SO(9)

20 G10
E6(−14)

SO(10)×SO(2)

24 G12
E7(−5)

SO(12)×SO(3)

32 G16
E8(8)

SO(16)

Table 4.1: Scalar manifolds in D = 3.

Thus, in D = 3, the only criterion for two theories to be “twins” is that they have the

same scalar coset: from the table, it is apparent that it is not possible to find pairs of

identical coset both in the range 10 ≤ Q ≤ 32. Therefore, identifying twin theories

becomes equivalent to finding those cosets with Q ≥ 10 which also happen to satisfy (at

least) one among the geometric conditions of those with 2 ≤ Q ≤ 8. For instance, the

fact that all scalar manifolds of supergravity theories with extended supersymmetry are

Riemannian implies that all admit an N− = 1 twin. Notice, however, that a number of

these will feel more natural than others in our analysis of the Yang-Mills origin of the

“twinness” relation, which is the subject of the next section. Furthermore, all theories

with N− = 3 are twin to N+ = 4 theories with a trivial second quaternionic factor. The

remaining (non-trivial) twin pairs, denoted by (N+,N−), are given in Table 4.2. Notice,

using that last two rows of the table, that the scalar manifold

M =
SU(4, 2)

SU(4)× SU(2)× U(1)
(4.1)

admits three supersymmetric completions, for N = 2, 4, 6. We refer to this as the triplet,

and denote it by (N+,N+
− ,N−− ).

Once the twin pairs have been established in D = 3, those in higher dimensions are

obtained by dimensional oxidation (up to D = 6), as shown in the last column of the
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(N+,N−) Mscalar(3) Type Dmax

(12, 4)
E7(−5)

SO(12)×SO(3) Q 6

(8, 4) SO(8,4)
SO(8)×SO(4) Q 6

(5, 4) Sp(2,1)
Sp(2)×Sp(1) Q 3

(10, 2)
E6(−14)

SO(10)×SO(2) K 4

(8, 2) SO(8,2)
SO(8)×SO(2) K 4

(6, 2) SU(4,p)
SU(4)×U(p) K 4∗

(4, 2) SU(2,p)
SU(2)×U(p) ×

SU(2,q)
SU(2)×U(q) QK 4

Table 4.2: All non-trivial pairs of twin supergravities in D = 3. Dmax is the maximum

dimension to which each pair can be uplifted. ∗ The (6,2) sequence may only be uplifted to

D = 4 for p = 2, where the two theories oxidise to D = 4 supergravities with holomorphic

kinetic vector matrices, which can be twins to N− = 1.

table. However, this requires some care: while all higher dimensional twins are obtained

by oxidation, not all oxidised pairs form twins. An equivalent statement is that, in

D > 3, it is no longer sufficient, albeit of course necessary, for two theories to share the

same bosonic content and scalar manifold to be considered twins. Consider, for instance,

the scalar manifold

M =
SU(3, 3)

U(3)× SU(3)
, dimR(M) = 18 (4.2)

spanned, in D = 4, by the 18 scalars of three distinct supergravities with different amounts

of supersymmetry, namely N = 1, 2, 3, with contents G1 + 6V1 + 9C1, G2 + 9V2 and

G3 + 3V3, respectively. Despite sharing the same scalar manifold, which represents the

necessary and sufficient condition in D = 3, they clearly are distinct (bosonic) theories:

• The N = 2 theory has total degrees of freedom f = 80, in contrast with the f = 64

of the remaining two and is thus ruled out as a candidate twin.

• The N = 1 and N = 3 theories thus share the same manifold and bosonic content

(hµν , 6Aµ, 18φ), however the latter has a non-holomorphic kinetic vector matrix,

which implies the impossibility of (re-)interpreting it as an N− = 1 theory, where

all kinetic vector matrices are holomorphic.
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Another example in D = 4 is given by N = 2 supergravity minimally coupled to a single

vector multiplet and the T 3 model: both share the same content G2 +V2 and scalar coset

M =
SU(1, 1)

U(1)
× SU(2)

SU(2)
, dimR(M) = 2. (4.3)

Their U -duality groups, however, differ by a U(1) factor, namely G = U(1, 1) for the

minimally coupled case and G = SU(1, 1) for the T 3, under which the Abelian 2-form

field strengths of each theory together with their duals transform in the representations

21 + 2−1 and 4, respectively. Hence, the two theories are not twins. With the benefit of

hindsight, this was to be expected since they have the same amount of supersymmetry.

As it turns out, twin supergravities always have distinct supersymmetries, a fact which

may be attributed to their origin as complementary truncations of a common (N+ +N−)-

extended parent theory, as we will demostrate shortly.

Nonetheless, the N = 2 minimally coupled theory does admit a little twin2 with

N− = 1, namely G1 + 2V1 + C1 with coset SU(1, 1)/U(1). Together, they form a (2, 1)

twin pair in D = 4, which is the oxidation of one, among the infinite family of (4, 2) pairs

in D = 3 (cf. last row of Table 4.2), namely the one with scalar manifold given by the

c-map of (4.3),

M =
SU(2, 2)

SU(2)× SU(2)× U(1)
, dimR(M) = 8. (4.4)

The pairs of allowed twins which do uplift from D = 3 are summarised in Table 4.3. One

may check that the twin pair just discussed corresponds to the (2, 1) entry in the last row

with p = 2 and q = 0.

4.1.1 Parent theory and complementary truncations

Following [92], it is possible in all cases to interpret two supergravity theories in a twin

pair (N+,N−) as two complementary consistent truncations of a single “parent” theory

with N = N+ +N− number of supersymmetries. Since this will prove convenient in the

Yang-Mills Squared construction of twins of the next section, we will review this here.

While the idea remains valid for all cases, it takes its simplest form, as it is often the case,

when enough supersymmetry is present. Thus, let us focus of the case3 where the little

twin has Q = 8: the existence of a twin pair is guaranteed if, given a supergravity theory

with scalar manifold Ĝ/Ĥ, one can find two groups, G and H, such that

Ĝ ⊃ G× SU(2), Ĥ ⊃ H × SU(2), (4.5)

2Notice that the T 3 model does not have a twin. This ties in nicely with the observation that it also

does not admit a Yang-Mills factorisation [91], at least not in any conventional sense. If the T 3 model

had a twin, it would be the only case of twin supergravity which cannot be constructed from Yang-Mills.
3The other possible case is for Q = 4; the argument is very similar, although the definition of the

truncation involves Abelian U(1) factors, which are messier than the SU(2).
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(N+,N−)(4) Mscalar(4) (N+,N−)(5) Mscalar(5) (N+,N−)(6) Mscalar(6)

(6, 2)
SO?(12)
U(6) (6, 2)

SU?(6)
Sp(3) ((4, 2), (0, 2))

SU?(4)
Sp(2)

(4, 2)
SU(1,1)
U(1) ×

SO(6,2)
U(4) (4, 2) SO(1, 1)× SO(5,1)

Sp(2) ((2, 2), (0, 2)) O(1, 1)

((4, 0), (0, 2))
SU?(4)
Sp(1)

(5, 1)
SU(5,1)
U(5)

(4, 1)
SU(1,1)
U(1)

(3, 1)
U(3,1)

U(3)×U(1)

(2, 1)
U(1,p−1)

U(p−1)×U(1) ×
SU(2,q)

SU(2)×U(q)

Table 4.3: Pairs of twin supergravities in D = 4, 5, 6. Notice that all scalar cosets include

an empty SU(2)/SU(2) or U(1)/U(1) factor, for N− = 2, 1 respectively, which contains

the R-symmetry of the little twin theory, and is related to the truncation from the parent

theory.

with the additional requirement that H be the maximal compact subgroup of G. Then,

big and little twin are defined by two complementary consistent truncations, referred to

as T±, which are engineered to retain identical subsets of the original bosonic spectrum of

the parent theory, but different fermionic ones (both, of course, carrying the same number

of degrees of freedom as their bosonic counterpart). This is enforced by requiring that

• T+ keeps only fields in bosonic representations of SU(2)

• T− keeps only bosonic fields in bosonic representations and fermionic fields in

fermionic representations of SU(2)

Example in three dimensions

In D = 3, for example, the U-duality group of the unique maximal N = 16 theory and

its compact subgroup may be decomposed as

E8(8) ⊃ E7(−5) × SU(2), (4.6)

SO(16) ⊃ SO(12)× SO(3)× SU(2), (4.7)

so that one identifies the new scalar manifold,

G

H
=

E7(−5)

SO(12)× SO(3)
× SU(2)

SU(2)
, dimR

(
G

H

)
= 64 (4.8)
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which may be verified to be that of the (12, 4) twin pair in Table 4.2. Recalling that in

D = 3 the R-symmetry groups are of the orthogonal type, mixing real Majorana spinors

in the defining representation, one sees that in the new basis provided by equation (4.7)

the 16 gravitini of the N = 16 parent split according as

16 −→ (12,1,1)︸ ︷︷ ︸
T+

+ (1,2,2)︸ ︷︷ ︸
T−

. (4.9)

Thus, the T+ truncation, which discards the fermionic 2 of the second SU(2), keeps the

12 gravitini of the N+ = 12 theory mixing under the SO(12) R-symmetry, while T−
preserves the complement four gravitini, gauging the N− = 4 supersymmetry of the little

twin, identifying the SO(4) ∼= SU(2)× SU(2) factor as the R-symmetry in this case. In

the bosonic sector, comprising only scalars after dualisation, both truncations keep the

SU(2) singlet contribution in the decomposition of the adjoint of E8(8) under (4.6)

248 −→ (133,1) + (1,3) +����(56,2), (4.10)

thus discarding the last term on the right4. Modding out the 3 compact scalars, one is

left only with the first term representing the 64 physical scalars spanning the coset (4.8),

as it is apparent from the decomposition under E7(−5) ⊃ SO(12)× SO(3),

133 −→ (66,1) + (1,3) + (32,2)︸ ︷︷ ︸
φphys

, (4.11)

where they appear as the only non-compact contribution in the last term. Thus, counting

degrees of freedom (64 bosonic plus 64 fermionic), one may identify the twin pairs as G12

and G4 + 16V4.

It is rather important to understand the role played by the SU(2) appearing in both

(4.6) and (4.7). All fields in the big twin theory are, by construction, invariant under

it. As for the little twin, all bosons are again singlets, while the fermions transform in

some (fermionic) representation. In fact, as seen below (4.9), the SU(2) constitutes part

of the SO(4) R-symmetry of the N− theory. A hint that the exact same prescription is

still valid to identify twin pairs in higher dimensions D = 4, 5, 6 comes from the fact that

SO(3) ∼= SU(2) ∼= USp(2), implying that SU(2) may act as part of the R-symmetry for

the little twin in all dimensions 3 ≤ D ≤ 6 which admit pairs of twin supergravities.

Example in four dimensions

In order to illustrate this last point, and given that we will need this example again later,

let us see how this works for the maximal (6, 2) pair in D = 4. The parent theory is given

by N = 8 supergravity, G8, whose content as h = su(8) representations was derived in

4Notice, we reserve the strikethrough notation only for those representations which are excluded by

both truncations T±.
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(2.48), with scalar manifold E7(7)/SU(8). Following the prescription in (4.29), one finds

the following branchings,

E7(7) ⊃ SO?(12)× SU(2), (4.12)

SU(8) ⊃ U(6)× SU(2), (4.13)

which identify the scalar manifold shared by the twins as

G

H
=
SO?(12)

U(6)
× SU(2)

SU(2)
, dimR

(
G

H

)
= 30. (4.14)

Indeed, the 8 gravitini of the parent split under (4.13) as

8 −→ (6,1)1︸ ︷︷ ︸
T+

+ (1,2)−3︸ ︷︷ ︸
T−

, (4.15)

which immediately shows that the T+ truncation will keep 6 gravitini mixing in the

fundamental representation of the U(6) R-symmetry, while the T− will keep the remaining

2 gravitini, mixing under U(2) R-symmetry. The spinors, which carry the 56 of SU(8),

decompose as

56 −→ (20,1)3 + (6,1)−5︸ ︷︷ ︸
T+

+ (15,2)−1︸ ︷︷ ︸
T−

. (4.16)

Notice the crucial fact, at the core of the twin phenomenon, that both truncations lead

to 64 fermionic degrees of freedom, albeit distributed differently: the N+ theory has 6Ψµ

and 26χ, while the N− = 2 theory has 2Ψµ and 30χ. This, together with the fact that in

D = 4 both a gravitino and a spinor carry 2 on-shell degrees of freedom (the two helicity

states), proves the statement correct.

As for the bosonic sector, while the graviton is a singlet under E7(7), the scalars

transform in the 133 while the vectors and their duals transform in the 56. However, it

is convenient to work directly at the level of SU(8) representations, where the physical

scalars and the vectors transform linearly as the 70 and 28. Under the branching (4.13),

these decompose as

28 −→ (1,1)−6 + (15,1)2 +�����(6,2)−2 (4.17)

70 −→ (15,1)−4 + (15,1)4 +�����(20,2)0 (4.18)

where we crossed out the contributions which get discarded by both truncations, once

again highlighting the fact that these preserve identical subsets of the original bosonic

space. Notice that these are exactly the 15 complex scalars parameterising the scalar

manifold (4.14), as one may check by decomposing the adjoint of Ĝ = E7(7) according to

(4.12),

133 −→ (66,1) + (1,3) +����(32,2). (4.19)
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Discarding the SU(2) doublet as always, and modding out the 3 compact scalars, one finds

the 30 physical scalar degrees of freedom in the 66, under the decomposition SO?(12) ⊃
U(6),

66 −→ 350 + 10 + 15−4 + 154︸ ︷︷ ︸
φphys

. (4.20)

The degrees of freedom of the graviton (2) together with those of the 16 vectors (32) and

of the 15 complex scalars (30) add up 64 as in the fermionic sector, thus establishing

supersymmetry for both twins, as required. Piecing everything together, the resulting

twin theories are

• N+ = 6 pure supergravity, G6, with R-symmetry U(6) and a trivial action under

SU(2). The content transforms, under u(1)st ⊕ su(6)R-sym ⊕ su(2)⊕ u(1)R-sym, as

(1,1)4
0 + (1,1)−4

0

(6,1)3
1 + (6,1)−3

−1

(15,1)2
2 + (15,1)−2

−2 + (1,1)2
−6 + (1,1)−2

6

(20,1)1
3 + (20,1)−1

−3 + (6,1)1
−5 + (6,1)−1

5

(15,1)0
4 + (15,1)0

−4

(4.21)

where we use a bar to denote the Lie algebra of the SU(2) ⊂ SU(8) which drives

the truncations. Here, the trivial representations under su(2) are kept to highlight

the origin of this theory as a truncation of G8.

• N− = 2 supergravity coupled to 15 vector multiplets, G2 + 15V2, belonging to

the magic sequence [142, 143], with R-symmetry U(2) and isotropy group SU(6)iso
rotating the 15 vector multiplets. Under u(1)st ⊕ su(6)iso ⊕ su(2)R-sym ⊕ u(1)R-sym

(1,1)4
0 + (1,1)−4

0

(1,2)3
−3 + (1,2)−3

3

(1,1)2
−6 + (1,1)−2

6 + (15,1)2
2 + (15,1)−2

−2 (4.22)

(15,2)1
−1 + (15,2)−1

1

(15,1)0
−4 + (15,1)0

4

Notice how the (decomposition of the) parent’s R-symmetry has a very precise interpre-

tation: (i) the su(2) acts trivially for the big twin and as part of the R-symmetry u(2) for

the little twin; (2) the su(6) acts as part of the R-symmetry u(6) for the big twin and as

an isotropy group rotating the 15 vector multiplets for the little twin. This behaviour is

a general feature of all twin pairs.
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4.2 Yang-Mills origin of twins

Given the classification of twin supergravities, reviewed in the previous section, and the

construction of generic supergravity theories as products of two super Yang-Mills theories

presented in Chapter 3, two questions naturally arise:

1. Is there a relationship between the set of supergravity theories admitting a twin and

that of those which are constructible as double copies?

2. Is there a Yang-Mills Squared analog of twinness? If so, what is it? Said otherwise,

is there a prescription which, given a supergravity as a double copy, consistently

yields its twin?

In the following, we will argue in favour of a positive answer to both questions. The idea

consists in regarding the supergravity theories in the Yang-Mills Squared pyramid, namely

those admitting a factorisation of the VN ⊗ ṼÑ type, as the parent theory discussed in

the previous section. Heuristically, then, the two truncations defining the twins, T±, are

obtained by means of corresponding “truncations” of the underlying super Yang-Mills

factors. More precisely, the prescription may be summarised as follows:

1. Find the factorisation of the parent theory,

GN + MN = VN ⊗ ṼÑ (4.23)

where N = N + Ñ , in addition to the relation N = N+ + N− by definition of

parent theory.

2. Effect the first truncation T+ to the big N+ twin by decomposing one of the two

Yang-Mills factors, here always taken to be the Left one without loss of generality,

by expressing its content in a manifest r(N ′, D) basis, with N ′ + Ñ = N+,

VA
N = VA

N ′ + CA
N ′ (4.24)

and by exchanging the resulting adjoint-valued spinor multiplet CA
N ′ with one valued

in a non-adjoint representation of the gauge group, that is CA
N ′ → Ca

N ′ . Given the

“sum of squares” rule (3.55), this has the effect of reducing the factorisation of the

parent to

(VA
N ′ + Ca

N ′)⊗ ṼA′

Ñ = VA
N ′ ⊗ ṼA′

Ñ (4.25)

which yields the big twin GN+ + MN+ . One could interpret this as a way to discard

theN−N ′ gravitini contained in the (non-dynamical) product Ca
N ′⊗ṼA′

Ñ . This step

is exactly analogous to truncating according as the decomposition Ĥ ⊃ H ×SU(2).
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3. Effect the second truncation T− to the little N− twin by decomposing the Right

Yang-Mills factor as above. Once the adjoint spinor multiplet is once again re-

placed by a non-adjoint one, C̃A′

Ñ ′ → C̃a′

Ñ ′ , the supersymmetry of the Right theory

is effectively reduced Ñ → Ñ ′ and the Right side becomes

ṼA′

Ñ → ṼA′

Ñ ′ + C̃a′

Ñ ′ + . . . (4.26)

In many instances Ñ ′ = 0, thus

ṼA′

Ñ → ÃA
′

µ + χ̃a
′
+ φ̃A

′
, (4.27)

where a single gaugino is treated as an Ñ = 0 spinor multiplet. This implies that

the full product now reads

(VA
N ′ + Ca

N ′)⊗ (VA′

Ñ ′ + Ca′

Ñ ′ + . . . ) = (VA
N ′ ⊗ ṼA′

Ñ ′) + (Ca
N ′ ⊗ C̃a′

Ñ ′) + (VA
N ′ ⊗ . . . ),

(4.28)

which, compared to the factorisation of the big twin (4.25), discards a further Ñ −
Ñ ′ gravitini (as well as some spinors). It does, however, reinstate some spinor

states through the now “active” product Ca ⊗ C̃a′ . From the Yang-Mills Squared

perspective, this is what makes it possible for the two truncations to have the same

number of fermionic states, which ought to be true if they are to represents twin

theories. This is also the reason why it is convenient to keep track of the “truncated”

states Ca
N ′ in (4.25): they come back into play in the factorisation of the little twin.

To summarise, then, the relation between twin theories is given, in terms of their respective

factorisations, by

Big twin Little twin

(VA
N ′ + Ca

N ′)⊗ ṼA′

Ñ ⇐⇒ (VA
N ′ + Ca

N ′)⊗ (ṼA′

Ñ ′ + C̃a′

Ñ ′ + . . . ) (4.29)

This leads to the realisation that all the supergravity theories which sit in the Yang-Mills

Squared pyramid possess the correct features to be a big twin, provided that they are also

consistent truncations of another supergravity in the pyramid, acting as the parent. We

will see below that it is indeed true that all pyramid supergravities, with the exception

of those on the maximal spine, possess in fact a smaller twin theory. Finally, the whole

process is pictured below.
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Parent supergravity

GN+Ñ ⊕MN+Ñ

Yang-Mills factors

��

VN ⊗ ṼÑ

tt **

[VN ′ ⊕Cρ
N ′ ]⊗ ṼÑ

��

oo
twin relation

// [VN ′ ⊕Cρ
N ′ ]⊗ [ṼÑ ′ ⊕ C̃ρ̃

Ñ ′ ]

��

N+ big twin supergravity

GN+ ⊕MN+

N− little twin supergravity

GN− ⊕MN−

4.2.1 The (6,2) twins in four dimensions

Let us illustrate this by means of an example: the maximal (6, 2) pair in D = 4. The

parent theory should be a N = 6 + 2 = 8 theory, which leads us to the unique possibility

of maximal supergravity G8. Indeed, this was shown to be the case using the method

of complementary truncations in Section 4.1.1. Furthermore, we also know from the

discussion of Section 3.2.4 that the theory admits the factorisation

G8 = V4 ⊗ Ṽ4. (4.30)

Let us see how the prescription outlined above reproduces the two twin theories.

The N+ = 6 big twin

The big twin was derived as a truncation of G8 in (4.21), where its content was expressed

in terms of representations of su(6)R-sym×su(2)×u(1)R-sym where the representation under

the su(2) ⊂ su(8) was kept, even though entirely trivial, to show the origin of the theory

as a truncation. It is convenient to further decompose su(6)R-sym ⊃ su(4)⊕ su(2)′ ⊕ u(1)′

to compare with the result of the squaring calculation below, which as usual is written

in terms of the representations under the symmetries directly inherited from the Left

and Right factors. Not only this is convenient to understand the Yang-Mills origin of

all gravitational states, it is usually necessary when the result of the squaring product is

charged under more than one u(1), as we will show below. Under the relevant branchings,

su(6)R-sym ⊃ su(4)⊕ su(2)′ ⊕ u(1)′

6→ (1,2)−2 + (4,1)1

15→ (1,1)−4 + (4,2)−1 + (6,1)2

20→ (4,1)−3 + (4,1)3 + (6,2)0 (4.31)
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and their conjugates, the content of G6, restricting to just the positive helicity states

since the rest may be obtained by conjugation, reads

u(1)st ⊕ su(4)⊕ su(2)′ ⊕ su(2)⊕ u(1)′ ⊕ u(1)

(1,1,1)4
00

(1,2,1)3
−21 + (4,1,1)3

11

(1,1,1)2
0−6 + (1,1,1)2

−42 + (4,2,1)2
−12 + (6,1,1)2

22

(1,2,1)1
−2−5 + (4,1,1)1

1−5 + (4,1,1)1
−33 + (4,1,1)1

33 + (6,2,1)1
03

(1,1,1)0
−4−4 + (4,2,1)0

−1−4 + (6,1,1)0
2−4

(4.32)

where it is obvious that all states are invariant under the su(2) ⊂ su(8) part of the parent’s

R-symmetry, as expected.

This ought to be compared with the corresponding squaring calculation. According to

the prescription above, we should decompose V4 into a V2 and keep track of the remnant

states. Denote the R-symmetry of the Left factor by su(4)L and its decomposition by

su(4)L ⊃ su(2)L ⊕ su(2)L ⊕ u(1)L, where the notation of the second factor indicates its

affinity to the su(2) ⊂ su(8), in that both drive the respective truncations. Then,

12 → (1,1)2
0 (4.33)

41 → (2,1)1
1 + (1,2)1

−1

60 → (1,1)0
2 + (1,1)0

−2 + (2,2)0
0

4
−1 → (2,1)−1

−1 + (1,2)−1
1

12 → (1,1)−2
0

V4 = V2 + H2

where u(2)L ∼= su(2)L ⊕ u(1)L represents the R-symmetry in the N = 2 basis, while

the su(2)L acts as a flavour group. Notice that the set of states which are singlets un-

der the latter group form a N = 2 vector multiplet, while those which are not form a

hypermultiplet. The latter would normally be truncated away by demanding that only

su(2)L singlets are kept, however we keep it here for future convenience. Then, according

as (4.29), the big twin theory is constructed in two steps: (1) “effectively truncate” the

hypermultiplet, by replacing it with one in a non-adjoint gauge group representation ρ

which does not multiply the adjoint-valued Right Yang-Mills factor; and (2) perform the

tensor product

(VA
2 + Ha

2)⊗ ṼA′

4 , (4.34)

which is carried out in Table 4.4 with the V2 in an explicit u(2)L ⊕ su(2)L basis. Here

a = 1, . . . , dimρ is the index of the new gauge group representation. Notice that the latter
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12 + c.c. 41 + c.c. 60

(1,1)20 + c.c. (1,1,1)400 + (1,1,1)004 + c.c. (1,1,4)301 + (1,1,4)103 + c.c. (1,1,6)202 + c.c.

(2,1)11 + c.c. (2,1,1)31−1 + (2,1,1)1−1−3 + c.c. (2,1,4)210 + (2,1,4)012 + c.c. (2,1,6)111 + c.c.

(1,1)02 + c.c. (1,1,1)22−2 + (1,1,1)2−2−2 + c.c. (1,1,4)12−1 + (1,1,4)1−2−1 + c.c. (1,1,6)020 + c.c.

[(1,2)1−1 + c.c.]a

[(2,2)00]a

Table 4.4: The factorisation of the big N+ = 6 twin of the (6, 2) pair in D = 4. It amounts

to the squaring V2 ⊗V4 = G6. The positive helicity states are presented explicitly and

the states of the hypermultiplet Ha
2 are included, albeit not contributing to this product,

to facilitate the comparison with the little twin case in Table 4.5.

need be real if the su(2)⊕ su(2) symmetry is to be preserved. On collecting the states by

(positive) helicity, one obtains

u(1)st ⊕ su(4)R ⊕ su(2)L ⊕ su(2)L ⊕ u(1)L ⊕ u(1)d

(1,1,1)4
00

(1,2,1)3
1−1 + (4,1,1)3

01

(1,1,1)2
2−2 + (1,1,1)2

−2−2 + (4,2,1)2
10 + (6,1,1)2

02

(1,2,1)1
−1−3 + (4,1,1)1

2−1 + (4,1,1)1
−2−1 + (4,1,1)1

03 + (6,2,1)1
11

(1,1,1)0
04 + (4,2,1)0

−1−2 + (6,1,1)0
20 + c.c.

(4.35)

where the complex conjugate has been formally added to the scalars to remind that it is

not clear, a priori, which scalars should “correspond” to the rest of the positive helicity

states. It should be clear, however, that there are in total 30 scalars in this example.

As far as the representations under the non-Abelian factors are concerned, this matches

the content of G6 on identifying su(2)L ∼= su(2)′ and su(2)L ∼= su(2), which amounts to

saying that it is the former which contributes to the R-symmetry of the N+ = 6 theory.

