
Symplectic Structure of Constrained
Systems: Gribov Ambiguity and Classical

Duals for 3D Gravity

Patricio Antonio Salgado Rebolledo
Departamento de Física, Universidad de Concepción, Concepción

& Centro de Estudios Científicos (CECs), Valdivia, Chile.

Service de Physique Théorique et Mathématique, Université Libre de Bruxelles

& International Solvay Insitutes, Bruxelles, Belgium.

Thesis presented as requirement to obtain the double degree of:
Doctor en Ciencias Físicas / Docteur en Sciences

Advisors: Dr. Glenn Barnich
Dr. Jorge Zanelli

Thesis Committee: Dr. Fabrizio Canfora
Dr. Geoffrey Compère
Dr. Gastón Giribet
Dr. Fernando Izaurieta
Dr. Michel Tytgat

Bruxelles
Année Académique 2015-2016

Universidad de Concepción Université Libre de Bruxelles





Acknowledgements

I would like to express my gratitude to all the people who in one way or another have supported
me during the development of this thesis. It has been a long way since I started my studies in
theoretical physics at Universidad de Concepción (UdeC), continuing at the Centro de Estudios
Cientificos (CECs) in Valdivia and later on at Université Libre de Bruxelles (ULB) in Brussels,.
Nothing would have been possible without the help and support I have been surrounded by along
all these years.

First of all I would like to thank to my advisor at CECs, Prof. Jorge Zanelli, for his guidance
during my stay at Valdivia. His kindness and humanity always made a pleasure to work with
him. I also want to thank him for sharing with me his profound knowledge in physics, which
drove me to learn more than I could have ever imagined.

I am deeply grateful to my advisor at ULB, Prof. Glenn Barnich, for giving me the opportunity
to work with him in Brussels during the last two years of my doctorate and for teaching me
beautiful subjects in mathematics and physics about which his deep understanding and rigourosity
to work with have been truly inspiring. Certainty, my stay in Europe has been the most rewarding
experience of my life both in its academic and human dimension.

My utmost thanks goes to all the Professors I had the opportunity to meet at UdeC, CECs and
ULB, and contributed to my formation in physics with their teaching, enlightening discussions,
as well as with their help and support in many aspects of my career. In particular, I would
like to acknowledge Professors Jaime Araneda, Ricardo Caroca, Fabrizio Canfora, Geoffrey
Compère, Juan Crisóstomo, Alex Giacomini, Mark Henneaux, Cristian Martinez, Gastón Giribet
and Ricardo Troncoso.

For all the positive influence, the great moments shared and all the interesting conversations
along these years of doctorate, I wish to express my most sincere gratitude to all my friends
and colleagues. In particular, I would like to thank, Aline Alves, Francisco Beltrán, Marcelo
Calderón, Marcela Cardenas, Magdalena Chavarria, Adolfo Cisterna, Patrick Concha, Ignacio
Cortese, Laura Donnay, Hernán González, Cristian Fernandez Oto, Octavio Fierro, Oscar
Fuentealba, Ivo Fustos, Juan Francisco González, Shyam Gopalakrishnan, Meryem Keskin„



iv

Viktorija Labanauskaite, Daniela Martínez, Javier Matulich, Perla Medina, Nelson Merino, Diego
Molina, Jaime Muñoz, Anna Pavlenko, Pablo Pais, Adriana Piekarz, Rodrigo Quijada, Arash
Randjbar, Miguel Riquelme, Evelyn Rodriguez, Christina Romenskaya, Marcelo Sarmiento,
Astrid Tanghe, Emerson Tenorio, Adolfo Toloza, Paula Torres, Cedric Troessaert, Omar Valdivia
and Yasemin Yildirim. I am specially grateful to Anne-Aymone Corbisier, for her constant
support my final stage in Brussels and for sharing with me her companionship and her love .

Finally, I would like to thank my family for their unconditional love and support, which has
been fundamental to pursuit my dreams and achieve my goals in life. I will be always grateful
to my father for always believing in me, for showing me the beauty of physics and keeping on
inspiring me from the beginning of my studies to this day. I am deeply indebted to my mother for
her constant encouragement and care, which mean for me more than she can imagine. I would
also like to thank to my brother Sebastián for his help in uncountable occasions, nice moments
and interesting discussions about physics and life. My most profound thanks to my grandmother
Ana, whose memory will always live in my heart, and my uncle José for their support during
my permanence in Concepción, as well as to my grandmother Juana and my uncles Alfonso,
Beatriz, Doris, Juan and my cousins for all their help and kind hospitality in Valdivia and Los
Lagos during my stay at CECs.

This work was supported by grants from the Comisión Nacional de Investigació n Ciencia y
Tecnología (CONICYT) and from Universidad de Concepción, Chile. In particular, the Joint
Supervision Program between UdeC and ULB has been supported by the scholarship: Beca
Chile de Cotutela de Doctorado en el Extranjero from the program BECAS CHILE.



Abstract

The present thesis is divided into two parts. Part I is devoted to the study of Gribov ambiguity in
gauge systems and its relation with the appearance of degeneracies in the symplectic structure of
the corresponding reduced phase space after gauge fixation. Part II is concerned with classical
dual field theories for three-dimensional Einstein gravity and the symplectic structure on coadjoint
orbits of the corresponding asymptotic symmetry group.

In Part I, the Gribov problem is studied in the context of finite temperature QCD and the
structure of the gluon propagator is analyzed. The standard confined scenario is found for low
temperatures, while for high enough temperatures deconfinement takes place and a free gluon
propagator is obtained. Subsequently, the relation between Gribov ambiguity and degeneracies
in the symplectic structure of gauge systems is analyzed. It is shown that, in finite-dimensional
systems, the presence of Gribov ambiguities in regular constrained systems always leads to a
degenerate symplectic form upon Dirac reduction. The implications for the Gribov-Zwanziger
approach to QCD and the symplectic structure of the theory are discussed.

In Part II, geometrical actions for three-dimensional Einstein gravity are constructed by
studying the symplectic structure on coadjoint orbits of the asymptotic symmetry group. The
geometrical action coming from the Kirillov-Kostant symplectic form on coadjoint orbits is
analyzed thought Dirac’s algorithm for constrained systems. By studying the case of centrally
extended groups and semi-direct products, the symplectic structure on coadjoint orbits of the
Virasoro and the BMS3 group are analyzed. This allows one to associate separate geometric
actions to each coadjoint orbit of the solution space, leading to two-dimensional dual field
theories for asymptotically AdS and asymptotically flat three-dimensional gravity respectively.
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Preface

One of the cornerstones in modern physics is the gauge principle, which allows one to understand
three of the four known interactions in nature as quantum Yang-Mills theories. Within this
construction, the Standard Model of particle physics incorporates electromagnetism together
with the weak nuclear interaction in the Glashow-Weinberg-Salam electroweak theory, and the
strong nuclear interaction through quantum chromodynamics (QCD). However, despite the
fact the Standard Model provides a very good description of many phenomena observed by
experiments, it is still incomplete and many important questions remain unanswered. In the
context of QCD, confinement is one of the main open problems in theoretical physics. This
corresponds to the experimental fact that isolated color charged particles are not observed in
nature, which has not yet received a satisfactory theoretical explanation, as it corresponds to
a non-perturbative phenomenon. Due to asymptotic freedom [1], the standard perturbative
analysis for QCD works only for high energies, but a characterization of the physical spectrum
of the theories at low energy scales coming from first principles is still an outstanding problem.
Over the last decades, however, a number of results signal a relation between the infrared two
point function of QCD and gauge fixing ambiguities appearing the quantization scheme of
Yang-Mills theories, first found by Gribov [2], which seem to be likely to provide some clues to
the underlying structure of the theory that are responsible for confinement.

Another problem of the Standard Model is that it does not include gravity, the fourth
fundamental interaction in the picture, described by General Relativity. So far, gravity can not
be put in the same footing as the other forces described by the Standard Model, as it does not
admit a gauge description in the Yang-Mills sense. Besides, the theory is not renorrmalizable
and a quantum description of it is still lacking. Probably, one of the main breakthroughs in the
pursuit of a quantum description of gravity is the holographic principle [3, 4], which postulates
that gravity in a d-dimensional space-time can be described at the quantum level by a quantum
field theory defined in a lower dimension. Within this context, Maldacena’s conjecture [5] has
played a central role and led to a connection between conformal field theories (CFT’s) and
supergravity theories in Anti-de Sitter (AdS) space-times. Evidence of AdS/CFT duality in
physics can however be traced back even before Maldacena’s conjecture, to the mid-80’s when
Brown and Henneaux showed that the asymptotic symmetry algebra of three dimensional gravity
with negative cosmological constant turns out to be a central extension of the conformal algebra
in two dimensions [6]. Based on this result, it can be shown that the Bekenstein–Hawking
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entropy of a three-dimensional black hole is in precise agreement with the entropy obtained by
CFT reasonings using Cardy formula [7] and that the partition function for three-dimensional
gravity can be understood as a character of some representation of the Virasoro algebra [8],
showing that quantum aspects of gravity might be encoded on a dual CFT description.

The present thesis is divided into two parts, and deals with particular geometrical aspects of
Yang-Mills theories and three-dimensional gravity.

Part I is concerned with the Gribov problem and gauge fixing ambiguities in Yang-Mills
theories. This problem appears because, in spite of the geometrical beauty of gauge symmetry,
it must be eliminated in order to quantize Yang-Mills theory. Due to gauge symmetry, when
using the operator formalism it is not possible to define propagators for gauge fields and, if
path integral quantization procedure is adopted, functional integrals diverge for they involve a
sum over the infinite gauge transformations existing for every physical configuration. A way to
overcome this issue is gauge fixation, which corresponds to a restriction in configuration space to
the "fundamental modular region" where only one representative for each physical configuration
exists. However, gauge theories present an obstruction to achieve a proper gauge fixing globally.
This problem is called Gribov ambiguity. Given a gauge field configuration, it is possible to
find an equivalent configuration or copy satisfying the same gauge conditions. The presence
of Gribov copies is related with the existence of zero modes of the Faddeev-Popov operator
and leads to an identically vanishing functional integral for the theory. A solution to eliminate
Gribov copies connected with the identity is to restrict the domain of path integrals to the Gribov
region which is the domain in the functional space of gauge potentials where the Faddeev-Popov
operator is positive definite. This restriction has remarkable effects modifying the theory in the
infrared and, in the case of QCD, might have a crucial role in the understanding of confinement.

In this manuscript, the relationship between the presence of Gribov ambiguity for gauge
conditions and degeneracies in the symplectic structure of the resulting reduced theory will be
studied. First, in the context of finite temperature Yang-Mills theory, the structure of the gluon
propagator will be analyzed within the semiclassical Gribov approach. It will be shown that
the theory displays a confined and a free regime, compatible with the confinement scenario.
Subsequently, the existence of Gribov ambiguity will be studied in finite dimensional systems in
the Hamiltonian framework. Using Dirac’s theory for constrained Hamiltonian systems, it will
be shown that Gribov ambiguity leads to a degenerate symplectic form for the reduced phase
space. Finally, the implications for the Gribov formulation of QCD will be discussed

Part II of the thesis is focused on dual field theories of three-dimensional gravity. One of the
few well-established examples of the AdS/CFT correspondence is three-dimensional gravity with
negative cosmological constant. In this scenario, the first indication of duality comes from the
notion of asymptotically AdS space-time, where the asymptotic symmetry algebra for the theory
turns out to be given by two copies of the Witt algebra, which corresponds to the conformal
algebra in two dimensions. The algebra of surface charges is given by a central extension
of the asymptotic symmetry algebra and consists of two copies of the Virasoro algebra. The



Table of contents 3

presence of the infinite-dimensional conformal group as asymptotic symmetry group suggests
that the asymptotic dynamics of the theory is described by a two-dimensional CFT living at
the boundary of the manifold over which the gravity theory is defined. This procedure can be
carried out in the Hamiltonian framework by formulating Einstein gravity in three dimension
with negative cosmological constant as two copies of the SL(2,R) Chern-Simons theory [9],
which can be redued to Liouville theory at the boundary by properly implementig the Brown-
Henneaux boundary conditions [10]. This remarkable result has been generalized to the case of
asymptotically flat three-dimensional gravity, finding a BMS3 invariant two-dimensional field
theory at the boundary [11, 12]. Even though a CFT can be obtained from the gravity action
by Hamiltonian reduction, this duality is valid only at the classical level and the identification
of Liouville theory as the dual theory to three-dimensional quantum gravity presents technical
problems [13]. This analysis, however, does not take non trivial topology and the associated
holonomies into account. When this is done, one expects modified Liouville type actions.

In this part of the thesis, dual theories for three dimensional gravity will be constructed
by studying the symplectic structure on coadjoint orbits of the asymptotic symmetry group.
Coadjoint orbits posses a natural symplectic form, from which geometrical actions can be
constructed[14, 15]. It will be shown that this geometrical action match the dual field theory
action for gravity obtained from the Chern-Simons formulation. Extra terms will be obtained,
which label the orbit over which the action is defined and their physical interpretation will be
discussed.





Part I

Gribov Ambiguity





Chapter 1

Introduction to Part I

In his seminal paper, Gribov showed that a standard gauge condition, such as the Coulomb
or the Landau choices, fail to provide proper gauge fixings in Yang-Mills theories [2]. This
so-called Gribov problem, that affects non-abelian gauge theories, means that a generic gauge
fixing intersects the same gauge orbit more than once (Gribov copies) and may fail to intersect
others. Algebraic gauge conditions free of Gribov ambiguities are possible, but those choices
are affected by severe technical problems as, for instance, incompatibility with the boundary
conditions that must be imposed on the gauge fields in order to properly define the configuration
space for the theory [16]. Additionally, Singer [17] showed that Gribov ambiguities occur for all
gauge fixing conditions involving derivatives (see also [18]), and moreover, the presence of the
Gribov problem breaks BRST symmetry at a non-perturbative level [19].

The Gribov problem occurs because it is generically impossible to ensure positive definiteness
of the Faddeev-Popov (FP) determinant everywhere in functional space, which make the path
integral ill defined. Even when perturbation theory around vacuum is not affected by Gribov
ambiguity when Yang-Mills theory is defined over a flat space-time with trivial topology [20],
Gribov copies have to be taken into account when considering more general cases [21–25]. The
configurations for which the FP operator develops a nontrivial zero mode are those where the
gauge condition becomes ‘tangent’ to the gauge orbits and it therefore fails to intersect them.
The Gribov horizon, where this happens, marks the boundary beyond which the gauge condition
intersects the gauge orbits more than once (Gribov copies). The appearance of Gribov copies
invalidates the usual approach to the path integral and one way to avoid overcounting is to restrict
the sum over field configurations to the so-called Gribov region around Aµ = 0, where the FP
operator is positive definite [2, 26–30].

The most effective method to eliminate Gribov copies, proposed by Gribov himself in [2]
and refined in [28, 27], corresponds to restricting the path integral to the so-called Gribov region,
which is the region in the functional space of gauge potentials over which the Faddeev-Popov
operator is positive definite. In [28] Dell’Antonio and Zwanziger showed that all the orbits
of the theory intersect the Gribov region, indicating that no physical information is lost when
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implementing this restriction, which takes into account the infrared effects related to the partial
elimination of the Gribov copies, in the sense that it only guarantees the exclusion of those
copies obtained by gauge transformations connected with the identity [27, 31, 32] (copies with
non-trivial winding number are still present [30]). Remarkably enough, the partial elimination of
Gribov copies in perturbation theory is related to the non-perturbative infrared physics. When one
takes into account the presence of suitable condensates [33–37] the agreement with lattice data
is excellent [38, 39]. The non-perturbative input in the modified path-integral is the restriction
to the Gribov region, which leads to a gluon propagator with imaginary poles, indicating that
gluons are not in the physical spectrum of the theory. This remarkable result has opened a
possible way to understand color confinement in QCD from a new perspective [40, 41]. Even
though it is an experimental fact that quarks and gluons are confined and color charged states are
unobservable as asymptotic states at low temperatures, it is expected that at high temperatures
(Tc ∼ 150−200 MeV) they become free [42, 43]. Such a phase transition from confinement to
quark-gluon plasma (QGP) should be described within the framework of finite-temperature field
theory allowing a better understanding of natural scenarios as the early universe or compact star
physics [43–45].

In Dirac’s formalism for constrained systems [46] gauge-invariant mechanical systems are
characterized by the presence of first class constraints. Gauge fixing in those systems is achieved
by the introduction of extra constraints, such that the whole set of constraints become second
class. In this context, the Gribov problem is the statement that the second class nature of this
set cannot hold globally: the Dirac matrix defined by their Poisson brackets is not invertible
everywhere in phase space, it is degenerate.

Degenerate Hamiltonian systems on the other hand, are those whose symplectic form is not
invertible in a subset of phase space [47]. In classical degenerate systems the evolution takes
place over non-overlapping causally disconnected subregions of the phase space separated by
degenerate surfaces. This means that if a system is prepared in one subregion, never evolves to a
state in a different subregion. This still holds in the quantum domain for some simple degenerate
systems [48]. Degenerate systems are ubiquitous in many areas of physics, from fluid dynamics
[49] to gravity theories in higher dimensions [50, 51], in the strong electromagnetic fields of
quasars [52], and in systems such as massive bi-gravity theory [53], which has been shown to
possess degenerate sectors where the degrees of freedom change from one region of phase space
to another [54].

In Chapter 2 Dirac’s formalism for constrained systems is presented and the idea of gauge
fixing in a gauge system is introduced. In Chapter 3 the quantization of Yang-Mills theories
will be quickly reviewed focusing on the gauge fixing procedure and the Gribov problem will
be introduced. In Chapter 4, the semiclassical Gribov approach to restrict the path integral to
the Gribov horizon is introduced and the Gribov gap equation at finite temperature is analyzed.
The solutions of the gap equation (which depend explicitly on the temperature) determine the
structure of the gluon propagator within the semi-classical Gribov approach. The results found
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are consistent with the standard confinement scenario for low temperatures, while for high
enough temperatures, deconfinement takes place and a free gluon propagator is obtained. An
intermediate regime in between the confined and free phases can be read off from the resulting
gluon propagator, which appears to be closely related to partial deconfinement.

In Chapter 5, the relation between Gribov ambiguity and degeneracies in the symplectic
structure of physical systems is analyzed by studying toy models with finite number of degrees
of freedom. It will be shown that Gribov ambiguity and the existence of degeneracies are
related problems, and that the Gribov horizon can be identified as a surface of degeneracy in
the reduced phase space. In finite-dimensional systems, the presence of Gribov ambiguities
in regular constrained systems always leads to a degenerate symplectic structure upon Dirac
reduction. This means that the system would be naturally confined to a region surrounded by a
horizon, exactly as proposed by Zwanziger [26]. This interpretation of the Gribov horizon as
surface of degeneracy that acts as a boundary beyond which the evolution cannot reach, makes
the restriction in the sum over histories a natural prescription and not ad-hoc one. Finally, the
implications for the Gribov-Zwanziger approach to QCD are discussed.





Chapter 2

Constrained Systems

Systems possessing local symmetries, such as the ones described by Yang-Mills theories or
Einstein gravity, correspond to a class of systems called constrained systems, which present
some degree of arbitrariness in their description. This is due to the fact the equations of motion
include constraints between coordinates and velocities, which make the pass to the Hamiltonian
formalism non-trivial. In this chapter, the main features of constrained systems are studied
through Dirac’s formalism.

2.1 Singular Lagrangians

Let us consider a system with a finite number N of degrees of freedom, whose dynamics is
governed by a Lagrangian L(q, q̇), where qA and q̇A correspond to the coordinates and velocities
respectively and A = 1, · · ·,N. The corresponding Euler-Lagrange equations for the system are
given by

d
dt

∂L
∂ q̇A − ∂L

∂qA = 0 , A = 1, · · ·,N. (2.1)

Developing the time derivative, the equations of motion can be put in the form

WAB(q, q̇)q̈B =
∂L
∂qA − ∂ 2L

∂ q̇A∂qB q̇B, (2.2)

where W (q, q̇) is the Hessian matrix

WAB(q, q̇) =
∂ 2L

∂ q̇A∂ q̇B . (2.3)

If detW ̸= 0, it is possible to solve (2.2) and express the accelerations in terms of qA and q̇B. If
detW = 0, on the other hand, W can not be inverted. In this case the system is called singular.
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2.2 Primary Constraints

In order to pass to the Hamiltonian formulation of the model, it is necessary to introduce
the generalized momenta pA conjugated to the coordinates qA,

pA =
∂L
∂ q̇A . (2.4)

satisfying the canonical Poison brackets[
qA, pB

]
= δ

A
B

In the case of non-singular systems, this definition allows to express the velocities in terms of
the canonical variables

q̇A = f A(q, p). (2.5)

Subsequently, the canonical Hamiltonian is obtained by means of the Legendre transformation

H0(q, p) = pA f A(q, p)−L(q, f (q, p)) . (2.6)

And the Hamilton equations are first order in the time derivatives. Let us note, however, that in
order to get rid of the velocities, the matrix W should be invertible. In fact,

d pA =
∂ pA

∂ q̇B dq̇B +
∂ pA

∂qB dqB

=⇒ ∂ pA

∂ q̇B dq̇B = d pA −
∂ pA

∂qB dqB,

which to be solved for dq̇J requires

det
(

∂ pA

∂ q̇B

)
= detW ̸= 0.

In the singular case, where detW = 0, it is not possible to express all the velocities in terms
of the coordinates and their associated canonical momenta. This means that the momenta are not
independent, but there are relations among them. In order to see this, let Wab (a,b = 1, · · ·,RW )
be the submatrix with maximum rank RW of WAB, where a convenient arrangement of its
components has been made. This allows to solve (2.4) for RW velocities q̇a in terms of the
associated momenta pa, the coordinates qA and the remaining velocities, which will be labeled
as q̇α with α = RW +1, · · ·,N. Therefore, it is possible to write

q̇a = f a (q,{pb} ,{q̇α}) (2.7)
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Replacing these relations back into (2.4) leads to

pA = hA (q,{pa} ,{q̇α}) .

For A = a this must reduce to an identity, while for A = α we get

pα = hα

(
q,{pa} ,

{
q̇β

})
.

However, the right hand side of this equation can not depend on the velocities q̇β , as in that case
it would be possible to express more velocities in terms of the coordinates, the momenta, and the
remaining velocities, which is not possible if Wab has maximum rank. What we obtain in this
case are relations of the form

Φα(q, p) = pα −hα (q,{pi})≈ 0, (2.8)

which are called primary constraints, as they come uniquely from the definition of the canonical
momenta, without making use of the equations of motion. These constraints define a subspace
of dimension 2N − (N −Rw) = N +Rw in phase space, which will be called Γ(0). We have also
introduced the weak equality symbol ≈ to denote equality in the constraint surface Γ(0). Two
functions f and g of phase space are weakly equal if and only if they are equal when restricted
to the surface defined by the constraints (2.8),

f ≈ g ⇐⇒ f |Γ(0) = g |Γ(0). (2.9)

In general cases it is be technically complicated to work with constraints in the explicit form
(2.8). For instance, if the constraints could be written in a covariant way, it would be better not to
destroy covariance to bring them to the form (2.8). As a general case, we will consider implicit
constraints

φm(q, p)≈ 0, m = 1, · · ··,M. (2.10)

whose solutions for the momenta pα are given by (2.10). There is, however, an ambiguity when
considering implicit constraints. For instance, φm = 0 and φ 2

m = 0 seem to be equally valid in
Γ(0). In order to avoid this problem it is necessary to impose the following regularity conditions
for the constraints φm, so that they properly represent Γ(0). The constraint surface φm = 0 can be
covered with open sets in which the constraints can be locally split into independent constraints
φα ≈ 0, α = 1, · · ··,N −Rw, for which the Jacobian matrix ∂ (φα)/∂ (qI, pJ) has maximum rank
N−Rw in Γ(0), and dependent constraints φm̄ ≈ 0, m̄= n−Rw+1, · · ··,M, which can be obtained
form the independent ones.

In the subspace Γ(0), the canonical Hamiltonian (2.6) is only function of the coordinates qA

and the independent momenta pA, but does not depend on the remaining coordinates q̇α . In fact,
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the variation δH0 induced by arbitrary variations of the positions and the momenta reads

δH0 = q̇A
δ pA +

(
pA −

∂L
∂ q̇A

)
δ q̇A −δqA ∂L

∂qA
= q̇A

δ pA −δqA ∂L
∂qA . (2.11)

which means that ∂H0/∂ q̇α = 0 and therefore

H0 = H0(qA, pa). (2.12)

Equation (2.11) can be rewritten as(
∂H0

∂qA +
∂L
∂qA

)
δqA +

(
∂H0

∂ pA
− q̇A

)
δ pA = 0. (2.13)

The regularity conditions imply that the gradients ∂φm/∂qA and ∂φm/∂ pA are linearly indepen-
dent. This means that for any set of functions λA and µA satisfying λAδqA +µAδ pA = 0, where
δqA and δ pA are tangent to the constraint surface, it is always possible to write

λA = uα ∂φα

∂qA (2.14)

µ
A = uα ∂φα

∂ pA

where uα are some functions of the coordinates and the momenta. Applying this result to (2.13),
and using ṗA = ∂L/∂qA, leads to the Hamilton equations for a constrained system

q̇A ≈ ∂H0

∂ pA
+uα ∂φα

∂ pA
(2.15)

ṗA ≈−∂H0

∂qA −uα ∂φα

∂qA .

Defining the total Hamiltonian,
HT = H0 +uα

φα , (2.16)

Hamilton equations can be written as

q̇A ≈ [qA,HT ]≈
∂HT

∂ pA
, (2.17)

ṗA ≈ [pA,HT ]≈−∂HT

∂qA .
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2.3 Secondary Constraints

As a consistency requirement, the constraints must be preserved during the time evolution of the
system, which means

φ̇α ≈ [φα ,H0]+uβ
[
φα ,φβ

]
≈ 0. (2.18)

These relations may either fix the Lagrange multipliers uβ or can lead the new relations between
the canonical variables, independent of the u’s. In the case the new relations are independent
of the primary constraints, they correspond to new constraints of the theory, which are called
secondary constraints,

Xα ′(q, p)≈ 0 (2.19)

These constraints restrict the dynamics of the system to a subspace Γ(1) of Γ(0), which weak
equality should be referred to thereafter. This procedure must be repeated for the new constraints,
which can lead to more restrictions to the Lagrange multipliers or more constraints. The
procedure will end after a finite number of iterations, leading to the full set of constraints for the
system, which will be denoted as

φM ≈ 0, M = 1, · · ·,Nφ , (2.20)

and define a constraint surface Γ consistent with the dynamics.

2.4 First and Second Class Constraints

Given a set of constraints, they can be classified in the following way:

• First class constraints ψI , I = 1, . . . ,Nψ , which have weakly vanishing Poisson bracket
with all the constraints of the system.

[ψI,φM]≈ 0. (2.21)

• Second class constraints χΩ, Ω = 1, . . . ,Nχ , for which the Dirac matrix CΩΛ = [χΩ,χΛ]

has maximum rank in Γ, i.e.,
detC ̸= 0.

Once the whole set of constraints of the system have been obtained, they can be split into
first and second class constraints φM = {ψI,χΩ} so that Nψ +Nχ = Nφ . It is possible, however,
that some linear combination of the second class constraints is first class. This will happen if
the determinant of the Dirac matrix vanishes. In fact, if detC = 0 there will be zero modes ξ Ω

satisfying ξ ΩCΩΛ = 0, which can be written as[
ξ

Ω
χΩ,χΛ

]
≈ 0,
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implying that the combination ξ ΩχΩ is a first class constraint.

After the second class constraints of the system have been obtained, they can be eliminated
from the theory by defining a new Poisson structure for the system given by

[A,B]∗ = [A,B]− [A,χΛ]CΛΩ [χΩ,B] , (2.22)

which is called the Dirac bracket. This bracket satisfies the same properties as the Poisson
bracket, namely

[A,B]∗ =− [B,A]∗

[A,BC]∗ = [A,B]∗C+B [A,C]∗

[AB,C]∗ = A [B,C]∗+[A,C]∗B (2.23)[
[A,B]∗ ,C

]∗
+
[
[C,A]∗ ,B

]∗
+
[
[B,C]∗ ,A

]∗
= 0.

For first class functions it is weakly equivalent to the Poisson bracket. In fact, for B and C first
class functions and A arbitrary,

[A,B]∗ ≈ [A,B][
A, [B,C]∗

]∗ ≈ [A, [B,C]] . (2.24)

An important property of the Dirac bracket is that for any function of the canonical variables

[χΩ,F ]∗ = 0, (2.25)

which allows to set the second class constraints strongly to zero and eliminate them from the
formalism.

2.5 Gauge Transformations

First class constraints are related to the local symmetries of the system. In order to see this, let
us consider the time evolution of a function f (q(t), p(t)) generated by the total Hamiltonian.

f (t0 +δ t) = f (t0)+ ḟ (t0)δ t ≈ f (t0)+ [ f (t0),HT ]δ t (2.26)

Let us also assume that the primary constraints φα entering in the total Hamiltonian (2.16)
have been split into first class primary constraints ψi, i = 1, . . . ,nγ , and second class primary
constraints χω , ω = 1, . . . ,nχ , so that

HT = H ′+ui
γi , H ′ = H0 +uω

χω . (2.27)
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Equation (2.26) then takes the form

f (t0 +δ t)≈ f (t0)+
[

f (t0),H ′]
δ t +ui [ f (t0),ψi]δ t. (2.28)

The Lagrange multipliers uω for the second class primary constraints are fixed by preservation
in time of the constraints. The consistency conditions (2.18) for the set χω read

χ̇ω = [χω ,H0]+uσCωσ ≈ 0

and, as the constraints χω are second class, the Dirac matrix Cωσ = [χω ,χσ ] can be inverted,
allowing to obtain uσ .

On the other hand, the Lagrange multipliers ui for the first class primary constraints are
completely arbitrary and for another choice ui −→ vi, we get

f (t0 +δ t)≈ f (t0)+
[

f (t0),H ′]
δ t + vi [ f (t0),ψi]δ t. (2.29)

The difference in δ f between (2.28) and (2.29) is given to order δ t by

δ f ≈
(
va − v′a

)
δ t [ f (t0),ψi] . (2.30)

As (2.28) and (2.29) describe the same physical configuration. This implies that local transfor-
mations of the form

δ f ≈ ε
i [ f ,ψi] , (2.31)

where ε i = ui − viδ t is the infinitesimal parameter of the transformation, are gauge transfor-
mations, i.e., they do not change the physical state and connect pairs

(
qA, pB

)
describing the

same physical configuration. First class primary constraints are then recognized as generators of
infinitesimal gauge transformations.

The Poisson bracket preserves the first class nature of functions in phase space. This fact
implies that, in general, the Poisson bracket of two first class primary constrains is a linear
combination of the full set of first class constraints of the system ψI , i.e.,[

ψi,ψ j
]
=CI

i jψI (2.32)

Indicating that we can expect all the first class constraints to be generators of gauge transforma-
tions of the form

δ f ≈ ε
I [F,ψI] (2.33)

This is known as Dirac’s conjecture and turns out to be true for all the physical systems of
interest. Thus, on the canonical variables, the most general infinitesimal gauge transformation
has the form
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δqA (t) = ε
I (t)

[
qA (t) ,ψI

]
(2.34)

δ pB (t) = ε
I (t) [pB (t) ,ψI]

where the function parameters ε I can depend in time both implicitly through the canonical
variables or explicitly.

The dynamics of the systems should allow any gauge transformation to be performed during
time evolution. Therefore, following Dirac’s conjecture, compatibility with the equations of
motion requires to add all the first class secondary constraints to (2.27). This leads to the first
class function

HE = H ′+uI
ψC (2.35)

which is called the extended Hamiltonian and accounts for all the gauge freedom of the system.

2.6 Gauge Conditions

We have seen that the presence of first class constraints implies a gauge freedom in a constrained
system, which is reflected in the arbitrary functions appearing in the equations of motion (2.15).
Two sets of variables

(
qA, pA

)
and

(
qA +δqA, pA +δ pA

)
, where δqA and δ pA are given by

(2.34) describe the same physical configuration. In order to quantize the system, however, it is
practical to eliminate this arbitrariness and isolate the physical degrees of freedom. This can
be done by implementing extra constraints by hand, called gauge conditions, to restrict phase
space even more in such a way that there exist a one to one correspondence between physical
configurations and values for the canonical variables in a reduced phase space Γ. The role of
these extra conditions is to select one single representative of each set of canonical variables
related by gauge transformations (2.34). These sets correspond to orbits in phase space, along
which the action as well as the observables of the system take the same value.

A set of gauge conditions will be denoted by

GI(q, p) = 0 (2.36)

and in order to select one single representative of each orbit in phase space, must satisfy the
following conditions:

• Accessibility: Given any set of canonical variables
(
qA, pA

)
, there must be a gauge trans-

formation obtained by iterations of infinitesimal transformations (2.34), taking
(
qA, pA

)
to

some other set
(
q′A, p′A

)
satisfying the gauge conditions (2.36).
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• Complete gauge fixation: Given a set of canonical variables (qA, pA) satisfying (2.36), there
must not be any other set of variables connected with (qA, pA) by gauge transformations
that also satisfies (2.36).

The second condition implies that there must be no gauge transformation other than the
identity that preserves the gauge conditions. This means the the system of equations obtained
after applying a gauge transformation to the gauge constraints,

δGI(q, p) = ε
J [GJ,γJ]≈ 0, (2.37)

must lead to
ε

J = 0. (2.38)

This requires [GI,γJ] to be an invertible matrix and therefore the number of gauge conditions
must be the same as the number of first class constraints in the system. The fact that

det [GI,γJ] ̸= 0

implies that, once the gauge is fixed, all the constraints are second class. Then, defining a Dirac
bracket for the whole set of constraints

γN = {GI,ψJ,χΩ} (2.39)

allows to set all the constraints strongly to zero and only the physical degrees of freedom of the
theory are left, whose number is given by(

N physical
degrees of freedom

)
=

1
2

[(
N canonical

variables

)
−

(
N second class
constraints χΩ

)]
−

(
N first class

constraints γA

)
.

(2.40)
The relation (2.40) can be understood in the following way. Second class constraints come
always in pairs, as the Dirac matrix for them is eve-dimensional. This comes from the fact
that the Dirac matrix must be non-degenerate in order to define a true second. class set and
odd-dimensional skew-symmetric matrices have always vanishing determinant. Thus, every pair
of second class constraints eliminates a pair of canonical variables and therefore one degree
of freedom of the theory. First class constraints, on the other hand, are eliminated once the
gauge constraints (2.36) are introduced by hand. Together with the gauge conditions, first class
constraints form pairs to eliminate pairs of canonical variables. This means that every first class
constraint eminitanes one non-physical degree of freedom the theory. Putting all together, (2.40)
is obtained.





Chapter 3

The Gribov Problem

In this chapter, the semi-classical procedure to restrict the path integral formulation of Yang-Mills
theory to the Gribov region is discussed following the lines of [2, 20].

3.1 Gauge Fixing

The action functional for the SU(N) Yang-Mills theory is given by

IY M [A] =− 1
4g2

0

∫
d4xFa

µνFµν
a , (3.1)

where g0 is the coupling constant, Fa
µν = ∂µAa

ν −∂νAa
µ + f a

bcAb
µAc

ν is the field strength tensor
associated to the gauge connection Aµ = Aa

µea and {ea} are the generators of the su(N) algebra

[ea,eb] = f c
abec ,

with f a
bc the structure constants. The action (3.1) is invariant under SU(N) gauge transformations

Aµ → Ag
µ = g−1 (Aµ +∂µ

)
g , g ∈ SU(N) , (3.2)

which defines naturally an equivalence relation for gauge potentials. Due to invariance under
gauge transformations, the configuration space A for a gauge theory is divided in equivalence
classes, each one corresponding to a different physical state. For Yang-Mills theory, two gauge
potentials are equivalent if they are related by a gauge transformation (3.2)

Aµ ∼ Ag
µ .

Thus, for a fixed Aµ , all the fields A′
µ that can be obtained from Aµ form a gauge orbit in

configuration space, which corresponds to an equivalence class for the equivalence relation ∼ .
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Consequently, two gauge fields belonging to different orbits can not obtained from each other by
gauge transformations.

Since the action functional IY M is gauge-invariant, it takes a the same value at every point of
a gauge orbit and physics does not change as we move along it.

The physical configuration space, denoted by Aphy, is given by the quotient space

Aphy = A /G .

The prescription to obtain the physical configuration space from A is called gauge fixing
and consist in imposing some constraints or gauge conditions

Ga [Aµ

]
= 0 , (3.3)

which must satisfy the following conditions1:

• The gauge conditions must be accessible: given a gauge potential Aµ , there must exist
some g ∈ G such that the transformed field Ag

µ satisfies the gauge conditions. In other
words, the surface defined by Ga must intersect every orbit.

• The gauge conditions must fix the gauge completely: given a gauge field Aµ satisfying
the gauge conditions, no other field related with Aµ by a gauge transformation can satisfy
them. In other words, the surface defined by (3.3) must intersect every orbit only once.

When the gauge conditions satisfy this properties, they select one representative of every
orbit and define a region in configuration space isomorphic to Aphy, called "fundamental modular
region".

The quantization of Yang-Mills theory is carried out defining the functional integral

Z = N
∫

DAexp(−IEY M) , (3.4)

where IEY M is action functional for SU(N) Euclidean Yang-Mills theory

IEY M [A] =
1

4g2
0

∫
d4xFa

µνFµν
a , (3.5)

N is a normalization and
∫

DA denotes the sum over all possible configurations. The action
IEY M is gauge invariant, but the integration runs over all gauge potentials Aµ including those
which are related by gauge transformations. In other words, (3.4) includes the volume of the

1These conditions are the field theory version of the conditions defined in Section 2.6 for the gauge constraints
(2.36). In the Hamiltonian formulation of Yang-Mills theory, the gauge conditions (3.3) correspond to constraints
necessary, in principle, to render the first class constraints of the theory second class [46].
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gauge group G, once per each space-time point. Because of this reason the integral in Z is
divergent, as it sums over each physical configuration infinitely many times.

A way to overcome this problem is to restrict the sum over path integrals to one representative
from each gauge orbit in such a way that the integration domain in Z is given by the fundamental
modular region. In order to sum only over inequivalent configurations, a gauge fixing condition
must be implemented via the Faddeev-Popov’s trick. In the Landau gauge ∂ µAµ = 0, the gauge
fixed path integral has the standard form [55],

Z = N
∫

DAδ
(
∂

µAµ

)
detM exp(−SEY M) , (3.6)

where M is the Faddeev-Popov operator for the Landau gauge:

M a
b =−∂

µ
(
Dµ

)a
b , (3.7)

and
(
Dµ

)a
b = δ a

b ∂µ − f a
bcAc

µ is the covariant derivative in the adjoint representation.
In order for this procedure to be well-defined, the gauge fixing conditions must satisfy the

properties previously explained, namely, they must be accessible and fix the gauge completely.
Gribov showed, however, that the Coulomb or the Landau gauge does not fix the gauge completely
[2]. In other words, the surface defined by the coulomb gauge in configuration space intersects
some orbits more that once. After that, Singer showed that all gauge fixing conditions involving
derivatives of the gauge fields have this problem [17]. This obstruction to achieve a proper gauge
fixing is called Gribov ambiguity.

3.2 Gribov Region

Let’s consider a gauge field configuration Aµ (x) satisfying some gauge condition

Ga [Aµ

]
= 0 . (3.8)

If this condition fixes the gauge completely, there can not be gauge fields related with Aµ (x) by
a gauge transformation satisfying the same gauge. This means that the equation

Ga [Ag
µ

]
= Ga [g−1Aµg+g−1

∂µg
]
= 0 (3.9)

must have the identity as the unique solution. In practice, this requirement is not fulfilled by the
Landau or Coulomb gauge and nontrivial solutions for this equation, which are called Gribov
copies, can be found [20–24].

In the case of infinitesimal gauge transformations, δAµ = Dµα , the equation for copies (3.9)
reduces to

Ga [Ag
µ

]
= Ga [(Aµ +Dµα

)]
= 0 ,
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=⇒
∫

d4z
δGa [Aµ (x)

]
δAb

µ (z)

(
D(z)

µ

)b
cα

c (z) = 0 , (3.10)

and writing (
D(z)

µ

)a
bα

b (z) =
∫

d4y
δAag

µ (z)
δαb (y)

α
b (y) ,

the condition for the existence of copies takes the form

∫
d4yd4z

δGa [Ag
µ (x)

]
δAbg

µ (z)

δAbg
µ (z)

δαc (y)
α

c (y) =
∫

d4y
δGa [Ag

µ (x)
]

δαb (y)
α

b (y) = 0 ,

=⇒
∫

d4yM a
b(x,y)αb (y) = 0 . (3.11)

Hence, Gribov copies connected with the identity correspond to zero modes of the Faddeev
Popov operator (3.7). The presence of this copies imply that the gauge fixing procedure has failed
and the functional integral Z is ill-defined. Furthermore, if zero modes for the Faddeev-Popov
operator exist, the determinant in (3.6) vanishes and so does the functional integral.

In the case of the Landau gauge, the Faddeev-Popov operator is given by (3.7) and this
equation takes the form

∂
µ
(
Dµ

)a
bα

b = 0 . (3.12)

Let us consider now the eigenvalue equation for the Faddeev-Popov operator in the Landau
gauge, i.e.,

−∂
µ
(
Dµ

)a
bα

b = ε
(
Aµ

)
α

a . (3.13)

For vanishing gauge potentials this expression takes the form

−∂
µ

∂µα
a = εα

a ,

which has positive eigenvalues ε = p2. This means that for small enough gauge fields Aa
µ the

equation (3.13) has only positive eigenvalues. In particular, for euclidean abelian fields, the
equation for the existence of Gribov copies (3.12) reduces to ∂ µ∂µα = 0 which has no smooth
solutions apart from constant α ′s, which are proportional to the identity, implying that there are
no Gribov copies in this abelian case. Therefore, for nonabelian gauge fields which are small
everywhere, Gribov ambiguity does not affect perturbation theory. However, for sufficiently
large gauge fields, a zero mode ε1 = 0 appears, implying the presence of a Gribov copy (3.12),
and for even larger values of Aa

µ the eigenvalue ε1 becomes negative. For greater magnitudes of
the gauge field, another eigenvalue ε2 will vanish, becoming negative as the gauge field increases
and so on. Because of this, the functional configuration space for the theory can be divided in
regions Cn, over which the Faddeev-Popov operator has n negative eigenvalues separated by
hypersurfaces δCn where Gribov copies exist.
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Fig. 3.1 Gribov horizons.

As a way to eliminate copies, Gribov proposed to restrict the integration domain in Z to the
region C0, in which the Faddeev-Popov operator is positive definite and doesn’t reach any zero
mode

C0 ≡
{

Aµ ,∂
µAµ = 0

∣∣detM > 0
}
. (3.14)

This is called the Gribov region and its boundary δC0 is the Gribov horizon.

3.2.1 Alternative Definition

The Gribov region can also be defined as the set of local minima for the following functional

f [U ] =
∫

d4xtr
[
AU

µ AµU
]
=
∥∥AU

µ

∥∥2
. (3.15)

In fact, the Euler-Lagrange equations obtained from with functional correspond to the equation
for Gribov copies (3.9) in the Landau gauge,

δ f = 0 =⇒ ∂
µAU

µ = 0 .

The second variation of f leads to the Faddeev-Popov operator. In fact considering infinitesi-
mal transformations,

δ
2 f =

∫
d4xtr

[
α0
(
−∂

µDµAU)
α0
]
,

which must be positive if U is a minimum. Therefore, for every orbit there is at least one gauge
field that is transversal and for which the Faddeev-Popov operator is positive definite.
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G. Dell’Antonio and D. Zwanziger [28] proved that any gauge potential lying outside the
Gribov region is a copy of a field inside the Gribov region. This means that every orbit intersect
the Gribov region. This restriction eliminates copies connected with the identity. Copies with
nontrivial winding number are not considered and thus, after restricting path integrals to the
Gribov regions, integration over the fundamental modular region is still not achieved. However
this is a remarkable improvement and has important effects in the theory. In the case of QCD,
the theory is modified in the infrared opening a way to understand confinement of color [41].

3.3 Semi-classical Gribov Approach to QCD

We have seen in the previous section that, due to the presence of Gribov copies, the expression
(3.6) is ill defined. To avoid zero modes of the Faddeev-Popov operator and eliminate copies,
we will follow the strategy of restricting the relevant functional integrals to the so-called Gribov
region (3.14), which corresponds to the region in the functional space of gauge potentials over
which the Faddeev-Popov operator is positive definite. The restriction of (3.6) to the Gribov
region can be implemented by redefining the generating functional as [20]

ZG = N
∫

DAδ
(
∂

µAµ

)
det(M )exp(−SY M)V (C0) , (3.16)

where the factor V (C0) ensures that the integration is performed only over C0. In order to
characterize V (C0), we look at the connected two-point ghost function generated by (3.6):〈

c̄a (x)cb (y)
〉
= N

∫
DAδ

(
∂

µAµ

)
exp(−SY M)det(M )

(
M−1 (x,y)

)ab
. (3.17)

Singularities in (3.17) correspond to zero modes of the Faddeev-Popov operator, i.e. infinitesimal
Gribov copies. In the momentum representation, singularities different from k2 = 0 imply that
M (x,y) can become negative definite, and therefore it is evaluated outside the Gribov horizon.
The factor V (C0) must be such that this kind of singularities is not present. This is known as the
no-pole condition.

The standard connected ghost two-point function (3.17) can be put in the form〈
c̄a (x)cb (y)

〉
= N

∫
DADcDc̄δ

(
∂

µAµ

)
exp(−SY M)⟨ca(x)cb(y)⟩A , (3.18)

with ⟨ca(x)cb(y)⟩A the connected ghost two-point function with Aa
µ playing the role of an external

field. To second order in perturbation theory this can be written in momentum space as

⟨c̄aca⟩k;A =
1
k2 (1+σ (k,A))≈ 1

k2
1

(1−σ (k,A))
, (3.19)
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where

σ(k,A) =
Nkµkν

3(N2 −1)k2
1
V q

Aaλ (−q)Aaλ (q)

(k−q)2

(
δµν −

qµqν

q2

)
, (3.20)

and V stands for the four-dimensional volume of the Euclidean space-time. Since Aa
µ(−q)Aaν(q)

is a decreasing function of q2, σ(k,A) decreases as k2 increases and the no-pole condition can
be stated as

σ(0,A) =
1
4

N
N2 −1

1
V q

1
q2 Aa

µ(−q)Aµ
a (q)< 1 . (3.21)

Hence, the factor V (C0) needed in (3.16) to restrict path integrals to the Gribov horizon is given
by V (C0) = Θ(1−σ(0,A)), where Θ(x) = 1

2πi
∫ i∞+ε

−i∞+ε
dη

eηx

η
is the Heaviside step function.

Implementing this factor in ZG, the quadratic part of the path integral in the field Aµ can be put
in the form

Zquad
G = N

∫ dη

2πi
e f (η) , f (η) = η − lnη − 3

2
(
N2 −1

)
∑
q

ln
(

q2 +
ηNg2

0
N2 −1

1
2V

1
q2

)
. (3.22)

Using the steepest descent (saddle point) method, (3.22) can be approximated by Zquad
G ≈ e f (η0),

where η0 satisfies the minimum condition f ′ (η0) = 0. Defining the Gribov parameter γ4 =
η0Ng2

0
N2−1

1
2V , the minimum condition leads to the gap equation

1−
Ng2

0
γ4 (N2 −1)2V

−
3Ng2

0
4V ∑

q

1
q4 + γ4 = 0 . (3.23)

The solution of this equation in the infinite volume limit V → ∞ is given by γ2 = Λ2e
− 64π2

3Ng2
0 ,

where Λ is the ultraviolet cutoff, and it leads to a confining gauge propagator [20]

Dab
µν (q) = δ

abg2
0

q2

q4 + γ4

(
δµν −

qµqν

q2

)
. (3.24)

For large q, (3.24) reduces to the standard perturbative result [55]. In the infrared, however, the
gluon propagator is suppressed, as it displays imaginary poles. In other words, since Dab

µν (q) has
a positivity violating Källén-Lehmann representation [40, 55], gluons cannot be considered as
part of the physical spectrum and the propagator (3.24) is interpreted as confining. Replacing
(3.24) in (3.20) leads to the following behavior for the ghost propagators (3.19), in the infrared
limit:

⟨c̄aca⟩q;A −→
q→0

128πγ2

3Ng2
0

1
q4 , (3.25)

which means that the ghost propagator is not free-like, but enhanced for q → 0.





Chapter 4

Semi-Classical Gribov Approach at Finite
Temperature

Finite-temperature Yang-Mills theory can be studied using the imaginary time formalism [42, 56],
which relates the corresponding quantum field theory generating functional with a quantum
statistical partition function through a compactification of the temporal coordinate. In this
formalism, the period of the compactified time is associated with the inverse of the temperature
of a thermal bath, and the partition function can be written as

Z =
∫

DAexp

(
1

4g2
0

∫ 1
T

0
dτ

∫
d3xFa

µνFµν
a

)
. (4.1)

Since the temporal integration limits 0 and T−1 are identified, when passing to momentum
space, temperature dependent fields are expanded in a Fourier series over discrete Matsubara
frequencies ωn.