However, this is not immediately true for the u(1) charges! It is a feature of squaring that,

in cases when more than one Abelian factor is present, a rotation of the corresponding

charges may be needed to recover the form which makes the enhancement manifest. In

this case, denoting the charges of u(1)′ and u(1) in (4.32) by h′ and h, and those of u(1)L
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and u(1)d in (4.35) by hL and hd, the correct rotation relating the two pairs is(
h′

h

)
=

(
−1 1

2 1

)(
hL
hd

)
. (4.36)

In other words, the symmetries of the N+ = 6 big twin supergravity are built from those

of its factors as

su(6)R-sym ⊕ su(2)⊕ u(1)R-sym ⊃
(
su(4)R ⊕ su(2)L ⊕ u(1)′

)
⊕ su(2)L ⊕ u(1). (4.37)

This completes the construction of the N+ = 6 theory.

The N− = 2 little twin

Once again, let us begin by decomposing the content of the little N− = 2 twin given in

(4.22) by breaking its isotropy group as su(6)iso ⊃ su(4) ⊕ su(2)′ ⊕ u(1)′ exactly as in

(4.31). This results in the content G2 + 15V2 begin labelled as

u(1)st ⊕ su(4)⊕ su(2)′ ⊕ su(2)⊕ u(1)′ ⊕ u(1)

G2


(1,1,1)4

00

(1,1,2)3
0−3

(1,1,1)2
0−6

15V2


(1,1,1)2

−42 + (4,2,1)2
−12 + (6,1,1)2

22

(1,1,2)1
−4−1 + (4,2,2)1

−1−1 + (6,1,2)1
2−1

(1,1,1)0
−4−4 + (4,2,1)0

−1−4 + (6,1,1)0
2−4

(4.38)

to be compared with the corresponding squaring product.

Starting from the factorisation of the big twin (4.34), the little N− = 2 twin theory is

obtained by decomposing the Right factor ṼA′
4 . Since the little twin ought to have just

8 real supercharges, which are already accounted for by the Left factor, the Right must

necessarily be an N = 0 theory. This is achieved by breaking the su(4)R R-symmetry5,

which practically means re-purposing it as an internal rotation of the spinors and scalars,

without mention of its action on any conserved supercharges. Furthermore, moving the

N = 0 spinor multiplet, namely the 4 gaugini, to a non-adjoint gauge group representa-

tion, χiA
′ → χia

′
, where i = 1, . . . , 4 is the index of the remnant su(4)R, the Right factor

becomes

ṼA′

4 = ÃA
′

µ + χ̃ia
′
+ φ̃[ij]A′ . (4.39)

Then, the product yielding the little twin theory is

(VA
2 + Ha

2)⊗ (ÃA
′

µ + χ̃ia
′
+ φ̃[ij]A′) = VA

2 ⊗ (ÃA
′

µ + φ̃[ij]A′) + Ha
2 ⊗ χ̃ia

′
. (4.40)
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12 + c.c. [41 + c.c.]a
′

60

(1,1)20 + c.c. (1,1,1)400 + (1,1,1)004 + c.c. (1,1,6)202 + c.c.

(2,1)11 + c.c. (2,1,1)31−1 + (2,1,1)1−1−3 + c.c. (2,1,6)111 + c.c.

(1,1)02 + c.c. (1,1,1)22−2 + (1,1,1)2−2−2 + c.c. (1,1,6)020 + c.c.

[(1,2)1−1 + c.c.]a (1,2,4)2−10 + (1,2,4)01−2 + c.c.

[(2,2)00]a (2,2,4)10−1 + c.c.

Table 4.5: The factorisation of the little N− = 2 twin of the (6, 2) pair in D = 4. The

positive helicity states are presented explicitly. Comparison with Table 4.4 shows the

complementarity of the two truncations.

It is carried out explicitly in Table 4.5, which makes manifest the complementary nature

of this product compared to that of the big twin, in Table 4.4. In this case, the squaring

leads to

u(1)st ⊕ su(4)R ⊕ su(2)L ⊕ su(2)L ⊕ u(1)′ ⊕ u(1)

G2


(1,1,1)4

00

(1,2,1)3
1−1

(1,1,1)2
2−2

15V2


(1,1,1)2

−2−2 + (4,1,2)2
−10 + (6,1,1)2

02

(1,2,1)1
−1−3 + (4,2,2)1

0−1 + (6,2,1)1
11

(1,1,1)0
04 + (4,1,2)0

1−2 + (6,1,1)0
20

(4.41)

Again up to the u(1) charges, this matches (4.38) on identifying su(2)L ∼= su(2)′ and

su(2)L ∼= su(2), namely the opposite identification as before. This is tantamount to

saying that su(2)L ⊂ su(4)L originating from the Left factor’s R-symmetry is mapped in

both cases to the R-symmetry of the resulting supergravity, which is su(2)′ ⊂ su(6) for

the big twin and su(2) ⊂ su(8) for the little one. The rotation which aligns the charges

is given, this time, by (
h′

h

)
=

(
1 1

−2 1

)(
hL
hd

)
, (4.42)

5In this context, the subscript R stands for Right, as opposed to R-symmetry.
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namely a similar, yet distinct rotation from its big twin counterpart in (4.36). That two

rotations should be needed is immediately obvious. For instance, consider the two grav-

itino states produced in both squaring products: since they originate in the VA
2 ⊗ ṼA′

0

sector, which is shared by both factorisations, they are identical and read (1,2,1)3
1−1.

These, however, must match the corresponding states in the decompositions of G6 in

(4.32) and of G2 + 15V2 in (4.38), which read (1,2,1)3
−21 and (1,2,1)3

0−3 respectively.

These are in general different since the truncations T± from the parent pick complemen-

tary sets of fermions. Since the same pair of charges must match two other distinct pairs,

two rotations are required.

The interesting fact is the following: one might (and should) worry about those bosonic

states with a boson×boson origin, namely the graviton, a subset of the vectors and of

the scalars. These are common to both squaring products since they come from the

VA
2 ⊗ ṼA′

0 and VA
2 ⊗ φ̃A

′
sectors. However, unlike for the gravitino states, their “honest

supergravity” counterparts are identical in the decompositions of the big and little twins,

as both truncations keep the same bosonic states. After all, an identical bosonic sector

(all the way down to u(1) charges) is the “defining” property of twins. For the case at

hand, again for the positive helicity states (plus the complex conjugate of the scalars),

these are

Squaring (for both N+ and N−): Honest (for both N+ and N−):

(1,1,1)4
00 (1,1,1)4

00

(1,1,1)2
2−2 + (1,1,1)2

−2−2 + (6,1,1)2
02 (1,1,1)2

0−6 + (1,1,1)2
−42 + (6,1,1)2

22

(6,1,1)0
20 + (6,1,1)0

−20 (6,1,1)0
2−4 + (6,1,1)0

−24

(4.43)

Fortunately, one may check that these states come with just the right representations

and charges so as to admit two distinct rotations. In particular, the degeneracy in the

representation spaces of the vectors and scalars produces just enough freedom so that, by

modifying the identification of the states on both sides, one may accommodate the two

rotations. For instance, for the big twin one identifies

(1,1,1)2
2−2 −→ (1,1,1)0

−42

(6,1,1)0
−20 −→ (6,1,1)0

2−4

with

(
−1 1

2 1

)
, (4.44)

while the little twin requires one to identify

(1,1,1)2
2−2 −→ (1,1,1)0

0−6

(6,1,1)0
−20 −→ (6,1,1)0

−24

with

(
1 1

−2 1

)
. (4.45)

This should clarify why the complex conjugate of the scalars has been added in (4.43).

This concludes the construction of the little N− = 2 twin theory. It is worth noting that
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this provides a new double copy construction of this theory, known in the literature as

the quaternionic magic D = 4, N = 2 supergravity, which was previously reproduced

from Yang-Mills, using a different factorisation, in [27]. The reader interested in the

complete classification of the double copy construction of N = 2 supergravities is referred

to that paper, which deals with vector multiplet couplings, or [91], where the couplings

to hypermultiplets are also clarified.

4.2.2 Pyramid twins and triplets

All twin pairs in D = 3, 4, 5 follow precisely the same pattern as the D = 4, (6, 2) pair

just described. Their factorisations are summarised in Tables 4.6, 4.7 and 4.8. Note

that, similarly to the N− = 2 theory above, the factorisation is, in general, non-unique.

Another example is provided by the D = 4, (4, 2) pair, with coset

G

H
=
SU(1, 1)

U(1)
× SO(6, 2)

U(4)
× SU(2)

SU(2)
(4.46)

which, in line with its twin nature, may be interpreted either as the n = 2 element of the

one-parameter family of scalar spaces for G4 +nV4 in D = 4, see Table 2.5, or the m = 6

element of the D = 4 Generic Jordan series6 with content G2 + (1 +m)V2. The big twin

admits the two types of factorisations already discussed in Section 3.3.2, namely

G4 + 2V4 =

{
(VA

2 + Ha
2) ⊗ VA′

2

VA
4 ⊗ (AA

′
µ + 2φA

′
),

(4.47)

while the little twin may be factorised as

G2 + 7V2 =

{
(VA

2 + Ha
2) ⊗ (AA

′
µ + 2χa

′
+ 2φA

′
)

VA
2 ⊗ (AA

′
µ + 6φA

′
).

(4.48)

The first factorisation in either case is that dictated by the twin prescription above; the

second is, for the N+ = 4 case, the generic factorisation for Q = 16 supergravities coupled

to vector multiplets discussed in Section 3.3.2 while, for the N− = 2 case, it is the q = 4,

r = 0 element of the general factorisation of the Generic Jordan sequence in the vector

multiplet sector of [91]. The possibility of multiple factorisations is an interesting one,

which calls for a thorough investigation. As mentioned before, this is still work in progress,

and as such is not included in this thesis.

The reader might have noticed that we did not include D = 6 in the comment above,

the reason being that it deviates slightly from the cases in D = 3, 4, 5, due to the chiral

nature of spinors in six dimensions. While the truncation from the parent to the big twin

follows as before from reducing the degree of supersymmetry of the Left factor, the little

twin needs one extra ingredient. In addition to decomposing the R-symmetry of the Right

6See [91] for a discussion of this sequence and its Yang-Mills factorisation.
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Yang-Mills, a flip of the chirality of the Left factor is also required. Thus, schematically,

the factorisations of parent, big and little twin theories are respectively given by

V(NL,NR) ⊗ Ṽ(ÑL,ÑR) = G(NL,NR) + M(NL,NR)

V(N ′L,N
′
R) + Hρ

(N ′L,N
′
R) ⊗ Ṽ(ÑL,ÑR) = G(NL+,NR+) + M(NL+,NR+)

V(N ′R,N
′
L) + Hρ̃

(N ′R,N
′
L)︸ ︷︷ ︸

Chirality flipped

⊗ Ṽ(Ñ ′L,Ñ
′
R) + H̃ρ

(Ñ ′L,Ñ
′
R)

= G(NL−,NR−) + M(NL−,NR−)

(4.49)

This property is universal to all twin pairs in D = 6, as may be verified in Table 4.8. For

example, for the maximal ((4, 2), (0, 2)) twin pair one obtains

V(2,2) ⊗ Ṽ(2,2) = G(4,4)

V(2,0) + Hρ
(2,0) ⊗ Ṽ(2,2) = G(4,2)

V(0,2) + Hρ
(0,2)︸ ︷︷ ︸

Chirality flipped

⊗ Ã+ 2(χ̃ρL, χ̃
ρ
R) + 4φ̃ = G(0,2) + 8V(0,2) + 5T(0,2).

(4.50)

Apart from this additional step, the construction of D = 6 twins from Yang-Mills respects

the prescription above. As may be checked in the tables, it is apparent that every super-

gravity appearing in the pyramid, with the exception of those on the maximal “spine”,

indeed possess a twin. Furthermore, from this perspective, it is natural for the sequence of

maximal theories not to admit a twin, since their parent theory may not be found among

the pyramid supergravities. Albeit not a one-to-one correspondence, this establishes an

interesting connection between the pyramid and the twinness property:

Lies in pyramid (except spine) ⇒ Has a twin (4.51)

while the converse is not true. Indeed, there exist a handful of twins which lie outside of

the Yang-Mills Squared pyramid, as we will see below. Furthermore, note that all twin

theories admit a Yang-Mills factorisation:

Has a twin ⇒ Has a Yang-Mills origin (4.52)

while the converse is again not true.

Triplets

As mentioned in the discussion around equation (4.1), the scalar manifold

M =
SU(4, 2)

SU(4)× SU(2)× SU(1)
× SU(2)

SU(2)
× U(1)

U(1)
(4.53)
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is shared by three D = 3 supergravity theories, with N = 6, 4, 2. As was remarked in

[92], the presence of two empty factors corresponding to the R-symmetries of two distinct

little twins highlights this fact. These three theories, as well as the twin relation which

relates them, uplift to D = 4, where they constitute a (3, 2, 1) triplet of supergravities,

with common coset

M =
SU(3, 1)

SU(3)× U(1)
× SU(2)

SU(2)
× U(1)

U(1)
. (4.54)

While sharing the same scalar manifold represents the original observation behind twin

theories, these are in fact more precisely classified in terms of their parent theory, from

which they descend by consistent truncation. Denoting the three as (N+,N+
− ,N−− ) serves

to indicate at once that there exists a standard twin relation between the three distinct

sub-pairs (N+,N+
− ), (N+,N−− ) and (N+

− ,N−− ), in the sense that they may be understood

as truncations of a common parent theory. Their content is

N+ : G3 + V3

N+
− : G2 + 3V2

N−− : G1 + 4V1 + 3C1.

(4.55)

Since the N+ = 3 theory lies in the pyramid, namely the V2 ⊗ Ṽ1 entry, and it is not

maximal, one is able to find theories in the pyramid which act as parents to the (3, 2) and

(3, 1) sub-pairs. We will see that this is not possible for the (2, 1) case.

Proceeding in order, the (3, 2) pair can be derived from a N = 5 parent, which is

given by the unique pyramid product V4 ⊗ Ṽ1. Then, one has the following sequence of

Yang-Mills factorisations,

V4 ⊗ Ṽ1 = G5

V2 + Hρ
2 ⊗ Ṽ1 = G3 + V3

V2 + Hρ
2 ⊗ Ãµ + χ̃ρ̃ = G2 + 3V2

(4.56)

As far as the big twin is concerned, it inherits a u(2)L + su(2)L from the Left factor, a

u(1)R from the Right one and the diagonal u(1)d typical of D = 4. Its N+ = 3 algebra is

constructed as

u(3)R-sym ⊕ u(1)iso ⊃
(
u(2)L ⊕ u(1)R

)
⊕ u(1)d (4.57)

up to a possible rotation of the u(1) charges. As it is apparent from (4.57), the flavour

su(2)L symmetry is trivial on all states of the supergravity theory, since it only acts on

the hypermultiplet of the Left factor, which does not contribute to the product in this

case. On the other hand, the little N+
− = 2 twin inherits the same symmetries (with the

difference that u(1)R acts as a flavour, rather than R-symmetry), which conspire to form

its N+
− = 2 algebra as

u(2)R-sym ⊕ su(3)iso ⊕ u(1)iso ⊃ u(2)L ⊕
(
su(2)L ⊕ u(1)R

)
⊕ u(1)d, (4.58)
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which shows that the R-symmetry of the Left factor carries over as the R-symmetry of

the resulting supergravity, unscathed.

Next, for the (3, 1) pair, starting from the N = 4 parent in the pyramid,

V2 ⊗ Ṽ2 = G4 + 2V4

V1 + Cρ
1 ⊗ Ṽ2 = G3 + V3

V1 + Cρ
1 ⊗ Ãµ + 2χ̃ρ̃ + 2φ̃ = G2 + 3V2

(4.59)

In this case, for the big twin, the Left factor carries u(1)L⊕u(1)L coming from the original

u(2) R-symmetry of V2, while the Right factor still has a u(2)R R-symmetry intact. These

join to form the N+ = 3 algebra just as in (4.57), the only difference being the (inverted)

origin of the u(3) R-symmetry, namely

u(3)R-sym ⊕ u(1)iso ⊃
(
u(2)R ⊕ u(1)L

)
⊕ u(1)d. (4.60)

Once again, the flavour group responsible for the “truncation” of the Left factor, here u(1)L
only charges the non-adjoint spinor multiplet C1, hence acts trivially on all supergravity

states. For the little N−− = 1 twin, the symmetries conspire to form the algebra as

u(1)R-sym ⊕ u(3)iso ⊕ u(1)iso ⊃ u(1)L ⊕
(
u(2)R ⊕ u(1)L

)
⊕ u(1)d (4.61)

where the u(1)L R-symmetry of the Left factor becomes the R-symmetry of supergravity,

while the flavour groups u(2)R and u(1)L form the u(3) isotropy rotating the various

multiplets.

Finally, the (2, 1) pair is not a truncation of a pyramid supergravity, hence the twin

relation devised above does not apply straightforwardly. Nonetheless, it is possible to

obtain all three (parent, big and little twin) from Yang-Mills, as

V2 + Hρ
2 ⊗ Ṽ1 + Cρ̃

1 = G3 + 3V3

V2 ⊗ Ãµ + 2χ̃ρ̃ + 2φ̃ = G2 + 3V2

V1 + Cρ
1 ⊗ Ãµ + 2χ̃ρ̃ + 2φ̃ = G1 + 4V1 + 3C1

(4.62)

4.2.3 Non-pyramid twin pair

In addition to the (2, 1) sub-pair of the D = 4 triplet, there is another twin pair in D = 4

which does not follow the pattern above, since the big twin does not reside in the pyramid.

The two theories have supersymmetries (N+,N−) = (4, 1) and content

N+ : G4

N− : G1 + 6V1 + C1,
(4.63)
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while the common scalar manifold is

G

H
=
SU(1, 1)

U(1)
× SO(6)

SO(6)
× U(1)

U(1)
. (4.64)

In this case, the three factorisations for parent, big and little twin are

V4 ⊗ Ṽ1 = G5

V4 ⊗ Ãµ + χ̃ρ̃ = G4

Aµ + 4χρ + 6φ ⊗ Ṽ1 = G1 + 6V1 + C1

(4.65)

This deviates from the behaviour of the pyramid twins in that the factorisations of the big

and little twin are obtained by breaking either the Right factor or the Left, respectively,

but not both.



Left theory Right theory Supergravity

Content Symmetry Content Symmetry N± Content Symmetry Coset

V4 + Cρ
4 so(4)⊕ so(3)

Ṽ8
so(7)

12 G12 so(12)R-sym ⊕ so(3) E7(−5)

SO(12)×SO(3)Ã(1) + χ̃ρ̃(8) + φ̃(7) 4 G4 + 16V4 so(4)R-sym ⊕ so(12)iso ⊕ so(3)

V4 + Cρ
4 so(4)⊕ so(3)

Ṽ4
so(4)

8 G8 + 4V8 so(8)R-sym ⊕ so(4)iso SO(8,4)
SO(8)×SO(4)Ã(1,1) + χ̃ρ̃(2,2) + φ̃(3,1) 4 G4 + 8V4 so(4)R-sym ⊕ so(8)iso ⊕ so(4)

V2 + Cρ
2 so(2)⊕ so(2)

Ṽ8
so(7)

10 G10 so(10)R-sym ⊕ so(2) E6(−14)

SO(10)×SO(2)Ã(1) + χ̃ρ̃(8) + φ̃(7) 2 G2 + V2 + 10V2 + 5C2 so(2)R-sym ⊕ so(10)iso ⊕ so(2)

V2 + Cρ
2 so(2)⊕ so(2)

Ṽ4
so(4)

6 G6 + 2V6 so(6)R-sym ⊕ so(3)⊕ so(2)iso SU(4,2)
SU(4)×U(2)Ã(1,1) + χ̃ρ̃(2,2) + φ̃(3,1) 2 G2 + V2 + 4V2 + 3C2 so(2)R-sym ⊕ [su(4)⊕ u(2)]iso

V2 + Cρ
2 so(2)⊕ so(2)

Ṽ2
so(2)

4 G4 + V4 + C4 so(4)R-sym ⊕ so(2)⊕ so(2)iso SU(2,1)×SU(2,1)
U(2)×U(2)Ã+ 2χ̃ρ̃ + φ̃ 2 G2 + V2 + V2 + 2C2 so(2)R-sym ⊕ [u(2)⊕ u(2)]iso

V1 + Cρ
1 ∅

Ṽ8
so(7)

9 G9 so(9)R-sym F4(−20)

SO(9)Ã(1) + χ̃ρ̃(8) + φ̃(7) 1 G1 + 16V1 so(9)iso

V1 + Cρ
1 ∅

Ṽ4
so(4)

5 G5 + V5 so(5)R-sym + so(3) Sp(2,1)
Sp(2)×Sp(1)Ã(1,1) + χ̃ρ̃(2,2) + φ̃(3,1) 1 G1 + 8V1 so(5)iso + so(3)

V1 + Cρ
1 ∅

Ṽ2
so(2)

3 G3 + V3 so(3)R-sym + so(2) SU(2,1)
U(2)Ã+ 2χ̃ρ̃ + φ̃ 1 G1 + 4V1 so(3)iso + so(2)

V1 + Cρ
1 ∅

Ṽ1 ∅
2 G2 + V2 so(2)R-sym SL(2,R)

SO(2)Ã+ χ̃ρ̃ 1 G1 + 2V1 so(2)iso

Table 4.6: Twin supergravities from Yang-Mills in D = 3.



Left theory Right theory Supergravity

Content Symmetry Content Symmetry N± Content Symmetry Coset

V2 + Hρ
2 u(2)⊕ su(2)

Ṽ4
su(4)

6 G6 u(6)R-sym SO∗(12)
U(6)Ã(1) + χ̃ρ̃(4) + φ̃(6) 2 G2 + 15V2 u(2)R-sym ⊕ u(6)iso

V2 + Hρ
2 u(2)⊕ su(2)

Ṽ2
u(2)

4 G4 + 2V4 u(4)R-sym ⊕ so(2)iso SL(2,R)
U(1)Ã(1) + χ̃ρ̃(2) + 2φ̃(1) 2 G2 + V2 + 6V2 u(2)R-sym ⊕ u(4)iso

V1 + Cρ
1 u(1)⊕ u(1)

Ṽ4
so(4)

5 G5 u(5)R-sym SU(5,1)
U(5)Ã(1) + χ̃ρ̃(4) + φ̃(6) 1 G1 + 10V1 + 5C1 u(1)R-sym ⊕ u(5)iso

V1 + Cρ
1 u(1)⊕ u(1)

Ṽ2
u(2)

3 G3 + V3 u(3)R-sym ⊕ u(1) U(3,1)
U(3)×U(1)Ã(1) + χ̃ρ̃(2) + 2φ̃(1) 1 G1 + V1 + 3V1 + 3C1 u(1)R-sym ⊕ u(3)iso

V1 + Cρ
1 u(1)⊕ u(1)

Ṽ1
u(1)

2 G2 + H2 u(2)R-sym ⊕ u(1) U(2,1)
U(2)×U(1)Ã+ χ̃ρ̃ 1 G1 + V1 + 2C1 u(1)R-sym ⊕ u(2)iso

Table 4.7: Twin supergravities from Yang-Mills in D = 4.



Left theory Right theory Supergravity

Content Symmetry Content Symmetry N± Content Symmetry Coset

V2 + Hρ
2 sp(1)⊕ sp(1)

Ṽ4
sp(2)

6 G6 sp(3)R-sym SU∗(6)
Sp(3)Ã(1) + χ̃ρ̃(4) + φ̃(5) 2 G2 + 14V2 sp(1)R-sym ⊕ sp(3)iso

V2 + Cρ
2 sp(1)⊕ sp(1)

Ṽ2
sp(1)

4 G4 + V4 sp(2)R-sym O(1,1)×O(5,1)
Sp(2)Ã(1) + χ̃ρ̃(2) + φ̃(1) 2 G2 + V2 + 5V2 sp(1)R-sym ⊕ sp(2)iso

V(2,0) + Hρ
(2,0) sp(1)⊕ sp(1) Ṽ(2,2) sp(1)⊕ sp(1) (4, 2) G(4,2) sp(2)R-sym ⊕ sp(1)R-sym SO(5,1)

SO(5)V(0,2) + Hρ
(0,2) sp(1)⊕ sp(1) Ã(1) + χ̃ρ̃−(2) + χ̃ρ̃+(2) + φ̃(4) sp(1)⊕ sp(1) (0, 2) G(0,2) + (4 + 4)V(0,2) + 5T(0,2) sp(1)R-sym ⊕ sp(2)iso

V(2,0) + Hρ
(2,0) sp(1)⊕ sp(1) Ṽ(2,0) sp(1) (4, 0) G(4,0) + T(4,0) sp(2)R-sym SO(5,1)

SO(5)V(0,2) + Hρ
(0,2) sp(1)⊕ sp(1) Ã(1) + χ̃ρ̃−(2) sp(1) (0, 2) G(0,2) + 5T(0,2) sp(1)R-sym ⊕ sp(2)iso

V(2,0) + Hρ
(2,0) sp(1)⊕ sp(1) Ṽ(0,2) sp(1) (2, 2) G(2,2) sp(1)R-sym + sp(1)R-sym

O(1, 1)
V(0,2) + Hρ

(0,2) sp(1)⊕ sp(1) Ã(1) + χ̃ρ̃+(2) sp(1) (0, 2) G(0,2) + 4V(0,2) + T(0,2) sp(1)R-sym ⊕ sp(1)iso

Table 4.8: Twin supergravities from Yang-Mills in D = 5 and D = 6.



Chapter 5

Gauge symmetries and their

quantum realisation

Noether identities

A fascinating feature of gauge theories, and certainly one of great importance, is the

fact that gauge invariance of the action functional implies dim(G) relations, known as

Noether identities, among the equations of motion. For a nice discussion, see [134]. As

a consequence, the latter no longer impose enough independent conditions to fix the dy-

namics uniquely. Usually, one proceeds by imposing dim(G) conditions on the gauge field

by requiring a so-called gauge-fixing functional of Aµ to vanish, F [A] = 0. Demanding

that the theory makes sense quantum-mechanically, however, allows us to better delineate

the seemingly damaging consequences of gauge invariance and find a way around them.

In the process, a much richer structure underpinning general gauge theories is revealed

which, among other things, leads to the discovery of very elegant and powerful mathemat-

ical tools. In particular, here we shall mainly be concerned with the “emerging” BRST

symmetry1 and its consequences.