ϕ (τ,x) = T ∞
n=−∞

∫ d3q

(2π)3 e−i(ωnτ+q·x)
ϕ (ωn,q) , ωn = 2πnT . (4.2)

4.1 Dynamical Thermal Mass

When implementing the gauge fixing, the finite-temperature formalism must be applied to
the generating functional (3.6), where the Euclidean action has to be written as a local functional
for ghost and gauge fields and perturbation theory can be applied. For gluons, when considering
one-loop corrections, the resumed gauge propagator in the Landau gauge takes the form [43]

Dab
µν (q) = g2

δ
ab

(
PT

µν (q)
q2 +ΠT (q)

+
PL

µν (q)
q2 +ΠL (q)

)
, (4.3)
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where g is the running coupling and

PT
µν (q) = δ

i
µδ

j
ν

(
δi j −

qiq j

q2

)
, (4.4)

PL
µν (q) = δµν −

qµqν

q2 −PT
µν (q) ,

are transverse projectors orthogonal to each other, (PT
µνqν = PL

µνqν = 0, δ ρσ PT
µρPL

σν = 0) and
ΠT (q) , ΠL (q) are the components of the self-energy Πµν along the projectors (4.4)

Πµν (q) = PT
µν (q)ΠT (q)+PL

µν (q)ΠL (q) . (4.5)

In the plasma region, where ωn >> |q|, the self-energy components ΠT (q), ΠL (q) are given, in
the hard thermal loop approximation, by

ΠT (q) = ΠL (q)≈
Ng2T 2

9
, (4.6)

which means that, in a hot plasma, gauge fields acquire an effective thermal mass [43]

m2
pl =

Ng2T 2

9
. (4.7)

In this case the gauge propagator ((4.3)) takes the form

Dab
µν (q) =

g2δ ab

q2 +m2
pl

(
δµν −

qµqν

q2

)
. (4.8)

It is worth noting that ghost fields do not acquire a thermal mass [42], which implies that the
no-pole condition (3.21) has no extra terms when one-loop corrections are considered. However,
the expression for the gap equation will be modified by the presence of the effective thermal
mass (4.7), as we will see below.

The effect of a dynamical mass m in the semi-classical Gribov approach can be obtained by
adding a term of the form m2AµAµ to the quadratic action in (3.22). This approach was studied
in [57] and modifies the gap equation (3.23) as

1− 3g2

γ4 (N2 −1)2V
− 3Ng2

4V ∑
q

1
q4 +m2q2 + γ4 = 0 . (4.9)

The solution of this equation, if it exists, defines a massive (partially) confining gauge propagator

D̄ab
µν (q) = δ

abg2 q2

q4 +m2q2 + γ4

(
δµν −

qµqν

q2

)
. (4.10)
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The confining character of this propagator relies on the presence of imaginary poles, which
violates positivity of the spectral density function of the Källén-Lehmann representation [40, 55],
indicating that it describes non-physical excitations. However, the presence of a dynamical mass
m allows the possibility for the propagator (4.10) to acquire a physical degree of freedom. In
fact, the poles of (4.10) are given by

z± =
1
2

(
−m2 ±

√
m4 −4γ4

)
. (4.11)

Hence, for m2 ≥ 2γ2 the propagator D̄ab
µν (q) can describe physical particles. Writing (4.10) in

the form

D̄ab
µν (q) = δ

ab g2√
m4 −4γ4

[
z+

(q2 − z+)
− z−

(q2 − z−)

](
δµν −

qµqν

q2

)
, (4.12)

we can see that the propagator splits into two terms with opposite residue sign, indicating that
the gluon field Aµ has only one physical degree of freedom.

In general, if m is a function of some physical parameter, we can distinguish three scenarios
for the behavior of the propagator.

• For m2 < 2γ2 both poles of (4.10) are complex, indicating that there are no propagating
gluonic degrees of freedom (confined phase).

• For m2 ≥ 2γ2 only one of the two gluonic degrees of freedom is physical (partially
deconfined phase). Hence, if this regime appears (as will be shown in the following, it
does) it shows qualitative characteristics both of the confined phase and of the deconfined
phase.

• If there is no solution for the gap equation, the only consistent choice for the Gribov mass
parameter is γ = 0, leading to a free gluon propagator (deconfined phase).

In the present case, the effect of the one-loop thermal mass (4.7) on the Gribov restriction will
be considered by setting m = mpl (T ), and it will be shown that there exist critical temperatures
corresponding to the above three different regimes. It is worth noting that the inclusion of such a
one-loop mass is fundamental in order to obtain these different phases.

4.2 Thermal Gap Equation

Two important requirements for the consistency of the analysis are the following. Firstly, the
finite-temperature gap equation should have, when the temperature is low enough, solutions
close to the zero-temperature one, describing confined gluons. Secondly, when the temperature
is high enough, the gap equation should have no solution, which describes propagating gluons.
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As is well known, these conditions are not easy to satisfy [58, 59]. In the present analysis, we
will include the one-loop perturbative corrections both in the running coupling and in the field
propagators (since the crucial role of the one-loop mass is well known: see [60] and references
therein). In order to write down the gap equation for the finite-temperature case, we apply the
prescription (4.2) to (4.9) and take the infinite spatial volume limit

1
V ∑

q
→ T ∑

n

∫ d3q

(2π)3 . (4.13)

Finally, replacing the thermal gluon mass (4.7), we obtain the following thermal gap equation:

3Ng2T
8π2 ∑

n

∫ Λ

0

r2dr

(r2 +ω2
n )

2
+ Ng2T 2

9 (r2 +ω2
n )+ γ4

= 1 , (4.14)

where we have adopted polar coordinates, integrated over angular variables, and we defined a
radial integration limit Λ, which corresponds to an ultraviolet cutoff. Let us note that we have
neglected the second term of (4.9), as it goes to zero for an infinite spatial volume. Defining the
dimensionless variables

R =
r
Λ

, λ =
2πT

Λ
, (4.15)

θn =
ωn

Λ
= nλ , Γ =

γ

Λ
,

the thermal gap equation can be rewritten as

3Ng2λ

16π3 ∑
n

∫ 1

0

R2dR

(R2 +θ 2
n )

2
+ Ng2λ 2

36π2 (R2 +θ 2
n )+Γ4

= 1 . (4.16)

The sum over all dimensionless Matsubara frequencies θn can be carried out analytically (see
Appendix A), leading to

S (R,λ ,Γ) = ∑
n

1

(R2 +θ 2
n )

2
+ Ng2λ 2

36π2 (R2 +θ 2
n )+Γ4

(4.17)

=
π

2λ

√
N2g4λ 4

722π4 −Γ4


coth

 π

λ

√
R2+Ng2λ2

72π2 −
√

N2g4λ4

722π4 −Γ4


√

R2+Ng2λ2

72π2 −
√

N2g4λ4

722π4 −Γ4

−
coth

 π

λ

√
R2+Ng2λ2

72π2 +

√
N2g4λ4

722π4 −Γ4


√

R2+Ng2λ2

72π2 +

√
N2g4λ4

722π4 −Γ4

 ,

Then, the gap equation takes the form

3Ng2λ

16π3

∫ 1

0
dRR2S (R,λ ,Γ) = 1 , (4.18)
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which defines γ as a function of λ

γ = ΛΓ(λ ) . (4.19)

4.3 The Three Regimes

As we have shown in Section 4.1, the effective gluon propagator (4.10) can lead to three
different regimes for gluons depending on the value of the thermal mass mpl(T ), which in
turn depends on the temperature T . These three regimes can be associated to two transition
temperatures. In this section we present the numerical analysis of the gap equation (4.18) for
QCD (N = 3) in the high-temperature regime and subsequently we study a possible infrared
continuation.

4.3.1 High Temperature Running Coupling

Let us consider the thermal gap equation in the limit of high temperatures T >> 1. In
finite-temperature QCD, the one-loop running coupling depends on the temperature T (or, in our
case, on λ ) as [58, 61]

g2 (λ ) =
8π2

11ln
(

2πT
ΛQCD

) =
8π2

11ln(αλ )
, (4.20)

where we have defined the ratio between the cutoff Λ and the energy scale ΛQCD as

α ≡ Λ
ΛQCD

. (4.21)

For the left hand side of (4.18), we define the function

F (λ ,Γ) =
9g2λ

16π3

∫ 1

0
dRR2S (R,λ ,Γ) . (4.22)

Then the solution for the gap equation corresponds to the intersection of the curves Y = F (λ ,Γ)
with Y = 1. In order to obtain the qualitative behavior for the solutions, we will consider α = 1
in the analysis below (as it will be explained later on, the qualitative behavior of the gluon
propagator does not depend on the value of α). From Figure 4.1, we see that the existence of
solution depends on the temperature. In fact, the intersection occurs for λ ’s below a critical
value λ

(1)
c = 1.4, see Figure 4.2. This corresponds to a phase transition at temperature

T (1)
c

ΛQCD
= 0.22 . (4.23)

For T > T (1)
c there is no solution for the gap equation (4.18). In this case the only consistent

choice for the Gribov parameter is γ = 0, indicating that this regime represents the free phase.
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Fig. 4.1 Plot of the surface F for different values of λ and Γ. The intersection with the plane Y = 1
occurs for λ below the critical value λ

(1)
c = 1.4.
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Fig. 4.2 Plot of F as a function of Γ, for λ = 1.2, 1.4 and 2.0.
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Fig. 4.3 Plot Γ vs. λ . At λ (1) ∼ 1.4 there exists a phase transition from a deconfined phase to a
semi-confined one, which corresponds T 1

c
Λ = 0.22.

On the other hand, for T < T (1)
c , there is a solution for the gap equation, which define the

Gribov parameter γ . Therefore, as is shown in Figure 4.3, Γ = γ/Λ decreases as λ increases and
vanishes for λ (1) = 1.4. Even though for λ < 1.4 there is a solution for the gap equation, the
propagator is still not completely confining. As we saw in Section 4.1, depending on the sign of
the discriminant in (4.11), a partial or total confinement can take place. In this case, the change
of sign in (4.11) occurs for λ

(2)
c = 1.08 (see Figure 4.4), which corresponds to

T (2)
c

ΛQCD
= 0.17 . (4.24)

Hence, two phase transitions are found as the temperature decreases: a deconfined/partially
deconfined phase transition at T (1)

c and a partially deconfined/confined phase transition at T (2)
c .

In the intermediate phase, only one degree of freedom of the gluon field is physical.

4.3.2 Infrared Continuation

In order to extend the analysis of the previous subsection to the low-temperature regime,
we need a prescription to extend the definition (4.20) for λ < 1. A way to extend the running
coupling to the infrared regime in zero-temperature QCD has been developed in [62] in the
framework of quark-antiquark potentials by adding a non-perturbative contribution to the Wilson
loop. In the finite-temperature case, the analog extension reads

g2 (g0,λ ) =
g2

0

1+ 11
16π2 g2

0 ln(1+α2λ 2)
. (4.25)
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Fig. 4.4 Plot
√

4Γ4 −m4 vs. λ . At λ (2) ∼ 1.08 there exists a phase transition from a semi-confined phase
to a confined one, which corresponds T 2

c
Λ = 0.17.

This expression reduces to (4.20) for large λ but, in the limit λ → 0 the running coupling reduces
to the bare coupling constant g0

g2 −→
λ→0

g2
0 .

This choice is also consistent with the fact that the thermal gluon mass (4.7) must vanish as T
goes to zero

m2
pl −→T→0

0 .

which is a necessary requirement to reduce (4.9) to (3.23) in this limit and to connect consistently
with the standard T = 0 results [20]. Let us note that for large g0 the behavior of g(g0,λ )

becomes insensible to small variations of g0 itself; see Figure 4.5. This is also consistent with
the fact that in quantum field theory bare quantities are infinite but unobservable and they need
to be renormalized. Replacing the expression (4.25) (with α = 1) in the gap equation (4.18), the
left hand side takes the form

G(g0,λ ,Γ) =
9g2λ

16π3

∫ 1

0
dRR2S (R,g0,λ ,Γ) , (4.26)

where S (R,g0,λ ,Γ) is obtained replacing (4.25) in (4.17). Then the solution for the gap equation
again corresponds to the intersection of the curves Y = G(g0,λ ,Γ) and Y = 1, whose existence
depends on λ (see Figure 4.6). Similarly to the previous subsection, we find two phase
transitions. Choosing g0 = 1000, the deconfined/partially deconfined phase transition occurs for
the critical value λ

(1)
c = 1.17 (see Figures 4.7 and 4.8), which corresponds to

T (1)
c

ΛQCD
= 0.19 , (4.27)
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Fig. 4.5 Plot of the running coupling g as a function of g0 and λ . For g0 large, g becomes almost
insensible to small variations of g0.
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Fig. 4.6 Plot of the surface F for different values of λ and Γ. The intersection with the plane Y = 1
occurs for λ below a critical value λ

(1)
c = 1.17.
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Fig. 4.7 Plot of F as a function of Γ, for λ = 0.8, 1.17 and 2.5.
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4Γ4 −m4 vs. λ . At λ (2) ∼ 0.81 there exists a phase transition from a semi-confined phase

to a confined one, which corresponds to T (2)
c
Λ = 0.13.

while the partially deconfined/confined phase transition now occurs for λ
(2)
c = 0.81 (see Figure

4.9), i.e.,
T (2)

c

ΛQCD
= 0.13 . (4.28)

The results obtained with the prescription (4.25) are very similar to the ones obtained in the
previous subsection. It is important to note that the qualitative behavior of the solution of the gap
equation and the gluon propagator does not depend on the value of α in the definition (4.21).
As we can see in Table 4.1, the greater the value of α that we consider in the analysis (i.e. the
greater the cutoff Λ compared with QCD scale ΛQCD), the greater will be the numerical values
for the critical temperatures for the phase transitions. Hence, the fact that the integration cutoff
Λ is much higher than the QCD scale ΛQCD implies that the critical temperatures obtained with
this method, when considering a more realistic ratio between this quantities, will be greater than
the values obtained in this section.
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gHT gIC

α
T (1)

c
ΛQCD

T (2)
c

ΛQCD

T (1)
c

ΛQCD

T (2)
c

ΛQCD

1 0.223 0.172 0.186 0.128
10 0.437 0.331 0.414 0.301
100 0.758 0.558 0.752 0.540

Table 4.1 Critical temperatures T (1)
c

ΛQCD
and T (2)

c
ΛQCD

for different values of α . Here, gHT and gIC

correspond to the running coupling at high temperature (4.20) and its infrared continuation
(4.25), respectively.

On the other hand, in our analysis we have considered only gluon dynamics (without quarks).
In [63, 64] it has been found that the value for the energy scale ΛQCD that must be considered
depends on the numbers of flavors that are included in the analysis and there have been found
different values for Tc/ΛQCD depending on these considerations.





Chapter 5

Gribov Ambiguity and Degenerate
Systems

Degenerate Hamiltonian systems are those whose symplectic form is not invertible in a subset
of phase space. They are ubiquitous in physics, as degeneracies of this kind appear in fluid
dynamics [49], alternative theories of gravity [50, 51, 53, 54] and in the strong electromagnetic
fields of quasars [52]. In this chapter we show that degenerate symplectic forms are also linked
to the presence of Gribov ambiguities in gauge systems and study finite dimensional models in
which degeneracies can be analyzed in an explicit way.

5.1 Degenerate Systems

We now briefly review classical [47] and quantum [48] degenerate systems. In order to fix ideas,
let’s consider a system described by the first order action,

I[u] =
∫

dt
(

XA(u)u̇A −H(u)
)
, with A = 1, . . . ,N . (5.1)

This action can be interpreted in two not exactly equivalent ways:

• The uA’s are N generalized coordinates and L(u, u̇) = X(u)Au̇A −H(u) is the Lagrangian
1.

• The uA’s are non-canonical coordinates in a N-dimensional phase space Γ, where N is
necessarily even and (5.1) gives the action in Hamiltonian form.

1The notation here is different than in Chaper 2 . uA denothes both the coordiantes and the momenta of the
system and, in that case, N in (5.1) corrresponds to 2N in (2.1).
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In the first approach, for each u there is a canonically conjugate momentum at the 2N-
dimensional canonical phase space Γ̃ given by

pA =
∂L
∂ u̇A . (5.2)

In this case, this definition gives a set of primary constraints,

ΦA = pA −XA(u)≈ 0 , (5.3)

whose (canonical) Poisson brackets define the antisymmetric matrix

[ΦA,ΦB] = ∂AXB −∂BXA ≡ ΩAB(u) . (5.4)

If ΩAB is invertible –which requires N to be even–, the constraints ΦA ≈ 0 are second class
and ΩAB(u) gives the Dirac bracket (2.22) necessary to eliminate them. Elimination of these
second class constraints in the 2N-dimensional canonical phase space Γ̃ = {uA, pA} corresponds
to choosing half of the u’s as coordinates and the rest as momenta, and ΩAB(u) will be identified
as the (not necessarily canonical) pre-symplectic form in the reduced N-dimensional phase space
Γ. In fact, in the Hamiltonian approach the pre-symplectic form can be read from the equations
of motion for the action (5.1),

ΩAB(u) u̇A +EA(u) = 0 , (5.5)

where
ΩAB ≡ ∂AXB(u)−∂BXA(u) , and EA ≡ ∂AH(u) . (5.6)

Since ΩAB is a curl, it satisfies the identity ∂AΩBC +∂BΩCA +∂CΩAB = 0, which shows that the
presymplectic form is closed,

Ω = dX =⇒ dΩ ≡ 0.

This reasoning shows that in the open sets where ΩAB is invertible, the Lagrangian and Hamilto-
nian versions of this system are equivalent. In this case the inverse symplectic form, ΩAB, defines
the Poisson bracket for the theory in (not necessarily canonical) coordinates

ΩAB = [uA,uB] . (5.7)

In what follows, we will refer to Γ as the phase space where u are the coordinates.

The pre-symplectic form ΩAB(u) is a function of the phase space coordinates uA and its deter-
minant can vanish on some subset Σ ⊂ Γ of measure zero. Degenerate systems are characterized
by having a pre-symplectic form whose rank is not constant throughout phase space. Moreover,
in its evolution a degenerate system can reach a degenerate surface Σ where det[ΩAB] = 0 in a
finite time,

Σ = {u ∈ Γ |ϒ(u) = 0} , (5.8)
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where ϒ(u) = εA1A2···AN ΩA1A2 · · ·ΩAN−1AN is the Pfaffian of ΩAB, and det[ΩAB] = (ϒ)2.

Generically, a degenerate surface represents a co-dimension one submanifold in phase space
and, as shown in [47], the classical evolution cannot take the system across Σ. The equations of
motion (5.5) can be solved for u̇A provided ΩAB can be inverted. Moreover, the velocity diverges
in the vicinity of Σ, and if Ω has a simple zero, the velocity changes sign across Σ. Therefore an
initial state on one side of Σ could never reach the other: there is no causal connection between
configurations on opposite sides of Σ. This degeneracy surface Σ acts as a source or sink of
orbits, splitting the phase space into causally disconnected, non overlapping regions.

Fig. 5.1 Qualitative flow of the orbits near the degeneracy surface (blue lines), which can act as a
sink or as a source.

In the quantum case, the degeneracy of the symplectic form becomes the singular set of the
Hamiltonian and the corresponding Hilbert space H is endowed with a weighted scalar product,

< Ψ1,Ψ2 >=
∫

dV Ψ∗
1 wΨ2 , (5.9)

where dV =
√

gdnu is the volume form and the weight w(u) is the Pfaffian ϒ(u) of the symplectic
form ΩAB

w(u) :=
√

det [ΩAB(u)] = ϒ(u) , (5.10)

defined in order for the Hamiltonian to be symmetric and for the norm in H to be positive
definite.

Since singular points must be excluded from the domain of the Hamiltonian operator, for
consistency they should also be excluded from the domain of the wave functions. This means that
the Hilbert space includes wave functions that can be discontinuous at the degenerate surfaces.
Allowing discontinuous wave functions implies that the solutions can have support restricted to a
single region bounded by Σ. Therefore the Hilbert space is a direct sum of orthogonal subspaces
of functions defined on each side of the degenerate surface and, in complete analogy with the
classical picture, there is no quantum tunneling across Σ.
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5.2 Gauge Fixing and Gribov Ambiguity

The quantum description of a gauge-invariant system can be achieved by first fixing the gauge
and then applying the quantization prescription to the remaining classical degrees of freedom.
Let Γ be a phase space described by generalized coordinates uA (A = 1,2, · · · ,N), endowed with
a symplectic form ΩAB(u) everywhere invertible. Consider now an open patch of the phase space
Γ where a system has local symmetries generated by a set of first class constraints ψi(u)≈ 0,
(i = 1, . . . ,n < N/2). Following Dirac’s procedure, for a system with n first class constraints, an
equal number of gauge fixing conditions,

Gi(u)≈ 0 , i = 1, . . . ,n , (5.11)

must be included so that the whole set of constraints

{γI}= {Gi,ψ j} , I = 1, . . . ,2n < N , (5.12)

is second class (see [46]). In order to define a proper gauge fixing, two conditions must be
fulfilled: every orbit must intersect the surface defined by the set {Gi} in Γ (accessibility), and
orbits can’t intersect the surface defined by {Gi} more than once (complete gauge fixation). In
other words, the surface in phase space defined by the gauge conditions (5.11) must intersect
every orbit once and only once.

The submanifold defined by setting the constraints {γI} strongly equal to zero, corresponds
to the reduced gauge-fixed phase space of the system, which will be denoted by Γ0

Γ0 :=
{

uA ∈ Γ |γI(u) = 0, I = 1, . . . ,2n
}
. (5.13)

In Γ0 a new Poisson structure is introduced by the Dirac bracket (see (2.22))

[M,N]∗ = [M,N]− [M,γI]CIJ[γJ,N] , (5.14)

where CIJ is the inverse of the Dirac matrix constructed from the second class constraints {γI},

CIJ = [γI,γJ] = ΩAB
∂AγI∂BγJ . (5.15)

The symplectic form for the gauge fixed system in the reduced phase space defines the Dirac
bracket (5.14). Suppose now that the set of gauge conditions {Gi} fails to fix completely
the gauge in a region of phase space, leading to a Gribov ambiguity. This means that if a
configuration uA satisfies the gauge conditions Gi(u) ≈ 0, there exists a gauge-transformed
configuration uA +δuA that also satisfies it, namely

δGi (q, p)≈ ∂AGiδuA = 0 . (5.16)
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Fig. 5.2 The gauge condition Gi(u)≈ 0 (thick line) intersects the gauge orbits (thin lines) more than
once provided there exist points where the orbits run tangent to the gauge condition.

Since gauge transformations are generated by first class constraints,

δuA = ε
j
[
uA,ψ j

]
= ε

jΩAB
∂Bψ j , (5.17)

where ε j are infinitesimal parameters, the condition for the existence of Gribov copies (5.16)
takes the form

ε
jΩAB

∂AGi∂Bψ j = ε
j [Gi,ψ j

]
= 0 , (5.18)

which has nontrivial solutions (ε i ̸= 0) provided

det
[
Gi,ψ j

]
= 0 .

The matrix
[
Gi,ψ j

]
corresponds to the FP operator in gauge field theory, whose definition is

Mi j =
[
Gi,ψ j

]
= ΩAB

∂AGi∂Bψ j . (5.19)

Gribov ambiguity occurs if the determinant of the FP operator Mi j vanishes. The Gribov copies
continuously connected to a given configuration are related by the corresponding zero modes.
The Gribov horizon is defined to be the subset Ξ of phase space Γ where the FP determinant
vanishes,

Ξ :=
{

uA ∈ Γ | det[Mi j] = 0
}
. (5.20)

Now let’s observe that the Dirac matrix (5.15) for the set of constraints {γI} contains Mi j as a
submatrix

CIJ = [γI,γJ] =

(
ΩAB∂AGi∂BG j Mi j

−Mi j ΩAB∂Aψi∂Bψ j

)
. (5.21)
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Hence, as the set {ψi} is first class, the determinant of the Dirac matrix is given weakly by the
square of the FP determinant

det[CIJ]≈
(
det[Mi j]

)2
. (5.22)

In an open set where Mi j is invertible, the Dirac bracket (5.14) can be safely defined. On
the other hand, since at the Gribov horizon det[Mi j] vanishes, the determinant of the Dirac
matrix vanishes as well and the Dirac bracket becomes ill-defined there. Moreover, in the next
section, we will see that a Gribov ambiguity implies a degeneracy of the symplectic form for the
gauge-fixed system at the Gribov horizon.

5.3 Gribov Horizon and Degenerate Surfaces

In general, the gauge generators ψi ≈ 0, together with the gauge fixing conditions Gi ≈ 0 form a
set of 2n second class constraints. However, this is not globally true in the presence of a Gribov
ambiguity, which can have non-trivial consequences in the symplectic structure of the reduced
phase space. This can be seen considering an open set where the Dirac matrix CIJ is invertible,
CIJCJK = δ I

K . Setting the constraints strongly to zero defines the reduced gauge-fixed (physical)
phase space, which is generically a co-dimension 2n surface Γ0 embedded in phase space Γ.