It turns out that most of this structure is accessible from but a corner of Yang-Mills

theory, namely the kinematics and self-interactions of the gauge field. Consequently, for

the remainder of this discussion, we will neglect any coupling to matter fields and their

interactions with Aµ, and restrict our attention solely to the theory defined by the set of

all Lie algebra-valued gauge fields, denoted by A = {Aµ(x)}, whose dynamics are encoded

in the action

S0[A] = −1

4

∫
dDx FA

µνF
µν
A , (5.1)

where we append the subscript “0” to signify that (5.1) is to be regarded simply as the clas-

sical starting point, obtainable as a limit of a more fundamental, quantum-mechanically

1It is “emergent” only from a historical perspective; indeed, it is possible to elevate it as the funda-

mental principle of general gauge theories, which may be then constructed with the only assumption that

the BRST symmetry is present in a larger, more fundamental phase space. This is the core idea behind

the field-antifield, or Batalin-Vilkoviskiy (BV), formalism, see Appendix B.
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consistent action, S, derived in what follows. Varying with respect to the gauge field

yields the equations of motion,

δS0[A]

δAνA
= DµFA

µν = 0. (5.2)

The Noether identity for Yang-Mills can be written as

DνDµFA
µν = 0, (5.3)

which can be checked using (2.16) and the antisymmetry of the structure constants. Notice

how, in the zero coupling limit g = 0, this reduces to dim(G) copies of the electromagnetic

Noether identity, ∂ν∂µFµν = 0, which holds simply because [∂µ, ∂ν ] = 0.

What are, though, the difficulties hindering a smooth quantisation?

• No more Hilbert space?

As long as one is interested (as we are in this thesis) in maintaining manifest Lorentz

covariance in the quantised theory, it is reasonable to expect issues analogous to

those arising in the Abelian case: there, timelike photon states had negative norm

and the Hilbert space character of state space was lost. The solution to this prob-

lem is usually attributed to Gupta and Bleuer [144, 145]; an important refinement

thereof, wherein the subsidiary condition is imposed as an operator identity rather

than directly on the state space, is due to Nakanishi [146] and Lautrup [147]. Simi-

larly, the full spectrum of Yang-Mills theory contains many unwanted states, threat-

ening the unitarity of the theory. Happily, there exist a similar, albeit more involved,

resolution, found by Kugo and Ojima [98–100]. We refer the reader to Section 5.3

for a more detailed explanation.

• Noether identities and no propagators

The very existence of the Noether identities (5.3) has a second (related, of course)

striking consequence, which poses a serious obstacle to the correct definition of a

perturbative expansion: for the naive classical action (5.1), propagators do not exist!

This may be proven by differentiating the (general form of the) Noether identities

and showing that the Hessian of the classical action is non-invertible, as done in

[134]. Indeed, using the definition of the field stregths in terms of AAµ , the quadratic

part of the action becomes

S0[A] =

∫
dDx

[
1

2
AµA

(
�ηµν − ∂µ∂ν

)
AνA

]
+ (self-interactions) (5.4)

where we notice that the operator Kµν ≡ �ηµν − ∂µ∂ν , whose inverse would yield

the propagator, is non-invertible since it has a non-trivial kernel,

(�ηµν − ∂µ∂ν)∂νχ = 0 (5.5)
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consisting of the zero modes ∂νχ, for any scalar function χ. These are gauge trans-

formations of the vacuum, Aµ = 0, with gauge parameter θA = χA and correspond

to longitudinal modes of the quantised excitation of the gauge field, since their

Fourier components are proportional to the momentum kµ.

• Physically distinct configurations are fewer than it seems

Another issue to keep in mind when attempting quantisation is that the space A is

foliated, under the action of gauge transformations, into elements of the coset space

A/G, namely the equivalence classes2{
Aµ ∼ AUµ

∣∣ AUµ =
1

g
U(x)∂µU(x)−1 + U(x)AµU(x)−1

}
∈ A/G (5.6)

known as gauge orbits. Elements belonging to the same orbit represent the exact

same physical configuration3, so the action functional returns the same value when

evaluated on any of them. If our quantisation scheme of choice involves summing

over different configurations, then we are at risk of grossly overcounting, unless a

way is found to cleverly disentagle this redundancy and eliminate it.

5.1 Path integral quantisation

Imagine defining the quantum theory via the path integral over all possible gauge field

configurations in A,

Z =

∫
A

D[A]eiS0[A] (5.7)

where the integration measure is formally defined as D[A] =
∏

µ,A,x dA
A
µ (x) and is assumed

to be invariant under arbitrary gauge transformations, D[AU ] = D[A]. The classical action

is gauge invariant as well, S0[AU ] = S0[A]; thus Z is too.

In accordance to the discussion above, we would like to isolate the contributions of

the (infinitely degenerate) gauge orbits and restrict our functional integral so as to sum

only over physically distinct configurations. Heuristically, we’d like to be able to write

Z =

∫
G

D[U ]

∫
A/G

dµ[A]eiS0[A]. (5.8)

where D[U ] and dµ[A] are some measures on the gauge group and on A/G, respectively,

yet to be properly defined. It turns out that the correct definition of the latter requires

some work, as shown below.

2Only in this section, we change notation slightly, A′µ → AUµ , since here we want a shorthand notation

to specify which gauge transformation U is being performed. We will return to the standard notation for

transformations, A′µ, in the remainder of this thesis.
3As gauge transformations do not take a physical state into another; in a Hamiltonian description,

they are generated by Noether charges which vanish on solutions of the equations of motion.
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One essential ingredient is to “cut out” the redundant gauge degrees of freedom by

defining a surface in A, known as the gauge slice, which intersects all gauge orbits and is

specified by the vanishing of a local, Lie algebra-valued gauge-fixing functional

FA[A] = {FA(Aµ, ∂µAν , . . . )(x), x ∈M} = 0. (5.9)

Our aim, then, is to localise the integration over the gauge slice. For this to correspond

to honest integration over orbit space, however, the gauge-fixing has to pick a unique

representative for each orbit4: this is achieved by assuming that, for each Aµ lying on

some orbit, there exist a unique gauge transformation U taking Aµ onto the gauge slice.

Let us denote these group elements by UF , since they depend on the choice of gauge-fixing

function. In short

∀Aµ, ∃ unique UF ∈ G such that F [AUF ] = 0, (5.10)

thus ensuring that every orbit be intercepted exactly once.

Now for the subtle point: even though F [A] is well-defined, it turns out that we would

be committing a mistake if we tried to restrict the integral in (5.7) by adding a (functional)

Dirac delta such as δ
[
F [A]

]
, without thinking twice. Indeed, we would be failing to notice

that now the integration (incorrectly) depends on our choice of F [A]. The solution to this

puzzle, known as the Faddeev-Popov trick or insertion of unity, was discovered in 1967 due

to an intuition of L. Faddeev, while V. Popov provided the mathematical justification5.

5.1.1 Faddeev-Popov determinant

The idea of Faddeev and Popov [103] was to average the gauge condition over the gauge

group G. Define the quantity ∆[A] by

1 = ∆[A]

∫
G

D[U ]δ
[
F [AU ]

]
(5.11)

where D[U ] is the measure on the gauge group briefly mentioned above. It is formally

defined as the product of the group measure at each x ∈ M, and it is assumed to be

invariant, namely D[U ] = D[UU ′]. Notice that ∆[A] is gauge invariant owing to the

invariance of the measure, since

∆−1[AU ] =

∫
G

D[U ′]δ
[
F [AUU

′
]
]

=

∫
G

D[UU ′]δ
[
F [AUU

′
]
]

= ∆−1[A]

(5.12)

4We ignore here the subtleties related to the global definition of the gauge-fixing function, the Gribov

ambiguity, etc., since perturbation theory is well defined within the first Gribov region.
5According to the historical account given by Faddeev in his Scholarpedia entry.
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i.e. it is a function only of the equivalence classes, not of Aµ itself. We proceed by

inserting this fancy “1” in the path integral (5.7) and change the order of integration, to

obtain

Z =

∫
G

D[U ]

∫
A

D[A] ∆[A]δ
[
F [AU ]

]
eiS0[A]. (5.13)

Next, using the gauge-invariance of D[A], ∆[A] and S0[A] and relabeling AU → A, the

above becomes

Z =

∫
G

D[U ]

∫
A

D[AU ] ∆[AU ]δ
[
F [AU ]

]
eiS0[AU ]

=

(∫
G

D[U ]

)∫
A

D[A] ∆[A]δ
[
F [A]

]
eiS0[A]

= Vol(G)

∫
A

D[A] ∆[A]δ
[
F [A]

]
eiS0[A],

(5.14)

which shows that the Aµ-dependent integrand in (5.13) was, in fact, independent of U

and, as a consequence, the integration over G factorises and simply yields the volume of

the gauge group. Thus, we have successfully restricted the integral to the gauge slice by

virtue of the delta function, such as it does not depend on the particular choice of gauge

slice, F [A]. Furthermore, in doing so, we have isolated the integration over all gauge

transformations which bothered us in the discussion around (5.6). Effectively, we have

found a way to express the measure on orbit space by modifying the measure on A,∫
A/G

dµ[A] =

∫
A

D[A]∆[A]δ
[
F [A]

]
. (5.15)

But what is ∆[A]? It is more convenient to perform the calculation near the identity,

UF = Id, where the gauge field is shifted as Aθµ = Aµ + Dµθ. Expanding the gauge-

transformed gauge-fixing condition in θ,

F [Aθ] = F [A] +M [A]θ +O(θ2) (5.16)

we define, on the gauge slice F [A] = 0, the operator M [A], with components

(
M [A]

)A
B

=
δFA[Aθ]

δθB

∣∣∣∣
θ=0

(5.17)

as the linear approximation of the function F [Aθ] at θ = 0, i.e. its Jacobian. Then, from

the definition (5.11),

∆−1[A] =

∫
G

D[U ]δ
[
F [AU ]

]
=

∫
g

D[θ]δ
[
M [A]θ

]
=
∣∣detM [A]

∣∣−1
.

(5.18)
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The last equality holds due to there being, by assumption, only one solution to the

equation F [AU ] = 0, the UF of (5.10). Thus, on the gauge slice, the operator ∆[A]

is the (absolute value of the functional) determinant of the Jacobian of the gauge-fixing

condition, conventionally written as

∆[A] =
∣∣ detM [A]

∣∣ =

∣∣∣∣ det

(
δFA[Aθ]

δθB

) ∣∣∣∣ if F [A] = 0. (5.19)

This is known as the Faddeev-Popov determinant. Notice that, in the path integral (5.14),

F [A] = 0 is always satisfied due to the delta function; therefore, the identification (5.19)

is always valid.

5.2 Faddeev-Popov ghosts and gauge-fixing

Let us refine slightly the expression for the path integral obtained so far, for general

gauge-fixing condition F [A]. The reason for wanting to do so is that the expression

Z = Vol(G)

∫
A

D[A]
∣∣ detM [A]

∣∣δ[F [A]
]
eiS0[A], (5.20)

despite embodying our successful attempt at factorising the action of the gauge group and

fixing the gauge redundancy (among which also the zero modes of (5.5)), is not imme-

diately useful to a perturbative approach. However, one realises that both the Faddeev-

Popov determinant and the delta function may be expressed as functional integrals over

some field. The idea is that this will introduce new Aµ-dependent terms in the Yang-

Mills action, thus effectively modifying the perturbative expansion in such a way as to

solve the issues anticipated above. It is best to use the representation of the determi-

nant6 as a Gaussian integral over a pair of adjoint, Grassmann-valued scalar fields: the

Faddeev-Popov ghost cA and antighost cA. That is, suppressing the gauge indices,

detM [A] =

∫
D[c]D[c] e−i

∫
dDx cM [A]c. (5.21)

The delta function can be lifted to the exponent by employing a little trick: first, the

gauge-fixing condition is generalised to F [A] − ω = 0 for arbitrary Lie algebra-valued

functions ω(x), noticing that this is allowed because this modification is immaterial to

detM [A], since ω(x) does not transform under the gauge group. Then, averaging over ω

with a weight function, normally chosen to be a Gaussian centered at ω = 0 with width

w = −ξ, we obtain instead∫
D[ω] δ

[
F [A]− ω

]
e
i

2ξ

∫
dDx ω2

= e
i

2ξ

∫
dDx (F [A])2

. (5.22)

6We omit here the absolute value, thus assuming the positivity of the determinant. This is fine for our

purposes, in perturbation theory, but is not a global property on A. For large enough Aµ, the determinant

can indeed change sign, leading to the notion of Gribov regions.
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Heuristically, this “blurs” the gauge slice, effectively allowing gauge configurations to

fluctuate about it, with a suppression factor controlled by ξ. At last, we should be able

to show that a well-defined perturbative expansion is indeed possible. After all, this was

the original motivation for all of the above manipulations. Although one is not forced

to, it is very convenient at this stage to let go of generality in favour of concreteness, by

specifying the gauge slice. In this thesis, we will mainly be concerned with the linear

covariant gauge, defined by

FA[A] = ∂µAAµ . (5.23)

In addition to this gauge choice, there exist a good number of distinct gauges one might

choose to employ: for a well-written and rather complete review, see [148]. In the linear

covariant gauge, the Faddeev-Popov determinant reads

detM [A] = det

{
δ

δθ

[
∂µ
(
Aµ +

1

g
Dµθ

)]}
=

1

g
det (∂µDµ) . (5.24)

Notably, the Aµ-dependence of the Faddeev-Popov determinant, entering through the co-

variant derivative, is characteristic of Yang-Mills theory – as opposed to electromagnetism

– in the sense that it is a consequence of the non-Abelian nature of the gauge group. For

U(1), the covariant derivative in (5.24) reduces to the usual partial derivative and the

determinant, det(∂µ∂µ), can be factored out of the path integral, where it merely con-

tributes to the normalisation. This is the reason why, as long as we commit to a specific

gauge choice, we can ignore the ghosts in electromagnetism.

5.2.1 The Faddeev-Popov Lagrangian

Combining all of the above, we see that we have reformulated the path integral over A/G
in (5.20) as one over the enlarged phase space P = {Aµ, c, c}, namely

Z = Vol(G)

∫
A

D[A]D[c]D[c] eiS[A,c,c], (5.25)

with the new action, modified by the addition of the term 2ξ−1(∂µAAµ )2 due to the inte-

grated delta function (5.22), given by

S[A, c, c] =

∫
dDx

[
−1

4
FA
µνF

µν
A +

1

2ξ
(∂µAAµ )2 − cA∂µ(Dµc)A

]
. (5.26)

This manifestly solves the “zero modes” issue, since the quadratic part of the above,

Squad[A] =

∫
dDx

[
1

2
AµA

(
�ηµν −

(
1 +

1

ξ

)
∂µ∂ν

)
AνA

]
, (5.27)

has no zero modes and can be inverted to give the (momentum space) gauge field propa-

gator,

D̃µν
F (p) =

−i
p2 + iε

(
gµν − (1 + ξ)

pµpν

p2

)
. (5.28)
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Somewhat confusingly, different choices of ξ are referred to as gauges as well. Keeping

in mind that we are working within the linear covariant gauge, it should be noted that

some popular choices include ξ = 0 (Landau gauge) and ξ = −1 (Feynman-’t Hooft

gauge). The former, since the width of the Gaussian vanishes, is equivalent to the linear

covariant gauge for ω = 0, namely the usual Lorenz gauge. The latter has the advantage

of simplifying the kinetic term, hence the propagator, of the gauge field.

In conclusion, the price to pay in exchange for an invertible operator was a gauge-

dependent Green function (see Chapter 4 of [80] for an elegant derivation in this spirit,

purely at the classical level). The consistency of the theory demands, however, that

physical quantities be gauge-independent, as a choice of measuring sticks should not

affect the results of an experiment. Remarkably, it is indeed true (and it can be proven

rigorously, using the BRST symmetry of the ensuing section) that physical observables of

Yang-Mills theory do not, in fact, depend on ξ.

5.2.2 The Lautrup-Nakanishi field

Very often, especially so if one cares about keeping manifest Lorentz covariance, it is

convenient to introduce an adjoint auxiliary field, b(x) = b(x)AtA, known in the literature

as the Lautrup-Nakanishi auxiliary field. It is named after the authors who first realised

its usefulness in improving some aspects of the quantisation of Abelian gauge theory in

covariant gauges [146, 147] where, of course, the index A is simply one-dimensional. In

particular, as mentioned earlier, their work provided a refinement of the Gupta-Bleuer for-

malism which were to prove itself better suited for a non-Abelian generalisation, whereby

the physical state condition of Gupta-Bleuer ∂µA+
µ |ψphys〉 is replaced by b+ |ψphys〉, making

use of the positive frequency (annihilation) part of the newly introduced field b. Notice,

however, that the unambiguous separation into positive and negative frequency parts,

consistent with time evolution for all t, is only possible due to the free nature of b in the

Abelian theory, �b(Ab) = 0. As we will see shortly, this is no longer true in Yang-Mills,

where the need arises for a suitable extension of the Lautrup-Nakanishi condition.

The auxiliary field b also finds its place within the path integral formulation of Yang-

Mills, via

δ
[
F [A]

]
=

∫
D[b] ei

∫
dDx b(x)·F [A], (5.29)

the functional analogue of the familiar δ(g(x)) =
∫

dp eip·g(x). Thus, b is recognised as a

Lagrange multiplier enforcing the gauge-fixing condition F [A] = 0, namely Landau gauge

(that is, ξ = 0). In line with (5.22), it is preferable to add a (BRST-exact, see next

section) quadratic term,∫
D[ω] δ

[
F [A]− ω

]
e
i

2ξ

∫
dDx ω2

=

∫
D[ω]

∫
D[b] ei

∫
dDx b(F [A]−ω)+ i

2ξ
ω2

(5.30)

=

∫
D[b] ei

∫
dDx bF [A]− ξ

2
b2 . (5.31)
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With this addition, the phase space is enlarged yet again to Pb = {A, c, c, b} and the

Yang-Mills action functional becomes

S[A, c, c, b] =

∫
dDx

[
−1

4
FA
µνF

µν
A + bA

(
FA[A]− ξ

2
bA
)
− cAM [A]ABc

B

]
. (5.32)

The Lautrup-Nakanishi field is auxiliary since it appears without time derivatives in the

Lagrangian and, consequently, its equations of motion are algebraic. In fact, the latter

simply pose that the auxiliary field be equal to the gauge-fixing condition,

bA =
1

ξ
FA[A], (5.33)

a fact, due to the addition of the quadratic term, which greatly simplifies some calculations

in Yang-Mills, such as the proof that observables are ξ-independent. The auxiliary field

can be integrated out by completing the square and performing a Gaussian integral (or,

equivalently, by substituting (5.33) back into the action), a procedure which returns (5.26).

As we will see shortly, the Lautrup-Nakanishi auxiliary field plays yet one more important

role: it is exactly what is needed to close the gauge (read BRST) algebra off-shell.

5.3 BRST invariance

Let us come back to the form of the Yang-Mills action defined in (5.32), that is the result

of the Faddeev-Popov procedure and the insertion of the auxiliary field b. Choosing for

concreteness the linear covariant gauge (5.23), it reads

S[A, c, c, b] =

∫
dDx

[
−1

4
FA
µνF

µν
A + bA

(
∂µAAµ −

ξ

2
bA
)
− cA(∂µDµ)ABc

B

]
. (5.34)

Crucially, although the classical gauge invariance is lost in the quantum theory, the action

functional (5.34) enjoys a new invariance, found by Becchi, Rouet, Stora and, indepen-

dently, by Tyutin (hence the acronym BRST). Define the BRST operator Q by its action

on all fields,

QAAµ = (Dµc)
A QcA = bA (5.35)

QcA = −1
2
[c, c]A QbA = 0, (5.36)

noticing, in particular, how Q maps bosonic into fermionic fields, mixes gauge field con-

figurations together with the ghosts and the Lautrup-Nakanishi field and, above all, is

nilpotent on all fields, Q2 = 0. The fact that the action is Q-invariant, i.e.

QS[A, c, c, b] = 0, (5.37)

allows us to define an infinitesimal BRST “symmetry” transformation acting on any

Ψ ∈ Pb = {A, c, c, b} as δBΨ := εQΨ, with ε a global Grassmann-valued number, that
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is the parameter of a global supersymmetry transformation. Notice that (5.34) is fur-

ther invariant under an additional global scale transformation involving exclusively the

Faddeev-Popov ghosts,

δαc = αc (5.38)

δαc = −αc. (5.39)

5.3.1 The physical Hilbert space

Since both the BRST transformations and the ghost rescalings are global, one ought to be

able to find the corresponding conserved Noether charges, QB and Qc, known as the BRST

and ghost charge, respectively. These generate the transformations they correspond to

via commutators, e.g. δBΨ = [εQB,Ψ]. The BRST charge inherits its properties from

Q: it is fermionic and it carries a non-vanishing ghost number, since [QB,Qc] = QB. In

formulae,

ε(QB) = 1, gh(QB) = 1, (5.40)

with ε indicating the parity of an operator. Its most important quality, however, is its

nilpotency,

Q2
B = 0, (5.41)

which is instrumental in the characterisation of the physical subspace. Our quest toward

it is, in fact, more complicated than its Abelian counterpart: in addition to the states

of negative norm already present for U(1), the spectrum of Yang-Mills contains the un-

physical (violating the spin-statistics relation) ghost fields as well as the non-dynamical

Lautrup-Nakanishi field. As shown by Kugo and Ojima [98–100], the correct generalisa-

tion of the Lautrup-Nakanishi condition is to identify7 the physical states with elements

of the cohomology (i.e. the cohomology classes) of the BRST charge8, i.e. the quotient

space

Hphys =
kerQB

im QB

, (5.42)

having defined the kernel and the image of the BRST charge as

kerQB := {|ψ〉 : QB |ψ〉 = 0} (5.43)

imQB := {|φ〉 : ∃ |λ〉 s.t. |φ〉 = QB |λ〉}. (5.44)

Heuristically, the cohomology measures the amount by which closed forms fail to be

exact in the topological space at hand. The reason this identification is well-motivated is

7Rigorously, one should construct the cohomology of the free BRST operator first, at g = 0, and only

later extend it to the interacting theory, see the Scholarpedia entry by Becchi.
8Which is an operator on the Fock space in the canonical quantisation scheme. We will not be

emphasising this distinction here.
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because the kernel of QB is a subspace with positive semi-definite norm, consisting (for

Yang-Mills’ one-particle states) of the two transverse gluons and the ghost. Among these,

the offending zero-norm states, the ghost |c〉 in this case, also live in imQB owing to the

nilpotency of the charge. In order to further decouple these and thus restrict kerQB to a

Hilbert space, one considers elements of the kernel differing by elements of the image as

physically equivalent9, i.e.

|ψ〉 ∼ |ψ′〉 = |ψ〉+ |φ〉 , ∀ |ψ〉 ∈ kerQB, ∀ |φ〉 ∈ imQB (5.45)

which is exactly the description of elements of (5.42). Notice that |φ〉, in addition to

having zero norm, must be orthogonal to states |ψ〉 in the kernel. Thus, the norms are

correctly preserved under the equivalence relation, 〈ψ′|ψ′〉 = 〈ψ|ψ〉. It is common to

further demand that physical states have vanishing ghost number, i.e. satisfy Qc |ψ〉 = 0.

This, however, is often superfluous since states with non-vanishing ghost number tend not

to be elements of the cohomology. Thus, we learn that:

“The gauge invariance of the classical theory, whereby physical states correspond to

equivalence classes of the gauge group G, is fixed and its consequences encoded in the

quantum theory by BRST invariance, which implies a similar identification of the physical

states with equivalence classes, albeit this time under QB and in the enlarged phase space

Pb.”

5.3.2 BRST, Lagrangians and gauge-fixing

Note that, in light of this new symmetry, we can revisit our interpretation of the Yang-

Mills Lagrangian in (5.34), as follows: the first classical term, L0 = FA
µνF

µν
A , is Q-closed

owing to its original gauge invariance; the second and third terms, albeit not gauge

invariant, may be written as a Q-exact form,

QΨgf := Q

[
cA

(
∂µAAµ −

ξ

2
bA
)]

= bA

(
∂µAAµ −

ξ

2
bA
)
− cA(∂µDµ)ABc

B, (5.46)

using (5.35) and noting that the BRST operator is a graded derivation on the space of

fields, that is10

Q(ab) = (Qa)b+ (−1)ε(a)a(Qb). (5.47)

The field Ψgf , carrying ε(Ψgf ) = 1 and gh(Ψgf ) = −1, is sometimes referred to as the

gauge-fixing fermion. Thus, we learn that the Yang-Mills Lagrangian (5.34) may be

written compactly as

L[A, c, c, b] = −1

4
FA
µνF

µν
A +QΨgf (5.48)

9A more rigorous treatment involves defining an indefinite inner product on the Fock space, see [101]

or Becchi’s Scholarpedia entry for elegant treatments.
10Here, we let it act from the left. Most texts on the field/antifield formalism adopt the opposite

convention, where Q acts from the right, see Appendix B.
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and the proof of its Q-invariance reduces to recalling that Q is nilpotent. We say that

it lies in the same BRST cohomology class as the classical one, L0 ∈ kerQ. Note that

adding Q-exact terms to L0, as above, does not change the expectation value of gauge-

invariant operators. In particular, we could add a second term of the form QΨ2, which

amounts to choosing a different gauge-fixing functional (and, correspondingly, a modified

ghost term), without affecting the physical sector and, thus, the result of any experiment.

In this sense, the BRST formalism is manifestly independent of the choice of gauge-fixing.

In conclusion, imagine starting with the classical Lagrangian (which we know is ill-

defined quantum-mechanically) and looking for possible extensions which will be con-

sistent at the quantum level. Simply demanding that the result be invariant under the

nilpotent operator Q heavily constrains the candidate terms to the form (5.48) which,

when considering Lorentz invariance and mass dimension, becomes essentially unique11

and the same as that of Faddeev-Popov (modulo quartic ghost interactions, see [111]).