Even though we started the analysis with a globally invertible symplectic form, implementing
the gauge fixing changes the Poisson structure and a new symplectic form for the reduced phase
space must be found. In order to explicitly write the symplectic form in the reduced phase space
it is useful to take adapted coordinates {UA}= {u∗a,vI}, where {u∗a} are first class coordinates
(in the sense that they have vanishing brackets with all second class constraints, see [46])

u∗a = ua − [ua,γI]CIJ
γJ with a = 1, ...,N −2n , (5.23)

while {vI} is chosen as the set of second class constraints (5.12)

vI = γI with I = 1, ...,2n . (5.24)

Consequently {u∗a} and {vI} are canonically independent coordinates, i.e.,

[u∗a,vI] = 0 . (5.25)

The conditions vI = 0 define the reduced phase space, and the u∗’s fix the position within the
reduced phase space Γ0. The matrix of their Poisson brackets given by

Ω̂AB =
[
UA,UB

]
=

(
ωab 0

0 CIJ

)
, (5.26)
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where
ω

ab = [u∗a,u∗b]≈ [ua,ub]∗ , (5.27)

is the inverse of the symplectic form in the reduced phase space ωab.
The passage from the generic coordinates {uA} to the adapted ones, {UA}= {u∗a,γI}, must be
well defined. Then, the Jacobian for the transformation,

J A
B =

(
∂UA

∂uB

)
=

(
∂Bu∗a

∂Bγ I

)
, (5.28)

is invertible. Assuming the original Poisson structure (5.7) to be well defined, i.e., det[ΩAB] =

Ω(u) ̸= 0, the new Poisson bracket in the adapted coordinates satisfies

det[Ω̂AB] =
(

det[J A
B]
)2

Ω . (5.29)

Now we will see that for a system with Gribov ambiguity, the symplectic form on the reduced
phase space, ωab, necessarily degenerates at the Gribov horizon, In fact, since the coordinates
UA are globally well defined, the determinant of the Jacobian (5.28) is finite everywhere. In
particular, it must approach a finite value J (ū) on the Gribov horizon,

det[J A
B]−→

u→ū
J (ū) ̸= 0 , (5.30)

where ū stands for the values of the coordinates at the Gribov horizon (5.20). From (5.26) this
means that

det[Ω̂AB] = det[ωab]det[CIJ]−→
u→ū

J (ū)2Ω(ū) . (5.31)

On the other hand, from (5.22) we know that the determinant of the Dirac matrix vanishes at
the Gribov horizon, and therefore the determinant of the Poisson structure on the reduced phase
space must be singular,

det[ωab]−→
u→ū

∞ .

Consequently, the reduced phase space symplectic form necessarily degenerates at the Gribov
horizon,

det[ωab]−→u→ū
0 . (5.32)

A well-defined Poisson structure ωab at the Gribov horizon (det[ωab(ū)] finite) requires det[Ω̂AB]−→
u→ū

0 and, consequently, the coordinates {UA} should be ill-defined there. This might happen if the
constraints (9.27) are not functionally independent at the Gribov horizon, that is, if the constraints
fail to be regular. If this problem is not produced by an erroneous choice of gauge fixing, it can
only be due to an irregularity in the first class constraints at the Gribov horizon. Irregularity in
dynamical systems is an independent problem from degeneracy and requires special handling to
define the system in a consistent manner [65]. An example of a system with Gribov ambiguity
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where the reduced symplectic form is non-degenerate due to irregularities will be analyzed in
Section 5.5.

The importance of this result is that when the global coordinates are well defined, the induced
symplectic form of the gauge-fixed theory degenerates at the Gribov horizon. Consequently,
as shown in [47] and [48], the dynamics is restricted to the regions of phase space bounded
by the degeneracy surface. This argument puts the Gribov-Zwanziger restriction on a firm
basis: the previous analysis (which strictly speaking only holds for finite dimensional systems)
suggests that the system cannot cross the Gribov horizon (since it is a degenerate surface for the
corresponding Hamiltonian system) and, therefore, the Gribov-Zwanziger restriction would be
naturally respected by the dynamics.

5.4 The FLPR Model

In this section we illustrate the previous discussion with a solvable model proposed by Friedberg,
Lee, Pang and Ren (FLPR), which presents a Gribov ambiguity for Coulomb-like gauge condi-
tions [66]. This model has been extensively studied trying understand how the Gribov ambiguity
could be circumvented [19, 67, 68]. We will show that, in this gauge, the symplectic form for
the gauge-fixed system becomes degenerate at the Gribov horizon. Closely related models, for
which Dirac quantization is non-trivial, have been analyzed in [69].

The Lagrangian for the FLPR model is

L =
1
2
(
(ẋ+αyq)2 +(ẏ−αxq)2 +(ż−q)2)−V (ρ) , (5.33)

where {x,y,z,q} are Cartesian coordinates, ρ =
√

x2 + y2, and α > 0 is a coupling constant. The
velocity q̇ is absent and therefore the coordinate q plays the role of an auxiliary field or Lagrange
multiplier. The associated canonical momenta are given by

px =
∂L
∂ ẋ = ẋ+αyq , py =

∂L
∂ ẏ = ẏ−αxq ,

pz =
∂L
∂ ż = ż−q , pq =

∂L
∂ q̇ = 0 .

(5.34)

Following Dirac’s procedure, we find one primary constraint

ϕ = pq ≈ 0 . (5.35)

The total Hamiltonian is given by

HT =
1
2
(p2

x + p2
y + p2

z )+ [α(xpy − ypx)+ pz]q+ξ ϕ +V (ρ) , (5.36)
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where ξ is a Lagrange multiplier. Time preservation of the constraint ϕ leads to the secondary
constraint

φ = pz +α (xpy − ypx)≈ 0 , (5.37)

which leads to no new constraints for the system. Since ϕ and φ have vanishing Poisson bracket,
they form a first class set, reflecting the fact that they generate the local2 gauge symmetries. The
constraint ϕ generates arbitrary translations in q,

δϕ(x,y,z,q) = (0,0,0,ε(t)) , δϕ(px, py, pz, pq) = 0 , (5.38)

while φ generates helicoidal motions,

δφ (x,y,z,q) = ε(t)(−αy,αx,1,0) , δφ (px, py, pz, pq) = αε(t)(−py, px,0,0) , (5.39)

as it is shown in Figure 5.3. Both transformations leave invariant the Hamiltonian (5.36) for
arbitrary ε(t) and ε(t). Note that the system is invariant under rotations in the x− y plane,
translations in z and time translations, but these are global symmetries that lead to conservation
of the z-components of the angular and the linear momenta, and the energy. Symmetries (5.38,
5.39), instead, are not rigid but local.
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Fig. 5.3 The orbits generated by gauge transformations in the FLPR model are helicoids of the
form (x,y,z) = (ρ cos[αε(t)],ρ sin[αε(t)],ε(t)).

2Locality here refers to time.
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The gauge freedom generated by ϕ , can be fixed by the gauge condition

G = q ≈ 0 , (5.40)

which is analogous to the temporal gauge A0 = 0 in Maxwell theory. Thus, the coordinate q
and its conjugate momentum pq, can be eliminated from phase space by an algebraic gauge
choice, as it happens with A0 in electrodynamics, which also enters as a Lagrange multiplier.
This partial gauge fixing eliminates the term ξ ϕ from Hamiltonian (5.36) and identifies q as a
Lagrange multiplier. The result is a Hamiltonian system in the 6-dimensional phase space Γ with
coordinates {uA}= {x, px,y, py,z, pz} and a single (necessarily first class) constraint φ ≈ 0. The
Poisson bracket in this phase space is given by

[M,N]Γ = ΩAB
∂AM∂AN , (5.41)

where ΩAB is the canonical Poisson bracket, and the canonical symplectic form is

ΩAB =



0 1 0 0 0 0
−1 0 0 0 0 0

0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0


. (5.42)

Following [66], the gauge freedom generated by φ is to be eliminated by a gauge condition
G(x,y,z)≈ 0, where G is a linear homogeneous function, which is in some sense analogous to
the Coulomb gauge. Since the system is invariant under rotations in the x− y plane, we can
choose the gauge condition to be independent of y. Hence, we take

G = z−λx ≈ 0 , (5.43)

which is called λ -gauge. As it can be seen, for λ ̸= 0 the condition (5.43) does not fix the gauge
globally (see Figure 5.4). In the same way as the Coulomb gauge does in Yang-Mills theory, it
has a Gribov ambiguity at y =−(αλ )−1. In fact, the non trivial Poisson bracket,

M = [G,φ ] = 1+αλy , (5.44)

which corresponds to the Faddeev-Popov determinant, indicates that these are second class
constraints everywhere in Γ0, except at y = −(αλ )−1. Consequently, detC = M 2 vanishes
where the condition G ≈ 0 fails to fix the gauge, that is on the Gribov horizon

Ξ = {(x, px,y, py,z, pz) ∈ Γ |M = 0} . (5.45)
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Fig. 5.4 The surface defined by the λ -gauge condition G = z−λx = 0 is a plane (here plotted
for λ = 1). The Gribov ambiguity in the FLPR model is reflected by the fact that this plane
intersects some gauge orbits more than once.

When the second class constraints (5.37, 5.43) are set strongly equal to zero, z and pz can be
eliminated from the phase space. The four-dimensional reduced phase space Γ0, parametrized
with coordinates (x, px,y, py), acquires a non-canonical Poisson structure given by the Dirac
bracket (5.14) , where γI are the second class constraints {G,φ}

γI : γ1 = G = z−λx , γ2 = φ = pz +α(xpy − ypx) , (5.46)

and CIJ is the inverse of the Dirac matrix CIJ ≡ [γI,γJ] . In this case, the Dirac matrix is given by

CIJ = [γI,γJ]Γ =

(
0 M

−M 0

)
, (5.47)

and the Dirac brackets are given by

[x, px]
∗ =

1
M

, [x,y]∗ = 0 , [x, py]
∗ = 0 , (5.48)

[y, py]
∗ = 1 , [y, px]

∗ =
αλx
M

, [px, py]
∗ =−αλ px

M
.
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In the reduced phase space, the Poisson matrix (5.27) takes the form

ω
ab =


0 1

M 0 0
− 1

M 0 −αλx
M −αλ px

M

0 αλx
M 0 1

0 αλ px
M −1 0

 , (5.49)

and the corresponding symplectic form is

ωab =


0 −M −αλ px αλx

M 0 0 0
αλ px 0 0 −1
−αλx 0 1 0

 . (5.50)

It can be checked that this symplectic form is closed, ∂aωbc +∂bωca +∂cωab = 0 and therefore
in a local chart it can be expressed as the exterior derivative of a one-form, ωab = ∂aXb −∂bXa

(or ω = dX), which can be integrated as

X(x, px,y, py) = (px +αλ [ypx − xpy])dx+ pydy . (5.51)

The determinant of the symplectic form in the reduced phase space can be read off from (5.50),
and is given by

det[ωab] = M 2 . (5.52)

Clearly, ωab degenerates precisely at the Gribov (5.45) restricted to the constraint surface and
the degeneracy surface (5.8) is given by

Σ = {(x, px,y, py) ∈ Γ0|ϒ(u)≡ M = 0} . (5.53)

This corresponds to a particular realization of the behavior (5.32). In fact, defining σ2 =

1+α2λ 2ρ2 > 0, the eigenvalues of the reduced symplectic form are given by {±iω+,±iω−},
where

ω± =
1√
2

[
σ

2 +M 2 ±
√
(σ2 +M 2)2 −4M 2

]1/2

. (5.54)

Near the degeneracy ω+ and ω− can be expanded in powers of M , leading to

ω+ ≈ σ , ω− ≈ M

σ
. (5.55)

Hence, as the system approaches to the degeneracy ω+ goes linearly to zero while ω− never
vanishes, which means that the symplectic form ωab has a simple zero in the degeneracy surface
and this system corresponds to the class of degenerate systems discussed in [47] and [48].
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It is reassuring to confirm that the degeneracy is not an artifact introduced by the change of
coordinates {UA}→ {u∗a,vI} defined in (5.23), which in this case is given by

x∗ =
x+αyz

M
, p∗x =

px +α pyz+αλ pz

M
,

y∗ = y− αx(z−λx)
M

, p∗y = py −
α px(z−λx)

M
,

v1 = γ1 = z−λx , v2 = γ2 pz +α (xpy − ypx) .

, (5.56)

In fact, the Jacobian (5.28) is given in this case by

J A
B =



1
M 0 0 0 αy

M 0

0 1
M −αλ px

M
αλx
M

αλ py
M

λ

M
αλx
M 0 1 0 −αx

M 0
αλ px
M 0 0 1 −αλ px

M 0
−λ 0 0 0 1 0
α py −αy −α px αx 0 1


, (5.57)

which, in spite of the the apparent singularities in its entries, has unit determinant everywhere in
phase space, (detJ )|Γ ≡ 1 .

5.4.1 Effective Lagrangian for the Gauge-fixed System

The gauge-fixed system is a degenerate one described by a first order Hamiltonian action, as
presented in (5.1),

Ig f [u] =
∫

dt [u̇aXa(u)−Hg f (u)] , (5.58)

where Xa is given by (5.51), Hg f is the gauge-fixed Hamiltonian,

Hg f =
1
2
(1+α

2y2)p2
x +

1
2
(1+α

2x2)p2
y −α

2xypx py +V (x2 + y2)

=
1
2

gi j pi p j +V (x2 + y2) . (5.59)

Here the matrix

gi j :=

[
(1+α2y2) −α2xy
−α2xy (1+α2x2)

]
(5.60)

is the inverse of the metric

gi j :=
1

1+α2ρ2

[
(1+α2x2) α2xy

α2xy (1+α2y2)

]
. (5.61)
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5.4.2 Gauge Orbits and Phase-Space

Gribov ambiguity results from the fact that the surface defined by a gauge condition does not
intersect every gauge orbit once and only once. As it was mentioned in Section 5.2, this is a
requirement to achieve a proper gauge fixing [46]. In the case of the FLPR model this clearly
happens because the plane defined by (5.43) intersects some gauge orbits many times for λ > 0,
as it can be seen in Figure 5.4. The G = 0 plane intersects more than once any orbit such that
x2 + y2 > (αλ )−2. The only way that this doesn’t happen is if λ = 0.
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Fig. 5.5 In the case of the FLPR model, the Gribov horizon (blue plane), y =−(αλ )−1, and the
constraint surface (green plane), G = 0, are plotted for λ = 1 and α = 1/3. The GH divides the
constraint surface in two dynamically disconnected regions.

Degenerate surfaces divide phase space into dynamically disconnected regions. In this case
the presence of the Gribov horizon defines two regions in physical gauge fixed space (see Figure
5.5)

C+ := {(x,y,z) |z−λx = 0, 1+αλy > 0} , (5.62)

C− := {(x,y,z) |z−λx = 0, 1+αλy < 0} . (5.63)

These two regions are not equivalent since only C+ contains at least one representative of every
gauge orbit, while not all gauge orbits pass through C−. To restrict the analysis of the system to
one region or the other is consistent in the sense that all states whose initial condition is in one
region will remain there always (see [48]). In Yang-Mills theories the Gribov region corresponds
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to the neighborhood of Aµ = 0 in the functional space of connections where the FP operator
is positive definite [16] and small copies (namely, points infinitesimally close which belong to
the same gauge orbit) are absent. In the Yang-Mills case all the gauge orbits cross the Gribov
region at least once [29]. Similarly to what happens in the Yang-Mills case, within the region C+

(which contains at least one representative of every gauge orbit) there are still large copies [30].

5.4.3 Quantization

In order to define the quantum theory, the Hilbert space for the system must be equipped with an
inner product that provides a scalar product and a norm

∥Ψ(u)∥=
(∫

d2u
√

gw(u) |Ψ(u)|2
)1/2

. (5.64)

In the FLPR model, g = (1+α2ρ2)−1 is the determinant of the metric (5.61) and the weight
w(u) is such that the Hamiltonian is symmetric, that is,∫

d2u
√

gw(u)Ψ∗
1(u)

(
ĤΨ2(u)

)
=
∫

d2u
√

gw(u)
(
ĤΨ1(u)

)∗Ψ2(u) . (5.65)

As discussed in Section 5.1, the proper choice for the measure w(u) corresponds to the Pfaffian
of the symplectic form ωab (5.50), given in this case by (5.53),

w(u) = ϒ = M = 1+αλy , (5.66)

whose zeros define the degeneracy surface (5.8). In order to see this, let’s define new variables
{πi} canonically conjugate to the u’s, so that

[ui,π j]
∗ = δ

i
j,

{
ui}= {x,y} . (5.67)

A simple calculation using (5.48) leads to the following expression of the momenta in terms of
the π’s

px =
1

1+αλy
(πx +αλxπy) , py = πy . (5.68)

The quantum operators are then obtained via the prescription

ui −→ ûi = ui ,

πi −→ π̂i =−ih̄∂i , (5.69)

[ , ]∗ −→ 1
ih̄
[ , ] (Commutator) .
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Using (5.68), the classical Hamiltonian (5.59) can be rewritten as

H =
1
2

hi j
πiπ j +V , (5.70)

where hi j is the inverse of the metric

hi j =
1

1+α2ρ2

(
(1+αλy)2 +α2 (1+λ 2)x2 α2xy−αλx

α2xy−αλx 1+α2y2

)
. (5.71)

At the quantum level, the correct ordering for the quantum operators (5.69) that renders the
Hamiltonian symmetric –and invariant under general coordinate transformations– is the one for
which Ĥ is a Laplacian for the metric hi j [70], i.e.

Ĥ =− h̄2

2
1√
|h|

∂i

(√
|h|hi j

∂ j

)
+V (ρ) , (5.72)

where h is the determinant of (5.71) and where integration measure in (5.64) is
∫

d2u
√

h. A
straightforward computation leads to

√
h =

(1+αλy)√
1+α2ρ2

=
√

gϒ , (5.73)

which confirms (5.66). Hence, the measure of the Hilbert space vanishes exactly where the
symplectic form does. Then, according to the results in [48] this permits to interpret the
corresponding Hilbert space as a collection of causally disconnected subspaces: there is no
tunneling from one side of the degenerate surface to the other. In turn, this confirms the
dynamical correctness of imposing the restriction to the interior of the Gribov region, at least for
first quantization.

5.5 Irregular Case

As mentioned in Section 4, there is an exceptional case in which the reduced symplectic form is
non-degenerate at the Gribov horizon. As it will be shown in the following, this could happen if
the constraints fail to be functionally independent, i.e., if they are irregular [46, 65].

A set of constraints is regular if they are functionally independent on the constraints surface.
For a set of constraints (5.12) this is ensured by demanding that the Jacobian

K I
B =

∂γI

∂uB

∣∣∣∣
Γ0

(5.74)
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has maximal rank on the constraint surface. In particular, for a set of two constraints {G,φ}, this
means

dG∧dφ |Γ0 ̸= 0 =⇒ ∂[AG∂B]φ |Γ0 ̸= 0 , (5.75)

while the Dirac matrix (5.21) takes the form

CIJ =

(
0 M

−M 0

)
, (5.76)

where M = [G,φ ] the FP determinant. Hence, using (9.29) and (5.21), the reduced phase space
symplectic form (5.27) can be expressed weakly as

ω
ab ≈ [ua,ub]∗ = Ωab +M−1ΩaCΩDb

∂[CG∂D]φ . (5.77)

This suggests that, if the constraints fail the regularity test (5.75) at the Gribov horizon, the
singularity in the inverse of the FP determinant M−1 can be cancelled by the vanishing quantity
∂[CG∂D]φ and no degeneracies would appear even in the presence of Gribov ambiguity.

Another way to see this picture for a general set of constraints (5.12), {γI} = {Gi,φ j},
is by noting that, as the original symplectic structure (5.7) is considered to be well defined
(det[ΩAB] = Ω), the determinant of the Poisson bracket in the new coordinates UA = [u∗a,vI],
defined by (5.23) and (5.24) is given by (5.29), which can be evaluated on the constraint surface
Γ0,

det[Ω̂AB]
∣∣∣
Γ0

=
(

det
[
J A

B

])2
Ω
∣∣∣∣
Γ0

. (5.78)

On the other hand, the Jacobian (5.28) evaluated on γI = 0 can be written in terms of (5.74) as

J A
B

∣∣∣
Γ0

=

(
∂Bu∗a

K I
B

)
. (5.79)

Hence, if the constraints (9.27) are irregular at the Gribov horizon, both K I
B and J A

B|Γ have
non-maximal rank, implying that the determinant det

[
J A

B
]

vanishes at the intersection of the
Gribov horizon and Γ0. Therefore,

det[Ω̂AB]
∣∣∣
Γ0

−→
u→ū

0 . (5.80)

Then, looking again at (5.26), we see that in this case the vanishing of det [CIJ] at the Gribov
horizon does not imply that the reduced phase space Poisson structure should blow up and
degeneracies in the symplectic structure of the gauge fixed system can be overcome. However,
this situation is even more pathological than the degenerate one, as the gauge-fixed system
doesn’t describe the dynamics of the original system. In the following, an explicit example of
this situation will be presented.
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5.5.1 Example: Christ-Lee Model

The Lagrangian for the Christ-Lee model [71] is given by

L =
1
2
(ẋ+αyq)2 +(ẏ−αxq)2 −V (x2 + y2) ,

where α > 0 is a coupling constant. The canonical momenta of the system are given by

px = ẋ+αyq , py = ẏ−αxq , pq = 0 . (5.81)

Dirac’s method leads to the following first class constraints

ϕ = pq ≈ 0 , φ = xpy − ypx ≈ 0 , (5.82)

which generate arbitrary translations in q and rotations in the x− y plane respectively. The total
Hamiltonian is given by

HT =
1
2
(p2

x + p2
y)+α(xpy − ypx)q+ξ ϕ +V (ρ) , (5.83)

where ξ is a Lagrange multiplier As before, the constraint ϕ can be trivially eliminated by
the introduction of a gauge condition G = q ≈ 0. The Dirac bracket associated to this pair of
constraints is just the Poisson bracket in the coordinates {x, px,y, py}, and using this we can set ϕ

and G strongly to zero. Now we will focus on the constraint φ , whose action on the coordinates
generates circular orbits in phase space.

- 2 - 1 1 2
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- 2

- 1

1

2

y

Fig. 5.6 Orbits for the Christ-Lee model are given by circles centered at the origin. The GH (blue
line) and the surface G = 0 (green line) are plotted for µ = 2. The GH restricted to the constraint
surface corresponds to the point x = y = 0.
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As we are interested in Gribov ambiguity, we will pick the following gauge condition [67]

G = y−µx ≈ 0 , (5.84)

with µ a constant. The Dirac matrix for this set of constraints γI = {G,φ} with I = 1,2 is given
by (5.76) where

M = [G,φ ] = x+µy ,

and there exists a Gribov horizon (5.20) defined by

Ξ :=
{
(x, px,y, py) ∈ Γ |M = 0

}
. (5.85)

The Poisson structure of the space is given via the Dirac bracket (5.14), where γI are the
second class constraints {G,φ}. This leads to

[x, px]
∗ =

x
M

, [x,y]∗ = 0 , [x, py]
∗ =

y
M

,

[y, py]
∗ =

µy
M

, [y, px]
∗ =

−µy
M

, [px, py]
∗ =

µ px py

M 2 .
(5.86)

Once the second class constraints G and φ are strongly equal to zero

y = µx , py = µ px , (5.87)

we are left with only one degree of freedom corresponding to the variable x. The Gribov horizon
restricted to the constraint surface G = 0 is given by x = 0 (see Figure 5.6). Then, the reduced
phase space symplectic form (5.27) turns out to be non-degenerate

ωab =

(
0 −

(
1+µ2)

1+µ2 0

)
, det[ωab] =

(
1+µ

2)2
. (5.88)

However, in this case, the constraints {G,φ} are not functionally independent at the Gribov
horizon. To see this consider the sub-block (5.74) of (5.79) whose rank determines the functional
independence of the constraints {G,φ},

K I
B =

∂γI

∂uB

∣∣∣∣
Γ0

=

(
−µ 0 1 0
µ px −µx −px x

)
. (5.89)

This matrix has non-maximal rank on the Gribov horizon restricted to the constraint surface
(x = 0), then the constraints are not regular there because their gradients are proportional.

The gauge-fixed Lagrangian now reads

L =
1
2
(
1+µ

2) ẋ2 −V
(
(1+µ

2)x2) , (5.90)
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which seems to be free of degeneracy at the Gribov horizon. However this is an illusion because
the absence of degeneracy results from the fact that the constraints are no longer functionally
independent, so that the system, on the Gribov horizon, fails to be regular.



Chapter 6

Conclusions and Future Directions

In the first part of the thesis, the relation between Gribov ambiguity and degeneracy in Hamilto-
nian systems has been studied. In this context, the Gribov restriction for QCD can be seen as
a prescription consistent with the fact that it is respected by the dynamics, both classical and
quantum mechanically, at least in finite dimensional Hamiltonian systems.

In gauge systems with finite number of degrees of freedom, the existence of Gribov ambiguity
in the gauge fixing conditions leads to a degenerate symplectic structure for the reduced system:
the degenerate surface in the reduced phase space is the Gribov horizon restricted to the constraint
surface. It is important to observe that, although in the FLPR model the Gribov ambiguity can
be circumvented by choosing λ = 0 (leading to the analog of the axial gauge in field theory), an
analogous choice is not possible for Yang-Mills theories. In fact, as shown in [17], in order to
include relevant non-trivial configurations –like instantons– in the function space of the theory,
certain boundary conditions must be imposed on the fields, which rule out algebraic gauge
conditions (see also [16]). In this sense, a consistent analog of the limit λ → 0 for field theories
does not exist, the Gribov ambiguity is unavoidable for gauge theories, and degeneracies should
be expected in the gauge-fixed system. As we have shown, when the requirement of regularity
is not imposed, a non-degenerate gauge-fixed systems can be obtained. However this is not
a solution to the problem. Regularity is a key requirement for a set of constraints to be well
defined, as irregularities lead to a Lagrangian that does not describe the real dynamics of the
original system.

Even if the generalization of our results to field theories is conceptually straightforward, an
interesting future direction for this work is to look for explicit degeneracies in the gauge-fixed
symplectic form of Yang-Mills type theories.

On the other hand, it has been shown that the semi-classical Gribov approach applied to
finite-temperature Yang-Mills theory is consistent with the presence of a confined/deconfined
phase transition. This is reflected in the fact that the existence of solutions of the Gribov the gap
equation depends on the temperature. A key ingredient for the consistent description of these
different regimes is the inclusion of a mass term in the gluon propagator, which comes from the
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one-loop corrections to the theory, and is consistent with the fact that the thermal mass (4.7)
causes gluon deconfinement, as explained in [60]. This result suggest that, when temperature
is included in the theory, the degeneracy in the reduced phase space produced by the Gribov
horizon disappears at some critical temperature.

In order to be able to study the low-temperature limit, we have introduced a modified running
coupling g, which interpolates between the standard perturbative result in the ultraviolet regime
and a constant (in principle infinite but unobservable) for the infrared regime. It is worth to note
that this modification has been considered only for consistency, as it allows the gluon thermal
mass to go to zero for low temperature, but the presence of these phase transitions does not
depend on this fact. Indeed, the same qualitative behavior for the gluon propagator was obtained
when considering the standard one-loop running coupling (4.20) and, furthermore, it can be
shown that phase transitions are also present if only a constant coupling is considered in the
whole analysis.

For the analysis of the Gribov gap equation at finite temperature, the scaling solution has
been considered, in which the gluon propagator (3.24) vanishes and the ghost propagator (3.25)
blows up as 1/q4 in the infrared limit q → 0. On the other hand, it is clear by now that the
decoupling solution (where the gluon propagator goes to a constant in the infrared limit while
the ghost propagator has a free-like behavior) is the relevant one [72–74]. The decoupling
solution has a strong lattice support [75–78] and can be obtained analytically within the refined
Gribov-Zwanziger theory by including some condensates [79, 35, 37]. It would certainly be of
interest to study the refined Gribov-Zwanziger approach at finite temperature.

It is important to note that even though the analysis made for finite dimensional Hamiltonian
systems extends in a straightforward way the case of Yang-Mills theory in which there are infinite
Gribov horizons [80], the problem involves additional important technical difficulties, as for
instance, the definition of the reduced phase space when non-algebraic gauge conditions are
adopted. In particular, when set strongly to zero, this kind of gauge conditions does not allow to
express one field as local functions of the remaining ones, and a local action for the physical
degrees of freedom with the reduced symplectic form is not available. These difficulties in the
standard Hamiltonian formulation for Yang-Mills theories make the path integral formalism better
suited. However, an interesting novel Hamiltonian approach to QCD, where Dirac reduction
is considered, has been recently developed in [81], which could be worth to study within this
context.

On the other hand, the question of whether the degeneracy surface can act as a sink or
as a source in Yang-Mills theories is as interesting as extremely difficult and deserves further
investigation. The difficulty stems from the fact that in Yang-Mills the Gribov horizon is an
infinite-dimensional hyper surface with quite a complicated topology. Hence, in order to deter-
mine whether the degeneracy is a sink or a source, one should have a complete characterization
of the geometry in the vicinity of the horizon.
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An interesting result in the analysis of finite temperature QCD is the appearance of an
intermediate regime in between the confined and free regimes, in which only one of the two
gluonic degrees of freedom is physical, while the other one does not belong to the physical
spectrum. In this sense, this new regime captures traces of both confined and deconfined regimes.
Hence, this scenario could be interpreted as a partial deconfinement or a semi-QGP phase, which
has been studied in [82–84]. Another future direction of this thesis is the understanding of this
behavior at the Hamiltonian level in the context of degeneracies in the symplectic structure of
gauge fixed systems.

The fact that the Gribov horizon is a degeneracy surface for the gauge fixed system, which
persists at the quantum level, strongly supports the consistency of the Gribov restriction for
QCD, as the degeneracy divides phase space into causally disconnected regions. Even though
the Gribov-Zwanziger idea is heuristic and supported by the fact that every orbit intersects the
Gribov region [28] (which means that no physical information is lost if the restriction is applied),
the results it yields have gained acceptance by their match with the lattice data. Our results
provide a novel point of view for the problem in support of the Gribov-Zwanziger proposal that
makes it worth to be studied deeper within the Hamiltonian framework.





Part II

Three-dimensional Gravity





Chapter 7

Introduction to Part II

A prime example of duality between a three-dimensional and a two-dimensional theory is the
relation between a Chern-Simons theory in the presence of a boundary and the associated chiral
Wess-Zumino-Witten (WZW) model: on the classical level for instance, the variational principles
are strictly equivalent as the latter is obtained from the former by solving the constraints in the
action [85–87].

In the case of the Chern-Simons formulation of 3d gravity [9, 88], the role of the boundary
is played by non trivial fall-off conditions. For anti-de Sitter or flat asymptotics, a Gibbons-
Hawking like boundary term is required to make solutions with the prescribed asymptotics
true extrema of the variational principle. Furthermore, the fall-off conditions lead to additional
constraints that correspond to fixing a subset of the conserved currents of the WZW model
[10, 89]. The associated reduced phase space description is Liouville theory in the AdS case and
a suitable limit thereof in the flat case [11, 12]. As already noted in [89] and also more recently
in [90, 91], this analysis does not take non trivial topology and the associated holonomies into
account. When this is done, one expects modified chiral boson or Liouville type actions actions.

In this part of the thesis we follow a different approach to construct dual two-dimensional
action principles for the gauge fixed solution space of three-dimensional gravity. Indeed, both in
the asymptotically AdS and flat cases, this space is known to coincide with the centrally extended
coadjoint representation, at fixed values of the central charges, of the asymptotic symmetry
groups, via two copies of the Virasoro group [6, 92–97] and the centrally extended B̂MS3 group
[98–100, 11, 101, 102], respectively (see also [103, 104] for recent related considerations). As a
consequence, the gravitational solution space admits a partition into coadjoint orbits. For any
group G, the individual orbits are symplectic spaces (see e.g. [105, 106, 14, 15] and original
references therein), to which are associated in a canonical way to geometrical actions, which
admit G as a global symmetry group [107].

When applied to three-dimensional gravity, we will get in this way finer actions than those of
[10, 89, 11, 12], precisely adapted to the individual orbits. In the anti-de Sitter case for instance,
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one finds an intriguing connection between 3d and 2d gravity [108–110]. In the flat case, this
approach allows us to construct generalized B̂MS3 invariant actions.

Another interesting aspect of this approach to two-dimensional conformal or BMS3 invariant
actions is that, exactly like in the case of loop groups and the associated WZW models, they can
also be interpreted as one-dimensional particle-type actions for infinite-dimensional groups. The
spatial dimension is hidden or emergent, depending on whether one uses a Fourier expansion for
the Lie algebra generators and their duals with associated infinite mode sums or an inner product
with an explicit integration over the circle.

In Chapter 8, the main aspects of three dimensional gravity are exposed and its Chern-Simons
formulation is reviewed. It will be also shown that 2+1 dimensional anti-de Sitter space-times are
Lorentz-flat and the implications for the dual theories for gravity will be discussed. In Chapter 9,
the symplectic structure on coadjoint orbits will be discussed and the Hamiltonian analysis of
the Kirillov-Kostant action will be performed. Chapter 10 will be devoted to the construction of
dual field theories for three-dimensional gravity as geometrical action on coadjoint orbits of the
associated asymptotic symmetry groups.



Chapter 8

Classical Duals of Three-dimensional
Gravity

8.1 Einstein Gravity in Three-dimensions

The dynamics of the gravitational field, described by the metric gµν , is governed by Einstein
equations

Rµν −
1
2

gµνR+Λgµν = 0 , (8.1)

where Rµν is the Ricci tensor, R ≡ gµνRµν is the Ricci scalar and Λ is the cosmological constant.
This equations can be obtained from the d-dimensional Einstein Hilbert action

IEH ≡ 1
16πG

∫
(R−2Λ)

√
−gddx , (8.2)

where we have considered c = 1, G is the d−dimensional Newton constant, g is the determinant
of the metric.

In dimension d ≥ 4 General Relativity can not be written as a gauge theory for the Poincare
or (A)dS group, making its quantization an intractable problem [111]. In three dimensions,
however, Einstein Gravity can be formulated as true gauge theory. In fact, for d = 3 the Einstein
Hilbert action can be written as a first order theory using the language of differential forms

IEH =− 1
16πG

∫
εabc

(
Rabec − Λ

3
eaebec

)
, (8.3)

where Rab = dωab + ωa
c ωcb is the curvature 2−form, ωab = ωab

µ dxµ is the Lorentz spin-
connection and ea = ea

µdxµ correspond to the dreibein forms, whose components define the
soldering form between open sets in the manifold M and the corresponding tangent spaces and
satisfy gµν ≡ ea

µeb
νηab, with ηab = diag(−++) the Minkowski metric
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8.1.1 Chern-Simons Formulation

The action (8.3) can be formulated as Chern-Simons theory [88]. In fact, defining the gauge
connection

A = eaPa +ω
aJa ,

where is the dual spin connection ωa = 1
2εa

bcωbc, the Einstein-Hilbert action can be written as

IEH =− k
4π

∫ 〈
AdA+

2
3

A3
〉

,

where k = 1
16πG and the gauge generators {Ja,Pa} satisfy the algebra

[Ja,Jb] = εc
abJc ,

[Jab,Pc] = εc
abPc ,

[Pa,Pb] =± 1
l2 εc

abJc ,

where l2 =∓1/Λ, which corresponds to the SO(2,2) (SO(3,1)) group in the case of negative
(positive) cosmological constant and to the ISO(2,1) group for the case of vanishing cosmologi-
cal constant Λ = 0.

8.1.2 Lorentz Flat Geometries

One of the most remarkable properties of three-dimensional Einstein gravity with negative
cosmological constant is that it admits the BTZ black hole solution [112], whose line element is
given by

ds2 =− f 2dt2 + f−2dr2 + r2(Nφ dt +dφ)2 , (8.4)

where f 2 =−M+ r2/ℓ2 + J2/(2r)2, and Nφ =−J/(2r2). Here M is the mass, J is the angular
momentum, and the coordinates have the standard ranges, −∞ < t < ∞, 0 < r < ∞, 0 ≤ φ ≤ 2π .
The BTZ black hole shares all the features of the more realistic 3+1 counterparts, such as the
existence of an event horizon that surrounds the central singularity, its formation by collapsing
matter, the emission of Hawking radiation consistent with thermodynamics, and the relation
between entropy and the area of the horizon, among others. On the other hand, the enormous
simplification resulting from the absence of propagating degrees of freedom in 2+1 dimensions
makes it an ideal laboratory to test gravitation theory in a lighter setting [113].

Another exceptional feature of the BTZ black hole is that in any simply connected patch
U of the geometry, it is parallelizable with respect to a Lorentz connection [114]. This means
that U can be covered with a family of locally inertial frames (freely falling observers) so that
they can all be obtained by parallel transport from a given one U0, independently of the path
taken to connect them. The notion of parallelism here is the one relevant to the Lorentz group,
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characterized by the connection one-form ωa
b = ωa

bµdxµ . This connection defines the covariant
derivative of a Lorentz vector va with respect to the Lorentz group as

Dva = dva +ω
a

bvb , (8.5)

and the corresponding Lorentz curvature is Ra
b := dωa

b +ωa
cωc

b.

The geometry of the BTZ solution is the quotient of the AdS3 space-time by an isometry that
identifies points along a Killing vector [115],

MBTZ = AdS3/ΓK . (8.6)

Varying the action with respect to the metric, the field equations describe a manifold of constant
negative Riemann curvature,

Rαβ
µν =−ℓ−2

(
δ

α
µ δ

β

ν −δ
α
ν δ

β

µ

)
. (8.7)

As is well known, parallel transport of a vector (or a frame) in a closed loop produces a
rotated vector (or frame) by a magnitude that depends on the total curvature enclosed by the
loop. Hence, the possibility of covering the region U with a family of parallel-transported frames
independently of the path in a consistent manner, requires the corresponding curvature to vanish,

Ra
b(x) = 0 , ∀x ∈U . (8.8)

Since the Lorentz curvature does not make any reference to the metric gµν(x), a natural
question to ask would be, what is the most general metric consistent with a Lorentz-flat geometry?
In other words, does Rab = 0 determine, or impose some constraints, on the metric of the
manifold? In order to answer this question, we can start by defining the metric in terms of the
local frame one-forms (vielbeins), ea(x) = ea

µ(x)dxµ ,

gµν(x) = ηabea
µeb

ν . (8.9)

The vielbeins are vectors under the Lorentz group acting in the tangent space, and their covariant
derivative defines the torsion two-form,

T a = Dea = dea +ω
a

beb , (8.10)

which is also independent of the metric. However, the covariant derivative of the torsion must
vanish, because DT a = Ra

beb. So, we conclude that a Lorentz-flat space-time Ra
b = 0 can only

admit a covariantly constant torsion,
DT a = 0 . (8.11)
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Splitting the Lorentz connection into a torsion-free part ω̄a
b and the contorsion, κa

b =ωa
b−ω̄a

b,
we obtain

T a = κ
a

beb . (8.12)

The Lorentz curvature can also be split into a purely metric part and torsion-dependent terms,

Ra
b = Ra

b + D̄κ
a

b +κ
a

cκ
c
b , (8.13)

where Ra
b is the curvature for the torsion-free part of the connection, given by the Riemann

tensor as
Rab =

1
2

ea
αeb

β Rαβ
µνdxµdxν . (8.14)

In 2+1 dimensions, the condition DT a = 0 can be integrated to

T a = τε
a

bcebec , (8.15)

where εa
bc = ηadεdbc is the Levi-Civita anti-symmetric invariant symbol. In (8.15) τ is a free

integration parameter. From this last expression, the contorsion can be identified as κa
b =

−τεa
bcec. Using this expression in (8.13) yields

Rab = Rab + τ
2eaeb . (8.16)

In other words, a space-time with vanishing Lorentz curvature corresponds to an anti-de Sitter
(τ ̸= 0) or flat (τ = 0) Riemannian geometry, where ℓ= 1/τ is the radius of curvature. The fact
that (8.4) defines a Lorentz flat geometry with covariantly constant torsion can also be explicitly
verifiedby defining the dreibein forms

e0 = f dt , (8.17)

e1 = f−1dr , (8.18)

e2 = r (dϕ +Nϕdt) . (8.19)

The vanishing torsion condition, dea + ω̄a
beb = 0, can be solved for the connection and leads to

ω̄
0

1 =
r
l2 dt − J

2r
dϕ , (8.20)

ω̄
1

2 =− f dϕ , (8.21)

ω̄
2

0 =− J
2 f r2 dr . (8.22)
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The corresponding Riemannian two-form has constant, negative (or zero) curvature, R̄ab =

−l−2eaeb. On the other hand, the full Lorentz connection ωa
b reads

ω
0

1 =

(
r
l
− ε

J
2r

)[
1
l

dt + εdϕ

]
, (8.23)

ω
1

2 =− f
[

ε

l
dt +dϕ

]
, (8.24)

ω
0

2 =− 1
l f

(
Jl

2r2 + ε

)
dr , (8.25)

which can b explicitly checked to be flat, Rab = 0.

Now, since 2+1 black holes for any M and J are obtained by an identification of AdS3,
all of them are locally Lorentz-flat. In fact, this feature can also be extended to other locally
AdS3 solutions, like the naked singularities obtained by identifications that produce a conical
singularity [116].

8.2 Classical Dual Field Theories

In this section we will review the procedure to obtain classical two-dimensional dual field theories
for Einstein gravity both for the Asymptotically AdS and asymptotically flat case following
[10, 12]. The theories are constructed in the Chern-Simons formulation by first solving the
constraints in the action and subsequently by imposing the corresponding boundary conditions at
the level of the currents of the theory.

8.2.1 AdS3 Case

The notion of asymptotically AdS space-times in three dimensions, which at spatial infinity have
the form

ds2 −→
r→∞

−r2

ℓ2 dt2 +
ℓ2

r2 dr2 + r2dφ
2 ,

can be made precise by defining the following set of boundary conditions due to Brown and
Henneaux [6].

Lξ grr ∼ O
(
r−4) , Lξ gra ∼ O

(
r−3) , Lξ gab ∼ O(1) , (8.26)

where a,b = t,φ . These boundary conditions determine the form of the asymptotic Killing
vectors to be

ξ t = ℓ
(

T++T−+ ℓ2

r2 ∂ 2
+T++ ℓ2

r2 ∂ 2
−T−

)
+O

(
r−4) ,

ξ φ = T+−T−− ℓ2

2r2 ∂ 2
+T++ ℓ2

2r2 ∂ 2
−T−+O

(
r−4) ,

ξ r =−(∂+T++∂−T−)r+O
(
r−1) ,
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where T± = T± (t/ℓ±φ). Decomposing the vectors in T+ and T− dependent parts as ξ =

λ+ [T+]+λ− [T−]. Expanding in Fourier modes by defining the basis λ±
n = λ±

[
ein(t/ℓ±φ)

]
,

the asymptotic symmetry algebra is found to be given by two copies of the Witt algebra, which
corresponds to the conformal algebra in two dimensions:

i
[
λ
±
m ,λ±

n
]
= (m−n)λ

±
m+n . (8.27)

Thus, the asymptotic symmetry algebra corresponding to the boundary conditions (8.26) is
an infinite-dimensional extension of the isometry algebra.

The algebra of surface charges for the theory can be obtained by supplementing the generators
of the asymptotic symmetries with surface terms necessary to render their variations well defined
[117] and is isomorphic to the algebra of asymptotic deformations up to a central extension. The
central extension turns out to be c = 3l

2G [6] and the algebra of surface charges is given by two
copies of the Virasoro algebra:

i
[
L±

m ,L
±
n
]
= (m−n)L±

m+n +
c

12
m
(
m2 −1

)
δm+n,0 , (8.28)

where L±
m correspond to the surface charge that generates λ±

m .

The presence of the infinite-dimensional conformal group as asymptotic symmetry group
suggests that the asymptotic dynamics of the theory is described by a two-dimensional CFT
living at the boundary of the manifold over which the gravity theory is defined.

This procedure can be carried out in the Hamiltonian framework by noting that, due to the
isomorphism SO(2,2)≃ SL(2,R)×SL(2,R), the three-dimensional Einstein-Hilbert action in
with negative cosmological constant can be rewritten as two copies of the SL(2,R) Chern-Simons
theory [9].

I [e,ω] = ICS
[
A+
]
− ICS

[
A−]− k

4π

∫
∂Σ

dtdφTr
[(

A+
φ

)2
+
(

A−
φ

)2
]
, (8.29)

where boundary terms necessary to render the variational problem well-defined have been added
and the Chern-Simons action in Hamiltonian form is given by

ICS [A] =− kl
4π

∫
dtdrdφTr

[
Aφ Ȧr −ArȦφ

]
− kl

4π

∫
dtdφε

i jTr
[
A0Fi j

]
. (8.30)

In this context, the Brown-Henneaux boundary conditions for the metric are translated in the
following boundary conditions for the SL(2,R) connections [10]:

A ∼

(
1
2r dr l

r Ξ++dx+
r
l dx+ − 1

2r dr

)
, Ā ∼

(
1
2r dr r

l dx−
l
r Ξ−−dx− − 1

2r dr

)
, (8.31)

where x± are light-cone coordinates.
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Varying the action with respect to the Lagrange multipliers A±
0 gives the constraints F÷

i j = 0,
whose general solutions are locally given by pure gauge configuration of the form A±

i =G−1
± ∂iG±.

Imposing the gauge fixing conditions ∂φ A±
r = 0, the general solution factorizes as

G± = g± (t,φ)h± (r, t) , (8.32)

which, when replaced back in the action leads to the sum of two chiral WZW models,

I [e,ω] = I+ [g+]+ I− [g−] ,

where

I± [g±] =± k
2π

∫
dtdφTr

[(
g−1
± ∂+g±−g−1

± ∂−g±
)

g−1
± ∂∓g±

]
± kl

2π
Γ [G±] , (8.33)

and
Γ [G] =

1
3!

∫
Tr
(
G−1dG

)3
. (8.34)

The action (8.33) can be rewritten as one single non-chiral WZW model in Hamiltonian form by
applying the transformation G = G−1

+ G−, g = g−1
+ g−, π =−g−1

− g′+g−1
+ g−−g−1

− g′−, leading to

I [e,ω] =
kl
2π

∫
dtdφTr

[
1
2

πg−1ġ− 1
4l

(
π

2 +
(
g−1g′

)2
)]

− kl
2π

Γ [G] , (8.35)

which, after eliminating the momenta, can be put in the standard form

I [g] =−kl2

8π

∫
dudφTr

[
η

µνg−1
∂µgg−1

∂νg
]
− kl

2π
Γ [G] . (8.36)

The non-chiral WZW model is invariant under the transformations g −→ Θ+(x+)gΘ−1
− (x−).

The infinitesimal form of these transformation have the form δg = θ+g−gθ− and lead to the
Noether currents whose time components are given by

J0
± = 2Tr [θ±I±] , I+ =± kl

4π
∂+gg−1, I− =− kl

4π
g−1

∂−g , (8.37)

and, in the Hamiltonian formulation, satisfy a Poisson algebra isomorphic to two commuting
copies of the sl(2,R) Kac-Moody algebra

{
I±a (φ), I±b (φ ′)

}
= ε

c
abI±c (φ)δ

(
φ −φ

′)± kl
4π

ηab∂φ δ
(
φ −φ

′) ,{
I+a (φ), I−b (φ ′)

}
= 0 . (8.38)

The conformal algebra can be obtained from (8.38) by means of the Sugawara construction. The
energy-momentum tensor for the theory can be written as quadratic combinations of the currents



76 Classical Duals of Three-dimensional Gravity

(8.37) and its non-vanishing component, which in light-cone coordinates are given weakly by

T+
++ ≈ 2π

k
I+a Ia

+ , (8.39)

T−
−− ≈ δ

±
−

2π

k
I−a Ia

− ,

satisfy the Poisson algebra{
T±
±±(φ),T

±
±±(φ

′)
}∗

=±l
(
T±
±±(φ)+T±

±±(φ
′)
)

∂φ δ
(
φ −φ

′) , (8.40)

which after expanding in modes has the form (8.27). The theory can be further reduced by
implementing the boundary conditions (8.26), which in terms of the currents (8.37) can be
written as

(
g−1
± ∂φ g±

)∓
= 1. In terms of the parametrization

g+ =

(
1 0

σ+ 1

)(
e−

1
2 ϕ+ 0
0 e

1
2 ϕ+

)(
1 τ+

0 1

)
, (8.41)

g− =

(
1 σ−

0 1

)(
e

1
2 ϕ− 0
0 e−

1
2 ϕ−

)(
1 0

τ− 1

)
. (8.42)

The reduced action for Einstein gravity with negative cosmological constant takes the form

Ired [e,ω] = Ired
+ + Ired

− ,

where Ired
± correspond, up to boundary terms, to the chiral boson actions

Ired
± =± k

4π

∫
dtdφ

[
ϕ
′
±∂∓ϕ±

]
. (8.43)

The sum of the chiral boson actions can be written as a Liouville theory by applying a suitable
transformation to the fields [10]. The change of variables is not well defined for the zero modes
and implies that the equivalence of the sum of the two chiral models with the non-chiral theory
does not hold in this sector. The reduction of the chiral models to Liouville theory can be
understood as a Hamiltonian reduction where the reduced phase space is endowed with the
symplectic structure coming from the corresponding Dirac bracket. In that context, the first class
energy-momentum tensor can be obtained from (8.39) T̃± ≈ T±± 1

l ∂φ I±2 , whose Dirac brackets
are given by

{
T̃±(φ), T̃±(φ ′)

}∗
=±1

l

(
T̃±(φ)+ T̃±(φ ′)

)
∂φ δ

(
φ −φ

′)∓ k
4πl

∂
3
φ δ
(
φ −φ

′) . (8.44)
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In terms of modes L±
m = 1

l
∫ 2π

0 dφe±imφ T̃±
±±, this gives a Dirac bracket algebra isomorphic to the

Virasoro algebra (8.28) with the Brown-Henneaux central extension

i
{

L±
m ,L

±
n
}∗

= (m−n)L±
m+n +

c
12

m3
δ

0
m+n, c = 6kl =

3l
2G

. (8.45)

8.2.2 Flat Case

In order to analyze the limit of vanishing cosmological constant, it is convenient to express the
Einstein-Hilbert (8.3) action in Hamiltonian form [12]

I [e,ω] =− k
2π

∫
dtdrdφε

i j (
ωaiėe

j −H
)
− k

4π

∫
∂Σ

dtdφ

[
ω

a
φ ωaφ +

1
l2 ea

φ eaφ

]
, (8.46)

where the Hamiltonian is given by H = etaγa
ω +ωtaγa

e with

γ
a
ω =

1
2

ε
i j
(

∂iea
j −∂ jea

i + ε
abc [

ωibe jc −ω jbeic
])

,

γ
a
ω =

1
2

ε
i j
(

∂iω
a
j −∂ jω

a
i + ε

abc
[

ωibω jc +
1
l2 eibec

])
,

and the boundary terms have been included to render the variational problem well defined. By
adopting the gauge conditions ∂φ ωr = 0 = ∂φ er, the general solution to the constraints γω = 0
and γe = 0 is given by

ωi = Λ−1∂iΛ , Λ = λ (t,φ)µ (r, t) ,
ẽi = Λ−1∂i

(
α +λβλ−1)Λ .