5.4 Anti-BRST and OSp(2)-invariance

A close look at the Faddeev-Popov Lagrangian (5.32) appears to suggest a marked asym-

metry in the roles of the ghost and antighost. The antighost, in fact, is more akin to

the Lautrup-Nakanishi field: the latter is a Lagrange multiplier enforcing the gauge-fixing

condition, while the former enforces the BRST-invariance of the gauge-fixing condition

itself, QF [A] = M [A]c = 0. Indeed, c and b form a doublet representation of the BRST

algebra, see [101]. Thus, perhaps, it may come as a surprise that the Faddeev-Popov

Lagrangian is invariant under a second set of operations, known as the extended or anti-

BRST transformations, very similar in structure to those of BRST, albeit with the roles

of the ghost and antighost being, roughly speaking, interchanged. These are implemented

by the fermionic operator Q, carrying negative ghost number gh(Q) = −1. We give them

here next to their BRST counterparts, to facilitate a direct comparison:

QAAµ = (Dµc)
A

QcA = −1
2
[c, c]A

QcA = bA

QbA = 0

QAAµ = (Dµc)
A

QcA = −1
2
[c, c]A

QcA = −bA − [c, c]A

QbA = −Q[c, c]A

(5.49)

Anti-BRST was discussed first in [105] and “re-discovered” in [106]. The anti-BRST

operator is also off-shell12 nilpotent and so is, in addition, the sum Q+Q, which amounts

to the statement that Q anti-commutes with the BRST operator. Overall, Q and Q satisfy

Q2 = 0, Q
2

= 0, {Q,Q} = 0 = (Q+Q)2. (5.50)

11Up to shifts of Ψgf , of course, corresponding to different gauge choices.
12By “off-shell” here we mean that the Lautrup-Nakanishi multiplier has not been eliminated. As we

will see, this implies that the BRST algebra closes without using the equations of motion.
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Furthermore, it is possible to consider an OSp(2) symmetry [107, 108, 110, 112] rotating

the ghost into the antighost, and viceversa, which unifies the BRST and anti-BRST

operators into a doublet, denoted Qα, with α = 1, 2 and Q1 = Q and Q2 = Q. The

properties (5.50) may then be written more compactly as

QαQβ +QβQα = 0. (5.51)

This implies a refinement of the general form of the Lagrangian (5.48), in that we now

have the various possibilities of invariance under BRST, anti-BRST or both, resulting in

(see [130])

L = L0 +QαΨα +
1

2
εαβQ

αQβχ, (5.52)

where L0 is the classical piece, Ψα is an OSp(2) doublet of gauge-fixing fermions Ψ1

and Ψ2 at ghost number −1 and 1, respectively, while χ is a gauge-fixing boson, at

ghost number 0. Special gauge choices, whereby Ψα = 0, result in theories which are

simultaneously BRST and anti-BRST invariant; these are usually referred to as “OSp(2)

invariant” theories. Less ambitiously, if only one component of Ψα vanishes, the theory

retains invariance under either BRST or anti-BRST. Notice that a consistent quantisation

only requires that the Lagrangian be invariant under either of the two [130]. Interesting

general results about anti-BRST quantisation in the field-antifield formalism are derived

in [131].

5.4.1 Curci-Ferrari condition

Note that it is quite common to find a slightly different form of the anti-BRST transfor-

mations in the literature, namely

QAAµ = (Dµc)
A

QcA = −1
2
[c, c]A

QcA = b
A

Qb̄A = 0

(5.53)

which have the obvious advantage of mimicking the BRST transformations exactly, upon

exchange of c→ c and b→ b, owing to having defined the new field b
A

as the anti-BRST

transformation of the ghost (recall, on the other hand, that the field bA is the BRST

transformation of the antighost). In order to close the whole (BRST plus anti-BRST)

algebra, these variations must be supplemented with the transformations

Qb
A

= [b, c]A, QbA = [b, c]A. (5.54)

Furthermore, the requirement that the BRST and anti-BRST operators anticommute (or,

equivalently, that the sum of the operators is nilpotent) results in the additional condition

b
A

= −bA − [c, c]A (5.55)
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which is exactly the transformation of the ghost in (5.49). This expression is sometimes re-

ferred to as the Curci-Ferrari condition; interesting discussions concerning its geometrical

origin can be found in [124] and [149].

5.4.2 Off-shell vs on-shell nilpotency

The nilpotency of Q corresponds to the closure of the algebra of infinitesimal BRST

transformations,

[δ1, δ2]Ψ = −ε1ε2{Q,Q}Ψ
= −2ε1ε2Q

2Ψ

= 0,

(5.56)

for Ψ ∈ Pb. As mentioned above, it is the auxiliary field b which helps close the algebra.

A posteriori, this is one of the main motivations for including it from the onset. Indeed,

were we to remove it using its algebraic equation of motion (5.33), we would find the

Lagrangian of (5.26), reported here for convenience,

L[A, c, c] = −1

4
FA
µνF

µν
A +

1

2ξ
(∂µAAµ )2 − cA∂µ(Dµc)A, (5.57)

which is invariant under the restricted BRST and anti-BRST transformations,

QAAµ = (Dµc)
A

QcA = −1
2
[c, c]A

QcA = 1
ξ
∂µAAµ

QAAµ = (Dµc)
A

QcA = −1
2
[c, c]A

QcA = −1
ξ
∂µAAµ − [c, c]A.

(5.58)

Note the general feature that, in the absence of the auxiliary field, the antighost is rotated

into the gauge-fixing functional, FA[A] = ∂µAAµ in the linear gauge chosen. This, of course,

is due to the equation of motion of the Lautrup-Nakanishi field (5.33). This will still be

true for the more complicated theories we will deal with later on. The BRST (anti-BRST)

operator remains nilpotent on AAµ and cA (cA), as their transformations are unchanged

and they do not involve either cA (cA) or bA; however, when applied to the antighost

(ghost), it is only nilpotent modulo equations of motion. For instance,

Q2cA =
1

ξ
∂µ(Dµc)

A

≈ 0

(5.59)

where the symbol ≈ denotes weak equality (i.e. on the surface in phase space specified

by the equations of motion). One says in this case that the BRST charge is only on-shell

nilpotent or, equivalently, that the BRST algebra closes on-shell.
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5.5 Kalb-Ramond 2-form

Recall the action for a p-form gauge field in D-dimensional spacetime13,

S = −1

4

∫
∗F (p+1) ∧ F (p+1), F (p+1) = dA(p) (5.60)

This type of action is invariant under the gauge transformations δAp = dΛ(p−1), as they

leave the field strength F (p+1) invariant. Since, however, these gauge transformations are

unaffected by a shift Λ(p−1) → dΛ(p−2), not all components of Λ(p−1) provide independent

gauge symmetries of the action. Of the
(
D
p

)
Lorentz components of the p-form gauge field,

we subtract
(
D
p−1

)
corresponding to the first gauge transformation, while we compensate

for their not being independent by adding back the
(
D
p−2

)
components of Λ(p−2). The

same logic continues to apply at each level, such that the original p-form carries a total of(
D−1
p

)
off-shell components, that is Lorentz components minus (the independent) gauge

transformations, thus furnishing the rank-p antisymmetric representation of SO(D − 1).

To add some terminology, these are usually referred to as (p − 1)-stage reducible gauge

theories. Let us specialise to the case with p = 2. Let us denote the potential as Bµν ,

which we refer to as the Kalb-Ramond 2-form, and its field strength by Hµνρ = 3∂[µBνρ].

Its action, this time given in components (and flat spacetime), reads

S = − 1

24

∫
dDx HµνρHµνρ, (5.61)

invariant under the gauge transformation δBµν = ∂µζν−∂νζµ, with δζµ = ∂µζ representing

the gauge transformation of the gauge parameter. In four dimensions, for example, this

field carries 6− 4 + 1 = 3 degrees of freedom off-shell and just 1 on-shell, being dual to a

scalar.

What we are really after, however, is the BRST-fixed version of this action. It turns

out that the correct quantisation of a first-stage reducible gauge theory such as this one

requires more work that the “simple” Yang-Mills case, which is the stereotypical example

of a theory with an irreducible gauge algebra. It can be demonstrated that the standard

Faddeev-Popov procedure (as well as the BRST “trick” of Section 5.3.2) fails to work

for most gauge theories whose algebra is not closed and irreducible. These ought to be

analysed in the context of a much more general formalism, whose core idea consists in

elevating the BRST (and anti-BRST) symmetry to the fundamental principle underlying

all gauge theories, known as field-antifield or Batalin-Vilkovisky (BV) formalism. In

Appendix B we provide a very brief review of the formalism, based on the excellent [134],

together with a derivation of the “BRST-fixed” Lagrangian for the Kalb-Ramond field,

which we now discuss. Indeed, if the reader prefers to skip the detour to the Appendix (or

to the more complete and much recommended review paper), he or she must only accept

the introduction of some new ingredients which are required to fix a set of reducible gauge

invariances. Namely,

13Note, we use a perhaps unconventional factor of 1/4, instead of the more popular 1/2.
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• Two Lorentz-vector, fermionic anticommuting ghosts, dµ and dµ, involved in fixing

the first-stage gauge redundancy, δBµν = 2∂[µζν]. These have ghost number 1 and

−1, respectively.

• Three Lorentz-scalar, bosonic commuting ghosts, d, d and η. These arise when fixing

the second-stage gauge invariance, δζµ = ∂µζ. They are known as second-generation

ghosts or ghosts-for-ghosts and have ghost number 2, −2 and 0 respectively.

• One Lorentz-vector bosonic commuting Lautrup-Nakanishi multiplier, b(B)µ, enforc-

ing the vanishing of the gauge-fixing functional relative to δBµν .

• Two Lorentz-scalar fermionic anticommuting Lautrup-Nakanishi multipliers, b(d)

and b(d), enforcing the vanishing of the gauge-fixing functional relative to δζµ. They

have ghost number 1 and −1.

The properties of all these are summarised in the tables of Appendix A. Then, the full

Lagrangian is given by

LB = L0 + L1 + L2,

where the various pieces are

L0 = − 1

24
HµνρHµνρ,

L1 = bµ(B)

(
∂νBνµ + ∂µη −

ξ(B)

2
b(B)µ

)
− dν (�dν − ∂ν∂µdµ) ,

L2 = m(d)b(d)∂
µdµ − b(d)

(
∂µdµ − ξ(d)b(d)

)
−m(d)d�d.

The first is simply the classical starting point. The second, L1, involves the gauge-fixing

functional for the first-stage invariance and the first-generation ghost and antighost. Note,

we choose here the standard linear covariant gauge for the Kalb-Ramond field, which

necessarily ought to involve the scalar ghost η. Finally, L2 consists of the gauge-fixing of

the second-stage invariance, as well as the kinetic term for the second-generation ghosts

d and d. The parameters ξ(B) and ξ(d), as in the Yang-Mills case, are the weights of the

Gaussian averaging over different gauge conditions, while m(d) is an additional a priori

arbitrary parameter which is allowed by the BRST invariance of the Lagrangian above.

Indeed, the action is left invariant by the set of BRST transformations

QBµν = 2∂[µdν] Qdµ = b(B)µ Qb(B)µ = 0

Qdµ = ∂µd Qd = b(d) Qb(d) = 0 (5.62)

Qd = 0 Qη = b(d) Qb(d) = 0

In particular, the fact that the first and third term in L2 cancel against each other

allows for the presence of an arbitrary m(d). It turns out that only careful consideration

of the anti-BRST transformations and their interplay with those in (5.62) can lead to
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constraining m(d). Indeed, requiring that the anti-BRST charge anticommutes with that

of BRST on all fields leads to the formulation of [124]. There, the authors construct a set

of anti-BRST variations with the property that {Q,Q} = 0 by considering an additional

auxiliary field and a condition analogous to the Curci-Ferrari relation given in (5.55).

Eliminating the auxiliary fields from their model, one sees that

m(d) = ξ(d). (5.63)

The reason for highlighting this fact is the following: as we will show in Chapter 6, squaring

two BRST-fixed Yang-Mills theories yields, among other things, the 2-form theory just

described. The BRST and anti-BRST symmetries of Yang-Mills get mapped to those of

the Kalb-Ramond field, which are necessarily anticommuting on all fields; as a consistency

check, the constraint (5.63) may be seen to arise naturally in that context. Finally, another

interesting feature is related to the value m(d) chooses to take: consider eliminating the

auxiliary fields through their algebraic equations,

b(B)µ =
1

ξ(B)

(∂νBνµ + ∂µη) (5.64)

b(d) =
m(d)

ξ(d)

∂µdµ (5.65)

b(d) =
1

ξ(d)

∂µdµ (5.66)

which results in the Lagrangian

LB = − 1

24
HµνρHµνρ +

1

2ξ(B)

(
∂νBνµ + ∂µη

)2

− dµ�dµ +

(
ξ(d) −m(d)

ξ(d)

)
dµ∂

µ∂νdν +mdd�d.

(5.67)

It is invariant under the reduced BRST transformations

QBµν = 2∂[µdν] Qd = 0

Qdµ = ∂µd Qd =
1

ξ(d)

∂µdµ (5.68)

Qdµ =
1

ξ(B)

(∂νBνµ + ∂µη) Qη =
m(d)

ξ(d)

∂µdµ,

whose algebra closes only on-shell. It is easy to see, then, that the constraint (5.63)

implies the vanishing of the term dµ∂
µ∂νdν , which simplifies the equations of motion of

the first-generation ghosts to �dαµ = 0. The anti-BRST transformations will be discussed

in Section 6.2.3.
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Chapter 6

Gravitational gauge symmetries and

dynamics

6.1 Classical picture

Recall the fundamental tensor product at the heart of the Yang-Mills Squared formalism,

concentrating for the present discussion on the Lorentz representations, thus neglecting

internal global and gauge indices. The tensor product of two defining irreducible repre-

sentation of SO(D − 2) may be always decomposed into a 2nd-rank symmetric traceless,

antisymmetric and trace parts; in field theory, these represent the on-shell states of a

graviton, Kalb-Ramond 2-form and dilaton. The product may be pictorially written as

Aµ ◦ Ãν = hµν ⊕Bµν ⊕ ϕ (on-shell) (6.1)

These collectively constitute the physical content of axio-dilaton gravity, also sometimes

referred to N = 0 supergravity due to its appearance as the universal bosonic (NS-NS,

for string theorists) sector of supergravity theories.

We are interested in promoting this mapping from on-shell helicity states to covari-

ant fields. One could imagine extending the SO(D − 2) tensor product above to one

involving the two physical as well as the single auxiliary degrees of freedom, carrying a

representation of SO(D − 1), or all the way to a product of the Lorentz components as

SO(1, D−1) representations, which would include tensoring the gauge degrees of freedom

as well. These, however, are not entirely satisfactory: indeed, while being sufficient for

mapping the gauge symmetries of Yang-Mills into those of a gravitational theory maintain-

ing covariance, this type of squaring fails at a consistent covariant map of the dynamics.

This may be understood, for example, by counting the degrees of freedom generated by

the SO(1, 3) tensor product: Aµ ⊗ Ãν is a 4 × 4 matrix with 16 components, which is

not enough to describe the components of a symmetric rank-2 tensor (10), 2-form (6) and

dilaton (1). Something is missing.

Let us illustrate this by considering the theory of free fields, neglecting the (self)

interactions. In this limit, note that the connection “loses” the non-linear part of its local

109
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gauge transformation (as it is proportional to g), but this may be still imposed as a global

invariance, namely

δAAµ (x) = ∂µθ
A(x) + f A

BC ABµ θ̂
C , (6.2)

where θ̂ is a spacetime-independent parameter. Note that it is possible to view the

latter as the leading term in an expansion of the full gauge parameter in powers of the

coupling constant, σA(x) = g0θ̂A+gθA(x)+O(g2). This is a very convenient expedient in

constructing the non-linear gauge transformation from the linear theory using Noether’s

iterative method [150]. The transformation (6.2) informs us that, in this limit, the Yang-

Mills field behaves like a collection of dim(G) Abelian gauge fields, rotated into each other

by a global G transformation. Notice that the spectator scalar contributes the global G×G̃
adjoint transformations

δΦ−1
AA′ = −fCABΦ−1

CA′θ
B − f̃C′A′B′Φ−1

AC′ θ̃
B′ , (6.3)

where f̃ABC are the structure constants of the Right theory’s gauge group G̃. Then, the

SO(1, D − 1) route has two avenues:

1. We could choose to decompose the tensor product in terms of the quantities,

Aµ ◦ Ãν = H(µν) ⊕B[µν] (6.4)

where Hµν and Bµν have D(D + 1)/2 and D(D − 1)/2 independent components

prior to imposing the equations of motion, respectively. When considered on its

own, the decomposition (6.4) is not problematic: indeed, given the classical gauge

transformation of the (linearised) Yang-Mills theory in (6.2), one can derive the

correct gauge transformations of a graviton and a 2-form,

δHµν = δ
(
A(µ ◦ Ãν)

)
= 2∂(µξν) (6.5)

δBµν = δ
(
A[µ ◦ Ãν]

)
= 2∂[µζν] (6.6)

using the definitions of Section 3.1, equation (6.3) and the parameter dictionary

ξµ :=
1

2

(
Aµ ◦ θ̃ + θ ◦ Ãµ

)
(6.7)

ζµ :=
1

2

(
Aµ ◦ θ̃ − θ ◦ Ãµ

)
. (6.8)

However, insisting that Hµν be the off-shell graviton necessarily implies that the

dilaton finds no room off-shell, hence the assignment (6.4) is manifestly at odds

with (6.1). This is a signal that this type of squaring is inconsistent with a Lorentz

covariant map of the dynamics, as mentioned above. Note that this disparity does

not cause any headaches if one is willing to break covariance with a gauge-fixing

such as Coulomb gauge on the gauge theory side and physical gauge ∂ihiµ = 0
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on the gravity side: the tensor product then reduces to that of the two physical,

propagating degrees of freedom Ai, i = 1, . . . , D− 2, yields Ai⊗ Ãj = hij +Bij +φ,

where we separate the symmetric traceless, antisymmetric and trace parts. Then,

for example, the Klein-Gordon equations of motion of the graviton’s propagating

degrees of freedom follow from those of the Yang-Mills degrees of freedom. Of course,

this is nothing but a rewriting of the on-shell state squaring.

Indeed, even ignoring the absence of the dilaton, one has trouble deriving the correct

dynamics for the would-be gravitational fields in a covariant fashion: given the

(linearised) equations of motion of the gauge connection in the absence of sources,

�Aµ = ∂µ∂
ρAρ, one obtains

�Hµν = ∂(µ∂
ρHν)ρ (6.9)

�Bµν = ∂[µ∂
ρBν]ρ (6.10)

instead of the correct

�hµν = 2∂(µ∂
ρhν)ρ − ∂µ∂νh (6.11)

�Bµν = 2∂[µ∂
ρBν]ρ. (6.12)

The only way to find agreement between the dynamics of the squaring fields, Hµν

and Bµν , with those of the correct graviton and 2-form is by fixing the gauge on the

gauge theory side, choosing ∂ρAρ to vanish (Lorenz gauge). In this gauge, one has

that �Aµ = 0; this implies, through the dictionary, that

�Hµν = 0 (6.13)

�Bµν = 0, (6.14)

which are the equations of motion of a graviton in de-Donder gauge (and a similar

choice of gauge for the 2-form). Having to restrict to a specific gauge on both

the Yang-Mills and the gravitational side is, however, entirely unsatisfactory. It is

possible to arrive at the same conclusion following a sort of reverse argument, which

nicely exemplifies the problem at hand: consider the correct equations of motion

of the Kalb-Ramond 2-form given in (6.12). If one assumes, as was done here, the

Yang-Mills Squared dictionary for this field to simply be the antisymmetric part of

the tensor product (6.4), then it follows that

∂µ∂
ρBρν + ∂ν∂

ρBµρ =
1

2

(
∂µ∂

ρAρ ◦ Ãν − Aν ◦ ∂µ∂ρÃρ + (µ↔ ν)
)

=
1

2

(
�Aµ ◦ Ãν − Aν ◦�Ãµ + (µ↔ ν)

)
= 2�

(
A[µ ◦ Ãν]

) (6.15)

where in the first line we substitute the dictionary for Bµν , in the second we use

the unsourced Yang-Mills equations, and in order to reach the final line we pull
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the d’Alembertian out of the convolution using (3.9) (assuming it is acting on well-

behaved fields). Then, plugging this back in (6.12), one must require �Bµν = 0

once again, which is true if we demand the Yang-Mills fields are in Lorenz gauge.

Notice that here we have “illicitly” assumed that the derivative rule holds on both

arguments of the convolution, which is not guaranteed for all fields. In line with

the discussion of Section 3.1, one should, as we will shortly, introduce effective

source terms for all fields, and work with sourced equations of motion. Whilst this

represents an improvement compared to the naive example just provided here, it

may be shown to yield a graviton-axion-dilaton system whose dynamics are not fully

general [72]. Thus, we keep looking.

2. The previous discussion leaves open an obvious possibility: to define a candidate

physical dilaton by artificially extracting the trace from Hµν , and explore the con-

sequences. In this case, the dictionary would read

hµν := A(µ ◦ Ãν) −
ηµν
D
Aρ ◦ Ãρ (6.16)

Bµν := A[µ ◦ Ãν] (6.17)

ϕ := Aρ ◦ Ãρ. (6.18)

where hµν denotes the symmetric traceless product. The resulting gauge transfor-

mations, however, are less familiar than in the previous case. Leaving aside the

Kalb-Ramond 2-form, as it is the same as above, one has

δhµν = ∂(µξν) −
2

D
ηµν∂

ρξρ (6.19)

δϕ = 2∂ρξρ, (6.20)

that is, neither of them transforms with the linearised diffeomorphism expected

for a graviton and a dilaton. This is because the combination Aρ ◦ Ãρ does not

generally describe the physical dilaton1. One could (mistakenly) argue that the

interplay of the two gauge transformations resembles that between the graviton and

a compensating scalar, of the type used in the conformal construction of Poincaré

(super)gravity2. Indeed, the combination

Hµν := hµν −
ηµν
D
ϕ, (6.21)

which we denoted by Hµν since it corresponds to the symmetric part of the tensor

product as in (6.4), transforms as we know with the correct linear diffeomorphism,

see (6.5), and as such it could represent the Weyl dilatation invariant graviton of a

construction of that sort. This idea may appear to be corroborated by yet another

1Under certain assumptions, adopting this kind of dictionary leads to a constrained graviton-dilaton

system whereby their respective sources are not independent [72].
2See, for instance, chapters 8 and 15 in [80].
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argument: we can compute the equations of motion inherited by hµν and ϕ via the

dictionary:

�hµν = ∂(µ∂
ρhν)ρ +

1

D
(∂µ∂νϕ− ηµν�ϕ) (6.22)

�ϕ =

(
D

D − 1

)
∂ρ∂σhρσ. (6.23)

One can check that the tensor equation is traceless, which implies that the equations

above fix one fewer degree of freedom than if a physical scalar were coupled to

gravity, in full agreement with the identification of ϕ as a compensating scalar.

However, if hµν and ϕ truly were to be an off-shell graviton and compensator, the

Weyl invariant combination Hµν should obey the usual linearised Einstein equation

(i.e. the Pauli-Fierz equation for a spin-2 field), which is contradicted by (6.9)!

Thus, the failure of SO(1, D− 1) squaring is exemplified by (at least) the following

two features:

• The impossibility to identify a combination of Yang-Mills fields with the phys-

ical dilaton field, due to the “missing” degree of freedom.

• The fact that a covariant map of the dynamics of the degrees of freedom actu-

ally generated by squaring is not possible, if not when trivialised by the Lorentz

gauge.

We will see in the next section how recourse to a BRST-covariant formalism provides

exactly what is needed to remedy this.

6.2 BRST squaring

As anticipated at the end of the previous section, it would appear that adopting a “BRST

basis” for Yang-Mills, i.e. including at least the two ghosts (if not the auxiliary field) in

addition to the gauge connection, may provide a covariant description of the squaring

map.

6.2.1 Gauge theory side

Let us first consider the case in which the Lautrup-Nakanishi fields have been integrated

out (we will reinstate them in Section 6.4). Furthermore, as for the classical case above,

we will restrict our attention to the asymptotic (free) fields, in order to establish a baseline

on which to build on. Thus, we will be concerned with the theory at vanishing coupling

g = 0, resembling a collection of dimG Maxwell fields. Omitting the gauge indices, now

trivial, the theory is defined by the action functional,

Llin[A, c, c] = −1

4
fµνf

µν +
1

2ξ
(∂µAµ)2 − c�c, (6.24)
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where, compared to the full Lagrangian in (5.57), the Faddeev-Popov operator ∂µDµ has

reduced to the d’Alembertian � := ∂µ∂µ, whilst the field strength lost its non-Abelian

piece and reads

fµν := ∂µAν − ∂νAµ. (6.25)

The Lagrangian is invariant, besides the global G transformations of (6.2), under the

BRST/anti-BRST transformations

QAµ = ∂µc

Qc = 0

Qc = 1
ξ
∂µAµ

QAµ = ∂µc

Qc = 0

Qc = −1
ξ
∂µAµ

(6.26)

which follow from (5.58) by setting g = 0. Note that, in this limit, Qc and Qc become

more symmetric than in the full theory, owing to the disappearance of the commutator

term. Equivalently, the Curci-Ferrari condition in this limit is simply b = −b. Notice that

these are such that

{Q,Q} = 0 (6.27)

on all fields. The equations of motion following from the action (6.24) are

�Aµ −
(
ξ + 1

ξ

)
∂µ∂

ρAρ = jµ (6.28)

�cα = jα. (6.29)

where we introduce effective source terms encoding the boundary conditions for the lin-

earised fields, following [72]: the idea is that the linearisation of the fields holds in a region

of spacetime Σ where the sources of the full non-linear theory, denoted by J , are negligible;

thus, in the interior of such region, the fields obey the familiar vacuum field equations,

together with some appropriate boundary conditions on ∂Σ. However, the latter may be

re-expressed in terms of effective sources j, of the sort appearing above. Doing so will

allow us to explicitly work with functions on which the derivative rule of the convolution

in (3.9) applies, in line with the discussion in Section 3.1.

Notice that the analog of current conservation after BRST quantisation, then, is the

Lorentz covariant expression

∂ρjρ = −1

ξ
�∂ρAρ. (6.30)

6.2.2 Counting states

We wish to perform the squaring

{Aµ, c, c} ⊗ {Ãµ, c̃, c̃}, (6.31)



6.2. BRST SQUARING 115

which generates, along with the usual ones, a proliferation of states involving the ghosts.

Naturally, we ought to make sure that the totality of the degrees of freedom produced

by tensoring two Yang-Mills theories is in one-to-one correspondence with the states of

the gravitational theory we are mapping to, rather than an arbitrary subset thereof. This

is best achieved by counting the gravitational degrees of freedom in a “graded” fashion,

according as their ghost number inherited directly from the product. Indeed, for any two

fields a and b, the convolutive tensor product defined in (3.8) satisfies

gh(a ◦ b̃) = gh(a) + gh(b), (6.32)

ε(a ◦ b̃) = ε(a) + ε(b), (mod2). (6.33)

Counting in D = 4 for concreteness, the resulting states can be divided according to ghost

number and parity:

• gh(ψ) = 0 and ε(ψ) = 0

A total of 18 bosonic dof. In addition to the obvious product of gauge potentials,

Aµ ◦ Ãν , we have the orthogonal combinations c ◦ c̃± c ◦ c̃.

• gh(ψ) = ±1 and ε(ψ) = 1

A total of 16 fermionic dof. The pair of orthogonal combinations Aµ ◦ c̃± c◦ Ãµ and

Aµ ◦ c̃± c ◦ Ãµ.