(8.47)

Inserting this solution into the action (8.46) and taking the limit l −→ ∞, which correspond to
the vanishing cosmological constant case Λ −→ 0, leads to the flat WZW model action

I [λ ,α] =
k
π

∫
dtdφTr

[
λ̇λ

−1
α
′− 1

2
(
λ
′
λ
−1)2

]
. (8.48)

The action is invariant under the transformation λ −→ λΘ−1 (φ) , α −→ α − tλΘ−1Θ′λ and
λ −→ λ , α −→ λ−1Σ(φ)λ , whose infinitesimal forms are given respectively by δθ λ =−λθ ,

δθ α =−tλθ ′λ−1, and δσ λ = 0, δσ α = λσλ−1. The time components of the associated Noether
currents are given by

J0
θ = 2Tr [θJ] , J =− k

2π

[
λ
−1

α
′
λ − t

(
λ
−1

λ
′)′] , (8.49)

P0
σ = 2Tr [σP] , P =

k
2π

λ
−1

λ
′ , (8.50)

which, in the Hamiltonian formulation, satisfy a Dirac brackets algebra isomorphic to the iso(2,1)
Kac-Moody algebra
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{
Pa(φ),Pb(φ

′)
}∗

= 0 ,{
Ja(φ),Pb(φ

′)
}∗

= ε
c
abPc(φ)δ

(
φ −φ

′)− k
2π

ηab∂φ δ
(
φ −φ

′) , (8.51){
Ja(φ),Jb(φ

′)
}∗

= ε
c
abJc(φ)δ

(
φ −φ

′) .
The theory can be further reduced by considering the parametrization

λ =

(
1 0
σ√

2
1

)(
e−

1
2 ϕ 0

0 e
1
2 ϕ

)(
1

√
2τ

0 1

)
, α =

(
1+ θ

2
ζ

2
η√

2
1− θ

2

)
, (8.52)

and imposing the boundary conditions corresponding to asymptotically flat space-times. In
the Chern Simons formulation for gravity, the conditions for asymptotically flat space-times
can be obtained by writing the chiral connections entering in (8.29) in the BMS gauge, which
after implementing (8.47) lead to

(
λ−1λ ′)− ≈ 1/

√
2,
(
λ−1α ′λ

)− ≈ 0 and in terms of the
parametrization (8.52) take the form

σ
′e−ϕ ≈ 1, η

′
σ

2 +2θ
′
σ −2ζ

′ ≈ 0 . (8.53)

By inserting (8.52) and (8.53) in the action and neglecting all boundary terms, the reduced action
can be written as the flat Liouville theory [12]

Ired =
k

2π

∫
dtdφ

[
ζ
′
ϕ̇ −ϕ

′2] . (8.54)

In the Hamiltonian formalism, the Hamiltonian and momentum densities for the Flat WZW
model (8.48) are given weakly as quadratic combinations of the currents as H ≈π

k PaPa and
P ≈ −2π

k JaPa. When implementing the reduction to the flat Liouville theory, the generators
that commute with the first class reduction constraints are given by H̃ = H + ∂φ P2 and
P̃ = P +∂φ j2, whose Dirac bracket algebra is given by{

H̃ (φ),H̃ (φ ′)
}∗

= 0 ,{
H̃ (φ),P̃(φ ′)

}∗
=

(
H̃ (φ)+H̃ (φ ′)

)
∂φ δ

(
φ −φ

′)− k
2π

∂
3
φ δ
(
φ −φ

′) , (8.55){
P̃(φ),P̃(φ ′)

}∗
=

(
P̃(φ)+P̃(φ ′)

)
∂φ δ

(
φ −φ

′) ,
and corresponds the centrally extended b̂ms3 algebra, which in terms of modes, Pm =

∫ 2π

0 dφeimφH̃ ,
Jm =

∫ 2π

0 dφeimφP̃ , takes the form
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i{Pm,Pn}∗ = 0 ,

i{Jm,Pn}∗ = (m−n)Pm+n +
c2

12
m3

δ
0
m+n, c2 = 12k =

3
G

, (8.56)

i{Jm,Jn}∗ = (m−n)Jm+n +
c1

12
m3

δ
0
m+n, c1 = 0 .

8.2.3 Lorentz-flat-Geometries

An action containing the Lorentz-flat geometries as solutions is given by a Chern-Simons theory
for the SL(2,R) group

I =
∫ 〈

ωdω +
2
3

ω
3
〉
,

whose field equations are R= 0. By considering geometries whose torsion is covariantly constant,
this theory can include all the asymptotically AdS space-times defined by the Brown-Henneaux
boundary conditions as asymptotically Lorentz-flat geometries. The boundary conditions for the
SL(2,R) connection describing asymptotically Lorentz-flat geometries and read

ω0 ∼ ε
r
l

(dt
l + εdφ

)
+O

(
r−1)dt +O

(
r−1)dφ +O

(
r−4)dr ,

ω1 ∼ ε
(1

r +O
(
r−3))dr+O

(
r−2)dt +O

(
r−2)dφ ,

ω2 ∼ r
l

(dt
l + εdφ

)
+O

(
r−1)dt +O

(
r−1)dφ +O

(
r−4)dr .

(8.57)

Here ⟨ ⟩ denotes the symmetrized trace. and where M is an orientable 3-dimensional manifold
over which the connection ω is defined. Now suppose M has the topology Σ ×R . Considering
R as the temporal line and Σ as a spatial section, we can split the gauge field in time and space
components ωµdxµ = ωtdt +ωidxi, (i = 1,2). The action then takes the form

I = κ

∫
M

d3xε
i j 〈

ω̇iω j +ωtRi j
〉
− εκ

l

∫
B

dtdφ

〈
ω

2
φ

〉
. (8.58)

Here ωt is interpreted as a Lagrangian multiplier which enforces the constraint

Ri j = 0 . (8.59)

Solving the constraint (5.21) leads to the local the form of the spatial connection

ωi = G−1
∂iG , (8.60)

where G ∈ SO(2,1).

By means of the gauge condition ∂φ ωr = 0, (8.60) can be solved and gives

G = g(t,φ)h(r) , (8.61)
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where g and h are elements of SO(2,1). Replacing (8.61) in (8.58) yields

IcWZW = κ

∫
B

dtdφ

〈
g−1ġg−1g′− ε

l

(
g−1g′

)2
〉
+Γ [G] (8.62)

and correspond to the action of a chiral WZW model, whose chirality depends on the sign of ε .
At this point, the reduction is only partial as we have not still imposed the boundary conditions
(8.57). Let’s write the chiral WZW action as

IcWZW = Iε [g]+Γ [G] , (8.63)

where we have defined

Iε [g] = κ

∫
B

dtdφ

〈
g−1ġg−1g′− ε

l

(
g−1g′

)2
〉
. (8.64)

The variation of Iε [g] is given by

δ Iε =−κ

∫
B

dtdφ

〈
g−1

δg∂φ

(
g−1ġ

)
+g−1

δg∂t
(
g−1g′

)
− 2ε

l
g−1

δg∂φ

(
g−1g′

)〉
+δΓ [G] ,

(8.65)
while the variation of Γ is

δΓ [G] = κ

∫
B

dtdφε
αβ
〈
g−1

δg∂α

(
g−1

∂β g
)〉

= κ

∫
B

dtdφ
〈
−g−1

δg∂t
(
g−1g′

)
+g−1

δg∂φ

(
g−1ġ

)〉
,

(8.66)
where we have considered ε tφ =−1. Therefore, putting (8.65) and (8.66) together, we obtain
the form of the variation of the chiral WZW action

δ IcWZW =−2κ

∫
B

dtdφ

〈
g−1

δg
(

∂t −
ε

l
∂φ

)(
g−1g′

)〉
.

The field equations for the chiral WZW are then given by(
∂t −

ε

l
∂φ

)(
g−1g′

)
= 0 ,

and express the conservation of the current

J = g−1g .′ (8.67)

In therms this current, the remaining boundary conditions (8.57) read

J(2) ∼ 0 ,

J(+) ∼ 1−ε

2

( r
l

)1+ε
+O

(
r−(1−ε)

)
,

J(−) ∼ 1+ε

2

( r
l

)1−ε
+O

(
r−(1+ε)

)
.

(8.68)
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Let’s consider now the following Cartan decomposition for the group element

g = ABC , (8.69)

where

A =

(
1 1−ε

2 x
−1+ε

2 y 1

)
, B =

(
e−

ε

2 φ 0
0 e

ε

2 φ

)
, C =

(
1 −1+ε

2 x
1−ε

2 y 1

)
. (8.70)

Then, the boundary conditions (8.68) imply that on the boundary

1−ε

2 x′eεφ = 1−ε

2

( r
l

)1+ε

−1+ε

2 y′e−εφ = 1+ε

2

( r
l

)1−ε . (8.71)

Replacing (8.70) and (8.71) in (8.63) leads, up to boundary terms, to the following reduced
action

Ired =
κ

2

∫
B

dtdφ

(
φ̇φ

′− ε

l

(
φ
′)2
)
, (8.72)

which corresponds to a chiral boson action, whose chirality is determined by the sign of ε .





Chapter 9

Actions on Coadjoint orbits

In this chapter we describe the general construction of geometrical actions using coadjoint orbits
of a Lie group G. In Section 9.1 we review the notions of coadjoint orbits and the Kirillov-Kostant
symplectic form, which allows to construct a geometrical action. In Section 9.2 we show how
this action is restricted to a coadjoint orbit, over which the Kirillov-Kostant symplectic form is
explicitly non-degenerate and can be inverted. In Section 9.3 we analyze the geometrical action
as a constrained system by means of Dirac formalism to find the associated Poisson bracket on
each orbit.

9.1 Coadjoint Orbits

A Lie group G can act on itself by conjugation, i.e., any element g ∈ G defines an group
automorphism given by

σg : G −→ G
g′ 7−→ σg (g′) = gg′g−1 .

(9.1)

Given a curve in the group manifold c(t) with t ∈ R , the action of the group on the points of
the curve is given by σg (ct) = gc(t)g−1. The Lie algebra g associated to G is isomorphic to
the tangent space TeG to G at the identity e and the adjoint action of G on g is defined as the
differential of the group automorphism σg at the identity

AdgX =
d
dt

(
gc(t)g−1)∣∣∣∣

t=0
, (9.2)

where X ∈ g corresponds to the tangent vector to the curve c(t). Then, the map

Ad : Ad : G −→ Aut (g)
g 7−→ Adg ,

(9.3)

defines the adjoint representation of the group G.
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Let g∗ be the dual space of the Lie algebra g and ⟨,⟩ the paring between them. The coadjoint
representation of G on g∗ is then defined by the map

Ad∗ : G −→ Aut (g∗)
g 7−→ Ad∗

g ,
(9.4)

where, for every element U ∈ g∗ and g ∈ G, the coadjoint action of G on g∗ satisfies〈
Ad∗

gB,X
〉
=
〈

B,Adg−1X
〉
. (9.5)

Let us consider now the adjoint action of elements of the curve c(t) on some Lie algebra element
Y ∈ g, Adc(t)Y . The differential of the map Ad at the identity defines the adjoint action of g on
itself by

adXY =
d
dt

(
Adc(t)Y

)∣∣∣∣
t=0

= [X ,Y ] , (9.6)

and the map
ad : g−→ End (g)

X 7−→ adX ,
(9.7)

corresponds to the adjoint representation of the Lie algebra g. Similarly, the coadjoint represen-
tation of g on g∗ is defined by

ad∗ : g−→ End (g∗)
X 7−→ ad∗

X ,
(9.8)

where the adjoint action ad∗
X of g on g∗ is given by the differential of Ad∗

c(t) at the identity, for
which (9.5) leads to

⟨ad∗
X B,Y ⟩=−⟨B,adXY ⟩ . (9.9)

The coadjoint orbit OU of a Lie group G through a certain point U (0) ∈ g∗ is defined as

OU =
{

U = Ad∗
gU (0) | g ∈ G

}
. (9.10)

The isotropy group H of the orbit is given by the elements in G leaving U (0) stationary

H =
{

h ∈ G | Ad∗
hU (0) =U (0)

}
, (9.11)

and therefore, coadjoint orbits are group manifolds of the form OU ∼= G/H.
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9.2 Kirillov-Kostant Form and Geometrical Actions

Let us consider the case in which G is a matrix group, where the adjoint action is simply given
by the matrix conjugation,

AdgX = gXg−1 . (9.12)

In that case the coadjoint action is also given by matrix conjugation and elements of the orbit OU

are expressed in terms of a fixed representative as

U = Ad∗
gX = gU (0)g−1 .

One interesting feature of coadjoint orbits is that they are symplectic manifolds, which are
naturally endowed by a canonical G-invariant symplectic structure. In other words, for each
coadjoint orbit OU it is possible to define a closed and non-degenerate symplectic form given by
the Kirillov-Kostant form

Ω(vX ,vY ) = ⟨U, [X ,Y ]⟩ , (9.13)

where vX is the vector field on OU induced by X through the coadjoint action of G on the orbit.

In the following a different definition of the Kirillov-Kostant form will be used. This
construction is better suited for our purposes and we will prove in the next section that it matches
the standard definition. Let us define the Kirillov-Kostant symplectic 2−form on OU as

Ω =
〈
U,κ2〉 , (9.14)

where κ corresponds to the right invariant Maurer-Cartan form (B.6).

As the symplectic form (9.14) is closed, it is locally exact. In fact, it is easy to see that it can
be written as

Ω =−d ⟨U,κ⟩ ,

which allows to define a geometric action by means of the 1−form ⟨U,κ⟩

I =−
∫

⟨U,κ⟩ . (9.15)

In order to see that the Kirillov-Kostant form is non-degenerate on OU , let us split the
generators of G as {eA,eα} with eα are the generators of H. Then, we can consider following
parametrization for the group elements:

g = ĝh , (9.16)

where
ĝ = eζ AeA , h = eζ α eα ∈ H . (9.17)
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Using this parametrization, the right invariant Maurer-Cartan form κ takes the form κ = dĝĝ−1+

ĝdhh−1ĝ−1. A simple computation shows that the Kirillov-Kostant symplectic form (9.14) has
no component along H , i.e.

Ω =−d
〈
U,dĝĝ−1〉 , (9.18)

implying that the geometrical action (9.15) can be put in the form

I =−
∫ 〈

U,dĝĝ−1〉 . (9.19)

In order to see that Ω is explicitly non-degenerate let’s note that (9.18) can be put in the form

Ω =
〈

U,
(
dĝĝ−1)2

〉
=
〈

U (0),
(
ĝ−1dĝ

)2
〉
=−1

2
f c
ABU (0)

c M̂A
CM̂B

Ddζ
C ∧dζ

D , (9.20)

where M̂A
C = MA

C
∣∣
ζ α=0. The Kirillov-Kostant symplectic form can then be written as

Ω =
1
2

ΩABdζ
A ∧dζ

B , (9.21)

where
ΩAB =CCDM̂C

AM̂D
B , CAB =− f c

ABU (0)
c . (9.22)

The matrix CAB is invertible, as all the zeros coming from the adjoint action of the little group H
(9.11) have been removed, and the matrix M̂C

A is invertible, as Ma
b is a triangular matrix when

expressed as a 2×2 block matrix. Therefore, the matrix ΩAB is invertible, and its inverse defines
a Poisson bracket for the coordinates of the orbit G/H given by{

ζ
A,ζ B

}
= ΩAB =CCD (M̂−1)A

C
(
M̂−1)B

D . (9.23)

9.3 Hamiltonian Formulation

In order to perform the Hamiltonian analysis of the geometrical actions on coadjoint orbits, lets
consider local coordinates {ζ a} for G. Then, using (B.14) and (B.5), the geometrical action
(9.15) can be written as

I =−
∫ 〈

U (0),θ
〉
=−

∫
dtU (0)

a Ma
bζ̇

b .

The canonical momenta are then given by

ηa =
∂L

∂ ζ̇ a
=−U (0)

b Mb
a ,
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and lead to the constraints
φa = ηa +U (0)

b Mb
a . (9.24)

The matrix of Poisson brackets of the set of constrains (9.24) define the pre-symplectic form of
the phase space of the system and is given by

Ωab = {φa,φb}=U (0)
c f c

deMd
aMe

b .

This matrix is not invertible, as it has zero modes given by La
β
=
(
M−1)a

β
, with β running on the

little group of the orbit defined by U (0), of dimension n. Using (B.13) the infinitesimal form of
the definition (9.11) for the little group can be expressed as f c

αβ
U (0)

c = 0, implying

Ωab
(
M−1)b

β =U (0)
c f c

dβ
Md

a = 0 .

This means that there are n zero modes

(va)
β
=
(
M−1)a

β ,

which define n first class constraints hidden in the set φa, given by

ψβ = φa (va)
β
= φa

(
M−1)a

β = ηa
(
M−1)a

β +U (0)
β

, (9.25)

the transformations generated by these constraints are given by

δζ
a = ε

β
{

ζ
a,ψβ

}
= ε

β
(
M−1)a

β . (9.26)

These transformations correspond to the action of the little group H on G. In fact the
transformation g −→ g′ = gh = eζ aeaeεβ eα = eζ ′aea produce a change in the coordinates given by
the Baker-Campbell- Hausdorff formula,

ζ
′a = ζ

a +δ
a
β

ε
β +

1
2

ζ
b
ε

β f a
bβ

+
1

12
ζ

b
ζ

c
ε

β f a
bd f d

cβ
+ . . . ,

which can be written as
ζ
′a = ζ

a + ε
β
(
M−1)a

β ,

and reproduces (9.26).

Having isolated the set of first class constraints (9.25), the set of second class constraints can
be taken as χA = ηc

(
M−1)c

A +U (0)
A , whose Poisson brackets define the matrix

CAB = {χA,χB} ≈U (0)
c f c

AB ,
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which is invertible, as its entries can be written as CAB ≈−
〈

ad∗
eA

U (0),eB

〉
, showing that all the

zeros coming from the adjoint action of the little group on U (0) are not present.

In order to carry out the Hamiltonian reduction, the gauge must be fixed, which corresponds
to the implementation of new constraints which make (9.25) second class. As gauge conditions
we consider

Gα = ζ
α −

(
M−1)α

ACAB
χB ≈ 0 ,

whose Poisson brackets with the constraints read{
Gα ,ψβ

}
=
(
M−1)α

β −
(
M−1)α

ACAB{χB,ψβ

}
≈
(
M−1)α

β ,

{Gα ,χA}=
(
M−1)α

A −
(
M−1)α

BCBCCCA = 0 ,{
Gα ,Gβ

}
≈
(
M−1)α

CCCD (M−1)β

D .

Defining the set of constraints
γΛ = {χA,Gα ,ψα ′} , (9.27)

where capital greek indices run as Λ = {A,α,α ′} ; Σ = {B,β ,β ′} ; Ω = {C,γ,γ ′} ,etc. The Dirac
matrix for the set (9.27) is given by

SΛΣ ≈

 CAB 0 0

0
(
M−1)α

CCCD (M−1)β

D
(
M−1)α

β ′

0 −
(
M−1)β

α ′ 0

 . (9.28)

The constraints (9.27) are second class provided the block
(
M−1)α

β of the matrix
(
M−1)a

b is
invertible. Denoting de inverse of

(
M−1)α

β by M̃α
β , the inverse of (9.28) is given by

SΛΣ =

 CAB 0 0
0 0 −M̃β ′

α

0 M̃α ′
β M̃α ′

γ

(
M−1)γ

CCCD (M−1)δ

DM̃β ′
δ

 ,

where CAB is the inverse of the matrix.

We define now the Dirac bracket

{F,G}∗ = {F,G}−{F,γΛ}SΛΣ {γΣ,G} . (9.29)

After setting the constraints (9.27) strongly to zero, the reduced phase space variables are ζ A,
whose bracket can be computed to give{

ζ
A,ζ B

}∗
=
[(

M−1)A
C −

(
M−1)A

αM̃α
γ

(
M−1)γ

C

]
CCD

[(
M−1)B

D −
(
M−1)B

β M̃β
δ

(
M−1)δ

D

]
.

(9.30)
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Writing the matrix
(
M−1)a

b in a 2×2 block form

(
M−1)a

b =

( (
M−1)A

B
(
M−1)A

β(
M−1)α

B
(
M−1)α

β

)
, (9.31)

we see that when computing the inverse, as for any 2×2 block matrix, the fact that
(
M−1)a

b

and
(
M−1)α

β are invertible imply that
(
M−1)A

B −
(
M−1)A

αM̃α
β

(
M−1)β

B is also a non-
degenerate matrix. In fact, its inverse is given by MA

B and therefore (9.30) can be inverted to find
the symplectic structure for the reduced phase space of the systems OU = G/H with coordinates{

ζ A}, which reads
ωAB =U (0)

a f a
CDMC

AMD
B , (9.32)

and leads to the following reduced Hamiltonian action.

Ired =−
∫

dtU (0)
a Ma

Aζ̇
A .

Let us consider now the coordinates for g∗ (B.19), which can be written as functions of the
coordinates ζ a as

Ua =U (0)
b

(
K−1)b

a .

The properties (5.68) and (B.17), after some algebra the bracket for the Ua’s is found to be

{Ua,Ub}∗ =
∂Ua

∂ζ A
∂Ub

∂ζ B

{
ζ

A,ζ B
}∗

=− f c
abUc . (9.33)

This implies that the Hamiltonian vector fields with respect to the Poisson bracket (9.33). are
given by the vector fields defined by the adjoint action (B.20). In fact

va = {Ua,Ub}∗
∂

∂Ub
=− f c

abUc
∂

∂Ub
. (9.34)

On the other hand, the vector fields (B.21) can be regarded as right invariant vector fields on
G/H. In fact, starting from (B.3) and using (B.16) we find

Ra = Rc
a

∂

∂ζ c =
(
N−1)c

a
∂Ub

∂ζ c
∂

∂Ub
=−Uc f c

ab
∂

∂Ub
,

which means they are dual to the right invariant Maurer-Cartan forms κa. Letting (9.14) act on
two vector field gives

Ω(va,vb) =
1
2
⟨U, [ec,ed]⟩κ

c (Ra)∧κ
d (Rb)

=⇒ Ω(va,vb) = ⟨U, [ec,ed]⟩ ,
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allowing to recover the standard definition (9.13).



Chapter 10

Geometrical Actions for 3D Gravity

In the previous chapter we have seen how to construct a geometrical action on coadjoint orbit
of a given Lie group from its symplectic structure. In the context of three-dimensional gravity
this method is particularly interesting as the asymptotic structure Einstein gravity in three-
dimensions, both in the asymptotically AdS and the asymptotically flat case, is described by
infinite dimensional groups whose coadjoint representation is identified with the corresponding
solution space of the theory. In fact the general solution for the Einstein equations in three-
dimensions with negative cosmological constant and with Brown-Hennaux boundary conditions
is given by

ds2 =
l2

r2 dr2 − r2
(

dx+− 8πGl
r2 L−dx−

)(
dx−− 8πGl

r2 L+dx+
)
,

where L± = L± (x±) arbitrary smooth periodic functions. Under the action of the conformal
group at infinity these functions transform as

δL± = ε
(
L±)′+2ε

′L±− c
12

ε
′′′,

which means that L± are in the coadjoint representation of the Virasoro group. Therefore, the
solution space of asymptotically AdS three-dimensional gravity can be identified with two copies
of the dual space of the Virasoro algebra, V̂ec

∗ (
S1).

In the case Λ = 0, the the solution for Einstein gravity with asymptotically flat boundary
conditions is given by [100]

ds2 = Θdu2 −2dudr+
(
2Ξ+uΘ′)dudφ + r2dφ

2,
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where in this case, under the action of the BMS3 group the functions Θ and Ξ transform as

δΘ = Y Θ′+2Y ′Θ,

δΞ = Y Ξ′+2Y ′Ξ+T Θ′+T ′Θ.

Implying the in the case the solution space for asymptotically flat three-dimensional Einstein
gravity is identified with the coadjoint representation of the BMS3 group [102].

Therefore, it is interesting to see what kind of geometrical actions can be obtained for these
infinite dimensional groups and how they are related with the known classical duals found in the
literature and presented in Chapter. With this aim, this section is devoted to the construction of the
Kirillov-Kostant symplectic form and the associated geometrical action for the case of centrally
extended groups following [108]. The results are applied for the cases of the Kac-Moody and
the Virasoro group, obtaining WZW models former case and chiral boson action in the later case.
New terms appear in the geometrical actions, which label the coadjoint orbit over which the
action is defined. Finally, in order to analyze the flat case, the procedure is generalized to the
case of semi-direct product groups and their central extensions.

10.1 Central Extensions

Let us consider a Lie group G and its central extension Ĝ = G×R, whose elements will be
denoted as (g,m). The group operation in Ĝ is given by

(g,m)
(
g′,n

)
=
(
gg′,m+n+ξ

(
g,g′

))
,

where ξ : G×G → R is a 2−cocycle satisfying the group cocycle identity

ξ
(
g′′,g′

)
+ξ

(
g′′g′,g

)
= ξ

(
g′′,g′g

)
+ξ

(
g′,g

)
,

together with the normalization ξ (g,e) = ξ (e,g) = 0 and ξ
(
g,g−1) = ξ

(
g−1,g

)
, where e is

the identity in G. The identity in Ĝ is given by (e,0), while of the inverse of (g,m) has the form

(g,m)−1 =
(
g−1,−m−ξ

(
g,g−1)) .