• gh(ψ) = ±2 and ε(ψ) = 0

A total of 2 bosonic dof. The two products c ◦ c̃ and c ◦ c̃.

Thus, a first, naive look suggests two potential candidates for the missing degree of free-

dom: either one of the two Lorentz-scalar, ghost number zero, bosonic products c◦ c̃±c◦ c̃
could do the job.

As first proposed in [5], a good way to begin discriminating between the two is to

adopt an OSp(2)-covariant quantisation of the two Yang-Mills theories, such that the

ghost and antighost in each can be regarded as a doublet, cα, with c1 = c and c2 = c.

Then, the tensor product of the ghost sectors, cα⊗ c̃β, is merely the 2⊗ 2 of OSp(2). The

result may be decomposed into irreducible OSp(2) representations,

1 : cα ◦ cα = εαβc
α ◦ cβ = c ◦ c̃− c ◦ c̃ (0)

3 : c(α ◦ c̃β) =


c ◦ c̃
c ◦ c̃+ c ◦ c̃
c ◦ c̃

(2)

(0)

(−2)

(6.34)

where εαβ is the OSp(2) invariant and round brackets denote symmetrisation. As the

reader might have guessed at this point, it will be the case that the “missing” degree

of freedom of the physical sector is indeed the singlet. We will show that this is the

correct assignment with the aid of the algebra of BRST transformations. Furthermore, a
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complete understanding of its role in the field theoretic incarnation of squaring, that is

beyond just on-shell state identification, requires the analysis of gravitational dynamics.

Both BRST transformations and dynamics are studied in Section 6.3 below. The content

of the squaring is summarised schematically in Table 6.1.

Ãν (0) c̃β (±1)

Aµ (0) A(µ ◦ Ãν) −
ηµν
D Aρ ◦ Ãρ Aµ ◦ c̃β

A[µ ◦ Ãν]
Aρ ◦ Ãρ

cα (±1) cα ◦ Ãν cα ◦ c̃α
c(α ◦ c̃β)

Table 6.1: The content resulting from tensoring two Yang-Mills theories in a “BRST

basis”. The ghost number is indicated in brackets (+1 for c1 and −1 for c2).

Next, we ought to identify the remaining products. Taking a cue from equation (6.1), the

natural guess is to attempt to match a graviton/2-form/dilaton system, only this time

furnished with the plethora of additional, unphysical fields typical of the BRST formalism.

• The BRST theory of linear gravity is a straightforward extension of the Yang-

Mills case, for a gauge field carrying a spin-2 transformation, rather than spin-1.

The most notable difference is that the ghost and antighost are (still Grassmann)

Lorentz vectors, cµ and cµ, instead of scalars.

• As we have seen in Section 5.5, the theory of the Kalb-Ramond 2-form is an example

of a first stage reducible Abelian gauge theory; its BRST/BV quantisation thus

involves two first-generation fermionic vector ghosts, dµ and dµ, and three second-

generation bosonic scalar ghosts, d, d and η.

• Finally, the dilaton has no classical gauge invariance (in the Einstein frame), so it

does not inherit any (non-trivial) BRST transformation and does not involve any

ghosts.

At this point, matching Lorentz representation, parity and ghost number (summarised in

Tables A.1 - A.3), it is not difficult to realise what the further identifications (at least at

the level of states) should be:

cα ◦ Ãµ ± Aµ ◦ c̃α ⇐⇒ cαµ, d
α
µ (6.35)

c(α ◦ c̃β) ⇐⇒ d, d, η (6.36)
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Furthermore, the BRST operator defined on the gauge theory side, Q, may be used to

construct that on the gravity side: having defined the action of Q on the convolutive

product as that of a graded derivation acting from the left,

Q(a ◦ b̃) = (Qa) ◦ b̃+ (−1)ε(a)a ◦ (Qb̃), (6.37)

where the contribution from the spectator scalar is trivial and can be omitted, we can

derive the BRST transformations of the bona-fide gravitational fields from those of the

underlying Yang-Mills fields. Then, for example, we can impose that the 2-form ghost,

dµ, satisfies the BRST transformation given in (5.62), while simultaneously reading off a

dictionary for its ghost-for-ghost, d:

Qdµ = Q(Aµ ◦ c̃+ c ◦ Ãµ)

= ∂µ(2c ◦ c̃)
:= ∂µd,

(6.38)

having used (6.37) and the Yang-Mills transformations (6.26). Of course, the mapping

is to be considered well-defined only if all the field dictionaries as well as the BRST

transformations on the gravity side collude to form a consistent theory with a closed

BRST algebra (viz. nilpotent Q).

In [5], a recipe is given to directly identify the gravitational states with the irre-

ducible representations of OSp(D − 1, 1|2), the orthosymplectic supergroup generalising

the Lorentz group in a spacetime with two anticommuting dimensions. There, the Yang-

Mills field and the ghosts are unified into a single OSp(D − 1, 1|2) vector with a graded

index i = {µ, α}, so that Ai = {Aµ, cα}. The tensor product is then decomposed into its

(graded) symmetric traceless, antisymmetric and trace parts. In our notation, it would

read

T
/tr

(ij] =
{
A(µ ◦ Ãν) −

ηµν
D
Aρ ◦ Ãρ; cα ◦ Ãµ + Aµ ◦ c̃α; 2Aρ ◦ Ãρ +Dcα ◦ c̃α

}
(6.39)

T[ij) =
{
A[µ ◦ Ãν]; c

α ◦ Ãµ − Aµ ◦ c̃α; c(α ◦ c̃β)
}

(6.40)

T ii =
{
Aρ ◦ Ãρ + cα ◦ c̃α

}
. (6.41)

According to [5], one should identify these combinations with the gravitational fields

T
/tr

(ij] =
{
hµν ; c

α
µ; χ

}
(6.42)

T[ij) =
{
Bµν ; d

α
µ; (d, d, η)

}
(6.43)

T ii = {ϕ} , (6.44)

and regard ϕ and χ as two scalars conformally coupled to the metric in the full non-linear

theory. The assumption of such a coupling is called for because the fields so defined neither

possess the correct BRST transformations for the simple Lagrangian with diagonal kinetic

terms, nor do they obey the simple equations of motion characteristic of such a Lagrangian.
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For instance, consider the field ϕ in (6.44): it inherits the BRST transformation Qϕ =
ξ−1
ξ
∂ρcρ, instead of simply being BRST invariant, and it obeys an equation similar to

(6.23), rather than a Klein-Gordon equation.

However, the expressions above cannot correspond to the dictionary of the sort we

are after here, since they may be shown to be insufficient for deriving the BRST trans-

formations and the covariant equations of motion of the gravitational theory from those

of the Yang-Mills pieces. Thus, we follow a different route: since, at linear level, the

various field redefinitions taking one from a conformally coupled theory to the uncoupled

theory are sums of linear terms, it should be possible to obtain a dictionary which directly

corresponds to the physical, free dilaton, such that Qϕ = 0 and �ϕ = 0. This requires

careful consideration of the dynamics on the gravity side, which we study below.

6.2.3 Gravitational side

At linear approximation, the 2-form cannot be coupled to the graviton or the dilaton

in a local, Lorentz covariant fashion. We work, as on the gauge theory side, after the

elimination of the Lagrange multiplier fields. The Lagrangian describing its dynamics

is thus given by (5.67), obtained previously with the aid of the field-antifield formalism.

On the other hand, even though the dilaton may be coupled to the graviton, through

dimension-D terms such as hµν∂
µ∂νϕ (the linearised version of the string frame), we

choose to perform all calculations in the Einstein frame, where no such coupling is present

and computations are marginally simpler. Thus, we define the full Lagrangian of the

gravitational theory to be

L = Lh + LB + Lϕ, (6.45)

where

Lh = −1

4
hµνRlin

µν +
1

2ξ(h)

(
∂νhµν −

1

2
∂µh

)2

− cµ�cµ,

LB = − 1

24
HµνρHµνρ +

1

2ξ(B)

(
∂νBνµ + ∂µη

)2

− dµ�dµ +

(
ξ(d) −m(d)

ξ(d)

)
dµ∂

µ∂νdν +mdd�d,

Lϕ = −1

4
(∂ϕ)2,

where Rlin
µν is the linearised Ricci tensor given in (3.2), which contributes a second minus

sign so that the kinetic terms for the spatial components hij are positive as required.

Furthermore, we denote by ξ(φ) the parameter of the gauge-fixing averaging relative to

some field φ; it should be understood that ξ(d) corresponds to the vector ghost dµ, rather

than the scalar d, as only the former possesses a gauge invariance that requires fixing.

We leave manifest the seemingly superfluous parameter m(d), which descends to the La-

grangian (6.46) from the term m(d)b(d)∂
µdµ of its formulation with Lautrup-Nakanishi

fields, since it will be convenient when discussing the features of BRST and anti-BRST

invariance in the 2-form sector.
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Dynamics

From the Lagrangian above, we obtain the equations of motion of the physical fields,

�hµν −
ξ(h) + 2

ξ(h)

(
2∂ρ∂(µhν)ρ − ∂µ∂νh

)
= jµν(h) (6.46)

�Bµν + 2
ξ(B) + 2

ξ(B)

∂ρ∂[µBν]ρ = jµν(B) (6.47)

�ϕ = j(ϕ), (6.48)

supplemented by those of the various ghosts,

�cαµ = jαµ (c) (6.49)

�dαµ +

(
1−

m(d)

ξ(d)

)
∂µ∂

ρdαρ = jαµ (d) (6.50)

�di = j(di) (6.51)

where i is merely a label, denoting the three second-generation ghosts together as di,

i = 1, 2, 3.

BRST and anti-BRST transformations

The Lagrangian and the equations of motion are left invariant by the corresponding sets

of BRST transformations: for the graviton/dilaton sector, these are

Qhµν = 2∂(µcν) Qcµ =
1

ξ(h)

(
∂νhµν −

1

2
∂µh

)
Qcµ = 0 Qϕ = 0, (6.52)

while those of the 2-form sector read

QBµν = 2∂[µdν] Qd = 0

Qdµ = ∂µd Qd =
1

ξ(d)

∂µdµ (6.53)

Qdµ =
1

ξ(B)

(∂νBνµ + ∂µη) Qη =
m(d)

ξ(d)

∂µdµ.

As for Yang-Mills, there exist a second set of transformations under which the Lagrangian

is invariant. Their form for the graviton/dilaton sector, owing to the simplicity gained

by working at linear approximation, is exactly analogous to that of Maxwell theory, or

linearised Yang-Mills; namely

Qhµν = 2∂(µcν) Qcµ = 0

Qcµ = − 1

ξ(h)

(
∂νhµν −

1

2
∂µh

)
Qϕ = 0, (6.54)
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where one notices the familiar switch in the roles of the ghost and the antighost: in partic-

ular, it is the former that is now mapped to the gauge-fixing functional under the action

of the symmetry, while the latter is invariant. Finally, the anti-BRST transformations in

the 2-form sector deserve some more care, as their form is not so immediately obvious as

for Yang-Mills or linear gravity. They are given by

QBµν = 2∂[µdν] Qd = − 1

ξ(d)

∂µdµ

Qdµ = − 1

ξ(B)

(∂νBνµ + ∂µη) +
1

ξ(d)

∂µη Qd̄ = 0 (6.55)

Qd̄µ = ∂µd Qη = −∂µdµ.

Notice the perhaps unexpected additional term in the variation of dµ. It is related to

the requirement that the BRST and anti-BRST charges anticommute on all fields, that is

{Q,Q} = 0, and is understood most elegantly in terms of a Curci-Ferrari type condition

for the gauge algebra of the Abelian 2-form theory [124], as discussed in Section 5.5.

Although many different versions of the anti-BRST transformations for the 2-form exist

in the literature, let us conclude this section with a heuristic argument as to why it is this

particular form that one should expect to obtain as the “square” of Yang-Mills. Consider

applying the anti-commutator on the convolution of two Yang-Mills fields, schematically

denoted by a, b here; then, using (6.37), one can show that

{Q,Q}(a ◦ b) = {Q,Q}a ◦ b+
(
(−)ε(a)+1 + (−)ε(a)

) (
Qa ◦Qb+Qa ◦Qb

)
+ a ◦ {Q,Q}b

= 0,

(6.56)

where the middle term is obviously zero, while the first and last term vanish owing to the

fact that the BRST and anti-BRST charges anticommute in Yang-Mills, see (6.27). This

implies that, regardless of the specific form of the convolution, the result will always be

such that the charges anticommute. The transformations (6.55) accomplish just this.



6.3. DICTIONARY, SYMMETRIES AND DYNAMICS 121

6.3 Dictionary, symmetries and dynamics

We wish to construct a dictionary general enough to consistently map both the BRST

transformations and the dynamics of the gauge theory side to their gravitational coun-

terparts, without resorting to an ad hoc choice of gauge on either side but rather in-

corporating in the correspondence a map between distinct gauge choices. As mentioned

above, we work under the assumption that, at linear level, it should be possible to build a

dictionary for the gravitational fields such that their dynamics and symmetries as derived

from Yang-Mills be consistent with the simple Lagrangian (6.45). Then, the dictionary

for the gravitational fields in a different frame, obtained from these basic ones through

field redefinitions would be simple sums of existing ones.

6.3.1 Dilaton

To clarify the main points, let us begin with the dilaton since, while being the simplest

possible example, it already exhibits all the features we wish to discuss. It needs to be

closed with respect to both the BRST and anti-BRST operators and satisfy equation

(6.48), while also keeping the gauge-fixing parameter ξ of the Yang-Mills factors general

(i.e. this should work manifestly in any linear covariant gauge, and implicitly in all

gauges). The only Yang-Mills products which can contribute to it are the scalars Aρ ◦ Ãρ
and cα ◦ c̃α, however their most general combination ϕ = Aρ ◦ Ãρ +α cα ◦ c̃α, for arbitrary

α, will not suffice: while it could be made BRST closed by choosing α = ξ, applying the

d’Alembertian reproduces (6.48) only for a specific value of ξ. Instead, consider the most

general ansatz compatible with the required tensor structure, mass dimension and ghost

number3,

ϕ = Aρ ◦ Ãρ + α1 c
α ◦ c̃α +

α2

�
∂A ◦ ∂Ã, (6.57)

which makes use of the Green operator, �−1, defined in (3.10), in order to allow for

additional terms with higher mass dimension. In this case, the unique possibility is the

(dimension 3) term ∂A◦∂Ã, where we use the shorthand notation for the Lorentz invariant

divergence ∂A = ∂ρAρ. Note that this is exactly the same term that was introduced in

[72] at the classical (that is, without BRST) level. The expansion in powers �−n stops

naturally at n = 1 since no non-trivial Lorentz invariant combination of Yang-Mills fields

and derivatives exists with the required properties. By non-trivial, we mean that it does

not reduce to an existing term by the identity ��−1 = �−1� = 1 introduced earlier in

(3.11). For example, at n = 2, a trivial term would be

1

�2
∂ρ∂A ◦ ∂ρ∂Ã =

�
�2

∂A ◦ ∂Ã =
1

�
∂A ◦ ∂Ã, (6.58)

3Note that, without loss of generality, we set one of the parameters of the field dictionaries equal to 1,

since what matters is their relative values. This corresponds to a global normalisation of the dictionary.

Notice this will not be true for source dictionaries, which cannot be normalised independently from the

respective fields.
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where the first equality follows by moving the derivatives outside the convolution integral,

using the non-Leibniz property of the convolution (3.9). Let us check whether, given the

dictionary (6.57), we now have enough freedom to satisfy all our demands above.

Symmetries

Indeed, after having computed the following,

Q(Aρ ◦ Ãρ) =
(
c ◦ ∂Ã+ ∂A ◦ c̃

)
, (6.59)

Q(cα ◦ c̃α) =
(
−c ◦Qc̃−Qc ◦ c̃

)
= ξ−1

(
c ◦ ∂Ã+ ∂A ◦ c̃

)
, (6.60)

Q(�−1∂A ◦ ∂Ã) = �−1
(
�c ◦ ∂Ã+ ∂A ◦�c̃

)
=
(
c ◦ ∂Ã+ ∂A ◦ c̃

)
, (6.61)

we see that demanding BRST invariance implies

0 = Qϕ = Q
(
Aρ ◦ Ãρ + α1 c

α ◦ c̃α +
α2

�
∂A ◦ ∂Ã

)
=

(
1− α1

ξ
+ α2

)(
c ◦ ∂Ã+ ∂A ◦ c̃

)
.

(6.62)

When facing an equation of this sort, we choose to require that the polynomial of pa-

rameters p(αi, ξ) be made to vanish, rather than to constrain the (convolutions of) fields

themselves, if this can be avoided. In fact, choosing the latter option quickly leads one to

nonsense. If it were forced upon us to constrain the fields, that would signal a breakdown

of the model. Luckily, we will see below that this is not the case. Thus, we can impose

BRST invariance of the dilaton by the single constraint

α2 =
α1 − ξ
ξ

. (6.63)

Note that, in the simple case of the dilaton, demanding anti-BRST invariance yields

the same constraint (for the different combination c ◦ ∂Ã + ∂A ◦ c̃). In other words,

the requirement (6.63) of BRST invariance automatically implies anti-BRST invariance,

Qϕ = 0.

Equations of motion

Notice that requiring the field to satisfy the BRST/antiBRST transformations has not

fixed all the arbitrary parameters of its dictionary, a fact which will be generally true for

all fields on the gravity side. The hope is that the remaining free parameters are fixed

uniquely by demanding that it also satisfies the correct equations of motion, �ϕ = j(ϕ).

To this end, we ought to define a dictionary for the source of the dilaton as well. Again

based on Lorentz invariance, mass dimension and ghost number, and under the assumption
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that it be composed exclusively out of Yang-Mills sources, the most general ansatz for the

dilaton source would be

j(ϕ) =
α̂0

�
jρ ◦ j̃ρ +

α̂1

�
jα ◦ j̃α +

α̂2

�2
∂j ◦ ∂j̃. (6.64)

where we denote the parameters of source dictionaries with hats. However, recall from

equation (6.30) that ∂j = −ξ−1�∂A. Thus, the last term in (6.64) is not independent

from the last term in (6.57), and will only contribute to a redefinition4 of the numerical

parameter α2. The dictionary for the dilaton source is then given just by

j(ϕ) =
α̂0

�
jρ ◦ j̃ρ +

α̂1

�
jα ◦ j̃α. (6.65)

Then, we ought to solve the following equation:

0 = �ϕ− j(ϕ)

= �
(
Aρ ◦ Ãρ + α1 c

α ◦ c̃α +
α2

�
∂A ◦ ∂Ã

)
−
(
α̂0

�
jρ ◦ j̃ρ +

α̂1

�
jα ◦ j̃α

)
.

(6.66)

At this stage, it is crucial to realise that various a priori independent “squared” tensor

structures, e.g. Aρ ◦ Ãρ and �−1∂A ◦ ∂Ã, may no longer be independent under the action

of the equations of motion and the non-Leibniz property of the convolution: for example,

these two terms, using the linear Yang-Mills equation (6.28), can be shown to mix as

�(Aρ ◦ Ãρ) = �Aρ ◦ Ãρ

=

(
ξ + 1

ξ

)
∂A ◦ ∂Ã+ jρ ◦ Ãρ

=

(
1− 1

ξ2

)
∂A ◦ ∂Ã+

1

�
jρ ◦ j̃ρ, (6.67)

�(�−1∂A ◦ ∂Ã) = ∂A ◦ ∂Ã, (6.68)

where we may act with the d’Alembert operator on whichever side of the convolution.

Of course, the final result should not depend on this choice at all, and indeed it is easy

to check that it does not. Furthermore, notice how (6.67) establishes that �(Aρ ◦ Ãρ) is

in fact also related to the �−1jρ ◦ jρ structure, where to show this we have modified the

jρ ◦ Ãρ term by inserting a “1” as

jρ ◦ Ãρ =
1

�
jρ ◦�Ãρ

=

(
ξ + 1

ξ

)
1

�
∂j ◦ ∂Ã+

1

�
jρ ◦ j̃ρ

= −
(
ξ + 1

ξ2

)
∂A ◦ ∂Ã+

1

�
jρ ◦ j̃ρ,

(6.69)

4An alternative way to show that the α̂2 term is redundant is by demanding that the sources fall into

a BRST multiplet. The last term then drops out, as it cannot be supported.
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where the last line follows by using (6.30). Using the above, equation (6.66) can be recast

in the form

0 =

(
1− 1

ξ2
+ α2

)
∂A ◦ ∂Ã+

(1− α̂0)

�
jρ ◦ j̃ρ +

(α1 − α̂1)

�
jα ◦ j̃α. (6.70)

These, together with the constraint (6.63), imply that all the parameters in the dictionary

of the dilaton and its source are fixed uniquely in terms of the Yang-Mills ξ:

α1 =
1

ξ
α̂0 = 1

α2 =
1

ξ2
− 1 α̂1 = α1. (6.71)

Minimal bases

Despite the nice result, one should wonder about its uniqueness: given the inter-dependence

of the tensor structures exemplified by (6.69), it is clear that this computation will in gen-

eral depend on which “basis”5 may have been chosen, and it is a priori far from obvious

that the result (6.71) carries with it any real meaning, or that it was legitimate for us to

set each coefficient to zero separately in (6.70). The crucial observation here is that the

basis used above,

B1 =

{
∂A ◦ ∂Ã, 1

�
jρ ◦ j̃ρ,

1

�
jα ◦ j̃α

}
(6.72)

constitutes a minimal basis, in the sense that no further use of the equations of motion can

decrease its size. Indeed, it is obvious from (6.69) that attempting to trade either one of

the first two “basis elements” still results in a 3-dimensional basis, while the last element

cannot be rotated into any of the others by the equations of motion, since at linear level

the ghosts are free and, in particular, their dynamics are completely independent of the

gauge field. Thus, for instance, using (6.69) to solve for ∂A ◦ ∂Ã, one may swap (6.72)

for the new minimal basis,

B2 =

{
jρ ◦ Ãρ,

1

�
jρ ◦ j̃ρ,

1

�
jα ◦ j̃α

}
. (6.73)

Notice that, in general, the existence and size of the minimal basis may be proved by

trading all effective source terms for the expression in terms of fields and derivatives which

they correspond to via the equations of motion. The totality of the resulting independent

tensor structures then correspond to the minimal basis, as no action of the Yang-Mills

equations may relate them. The coefficients of each of these may then be required to vanish

independently. However, in practice, it is often more useful to use different minimal bases,

depending on the specific case at hand.

5We use inverted commas here because of our somewhat loose usage of the word.
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As it is easy to imagine, there are a multitude of such “changes of basis” in the

space defined by the convolution. For instance, starting with the basis B1 and using the

alternative identity

∂A ◦ ∂Ã =
ξ2

ξ2 − 1

(
�(Aρ ◦ Ãρ)−

1

�
jρ ◦ j̃ρ

)
(6.74)

we obtain yet another 3-dimensional basis,

B3 =

{
�(Aρ ◦ Ãρ),

1

�
jρ ◦ j̃ρ,

1

�
jα ◦ j̃α

}
. (6.75)

It can be checked that, while the details of the calculation differ, the result (6.71) is

independent of which specific basis is chosen, as long as this is minimal.

We postulate that a minimal basis should be employed when solving equations such as

(6.70). Although a more formal proof of why this should be true, such as the definition of

orthogonality with respect to some inner product structure, is lacking, it seems sensible

to assume that using a bigger basis introduces an additional, unnecessary redundancy.

For example, starting once again from B1, making the valid substitution

∂A ◦ ∂Ã =
ξ

ξ + 1

(
�(Aρ ◦ Ãρ)− jρ ◦ Ãρ

)
(6.76)

leads to the 4-dimensional set{
�(Aρ ◦ Ãρ), jρ ◦ Ãρ,

1

�
jρ ◦ j̃ρ,

1

�
jα ◦ j̃α

}
(bad!) (6.77)

which indeed yields different, often self-contradictory results for the parameters ai. In

using this set as a basis, one would be failing to notice that one among the four elements

can be solved in terms of (a subset of) the others. Thus, for any minimal basis, the

BRST/anti-BRST invariant dilaton and its source, satisfying �ϕ = j(ϕ), are given in

terms of Yang-Mills quantities as

ϕ = Aρ ◦ Ãρ +
1

ξ
cα ◦ c̃α +

(
1

ξ2
− 1

)
1

�
∂A ◦ ∂Ã, (6.78)

j(ϕ) =
1

�
jρ ◦ j̃ρ +

1

ξ

1

�
jα ◦ j̃α. (6.79)

6.3.2 Kalb-Ramond 2-form

Repeating this exercise for the 2-form sector is straightforward, if only more tedious

owing to a larger BRST/anti-BRST multiplet and the tensorial nature of the equations

of motion. Although most of the lengthy computations are omitted in the main text (the

interested reader is referred to Appendix C), we would like to present it in some detail,

given the very straightforward nature of the manipulations, so as to follow the logic.
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The strategy remains the same: we write down the most general ansätze for the fields,

this time including the 2-form field and its first and second generation ghosts, purely

based on tensor structure, mass dimension and ghost number:

Bµν = A[µ ◦ Ãν] +
α1

�

(
∂A ◦ ∂[µÃν] − ∂[µAν] ◦ ∂Ã

)
(6.80)

dαµ = β1

(
cα ◦ Ãµ − Aµ ◦ c̃α

)
+ β2

∂µ
�

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
(6.81)

d = γ1 (c ◦ c̃) (6.82)

d = γ2 (c ◦ c̃) (6.83)

η = γ3 (c ◦ c̃− c ◦ c̃) (6.84)

Notice that we have streamlined the notation by writing the first generation ghost and

antighost as a doublet, dαµ: their dictionaries need not have distinct parameters as these

would end up being identified in any case by virtue of the BRST and anti-BRST trans-

formations.

Symmetries

As for the dilaton, if the map is to be consistent, there must be a choice of parameters

(α, β, γ) such that acting with Qα on the (convolutions of) Yang-Mills fields relates the

gravitational fields in the expected way. For example, to illustrate the point, consider the

case of the 2-form itself: applying the doublet of BRST operators on the dictionary (6.80)

yields

QαBµν = ∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
+
α1

�

(
�cα ◦ ∂[µÃν] + ∂A ◦ ∂[µ∂ν]c̃

α − ∂[µ∂ν]c
α ◦ ∂Ã− ∂[µAν] ◦�c̃α

)
= (1 + α1) ∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
,

(6.85)

which may be brought to the more suggestive form Qα = 2∂[µd
α
ν] by identifying the ghost

doublet with the combination

dαµ :=
1 + α1

2

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
+ β2∂µK (6.86)

where the last term arises because the ghosts dαµ should be read off equation (6.85) only

up to a gradient term due to the antisymmetry. Comparison with our ansätz (6.81), then,

suggests that one should identify 2β1 = 1+α1 and should clarify the choice of notation for

the arbitrary parameter extracted from K above. One may continue like so, acting with Q

and reading off the rest of the multiplet, to find that this procedure does indeed produce

the correct results throughout. An equivalent yet faster way is to directly compare the

various ansätze with the help of the BRST variations (5.68): the above becomes

0 = QBµν − 2∂[µdν]

= (1 + α1 − 2β1) ∂[µ

(
c ◦ Ãν] − Aν] ◦ c̃

) (6.87)
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which fixes β1 as expected, while β2 remains free, corresponding to the fact that the second

term drops out because of antisymmetry. It is easy to see that imposing QBµν = 2∂[µdν]

has the same implications for β1,2. Then, the ghost must satisfy

0 = Qdµ − ∂µd
= − (2(β1 + β2) + γ1) ∂µ(c ◦ c̃)

(6.88)

which fixes γ1. The dictionary of the ghost-for-ghost, d, satisfies Qd = 0 identically, owing

to the Yang-Mills transformation Qc = 0. Next in line is the slightly less trivial case of

the vector antighost; we have that

0 = Qdµ −
1

ξ(B)

(∂νBνµ + ∂µη)

= β1

(
1

ξ
− 1

ξ(B)

)(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
−
(
β1 + β2 −

γ3

ξ(B)

)
∂µ
(
c ◦ c̃+ c ◦ c̃

) (6.89)

which fixes γ3 and, in particular, is enough to fix the gravitational parameter ξ(B) uniquely

in terms of that of Yang-Mills, ξ, with the extremely simple relation

ξ(B) = ξ. (6.90)

Thus, the consistency of the mapping (read closure of the BRST algebra) induces a map

between gauge choices on the gauge and gravity sides, e.g. Feynman gauge into Feynman

gauge. As far as BRST transformations are concerned, there remain to check two of the

second generation ghosts:

0 = Qd− 1

ξ(d)

∂µdµ =

(
γ2

ξ
+
β1 + β2

ξ(d)

)(
∂A ◦ c̃− c ◦ ∂Ã

)
(6.91)

0 = Qη −
m(d)

ξ(d)

∂µdµ =

(
γ3

ξ
+
m(d)

ξ(d)

(β1 + β2)

)(
∂A ◦ c̃− c ◦ ∂Ã

)
. (6.92)

While the first fixes γ2, the second, in conjuction with (6.89), implies an interesting

relation: it demands that we set

m(d) = ξ(d), (6.93)

which we know from the discussion in Section 5.5 reduces the equations of motion of the

vector ghost and antighost to

�dαµ = jαµ . (6.94)

So far, we have mostly required the field dictionaries to satisfy some BRST transforma-

tions: with the exception of Bµν , we have not demanded anti-BRST yet. It is easy to

check that the whole set of anti-BRST transformations yields just one new constraint on

the parameters, namely

ξ(d) =
ξ

2
. (6.95)

Thus, after (6.90), also the weight controlling the gauge-fixing of the ghost dµ enjoys a

very simple relation with its Yang-Mills counterpart, ξ. This exhausts the (extended)

BRST transformations which, by construction, are also nilpotent on-shell.
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Equations of motion

Similarly to the case of the dilaton, requiring that the dictionaries satisfy both sets of

BRST transformations is not enough to constrain all parameters. Luckily, we still have

to impose that they satisfy the prescribed equations of motion. In order to study how the

dynamics of the gauge theory give rise, through the dictionaries, to those in the gravity

theory, we write down the ansätze for the gravitational source terms, up to “current

conservation”,

jµν(B) =
α̂

�
j[µ ◦ j̃ν] (6.96)

jαµ (d) =
β̂

�

(
jα ◦ j̃µ − jµ ◦ j̃α

)
(6.97)

j(d) =
γ̂1

�
j(c) ◦ j̃(c) (6.98)

j(d) =
γ̂2

�
j(c) ◦ j̃(c) (6.99)

j(η) =
γ̂3

�

(
j(c) ◦ j̃(c)− j(c) ◦ j̃(c)

)
(6.100)

where, this time, we must remain agnostic and not normalise the dictionaries so that one

parameter is equal to unity, as this might be inconsistent with the normalisation of the

respective field, through the equations of motion. The equations to be solved this time

are

�Bµν + ξ′(B)∂
ρ∂[µBν]ρ − jµν(B) = 0, ξ′(B) := 2

ξ(B) + 2

ξ(B)

(6.101)

�dαµ − jαµ (d) = 0 (6.102)

�di − j(di) = 0 (6.103)

where we define a new parameter ξ′(B) purely for notational clarity in what follows. The

first of these equations fixes α̂ and α1. Indeed, direct application of the differential

operators � and ∂ρ∂µ yields

0 = �Bµν + ξ′(B)∂
ρ∂[µBν]ρ − jµν(B)

= �
(
A[µ ◦ Ãν]

)
+

1

4

(
ξ′(B)(1 + α1)− 2α1

) (
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
− α̂

�
j[µ ◦ j̃ν],

(6.104)

however, as before, we should pay due care to the size of the basis: if the expression above

were to represent a minimal basis, we would be in trouble, as we would be forced by the

presence of the first term to restrict to field configurations satisfying �(A[µ ◦ Ãν]) = 0.

Luckily, this is not the case: as mentioned above, one possible way to show that the above

may be reduced is to substitute the (source)×(source) term in favour of (field)×(field)
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type of terms using the gauge field equations; in this case,

1

�
j[µ ◦ j̃ν] =

1

�

(
�A[µ −

ξ + 1

ξ
∂[µ∂A

)
◦
(
�Ãν] −

ξ + 1

ξ
∂ν]∂Ã

)
= �(A[µ ◦ Ãν]) +

ξ + 1

ξ

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
.

(6.105)

Thus, in the minimal basis {�(A[µAν]), Fµν∂A− ∂AFµν}, equation (6.104) becomes

(1− α̂)�
(
A[µ ◦ Ãν]

)
+

1

4

(
ξ′(B)(1 + α1)− 2

(
α1 +

ξ + 1

ξ
α̂

))(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
= 0.

(6.106)

Notice that, in this (or any equivalent) minimal basis, we are no longer forced to constrain

the fields; instead, we read off the constraints on α̂ and α1. Furthermore, the equations

of the ghosts (6.102) read, in terms of Yang-Mills products,

0 = �dαµ − jαµ (d)

=
(
β̂ − β1

)(
jα ◦ Ãµ − Aµ ◦ j̃α

)
+

(
β2 +

ξ + 1

ξ
β̂

)
∂µ

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
.

(6.107)

The 2-dimensional basis displayed above is already minimal, so we can read off the con-

straints on β̂ and β2. Finally, equations (6.103) merely fix the remaining parameters in

j(di). Thus, in summary, the choices of gauge-fixing on both sides are related through

ξ(B) = 2ξ(d) = ξ. (6.108)

and all dictionary parameters are uniquely fixed in terms of ξ, as shown in Table 6.2.

Field Parameters Source Parameters

Bµν α1 = − 1
2 jµν(B) α̂ = 1

dαµ β1 = 1
4 , β2 = − ξ+1

4ξ jαµ (d) β̂ = 1
4

d, d, η γ1 = γ2 = 1
2ξ , γ3 = 1

4 j(d), j(d), j(η) γ̂i = γi

Table 6.2: Parameters of the dictionaries of the Kalb-Ramond sector, completely fixed in

terms of ξ.
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6.3.3 Graviton

Last, but far from least, gravity. The general ansätze for the graviton and its ghosts,

hµν = A(µ ◦ Ãν) +
∂µ∂ν
�

(
a1A

ρ ◦ Ãρ + a2c
α ◦ c̃α

)
+
a3

�

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
+
a4

�2
∂µ∂ν∂A ◦ ∂Ã+ ηµν

(
b1A

ρ ◦ Ãρ + b2c
α ◦ c̃α +

b3

�
∂A ◦ ∂Ã

)
(6.109)

cαµ = α1

(
cα ◦ Ãµ + Aµ ◦ c̃α

)
+ α2

∂µ
�

(
cα ◦ ∂Ã+ ∂A ◦ c̃α

)
(6.110)

where this time we denoted ai and bi the parameters for the graviton (with the latter

reserved for those terms proportional to ηµν , which play a slightly separate role) and αi
for the ghost and antighost. Notice the appearance, for the first time, of a �−2 term, the

unique instance (in the whole graviton/2-form/dilaton theory) where this is allowed in a

field dictionary6 by tensor structure and mass dimension considerations.

Symmetries

As before, we begin by imposing both BRST transformations of the physical field,

0 = Qαhµν − 2∂(µc
α
ν)

= (1 + a3 − 2α1) ∂(µ

(
cα ◦ Ãν) + Aν) ◦ c̃α

)
+

(
a1 −

a2

ξ
+ a3 + a4 − 2α2

)
∂µ∂ν
�

(
cα ◦ ∂Ã+ ∂A ◦ c̃α

) (6.111)

which fixes α1 and α2. Notice that none of the parameters bi enter (6.111); as mentioned

above, this is due to the ηµν terms in the graviton behaving differently: since no Qα-

transformation can bring them to the required form ∂(µY
α
ν) for some7 Y α

µ ⊂ cαµ, their

BRST transformation ought to cancel among each other, yielding one constraint on the

parameters. We proceed by checking that

Qcµ = α1 (−c ◦ ∂µc̃+ ∂µc ◦ c̃) + α2
∂µ
�

(
−c ◦�Ã+ �A ◦ c̃

)
= α1∂µ (−c ◦ c̃+ c ◦ c̃) + α2∂µ

(
−c ◦ Ã+ A ◦ c̃

)
= 0,

(6.112)

as required. Since it is satisfied identically, with the tensor structures cancelling owing to

the minus signs coming from the anticommutativity {Q, c} = 0, this imposes no further

constraints on the parameters. Next in line is the more complicated BRST transformation

of the antighost, Qcµ. In order for the BRST algebra to close (albeit only on-shell since

we are working without the Lautrup-Nakanishi field, b(h)µ), it ought to satisfy

Qcµ =
1

ξ(h)

(
∂νhµν −

1

2
∂µh

)
. (6.113)

6As we will see, the only other allowed �−2 term is in the dictionary of the graviton source.
7Here we mean that Y αµ contains a subset of Yang-Mills Squared products relevant to cαµ .
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The LHS, computed by acting with Q on the α = 2 component of the dictionary (6.110),

yields

Qcµ = (α1 + α2) ∂µ (cα ◦ c̃α) +
α1

ξ

(
Aµ ◦ ∂Ã+ ∂A ◦ Ãµ

)
+

2α2

ξ

∂µ
�
∂A ◦ ∂Ã, (6.114)

which must be equal to the RHS, as computed from the graviton dictionary (6.109):

1

ξ(h)

(
∂νhµν −

1

2
∂µh

)
=

(
a2 + (2−D)b2

2ξ(h)

)
∂µ (cα ◦ c̃α) +

(
1 + a3

2ξ(h)

)(
Aµ ◦ ∂Ã+ ∂A ◦ Ãµ

)
+

(
a4 + (2−D)b3

2ξ(h)

)
∂µ
�
∂A ◦ ∂Ã+

(
a1 + (2−D)b1 − 1

2ξ(h)

)
∂µ(Aρ ◦ Ãρ).

(6.115)

On comparing (6.114) and (6.115), the gauge-fixing parameter on the gravity side is simply

set to be equal to its gauge theory analogue,

ξ(h) = ξ. (6.116)

This exhausts the BRST transformations; the remaining anti-BRST variations, Qcµ and

Qcµ, do not impose new constraints.

Equations of motion

The ansätze for the sources read

jµν(h) = â0
1

�
j(µ ◦ j̃ν) +

∂µ∂ν
�2

(
â1j

ρ ◦ j̃ρ + â2j
α ◦ j̃α

)
+ ηµν

(
b̂1

�
jρ ◦ j̃ρ +

b̂2

�
jα ◦ j̃α

)
(6.117)

jαµ (c) =
α̂1

�

(
jµ ◦ j̃α + jα ◦ j̃µ

)
. (6.118)

Notice how the symmetry of jµν(h) allows it to have a more complicated structure than

its antisymmetric analogue, jµν(B), in (6.96). These ought to be plugged in the following

equations of motion, the first of which is worked out in Appendix C:

�hµν −
ξ(h) + 2

ξ(h)

(
2∂ρ∂(µhν)ρ − ∂µ∂νh

)
− jµν(h) = 0 (6.119)

�cαµ − jαµ (c) = 0. (6.120)

Working with any allowed 8-dimensional (2-dimensional) basis8 for the first (second) of

these equations, we read off the remaining constraints on the parameters. Overall, we find

that there exists a consistent choice of parameters such that both the BRST/anti-BRST

8We give these in Appendix C.
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transformations and the equations of motion above are satisfied: for the graviton,

a1 =
ξ2

1− ξ2
a4 +

1

1− ξ
b1 =

1

2−D

(
ξ2

ξ2 − 1
a4 +

ξ

ξ − 1

)
(6.121)

a2 =
ξ

1− ξ2
a4 +

1 + ξ

2(1− ξ)
b2 =

b1

ξ
(6.122)

a3 = −1

2
b3 =

(
1

ξ2
− 1

)
b1 (6.123)

a4 = a4 (6.124)

the ghosts,

α1 =
1

4
α2 = −ξ + 1

4ξ
(6.125)

and the sources

â0 = 1 b̂1 = b1 (6.126)

â1 = a1 b̂2 =
b1

ξ
(6.127)

â2 =
a1

ξ
α̂1 = α1. (6.128)

The reader should have noticed that, with the exception of the ghost sector whose param-

eters α1,2 and α̂1 are uniquely fixed in terms of ξ, most parameters depend additionally

on the unfixed a4. Despite this excessive freedom, which brings along with it concerns

of overfitting, it is a non-trivial fact that no contradiction arises throughout the whole

calculation. There are, however, two noteworthy facts about a4:

1. It is the parameter of the unique �−2 term in the graviton dictionary.

2. It can be consistently removed, in the sense that no contradictions arise if one sets

a4 = 0 by hand.

No apparent good reason exists at linear level for discarding the �−2 term; nonetheless,

we are free to do so, following (ii), thus restricting to the (sub)set of parameter values

a1 =
1

1− ξ
b1 =

1

2−D

(
ξ

ξ − 1

)
a2 =

1 + ξ

2(1− ξ)
b2 =

b1

ξ
(6.129)

a3 = −1

2
b3 =

(
1

ξ2
− 1

)
b1,

while (6.125) - (6.128) remain the same. This set of constraints represents the minimal

graviton dictionary, in the sense that it cannot be reduced further in such a way as to
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still satisfy BRST and equations of motion without being forced to fix ξ. All the various

dictionaries are summarised in Table 6.3 for convenience.

To conclude, it would be extremely interesting to study whether this slightly awkward

freedom is merely a by-product of having worked at linearised approximation. It seems

plausible that, as it often happens, non-linear effects could impose stricter constraints;

this arbitrariness in the dictionaries could then prove vital in allowing enough flexibility

to accommodate such changes. Another interesting observation is that the dictionary

resulting from setting a4 = 0, given in (6.129), appears to be singular when the Yang-Mills

gauge-fixing parameter approaches the value ξ = 1, thus rendering the positive integer

valued branch of gauge choices seemingly inaccessible. This awkward feature disappears

when one considers the most general dictionary allowed by the squaring procedure, namely

that where a4 may assume values other than zero. The singularity at ξ = 1 is removed

and thus seen to be unphysical for any function of ξ, a4 = −2f(ξ), with the simplest

example being the constant function f(ξ) = 1.
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Field Dictionary

hµν A(µ ◦ Ãν) + 1
2(1−ξ)

∂µ∂ν
�

(
2Aρ ◦ Ãρ + (1 + ξ)cα ◦ c̃α

)
− 1

2�

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
+

ηµν
(2−D)(ξ−1)

(
ξAρ ◦ Ãρ + cα ◦ c̃α +

(
1−ξ2
ξ

)
1
�∂A ◦ ∂Ã

)
Bµν A[µ ◦ Ãν] − 1

2�

(
∂A ◦ ∂[µÃν] − ∂[µAν] ◦ ∂Ã

)
ϕ Aρ ◦ Ãρ + 1

ξ c
α ◦ c̃α +

(
1
ξ2 − 1

)
1
�∂A ◦ ∂Ã

cαµ
1
4

[(
cα ◦ Ãµ +Aµ ◦ c̃α

)
− ξ+1

ξ
∂µ
�

(
cα ◦ ∂Ã+ ∂A ◦ c̃α

)]
dαµ

1
4

[(
cα ◦ Ãµ −Aµ ◦ c̃α

)
− ξ+1

ξ
∂µ
�

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)]
d 1

2ξ (c ◦ c̃)

d 1
2ξ (c ◦ c̃)

η 1
4 (c ◦ c̃+ c ◦ c̃)

jµν(h) 1
�j(µ ◦ j̃ν) + 1

1−ξ
∂µ∂ν
�2

(
jρ ◦ j̃ρ + 1

ξ j
α ◦ j̃α

)
+ 1

(2−D)(ξ−1)
ηµν
�

(
ξjρ ◦ j̃ρ + jα ◦ j̃α

)
jµν(B) 1

�j[µ ◦ j̃ν]

j(ϕ) 1
�j

ρ ◦ j̃ρ + 1
ξ

1
�j

α ◦ j̃α

jαµ (c) 1
4�

(
jµ ◦ j̃α + jα ◦ j̃µ

)
jαµ (d) 1

4�

(
jµ ◦ j̃α − jα ◦ j̃µ

)
j(d) 1

2ξ�j(c) ◦ j̃(c)

j(d) 1
2ξ�j(c) ◦ j̃(c)

j(η) 1
4�

(
j(c) ◦ j̃(c)− j(c) ◦ j̃(c)

)

Table 6.3: Summary of the final dictionaries which map both BRST/antiBRST transfor-

mations and the dynamics of Yang-Mills to those of gravity. The horizontal lines separate

physical, ghost and source sectors. The graviton dictionary is the minimal one, with

a4 = 0.
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6.4 Squaring the Lautrup-Nakanishi field

Up to now, we have been working without the auxiliary Lautrup-Nakanishi field. The

reader may wonder why, given that Yang-Mills (or the linearised version thereof) is not

only equivalent, but in some ways simpler when the field b is included. However, as it turns

out, the Yang-Mills/gravity map is slightly less obvious in this case and a full dictionary

has not been worked out yet and it is considered as work in progress. Nonetheless, we

would like to present here the main new ideas starting, as was done for the previous

case, with the identification of the degrees of freedom in the image of the tensor product,

schematically presented in Table 6.4.

Ãν (0) c̃β (±1) b̃ (0)

Aµ (0) A(µ ◦ Ãν) −
ηµν
D Aρ ◦ Ãρ Aµ ◦ c̃β Aµ ◦ b̃

A[µ ◦ Ãν]
Aρ ◦ Ãρ

cα (±1) cα ◦ Ãν cα ◦ c̃α cα ◦ b̃
c(α ◦ c̃β)

b (0) b ◦ Ãν b ◦ c̃β b ◦ b̃

Table 6.4: Extended squaring table including the Lautrup-Nakanishi field.

Compared to the previous case, given in Table 6.1, we notice the appearance of the

new states on the outer row and column. Of course, we expect some of these to correspond

to the Lautrup-Nakanishi multipliers of the gravity theory, as it seems only natural that

squaring Yang-Mills theory formulated with b and with an off-shell closed algebra would

result in a similar construction on the gravity side. The graviton/2-form/dilaton theory

discussed above requires one vector multiplier for the spin-2 gauge-fixing, b(h)µ, which

enters the Lagrangian as

Lgf (h) = bµ(h)

(
∂νhµν −

1

2
∂µh−

ξ(h)

2
b(h)µ

)
, (6.130)

as well as one bosonic vector and two fermionic scalar multipliers for the 2-form (cf.

Section 5.5), denoted by b(B)µ, b(d) and b(d). As the bar notation suggests in this context

(i.e. BRST quantised theories), the latter two fields are conjugate with respect to the ghost

grading, i.e. gh(b(d)) = 1 while gh(b(d)) = −1. A part of the map is very straightforward,

and does not require much thought. It is easy to convince oneself that, at the level of
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states,

b ◦ Ãµ ± Aµ ◦ b̃ ⇐⇒ b(h)µ, b(B)µ (6.131)

b ◦ c̃α − cα ◦ b̃ ⇐⇒ bα(d) (6.132)

where bα(d) is the doublet of fermionic scalar multipliers b(d) and b(d). In fact, one could

go a little further than this and, as before, exploit the BRST transformations to start

refining the various dictionaries. This time, the appropriate set of variations on the gauge

theory side is given by the linear approximation of (5.49), namely

QAµ = ∂µc

Qc = 0

Qc = b

Qb = 0

QAµ = ∂µc

Qc = 0

Qc = −b
Qb = 0,

(6.133)

while on the gravitational side one expects to map to the off-shell BRST transformations,

namely those involving the auxiliary fields. For instance, as far as the Kalb-Ramond field is

concerned, we require that the variations in (5.62) are reproduced. As a simple example to

illustrate things, consider the modified transformations of the 2-form antighost, resulting

in the auxiliary field Qdµ = b(B)µ, rather than in its equation of motion. Taking a reduced

dictionary for the 2-form antighost dµ for clarity, one obtains

b(B)µ = Qdµ = Q
(
c ◦ Ãµ − Aµ ◦ c̃

)
= b ◦ Ãµ − Aµ ◦ b̃− ∂µ

(
c ◦ c̃+ c ◦ c̃

)
.

(6.134)

Thus, the ghost number zero combination of ghosts (already shown to contribute to η)

is seen to quite naturally enter the dictionary for b(B)µ by means of the BRST transfor-

mations. In fact, this should not surprise us, given that the two fields are related to each

other through the algebraic equation of motion for the multiplier (5.64),

b(B)µ =
1

ξ(B)

(∂νBνµ + ∂µη) . (6.135)

However, a brief look at Table 6.4 reveals that more states are generated in the tensor

product than those one would naively expect, and one is left wondering which quantities

on the gravity side may be identified with the three remaining products, which we denote

as

b ◦ c̃α + cα ◦ b̃ ⇐⇒ ζα (6.136)

b ◦ b̃ ⇐⇒ b(ζ) (6.137)

and whose properties, such as ghost number and mass dimension as they come from

Yang-Mills, are summarised in A.2.
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6.4.1 Weyl rescaling

As we have learnt in the preceding examples, the symmetric combinations such as ζα

tend to belong to the graviton sector, while we have already suggested in (6.131) that the

orthogonal antisymmetric combination b ◦ c̃α− cα ◦ b̃ appears to be well suited to describe

the fermionic auxiliary fields bα(d) in the Kalb-Ramond sector. A clue that the other one,

b ◦ b̃, should also belong in the graviton sector is the fact that it emerges as the BRST

(anti-BRST) transformation of the α = 2 (α = 1) component of ζα, that is

Qζ = Q
(
b ◦ c̃+ c ◦ b̃

)
= b ◦ b̃ = b(ζ), (6.138)

Qζ = Q
(
b ◦ c̃+ c ◦ b̃

)
= −b ◦ b̃ = −b(ζ). (6.139)

Our chosen notation is suggestive: we interpret ζα as a doublet of (fermionic, scalar)

ghosts for some gauge symmetry. As it is customary, the antighost (ghost) of a certain

gauge symmetry is rotated, under the action of Q (Q), into the relevant Lautrup-Nakanishi

auxiliary field, which suggests the identification of b ◦ b̃. But which symmetry?

Once again, the BRST transformations provide a great deal of information; it suffices

to notice that ζ is the result of a BRST transformation of the ghost singlet, that is

Q (cα ◦ c̃α) = −
(
b ◦ c̃+ c ◦ b̃

)
= −ζ (6.140)

to realise that this symmetry is a Weyl dilatation acting on the graviton and the dilaton,

since these are the only fields whose dictionary contain the combination cα ◦ c̃α, as may

be verified in Table 6.3. The effects of such a symmetry were briefly described around

equation (6.21). Indeed, for simplicity, consider the BRST variation of the “toy graviton”,

a subset of the full dictionary, denoted here by ĥµν ,

Qĥµν = Q
(
A(µ ◦ Ãν) + ηµνc

α ◦ c̃α
)

= ∂(µ

(
c ◦ Ãν) + Aν) ◦ c̃

)
− ηµν

(
b ◦ c̃+ c ◦ b̃

)
:= 2∂(µĉν) − ηµνζ

(6.141)

where we denoted the diffeomorphism ghost with a hat to again indicate that it is not

the most general one identified in the previous section, but rather just a toy example

to present the idea. This suggests the possibility that the graviton inherits, through the

dictionary, both (the BRST analog of) linear diffeomorphisms and a Weyl dilatation owing

to the BRST transformations of the Yang-Mills gauge field Aµ and ghosts cα. Similarly,

the dilaton would inherit a shift by ζ: consider its dictionary9 in Table 6.3 and apply the

9When working with Lautrup-Nakanishi fields, this is no longer the most general, since we could

include terms containing b in the dictionary.
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off-shell BRST transformations (6.133) to the factors,

Qϕ = Q

(
Aρ ◦ Ãρ +

1

ξ
cα ◦ c̃α +

(
1

ξ2
− 1

)
1

�
∂A ◦ ∂Ã

)
=

1

ξ2

(
c ◦ ∂Ã+ ∂A ◦ c̃

)
− 1

ξ

(
b ◦ c̃+ c ◦ b̃

)
:=

1

ξ2
∂ρĉρ −

1

ξ
ζ.

(6.142)

The important fact to highlight here is that the dilaton can inherit a shift by ζ through

its Yang-Mills factors, in line with the interpretation that ζ parameterises the spurious10

conformal symmetry. The other factor is not too important at the moment, since it could

be canceled by picking a different dictionary. In that case, of course, the question of the

compatibility of the new “off-shell” dictionary and that of Table 6.3 upon elimination of

b ought to be addressed.

While in principle one should encounter no hindrance in reproducing all the correct

BRST/antiBRST off-shell closed algebra of the gravitational side from the Yang-Mills

factors in this (A, cα, b) basis, doing so in the most general way (checking for uniqueness)

presents two problems: the first, of very practical nature, is that it is computationally

quite involved and lengthy; the second, more fundamental, is that it appears implausible

that the BRST/antiBRST variations alone would fix all the a priori arbitrary parameters,

as was the case for the analogous calculation without auxiliary fields. If this supposition

were to hold, then one could resort to imposing the equations of motion: morally, however,

this feels like the incorrect route to take, since then the gravitational fields so constructed

would necessarily “know” about the equations of motion they ought to satisfy, moving

away from the purely off-shell description of the BRST system that the introduction of

the Lautrup fields hoped to achieve to begin with. In addition, we note that there are

other ways to constrain these bona fide off-shell dictionaries containing the auxiliary fields

b, such as requiring that they match the results of the previous section upon eliminating

these through their algebraic equations at the level of the dictionaries themselves.