The adjoint action of Ĝ on its Lie algebra ĝ = g×R, whose elements are denoted by (X ,m) ,

(Y,n) , etc, is then obtained from definition (9.2), and yields

Ad(g,m) (Y,n) =
(

AdgY,n+
d
dt

[
ξ
(
g,gtg−1)+ξ

(
gt ,g−1)]∣∣∣∣

t=0

)
, (10.1)
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where d
dt gt
∣∣
t=0 = Y and the term d

dt

[
ξ
(
g,g′tg

−1)+ξ
(
g′t ,g

−1)]∣∣
t=0 is a linear function of Y on

R and therefore can be written as

d
dt

[
ξ
(
g,gtg−1)+ξ

(
gt ,g−1)]∣∣∣∣

t=0
= λ

〈
S
(
g−1) ,Y〉0 , (10.2)

where S : G → g∗ is a 1−cocycle on G, λ is a constant and ⟨,⟩0 : g∗× g → R is the pairing
between g and its dual. Then, the adjoint action of Ĝ on ĝ takes the form

Ad(g,m) (Y,n) =
(
AdgY,n+λ

〈
S
(
g−1) ,Y〉0

)
. (10.3)

The function S (g) is restricted by the requirement that Ad(g,m) must be a representation,
which means that the composition law of the group must be respected, Ad(g,m)(g′,m′) (Y,n) =
Ad(g,m)Ad(g′,m′) (Y,n). Working out both sides of this expressions yields to the condition

S
(
gg′
)
= S (g)+Ad∗

gS
(
g′
)
. (10.4)

On the other hand, the adjoint representation of the identity must satisfy Ad(e,0) (X ,m) = (X ,m)

which means that S (e) = 0. Finally, the existence of inverse requires Ad(g,m)Ad
(g,m)−1 (Y,n) =

(Y,n) ,which leads to
S (g) =−Ad∗

gS
(
g−1) . (10.5)

Denoting the elements of the dual ĝ∗ as (U,c), we can define the pairing between the central
extended algebra ĝ and its dual ⟨,⟩ : ĝ∗× ĝ→ R as

⟨(U,c) ,(X ,m)⟩= ⟨U,X⟩0 + cm . (10.6)

The coadjoint action of Ĝ on ĝ∗ is then defined by (9.9) which in the central extended case has
the form

Ad∗
(g,m) (U,c) =

(
Ad∗

gU + cλS (g) ,c
)
, (10.7)

where Ad∗
gU is the coadjoint representation of G.

The commutation relations for ĝ are given by the infinitesimal form of the adjoint action
(10.3). The explicit form for the bracket can be obtained by differentiating (10.3) with respect
to some parameter t which parametrizes g = g(t), and evaluating the result at t = 0. The
infinitesimal version of AdgY is given by (9.6), while the infinitesimal form of S can be written
as

s : g→ g∗

s(X) =
dS (g(t))

dt

∣∣∣∣
t=0

.
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From (10.2) we see that s(X) is linear in X and therefore

dS
(
g−1)

dt

∣∣∣∣∣
t=0

=−s(X) .

The infinitesimal form of (10.3) is then be given by

ad(X ,m) (Y,n)≡ [(X ,m) ,(Y,n)] = ([X ,Y ] ,−λ ⟨s(X) ,Y ⟩0) . (10.8)

The coadjoint representation of the algebra ĝ is defined by (9.9), which in this case leads to

ad∗
(X ,m) (U,c) = (ad∗

XU + cλ s(X) ,0) , (10.9)

and corresponds to the infinitesimal version of (10.7), as expected.

10.2 Geometrical Actions for Centrally Extended Groups

The procedure to construct geometrical actions on coadjoint orbits of centrally extended groups
can be straightforwardly generalized from the discussion exposed in the previous sections. Given
a representative

(
U (0),c

)
of some orbit O(U,c) of a centrally extended group Ĝ, any point of

O(U,c) can be reached by the coadjoint action on
(

U (0),c
)

with some group element (g,m),

(U,c) = Ad∗
(g,m)

(
U (0),c

)
=
(

Ad∗
gU (0)+ cλS (g) ,c

)
. (10.10)

Then, the Kirillov-Kostant symplectic structure on O(U,c) can be generalized form (9.14) as

Ω =
〈
(U,c) ,(κ,mκ)

2
〉
, (10.11)

where the pairing ⟨ ,⟩ has been defined in (10.6) and (κ,mκ) is the right invariant Maurer-Cartan
forms on Ĝ, which satisfies

d (κ,mκ)−
1
2
[(κ,mκ) ,(κ,mκ)] = 0 , (10.12)

Using (10.12), the symplectic form can be written as

Ω =−da , a =−⟨(U,c) ,(κ,mκ)⟩ ,

which leads to the associated geometrical action analogous to (9.15)

I =
∫

a =−
∫

⟨(U,c) ,(κ,mκ)⟩ . (10.13)
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Finally using (10.6), we find

I =−
∫ 〈

Ad∗
gU (0),κ

〉
0
+ c(mκ +λ ⟨S (g) ,κ⟩0) . (10.14)

10.2.1 Kac-Moody Group

The Loop LG group associated to a semi-simple Lie group G corresponds to the group of
continuous maps from the unit circle to G

g : S1 −→ G
φ 7−→ g(φ) ,

where φ ∈ [0,2π), with the multiplication law g(φ)g′ (φ) = gg′ (φ). In the same way, the loop
algebra Lg is given by the continuous maps from S1 to g, the Lie algebra associated to G, and its
elements will be denoted by x(φ). The elements of the dual space Lg∗ will be denoted by u(φ).
Here x and u are continuous functions on S1 taking values in g and g∗ respectively.

The pairing ⟨ , ⟩0 between Lg and Lg∗ is given by

⟨u,x⟩0 = Tr
∫ 2π

0
dφxu , (10.15)

where the integration is taken over S1.

The Kac-Moody group L̂G is given by the central extension of the Loop group of G. The
elements of the Kac-Moody algebra L̂g will be denoted by pairs (x(φ) ,m) ,(y(φ) ,n) ,etc, while
the dual space elements will be denoted by (u(φ) ,c). The paring between L̂g and L̂g∗ is the
given by (10.6), which in this case takes the form

⟨(x(φ) ,m) ,(u(φ) ,c)⟩0 = Tr
∫ 2π

0
dφxu+ cm . (10.16)

The central extension of the loop group is given by means of the 1−cocycle on the loop
group

S (g) = ∂φ gg−1 .

Together with the normalization λ =−1/2π , S specifies the adjoint and coadjoint representations
for the Kac-Moody group, which can be read off from (10.3) and (10.7) respectively

Ad(g,m) (y,n) =

(
gyg−1,n+

1
2π

Tr
∫ 2π

0
dφg−1

∂φ gy
)

, (10.17)

Ad∗
(g,m) (u,c) =

(
gug−1 − c

2π
∂φ gg−1,c

)
, (10.18)
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where we have considered a matrix representation for LG so that Adgy = g y g−1 and Ad∗
gu =

gug−1. The infinitesimal form of S (g) in this case is given by

s(y) = ∂φ y , (10.19)

while the infinitesimal adjoint and coadjoint action of Lg are given by adxy = [x,y] and ad∗
x u =

[x,u] respectively. Therefore, the infinitesimal adjoint and coadjoint actions of the Kac-Moody
algebra L̂g are obtained from (10.8) and (10.9) by replacing (10.19)

ad(x,m) (y,n) = [(x,m) ,(y,n)] =
(
[x,y] ,

1
2π

Tr
∫ 2π

0
dφ∂φ xy

)
, (10.20)

ad∗
(x,m) (u,c) =

(
[x,u]− c

2π
∂φ x ,0

)
. (10.21)

In order to compute the geometrical action for the Kac-Moody group, we need to find the
right invariant Maurer-Cartan form which satisfy the equation (10.12)

d (κ,mκ)−
1
2
[(κ,mκ) ,(κ,mκ)] = 0 ,

whose solution has been computed in Appendix C.1 and reads

(κ,mκ) =

(
dgg−1,

1
4π

Tr
∫ 2π

0
dφ

[
dgg−1

∂φ gg−1 −d−1
((

dgg−1)2
∂φ gg−1

)])
.

Let’s consider a coadjoint orbit with representative (u0,c) so that all the elements of the orbit
can be reached from the representative by the coadjoint action of the Kac-Moody group, i.e.,

(u,c) = Ad∗
g (u0,c) =

(
gu0g−1 − c

2π
∂φ gg−1,c

)
. (10.22)

With all these relations, the symplectic form for an orbit O(u,c) can be obtained from (10.11)
and after some algebra gives

Ω(u,c) =

〈
(u,c) ,

1
2
[(κ,mκ) ,(κ,mκ)]

〉
= Tr

∫ 2π

0
dφ

[
u0
(
g−1dg

)2 − c
4π

∂φ gg−1 (dgg−1)2
+

c
4π

d
(
∂φ g
)

g−1dgg−1
]
,

while the corresponding geometrical action can be directly read off from (10.13) and gives

I = −
∫

⟨(u,c) ,(κ,mκ)⟩ (10.23)

= −
∫ ∫ 2π

0
dφTr

(
gu0g−1dgg−1) (10.24)

−c
(

1
4π

∫ 2π

0
dφTr

[
dgg−1

∂φ gg−1 −d−1
((

dgg−1)2
∂φ gg−1

)]
− 1

2π

〈
∂φ gg−1,dgg−1〉

0

)
.(10.25)
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After some algebra, the action takes the form

I =−
∫ ∫ 2π

0
dφTr

(
u0g−1dg

)
− c

4π

∫ ∫ 2π

0
dφTr

[
dgg−1

∂φ gg−1 −d−1 (
∂φ gg−1dgg−1dgg−1)] ,

(10.26)
which corresponds to the kinetic term of the chiral WZW model [10] plus an extra term of the
form u0g−1dg, which represents the coupling to point sources and the inclusion of holonomies
corresponding angular defects or event horizons in the case of black holes [87].

10.2.2 Virasoro Group

Let us denote by Di f f
(
S1) the group of all orientation-preserving diffeomorphisms of the circle

and let Vec
(
S1) be its Lie algebra, whose elements will be denoted by X = X (φ)∂φ . The

elements of the dual space Vec
(
S1)∗ correspond to quadratic differentials on S1 and will be

denoted by p = p(φ)(dφ)2. The paring is then given by

⟨p,X⟩0 =
∫ 2π

0
dφX (φ) p(φ) .

The adjoint action of Di f f
(
S1) corresponds a reparametrization of the form φ 7−→ F (φ),

F ∈ Di f f S
1
. Acting on X it has the form

X=X (φ)∂φ = X (F (φ))
∂

∂F (φ)
= X (F (φ))

1
F ′ (φ)

∂φ .

Hence, we obtain

AdFX =
1

F ′
(φ)

X (F (φ))∂φ . (10.27)

In the same way for a element of the dual space, the coadjoint action can then be found using
(9.5) which in this case yields

Ad∗
F p = F

′
(φ)2 p(F (φ))(dφ)2 ,

which corresponds to a diffeomorphism acting on the quadratic differential. In fact

p = p(φ)(dφ)2 = p(F (φ))(dF (φ))2 (10.28)

= p(F (φ))F
′
(φ)2 (dφ)2 . (10.29)

The infinitesimal adjoint action of Vec
(
S1) is given by the commutator of two vector fields

on the circle, i.e.

adXY = [X ,Y ] =
[
X(φ)∂

φ
,Y (φ)∂

φ

]
=
(
X1(φ)X ′

2(φ)−X2(φ)X ′
1(φ)

)
∂φ . (10.30)
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The infinitesimal coadjoint action can be obtained using (9.9) and in this case leads to

ad∗
X p =

(
p′(φ)X(φ)+2p(φ)X ′(φ)

)
dφ

2 . (10.31)

The Virasoro group corresponds to a central extension of Di f f
(
S1) and will be denoted by

D̂i f f
(
S1). The elements of the Virasoro algebra V̂ec

(
S1) will be denoted by (X ,−ia), with X

a vector field on S1, while the elements of the dual will be denoted by (p, ic), where p is an
element in the dual of Vec

(
S1). The pairing between V̂ec

(
S1) and its dual is then given by

⟨(X ,−ia) ,(p, ic)⟩=
∫ 2π

0
dφ p(φ)X (φ)+ ca . (10.32)

The 1−cocyle for the conformal group is given by the Schwarzian derivative

S (F) =
F

′′′

F ′ −
3
2

(
F

′′

F ′

)2

, (10.33)

which, together with the normalization λ = −1/24π , determines the adjoint and coadjoint
action of D̂i f f

(
S1) according to (10.3) and (10.7) giving

AdF(X (φ)∂φ ,−ia) =

(
1
F ′X (F(φ))∂φ ,−i

(
a− 1

24π

∫ 2π

0
dφX(φ)S(1/F)

))
,(10.34)

Ad∗
F(p(φ)dφ

2, ic) =
((

F ′ (φ)2 p(F (φ))− c
24π

S(F)
)

dφ
2, ic
)
. (10.35)

In order to determine the infinitesimal adjoint and coadjoint action of the Virasoro algebra
we need the infinitesimal version of (10.33). Considering an infinitesimal diffeomorphism
F(φ) = φ +X(φ) we find

S(1+X) =
X ′′′

1+X ′ +
3
2

(
X ′′

1+X ′

)2

≈ X ′′′ , (10.36)

and therefore
s(X) = X (φ)′′′ .

The infinitesimal adjoint and coadjoint action of can then be read off from (10.8) and (10.9)

adX(Y (φ),−ia) =

((
X(φ)Y ′(φ)−Y (φ)X ′(φ)

)
∂φ ,−

i
24π

∫ 2π

0
dφX ′′′(φ)Y (φ)

)
,(10.37)

ad∗
X(p(φ), ic) =

((
p′(φ)X(φ)+2p(φ)X ′(φ)

)
dφ

2 − c
24π

X (φ)′′′ ,0
)
. (10.38)

Finally, in order to construct the associated geometrical action, we need to solve and find the
right invariant Maurer-Cartan form, which solves (10.12)
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d (κ,−imκ) =

(
κ

2,− i
48π

∫ 2π

0
dφκ

′′′(φ)κ (φ)

)
.

The solution is given by (see Appendix C.2)

(κ,−imκ) =

(
dF
F ′ ∂φ ,−

i
48π

∫ 2π

0
dφ

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′

])
.

Given a coadjoint orbit O(p,ic) with representative
(

p0dφ 2, ic
)
, its elements can be put in the

form (
p(φ)dφ

2, ic
)
=
((

F ′ (φ)2 p0 (F (φ))− c
24π

S(F)
)

dφ
2, ic
)
,

which corresponds to the coadjoint action (10.35) on the representative. The geometrical action
coming from the Kirillov-Kostant symplectic form is then given by

I = −
∫ 〈(

p(φ)dφ
2, ic
)
,

(
dF
F ′ ∂φ ,−

i
48π

∫ 2π

0
dφ

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′

])〉

=
∫

dφ

[
−p0 (F)F ′dF +

c
48π

dF
F ′

(
F ′′′

F ′ −2
(

F ′′

F ′

)2
)]

. (10.39)

Furthermore, defining ϕ = logF ′ we find

dϕϕ
′ =

(
dFF ′′

F ′2

)′
− dF

F ′

(
F ′′′

F ′ +

(
F ′′

F ′

)2
)

, (10.40)

and using the notation dF = Ḟdt we can write the action, up to boundary terms, as

I =
∫

dφdt
[
−p0(F)F ′Ḟ − c

48π
ϕ̇ϕ

′
]
, (10.41)

which, apart from the representative of the orbit, corresponds to the kinetic term of the chiral
boson action [12].

10.3 Semi-direct Products

Let A be an abelian vector space, whose elements are denoted by α,α ′,etc, and let G be a Lie
group with elements g,g′,etc. Then, the action of G on A will be denoted by σgα , with σ a
representation of G on A . The semi-direct product S = Gnσ A is a group with elements of
the form (g,α), whose group operation is given by(

g′,α ′)(g,α) =
(
g′g,α ′+σg′α

)
. (10.42)
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Consider now the corresponding Lie algebra s= g⊕A , with elements (X ,α) , (Y,β ) , etc,
and its dual g∗ with elements ( j, p) , ( j′, p′) , etc. The adjoint action of G on g is defined as

Ad(g,α) (Y,β ) =
d
dt

(g,α)
(
g′t ,α

′
t
)
(g,α)−1

∣∣∣∣
t=0

,

where d
dt (g

′
t ,α

′
t )
∣∣
t=0 = (Y,β ) and leads to

Ad(g,α) (Y,β ) =
(
AdgY,σgβ −ΣAdgX α

)
. (10.43)

Here Adh stands for the adjoint representation of S and Σ is the representation of h on A

corresponding to the infinitesimal form of σ . The bilinear form for s can then be defined as

⟨( j, p) ,(X ,α)⟩0 = ⟨ j,X⟩g+ ⟨p,α⟩A , (10.44)

where ⟨,⟩g and ⟨,⟩A are the natural pairings in g and A respectively. The coadjoint action of S

on s∗ is then defined as〈
Ad∗

(g,α) ( j, p) ,(X ,β )
〉

0
=
〈
( j, p) ,Ad

(g,α)−1 (X ,β )
〉

0 ,

which leads to
Ad∗

(g,α) ( j, p) =
(
Ad∗

h j+σ
∗
g p⊙α,σ∗

g p
)
, (10.45)

where P ⊙α is defined as

⟨p⊙α,X⟩g = ⟨p,ΣX α⟩A =−⟨Σ∗
X p,α⟩A , (10.46)

and σ∗,Σ∗ are the dual maps of σ ,Σ respectively (with respect to the pairing ⟨,⟩A ). The
commutation relations for s are determined by the infinitesimal form of (10.43), i.e.,

[(X ,α) ,(Y,β )] = ad(X ,α) (Y,β ) = ([X ,Y ] ,ΣX β −ΣY α) . (10.47)

10.3.1 Adjoint Representation

Consider now the semi-direct product in which σ corresponds to the adjoint representation and
A is given by the Lie algebra of G seen as the abelian additive group of a vector space, which
will be denoted by ga j. The adjoint and action of S takes the form

Ad(g,α) (Y,β ) =
(
AdgY,Adgβ −adAdgY α

)
, (10.48)
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while for the coadjoint action we get

Ad∗
(g,α) ( j, p) =

(
Ad∗

g j+Ad∗
g

[
ad∗

Adg−1α p
]
,Ad∗

g p
)
, (10.49)

which, using the identity Ad∗
g ◦ad∗

Adg−1α
◦Ad∗

g−1 = ad∗
α can equivalently written as

Ad∗
(g,α) ( j, p) =

(
Ad∗

g j+ad∗
αAd∗

g p,Ad∗
g p
)
. (10.50)

The infinitesimal versions of (10.48) and (10.50) lead to the adjoint and coadjoint representations
of the corresponding algebra s= gogab

ad(X ,α) (Y,β ) = [(X ,α) ,(Y,β )] = ([X ,Y ] , [X ,β ]− [Y,α]) , (10.51)

ad∗
(X ,α) ( j, p) = (ad∗

X j+ad∗
α p,ad∗

X p) . (10.52)

10.4 Centrally Extended Semi-direct Products

Let us consider a now the central extended group Ŝ , i.e. a central extension of a semi-direct
product group, whose elements will be denoted by (g,m1,α,m2). The elements of the algebra ŝ

will be denoted by (X ,m1,α,m2) ,(Y,n1,β ,n2), etc, while the elements of the dual as ( j,c1, p,c2).
The adjoint and the coadjoint action of Ŝ can be constructed by starting with (10.48) and (10.50),
which in this case take form

Ad(g,m1;α,m2) (Y,n1;β ,n2) =
(

Ad(g,m1) (Y,n1) ;Ad(g,m1) (β ,n2)−adAd(g,m1)
(Y,n1) (α,m2)

)
,

(10.53)

Ad∗
(g,m1;α,m2)

( j,c1; p,c2) =
(

Ad∗
(g,m1)

( j,c1)+ad∗
(α,m2)

Ad∗
(g,m1)

(p,c2) ;Ad∗
(g,m1)

(p,c2)
)
,

(10.54)

and then replacing (10.3), (10.7), (10.8) and (10.9), leading to

Ad(g,m1;α,m2) (Y,n1;β ,n2)

=
(
AdgY,n1 +λ

〈
S
(
g−1) ,Y〉0 ;Adgβ −adAdgY α,n2 +λ

[〈
S
(
g−1) ,β〉0 +

〈
s(AdgY ) ,α

〉
0

])
,(10.55)

Ad∗
(g,m1;α,m2)

( j,c1; p,c2)

=
(
Ad∗

g [ j+ad∗
α p+ c2λ s(α)]+ c1λS (g) ,c1;Ad∗

g p+ c2λS (g) ,c2
)
. (10.56)

For later purposes, the definition (10.50) will be also useful, which in this case has the form

Ad∗
(g,m1;Adgα,m2)

( j,c1; p,c2) =
(

Ad∗
(g,m1)

( j,c1)+Ad∗
(g,m1)

[
ad∗

(α,m2)
(p,c2)

]
;Ad∗

(g,m1)
(p,c2)

)
.

(10.57)
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The infinitesimal adjoint and coadjoint action can similarly be read off from (10.51) and (10.52),
which in this case have the form

ad(X ,m1;α,m2) (Y,n1;β ,n2) = [(X ,m1;α,m2) ,(Y,n1;β ,n2)] (10.58)

= ([(X ,m1) ,(Y,n1)] ; [(X ,m1) ,(β ,n2)]− [(Y,n1) ,(α,m2)]) ,

ad∗
(X ,m1;α,m2)

( j,c1; p,c2) =
(

ad∗
(X ,m1)

( j,c1)+ad∗
(α,m2)

(p,c2) ,ad∗
(X ,m1)

(p,c2)
)
. (10.59)

Replacing (10.8) and (10.9) we find

ad(X ,m1;α,m2) (Y,n1;β ,n2) = ([X ,Y ] ,−λ ⟨s(X) ,Y ⟩0 ; [X ,β ]− [Y,α] ,− [λ ⟨s(X) ,β ⟩0 −⟨s(Y ) ,α⟩0]) ,

(10.60)

ad∗
(X ,m1;α,m2)

( j,c1; p,c2) = (ad∗
X j+ad∗

α p+ c1λ s(X)+ c2λ s(α) ,0;ad∗
X p+ c2λ s(X) ,0) .

(10.61)

In order to construct the geometric action, the right invariant Maurer-Cartan form of Ŝ must be
determined, which will be denoted by (κ,mκ ,ακ ,nk) and satisfies the Maurer-Cartan equation
(B.8); which in this case has the form

d (κ,mκ ;ακ ,nk)−
1
2
[(κ,mκ ;ακ ,nk)(κ,mκ ;ακ ,nκ)] = 0 .

Given an orbit O( j,c1;p,c2) its elements are constructed by letting the whole group act on a
representative ( j0,c1, p0,c2) by the coadjoint action, which for convenience will be taken in the
form (10.57) rather than (10.56). This means

( j,c1; p,c2) = Ad(g,m1,Adgα,m2) ( j0,c1, p0,c2)

=
(
Ad∗

g [ j0 +ad∗
α p0 + c2λ s(α)]+ c1λS (g) ,c1;Ad∗

g p0 + c2λS (g) ,c2
)
.

Then, the geometrical action (9.15) takes the form

I =
∫

⟨( j,c1; p,c2)(κ,mκ ;ακ ,nκ)⟩

=
∫ 〈(

Ad∗
g [ j0 +ad∗

α p0 + c2λ s(α)]+ c1λS (g)
)

κ
〉

+
∫ 〈(

Ad∗
g p0 + c2λS (g)

)
ακ

〉
+ c1mκ + c2nκ .

10.4.1 Kac-Moody Algebra of Gng

Let us consider now the group L̂Gn L̂gab, where G a compact semi-simple Lie group, which
corresponds to a central extension of the loop algebra of a semi-direct product. The adjoint and
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the coadjoint action for such a group can be constructed using (10.55) and (10.56) and replacing
the results found for the Kac-Moody group (10.17) and (10.18). In order to write the geometrical
action for a coadjoint orbit, the expression (10.57) will be useful later, which in this case takes
form

Ad∗
(g;gαg−1) ( j,c1; p,c2) =

(
g
[

j+[α, p]− c2

2π
α
′
]

g−1 − c1

2π
g′g−1,c1;gpg−1 − c2

2π
g′g−1,c2

)
.

(10.62)

Let us turn now our attention to the Maurer-Cartan one-form (κ,mκ ;βκ ,nκ) taking values in
the Kac-Moody algebra. Using (10.60) the Maurer-Cartan equation (B.8) takes the form

d (κ,mκ ;βκ ,nκ) =
1
2
[(κ,mκ ;βκ ,nκ) ,(κ,mκ ;βκ ,nκ)] (10.63)

=

(
1
2
[κ,κ] ,

1
4π

∫
dθTr

(
κ
′
κ
)

; [κ,βκ ] ,
1

2π

∫
dθTr

(
κ
′
βκ

))
,

whose solution to (10.63) is given by (see Appendix C.3)

(κ,mκ ;βκ ,nκ)=

(
dgg−1,

1
4π

∫
dθTr

(
g′g−1dgg−1

+d−1 [g′g−1dgg−1dgg−1]
)

;gdαg−1,
1

2π

∫
dθTr

(
g′dαg−1)) .