10By spurious we mean that the compensating scalar is pure gauge. Its single degree of freedom can

be completely gauged away by the Weyl shift.
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Conclusions

It might well be that gravity is not, in any physically meaningful sense, the “square”

or the “double-copy” of Yang-Mills gauge theory. Regardless of whether this is true, or

not, the fast growing number of instances where this structure is shown to emerge in

our mathematical descriptions of nature is a reality which we should not overlook. It is

apparent from the discussion and perhaps even more clearly from the tables of Chapter 3

that a vast number of ungauged (as well as some gauged) supergravity theories, at least

to the extent to which their content, symmetries and interactions are concerned, may be

shown to have a factorisation in terms of a pair of Yang-Mills theories. Much effort is

indeed being devoted to achieve a complete classification.

Furthermore, the Yang-Mills Squared construction offers an alternative perspective,

and hopefully an important computational tool, to familiar and omnipresent manipula-

tions in supergravity, such as dimensional reduction and truncation. Effecting these in

a specific supergravity of interest simply corresponds to reducing or truncating the sim-

pler Yang-Mills theories which enter the factorisation. It is possible to understand why

a supergravity theory may or may not uplift to a specific dimension by inspection of the

properties of its factors [139]. Chapter 4 shows one application of these ideas: the twin

relation linking pairs of supergravities together is recast in Yang-Mills lingo through a

controlled truncation of the factors. Twin supergravities are theorised to be a useful test-

ing ground for many manipulations such as gaugings or other types of deformations [92]:

it is possible that some computations in this direction could be simplified by considering

the Yang-Mills factorisation of such theories.

It is conceptually provocative that the “hidden” global U -dualities of supergravity

should be related through the Yang-Mills Squared map to such “manifest” symmetries

as the R-symmetries of the gauge theory factors. For example, this sort of construction

gives one possible a posteriori justification for the appearence of the exceptional groups in

supergravity. It is equally as provocative that the local diffeomorphism invariance, p-form

gauge invariance as well as the supersymmetry transformations on the gravity side should

all be constructible from Yang-Mills’s gauge invariance and supersymmetry variations, as

shown in [90].

139
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The main motivation behind this work as well as the ideas presented in Chapter 6 was

two-fold: (1) to obtain, if at all possible, a manifestly Lorentz-covariant formulation of

the Yang-Mills Squared map, going beyond on-shell state identification and on-shell scat-

tering amplitudes, and (2) to give a map between the dynamics of gauge theory and those

of supergravity without having to restrict to a specific gauge on both sides. We show how

to achieve this in Chapter 6, at linear level, by recasting the classical gauge invariance

as BRST invariance, with the ghost fields encoding gauge transformations in a covariant

fashion. In this context, it is the BRST and anti-BRST transformations of Yang-Mills

which map to those of supergravity. It turns out that resorting to such a “semi-classical”

BRST treatment is a necessary ingredient if one is interested in deriving the correct grav-

itational equations of motion, whereby BRST allows for a better handle on the various

physical/unphysical degrees of freedom which otherwise render the identification of the

gravitational fields rather obscure. The properties of the convolutive tensor product be-

come indispensable in this regard: being able to move derivatives around without picking

boundary terms is crucial to the derivation of the BRST variations and the dynamics.

It is very important to notice that these desirable properties of the convolution do not

hold in general, but only on certain functional domains: a thorough investigation of their

nature and the consequences of this restriction on the allowed space of fields constitute

one of the natural continuations of our study.

The results of Chapter 6 may be summarised with the term of on-shell covariant

squaring : the definition of the map depends heavily on the use of the equations of mo-

tion, where these are paramount in proving that the a priori arbitrary parameters in

the dictionary are uniquely fixed in terms of the quantity ξ, the weight controlling the

gauge-fixing in Yang-Mills. In fact, there is one isolated exception: whilst the totality

of the parameters in the dilaton and 2-form sectors are fixed, the graviton dictionary

exhibits a sort of redundancy, whereby the BRST, anti-BRST transformations and the

equations of motion are correctly mapped with some freedom to spare. One parameter,

the coefficient of the lone �−2 term, is not fixed, although it may be set to zero without

affecting the consistency of the overall dictionary. As remarked above, this seemingly

superfluous freedom is seen to be necessary in allowing ξ to assume any integer value,

specifically eliminating a singular point at ξ = 1 arising when the parameter is set to zero

by hand. Another intriguing possibility is that this freedom will be fixed when going to

higher orders in perturbation theory. Moreover, the triplet of gravitational gauge-fixing

weights, (ξ(h), ξ(B), ξ(d)), is also fixed uniquely as a function of ξ, with the extremely simple

relation ξ(h) = ξ(B) = 2ξ(d) = ξ. A BRST-fixed theory encodes the information about all

possible gauge-fixing choices in its gauge-fixing and ghost terms in the action, and thus

in its equations of motion modified by ξ-dependent functions. In this sense, our construc-

tion is independent of the gauge-fixing functional chosen: choosing different gauge-fixing

functionals in any of the theories involved would yield a different relation between the

weights ξ(i), but would not affect the validity of the formalism. We have simply chosen

the Lagrangians which yield the simplest relation.



141

We stress again that the map obtained is strictly on-shell. One might argue that it

would be desirable to have a purely off-shell formulation of these ideas. We attempted to

solve this problem in Section 6.4 by considering squaring the auxiliary Lautrup-Nakanishi

fields along with the Yang-Mills potentials and ghost fields; while it is not entirely clear

how to do this as of yet, there are some indications that the supergravity resulting from

such a generalised squaring would possess interesting features such as a spurious Weyl

dilatation symmetry acting on the graviton and the dilaton, of the type usually seen

in the conformal constructions of supergravity actions. In other words, such squaring

products could land us somewhat in the midst of the procedure of gauge-fixing the gauged

superconformal group to obtain Poincaré supergravity.

Finally, such a generalisation to include the auxiliary fields could be a stepping stone

towards a yet more general formulation of the Yang-Mills Squared construction, covari-

ant with respect to the whole field-antifield formalism’s phase space and extended BV

transformations.
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Appendix A

Some more tables

Field Ghost number Mass dimension Parity

Aµ 0 1 0

c 1 0 1

c −1 2 1

b 0 2 0

Table A.1: The spectrum of Yang-Mills theory after BRST quantisation.
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Field Ghost number Mass dimension Parity

hµν 0 1 0

cµ 1 0 1

cµ −1 2 1

ϕ 0 1 0

ζ 1 1 1

ζ −1 3 1

b(h)µ 0 2 0

b(ζ) 0 3 0

Table A.2: The properties of the various fields appearing in the graviton-dilaton sector

of Yang-Mills Squared. Those below the central line are only present when squaring

with Lautrup-Nakanishi fields. Notice that the Weyl ghosts have similar properties to the

Lautrup fields b(d) of the Kalb-Ramond sector, thus we would expect a similar Lagrangian,

i.e. ζζ.
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Field Ghost number Mass dimension Parity

Bµν 0 1 0

dµ 1 0 1

dµ −1 2 1

d 2 −1 0

d −2 3 0

η 0 1 0

b(B) 0 2 0

b(d) 1 1 1

b(d) −1 3 1

Table A.3: The properties of the various fields appearing in the Kalb-Ramond sector of

Yang-Mills Squared. Those below the central line are only present when squaring with

Lautrup-Nakanishi fields.
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D; Little group φ Aµ Aµν Aµνρ λ Ψµ gµν

11; so(9) 1 9 36 84 16 128 44

10; so(8) 1 8 28v 56v 8s, 8c 56s, 56c 35v

9; so(7) 1 7 21 35 8 48 27

8; so(6) 1 6 15 10, 10 4, 4 20′ 20

7; so(5) 1 5 10 10 4 16 14

6; so(4) 1 4 (3,1), (1,3) (2,2) (2,1), (1,2) (3,2), (2,3) (3,3)

5; so(3) 1 3 3 1 2 4 5

4; so(2) (0) (2) + (−2) (0) ∅ (1) + (−1) (3) + (−3) (4) + (−4)

Table A.4: Little group representations carries by the fields appearing in this thesis. Recall

that we double the helicity in D = 4 to avoid fractions. Comparison of the columns for

the different p-forms (including the scalar) suggests which forms are dual to each other in

D = 4, 5, 6, 7.
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D; Little group Q Name Reps under so(D − 2)⊕R R

11; so(9)st 32 G1 44 + 128 + 84 ∅

10; so(8)st 32 G(1,1) 35v + 56s + 56c + 56v + 28 + 8v + 8s + 8c + 1 ∅
′′ G(2,0) 350

v + 561
s + 56−1s + 350

s + 282 so(2)

+28−2 + 81
s + 8−1s + 14 + 1−4

16 G(1,0) 35v + 56s + 28 + 8c + 1 ∅
′′ V(1,0) 8v + 8s ∅

9; so(7)st 32 G2 270 + 481 + 48−1 + 350 + 212 so(2)

+21−2 + 70 + 72 + 7−2 + 83 + 8−3
+81 + 8−1 + 10 + 14 + 1−4

16 G1 27 + 48 + 21 + 7 + 8 + 1 ∅
′′ V1 7 + 8 + 1 ∅

8; su(4)st 32 G2 (20′;1)0 + (20;2)1 + (20;2)−1 + (10;1)2 u(2)

+(10;1)−2 + (15;3)0 + (6;3)2 + (6;3)−2
+(4;2)−3 + (4;2)3 + (4;4)−1 + (4;4)1

16 G1 20′0 + 20−1 + 201 + 150 + 62 u(1)

+6−2 + 41 + 4−1 + 10
′′ V1 60 + 41 + 4−1 + 12 + 1−2 u(1)

7; sp(2)st 32 G4 (14;1) + (16;4) + (10;5) + (5;10) + (4;16) + (1;14) sp(2)

16 G2 (14;1) + (16;2) + (10;1) + (5;3) + (4;2) + (1;1) sp(1)
′′ V2 (5;1) + (4;2) + (1;3) sp(1)

Table A.5: All allowed supermultiplets in 7 ≤ D ≤ 11, with their content given as

representations of the little group algebra so(D − 2) and the internal symmetry algebra,

corresponding to R-symmetry for matter and h for supergravity.
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D; Little group Q Name Reps under so(D − 2)⊕R R

6; 2sp(1)st 32 G(4,4) (3,3;1,1) + (3,2;1,4) + (2,3;4,1) 2sp(2)⊕ sp(2)

(2,2;4,4) + (3,1;1,5) + (1,3;5,1)

(2,1;4,5) + (1,2;5,4) + (1,1;5,5)

24 G(4,2) (3,3;1,1) + (3,2;1,2) + (2,3;4,1) sp(2)⊕ sp(1)

(2,2;4,2) + (3,1;1,1) + (1,3;5,1)

(2,1;4,1) + (1,2;5,2) + (1,1;5,1)

16 G(2,2) (3,3;1,1) + (3,2;1,2) + (2,3;2,1) sp(1)⊕ sp(1)

(2,2;2,2) + (3,1;1,1) + (1,3;1,1)

(2,1;2,1) + (1,2;1,2) + (1,1;1,1)
′′ V(2,2) (2,2;1,1) + (2,1;1,2) + (1,2;2,1) + (1,1;2,2) sp(1)⊕ sp(1)

′′ G(4,0) (3,3;1) + (2,3;4) + (1,3;5) sp(2)⊕∅
′′ T(4,0) (3,1;1) + (2,1;4) + (1,1;5) sp(2)⊕∅

8 G(2,0) (3,3;1) + (2,3;2) + (1,3;1) sp(1)⊕∅
′′ V(2,0) (2,2;1) + (1,2;2) sp(1)⊕∅
′′ T(2,0) (3,1;1) + (2,1;2) + (1,1;1) sp(1)⊕∅
′′ H(2,0) 2× [(2,1;1) + (1,1;2)] sp(1)⊕∅
′′ C(2,0) (2,1;1) + (1,1;2) sp(1)⊕∅

5; sp(1)st 32 G8 (5;1) + (4;8) + (3;27) + (2;48) + (1;42) sp(4)

24 G6 (5;1) + (4;6) + (3;14 + 1) + (2;6 + 14′) + (1;14) sp(3)

16 G4 (5;1) + (4;4) + (3;5 + 1) + (2;4) + (1;1) sp(2)
′′ V4 (3;1) + (2;4) + (1;5) sp(2)

8 G2 (5;1) + (4;2) + (3;1) sp(1)
′′ V2 (3;1) + (2;2) + (1;1) sp(1)
′′ H2 2(2;1) + 2(1;2) sp(1)
′′ Ca

2 (2;1) + (1;2) sp(1)

Table A.6: All allowed supermultiplets in D = 5, 6, with their content given as rep-

resentations of the little group algebra so(D − 2) and the internal symmetry algebra,

corresponding to R-symmetry for matter and h for supergravity. We do not give the

conformal multiplets here; if interested, see [77].
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D; Little group Q Name Content R-symmetry

4; u(1)st 32 G8 14 + 83 + 282 + 561 + 700 + 56
−1

+ 28
−2

+ 8
−3

+ 1−4 su(8)

24 G6 14
0 + 63

1 + (152
2 + 1−26 ) + (201

3 + 6
−1
5 ) + 15

0
4 + c.c. u(6)

20 G5 14
0 + 53

1 + 102
2 + (10

1
3 + 1−15 ) + 5

0
4 + c.c. u(5)

16 G4 14
0 + 43

1 + 62
2 + 4

1
3 + 10

4 + c.c. u(4)
′′ V4 12 + 41 + 60 + 4

−1
+ 1−2 su(4)

12 G3 14
0 + 33

1 + 3
2
2 + 11

3 + c.c. u(3)

8 G2 14
0 + 23

1 + 12
2 + c.c. u(2)

′′ V2 12
0 + 21

1 + 10
2 + c.c. u(2)

′′ H2 11
r + 20

r+1 + 1−1r+2 + c.c. u(2)
′′ Ca

2 11
−1 + 20

0 + 1−11 u(2)

4 G1 (4, 0) + (3, 1) + c.c. u(1)
′′ V1 (2, 0) + (1, 1) + c.c. u(1)
′′ C1 (1, r) + (0, r + 1) + c.c. u(1)

Table A.7: All allowed supermultiplets in D = 4. Note that G7 = G8 and V3 = V4, and

the half-hypermultiplet Ca
2 exists on its own only for pseudoreal representations of the

gauge group.
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Appendix B

Field-antifield formalism redux

As mentioned in Chapter 5, BRST and anti-BRST invariance provide a powerful tool

for the analysis of quantum gauge theories, where they simplify, both conceptually and

computationally, the study of various of their aspects, among which unitarity and renor-

malisability usually stand out. Furthermore, as shown above, they place strong constraints

on the allowed forms of the action, thus becoming useful at pinning down the (hopefully

unique) quantum-mechanically consistent theory itself. In fact, it so happens that in-

variance under BRST and anti-BRST transformations may be taken as the fundamental

principle underlying all gauge theories, of which Yang-Mills constitutes one of the sim-

plest available examples. The most successful approach in this regard is the so-called

field-antifield, or Batalin-Vilkovisky (BV), formalism: this succeeds at obtaining a BRST

(and/or anti-BRST) invariant theory prior to gauge-fixing, at the price of a doubled con-

figuration space whereby each field (physical, ghost and Lautrup-Nakanishi) is assigned

a “canonical momentum” variable (its antifield) relative to a new symplectic bilinear

form, known as the antibracket. We briefly describe here, closely following the exposition

of [130], the field-antifield formalism for BRST invariance, for clarity; its extension to

include anti-BRST and Sp(2) invariance is well-established [127–129, 131].

For any two functionals on the space of fields, ΦA, and antifields, Φ∗A, the antibracket

is defined as

(F,G) =
∂rF

∂ΦA

∂lG

∂Φ∗A
− ∂rF

∂Φ∗A

∂lG

∂ΦA
(B.1)

where the subscripts l/r denote left and right derivatives. The master action S is the

(minimal) solution to the master equation,

(S,S) = 2
∂rS
∂ΦA

∂lS
∂Φ∗A

= 0, (B.2)

provided that it coincides with the classical action when antifields are set to zero, that is

it satisfies the condition S(Φ, 0) = S0. The master action is invariant under the “gauge-
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unfixed”, or generalised, BRST transformations1,

δ′F (ΦA,Φ∗A) = (F,S) = ε(QF ), (B.3)

as a direct consequence of the master equation (B.2). In particular, fields and antifields

transform according as

QΦA =
∂lS
∂Φ∗A

, QΦ∗A = − ∂lS
∂ΦA

. (B.4)

The generalised BRST transformations are off-shell nilpotent, Q2 = 0, by construction.

The minimal solution S above still contains gauge invariances, which makes it unsuitable

for quantisation. One needs to fix the antifields in a specific way2: usually, one enlarges

the configuration space yet again by introducing so-called trivial pairs (think antighost

+ Lautrup-Nakanishi), in such a way that the resulting non-minimal action, Snm, is still

a solution to the master equation3. One proceeds by choosing a gauge-fixing fermion Ψ,

much like (5.46), and eliminate the antifields by specifying the surface,

ΣΨ =

{
Φ∗A : Φ∗A =

∂Ψ

∂ΦA

}
, (B.5)

where using left or right derivatives is equivalent since ε(Ψ) = 1. The expressions for the

antifields so obtained are substituted back into Snm, which yields the gauge-fixed action

SΨ := S|ΣΨ
= S

(
ΦA,

∂Ψ

∂ΦA

)
. (B.6)

The gauge-fixed action is invariant under the generalised BRST transformations restricted

to ΣΨ, that is

QΨΦA =
∂lS
∂Φ∗A

∣∣∣∣
ΣΨ

. (B.7)

Both the gauge-fixed action SΨ and BRST transformations QΨ so defined coincide with

their counterparts in the usual BRST formalism, S and Q, for theories in which the clas-

sical BRST transformations are off-shell nilpotent, such as those in (5.35). On the other

hand, theories with more complicated gauge algebras, which do not admit a BRST treat-

ment, can only be dealt with in the framework of the field-antifield formalism. Next, we

briefly revisit Yang-Mills theory to exemplify the main features of the above construction,

before treating the (slightly) more complicated Kalb-Ramond 2-form field.

1Note that, in this Appendix, we will assume a right action of the BRST charge, instead of the

left action assumed in the main text. This is to align with the usual conventions of the field-antifield

formalism.
2Which cannot be Φ∗A = 0 as this, by virtue of the boundary condition to the master equation, returns

the classical action, which as we know is no good at quantum level.
3Note that this extra step is not required in the full, ISp(2) symmetric field-antifield formalism, as

the minimal ISp(2) set automatically includes all the fields which belong to the non-minimal sector in

the only-BRST-symmetric version, see [130].
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B.1 Yang-Mills, again

Yang-Mills theory is an example of gauge theory with a closed, irreducible algebra. Thus,

we expect the BV formalism to produce, upon gauge-fixing, the same results as the

Faddeev-Popov procedure.

We begin by defining the content of the theory: the configuration space comprises the

fields ΦA = {AAµ , cA} and corresponding antifields Φ∗A = {A∗µA, c∗A}. The minimal solution

is given by

S =

∫
dDx

[
−1

4
FA
µνF

µν
A + A∗µA(Dµc)A − 1

2
c∗A[c, c]A

]
(B.8)

Using (B.3), we compute at once the unfixed BRST transformations, which leave the

above invariant, to be

QAAµ = (Dµc)
A QA∗µA = −(DνFνµ)A − [A∗µ, c]A (B.9)

QcA = −1
2
[c, c]A Qc∗A = −(DµA∗µ)A − [c∗, c]A, (B.10)

Since the Yang-Mills algebra is irreducible, we need only add one trivial pair (cA, bA),

together with the respective antifields (c∗A, b
∗
A), to build the non-minimal solution

Snm = S +

∫
dDx bAc∗A, (B.11)

from which we compute the BRST transformations of the non-minimal sector,

QcA = bA Qc∗A = 0 (B.12)

QbA = 0 Qb∗A = −c∗A. (B.13)

Choosing the same gauge-fixing fermion as in (5.46),

Ψ =

∫
cA

(
∂µAAµ −

ξ

2
bA
)
, (B.14)

we may solve for the antifields making use of (B.5); we get,

A∗µA = −∂µcA c∗A = ∂µAAµ −
ξ

2
bA (B.15)

c∗A = 0 b∗A = −ξ
2
cA. (B.16)

The gauge-fixed action is obtained by plugging these back into (B.11),

SΨ =

∫
dDx − 1

4
FA
µνF

µν
A − ∂µcA(Dµc)A + bA

(
∂µAAµ −

ξ

2
bA
)

(B.17)

invariant under the gauge-fixed BRST transformations QΨ = Q|ΣΨ
,

QAAµ = (Dµc)
A QcA = bA (B.18)

QcA = 1
2
[c, c]A QbA = 0. (B.19)

Small sign adjustments are needed to obtain the form of the Lagrangian (5.34) and trans-

formations (5.35) of Section 5.3.
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B.2 Abelian 2-form

The original gauge-invariant action of the Kalb-Ramond field is

S0 =

∫
− 1

24
HµνρH

µνρ (B.20)

The minimal solution to the classical master equation [135] is

Smin =

∫
− 1

24
HµνρH

µνρ +B∗µν(∂µdν − ∂νdµ) + d∗µ∂µd (B.21)

At this stage the space of fields is ΦA = {Bµν , dµ, d} only, with respective antifields Φ∗A =

{B∗µν , d∗µ, d∗}. Using (B.3), one can compute the (gauge-unfixed) BRST transformations

of the gauge-unfixed action Smin:

δBBµν = ∂µdν − ∂νdµ δBB
∗µν = −1

4
∂ρH

ρµν

δBdµ = ∂µd δBd
∗
µ = 2∂νB∗µν (B.22)

δBd = 0 δBd
∗ = ∂µd∗ν

In order to make contact with BRST, use path integral methods and compute correlations

functions in standard perturbation theory, we need to ”gauge-fix” the field-antifield action.

Schematically, this is done by a two-step modification of the action

Smin → Snon-min → Snon-min
ψ (B.23)

For this theory, one needs to introduce 3 trivial pairs, (dµ, b
µ), (d, b(d)) and (η, b(d)). Using

elements of the trivial pairs (or their antifields), construct the non-minimal solution

Snon-min =

∫
− 1

24
HµνρH

µνρ+B∗µν(∂µdν−∂νdµ)+d∗µ∂µd+d
∗
µb
µ + d

∗
b(d) + η∗b(d)︸ ︷︷ ︸

non-minimal sector

(B.24)

At this stage the field space is ΦA = {Bµν , dµ, d, dµ, bµ, d, b(d), η, b(d)} as well as the an-

tifields. So we can compute the (unfixed) BRST transformations of the extra fields and

antifields, which leave the extended action Snon-min invariant:

δBdµ = bµ δBb
∗
µ = −d∗µ (B.25)

δBd = b(d) δBb
∗
(d) = d

∗
(B.26)

δBη = b(d) δBb
∗
(d) = η∗ (B.27)

δB(bµ, b(d), b(d)) = 0 δB(d
∗
µ, d
∗
, η∗) = 0 (B.28)

There are (an infinite number of) gauge-fixing fermions. Two appropriate choices [135]

are



B.2. ABELIAN 2-FORM 155

Ψ1 =

∫
d
µ
∂νBνµ + d∂µdµ + d

µ
∂µη (B.29)

Ψ2 =

∫
d
µ
(∂νBνµ + αbµ) + d(∂µdµ + βb(d)) + η(−∂µdµ + γb(d)) (B.30)

where the second corresponds to performing a Gaussian average. We can now eliminate

the antifields4 through Φ∗A = ∂Ψ
∂ΦA

. The antifields for Ψ1 (left) or Ψ2 (right) are

B∗µν = −1

2
(∂µd

ν − ∂νdµ) B∗µν = −1

2
(∂µd

ν − ∂νdµ)

d∗µ = −∂µd d∗µ = −∂µd
d
∗µ

= ∂νBνµ + ∂µη d
∗µ

= ∂νBνµ + ∂µη + αbµ (B.31)

d
∗

= ∂µdµ d
∗

= ∂µdµ + βb(d)

η∗ = −∂µdµ η∗ = −∂µdµ + γb(d)

as well as expressions for (b∗µ, b
∗
(d), b

∗
(d)) which we can ignore here since they do not appear

in Snon-min. After eliminating the antifields with Ψ1, the gauge-fixed action reads

Snon-min
Ψ1

=

∫
− 1

24
HµνρH

µνρ − 1

2
(∂µd

ν − ∂νdµ)(∂µdν − ∂νdµ)− ∂µd∂µd

+ (∂νBνµ + ∂µη)bµ + (∂µdµ)b(d) − (∂µdµ)b(d)

(B.32)

while Ψ2 yields

Snon-min
Ψ1

=

∫
− 1

24
HµνρH

µνρ − 1

2
(∂µd

ν − ∂νdµ)(∂µdν − ∂νdµ)− ∂µd∂µd

+ (∂νBνµ + ∂µη + αbµ)bµ + (∂µdµ + βb(d))b(d) − (∂µdµ + γb(d))b(d)

(B.33)

Finally, the full set of gauge-fixed BRST transformations for the second, more general,

case (B.33) read, for minimal fields (left), antighosts (centre) and auxiliaries (right),

δBΨ
Bµν = ∂µdν − ∂νdµ δBΨ

dµ = bµ δBΨ
bµ = 0

δBΨ
dµ = ∂µd δBΨ

d = b δBΨ
b = 0 (B.34)

δBΨ
d = 0 δBΨ

η = π δBΨ
π = 0

Again, small sign adjustments are needed to obtain the form of the transformations given

in (5.62), compatible with a BRST charge acting from the left rather than on the right.

4Using left or right functional derivatives is equivalent in this case, since ε(Ψ) = 1.
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Appendix C

Computing the dictionaries

C.1 Kalb-Ramond 2-form

Consider the most general ansatze for the fields,

Bµν = A[µ ◦ Ãν] +
α1

�

(
∂A ◦ ∂[µÃν] − ∂[µAν] ◦ ∂Ã

)
(C.1)

dαµ = β1

(
cα ◦ Ãµ − Aµ ◦ c̃α

)
+ β2

∂µ
�

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
(C.2)

d = γ1 (c ◦ c̃) (C.3)

d = γ2 (c ◦ c̃) (C.4)

η = γ3 (c ◦ c̃− c ◦ c̃) (C.5)

and their BRST/antiBRST transformations,

QBµν = 2∂[µdν] QBµν = 2∂[µdν]

Qdµ = ∂µd Qdµ = − 1

ξ(B)

(∂νBνµ + ∂µη) +
1

ξ(d)

∂µη

Qdµ =
1

ξ(B)

(∂νBνµ + ∂µη) Qd̄µ = ∂µd

Qd = 0 Qd = − 1

ξ(d)

∂µdµ

Qd =
1

ξ(d)

∂µdµ Qd̄ = 0

Qη =
m(d)

ξ(d)

∂µdµ Qη = −∂µdµ.

We will attempt to fix all arbitrary parameters in the dictionaries by reproducing these

using the variations of the underlying Yang-Mills factors,

QAµ = ∂µc

Qc = 0

Qc = 1
ξ
∂µAµ

QAµ = ∂µc

Qc = 0

Qc = −1
ξ
∂µAµ

(C.6)
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assuming a left action of the BRST charges,

Q(a ◦ b̃) = (Qa) ◦ b̃+ (−1)ε(a)a ◦ (Qb̃). (C.7)

First in line are

QαBµν = ∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
+
α1

�

(
�cα ◦ ∂[µÃν] + ∂A ◦ ∂[µ∂ν]c̃

α − ∂[µ∂ν]c
α ◦ ∂Ã− ∂[µAν] ◦�c̃α

)
= (1 + α1) ∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
,

(C.8)

and

∂[µd
α
ν] = β1∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
+ β2

∂[µ∂ν]

�

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
= β1∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
,

(C.9)

which imply

0 = QαBµν − 2∂[µd
α
ν]

= (1 + α1 − 2β1) ∂[µ

(
cα ◦ Ãν] − Aν] ◦ c̃α

)
.

(C.10)

This fixes

2β1 = 1 + α1. (C.11)

Then,

0 = Qdµ − ∂µd

= β1 (−c ◦ ∂µc̃− ∂µc ◦ c̃) + β2
∂µ
�

(−c ◦�c̃−�c ◦ c̃)− γ1∂µ (c ◦ c̃)

= − (2(β1 + β2) + γ1) ∂µ(c ◦ c̃)

(C.12)

which implies

γ1 = −2(β1 + β2). (C.13)

The BRST transform of d is trivial,

Qd = γ1Q(c ◦ c̃) = 0, (C.14)

owing to Qc = 0 on the Yang-Mills side, so γ1 does not pick up any further constraints.

Then, compute

Qdµ = β1

(
1

ξ

(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
− ∂µ

(
c ◦ c̃+ c ◦ c̃

))
− β2∂µ

(
c ◦ c̃+ c ◦ c̃

)
(C.15)
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as well as the quantity,

∂νBνµ + ∂µη =
1

2

(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
+ γ3∂µ

(
c ◦ c̃+ c ◦ c̃

)
+
α1

2�

(
∂A ◦�Ãµ −������

∂A ◦ ∂µ∂Ã−�Aµ ◦ ∂Ã+������
∂µ∂A ◦ ∂Ã

)
=

(
1 + α1

2

)(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
+ γ3∂µ

(
c ◦ c̃+ c ◦ c̃

)
= β1

(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
+ γ3∂µ

(
c ◦ c̃+ c ◦ c̃

)
,

(C.16)

corresponding to the gauge-fixing functional which fixes the 2-form gauge freedom. The

two crossed-out terms cancel against each other after moving the derivative, while the

remaining d’Alembertians are factorised out of the convolutions and cancel with the Green

function. The last line follows using (C.11). Then,

0 = Qdµ −
1

ξ(B)

(∂νBνµ + ∂µη)

= β1

(
1

ξ
− 1

ξ(B)

)(
∂A ◦ Ãµ − Aµ ◦ ∂Ã

)
−
(
β1 + β2 −

γ3

ξ(B)

)
∂µ
(
c ◦ c̃+ c ◦ c̃

)
.

(C.17)

The second term implies the constraint

γ3 = −ξ(β1 + β2), (C.18)

whilst the first term yields the first of the relations between the Yang-Mills and 2-form

gauge-fixing parameters,

ξ(B) = ξ. (C.19)

Next, we directly compute

0 = Qd− 1

ξ(d)

∂µdµ

= γ2

(
1

ξ
∂A ◦ c̃− c ◦ 1

ξ
∂Ã

)
− 1

ξ(d)

(
β1

(
c ◦ ∂Ã− ∂A ◦ c̃

)
+ β2

�
�

(
c ◦ ∂Ã− ∂A ◦ c̃

))
=

(
γ2

ξ
+
β1 + β2

ξ(d)

)(
∂A ◦ c̃− c ◦ ∂Ã

)
,

(C.20)

which results in

γ2 = − ξ

ξ(d)

(β1 + β2). (C.21)
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The calculation for the ghost-number zero ghost η is similar:

0 = Qη −
m(d)

ξ(d)

∂µdµ

= γ3

(
−c ◦ 1

ξ
∂A+

1

ξ
∂A ◦ c̃

)
−
m(d)

ξ(d)

(
β1

(
c ◦ ∂Ã− ∂A ◦ c̃

)
+ β2

�
�

(
c ◦ ∂Ã− ∂A ◦ c̃

))
=

(
γ3

ξ
+
m(d)

ξ(d)

(β1 + β2)

)(
∂A ◦ c̃− c ◦ ∂Ã

)
.

(C.22)

Thus,

γ3 = −m(d)
ξ

ξ(d)

(β1 + β2), (C.23)

but given (C.18), we get the important constraint

m(d) = ξ(d), (C.24)

whose consequences were discussed in the main text. Demanding that the whole set

of antiBRST transformations is mapped by the dictionary induces only one additional

constraint. Consider

0 = Qd̄µ − ∂µd

= β1

(
−c ◦ ∂µc̃− ∂µc ◦ c̃

)
+ β2

∂µ
�

(
−c ◦�c̃−�c ◦ c̃

)
− γ2∂µ(c ◦ c̃)

= −2(β1 + β2)∂µ(c ◦ c̃)− γ2∂µ(c ◦ c̃)
= − (2(β1 + β2) + γ2) ∂µ(c ◦ c̃),

(C.25)

which imposes

γ2 = −2(β1 + β2). (C.26)

Because γ2 already satisfies (C.21), this constrains the ξ’s as

ξ(d) =
ξ

2
. (C.27)

Not only the remaining relations impose no new constraints; they provide non trivial

consistency checks in that they reproduce, sometimes after quite a few lines of algebra,

exactly the same constraints found above. Thus, so far, we have shown that the ansatze

in (C.1) are general enough so as to allow one to reproduce the BRST/antiBRST transfor-

mations and algebra of the 2-form theory. In fact, they do so with some freedom to spare:

a quick look shows that not all parameters have been fixed uniquely in terms of purely

Yang-Mills quantities (as opposed to other parameters appearing in the dictionary). We
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show below that all these are fixed uniquely once we require that the dictionary maps the

equations of motion of Yang-Mills to those of the 2-form theory. Recall, these are

�Bµν + ξ′(B)∂
ρ∂[µBν]ρ − jµν(B) = 0, ξ′(B) := 2

ξ(B) + 2

ξ(B)

(C.28)

�dαµ − jαµ (d) = 0, (C.29)

�di − j(di) = 0. (C.30)

We wish to reproduce these using their Yang-Mills counterparts, namely

�Aµ −
(
ξ + 1

ξ

)
∂µ∂

ρAρ = jµ, (C.31)

�cα = jα, (C.32)

and

∂ρjρ = −1

ξ
�∂ρAρ. (C.33)

Let us begin with the physical field, the 2-form Bµν . We hit the dictionary with the

appropriate differential operators in order to form �Bµν + ξ′(B)∂
ρ∂[µBν]ρ. The result is

summarised in Table C.1.

Bµν �Bµν ξ′(B)∂
ρ∂[µBν]ρ

A[µ ◦ Ãν] �
(
A[µ ◦ Ãν]

)
ξ′(B)

4

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
α1

�

(
∂A ◦ ∂[µÃν] − ∂[µAν] ◦ ∂Ã

)
−α1

2

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
ξ′(B)α1

4

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)

Table C.1: Yang-Mills factorisation of the equations of motion for Bµν .

Let us work out just one entry, to illustrate how this works: consider

ξ′(B)∂
ρ∂[µ

[ α1

2�

(
∂A ◦ ∂[νÃρ − ∂A ◦ ∂ρÃν]

)
− α1

2�

(
∂ν]Aρ ◦ ∂Ã− ∂ρAν] ◦ ∂Ã

)]
=
ξ′(B)α1

2�

(
��������
∂A ◦ ∂[µ∂ν]∂Ã− ∂A ◦�∂[µÃν] −��������

∂[µ∂ν]∂A ◦ ∂Ã+ �∂[µAν] ◦ ∂Ã
)

=
ξ′(B)α1

4

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
,

(C.34)

which reproduces the bottom right entry of the table. At this point, recalling that the

ansatz for the effective source of the 2-form is

jµν(B) =
α̂

�
j[µ ◦ j̃ν], (C.35)
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we may write

0 = �Bµν + ξ′(B)∂
ρ∂[µBν]ρ − jµν(B)

= �
(
A[µ ◦ Ãν]

)
+

1

4

(
ξ′(B)(1 + α1)− 2α1

) (
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
− α̂

�
j[µ ◦ j̃ν].

(C.36)

As it was explained in the main text, this form for (the factorisation of) the equations for

Bµν is naive: it does not account for the fact that the basis{
�(A[µ ◦ Ãν]), Fµν ◦ ∂Ã− ∂A ◦ F̃µν ,

1

�
j[µ ◦ j̃ν]

}
(C.37)

is not minimal. Said otherwise, it would lead to wrong conclusions, that is fixing the first

term to zero, because one would be failing to notice that

1

�
j[µ ◦ j̃ν] =

1

�

(
�A[µ −

ξ + 1

ξ
∂[µ∂A

)
◦
(
�Ãν] −

ξ + 1

ξ
∂ν]∂Ã

)
= �(A[µ ◦ Ãν]) +

ξ + 1

ξ

(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
,

(C.38)

which implies that one possible minimal basis is in fact {�(A[µAν]), Fµν∂A − ∂AFµν}.
Then the equations of motion in the (Yang-Mills)×(Yang-Mills) “basis” read

(1− α̂)�
(
A[µ ◦ Ãν]

)
+

1

4

(
ξ′(B)(1 + α1)− 2

(
α1 +

ξ + 1

ξ
α̂

))(
Fµν ◦ ∂Ã− ∂A ◦ F̃µν

)
= 0.

(C.39)

This implies the constraints α̂ = 1 and α1 = −1/2. Finally, we ought to impose the

equations of motion of the first and second generation ghosts: recall that their general

form is

�dαµ =

(
m(d)

ξ(d)

− 1

)
∂µ∂

ρdαρ + jαµ (d) (C.40)

but that, given the constraint (C.24), the first term on the RHS vanishes and they reduce

to (C.29) and (C.30). Then, recalling the ansatz

jαµ (d) =
β̂

�

(
jα ◦ j̃µ − jµ ◦ j̃α

)
, (C.41)

we have

0 = �dαµ − jαµ (d)

= β1

(
jα ◦ Ãµ − Aµ ◦ j̃α

)
+ β2∂µ

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
− β̂

�

(
jα ◦ j̃µ − jµ ◦ j̃α

)
.

(C.42)

This basis is once again non-minimal, so let us use the identity

jα ◦ j̃µ − jµ ◦ j̃α = �
(
jα ◦ Ãµ − Aµ ◦ j̃α

)
− ξ + 1

ξ
�∂µ

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
(C.43)
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to rewrite it as

0 = �dαµ − jαµ (d)

=
(
β1 − β̂

)(
jα ◦ Ãµ − Aµ ◦ j̃α

)
+

(
β2 +

ξ + 1

ξ
β̂

)
∂µ

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
.

(C.44)

This basis is minimal, since attempting to eliminate one of the two elements for a multiple

of the other yields a third element as well, namely

jα ◦ Ãµ − Aµ ◦ j̃α = �cα ◦ Ãµ − Aµ ◦�c̃α (C.45)

= cα ◦
(
ξ + 1

ξ
∂µ∂Ã+ j̃µ

)
−
(
ξ + 1

ξ
∂µ∂A

)
◦ c̃α (C.46)

=
ξ + 1

ξ
∂µ

(
cα ◦ ∂Ã− ∂A ◦ c̃α

)
+
(
cα ◦ j̃µ − jµ ◦ c̃α

)
. (C.47)

Therefore, we can read off the constraints: together, the first and the second term imply

that β̂ = β1 = − ξ
ξ+1

β2. One may check that the equations of motion for the second

generation ghosts very trivially set γ̂i = γi, which explains a posteriori the notation

chosen. This exhausts the relations to be checked: combining all the constraints obtained

above, one sees that they are all constrained uniquely in terms of ξ, as it is shown in

Table C.2.

Field Parameters Source Parameters

Bµν α1 = − 1
2 jµν(B) α̂ = 1

dαµ β1 = 1
4 , β2 = − ξ+1

4ξ jαµ (d) β̂ = 1
4

d, d, η γ1 = γ2 = 1
2ξ , γ3 = 1

4 j(d), j(d), j(η) γ̂i = γi

Table C.2: Parameters of the dictionaries of the Kalb-Ramond sector, completely fixed

in terms of ξ.

C.2 Graviton’s equations of motion

First, let us briefly compute the equations of motion. From the full BRST-fixed La-

grangian for linearised gravity, one obtains

−1

2
Rlin
µν = ∂(µbν) −

1

2
ηµν∂

ρbρ, (C.48)
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where the Lautrup-Nakanishi field looks like a source term for the linearised Ricci tensor,

not unlike in Yang-Mills, where it “sources” the field strength, namely ∂νFνµ = −∂µb.
Using the algebraic equation for bµ which follows from the Lagrangian, that is

bµ =
1

ξ(h)

(
∂νhµν −

1

2
∂µh

)
, (C.49)

and using the expression for the Ricci tensor given in (3.2), we may rewrite the above as

�hµν =

(
ξ + 2

ξ

)(
2∂ρ∂(µhν)ρ − ∂µ∂νh− ηµν∂ρ∂σhρσ

)
+

(
ξ + 1

ξ

)
ηµν�h (C.50)

where, as for the Yang-Mills case, the new terms originating from the Lautrup-Nakanishi

field or, alternatively, from the gauge-fixing to which it corresponds via its equation,

contribute to as to form a non-degenerate kinetic kernel. One may simplify (C.51) by

taking its trace,

�h =

(
ξ + 2

ξ + 1

)
∂ρ∂σhρσ (C.51)

and substituting it back in: this has the effect of showing that the last term cancels

exactly the third1 so as to get

�hµν −
(
ξ + 2

ξ

)(
2∂ρ∂(µhν)ρ − ∂µ∂νh

)
= 0. (C.52)

Next, recall the general ansatz for the graviton,

hµν = A(µ ◦ Ãν) +
∂µ∂ν
�

(
a1A

ρ ◦ Ãρ + a2c
α ◦ c̃α

)
+
a3

�

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
+
a4

�2
∂µ∂ν∂A ◦ ∂Ã+ ηµν

(
b1A

ρ ◦ Ãρ + b2c
α ◦ c̃α +

b3

�
∂A ◦ ∂Ã

)
(C.53)

Hitting this with the various differential operators appearing in the equations of motion,

one obtains the results of Table C.3. As it is apparent in the table, the ηµν pieces, despite

playing a completely separate role in the calculation of the BRST transformations, are

allowed to mix with the other terms under the action of the Yang-Mills equations of

motion: considering the last three rows of Table C.3, observe that the entries in the last

two columns “lose” their ηµν structure, owing to the index contractions imposed by the

form of equations of motion. At this point, we may introduce the effective source for the

graviton, so that we now have to reproduce

�hµν −
(
ξ + 2

ξ

)(
2∂ρ∂(µhν)ρ − ∂µ∂νh

)
− jµν(h) = 0. (C.54)

1It does not matter in which dimension D 6= 2 we work, and thus we take the trace: the factor of D

cancels out. In two dimensions, it turns out that �h is not related to ∂ρ∂σhρσ at all.
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where the ansatz for the source is given by

jµν(h) = â0
1

�
j(µ ◦ j̃ν) +

∂µ∂ν
�2

(
â1j

ρ ◦ j̃ρ + â2j
α ◦ j̃α

)
+ ηµν

(
b̂1

�
jρ ◦ j̃ρ +

b̂2

�
jα ◦ j̃α

)
(C.55)

It turns out that minimal “bases” for this calculation are 8-dimensional. We choose that

consisting of the tensor structures

B =

{
∂µ∂ν
�

∂A ◦ ∂Ã, 1

�

(
∂A ◦ ∂(µjν) + ∂(µjν) ◦ ∂Ã

)
,
∂µ∂ν
�2

jρ ◦ j̃ρ,

∂µ∂ν
�2

jα ◦ j̃α, ηµν∂A ◦ ∂Ã,
1

�
j(µ ◦ j̃ν),

ηµν
�
jρ ◦ j̃ρ,

ηµν
�
jα ◦ j̃α

}
(C.56)

even though any 8-dimensional basis related to this one by the action of the Yang-Mills

equations would do. Setting the coefficients of each of these “basis elements” to vanish

yields a set of constraints on the parameters which, when combined with the remanining

constraints coming from imposing BRST/antiBRST transformations, produces the results

of Section 6.3.3.



hµν �hµν −2ξ′(h)∂
ρ∂(µhν)ρ ξ′(h)∂µ∂νh

A(µ ◦ Ãν) �
(
A(µ ◦ Ãν)

)
−ξ′(h)

(
∂(µAν) ◦ ∂Ã+ ∂A ◦ ∂(µÃν)

)
ξ′(h)∂µ∂ν(Aρ ◦ Ãρ)

a1
∂µ∂ν
�

(
Aρ ◦ Ãρ

)
a1∂µ∂ν(Aρ ◦ Ãρ) −2ξ′(h)a1∂µ∂ν(Aρ ◦ Ãρ) ξ′(h)a1∂µ∂ν(Aρ ◦ Ãρ)

a2
∂µ∂ν
� (cα ◦ c̃α) a2∂µ∂ν(cα ◦ c̃α) −2ξ′(h)a2∂µ∂ν(cα ◦ c̃α) ξ′(h)a2∂µ∂ν(cα ◦ c̃α)

a3
1
�

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
a3

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
−2ξ′(h)a3

∂µ∂ν
� ∂A ◦ ∂Ã− a3ξ′(h)

(
∂A ◦ ∂(µÃν) + ∂(µAν) ◦ ∂Ã

)
2ξ′(h)a3

∂µ∂ν
� ∂A ◦ ∂Ã

a4
∂µ∂ν
�2 ∂A ◦ ∂Ã a4

∂µ∂ν
� ∂A ◦ ∂Ã −2ξ′(h)a4

∂µ∂ν
� ∂A ◦ ∂Ã ξ′(h)a4

∂µ∂ν
� ∂A ◦ ∂Ã

b1ηµν

(
Aρ ◦ Ãρ

)
b1ηµν�

(
Aρ ◦ Ãρ

)
−2ξ′(h)b1∂µ∂ν(Aρ ◦ Ãρ) Dξ′(h)b1∂µ∂ν(Aρ ◦ Ãρ)

b2ηµν (cα ◦ c̃α) b2ηµν� (cα ◦ c̃α) −2ξ′(h)b2∂µ∂ν(cα ◦ c̃α) Dξ′(h)b2∂µ∂ν(cα ◦ c̃α)

b3
ηµν
� ∂A ◦ ∂Ã b3ηµν∂A ◦ ∂Ã −2ξ′(h)b3

∂µ∂ν
� ∂A ◦ ∂Ã Dξ′(h)b3

∂µ∂ν
� ∂A ◦ ∂Ã

Table C.3: Yang-Mills factorisation of the equations of motion for hµν .
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[111] L. Alvarez-Gaumé and L. Baulieu, Nuclear Physics 212, 255 (1983).

[112] V. P. Spiridonov, Nuclear Physics 308, 527 (1988).

[113] M. Kalb and P. Ramond, Phys. Rev. D Phys. Rev. D 7, 2386 (1974).

[114] P. K. Townsend, PHYSICS LETTERS B 88, 97 (1979).

[115] D. Z. Freedman and P. K. Townsend, Nuclear Physics B177, 282 (1981).

[116] T. O. Kimura, Prog. Theor. Phys. 64 (1980).

[117] T. Kimura, Progress of Theoretical Physics 65 (1981).

[118] S. P. De Alwis, M. T. Grisaru, and L. Mezincescu, PHYSICS LETTERS B 190,

122 (1987).

[119] T. E. Clark, C.-H. Lee, and S. T. Love, Nuclear Physics B308 , 379 (1988).

[120] C. Batlle and J. Gomis, Physical Review D 38, 1169 (1988).

[121] J. Thierry-Mieg, Nuclear Physics B 335, 334 (1990).

[122] R. Ferraro, M. Henneaux, and M. Puchin, J. Math. Phys. 34, 2757 (1993),

arXiv:9210070 .

[123] G. Barnich, R. Constantinescu, and P. Gregoire, Physics Letters B 293, 353 (1992),

arXiv:9209007 .

[124] L. Bonora and R. P. Malik, Physics Letters B 655, 75 (2007), arXiv:0707.3922v4 .

[125] L. Bonora and R. P. Malik, J. Phys. A 43 (2010), arXiv:0911.4919v2 .

[126] I. A. Batalin and G. A. Vilkovisky, PHYSICS LETTERS B 102, 27 (1981).

[127] I. A. Batalin, P. M. Lavrov, and I. V. Tyutin, Journal of Mathematical Physics 31,

6 (1990).

[128] I. A. Batalin, P. M. Lavrov, and I. V. Tyutin, Journal of Mathematical Physics 31,

1487 (1990).

[129] I. A. Batalin, P. M. Lavrov, and I. V. Tyutin, Journal of Mathematical Physics 32,

532 (1991).

https://ac.els-cdn.com/0370269381903658/1-s2.0-0370269381903658-main.pdf?{_}tid=81e1dde6-187f-4d81-badc-9595f055d6b3{&}acdnat=1522422500{_}0b0fa54a5758a9efba76d8d71c9edefa
http://iopscience.iop.org/article/10.1088/0305-4470/15/2/028/pdf
http://iopscience.iop.org/article/10.1088/0305-4470/15/2/028/pdf
https://ac.els-cdn.com/0550321383903048/1-s2.0-0550321383903048-main.pdf?{_}tid=1d0ee651-a114-40b8-a614-9efcb43284ae{&}acdnat=1532027081{_}6d47dfd312afe83989cc0f7389cc1ddc
https://ac.els-cdn.com/0550321388905767/1-s2.0-0550321388905767-main.pdf?{_}tid=f0fb88f3-1abf-4056-9d41-8e079967b87f{&}acdnat=1532100695{_}1cc9d40a8481b2d94ae12b5cb2d39e3d
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.9.2273
https://ac.els-cdn.com/0370269379901229/1-s2.0-0370269379901229-main.pdf?{_}tid=23beb008-9fa0-11e7-97e5-00000aab0f6b{&}acdnat=1506089760{_}8f22782b4d79055da6f6567e736fba98
https://ac.els-cdn.com/0550321381903928/1-s2.0-0550321381903928-main.pdf?{_}tid=55a81fb2-9fa2-11e7-8ef2-00000aacb361{&}acdnat=1506090703{_}773f5ae3342cd6d4cc20aea33b70b160
https://watermark.silverchair.com/api/watermark?token=AQECAHi208BE49Ooan9kkhW{_}Ercy7Dm3ZL{_}9Cf3qfKAc485ysgAAAe8wggHrBgkqhkiG9w0BBwagggHcMIIB2AIBADCCAdEGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQM6aG2xfAjrO{_}E256KAgEQgIIBooeu9aBMBPNld7scqf3W1IuHREdGT7KTxbNiGa6YSDDON
https://watermark.silverchair.com/api/watermark?token=AQECAHi208BE49Ooan9kkhW{_}Ercy7Dm3ZL{_}9Cf3qfKAc485ysgAAAfYwggHyBgkqhkiG9w0BBwagggHjMIIB3wIBADCCAdgGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMnp0QCU6sR6{_}IrfvHAgEQgIIBqXmvfwZeWBf24ClUQzoLSftmbcdUhnj-IlW0yWDuA8lSR
https://ac.els-cdn.com/0370269387908501/1-s2.0-0370269387908501-main.pdf?{_}tid=6b51fa58-9fa3-11e7-91e0-00000aacb361{&}acdnat=1506091168{_}6acc77d9c3cc475d40a8c5e4a03e1318
https://ac.els-cdn.com/0370269387908501/1-s2.0-0370269387908501-main.pdf?{_}tid=6b51fa58-9fa3-11e7-91e0-00000aacb361{&}acdnat=1506091168{_}6acc77d9c3cc475d40a8c5e4a03e1318
https://ac.els-cdn.com/055032138890569X/1-s2.0-055032138890569X-main.pdf?{_}tid=f2485ffc-9fa3-11e7-8fce-00000aab0f01{&}acdnat=1506091395{_}5a1c1955d4a17be4bf9e7b009dfe1388
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.38.1169
https://ac.els-cdn.com/0550321390904972/1-s2.0-0550321390904972-main.pdf?{_}tid=98a3f946-9fa5-11e7-b5f6-00000aab0f6b{&}acdnat=1506092111{_}15276cffe3e981fcdb7453378598431e
https://arxiv.org/pdf/hep-th/9210070.pdf
http://arxiv.org/abs/9210070
https://arxiv.org/abs/hep-th/9209007
http://arxiv.org/abs/9209007
https://arxiv.org/pdf/0707.3922.pdf
http://arxiv.org/abs/0707.3922v4
https://arxiv.org/pdf/0911.4919.pdf
http://arxiv.org/abs/0911.4919v2
https://ac.els-cdn.com/0370269381902057/1-s2.0-0370269381902057-main.pdf?{_}tid=6c176400-59b8-41c8-8c1f-d6ae27e0fa29{&}acdnat=1538136232{_}6c8bfeb30bfd97e0459bc1d1bfedfb03
http://dx.doi.org/10.1063/1.528828
http://dx.doi.org/10.1063/1.528828
http://dx.doi.org/10.1063/1.528742
http://dx.doi.org/10.1063/1.528742
http://dx.doi.org/10.1063/1.529517
http://dx.doi.org/10.1063/1.529517


174 BIBLIOGRAPHY

[130] C. Hull, Modern Physics Letters A 5, 1871 (1990).

[131] J. Gomis and J. Roca, Nuclear Physics 343 (1990).

[132] M. Henneaux, Nuclear Physics B A, 47 (1990).

[133] P. Gregoire and M. Henneaux, J. Phys. A: Math. Gen 26, 6073 (1993).
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