Now, using (10.62) to parametrize the coadjoint orbits for the loop algebra

( j,c1; p,c2) = Ad∗
(g;gαg−1) ( j0,c1; p0,c2) ,

the action for an orbit with representative ( j0,c1; p0,c2) can be constructed using (9.15)

I =−
∫
( j0;p0)

〈
Ad∗

(g;gαg−1) ( j0,c1; p0,c2) ,(κ,mκ ;βκ ,nκ)
〉
,

which after some algebra leads to the action

I = −
∫

dθTr
(

j0g−1dg+ p0
(
dα +

[
g−1dg,α

]))
(10.64)

+
∫

dθTr
( c2

2π
α
′g−1dg+

c1

4π

(
g′g−1dgg−1 −d−1 [g′g−1dgg−1dgg−1])) .

The second integral corresponds to the kinetic term of the flat WZW model [12].

10.4.2 BMS3

Let us consider now the B̂MS3 group, which corresponds to the semi-direct product of the
Virasoro group and its algebra (as an abelian additive group) under the adjoint action

B̂MS3 = D̂i f f
(
S1)nVec

(
S1)

ab ,
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the elements of the b̂ms3 algebra will be denoted by (X ,−im1,α,−im2) , (Y,−in1,β ,−in2) ,

etc. The adjoint and coadjoint action of the Virasoro group are given by (10.55) and (10.56).
Replacing that the relations obtained for the Virasoro group (10.34) and (10.35), we obtain

Ad(F,α) (Y,−in1,β ,−in2)

=

 Y (F)

F ′ ,−i
(
n1 − 1

24π

∫
dθS

(
F−1)Y

)
; β (F)−α ′Y (F)

F ′ +2α

(
Y (F)

F ′

)′
,−i
(

n2 − 1
24π

∫
dθ

[
S
(
F−1)β +

(
Y (F)

F ′

)′′′
α

])
 ,(10.65)

Ad∗
(F,(F ′)−1

α(F))
( j, ic1; p, ic2) (10.66)

=
((

F ′)2
[

j+ p′α +2pα
′− c2

24π
α
′′′
]
◦F − c1

24π
S (F) , ic1;

(
F ′)2 p(F)− c2

24π
S (F) , ic2

)
.

Similarly, their infinitesimal versions can be obtained from (10.60) and (10.61) and read

ad(X ,α) (Y,−in1,β ,−in2) = [(X ,−im1;α,−im2) ,(Y,−in1;β ,−in2)]

=
(
[X ,Y ] ,− i

24π

∫
dθX ′′′Y ;Xβ ′−βX ′−Y α ′+αY ′,− i

24π

∫
dθ [X ′′′β −Y ′′′α]

)(10.67)

ad∗
(X ,α) ( j, ic1; p, ic2)

=
(

j′X +2 jX ′− c1
24π

X ′′′+ p′α +2pα ′− c1
24π

α ′′′,0; p′X +2pX ′− c2
24π

X ′′′,0
)
.
(10.68)

The Maurer-Cartan form (κ,−imκ ;βκ ,−inκ) in this case satisfies the equation (B.8), which
using (10.60) takes the form

d (κ,−imκ ;βκ ,−inκ) =
1
2
[(κ,−imκ ;βκ ,−inκ) ,(κ,−imκ ;βκ ,−inκ)]

=

(
1
2
[(κ,−imκ) ,(κ,−imκ)] ; [(κ,−imκ) ,(βκ ,−inκ)]

)
=

(
κκ

′,− i
48π

∫
dθκ

′′′
κ;κβ

′
κ +βκκ

′,− i
24π

∫
dθκ

′′′
βκ

)
.

The Maurer-Cartan form has been computed in Appendix C.4 is then given by

(κ,−imκ ;βκ ,−inκ) =

 dF
F ′ ,− i

48π

∫
dθ

(
F ′′′

F ′ − F ′′2

F ′2

)
dF
F ′

; F
F ′

(
dα − dFα ′

F ′

)
,− i

24π

∫
dθS (F) F

F ′

(
dα − dFα ′

F ′

)  .

Now we use (9.15) to construct the geometrical action for an orbit O( j,ic1;p,ic2) with elements
parametrized as

( j, ic1; p, ic2) = Ad∗
(F,−im1,(F ′)−1

α(F),im1)
( j0, ic1; p0, ic2) (10.69)

=

(
(F ′)2 [ j0 + p′0α +2p0α ′− c2

24π
α ′′′]◦F − c1

24π
S (F) , ic1

;(F ′)2 p0 (F)− c2
24π

S (F) , ic2

)
.
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The action is given by

I =−
∫ 〈

Ad∗
(F,−im1,(F ′)−1

α(F),im1)
( j0, ic1; p0, ic2) ,(κ,−imκ ;βκ ,−inκ)

〉
.

In the notation d = dt (·) the action takes the form

I =−
∫

dθdt

[
F ′Ḟ

[
j0 + p′0α +2p0α ′]◦F +F

(
F ′α̇ − Ḟα ′) p0 (F)

− c2
24π

F ′Ḟα ′′′ (F)− c1
48π

Ḟ
F ′

(
F ′′′

F ′ −2F ′′2

F ′2

) ]
.

Defining the variables φ = log(F ′) ξ = α ′ (F) we can write

φ̇φ
′ =

Ḟ ′F ′′

F ′2 =

(
ḞF ′′

F ′2

)′
− Ḟ

F ′

(
F ′′′

F ′ −2
F ′′2

F ′2

)
,

φ̇ξ
′ = Ḟ ′

α
′′ (F) =

(
Ḟα

′′ (F)
)′− ḞF ′

α
′′′ (F) .

Therefore, the action on a orbit of the b̂ms3 algebra is

I =−
∫

dθdt
[
F ′Ḟ

[
j0 + p′0α +2p0α

′]◦F +F
(
F ′

α̇ − Ḟα
′) p0 (F)+

c2

24π
φ̇ξ

′+
c1

48π
φ̇φ

′
]
,

(10.70)
where the terms proportional to the central charges are recognized as the classical dual for
asymptotically flat Einstein gravity in three dimensions [12].





Chapter 11

Conclusions and Future Developments

In the second part of the thesis, classical dual field theories for three-dimensional gravity with
negative and vanishing cosmological constant have been studied as geometrical actions on
coadjoint orbits of the corresponding asymptotic symmetry group. The coadjoint orbits of the
Virasoro and BMS3 group have been studied, the Kirillov-Kostant symplectic form has been
analyzed from the Hamiltonian point of view and two-dimensional action principles for the
gauge fixed solution space of three-dimensional gravity have been constructed. These actions
can also be interpreted as one-dimensional particle-type actions for infinite-dimensional groups.
In the case of the Kac-Moody group, the geometrical action corresponds to a WZW model
plus extra contributions, which label the orbit on which the theory is defined and from the
physical point of view they represent the coupling to point sources or the inclusion of holonomies
representing angular defects or the presence of an event horizon in the case of black holes [87].
In the case of the Virasoro group, a chiral boson is obtained allowing to reconstruct the dual
field theory for asymptotically AdS three-dimensional Einstein gravity when two copies of the
Virasoro group are considered. When studying semi-direct products groups, these results can be
extended to obtain generalized B̂MS3 invariant actions, which include the known classical dual
for asymptotically flat three-dimensional Einstein gravity [12].

Another result presented in this manuscript is the fact that locally AdS geometries can be
also understood as Lorentz flat geometries in the presence of covariantly constant torsion. In
the euclidean case, the Adams-Hopf theorem [118] states that the three-sphere is parallelizable,
namely, it can be endowed with a globally trivial SO(3) connection. Equivalently, the statement
that AdS3 is Lorentz-flat is just the continuation to Lorentzian signature of the Adams-Hopf
result. Since the Adams-Hopf theorem establishes that S7 is parallelizable, one should expect
that some interesting covariantly constant torsion geometries would also exist in AdS7. Other
local Lorentz flat black hole solutions can be constructed in the presence a locally flat but
globally nontrivial gauge connection. This is the case, for instance in the vacuum sector of
some supersymmetric Chern-Simons theories that include the U(1) or SU(2) connections [119].
Those solutions, for particular values of the parameters, are configurations admitting globally
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defined Killing spinors and therefore define stable BPS ground state. This result is interesting,
as it can be continued to the asymptotic analysis to formulate asymptotically AdS spaces as
Asymptotically Lorentz-flat geometries. The construction of a Chern-Simons action invariant
under the Lorentz group containing these solutions would lead to a single chiral boson as the
classical dual theory at the boundary. The implications of this will be explored in a future project.
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Appendix A

Sum Over Matsubara Frequencies

Let’s consider the gap equation (4.16)

3Ng2λ

16π3 ∑
n

∫ 1

0

R2dR

(R2 +θ 2
n )

2
+ Ng2λ 2

36π2 (R2 +θ 2
n )+Γ4

= 1 ,

and let’s compute the following sum over the dimensionless Matsubara frequencies θn

∑
n

1

(R2 +θ 2
n )

2
+ Ng2λ 2

36π2 (R2 +θ 2
n )+Γ4

= ∑
n

1
P(n2)

, (A.1)

where

P(x) = λ
4 (x+a−)(x+a+) , (A.2)

a± =
R2

λ 2 +
Ng2

72π2 ±
√

N2g4

722π4 −
Γ4

λ 4 . (A.3)

Using algebraic manipulations, we can write (A.1) as

∑
n

1
P(n2)

=
1

λ 4
1

a+−a−
∑
n

(
1

n2 +a−
− 1

n2 +a+

)
. (A.4)

Then, using the residue theorem applied sum series

∞

∑
n=−∞

f (z) =−∑res [π cot(πz) f (z)] ,

we obtain for (A.4)

∑
n

1
P(n2)

=
1

λ 4
1

a+−a−

(
π coth

(
π
√

a−
)

√
a−

−
π coth

(
π
√

a+
)

√
a+

)
. (A.5)
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Defining S (R,λ ,Γ) = ∑n
1

P(n2)
and using (A.3) we obtain (4.17)

S (R,λ ,Γ)=
π

2λ

√
N2g4λ 4

722π4 −Γ4


coth

 π

λ

√
R2+Ng2λ2

72π2 −
√

N2g4λ4

722π4 −Γ4


√

R2+Ng2λ2

72π2 −
√

N2g4λ4

722π4 −Γ4

−
coth

 π

λ

√
R2+Ng2λ2

72π2 +

√
N2g4λ4

722π4 −Γ4


√

R2+Ng2λ2

72π2 +

√
N2g4λ4

722π4 −Γ4

 ,

(A.6)
and the thermal gap equation (4.16) takes the form

3Ng2λ

16π3

∫ 1

0
dRR2S (R,λ ,Γ) = 1 .



Appendix B

Generalities on Lie Groups

Consider local coordinates ζ a on a Lie group G such that ζ a = 0 corresponds to the identity e

and ea =
∂g

∂ζ a |e is a basis of g, the tangent space at e, and satisfy

[ea,eb] = f c
abec , (B.1)

where f c
ab are the structure constants. Abusing notation, we write the left and right invariant

vector fields on G arising from the differential of the left and right action of G on itself as

La(g) = gea = Lb
a(ζ )

∂g
∂ζ b , (B.2)

Ra(g) = eag = Rb
a(ζ )

∂g
∂ζ b , (B.3)

with Lie brackets

[La,Lb] = f c
abLc, [Ra,Rb] =− f c

abRc, [La,Rb] = 0 . (B.4)

The associated dual left and right invariant one-forms are θ a(g) = eag−1 and κa = g−1ea

and the left and right invariant Maurer-Cartan forms are given by

θ = g−1dg = θ
aea = Ma

bdζ
bea , (B.5)

κ = dgg−1 = eaκ
a = Na

beadζ
b , (B.6)

where Ma
b =

(
L−1)a

b and Na
b =

(
R−1)a

b, which satisfy the Maurer-Cartan equations

dθ +
1
2
[θ ,θ ] = 0 (B.7)

dκ − 1
2
[κ,κ] = 0 . (B.8)
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By the same abuse of notation, we write the adjoint action of G on the basis of g by replacing
X = ea in (9.12), which gives

Adgea = geag−1 = Kb
a(ζ )eb . (B.9)

Let us consider now a basis ea for g∗, dual to ea with pairing

⟨ea,eb⟩= δ
a
b . (B.10)

The coadjoint action of G on the basis of g∗ can be obtained by replacing U = ea in (9.5) and
leads to

Ad∗
gea = geag−1 = (K−1)a

beb . (B.11)

The infinitesimal form of (B.9) and (B.11) are given by

adeaeb = [ea,eb] = f c
abec , (B.12)

ad∗
ea

eb = [ea,eb] =− f b
acec . (B.13)

Note that due to the property

κ = Adgθ = gθg−1 , (B.14)

it follows that
Na

b = Ka
cMc

b . (B.15)

Another useful properties of the matrix Ka
c are

∂Ka
b

∂ζ c = f d
beNe

cKa
d , (B.16)

f c
abKd

c = f d
ceKc

aKe
b . (B.17)

Let v denote a vector field induced by the coadjoint action of G, which is given by (9.5). In
fact,

v(U) =
d
dt

(
Ad∗

c(t)U
)∣∣∣∣

t=0
= ad∗

XU , X =
dc
dt

∣∣∣∣
t=0

. (B.18)

Let us consider now a set of local coordinates Ua in g∗ such that every element U ∈ g∗ can be
written as

U =Uaea . (B.19)
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Then, using (B.13), (B.18) takes the form

v(U) = XaUcad∗
ea

ec =−XaUc f c
abeb = Xava ,

where we have defined the vector fields

va (U) =−Ub f c
abeb , (B.20)

which span TUg
∗. The vector field va can then be written the form

va =−Uc f c
ab

∂

∂Ub
. (B.21)





Appendix C

Details on Maurer-Cartan Forms

In this Appendix we consider some examples of how to construct the right invariant Maurer-
Cartan form for some infinite dimensional groups that will be useful in Chapter 10. Left invariant
forms can be constructed along the same lines.

C.1 Kac-Moody Group

Let (κ,mκ) be the Maurer-Cartan form for the Kac-Moody group, the Maurer-Cartan equation
(B.8) can be written explicitly using (10.20)

d (κ,mκ) = [(κ,mκ) ,(κ,mκ)] =
1
2

(
[κ,κ] ,

1
2π

Tr
∫ 2π

0
dφ∂φ κκ

)
.

Therefore, the equations to solve are given by

dκ =
1
2
[κ,κ] , dmκ =

1
4π

Tr
∫ 2π

0
dφ∂φ κκ . (C.1)

Here κ corresponds to the right invariant Maurer-Cartan form for LG, which is given by (B.6),

κ = dgg−1, (C.2)

Replacing (C.2) in (C.1), the equation for mκ takes the form

dmκ =
1

4π
Tr
∫ 2π

0
dφ∂φ

(
dgg−1)dgg−1 =

1
4π

Tr
∫ 2π

0
dφ
(
d∂φ gg−1 +dg∂φ g−1)dgg−1

=
1

4π
Tr
∫ 2π

0
dφd

[
dgg−1

∂φ gg−1 −d−1
((

dgg−1)2
∂φ gg−1

)]
.

Therefore we find
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mκ =
1

4π
Tr
∫ 2π

0
dφ

[
dgg−1

∂φ gg−1 −d−1
((

dgg−1)2
∂φ gg−1

)]
, (C.3)

and the right invariant Maurer-Cartan forms is given by

(κ,mκ) =

(
dgg−1,

1
4π

Tr
∫ 2π

0
dφ

[
dgg−1

∂φ gg−1 −d−1
((

dgg−1)2
∂φ gg−1

)])
.

C.2 Virasoro Group

The Maurer-Cartan equation (B.8) for the Virasoro group is given by

d (κ,−imκ) =

(
κ

2,− i
48π

∫ 2π

0
dφκ

′′′(φ)κ (φ)

)
=⇒ dκ = κ

2 , dmκ =
1

48π

∫ 2π

0
dφκ

′′′
κ , (C.4)

were we have used (10.37). The solution for κ is given by

κ =
dF
F ′ ∂φ . (C.5)

In fact

κ
2 =

dF
F ′ ∂φ

dF
F ′ ∂φ =

dFdF ′

F ′2 ∂φ = d
(

dF
F ′ ∂φ

)
= dκ . (C.6)

Let us now turn our attention to the equation for mκ

dmκ =
1

48π

∫ 2π

0
dφκ

′′′
κ . (C.7)

Let’s compute first κ ′′′(φ)

κ ′(φ) = dF ′

F ′ − dF
F ′2 F ′′ ,

κ ′′(φ) = dF ′′

F ′ −2dF ′

F ′2 F ′′+2 dF
F ′3 F ′′2 − dF

F ′2 F ′′′ ,

κ ′′′(φ) == dF ′′′

F ′ −3dF ′′

F ′2 F ′′+6dF ′

F ′3 F ′′2 −3dF ′

F ′2 F ′′′−6 dF
F ′4 F ′′3 +6 dF

F ′3 F ′′F ′′′− dF
F ′2 F ′′′′ .

Therefore

κ
′′′(φ)κ(φ) =

dF ′′′

F ′2 dF −3
F ′′

F ′3 dF ′′dF +6
F ′′2

F ′4 dF ′dF −3
F ′′

F ′3 dF ′dF . (C.8)

Now we will show that the term κ ′′′(φ)κ(φ) is equivalent, up to a total derivative in φ , to the
expression

d

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

κ

]
. (C.9)
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In fact

d

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′

]
=

(
dF ′′′

F ′ − F ′′′

F ′2 dF ′−2
F ′′

F ′

(
dF ′′

F ′ − F ′′

F ′2 dF ′
))

dF
F ′

+

(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′2 dF ′

=
dF ′′′

F ′2 dF − F ′′′

F ′3 dF ′dF −2
F ′′

F ′3 dF ′′dF +2
F ′′2

F ′4 dF ′dF

+
F ′′′

F ′3 dFdF ′− F ′′2

F ′3 dFdF ′

=
dF ′′′

F ′2 dF −2
F ′′

F ′3 dF ′′dF +3
F ′′2

F ′4 dF ′dF −2
F ′′′

F ′3 dFdF ′ ,(C.10)

and (C.10) differs from (C.8) by

F ′′

F ′3 dF ′′dF −3
F ′′2

F ′4 dF ′dF +
F ′′′

F ′3 dFdF ′ = ∂φ

(
F ′′

F ′3 dF ′dF
)

. (C.11)

Therefore, the integrand in (C.7) is given by (C.9) up to boundary and we can write

dmκ =
1

48π

∫ 2π

0
dφd

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

κ

]
(C.12)

=⇒ mκ =
1

48π

∫ 2π

0
dφ

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′

]
, (C.13)

and the right invariant Maurer-Cartan form is

(κ,−imκ) =

(
dF
F ′ ∂φ ,−

i
48π

∫ 2π

0
dφ

[(
F ′′′

F ′ −
(

F ′′

F ′

)2
)

dF
F ′

])
.
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Using (10.8), the Maurer-Cartan equation (C.1) yields

(dκ,dmκ ;dβκ ,dnκ) =

(
1
2
[κ,κ] ,

1
4π

∫
dθTr

(
κ
′
κ
)

; [κ,βκ ] ,
1

2π

∫
dθTr

(
κ
′
βκ

))
, (C.14)

where the first and the third equations can be solved straightforwardly, leading to

κ = dgg−1 , βκ = gdαg−1 ,
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while the second equation was solved in and the solution is given by

mκ =
1

4π

∫
dθTr

(
g′g−1dgg−1 +d−1 [g′g−1dgg−1dgg−1]) .

We are then left with

dnκ =
1

2π

∫
dθTr

((
dgg−1)′ gdαg−1

)
=

1
2π

∫
dθTr

(
d
(
g′dαg−1)+g′dαdg−1 −dgg−1g′g−1gdαg−1)

=
1

2π

∫
dθTrd

(
g′dαg−1) ,
=⇒ nκ =

1
2π

∫
dθTr

(
g′dαg−1) .

Hence, the solution to (C.14) is given by

(κ,mκ ;βκ ,nκ)=

(
dgg−1,

1
4π

∫
dθTr

(
g′g−1dgg−1

+d−1 [g′g−1dgg−1dgg−1]
)

;gdαg−1,
1

2π

∫
dθTr

(
g′dαg−1)) .

C.4 BMS3

The Maurer-Cartan equation in the case of the B̂MS3 group has the form

d (κ,−imκ ;βκ ,−inκ) =
1
2
[(κ,−imκ ;βκ ,−inκ) ,(κ,−imκ ;βκ ,−inκ)]

=

(
1
2
[(κ,−imκ) ,(κ,−imκ)] ; [(κ,−imκ) ,(βκ ,−inκ)]

)
=

(
κκ

′,− i
48π

∫
dθκ

′′′
κ;κβ

′
κ +βκκ

′,− i
24π

∫
dθκ

′′′
βκ

)
,

where we have used (10.67) . Hence the equations to solve are

dκ = κκ
′ (C.15)

dβκ = κβ
′
κ +βκκ

′ (C.16)

dmκ =
1

48π

∫
dθκ

′′′
κ (C.17)

dnκ =
1

24π

∫
dθκ

′′′
βκ . (C.18)
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The solution for the equations (C.15) and (C.16) are

κ =
dF
F ′ (C.19)

βκ =
F
F ′
(
dα −κα

′) , (C.20)

while the solution for (C.17) was computed in Appendix C.1 and reads

mκ =
1

48π

∫
dθ

(
F ′′′

F ′ −
F ′′2

F ′2

)
κ .

For equation (C.18), we compute κ ′′′βκ using (C.8)

κ
′′′

βκ =

(
dF ′′′

F ′ −3dF ′′F ′′

F ′2 −3dF ′F ′′′

F ′2 +6dF ′F ′′2

F ′3

−dFF ′′′′

F ′2 +6dFF ′′F ′′′

F ′3 −6dFF ′′3

F ′4

)(
Fdα

F ′ − FdFα ′

F ′2

)

=

(
dF ′′′Fdα

F ′2 −3dF ′′F ′′Fdα

F ′3 −3dF ′F ′′′Fdα

F ′3

+6dF ′F ′′2Fdα

F ′4 − dFF ′′′′Fdα

F ′3 +6dFF ′′F ′′′Fdα

F ′4 −6dFF ′′3Fdα

F ′5

)

−
(

dF ′′′FdFα ′

F ′3 −3
dF ′′F ′′FdFα ′

F ′4 −3
dF ′F ′′′FdFα ′

F ′4 +6
dF ′F ′′2FdFα ′

F ′5

)
.

Let us work out the terms in the first bracket

dF ′′′Fdα

F ′2 − 3
2

d
(
F ′′2)Fdα

F ′3 −3
dF ′F ′′′Fdα

F ′3 +6
dF ′F ′′2Fdα

F ′4

−dFF ′′′′Fdα

F ′3 +6
dFF ′′F ′′′Fdα

F ′4 −6
dFF ′′3Fdα

F ′5 (C.21)

= d
(

F ′′′Fdα

F ′2 − 3
2

F ′′2Fdα

F ′3

)
− F ′′′dFdα

F ′2 +
3
2

F ′′2dFdα

F ′3 − dF ′F ′′′Fdα

F ′3 (C.22)

+
3
2

dF ′F ′′2Fdα

F ′4 − dFF ′′′′Fdα

F ′3 +6
dFF ′′F ′′′Fdα

F ′4 −6
dFF ′′3Fdα

F ′5 .

For the second bracket we have

dF ′′′FdFα ′

F ′3 −3
dF ′′F ′′FdFα ′

F ′4 −3
dF ′F ′′′FdFα ′

F ′4 +6
dF ′F ′′2FdFα ′

F ′5

= d
(

F ′′′FdFα ′

F ′3 − 3
2

F ′′2FdFα ′

F ′4

)
+

(
F ′′′FdFdα

F ′3

)′
− 3

2

(
F ′′2FdFdα

F ′4

)′
(C.23)

−F ′′′′FdFdα

F ′3 − F ′′′dFdα

F ′2 − F ′′′FdF ′dα

F ′3 +6
F ′′′FdFF ′′dα

F ′4 +
3
2

F ′′2dFdα

F ′3

+
3
2

F ′′2FdF ′dα

F ′4 −6
F ′′2FdFF ′′dα

F ′5 . (C.24)
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Subtracting (C.22) and (C.23) we find

κ
′′′

βκ = d
((

F ′′′

F ′ −
3
2

F ′′2

F ′2

)(
Fdα

F ′ − FdFα ′

F ′2

))
−
((

F ′′′

F ′ −
3
2

F ′′2

F ′2

)
F ′′′FdFdα

F ′3

)′
,

and equation (2.3) takes the form

dnκ =
1

24π

∫
dθd

((
F ′′′

F ′ −
3
2

F ′′2

F ′2

)(
FdA
F ′ − FdFα ′

F ′2

))
=

1
24π

∫
dθd (S (F)βκ)

=⇒ nκ =
1

24π

∫
dθS (F)βκ .

The Maurer-Cartan form in this case is then given by

(κ,−imκ ;βκ ,−inκ) =

 dF
F ′ ,− i

48π

∫
dθ

(
F ′′′

F ′ − F ′′2

F ′2

)
dF
F ′

; F
F ′

(
dα − dFα ′

F ′

)
,− i

24π

∫
dθS (F) F

F ′

(
dα − dFα ′

F ′

)  .
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